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Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for partial fulfillment of the requirements for the degree of philosophiae
doctor. This doctoral work has been performed at the Department of Structural En-
gineering, NTNU, Trondheim from September 2016 through August 2020 under
the supervision of Leif Rune Hellevik.

This thesis is a collection of papers published in or submitted to international peer-
reviewed journals. The thesis is organized in two parts. Part I is an introductory
section that presents the themes and background of the thesis and part II includes
the journal papers.
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Abstract
In this thesis we have developed reduced-order models for the prediction of pres-
sure and flow in the arterial system and for the diagnosis of coronary artery dis-
ease. By reduced-order model we refer to a reduction of dimensionality, i.e. the
conversion of a 3D problem to a 1D problem, or a 1D problem to a 0D problem.
The reductions in dimensionality require simplifications of the problem, which are
associated with a range of assumptions. These simplifications and assumptions
lead to computationally affordable, and thereby clinically relevant models, which
may be used for diagnosis, treatment and decision support. However, these benefits
have to be counterweighted with the model errors introduced by the simplifications
and assumptions, to maintain the clinically relevant predictability of the models.

We have developed a framework for optimizing the number of segments to be
included in arterial 1D blood flow models. We found that a model where all aortic
segments are represented, but with a minimal description of other parts of the
cardiovascular system (head and extremities), is sufficient to capture important
features of the aortic pressure waveform.

Furthermore, we have developed a noninvasive reduced-order model for the es-
timation of the hemodynamic significance of coronary artery disease, based on
coronary computed tomography angiography (CCTA) imaging and computational
fluid dynamics. We demonstrated how global sensitivity analysis can be used as a
part of model validation and assist in parameter estimation to reduce errors with re-
spect to a corresponding, more detailed 3D model. Moreover, the errors related to
the reduced-order model were further reduced by application of neural networks
for prediction of pressure loss in coronary segments. We evaluated the effect of
incorporating prior physics-based knowledge in the learning process. This modi-
fication resulted in significantly improved predictions by the neural networks and
also reduced the amount of training data required to achieve a specific accuracy.

We characterized the diagnostic accuracy of the reduced-order model to classify is-
chemia using invasive Fractional Flow Reserve (FFR) measurements as reference.
Our model predictions of FFR obtained an accuracy, sensitivity and specificity of
89%, 79% and 93% respectively, in an unblinded study on 63 patients. More-
over, we found that the estimation and distribution of baseline coronary flow had
a significant impact on diagnostic performance. However, even imposition of the
correct baseline flow would still lead to high uncertainty in predicted FFR due to
uncertainties related to geometry and the effect of hyperemic inducing drugs.
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Introductory section
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Nomenclature

0D - Zero dimensional

1D - One dimensional

3D - Three dimensional

CAD - Coronary artery disease

CCTA - Coronary computed tomography angiography

FFR - Fractional Flow Reserve

ICA - Invasive coronary angiography

ROM - Reduced-order model

SA - Sensitivity analysis

UQ - Uncertainty quantification
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Chapter 1
Introduction

This thesis was conducted at the Department of Structural Engineering at the Nor-
wegian University of Science and Technology, with focus on the cardiovascular
system (i.e. the heart and blood vessels) and with a particular emphasis put on the
development of a non-invasive model for assessing the significance of coronary
artery disease. At first it might seem odd to conduct such a PhD at a department
which core is to study the strengths, mechanics and dynamics of man made sys-
tems and structures. However, a link is made by the term biomechanics, which
relates to the study of the structure and function of biological (i.e. living) systems.
Similar to the way Newtons 2nd law of motion is used to predict stresses and defor-
mations in man made structures, it may also be used to predict pressure and flow
distribution in the heart and blood vessels that comprise the cardiovascular system
of the human body.

The cardiovascular system is a critical system, which primary function is to pro-
vide rapid convective transport of oxygen, nutrients etc. to the tissues, and cor-
responding washout of metabolic waste products from the tissues [1]. The car-
diovascular system consists of the heart, which is the driving force (pump) of the
system, arteries, which provide a passage of the blood from the heart to the tissues,
and veins, which direct blood back towards the heart. Arteries and veins are blood
vessels, and in order to provide exchange of oxygen, waste products etc. to all the
tissues and cells of the body, they form branching networks with countless num-
ber of vessels1. The size of the vessels and mechanical properties of the vessels’

1Most cells lie within 20 µm of a blood vessel. At this distance, diffusion takes over as the means
of transport of oxygen, waste products etc to/from the tissues/cells [1].

5



6 Introduction

walls are different depending on their purpose and distance from the heart. They
may have large diameters (∼ 1 cm), be thin-walled and elastic with the primary
purpose of serving as conduits for the rest of the network. They may have thick
muscular walls allowing the diameter to vary greatly. They may have tiny diame-
ters (∼ 5 µm) with vessel walls consisting of a single layer of cells that allow easy
transfer of nutrients and oxygen to nearby tissues. Moreover, the cardiovascular
system needs to respond to increased metabolic needs, such as exercise, which is
achieved by increased (heart) pumping frequency and power, increased exchange
of dissolved oxygen, or by increase of vessels’ diameter (and thereby increasing
their inductance). Although the cardiovascular system is the first organ system to
form in the embryo, it changes and evolves in response to hemodynamic and ge-
netic influences. This continues throughout a persons lifetime also in response to
disease and aging, with the result that no two systems are the same.

In other words, the cardiovascular system is complex, and at first it may seem naive
to try to represent it through mathematical modeling, particularly in cases with
ambition of adopting such models in clinical scenarios. In this context however,
it is important to acknowledge that many of the challenges that a modeler faces
in attempts to construct models for clinical application are also faced by clinicians
practicing current guidelines. Typically, the diagnosis of cardiovascular disease in-
volves a synthesis of subjective patient symptoms and clinical examinations, such
as blood tests and clinical imaging (ultrasound, CCTA etc.). This is further com-
bined with epidemiology, clinical experience and probability assessment, which
guide further examinations and treatments [2]. Furthermore, recommendations for
decision making and treatment planning are commonly based on binary cut offs2,
a strategy that has both benefits and drawbacks. While it offers ease of interpre-
tation and can facilitate efficient decision making it might also suppress important
patient and case variabilities and therefore introduce diagnostic inaccuracies. As
such, the current paradigm of evidence based medicine is to a large extent based on
population based studies, that have proven favorable outcomes for the population
as a whole (and in terms of costs), but not necessarily for the individual patient [2].

Cardiovascular diseases are the leading causes of deaths in the world [3, 4], pri-
marily driven by deaths caused by coronary artery disease (CAD) and stroke. Car-
diovascular diseases thus represent a massive public health problem, also in terms
of cost [5]. This in turn has motivated research towards the development of mod-
els of the cardiovascular system which, despite its challenges, has led to increased
knowledge of its related physiology and pathology [6–11]. These models vary

2For instance, a stenosis (narrowing) of a coronary artery that cause a reduction of flow of more
than 20 % measured by Fractional Flow Reserve normally recommends revascularization by inter-
vention.
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in complexity from simple electrical analogue circuit models, that represent the
cardiovascular system with a handful of parameters [6], to complex multi-scale
models that couple the cardiac electro-physiology system affecting the contractil-
ity of muscle tissues, with the hemodynamics (pressure and flow) of the heart [11],
and of arterial network models that include thousands of arterial vessels [10]. As
such, the research community has come a long way in the design of realistic and
detailed models that continue to shed light on the interplay between mechanical
properties of the vessel and cardiac walls, morphology, anatomy and hemodynam-
ics, and their relation to cardiovascular diseases. Despite this, the impact and use
of such models in clinical practice is modest [2].

The development of models that are able to describe the properties of the cardio-
vascular system is challenging. In application of such models in clinical prac-
tice however, a perhaps greater challenge is faced when such models are intended
to predict the behavior or properties of a particular individual. This process is
performed by using clinical records and measurements (e.g. blood tests, blood
pressure, ultrasound, CCTA etc.) to parametrize the model. However, clinical
measurements are uncertain and may not contain the correct spatial or temporal
resolution, may not directly measure the correct quantities or may be performed
in different hemodynamic conditions (i.e. normally at rest and in sitting or supine
position), necessary to uniquely parametrize the model. Thus, in the same way as
assumptions have to be made during the model design (i.e. the choice of governing
equations that represent the physics of blood flow and the mechanical behavior of
the vessel wall, the level of detail of the arterial networks etc.), assumptions related
to the input parameters of the model (i.e. the viscosity of blood, the stiffness of
the vessel walls etc.) will also have to be made. As a result, the model errors can
be separated into those resulting from the model framework, and those caused by
uncertainties of model input-parameters. As illustrated in Figure 1.1, the errors
related to the model framework generally decreases with the complexity of the
model as the ability to capture the physics of the system is improved. However,
along with the increased complexity, the model will normally require an increase
in the number of input-parameters. If these parameters are unknown and have large
uncertainties, the increased complexity of the model might result in larger overall
error due to increased uncertainty in predictions.

Despite the above mentioned challenges, cardiovascular models may provide addi-
tional information and predict unmeasured patient-specific properties and quanti-
ties. For example, models can predict quantities that would normally require inva-
sive measurements, and thus serve as useful tools for clinicians in a new paradigm
of patient-specific medicine. However, cardiovascular models will inevitably have
limitations in terms of the model complexity (i.e. how well the physics is modeled)
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Figure 1.1: Illustration of the total uncertainty of a model prediction, which is the sum
of uncertainties related to the model framework and of uncertainties related to input data
(measurements etc). Figure was reprinted from [12].

and in terms of the uncertainties in the predicted quantities. Hence, in order to be
useful it is important to be aware of these limitations and the primary sources of
errors.

In this thesis we have focused on the development of methods and models for the
prediction of pressure and flow in the cardiovascular system, with particular em-
phasis put on pressure losses over coronary stenoses. Moreover, great attention has
been put on the development of simplified models that are still able to represent
the most important features of the physical system, and where the effect of the
simplifications are quantified by comparison with corresponding, more detailed
models. For instance, in Paper 1, a method to optimize the number of arterial
segments included in one-dimensional blood flow models, while preserving key
features of flow and pressure waveforms, was presented. Further, in Papers 2-4
a reduced-order model for prediction of the severity of coronary artery disease,
was presented. The latter model was developed as part of an interdisciplinary
project with engineers at NTNU and clinicians at St. Olavs hospital, with the
aim of developing a non-invasive diagnostic tool for coronary artery disease. The
model combines 1D axi-symmetric theory of blood flow, experimental relations
and machine learning (neural networks). Throughout papers 2-4 special focus was
given to minimize the errors between the reduced-order model and a correspond-
ing, more complex model which builds on the 3D incompressible Navier-Stokes
equations.

The simplifications and assumptions introduced by model reduction results in a
reduction in the number of model parameters and/or simplified pre- and post-
processing, and reduced computational costs. These benefits, however, have to
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be counter-balanced with the model errors introduced by the simplifications and
assumptions. Another benefit of the reduced computational time and simplified
pre- and post-processing is that this facilitates the applications of uncertainty quan-
tification (UQ) and sensitivity analysis (SA). UQ and SA are crucial methods for
determining errors related to input-uncertainty (i.e. uncertainties in outlet bound-
ary conditions and model parameters). The latter was given special attention in
papers 2 and 3.

The thesis consists of a collection of papers and is divided into two parts. The first
part is an introductory section and consists of Chapters 1-5. A brief introduction
to aspects of the cardiovascular system and of the coronary circulation which are
relevant for this thesis is given in Chapter 2. Chapter 3 includes a brief description
of the methods used in this thesis, including physics based computational models,
a brief overview of machine learning and artificial neural networks, and methods
for uncertainty quantification and sensitivity analysis. In Chapter 4 a summary of
the appended papers is given, accompanied with the main conclusion drawn from
the thesis and directions for further work in Chapter 5. The second part of the
thesis includes Chapters 6-9 which consists of the appended papers.
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Chapter 2
Background

This chapter gives a brief introduction to the components of the cardiovascular
system which are relevant for this thesis. Special attention is given to coronary
physiology and pathology. For a more detailed introduction the reader is referred
to [1], which is also the primary source for this chapter.

The cardiovascular system consist of the heart, arteries, veins and the circulating
blood. The blood is transported in two separate circuits, namely the pulmonary and
systemic circuits. An overview of the cardiovascular system is shown schemati-
cally in Figure 2.1(a), and the heart, its chambers, valves and main connections to
the systemic and pulmonary circulation is shown in Figure 2.1(b). The pulmonary
circuit carries deoxygenated blood from the right ventricle via the pulmonary ar-
teries, to the lungs and returns with oxygenated blood to the left atrium via the
pulmonary veins. The systemic circulation transports oxygenated blood through-
out the body via the systemic arterial tree, and brings deoxygenated blood from
the tissues back to the heart via the systemic veins.

2.1 The heart and the cardiac cycle
The cardiac cycle is commonly separated into two phases, systole and diastole.
The systole (of the systemic circulation) is initiated by the polarization of the left
ventricle which at this time has filled up its chamber with oxygenated blood from
the left atrium via the mitral valve. The polarization quickly results in the contrac-
tion of muscle fibers which increases the pressure in the left ventricle. This causes
a gradient between the pressure in the left ventricle and the left atrium and closure
of the mitral valve. The second valve of the ventricle, namely the aortic valve, is

11
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(a)

 

(b)

Figure 2.1: (a) Schematic of the cardiovascular system. The heart, largest arteries (red)
and veins (blue) are shown. Drawn by Mariana Ruiz Villarreal [13] (b) Diagram of the
chambers and valves of the heart [14]. Used with permission CC BY 4.0.
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Figure 2.2: Pressure in the aorta and left ventricle (left) and flow in the aorta and the Left
anterior descending artery (right) during a cardiac cycle.

closed at this time. The fixed volume and contraction of the muscle fibers causes a
rapid increase in ventricular pressure, as shown in the left part of Figure 2.2. When
the pressure rises above the aortic pressure, the aortic valve opens, and blood is
ejected from the ventricle. The pressure in the ventricle and aorta continue to rise,
and the ejection of blood shortly after reaches its maximum flow. A substantial
proportion of the ejected volume of blood is stored in the aorta and larger conduit
arteries as they expand elastically, until the aortic pressure reaches its maximum
value, slightly after maximum flow is reached. Towards the end of systole, the left
ventricle starts to relax resulting in falling pressures in the left ventricle and aorta.
Once the pressure in the ventricle falls below the aortic pressure, the aortic valve
closes which marks the onset of diastole. The pressure in the ventricle continues to
fall quickly as the muscles relax, until it falls below the pressure in the left atrium,
and diastolic filling of the ventricle commence. The aortic pressure, on the other
hand, drops slowly as the elastic energy stored in the distended aorta is gradually
converted to kinetic energy, as blood flows continuously throughout the arterial
tree and into the capillaries.

2.2 Coronary physiology and pathology
An average human heart weighs approximately 275 g, and in order to keep up with
the metabolic demands it needs to circulate approximately five liters of blood every
minute, which accumulates to 200 million liters and three billion heart beats in the
lifespan of a person [1].

The coronary arteries provide the heart muscles with the fuel it needs to restlessly
provide the rest of the body with blood and oxygen supply. The coronary arter-
ies consist of two networks, the left and right coronary arteries respectively. Both
networks start in the coronary sinus, a slight bulge in the aorta immediately distal
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Figure 2.3: The anatomy of the coronary circulation system. Modified from the work of
Patrick J. Lynch, medical illustrator derivative work: Fred the Oyster adaption and further
labeling: Mikael Häggström - with permission CC BY-SA 3.0.

of the aortic valve. The anatomy of the largest coronary arteries is shown in Fig-
ure 2.3. A peculiarity of coronary artery blood flow is characterized by a dominant
diastolic flow (see right part of Figure 2.2). During systole, the contracting ven-
tricle pushes on the arteries and impedes flow, despite an open aortic valve. Once
the ventricle relaxes however, a substantial pressure gradient from the aorta to the
coronary capillaries causes diastolic flow. Thus the elastic storage of blood in the
aorta, and the high, slowly decaying diastolic pressure, is critical for the coronary
circulation.

The increased metabolic needs caused by intense exercise result in an up to five-
fold increase in cardiac output. This is achieved by both increasing the output of
each cardiac cycle (stroke volume) and by increased heart rate up to 200 beats per
minute. The increased pumping power and frequency also increase the metabolic
needs of the cardiac muscles. During increased heart rates the lengths of the two
phases of the heart cycle changes disproportionate; the systolic part decreases a
bit, from ∼ 0.3 s to ∼ 0.2 s, while the diastolic phase shortens dramatically from
∼ 0.6 s to ∼ 0.15 s. This is unfavorable, given the diastolic dominant flow of coro-
nary arteries. Moreover, while most other tissues can increase their uptake of the
dissolved oxygen from the blood during exercise, the uptake of oxygen in the my-
ocardial tissues are near maximum levels during rest (∼ 70 % vs ∼ 20 % in most
other tissues). Despite this, the healthy coronary circulation still manages to meet
the metabolic needs of the cardiac muscle during exercise, achieved by an increase
of coronary blood perfusion by 4-6 times from its resting value. This increase
in flow from rest to exercise is commonly denoted coronary flow reserve, and is
caused by vasodilation (increase of radius) of the small coronary arteries (arteri-
oles), which allows the blood to flow more easily into the coronary circulation.
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2.2.1 Coronary artery disease

Coronary artery disease is caused by atherosclerosis, which is the buildup of fat,
esters and other components (plaque) inside the arterial wall, and which is sepa-
rated from the inner lumen (blood flow) by a fibrous cap [15]. As the diseased state
evolves, the plaque volume grows and primarily causes an expansion of the arterial
wall area, until it eventually reaches a limit and starts to grow inwards [16], causing
a partial obstruction of the lumen (a stenosis), and an impediment of flow/oxygen
supply to the tissues (ischemia). Depending on many factors, both local and global,
the state may remain partially occluded and give rise to symptoms of exercise in-
duced chest pain and stable angina (stable/chronic CAD), the fibrous cap may rup-
ture exposing the plaque to the inner lumen and blood with successive thrombus
formation, causing partial or complete occlusion and unstable angina or myocar-
dial infarction (acute/unstable CAD), or it might remain silent until an unstable
event is triggered (asymptomatic CAD).

Stable CAD (chronic coronary syndrome) and acute myocardial infarction are the
main manifestations of symptomatic CAD. The differentiation between stable and
acute CAD is made based on the severity and timing of the symptoms and on
biomarkers related to signs of new myocardial injury (increased troponin levels and
ECG changes is typical of acute disease) [17]. This thesis relates to the diagnosis
of stable coronary artery thesis, and will hence be given the attention from here on.

Initial diagnosis of stable CAD is based on symptoms (primarily angina), blood
tests and traditional risk factors including age, gender, smoking, diabetes, hyper-
tension, cholesterol levels and family history of premature CAD. If initial diagno-
sis indicates CAD, further tests are needed to quantify the severity of the disease
and to decide intervention/treatment. Ultimately a decision of whether the patient
should receive a procedure for revascularization or should be treated with medical
therapy alone has to be made.

Historically, the invasive diagnosis and treatment of CAD patients have been cen-
tered at regional hospitals with Invasive Coronary Angiography (ICA) labs and
expert interventionalists. ICA is an x-ray procedure with intracoronary contrast
injection that allows for high resolution 2D projections of the coronary arteries. In
conventional ICA, the decision for revascularization is left to the operator’s discre-
tion assisted by quantification of the degree of narrowing caused by the stenosis.
If the degree of narrowing is substantial (i.e. larger than 50 %) it is considered
significant, and revascularization is normally performed.

The field of cardiology is changing towards increased use of Coronary Computed
Tomography Angiography (CCTA), which is noninvasive and offered at most local
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hospitals. CCTA uses X-rays in combination with an intravenous injection of an
iodine-based contrast agent into the blood. During a CCTA procedure, the heart
is imaged from several views (slices), which may be viewed individually or com-
bined to generate a 3D reconstruction of the heart. As in conventional ICA, CCTA
allows for the quantification of the anatomical obstruction caused by a stenosis. If
a significant stenosis is found on CCTA, the patient is referred to ICA. The use
of CCTA received a class 1 recommendation in the 2019 Guidelines for Chronic
Coronary Syndromes by the European Society of Cardiology [18].

Revascularization in stable CAD patients is performed to relieve symptoms, restore
perfusion and to “stabilize” the plaques as to avoid future events. However, the
anatomical obstruction of a stenosis does not directly relate to flow limitation and
ischemia [19]. The coronary flow reserve ensures that the heart is supplied with a
sufficient amount of blood/oxygen when it is needed (e.g. exercise). The presence
of an epicardial atheresclorotic lesion introduces an epicardial resistance to flow,
which may or may not compromise this reserve. Current guidelines for diagnosis
and decision for treatment of stable CAD thus recommend to estimate the extent
of reduction in this reserve [18].

2.2.2 Fractional Flow Reserve

Fractional Flow Reserve (FFR) measures the ratio of flow across a stenosis relative
to a hypothetical case without stenosis. FFR is currently the gold standard for
diagnosis of intermediate stenoses in patients with stable CAD [18]. In the clinic,
FFR is measured during invasive coronary angiography by insertion of a catheter
with a pressure sensor, and is calculated as the ratio between the cardiac cycled
averaged pressure distal and proximal to the stenosis

FFR =
Pd

Pp
,

where Pp is normally measured at the ostium( i.e. where the coronary tree branches
off the aorta). The measurements are performed during hyperemia (maximum
coronary flow), which is achieved pharmacologically by administration of a drug
that dilates the peripheral coronary arteries. If FFR is below 0.8 the stenosis is
considered hemodynamically significant, and it is generally recommended to in-
tervene by percutaneous coronary intervention. If FFR is above 0.8 optimal medi-
cal therapy alone is recommended. FFR guided revascularization improves patient
outcome and reduces medical costs, both compared to angiography-guided revas-
cularization and medical therapy alone [20, 21]. Despite the European Society
of Cardiology’s recommendation to use FFR to guide revascularization in chronic
CAD patients [18], FFR remains underused due to associated costs, its invasive
nature, and the need for trained interventionalists [22].
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2.2.3 Noninvasive prediction of FFR

The underuse of invasive FFR in clinical practice has motivated research towards
noninvasive prediction of FFR. Noninvasive FFR prediction combines clinical imag-
ing with mathematical models as depicted in Figure 2.4. Different imaging modal-
ities may be used, but CCTA is, perhaps, the most common modality. In the
CCTA images, different tissues have different attenuation, and the injected con-
trast agent in the blood makes the coronary artery lumen particularly visible. By
performing imaging processing techniques, the coronary arteries can be isolated
(i.e. segmented), and a 3D model that represents the patient specific coronary
artery anatomy is generated. Based on the anatomical model, assumptions related
to the coronary physiology are used to set up a mathematical model including
boundary conditions at the inlet and outlets, which form a physiological model.
The physiological model typically includes equations that are impossible to solve
analytically, and instead computational fluid dynamics (CFD) is used to solve the
problem. Once the problem is solved, the pressure and flow in the coronary arteries
can be extracted and are further used to predict FFR non-invasively.

Most early attempts of non-invasive FFR prediction relied on solving the incom-
pressible 3D Navier-Stokes equations in segmented coronary arteries [23–25].
This approach requires minimal assumptions related to the physical behavior of
blood flow. However, clinical applicability requires fast and accurate predictions,
which limits the applicability of full 3D models that typically require tedious pre-
processing and significant computational costs.

Recent research aiming to improve clinical applicability of noninvasive FFR pre-
diction, has focused on developing simpler and faster models based on reduced
order physics such as 1D blood flow or lumped parameter models [26–29]. More
recently machine-learning approaches [30–34] have also been presented.

5. Noninvasive FFR
4. CFD analysis

3. Physiological model1. CCTA 2. Anatomical model

Figure 2.4: Overview of a typical noninvasive FFR prediction pipeline.
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Chapter 3
Methods

Physical principles have long been applied to study physiology, and advancements
in mathematical and computational models have led to continued growth over the
past few decades. This has culminated in the application of physics based compu-
tational models in the clinic, such as for diagnosis of CAD [35]. More recently,
artificial intelligence and machine learning techniques have gained popularity, and
their application may result in a paradigm shift in cardiovascular medicine [36].

This chapter introduces the most important concepts related to mathematical mod-
eling of the cardiovascular system relevant for this thesis. Moreover, a brief de-
scription of machine learning and artificial neural networks, which are relevant for
Paper 4 are also given. Finally, a brief description of the methods used to quantify
the uncertainty related to model inputs and perform sensitivity analysis is included.

3.1 Physics-based models of the cardiovascular system
Computational models of the arterial network and coronary circulation are des-
gined to predict pressure and flow in the arteries. Important steps in the model
design include specifying the properties of the fluid (blood) alongside the equa-
tions that govern the flow of the blood.

Blood mainly consists of blood plasma and blood cells (red blood cells, white
blood cells and platelets). While plasma shows a linear relation between shear
rate and shear stress, and is thus considered a Newtonian fluid, it is well known
that (whole) blood behaves as a non-Newtonian fluid. At low shear rates (be-
low 50 s−1) red blood cells group together and form large cellular aggregates
(rouleaux) which causes a disproportionate increase in the viscosity [37]. How-
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ever at higher shear rates whole blood shows a near linear relationship between
shear rate and shear stress, and may thus be approximated as Newtonian [38]. The
compressibility of blood is low, and the shear rates of the large conduit- and normal
coronary-arteries are typically greater than 500 s−1 near the vessel wall. Blood is
thus commonly modeled as an incompressible Newtonian fluid [23, 24, 39]. These
assumptions were also adopted in this thesis.

Computational models of the cardiovascular system that are based on physical
descriptions that govern the flow of blood are commonly separated into three-
dimensional (3D), one-dimensional (1D) and lumped models (0D).

3.1.1 3D models

For an incompressible Newtonian fluid, the Navier-Stokes equations written in
compact form, are:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u , (3.1)

where ρ is the blood density and ν is the kinematic viscosity, given by ν = µ/ρ,
with blood viscosity µ. Furthermore, t is time, p is the pressure and u is a vector of
velocity components (ux, uy and uz in Cartesian coordinates). Eq. (3.1) represents
three equations for the balance of momentum in the x, y and z direction (Carte-
sian coordinates). The left hand side represents acceleration, transient and spatial
respectively. The first term on the right hand side represents pressure forces, and
the second term represents viscous forces. Further conservation of mass is given
by:

∇ · u = 0 . (3.2)

The Navier-Stokes equations together with the conservation of mass govern the
behavior of blood flow velocity and pressure in arbitrary domains.

3.1.2 1D models

Most arteries have a nearly cylindrical cross-section, and the flow is primarily
directed along the long axis of the artery. By the assumption that flow is uni-
directional (axial velocity components dominate over radial components) the 1D
equations for blood flow may be derived:
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∂A

∂P

∂P

∂t
+

∂Q

∂x
= 0 , (3.3a)

∂Q

∂t
+

∂Q2/A

∂x
= −A

ρ

∂P

∂x
+

f

ρ
, (3.3b)

In the (above) 1D formulation the problem is stated for the integrated variables P
and Q which represent the cross-sectional averaged pressure and volumetric flow
respectively. Furthermore, f is the frictional term, and is given by −2 (ζ + 2)µπU ,
where A is the cross-sectional area and U is the cross-sectional averaged velocity
in the axial direction. The above formulation assumes a constant velocity profile
shape given by:

u(x, ξ, t) = U(x, t)
ζ + 2

ζ

[
1−

(
ξ

r

)ζ
]
, (3.4)

where r(x, t) is the lumen radius, ξ is the radial coordinate and ζ is a velocity
profile shape-factor. Eq. (3.3a) and (3.3b) represent the conservation of mass and
momentum in elastic arteries. In order to close the system, a relation between the
pressure and area is needed. With the assumptions of thin-walled elastic vessels, a
pressure-area relation can be derived from Laplace’s Law:

P = Pd +
β

Ad

(√
A−

√
Ad

)
, (3.5)

where Pd and Ad are reference values for the pressure and area, and β is a material
parameter related to the stiffness of the artery. One-dimensional models of blood
flow have been used extensively to study the propagation of pressure and flow
waves throughout the arterial tree [8, 10, 39], and more recently, in the venous
circulation [9].

With assumptions of steady flow and a fixed cross-sectional area, the momentum-
balance given by Eq. (3.3b) simplifies to an algebraic relation:

∆P1D = a ·Q+ b ·Q2 , (3.6)

where

a =

∫ l

0

2 (ζ + 2)πµ

A (x)2
dx , b =

ρ

2

(
1

A2
out

− 1

A2
in

)
. (3.7)

Here, ∆P represents the pressure loss from the inlet to the outlet of a 1D-arterial
segment with length l. Further, A(x) is the the spatially varying cross-sectional
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area, and Ain and Aout are the cross-sectional areas at the inlet and outlet respec-
tively. The first term in Eq. (3.6) represents viscous related pressure losses, while
the second (quadratic) term is related to spatial acceleration of the velocity. The
quadratic term given by Eq. (3.7) represents an idealized case, for which pressure
(related to this term) is fully recovered if the inlet and outlet of the segment has
equal areas. As a consequence it is not adequate to describe pressure losses across
stenoses. However, experimental studies indicate that the pressure loss across a
stenosis may be adequately described by a second order polynomial, by modifying
the coefficients, a and b [40].

3.1.3 0D models

In zero-dimensional models, the entire or part of the arterial circulation is lumped
into a few properties that explain the gross behavior of the system. For instance,
the pressure at the aorta is about 100mmHg, while the pressure on the venous
side is approximately 5mmHg. This drop in pressure is primarily caused by the
frictional forces that impose the flow in the millions of arteries that make up the
arterial network. As such, a lumped model that describes the relation between
volumetric flow and pressure in the arterial tree is given by Ohm’s law:

Q =
P − Pout

R
, (3.8)

where Q and P are the aortic flow and pressure respectively, Pout is the venous
pressure and R is the systemic resistance.

According to Eq. (3.8), the pressure and flow is in phase. As illustrated by the aor-
tic flow and pressure in Figure 2.2 however, this is not the case. The peak in pres-
sure occur slightly after the peak in flow, and importantly, flow is non-zero only in
the period when the aortic valve is open. The pressure on the other hand slowly
decays after the closure of the aortic valve. One of the first attempts to model the
most important characteristics of pressure and flow waveforms was made by Otto
Frank when he introduced the classical Windkessel model in 1899 [41]. He added
a capacitor in parallel to a resistance element, and analogous to the way a capaci-
tor can store electrical energy, the capacitor represents the compliance of the aorta
and large arteries, and their ability to store part of the ejected blood volume in sys-
tole. The stored volume is released as flow to the smaller arteries and capillaries
throughout diastole.

A noteworthy extension to the classical Windkessel model was presented in [42]
where a resistance element representing the characteristic impedance of the aorta
was added. Furthermore, many variations and extensions have been proposed [43],
also those with particular emphasis on the coronary circulation as in [44]. The
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Figure 3.1: Overview of common 0D models of the cardiovascular system. From left: a
resistance model, the classical Windkessel model, the three element Windkessel model,
and a coronary model.

resistance model, the classical Windkessel model, the three element Windkessel
model, and a coronary model is shown schematically in Figure 3.1.

3.1.4 Boundary conditions

3D models of the arterial system are commonly used to study detailed flow phe-
nomena, and 1D theory is commonly used to study wave propagation phenomena
in distributed models including large networks of arteries. However, the govern-
ing equations given by Eq. (3.1) and Eq. (3.3) are only valid in the computational
domain, and appropriate boundary conditions have to be set in order to solve the
problems. In this regard, three different types of boundary conditions typically
exist in such models: inlet boundary conditions, outlet boundary conditions, and
interface boundary condition. For the inlet boundary condition, measurements of-
ten allow one to prescribe either flow or pressure, while the no-slip condition is
normally applied at the interface between the fluid and the vessel walls. Outlet
boundary conditions, however are often more tricky.

In patient specific models of the arterial system or coronary circulation the com-
putational domain is often extracted from clinical imaging for which only a subset
of arteries are visible. Moreover, given the near endless number of small arteries
and capillaries in the human body, the arterial network has to be truncated at a
certain level. Since reliable measurements of flow or pressure at all terminal sites
are practically impossible to obtain, outflow boundary conditions are commonly
set through morphological relations, or simpler models representing the periph-
eral circulation. Indeed the above-mentioned family of 0D models have been the
preferred choice for describing the peripheral circulation.

3.2 Machine learning
The first work considered as artificial intelligence and machine learning was pub-
lished in 1943 by McCulloh and Pitts [45]. Inspired by the human nervous system
they presented the theory of an artificial neuron and proved that any computable
function could be represented by some network of connected neurons. Later, in
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1950 Alan Turing published the seminal paper "Computing Machinery and Intel-
ligence", where visions for the future of artificial intelligence and machine learn-
ing was put forth [46]. He amongst other asks "Instead of trying to produce a
programme to simulate the adult mind, why not rather try to produce one which
simulates the child’s?" In order to evolve to a state comparable to an adult brain, it
would have to learn.

In simple words, artificial intelligence is a science which occupation is to build
intelligent programs and machines that can creatively solve problems. Machine
learning is a sub-category of artificial intelligence, and refers to the methods and
algorithms that provide the ability to learn from data or improve from experience,
without being specifically programmed to accomplish a specific task.

Machine learning is commonly separated into different types of learning. In su-
pervised learning, the algorithms are designed to find relationships between a set
of input and output pairs. In unsupervised learning, the algorithms are designed to
find relationships in inputs, without knowing a desired output (e.g. clustering of
data). In reinforcement learning the desired output is not specifically given, but the
algorithms learn beneficial behavior based on stimuli (i.e. punishment or reward).

This section is not intended to give an introduction to artificial intelligence and
machine learning, but rather give insights into the landscape of artificial intelli-
gence and the position of the specific algorithms used in this thesis. Below follows
a bit more detailed description of artificial neural networks, which were applied
in supervised learning in paper 4. For a more thorough introduction the reader is
referred to [47, 48], which are the main sources for this section. Moreover, parts of
the content of this chapter is published as Jupyter notebooks at the authors private
GitHub repo [49].

3.2.1 Artificial Neural Networks

The artificial neuron proposed by McCulloh and Pitts [45] was characterized by
an "on" or "off" behavior and is commonly referred to as a perceptron. Neural
networks made up of perceptrons limits the possibility to train networks efficiently,
as we will see later. Perceptrons do however conveniently introduce the basic
concepts of artificial neurons and neural networks.

Figure 3.2 shows a perceptron with two input signals x1 and x2, both of which
can have a zero signal intensity or a signal intensity equal to one. The signals are
related to weights ω1 and ω2, which indicate the importance of the signals. Further,
θ is the activation threshold of the neuron, and y is the output which can be either
one or zero according to:
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Figure 3.2: A perceptron neuron with two input signals, x1 ∈ {0, 1} and x2 ∈ {0, 1} with
corresponding weights ω1 and ω2. The neuron has an activation threshold θ and an output
y ∈ {0, 1}

y =

{
1 if

∑
i ωixi ≥ θ ,

0 if
∑

i ωixi < θ .
(3.9)

Hence, if the sum of the signal intensities multiplied by the weights of the signals
exceeds the activation threshold, the neuron is activated and "fires".

This simple one-neuron two-input network represent the basic concepts of artificial
neural networks. Moreover, this network can also represent an "and"-function (e.g.
ω1 = ω2 = 1 , θ = 1.5) and an "or"-function (e.g. ω1 = ω2 = 1.5 , θ = 1). The
reader may verify this.

Normally, the activation threshold is represented as a bias b = −θ, such that
Eq. (3.9) is rewritten:

y =

{
1 if

∑
i ωixi + b ≥ 0 ,

0 if
∑

i ωixi + b < 0 .
(3.10)

This convention is of little conceptual importance, but it has some mathematical
benefits, and will thus be used from here on.

Fully connected feed forward neural networks

The previous example shows a simple construction of a neural network. The power
of neural networks, however, is greatly improved when neurons are connected in
layers. This section looks at fully connected feed forward neural networks, with
multiple layers, and shows that they can be represented in terms of a series of
matrix multiplications. In this context:

• feed forward information is propagated in one direction only (from input to
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x y

Figure 3.3: A fully connected feed forward neural network with one input and output
neuron and two hidden layers with three and two neurons respectively.

output)

• fully connected means that all neurons in a layer l is connected to all neu-
rons in the previous (l − 1) and next (l + 1) layer.

Also of note is that there is no direct passage of information other than via neigh-
bouring layers in fully connected feed forwar neural networks.

Figure 3.3 shows a neural network with one input neuron, two hidden layers with
three and two neurons respectively, and one output layer with one neuron. The fig-
ure depicts the input and output (activations), all weights connecting the neurons,
biases and activations of each neuron. The following naming convention is used:

• ωl
j,k is the weight from the kth neuron in the (l − 1th) layer to the jth neuron

in the lth layer

• blj is the bias of the jth neuron in the lth layer

• alj is the activation of the jth neuron in the lth layer

With this naming convention the activation of neuron alj is given by:

alj = σ

(∑
k

ωl
j,ka

l−1
k + blj

)
, (3.11)

where σ is an activation function. In the case of using perceptron neurons the
output of alj would be:

output =

1 if
(∑

k ω
l
j,ka

l−1
k + blj

)
≥ 0

0 if
(∑

k ω
l
j,ka

l−1
k + blj

)
< 0

, (3.12)
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but we note that σ can be any function. Further, the activation of a layer l, al can
be represented in a vectorized form:

al = σ
(
ωlal−1 + bl

)
. (3.13)

With this, the activation of the different layers in the example above can be com-
puted as:

a1 = σ

ω1
11

ω1
21

ω1
31

 ·
[
x
]
+

b11b12
b13

 , (3.14)

a2 = σ

[ω2
11 ω2

12 ω2
13

ω2
21 ω2

22 ω2
23

]
·

a11a12
a13

+

[
b21
b22

] , (3.15)

y = σ

([
ω3
13 ω3

23

]
·
[
a21
a22

]
+
[
b31
])

. (3.16)

Training of neural networks Neural networks are universal function approxima-
tors, meaning that they can in theory describe any functional relation from input
to output, provided the correct network architecture. In practice, however, this is
seldom achieved, since application of neural networks (other than for education
purposes) involves real data, from measurements and observations that come with
a level of noise. Hence the problem involves finding the weights and biases of the
network, such that the output y predicts the true (labeled) quantity ŷ as good as
possible. This task may be formalized by minimization of a cost function, C, for
example the mean squared error between the predicted and true quantities:

C =
1

N

N∑
i=1

(yi − ŷi)
2 , (3.17)

where N is the number of observations. A reasonable strategy to achieve this, is
to define small changes in the weights, ∆ω, and biases, ∆b, that ensures a small
negative change in the cost function, ∆C < 0. It turns out that that this is achieved
by choosing:

∆ωi = −λ
∂C

∂ωi
, (3.18a)

∆bi = −λ
∂C

∂bi
, (3.18b)

provided that ∆ω and ∆b are sufficiently small. The latter may be controlled by
adjusting the learning rate, λ. Eq. (3.18) is known as the gradient descent update
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Figure 3.4: The original perceptron activation function (left), the sigmoid (middle) and
the rectified linear unit, ReLU (right).

rule, and involves the calculation of the partial derivative of the cost function with
respect to (all!) the weights and biases in the network. This also reveals the limita-
tion of the perceptron neuron (σ (x)), since its derivative is zero everywhere except
at x = 0, where its derivative is not defined. The gradient descent algorithm (and
its variations) require continuous differentiable activation functions. The percep-
tron along with common activation functions, the Sigmoid and the rectified linear
unit (ReLU) are shown in Figure 3.4.

The gradient descent algorithm provides a method to iteratively update weights and
biases such that the network output, y, approaches the true quantity, y (i.e. it pro-
vides a method for training the neural network). However, the algorithm requires
the calculation of partial derivatives with respect to all the weights and biases in
the network. This process can be very time consuming in large networks if per-
formed weight by weight or layer by layer. Instead, this is achieved by application
of the backpropagation algorithm, where errors are propagated from the output
layer, throughout the network, and all the way to the first layer of the network.
These errors are used to estimate the partial derivatives of the weights and biases
of a layer, and calculations of errors and gradients are reused when estimating the
gradients of the next layer.

Generalization of neural networks Neural networks are extremely powerful, given
their universal ability to find relations from input to output. However, this ability
is considered dangerous because of the possibility to find noisy relationships in
the training data that does not generalize to unseen data (i.e. input-output relations
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that were not used during training). This is known as over-fitting and can typically
occur if complex networks are trained on sparse data.

Overfitting can be avoided by reducing the complexity of the network (fewer lay-
ers, and neurons in each layer), however, this may lead to under-fitting, which is
characterized by a network that is unable to find adequate relationships from input
to output. Other methods that can improve generalization include the application
of a validation set and regularization:

Validation set A validation set is a certain fraction of the training set that is not
used to estimate gradients and update weights and biases, but is used to test
the network after each epoch. If the loss on the actual training data continues
to go towards zero but the validation loss increases (a sign of over-fitting),
the training is stopped (early stopping).

Regularization Large weights are associated with high sensitivity to certain sig-
nals, and is often indicative of over-fitting. Regularization of neural net-
works is performed by adding a term to the cost function that penalizes large
weights, such as the L1 or L2 norm of all the weights of the network.

Even with the application of these and other procedures, over-fitting may occur.
Hence, it is considered mandatory to always leave part of the data (a test set) aside,
which is only used to test the final network.

3.3 Uncertainty Quantification and Sensitivity Analysis
The patient-specific modeling paradigm attempts to enhance clinically measured
data by predicting unmeasured physiological states through model simulations
based on available data and validated modeling principles. As clinical data always
has some uncertainty and unmeasured parameters may be known to vary signif-
icantly, we must characterize the uncertainty of model predictions in addition to
verifying that a computational model solves the idealized mathematical model to
an adequate level of accuracy. Towards this end we employ UQ&SA to assess
the uncertainty present in patient-specific model predictions as well as to identify
inputs that prevent greater certainty in model predictions.

First we briefly summarize notation. UQ&SA typically analyzes a model predic-
tion y as a function M of inputs z, y = M(z), where lower case letters denote
the relationship of a deterministic case where z is known. Uncertain inputs are
denoted Z as they are random variables and thus Y = M(Z) is also a random
variable.

We employ the nonintrusive UQ&SA methods of Monte Carlo and Polynomial
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chaos to characterize the distribution of Y given the distribution of Z. This is
achieved by evaluating M at many samples drawn from the distribution of Z, i.e.
y = M(z) at each sample point in

{
z(s)
}Ns

s=1
. Eck et al. [50] present several

methods and concepts of UQ&SA within the context of cardiovascular modeling,
and we refer the reader to this work for more details regarding the methods of
UQ&SA used here.

The uncertainty of Y is fundamentally due to the uncertainty of Z propagated
through the model M . Thus it is critical to employ a distribution of Z that reflects
the conditions the UQ&SA is intended to analyze. To assess performance of a
patient specific model the input distribution must reflect the actual uncertainties
present in clinical procedures and population variation. However, UQ&SA may
also be employed to analyze a model’s range of behavior and to identify parameters
relevant for estimation from measured values of y. In this case the distribution
of Z should reflect the range of plausible values for the inputs. Typically, only
a range of values is considered and no prior knowledge is available to prioritize
certain regions, thus a uniform distribution is appropriate to investigate the model’s
dependence on the parameters.

Once the approximate distribution of Y is available from the UQ&SA procedure
various measures of the uncertainty of Y are available such as the expected value,
E [Y ] and variance V [Y ]. These quantities are of primary interest when assess-
ing model performance, however, SA augments this by assessing the portion of
uncertainty due to particular inputs, allowing prioritization of efforts to reduce un-
certainty. In this context, Sobol sensitivity indices, first-order (Si) and total (ST,i),
are widely employed [51], and defined as

Si =
V [E [Y | Zi]]

V [Y ]
, (3.19a)

ST,i = 1− V [E [Y | Z¬i]]

V [Y ]
, (3.19b)

where the vector, Z¬i, contains all elements of Z except Zi. These indices partition
the total V [Y ] into portions attributable to specific combinations of inputs. The
first order indices Si quantify the variance due to Zi alone, i.e. independent of the
values of the other inputs. The total sensitivity index, ST,i, includes effects caused
by the interaction with other parameters and represents the reduction in variance
expected to be achieved by fixing Zi at a particular value.

Larger values of Si suggest that Zi strongly affects Y and thus may be a prime
target for improved measurement or optimization in the context of parameter esti-
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mation. In the case where ST,i and thus also Si are small, Zi has little influence
on Y and should not be prioritized for improved measurement and may not be
estimated accurately in an inverse problem context.
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Chapter 4
Summary of appended papers

Paper 1 (Chapter 6)

Optimization of topological complexity for one-dimensional arterial blood flow
models F.E. Fossan, J. Mariscal-Harana, J. Alastruey, L.R. Hellevik
Published in Journal of the Royal Society Interface, 2018.

In this paper we present a framework to optimize/reduce the number of arterial
segments included in one-dimensional arterial blood flow models, while preserv-
ing key features of flow and pressure waveforms. The removed 1D segments were
represented by 0D Windkessel models. The framework was tested on a patient
specific model of the coronary circulation and on a model containing 96 of the
largest arteries, including the aorta and its main segments, the upper and lower
limbs in addition to the main cerebral arteries. We showed that the aortic pres-
sure waveform could be modeled by a network that includes a minimal description
of the upper and lower limbs and no cerebral network, without significant effect
on pressure waveforms. Further, we found that discrepancies in carotid and mid-
dle cerebral artery flow waveforms that are introduced by describing the arterial
system in a minimalistic manner are small compared with errors related to uncer-
tainties in blood flow measurements obtained by ultrasound.

Paper 2 (Chapter 7)

Uncertainty Quantification and Sensitivity Analysis for Computational FFR Esti-
mation in Stable Coronary Artery Disease F.E. Fossan, J. Sturdy, L.O. Müller, A.
Strand, A. Bråten, A. Jørgensen, R. Wiseth, L.R. Hellevik
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Published in Cardiovascular Engineering and Technology, 2018.

In this paper we present a novel reduced-order model for prediction of FFR in sta-
ble coronary artery disease. The predictions were compared against invasively
measured FFR and against predictions obtained by a more comprehensive 3D
model. An extensive sensitivity analysis on the parameters related to the construc-
tion of the reduced-order model was conducted and used to decide parameters for
optimization. Further, methods of uncertainty quantification and sensitivity analy-
sis was applied, which demonstrated that the factors that have the biggest influence
on predicted FFR are related to the uncertain effects of pharmacologically induced
vasodilation and the uncertainty in segmented geometry. The UQ and SA was per-
formed individually for each patient, where it was shown that the uncertainty and
also the ranking of the most influential parameters changes with the absolute value
of FFR.

Paper 3 (Chapter 8) Impact of baseline coronary flow and its distribution on frac-

tional flow reserve prediction L.O. Müller, F.E. Fossan, A. Bråten, A. Jørgensen,
R. Wiseth, L.R. Hellevik
Published in International Journal for Numerical Methods in Biomedical Engi-
neering, 2019.

In this paper we evaluated the impact of assumptions necessary to assign out-
let boundary conditions in non-invasive FFR-prediction. Specifically, we imple-
mented several methods available in the literature to estimate and distribute base-
line coronary flow. We found that the estimation and distribution of baseline coro-
nary flow had a significant impact on diagnostic performance. However, none of
the proposed methods resulted in a significant improvement of prediction error
standard deviation. Finally, we showed that intrinsic uncertainties related to steno-
sis geometry and the effect of hyperemic inducing drugs have to be addressed in
order to improve FFR prediction accuracy.

Paper 4 (Chapter 9) Machine learning augmented reduced order model for FFR-

prediction F.E. Fossan, L.O. Müller, J. Sturdy, A. Bråten, A. Jørgensen, R. Wiseth,
L.R. Hellevik
Submitted to Computet Methods in Applied Mechanics and Engineering, 2020.

In this paper we analyzed the effect of incorporating prior physics-based knowl-
edge in the learning process for prediction of pressure and FFR in coronary arter-
ies. Fully connected feed forward neural networks were trained to predict pressure
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losses obtained by solution of the 3D incompressible Navier-Stokes equations in
segmented coronary arteries. The prior information was included by training NNs
to 1) predict the discrepancy between the reduced order model and 3D pressure
loss rather than pressure directly and 2) incorporated in the learning process by
including the ROM pressure loss as an input-feature. The physics informed NNs
were compared with a corresponding purely data-driven NN for three different
training sets with increasing amount of data. Both approaches for incorporation
of prior physics-based knowledge significantly improved prediction of pressure
losses relative to the purely data-driven approach, especially for lower amounts of
training data.

4.1 Statement of authorship
In Chapter 6 Fredrik E. Fossan designed the study, implemented all methods, per-
formed all simulations, pre- and post-processing of data and drafted the manuscript.
In Chapter 7 Fredrik E. Fossan contributed to the design of the study, implemented
methods, and performed simulations, pre- and post-processing of data and drafted
the manuscript. In Chapter 8 Fredrik E. Fossan contributed to the design of the
study, performed simulations, pre- and post-processing of data and contributed
in the writing of the manuscript. In Chapter 9 Fredrik E. Fossan contributed to
the design of the study, performed simulations, pre- and post-processing of data
and drafted the manuscript. In all papers coauthors contributed to the design of
the studies, through revisions, in data-collection and in invaluable discussions of
results, as well as focusing and inspiring the research.
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Chapter 5
Conclusions and directions for
further work

5.1 Main conclusions
In this thesis we have focused on the development of reduced-order models for
blood flow in the arterial system and for the diagnosis of coronary artery disease.

We found that to capture important features of the aortic pressure waveform, such
as timing and shape of reflected waves, pressure augmentation and pulse pres-
sure, a model with all aortic segments, but close to minimal description of the
head and lower and upper limb arteries is sufficient. To capture the gross features
of the middle cerebral artery waveforms we found that the inclusion of an intact
representation of aortic segments was more important than description of nearby
vasculature. Further, errors in the middle cerebral and carotid flow waveforms that
are introduced by describing the arterial system in a minimalistic manner are small
compared with errors related to uncertainties in blood flow measurements obtained
by ultrasound.

Furthermore, we have developed a novel reduced-order model for prediction of
Fractional Flow Reserve which was validated against a corresponding, more com-
plex 3D model. We demonstrated how global sensitivity analysis can be used
as a part of model validation and assist in the process of parameter estimation.
Moreover, the accuracy of the reduced-order model was augmented by application
of neural networks for the prediction of pressure loss in coronary segments. We
found that the prediction accuracy of the neural networks and the generalization of
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the predictions were significantly improved by incorporating prior physics in the
learning process. Furthermore, the incorporation of the physics-informed neural
networks into a coronary network model led to FFR predictions with an error stan-
dard deviation of 0.02 with respect to the 3D model, which is comparable with the
standard deviation of repeated FFR measurements. With model errors reduced to
this level, uncertainties in input data dominate the total error/uncertainty, making
the error introduced by the model reduction negligible.

The simplifications introduced by the model reduction reduced the computational
time for FFR prediction, from the order of hours/days (3D model) to fractions
of a second. The reduced computational costs enabled exploration of effects of
boundary conditions and application of uncertainty quantification and sensitivity
analysis.

We characterized the diagnostic accuracy of the reduced-order model for classifica-
tion of ischemia, with invasive FFR used as gold standard. The model obtained an
accurcay of 89 %, sensitivity of 79 % and specificity of 93 % in an unblided study
of a population of 63 patients. Moreover, we found that the estimation and distribu-
tion of baseline coronary flow had a significant impact on diagnostic performance.
Several methods available in the literature were implemented. We observed that
none of the proposed methods for estimation and distribution of baseline flow re-
sulted in a significant improvement of prediction error standard deviation. The
latter revealed two things: 1) the implemented methods involve measurements and
assumptions that result in significant uncertainty and 2) even imposition of the
correct baseline flow would still lead to high uncertainty in predicted FFR, due
to uncertainties related to stenosis geometry and the effect of hyperemic inducing
drugs. As such, uncertainties related to stenosis geometry and the effect of hy-
peremic inducing drugs have to be addressed in order to improve FFR prediction
accuracy.

5.2 Future work
This thesis was conducted as part of a project "Model based, noninvasive diagnosis
of coronary artery disease with 3D ultrasound and CT". The presented results
for diagnostic accuracy were based on a study where the model-developers were
not blinded to the invasively measured FFR. Hence, a blinded study is needed to
test the robustness of these results. Moreover, part of the project has involved
the development of (trans-thoracic) ultrasound technology for direct non-invasive
measurement of flow in the coronary arteries. This technology has been developed
alongside the development of the non-invasive FFR-pipeline. Future studies will
assess if the incorporation of measurements (i.e. to improve definition of boundary
conditions) can improve prediction accuracy of FFR.
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Findings in paper 2 and paper 3 show that, even with perfect knowledge of the flow
in baseline conditions (rest), there would still be substantial residual uncertainty re-
lated to the effect of stenosis geometry and the effect of hyperemic inducing drugs.
Thus, efforts should be focused towards improving modeling of the vasodilating
effects of drugs, and optimizing the process of geometry segmentation. One ap-
proach to improve the former would be to perform ultrasound measurements also
during hyperemia. Unfortunately, this would require the use of drugs. However,
the study by Zreik et al. indicate that CCTA images of the myocardium provide
information about the perfusion of the coronaries in hyperemia [30]. They used
machine learning to determine from CCTA-imaged myocardium texture whether
a stenosis was functionally significant or not, as classified in terms of FFR. This
indicates that abnormal myocardial tissue (classified as such by an unsupervised
machine learning algorithm) provide useful information. A similar approach might
supply information that could be used to improve modeling aspects of FFR, such
as the distribution of flow and the effect of adenosine.

Most clinical CT-scanners offer spatial resolution of approximately 0.5 mm [52].
This limit in spatial resolution introduces a layer of uncertainty in the modelling
pipeline since features smaller than this are not resolved. However, studies indicate
that the vessel enhancement (i.e. the approximate intensity of blood in Houndsfield
units) and heart rate during CCTA-acquisition effect the diagnostic performance
of FFR predictions [53]. This suggests that optimization of CT-protocols could
improve prediction accuracy. Moreover, technological advancement has led to
greatly improved CCTA-image quality during the past decades. This is likely to
continue in the years to come, and will thus help to reduce uncertainty related to
the definition of vessels’ geometry [52].

The improvements in CCTA quality mean that it is now possible to extract more
information related to the atheresclorotic disease. In particular, it is possible to
extract information related to the composition of the plaque [54]. It is well known
that certain plaque features, such as positive remodeling (the plaque expands out-
wards) and low attenuation (indicative of lipid rich plaque) are associated with
acute coronary syndrome [55]. Moreover, recent studies also suggest a relation be-
tween such plaque characteristics with ischemia and FFR [56]. The authors of [56]
propose that the presence of large necrotic cores and low attenuation plaque may
be associated with the inability of the vessel to dilate. An alternative hypothesis is
one that relates the plaque characteristics to the health of the downstream vascula-
ture. In any case, further studies are needed to improve the understanding between
plaque characteristics, anatomical obstruction and hemodynamcis. Advancements
could lead to improved modeling of FFR, and more importantly, contribute to the
debate on what should guide treatment and intervention.
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As computational models of the cardiovascular system are applied in modern

personalized medicine, maximizing certainty of model input becomes cru-

cial. A model with a high number of arterial segments results in a more

realistic description of the system, but also requires a high number of par-

ameters with associated uncertainties. In this paper, we present a method

to optimize/reduce the number of arterial segments included in one-dimen-

sional blood flow models, while preserving key features of flow and pressure

waveforms. We quantify the preservation of key flow features for the optimal

network with respect to the baseline networks (a 96-artery and a patient-

specific coronary network) by various metrics and quantities like average

relative error, pulse pressure and augmentation pressure. Furthermore, var-

ious physiological and pathological states are considered. For the aortic

root and larger systemic artery pressure waveforms a network with minimal

description of lower and upper limb arteries and no cerebral arteries, suffi-

ciently captures important features such as pressure augmentation and

pulse pressure. Discrepancies in carotid and middle cerebral artery flow

waveforms that are introduced by describing the arterial system in a minima-

listic manner are small compared with errors related to uncertainties in blood

flow measurements obtained by ultrasound.

1. Introduction
Computational models of the cardiovascular system are commonly separated

into three-dimensional (3D), one-dimensional (1D) and lumped models (0D).

One of the first attempts to model pressure and flow waveforms was through

the classical 0D Windkessel (WK) model [1]. A noteworthy extension to this

was presented in [2] where a resistance element representing the characteristic

impedance was added, and many variations and extensions have been proposed

[3]. The most important drawback of the family of 0D models is inherent in the

assumption of infinite wave velocity and that spatially distributed parameters are

modelled as single point parameters.

Through the years distributedmodelswith various degrees of detail have been

suggested. In [4,5], the systemic circulation was modelled as two asymmetric par-

allel branches, one supplying the head and upper limbs, and one supplying the

rest of the body. In [6], a model consisting of the 33 largest systemic arteries

was tested using an in vitro experiment. In [7], the arterial network was expanded

to include 55 arterial 1D segments. In [8], a complete description of the systemic

arterial tree containing the largest arteries of the head and upper and lower

body was validated using in vivo measurements. The study also includes a

detailed overview of 1D models up until 2009, highlighting their variation in

detail and complexity. More recently, in [9], a model accounting for pulse wave

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.



propagation in all regions of the circulation including approxi-

mately 400 arteries and 350 veins was presented. Yet others

have modelled the arterial system in a very high level of

detail including more than 2000 arteries [10,11].

We have come a long way in creating realistic and detailed

descriptions of the entire arterial tree and circulatory system.

However, given the near endless number of small arteries and

capillaries in the human body, the network has to be truncated

at a certain level. Since reliable measurements of flow or pressure

at all terminal sites are practically impossible to obtain, outflow

boundary conditions are commonly set through simpler models

representing the peripheral circulation. Indeed the above-men-

tioned family of 0D WK models have been the preferred choice

for providing boundary conditions at terminal branches.

There is little consensus in the scientific community on

the level of detail of the computational domain. Furthermore,

few studies have focused on the errors and limitations associ-

ated with truncating the arterial network at given sites. In [8],

they state that a detailed description of the cerebral circula-

tion is required in order to attain accurate and physiological

flow predictions in the common carotid artery. In [12], they

found that the arterial tree could be truncated after the first

generation of bifurcations without significantly altering

pressure and flow waveforms, if matched three-element

WK outflow models were used. In [13], they presented a

method for lumping 1D arterial segments into three-element

WK models and applied their method on a network of

55 arteries (excluding the circle of Willis).

Here, we present a sound mathematical framework that

enables us to find the necessary arteries to include for a given

clinical application. The framework involves finding the

model with the fewest number of arteries that is still able to

produce pressure and flow waveforms below a certain error

threshold compared with a corresponding detailed (baseline)

model (figure 1). This approach reduces the number of uncer-

tain input parameters, while still assuring that the

simplifications do not limit the model predictions. We illustrate

the framework for different clinically relevant quantities of

interest: central aortic and larger systemic artery pressure wave-

forms, common carotid and middle cerebral artery flow

waveforms and coronary pressure waveforms. We note that

our framework is intended to be used in an early stage as a

tool for model selection that aims at minimizing total

uncertainty.

2. Material and methods
2.1. Framework for balancing topological complexity

with model error
Here, we present a framework for reducing the number of vessel

segments still assuring wanted features of pressure and/or flow

to be within acceptable agreement with the corresponding full

model:

— Define a baseline model.

— Locate the quantity of interest appropriate for the problem

(e.g. aortic pressure and/or carotid flow).

— Define a threshold for pressure and/or flow (e.g. RMS-error,

pulse or mean pressure).

— Create reduced models by applying the methods described in

§2.4.1 or §2.4.2, and solve the 1D networks.

— Find the network with the fewest number of arteries subject to

the constraint of the threshold.

2.2. Arterial baseline models
We applied our new methodology on two arterial models, both

illustrated in figure 1.

2.2.1. Systemic arterial network
The first baseline model considered includes 96 of the largest sys-

temic arteries, in which parameters and geometry were adapted

from Mynard et al. [9]. They compared model-derived pressure/

flow waveforms with published in vivo waveforms from healthy

adults, validating the model’s capability of providing realistic

waveforms throughout the arterial tree.

2.2.2. Coronary network
The second baseline model considered in this work was based on a

series of invasive and non-invasive measurements of a patient (sex:

female, age: 58, height: 162 cm, weight: 78 kg) with positive find-

ings of stable coronary artery disease after clinical inspection and

coronary computed tomography angiography (CCTA) examin-

ation. The data were collected as part of an ongoing clinical trial

at St Olavs Hospital, Trondheim, Norway [14]. Cardiac output

(CO) was measured by transthoracic Doppler echocardiography

using a GE Vivid E95 scanner (GE Vingmed Ultrasound, Horten,

Norway). The patientwas further referred to invasive angiography,

and aVerrata Plus (Philips Volcano, SanDiego, USA) pressurewire

was used to obtain pressure tracings at the coronary ostium and

distal of an epicardial stenosis. Proximal, Pp and distal, Pd pressure
tracings are shown in figure 8. The last 30% of the cardiac cycle is

highlighted and was used to compute the instantaneous wave-

free ratio (iFR), which is a drug-free index of the significance of

the stenosis [15]. Measurement of fractional flow reserve (FFR) [15],

obtained during drug-induced hyperaemia (maximum coronary

flow) was also available. The coronary geometry was segmented

using the open-source software ITK-SNAP [16], the surface was

then meshed using the open-source library Vascular Modeling

ToolKit [17]. 1D domains were extracted from the 3D volume

mesh by computing equivalent axisymetric cross-sectional areas

along centrelines. Stenotic regions were automatically detected

using a Gaussian filter-based approach [18].

2.3. Numerical formulation
2.3.1. One-dimensional flow solver
The solutions of pressure and flowwaveforms presented herewere

obtained using the 1D flow solver STARFiSh [19]. The hyperbolic

(b)(a)

Figure 1. Two baseline models were used in this work: a model containing
96 arterial segments in which parameters and topology were adapted from
[9] (a), and a patient-specific coronary network (b). The arrow indicates the
location of invasive pressure measurements, and the section coloured in red is
a significant stenosis.
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partial differential equations for blood flow in compliant vessels are

written in terms of pressure and flow variables (P, Q):

@A
@P

@P
@t

þ @Q
@x

¼ 0 (2:1a)

and

@Q
@t

þ @Q2=A
@x

¼ �A
r

@P
@x

þ f
r
, (2:1b)

and solvedusing the explicitMacCormack scheme [20].Here, t is the
time, x is the axial coordinate, f is the frictional term and is given by

22(z þ 2)mpU, where r is the density (1060 kg m23), m is the vis-

cosity of blood (3.5 mPa s), A is the cross-sectional area and U is

the cross-sectional averaged velocity. The following velocity profile

was prescribed:

u(x, j, t) ¼ U(x, t)
zþ 2

z
1� j

r

� �z
" #

, (2:2)

where r(x, t) is the lumen radius, j is the radial coordinate and z ¼ 9

is thepolynomialorder.Atarterial connections compatibilityofpro-

pagating characteristic variables were enforced [7] in addition to

conservation of mass and a coupling equation for the pressure, i.e.:

XN
i¼1

Qi ¼ 0 (2:3a)

and

P1 þ
r

2
U2

1 ¼ Pi þ
r

2
U2

i þ DP i ¼ 2, . . . , N, (2:3b)

where N is the number of vessels in the connection, and DP is an

additional pressure losswhichwas set equal to zero for normal con-

nections. At arterial stenoses, the flow regime is 3D and the 1D

assumptions no longer hold. Stenotic regions were thus removed

and treated as junctions with N ¼ 2, however, now with an

additional experimental-based pressure loss term given by Liang

et al. [21]:

DP ¼ KviscQþ KexpQjQj, (2:4)

where the viscous,Kvisc and expansion,Kexp coefficientswere calcu-

lated based on geometrical features, as described in [21].

The pressure–area relation assumes thin-walled elastic

vessels and can be derived from Laplace’s Law:

P ¼ Pdia þ
b

Ad
(

ffiffiffiffi
A

p
�

ffiffiffiffiffiffi
Ad

p
), b(x) ¼ 4

3

ffiffiffiffi
p

p
Eh, (2:5)

where Pdia is the diastolic pressure with corresponding cross-

sectional area Ad, E is the elastic modulus and h is the thickness
of the vessel wall. The stiffness parameters E h are related to

the pulse wave velocity c and have been obtained using the

relation [22]:

c2d ¼ 2

3r

Eh
rd

¼ 2

3r
[k1 exp (k2rd)þ k3], (2:6)

where rd is the radius at diastolic pressure, and the values for

k1, k2 and k3 were set to 3 � 106 g s22 cm21, 29 cm21 and 33.7�
104 g s22 cm21 for systemic arteries and 20 � 106 g s22 cm21,

222.5 cm21 and 86.5 � 104 g s22 cm21 for coronary arteries,

respectively [9].

2.3.2. Boundary conditions
For the 96-artery model, inflow boundary conditions (prescribed

flow rate Q) and outflow boundary conditions (three-element

Windkessel models, WK3) and all other parameters were

adapted from Mynard & Smolich [9]. For the coronary network,

the proximal pressure tracing was prescribed at the aortic root. In

contrast to systemic arteries, coronary arteries experience

increased impedance during systole due to the contraction and

increased pressure in the left ventricle. To account for this

effect, a lumped parameter WK model WKcor was used at coron-

ary outlets [23]. A schematic of the model is shown in figure 9 in

appendix A.1 and the a priori computed left ventricle pressure

waveform is shown in figure 8. The left ventricle pressure wave-

form was obtained by coupling a varying elastance (VE) heart

model to a WK3 model [24], and further by parameter optimiz-

ation to minimize the discrepancy between Pp and Pao, where Pao
is the aortic pressure resulting from the VE-WK3 model. The total

arterial resistance, Rtot was estimated from CO, mean arterial

pressure, �Pp and outflow WK pressure, Pout,WK (5mmHg)

according to Ohm’s Law. Total arterial compliance was esti-

mated from the VE-WK3 model. About 4.5% of CO was

assumed to supply coronary arteries and used to estimate total

coronary resistance and compliance, and was further distributed

among coronary outlets according to Murray’s Law [25]. Simu-

lation of a hyperaemic state is necessary for FFR calculations.

Hyperaemia was modelled by reducing the resting resistance of

the coronary outlets by a factor a. The value of a was based on

the work of Uren et al. [26] who studied myocardial blood flow

and resistance in relation to the severity of coronary stenosis,

and was set to 3 for ‘healthy’ outlets, and to 1.25 for outlets

distal of the coronary stenosis. For details see appendix A.2.1.

2.4. Network reduction
Network reduction involves lumping distributed 1D segments into

0D parameter models, specifically WK models, intended to rep-

resent the same physical problem. Each WK model represents all

arteries situated distal of the point of interest with resistance

elements and capacitors in series and parallel, as visualized in

figure 2.

2.4.1. Method 1, algebraic estimation of lumped parameters
Here, we present a method for network reduction which was

adapted from Epstein et al. [13]. The method was described

and applied on a baseline network only including bifurcations.

In this work, we have used a different way of estimating the

lumped resistance and compliance that can also be applied on

networks containing loops and anastomosis. We have also

expanded the procedure to account for arterial stenoses.

C R1

R2

Figure 2. An example of a reduced network that has been obtained from the
baseline model in figure 1 by lumping 1D model segments into WK3 models.
Lumped 1D model segments are shown in colour.
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2.4.1.1. Estimation of lumped resistance
The linearized version of equations (2.1a) and (2.1b) can be writ-

ten in terms of the steady-state variables �P, �Q and �A:

�Qin ¼ �Qout (2:7a)

and

�Pin ¼ �Pout þ
ðl
0

2(zþ 2)pm

�A2
dx, (2:7b)

where l is the length of the segment, and the subscripts ‘in’ and

‘out’ denote variables at the inlet and outlet of the segment,

respectively. Equations (2.7a) and (2.7b) may then be combined

with equations (2.3a)–(2.3b) and equation (2.5) to form a

system of nonlinear algebraic equations. The system was solved

iteratively by employing Picard linearization. �P and �Q is in

such an estimate of the time average of P(t) and Q(t), and once

solved for, resistance may be estimated anywhere in the network

using Ohm’s Law:

R ¼
�P� Pout,WK

�Q
: (2:8)

2.4.1.2. Estimation of lumped compliance
We can estimate the compliance (Cv) of a vessel by integrating

over the length of the 1D model segment [13]:

Cv ¼ K1

r
, K1 ¼

ðl
0

�A
�c2

dx: (2:9)

Furthermore, we estimated the compliance Ct of a terminal vessel

(figure 3) coupled with a WK3 with proximal resistance, R1, com-

pliance, C and peripheral resistance, R2 [13]:

Ct ¼
CvR2 þ CvR1 þ CR2 þ CvRv

R2 þ R1 þ Rv
: (2:10)

Lumped compliance of terminal vessels coupled to WKcor

models (see figure 9 in appendix A.2.1.) with compliances Ca

and Cm were estimated according to:

Ct ¼ Cv þ Ca þ Cm: (2:11)

The total compliance contribution of vessels distal of a point of

truncation was then obtained using equation (2.9) for non-term-

inal vessels and equation (2.10) or equation (2.11) as appropriate

for terminal vessels, together with summation rules for com-

pliances/capacitors in series and parallel. See appendix A.2.1.

for details.

2.4.1.3. Lumping vessels distal of a site of truncation
With the lumped resistance, (equation (2.8)) and compliance

(equations (2.9)–(2.11)), as defined above we may replace all

vessels distal of a point of interest with a WK model. Systemic

arteries were replaced by WK3 models in which R1 was set

equal to the characteristic impedance, Zc:

Zc ¼
r�c
�A
: (2:12)

Lumped coronary arteries were replaced by WKcor models and

the lumped resistance and compliance were divided among the

resistance and compliance parameters of the WKcor model as

described in appendix A.2.1.

2.4.2. Method 2, optimization of lumped parameters
Method 1 is based solely on the topology and properties of the

baseline model. This means that we can use the method without

solving the baseline model. However, the parameters in the WK

models that replace the removed vessels are not necessarily the

ones that correspond with the least discrepancy between the base-

line and reduced networks. This motivates another method which

is based on parameter optimization. Since the WK models are

lumped models with governing ordinary differential equations

(ODEs), we suggest a procedure that treats every truncated site

independently. The optimization is thus performed by taking

the flow from the 1D solution of the baseline model as given

inflow to the WK models, then solving for the unknown pressure.

Furthermore, we seek to minimize the error between the pressure

obtained by solving the ODE with the corresponding 1D baseline

solution. In the following, we explain the procedure for the WK3

model, though it can be easily expanded to other lumped par-

ameter outflow models. Either one, two or all three of R1, C and

R2 were allowed to vary to minimize the error. If only one of R1

and R2 was optimized, the total resistance R1 þ R2 was found

from (Pavg 2 Pout,WK)/Qavg, where Pavg and Qavg are the time-

averaged pressure and flow from the 1D baseline solutions. The

method may be summarized in the following steps:

(1) Calculate the flow and pressure waveforms of the 1D base-

line model.

(2) Locate the sites where WK3 models will replace distal

vessels.

(3) Calculate values of R1 þ R2 from Pavg, Qavg, and C using

Method 1 (§2.4.1).

(4) Use the flow from the 1D baseline model as given inflow of

the WK3 ODE, with parameters R1, C and R2.

(5) Choose parameters to be optimized and use parameters from

point 3 otherwise and as initial guess.

(6) Solve the WK3 ODE for the unknown pressure, PWK3.

(7) Find the parameters that minimize the discrepancy between

PWK3 and the corresponding pressure waveform from the

solution of the 1D baseline model. We used the average rela-

tive error, calculated by equation (2.13a) as the measure of

discrepancy.

Based on a parameter correlation and identifiability analysis, we

chose to optimize on the subset of parameters ([u1, u2]¼ [R1/R2,C]),

where R1 þ R2 was kept constant. See appendix A.3.2. for details.

2.5. Error metrics
The following error metrics were used to compare pressure and

flow waveforms obtained from the baseline (B) and reduced (R)

models:

eP,avg ¼ 1

Nt

XNt

i¼1

PR
i � PB

i

PB
i

����
����, eQ,avg ¼ 1

Nt

XNt

i¼1

QR
i �QB

i

maxj(QB
j )

�����
�����, (2:13a)

eP,sys ¼
jPB

sys � PR
sysj

PB
sys

, eP,dia ¼
jPB

dia � PR
diaj

PB
dia

, (2:13b)

ePP ¼ jPPB � PPRj
PPB

, (2:13c)

eP,aug ¼
j{PB

sys � PB
infl}� {PR

sys � PR
infl}j

PPB
(2:13d)

Cu
C

R1

Cequivalent = Ct

R 2

Figure 3. Illustration of an arterial 1D model segment coupled to a WK3
model that may be lumped into an equivalent compliance Ct according to
equation (2.10). (Online version in colour.)
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and

eiFR ¼ jiFRB � iFRRj, (2:13e)

whereNt is the number of time points in a cardiac cycle, i represents
a certain time point with corresponding baseline, PB

i and reduced,

PR
i pressure and flow (QB

i ,Q
R
i ), respectively. eQ,avg was normalized

by the maximum flow of the baseline model over one cardiac cycle,

maxj (QB
j ), to avoid division by numbers close to zero. The maxi-

mum (Psys) and minimum pressure (Pdia) was used to calculate

the systolic (eP,sys), and diastolic (eP,dia) error, respectively. The

pulse pressure, PP is defined as Psys 2 Pdia. ePP is the error in

pulse pressure and eP,aug is the error in augmentation pressure,

both normalized by the pulse pressure. PB
infl is the pressure at the

inflection point in early systole [27]. eiFR is the difference between

predicted iFR from baseline and reduced model.

2.6. Application to different physiological and
pathological states

The parameters for the baseline 96-artery model were based on

data from healthy, young adults [9]. In this part of the study,

however, we re-parametrized a series of optimal networks to rep-

resent (1) normal ageing, (2) a pathological state of aortic

coarctation and (3) states of different heart rate, ejection time

and stroke volume. We note that no information from the base-

line model was used to re-parametrize the reduced models.

2.6.1. Normal ageing
Normal ageingwas simulated by increasing total arterial resistance

by a factor of 1.1, and decreasing total arterial compliance by a

factor of 2. Arterial stiffening is most marked in the proximal

aorta and its major branches—brachiocephalic, carotid, subclavian

[28]. The stiffness parameter b for these arterial segments was

increased by a factor of 2.5, whereas it was increased by a factor

of 1.5 for all other segments. Finally, the compliance of the WK3

models were modified so that the total arterial compliance (sum

of WK3 compliance of terminal segments and integrated 1D com-

pliance) was decreased by a factor of 2. The total arterial

resistance was modified by increasing the peripheral resistance in

all outflow WK3 models. See appendix A.5 for details.

2.6.2. Aortic coarctation
Aortic coarctation was simulated by introducing a 1 cm long,

50% diameter stenosis in the thoracic aorta. This corresponds

to segment Id 18 in the electronic supplementary material.

2.6.3. Heart rate, ejection time and stroke volume
Heart rate, ejection time and stroke volume were modified

according to the study by Weissler et al. [29]. They studied

relationships between left ventricular ejection time, ET, stroke

volume, SV and heart rate, HR, in normal individuals. We modi-

fied the original aortic inflow curve for the 96-artery model to

represent the two extreme cases in terms of HR in their study

(HR: 56 bpm, ET: 0.315 s, SV: 106ml and HR: 120 bpm, ET: 0.2 s,

SV: 44ml). For the latter, total arterial resistance was increased

by a factor of 1.67 and compliance halved (effecting the distributed

parameters as described for normal ageing), in order to obtain

physiological pressure waveforms.

3. Results
3.1. Comparison of Method 1 and Method 2 for

network reduction
Figure 4 shows the 96-artery model (black) reduced to a 25-

artery model (red). Solution of pressure and flow waveforms

at the inlet of the right internal carotid artery, obtained from

the baseline model and both methods for network reduction,

are also shown. Method 1 overestimated internal carotid

pressure in mid systole (ePP was 6.2% for Method 1 and

0.2% for Method 2). Furthermore, Method 2 captured the

overall shape of pressure and flow waveforms better than

Method 1. Average errors, eP,avg between full and reduced

models were 1.45% for Method 1 and 0.57% for Method 2.

Similarly, eQ,avg was 1.47% and 1.16%, respectively.

Figure 4 also shows the impedance modulus and angle for

the site of interest, calculated in the frequency domain as

explained in [30].
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Figure 4. Comparison of Method 1 and Method 2 for network reduction. Baseline model in black and reduced models in red together with pressure and flow
waveforms at the inlet of the right internal carotid artery. Impedance modulus and phase angle are also shown.
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3.2. Framework for optimizing topological complexity
A summary of the quantities of interest, error metrics and

values for the network reduction framework applied on the

96-artery model is given in table 1. Here, error metrics are

also presented for the cases where parameters were altered

to simulate different physiological and pathological states

(see §2.6). References to associated figures are also given. In

particular, a threshold based on eP,sys þ eP,dia at the aorta

and brachial artery was used in the top two examples in

figure 5. The waveforms for the baseline model and optimal

reduced networks are shown in solid lines, and the dashed

lines represent the case when the models were altered to

represent normal ageing. In the last example, a threshold

based on augmentation and pulse pressure was used

(eP,aug þ ePP , 0:7%). Furthermore, in order to ensure that

interaction between different regions in the network and

that pressure propagation are correctly captured throughout

the larger systemic arteries, a threshold based on pressure

waveforms at four locations was used in figure 13 in appen-

dix A.5. Here, the average eP,avg for the aortic root, common

carotid, brachial and femoral artery pressure waveforms was

required to be less than 0.4%. Additionally, results are shown

for eQ,avg less than 0.9 and 3.4% for the right common carotid

artery and eQ,avg less than 0.6 and 1.6% for the middle cer-

ebral artery in figure 6. Method 2 (§2.4.2) was used to

reduce the networks in all these cases.

In the top part of figure 7, e iFR was set to 0.033, which is

the standard deviation of repeated iFR measurements,

according to the study by Johnson et al. [15]. The results are

visualized through the distal pressure waveform, Pd. All

side branches except those distal of the measured location

can be replaced by lumped WKcor models with no visible

effect and with e iFR , 0.000012. If the threshold is increased

to 0.04 the network can be reduced to its most simplistic

realization, as visualized in the bottom part of the figure.

The predicted velocity and the in vivo pressure waveforms

are also shown. iFR was measured to 0.40, whereas the pre-

dicted value was 0.42 for the baseline network, and 0.42 and

0.38 for the reduced networks, respectively. For FFR, the

measured value was 0.52, whereas the predicted value was

0.48 for the baseline network and both of the reduced networks.

Method 1 (§2.4.1) was used to reduce the coronary networks.

4. Discussion
In this study, we have presented a novel approach which

optimizes the number of arterial segments for 1D blood

flow models. We have illustrated the framework on a

96-artery and a coronary baseline model, and two methods

for network reduction have been incorporated: a purely alge-

braic method (Method 1, §2.4.1) and a novel method based

on optimization (Method 2, §2.4.2).

4.1. Comparison of methods for network reduction
A major difference in the waveforms obtained from Method

1 and Method 2 may be seen in the systolic part of the cycle,

where the pressure obtained using Method 1 was over-

predicted. This was observed as a general distinction

between the two methods, and is exemplified in figure 4.

However, the diastolic phase is very similar, indicating

that the discrepancy is not a result of differences in the

values of compliance in the WK3 models. The diastolic

decay of pressure can be approximated by an exponential

function, with an exponent given by the product of the per-

ipheral resistance (R2) and the compliance (C) [31]. Thus

changes in the compliance directly effect the diastolic

Table 1. Summary of results from applying the framework outlined in §2.1, on the 96-artery baseline model. For cases where there are more than one
quantity of interest, the final error was calculated as the average of the error for the individual quantities. Ref. denotes the reference case, and the threshold
used for the optimization is given in brackets. The errors are also shown for states of normal ageing, aortic coarctation (coarc.) and for the two aortic inflow
curves as defined in §2.6. All errors are in percentage. The associated figure numbers are referenced below the error, where available.

quantity of interest
no. of
arteries

error-
metric ref. ageing coarc.

inflow
1

inflow
2

aortic and brachial pressure 29 eP,sys þ
eP,dia

0.25 (0.3)

5

2.26

5

0.37

—

0.14

—

1.58

—

aortic and brachial pressure 15 eP,sys þ
eP,dia

0.92 (1.0)

5

1.0

5

0.27

—

1.13

—

1.3

—

aortic pressure 31 ePP þ
eP,aug

0.68 (0.7)

5

0.97

5

1.91

—

0.41

—

1.27

—

aortic and brachial and carotid

and femoral pressure

31 eP,avg 0.33 (0.4)

13

0.47

13

0.24

15

0.41

16

0.85

16

carotid flow 25 eQ,avg 0.87 (0.9)

6

1.53

14

1.09

—

0.81

17

2.97

17

carotid flow 5 eQ,avg 3.35 (3.4)

6

5.2

14

—

—

2.93

17

6.3

17

r. middle cerebral flow 38 eQ,avg 0.59 (0.6)

6

1.13

14

0.66

—

0.66

17

2.88

17

r. middle cerebral flow 15 eQ,avg 1.58 (1.6)

6

2.64

14

—

—

1.72

17

4.38

17
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shape, whereas changes in R1 only have secondary effect.

On the other hand, R1 has a direct effect on the systolic

part of the cycle. Inspection of the values used for the prox-

imal resistance in the WK3 models revealed that Zc (Method

1) was in general higher than R1,opt (Method 2) for the

larger systemic arteries. The addition of the characteristic

impedance to the original two-element WK model was

based on frequency analysis of modulus and phase of the

input impedance along the aorta. By including the charac-

teristic impedance, the input impedance modulus of the

modified WK matched in vivo measurements at high fre-

quencies [2,31]. We also observed (not shown here) better

matching of the modulus at the aorta for high frequencies,

between baseline and reduced models obtained with

Method 1 than with Method 2; however, the same is not

true for this more distal location (internal carotid). Impe-

dance phase, on the other hand, was captured better by

Method 2 for some frequencies (particularly between 5

and 7Hz), as can also be seen in the phase of the first

minima of the flow waveform (� 6 Hz). Minimization of

high-frequency oscillations has also been an incentive for

using matched (R1 ¼ Zc) WKs as outflow BC’s in 1D

blood flow models [12]. However, the price to pay is an

overprediction of pressure in systole.

4.2. Optimization of topological complexity
4.2.1. Central and larger systemic artery pressure waveforms

Pressure measured with a cuff and sphygmomanometer in

the brachial artery is used routinely and accepted as an

important predictor of future cardiovascular risk. However,

studies indicate that central blood pressure (CBP) relates

more strongly to cardiovascular events [32]. Systolic and

pulse pressures are amplified as the pulse wave propagates

through the larger systemic arteries. This amplification may

vary significantly among subjects [32], making it difficult to

map measurements of pressure at more peripheral sites

directly to CBP.

Although it is still unclear if routine measurement/

estimation of CBP will provide significantly improved risk

stratification [33], the 1D nonlinear equations for blood flow

can be used to investigate pulse wave amplification

[8,34,35]. In previous studies, the topology of the 1D model

was chosen ad hoc. Our novel framework provides a math-

ematical approach to determine the optimal topology to

study pulse wave amplification from the aortic root to the

brachial artery.

The results presented in the first two rows of figure 5 indi-

cate that inclusion of detailed descriptions of upper and
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Figure 5. Optimal networks and corresponding waveforms (solid lines) obtained from the 96-artery baseline model with pressure at midpoint of ascending
aorta (left) and right brachial artery (middle) set as quantities of interest. In the top and middle rows, an averaged (of the two quantities of interest) error threshold
of eP,sys þ eP,dia less than 0.3% (top row) and 1.0% (middle row) was used. In the last case, an error threshold of eP,aug þ ePP less than 0.7% was used for the
aorta. Dashed waveforms correspond to simulations of normal ageing as described in §2.6.
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Figure 6. Optimal networks obtained from the 96-artery baseline model with the flow at the distal end of the right carotid artery set as quantity of interest (left
panel) and with 0.9 and 3.4% average error thresholds, respectively. The right panel show results when the flow at the proximal end of the right middle cerebral
artery was set as quantity of interest and with 0.6 and 1.6% average error thresholds, respectively.
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lower limbs are not needed in order to study pulse wave

amplification from the aortic root to the brachial artery. More-

over, the entire cerebral circulation can be replaced by WK3

models with negligible effects on aortic and brachial pressure

waveforms. This is reasonable since these are relatively small

and stiff arteries for which the behaviour is well captured by

WK3 models [3]; however, it is important to note that the

proximal part of the aorta, which accounts for about 50% of

total systemic compliance, needs to be kept in the reduced

1D model.

Both pulse pressure and augmentation pressure, and their

relation (augmentation index) is associated with cardiovascu-

lar risk [36]. Even though the aortic pressure waveforms

obtained by the reduced models in the top two examples in

figure 5 captured the pulse pressure very well, some subtle

deviations are visible in the systolic part of the waveforms.

This could have an effect on the calculated augmentation

pressure, and thus also on evaluations of cardiovascular

risk. In the last example in figure 5, an error threshold of

ePP þ eP,aug of 0.7% at the aorta, was used, and results indi-

cate that this 31-artery model captures the most important

features of wave propagation for central aortic pressure.

A similar model was found when a combined threshold of

average eP,avg of 0.4% was set for four arterial sites; midpoint

of ascending aorta, right common carotid artery, right bra-

chial artery and left femoral artery, as illustrated in figure

13 in appendix A.5. This network was also able to capture

waveform features with good qualitative and quantitative

precision when the model was re-parametrized to model

different physiological and pathological states.

4.2.2. Carotid and cerebral circulation
In the study by Reymond et al. they compared carotid flow

predictions with and without description of the cerebral cir-

culation and stated that a detailed description was

necessary in order to produce physiological correct wave-

forms. Our results, on the other hand, indicate that the

entire cerebral circulation can be appropriately lumped into

WK3 models effecting only the diastolic part of the flow

waveforms and with eQ,avg , 0:9%, as shown in figure 6. Fur-

thermore, by increasing the threshold to 3.4% the network is

reduced to a very simplistic model including only five arterial

segments. Though the overall features are represented in this

five-artery model, the arterial tree is truncated close to the

carotid artery and will thus be more influenced by the

WK3 models. High-frequency details are not described well

by the three-element WK [31], which in this case is visible

through the smoothing of the second and third peaks of the

flow waveform. Such errors were magnified when the

model was transformed to represent normal ageing, as

visualized in figure 14.

Figure 6 also shows results with flow rate at the inlet of

the right middle cerebral artery set as the quantity of interest.

This site is located more distal than the other quantities of

interest studied in this work, and as can be seen in the case

where a threshold of eQ,avg , 0:6% was considered, the

circle of Willis can be ‘broken’ and represented by WK3

models without altering the flow waveform significantly.

Furthermore, the arterial tree can be truncated in close proxi-

mity to the middle cerebral artery without introducing

significant constraints on the solution, more so than was

the case for the right common carotid artery. This is

attributed to the fact that the flow in this region is more domi-

nated by frictional forces resulting in pressure and flow

waveforms that are of similar shape and phase and can be

more readily described by the WK3 model. Moreover, by

increasing the threshold to eQ,avg , 1:6% more of the larger

systemic arteries may also be lumped, resulting in very sim-

plistic descriptions of the arterial network that were still

able to capture the main features of the flow waveform in

the middle cerebral artery. For this model, however, errors

were magnified when parameters were altered to represent

different physiological states, indicating that having a reason-

ably complete description of the larger arteries is more

important than including the nearby system of 1D model

arteries.

Blood flow can be measured non-invasively by ultra-

sound in both the carotid and middle cerebral arteries;

however, there are many sources of uncertainty and standard

errors of measurements are normally higher than 10% [37]. In

comparison, the modelling errors introduced by applying

network reduction to obtain simpler descriptions of the arterial

system were smaller.

4.2.3. Coronary pressure waveforms
Figure 7 shows the results from applying our methodology

on the patient-specific coronary network. The model can be

reduced to its most simplistic realization while still keeping

the error for the predicted iFR on a level which is comparable

with the standard deviation of repeated iFR measurements.

The differences in predictions of FFR between baseline and

reduced models were even smaller, and in fact smaller than

the significant figures used in clinical decision-making. This

is attributed to the fact that, unlike iFR, FFR is a cardiac

cycle averaged quantity. Our approach for network reduction

maintained the correct resistance throughout the domain,

and thus also average flow and pressure distributions. The

limited resolution of CCTA imaging contributes a layer of

uncertainty since only features larger than approximately

1.0 mm can be resolved [38]. However, our results indicate

that one should not necessarily strive to segment arteries

down to this limit.

5. Concluding remarks
Our results have shown that to capture important features of

the aortic pressure waveform, such as timing and shape of

reflected waves, pressure augmentation and pulse pressure,

a model with all aortic segments, but close to minimal

description of the head and lower and upper limb arteries

is sufficient. Furthermore, a detailed description of the cer-

ebral circulation is not needed in order to capture

physiologically correct waveforms in the common carotid

and middle cerebral arteries. Even though our framework

for network reduction was performed on a single set of par-

ameters representing a normal physiological state, waveform

features were also captured with good qualitative and quan-

titative precision when the models were re-parametrized to

simulate different physiological and pathological states.

Our approach is targeted at computational models of the

cardiovascular system, however, it should also be useful for

the design of in vitro haemodynamic experiments. Such phys-

ical models are attractive tools for fundamental research on

pulse wave propagation [30,39], and also play a key role in
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validating computational models [6]. Through further work,

one could also imagine the relevance of our approach in

the design of multi-scale models of the cardiovascular

system, e.g. hybrid 3D–1D–0D models.
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Appendix A. Material and methods
A.1. In vivo data: measurement and post-processing
Proximal Pp and distal (of a coronary stenosis) Pd pressure

tracings were available from a patient with positive findings

of coronary artery disease. Pressure tracings were obtained

by insertion of a Volcano pressure wire during invasive

angiography. Pp and Pd together with a computed (see

§A.2.1) left ventricle pressure waveform (grey) are shown in

figure 8. CO was measured using transthoracic Doppler

echocardiography.

A.2. Numerical formulation
A.2.1. Boundary conditions
The arterial 1D model segments were terminated with WK3

models (systemic arteries) and WKcor models (coronary

arteries). In the latter, the influence from the left ventricle

pressure, PLV results in a higher coronary impedance in

systole. A patient-specific PLV was obtained by coupling a

varying elastance (VE) heart model with elastance E(t),
volume V and intersect volume V0:

PLV ¼ E(t)(V � V0), (A 1)

with an aortic pressure Pao described by a WK3 model as in

[24]. The discrepancy between Pao and Pp was then mini-

mized through parameter estimation. The resulting left

ventricle pressure is shown if figure 8. The WK3 and WKcor

models, and their coupling with the 1D domain are depicted

in figure 9. In the baseline 96-artery model, which only

includes systemic arteries, parameters for the outflow WK3

models were adapted from [9]. For the coronary network

model, the total arterial resistance and total coronary resistance

were estimated by:

Rtot ¼
�Pp � Pout,WK

CO
and Rtot,cor ¼

�Pp � Pout,WK

l� CO
, (A2)

where l is the fraction of CO supplying coronary arteries,

assumed to be 4.5%. The total arterial compliance, Ctot was

estimated from the VE-WK3 model and total coronary com-

pliance calculated as Ctot,cor ¼ lCtot. Rtot,cor and Ctot,cor were

further distributed to coronary outlets using Murray’s Law

[25]. The total resistance for outlet j, Rtot,cor, j was then divided

among Rp, Rm Rd, with fractions 0.01, 0.84, 0.15, respectively,

and Ctot,cor,j between Ca and Cm with fractions 0.025 and

0.975, respectively.

The estimated coronary resistance given by equation (A 2)

assumes zero resistance in the 1D domain. We therefore used

the methods described in §2.4.1.1 to estimate mean flow

values, and updated Rtot, cor until total coronary flow reached

the target flow of 4.5% of CO.

A.3. Network reduction
A.3.1. Method 1, algebraic estimation of lumped parameters
In figure 10, we have separated the circle of Willis from the

rest of the 96-artery model to illustrate how network

reduction was performed. Here, the network was truncated

at two sites. On the left side of the figure, arrows indicate

the direction of the calculated mean flow rate �Q as described

in §2.4.1.1, and defines which arterial segments are distal of a

site of truncation.

Once this is known the lumped compliance contribution

of these vessels may be calculated. We can estimate the com-

pliance (Cv) of a vessel by integrating over the length of the

1D model segment [13]:

Cv ¼ K1

r
and K1 ¼

ðl
0

A
c2

dx, (A 3)

where A and c are evaluated at �P. Furthermore, we can esti-

mate the compliance Ct of a terminal vessel (figure 3)

0

20

40

60

80

P
(m

m
H

g) 100

120

140

160

0.1 0.2 0.3 0.4
t (s)

0.5 0.6 0.7

Pp

Pd

0.8

Figure 8. Proximal Pp and distal Pd pressure waveforms obtained during
invasive angiography, together with a computed left ventricle pressure wave-
form in grey. The last 30% of the cardiac cycle is highlighted in red and was
used to compute the instantaneous wave-free ratio, iFR, a drug-free index of
the significance of the stenosis.
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coupled with a WK3 with proximal resistance, R1, compliance,

C and peripheral resistance, R2 [13]:

Ct ¼
CvR2 þ CvR1 þ CR2 þ CvRv

R2 þ R1 þ Rv
: (A 4)

Lumped compliance of terminal vessels coupled to WKcor

models with compliances Ca and Cm were estimated according

to:

Ct ¼ Cv þ Ca þ Cm: (A 5)

The compliance contribution of non-terminal vessels was esti-

mated with Cv alone. In order to find the total compliance

contribution of the vessels distal of a site of truncation, we

use the rules for adding capacitors/compliances in series

and parallel. The equivalent compliance (Ceq,b) of two daugh-

ter vessels in a bifurcation and the equivalent compliance

(Ceq,a) of one of the mother vessels and the daughter vessel

in an anastomosis is given by (figure 11):

Ceq,b ¼ Cd,1 þ Cd,2 (A 6a)

and

Ceq,a ¼ Cm,1 þ
1

2
Cd, (A 6b)

where Cd,1 and Cd,2 are the lumped compliances of the two

daughter vessels in the bifurcation, Cd is the lumped compli-

ance of the daughter vessel in the anastomosis and Cm,1 is

the lumped compliance of one of the mother vessels in the ana-

stomosis. The compliance contribution of the daughter vessel in

an anastomosis is thus split equally between the two mothers.

With the lumped compliance, and estimate of total resistance

at a site of truncation as described in §2.4.1.1, the distal arteries

may be lumped into WK models, as illustrated in figure 12.

A.3.2. Method 2, optimization of lumped parameters

A.3.2.1. Parameter sensitivity, correlation and identifiability
We wanted to assure that the parameters were identifiable,

and did so by checking if any of the parameters were highly

correlated. The sensitivity of the model output, y to the model

parameters, u can be calculated by the sensitivity matrix [40]:

S ¼ @y
@u

¼

@y
@u1(t1)

� � � @y
@um(t1)

@y
@u1(t2)

� � � @y
@um(t2)

..

. ..
. ..

.

@y
@u1(tn)

� � � @y
@um(tn)

2
666664

3
777775, (A 7)

in which m is at most 3, [u1, u2, u3] ¼ [R1, C, R2], in our case, y
is the solution of the WK3 ODE, PWK3 and n is the number of

time points in one period. The sensitivity matrix, S, was cal-

culated using forward differences. From the sensitivity

matrix, we may calculate the model Hessian H ¼ C21 ¼

s22STS, where s is the variance and C is the covariance

matrix. The correlation matrix can be calculated as [40]:

ci,j ¼
Ci,jffiffiffiffiffiffiffiffiffiffiffiffiffi
Ci,iC j,j

p : (A 8)

If jci,jj ¼ 1, i= j then parameters ui and uj are perfectly corre-

lated. In other words altering ui or uj has the same effect on y,
and hence both of them cannot be identified in the same

optimization process. In this work, we have treated two par-

ameters as pairwise correlated if jci,jj. 0.86, and with this

criterion we found that in most optimization cases either

two or more of R1, C, R2 were pairwise correlated. By keeping

R1 þ R2 constant and only allowing the relative distribution

R1/R2 to vary, the subset of parameters, ([u1, u2]¼ [R1/R2, C])
was not highly correlated for any of the optimization cases.

We therefore used [R1/R2, C] as the set of parameters to be

R1

C
Ca Cm

PLV

Pout,WK

Pout,WK

R2
Rp Rm Rd

(b)(a)

Figure 9. Schematic of the two lumped parameter models used in this work, WK3 model (a) and WKcor (b). R1, R2, Rp, Rm and Rd are resistance parameters, C, Ca
and Cm are compliance parameters and PLV and Pout,WK are left ventricle and outflow windkessel pressures, respectively.

Figure 10. Arrows indicate the direction (not magnitude) of �Q, and also which arteries are lumped into WK3 models for two selected sites of truncation: the left
and right internal carotid arteries.
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optimized in Method 2. Furthermore, if the optimum value of

R1 was less than 0, R1 was set equal to the characteristic impe-

dance, and only C was optimized.

A.4. Computational aspects
A.4.1. Creation of reduced networks
There are approximately 4.7 million unique networks that can

be reduced from the 96-artery baseline model shown in figure 1.

Solving all of them was infeasible, however, through some

initial tests we managed to reduce the number of possible

combinations down to approximately 30000. This was done

by replacing branches of vessels that had little effect on the

bifuration

Ceq,b

Cd,1 Cd,2

Cm,1

Cd

Ceq,a

anastomosis

Figure 11. Compliance contribution from vessels in bifurcations and anasto-
mosis used in equation (A6a) and equation (A6b). Arrows indicate the
direction of flow.
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R2
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C

P
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P
–
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Figure 12. Illustration of vessels distal of points of truncation lumped into WK3 models.
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Figure 13. Optimal network obtained from the 96-artery baseline model with pressure at midpoint of ascending aorta (top left), right common carotid artery (top
middle), right brachial artery (bottom left) and left femoral artery (middle bottom) set as quantities of interest. The average deviation at these four locations was
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pressure and flow waveforms in the arteries of interest

(eQ,avg , 0.3 and eP,avg , 0.1).

A.5. Application to different physiological and
pathological states

As described in §2.6, total arterial resistance and compliance

was altered to represent different physiological states. Here,

we describe the details on how this was performed. Depart-

ing from the parameters obtained from performing network

reduction, total arterial compliance, Ctot was calculated as

the sum of compliance contribution of 1D segments, Ctot,1D

and WK3 compliance of terminal vessels, Ctot,0D according to

Ctot ¼ Ctot,1D þ Ctot,0D ¼
XNv

k¼1

Cv,k þ
XNt

k¼1

Ck, (A 9)

where k is the summation index, Nv is the number of 1D-

segments, with compliance Cv,k (see equation (A 3)) and Nt

is the number of terminal vessels with WK3 compliance, Ck.

As mentioned in §2.6, total arterial resistance was modified

by altering the peripheral resistance, R2 in all outflow WK3

models. However, since part of the resistance contribution

is due to resistance in the 1D domain, we used the estimated
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Figure 14. Optimal reduced networks for flow at the distal end of the right carotid artery (left panel) and proximal end of the right middle cerebral artery (right
panel). The networks are the same as shown in figure 6; however, parameters were altered in order to represent normal ageing as described in §2.6.
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mean value at the aortic root, �Pinlet (see §2.4.1) as a surrogate

measure of the total arterial resistance. Next, we defined a

target inlet pressure, �Pinlet,target and updated the peripheral

resistance, R2 in all outflow WK3 models according to the

expression

Rmþ1
2,k þ R1,k ¼

�Pinlet,target

(�Pinlet)
m (Rm

2,k þ R1,k), (A 10)

where k denotes the relevant outflow segment and m is an

iteration index. For the case when normal ageing was simu-

lated, �Pinlet,target was set to 110mmHg (i.e. total arterial

resistance was increased with a factor of 1.1 since (�Pinlet)
0

was 100mmHg). For inflow case 2, it was necessary to

increase total arterial resistance to produce physiological

pressure waveforms. Here, �Pinlet,target was set to 90mmHg

(i.e. total arterial resistance was increased by a factor of 1.67

since (�Pinlet)
0 was 54mmHg). Four iterations were sufficient
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to reach �Pinlet,target. In order to decrease total arterial

compliance by a factor of 2, we defined a target compliance

Ctot, target ¼ Ctot/2, and increased the stiffness parameter of

proximal arteries by a factor of 2.5 and all others by a factor

of 1.5. The following segment Ids were considered as proximal

segments; 1, 2, 3, 4, 5, 14, 15, 18, 19, 27, 28 (see the electronic

supplementary material). Next, we estimated the compliance

contribution of 1D segments after this modification,

Ctot,1D,mod, and calculated the target WK3 compliance,

Ctot,0D,target according to

Ctot,0D,target ¼ Ctot,target � Ctot,1D,mod: (A 11)

Finally, we updated the individual WK3 compliances accord-

ing to

Ck,mod ¼ Ck
Ctot,0D,target

Ctot,0D
, (A 12)

where Ck,mod is the modified WK3 compliance for terminal

segment k.

Appendix B. Results
B.1. Framework for optimizing topological complexity
In order to ensure that interaction between different

regions in the network and that pressure propagation

was correctly captured throughout the larger systemic

arteries, a threshold based on pressure waveforms at four

locations was used in figure 13. Here, the average eP,avg

for the aortic root, right common carotid, right brachial

and left femoral artery pressure waveforms was required

to be less than 0.4%.

B.2. Application to different physiological and
pathological states

Figures 14–17 show the results from the second part of our

study, where we re-parametrized a series of optimal net-

works to represent (1) normal ageing, (2) a pathological

state of aortic coarctation and (3) states of different heart

rate, ejection time and stroke volume, as described in §2.6.

Corresponding error metrics are given in table 1.
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Feijóo RA. 2015 An anatomically detailed arterial
network model for one-dimensional computational
hemodynamics. IEEE Trans. Biomed. Eng. 62,
736–753. (doi:10.1109/TBME.2014.2364522)

11. Perdikaris P, Grinberg L, Karniadakis GE. 2015 An
effective fractal-tree closure model for simulating
blood flow in large arterial networks. Ann. Biomed.
Eng. 43, 1432–1442. (doi:10.1007/s10439-014-
1221-3)

12. Alastruey J, Parker KH, Peiro J, Sherwin SJ. 2008
Lumped parameter outflow models for 1-D blood
flow simulations: effect on pulse waves and
parameter estimation. Commun. Comput. Phys. 4,
317–336.

13. Epstein S, Willemet M, Chowienczyk PJ, Alastruey J.
2015 Reducing the number of parameters in 1D
arterial blood flow modeling: less is more for
patient-specific simulations. Am. J. Physiol.
Heart Cir. Physiol. 309, H222–234. (doi:10.1152/
ajpheart.00857.2014)
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Abstract

Model‐based prediction of fractional flow reserve (FFR) in the context of stable

coronary artery disease (CAD) diagnosis requires a number of modelling

assumptions. One of these assumptions is the definition of a baseline coronary

flow, ie, total coronary flow at rest prior to the administration of drugs needed

to perform invasive measurements. Here we explore the impact of several

methods available in the literature to estimate and distribute baseline coronary

flow on FFR predictions obtained with a reduced‐order model. We consider 63

patients with suspected stable CAD, for a total of 105 invasive FFR measure-

ments. First, we improve a reduced‐order model with respect to previous

results and validate its performance versus results obtained with a 3D model.

Next, we assess the impact of a wide range of methods to impose and distribute

baseline coronary flow on FFR prediction, which proved to have a significant

impact on diagnostic performance. However, none of the proposed methods

resulted in a significant improvement of prediction error standard deviation.

Finally, we show that intrinsic uncertainties related to stenosis geometry and

the effect of hyperemic inducing drugs have to be addressed in order to

improve FFR prediction accuracy.
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1 | INTRODUCTION

Fractional flow reserve (FFR) is an index to characterise the functional significance of coronary artery stenoses.1,2

Although FFR is computed as the ratio between invasively measured post‐stenotic and central aortic pressures, this
index was originally derived to represent the ratio between the actual transtenotic flow over the hypothetical flow that
would be observed in the absence of the stenosis under examination.3 The theoretical derivation of FFR assumes con-
stant peripheral resistance, which in turn is considered to be achieved under maximal vasodilation.3 As a consequence,
FFR is measured in hyperemic conditions, normally caused by the administration of a drug, such as adenosine, that
selectively vasodilates the coronary peripheral vasculature.4 A key advantage of FFR over more conventional methods,
such as quantitative coronary angiography (QCA), is that, in addition to taking into account the geometry of a given
lesion, it implies considering information about flow (under hyperemic conditions). In fact, after having been tested
in large trials,5-7 FFR is nowadays recommended to guide revascularization strategy in patients with stable coronary
artery disease (CAD) without evidence of ischemia in non‐invasive testing.8 In practice, if a lesion is below a certain
threshold, FFR≤FFRthreshold, with FFRthreshold=0.8, the recommendation is to intervene by performing percutaneous
coronary intervention (PCI) or in some instances bypass surgery, while a negative outcome, ie, FFR>FFRthreshold, results
in treating the patient with optimal medical therapy.8 Besides the proven validity of FFR as a a tool for functional
assessment of stenosis severity, it remains an invasive procedure with associated risks. Moreover, in a study comprising
almost 400 000 patients with suspected CAD from 663 US hospitals, almost two‐thirds of the patients who underwent
elective cardiac catheterisation proved to have non‐obstructive CAD as determined by invasive angiography.9 These
considerations have motivated the search for non‐invasive tests to reduce the number of invasive procedures. One of
the most promising methods so far is coronary computed tomography angiography (CCTA). CCTA is a non‐invasive
anatomical imaging modality that allows to quantify the geometrical significance of a lesion and has a high diagnostic
accuracy when compared with invasive coronary angiography‐based diagnosis. A recent randomised trial suggested that
CCTA improves patient outcome compared with standard care,10 and guidelines currently suggest considering CCTA as
a first‐line test in all patients with suspected stable CAD.11 CCTA has shown to be very selective in terms of correctly
identifying CAD (FFR≤FFRthreshold), while its performance to exclude CAD (FFR>FFRthreshold) is not as satisfactory,
resulting in many false positive recommendations, ie, many patients undergo an invasive procedure for FFR measure-
ment that could have been avoided if a more selective non‐invasive method would have been used.12

In this scenario, CCTA‐derived FFR has emerged as a possible response to the need for reducing false positive CCTA
recommendations. Over the last decade, a significant number of methods for non‐invasive computation of FFR based on
CCTA have been proposed.13 Such methods aim at predicting FFR for a given patient by using non‐invasive information
only and have already shown potential to be used as a screening tool on top of CCTA assessment.14 These methods,
based on reproducing the fluid mechanics in coronary vessels, share some common general steps that must be followed
to deliver FFR predictions: (i) define the computational domain of coronary vessels; (ii) define a mathematical model for
fluid mechanics valid in the domain defined in (i); (iii) define boundary conditions; (iv) solve the mathematical model;
and (v) evaluate predicted FFR at desired locations. Although such steps can be found in any model‐based FFR
prediction method, the way in which each of these steps is performed varies greatly. In this paper, we address two
aspects of this pipeline. First, we consider steps (ii) and (iv), working on the improvement and validation of a
reduced‐order model for the coronary circulation that allows for fast and accurate FFR prediction. Then, we focus on
step (iii), investigating the impact of several methods for baseline coronary flow estimation and flow distribution
proposed so far in the literature on FFR prediction.

Step (ii) of the general modelling strategy defined above requires making a choice on the mathematical model to be
used for describing blood flow in coronary arteries. While in principle, many options are available, the most frequent
choices found in the literature are 3D incompressible Navier‐Stokes in rigid domains and 1D blood flow models in
deformable vessels or fully lumped‐parameter models. In general, 1D or lumped‐parameter models are called
reduced‐order models. Several reduced‐order models for FFR prediction have been proposed previously.15-19 However,
validation by comparison of predicted FFR with respect to results obtained by using more complex models was under-
taken only in.17-19 In Boileau et al,18 a virtual population constructed from a single patient was used, while in Blanco
et al,17 a population of 20 patients was considered. Here, we modify the method proposed in Fossan et al19 and validate
it on a set of 63 patients (105 FFR measurements). For each patient, we perform simulations using a 3D model for the
coronary vessels' domain and use those results as reference. To the best of our knowledge, such an extensive validation
of the capacity of a reduced‐order model to reproduce fluid mechanical aspects of model‐based FFR prediction has not
been performed so far.
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The definition of boundary conditions for model‐based FFR prediction is an unavoidable step. The sensitivity of pre-
dicted FFR to these boundary conditions was explored in previous studies19-21 and was shown to be extremely relevant.
In particular, Fossan et al19 and Morris et al21 showed that parameters that determine the hyperemic coronary flow have
the highest influence on predicted FFR, for realistic ranges of other parameters. Motivated by this fact, we consider two
aspects related to the definition of coronary flow, namely, baseline coronary flow and its distribution among the vessels
of the network. In fact, virtually all methods for FFR prediction proposed so far require a baseline flow to be imposed
and a criterion to distribute it among vessels in the network. Here, we have selected a set of representative methods for
the definition of baseline coronary flow from published works, as well as three alternative methods to distribute such flow
among coronary vessels, in order to assess the impact of these modelling choices on FFR prediction. Finally, we perform a
sensitivity analysis where we compare the influence of baseline coronary flow to other parameters that are known to be
important, namely, the stenosis geometry and the reduction in coronary peripheral resistance from baseline to hyperemic
conditions.

The rest of this paper is structured as follows. In Section 2, we describe the acquisition of patient‐specific data
(Section 2.1), a reduced‐order model for FFR prediction (Section 2.2), the 3D modelling framework used for validation
purposes (Section 2.3), the overall modelling strategy for FFR prediction (Section 2.4), several methods to determine
baseline coronary flow (Section 2.5) and its distribution among coronary vessels (Section 2.6), and the method by which
a sensitivity analysis of predicted FFR to relevant model parameters was performed (Section 2.7). Section 3 provides a
summary of main characteristics of patients involved in the study (Section 3.1), results on the validation of the reduced‐
order model (Section 3.2), and results on the impact of explored modelling strategies on FFR prediction (Section 3.3).
Finally, Section 4 includes a detailed analysis of reported results, as well as considerations on the study limitations
and the steps to be taken to (a) improve the reduced‐order model description to better capture the fluid mechanical
aspects of the problem under consideration and (b) reduce uncertainty in FFR predictions.

2 | METHODS

2.1 | Patients and data acquisition

2.1.1 | Recruitment

Patients were recruited as part of an ongoing clinical trial at St. Olavs hospital, Trondheim, Norway.22 Patients included
in this study had undergone CCTA because of chest pain and suspicion of stable CAD. Patients were enrolled with the
findings of at least one coronary stenosis at CCTA examination and were further referred to invasive coronary
angiography (ICA) with invasive FFR measurements. Exclusion criteria included nondiagnostic quality of the CCTA,
previous percutaneous coronary intervention or bypass surgery, contraindications to adenosine, age (75 years or older),
obesity (body mass index greater than 40), and hospitalisation due to unstable CAD after CCTA.

2.1.2 | Medical data acquisition

CCTA
CCTA was performed using 2×128 detector row scanners (Siemens dual source Definition Flash) and 256 detector row
CT scanners (Revolution CT, GE Healthcare, Waukesha, Wisconsin, US) with a standardised protocol.23 Left ventricle
mass (LVM) was quantified using a commercial software (Syngo.via, Siemens, Germany).

Ultrasound
Echocardiographic imaging was performed using a GE Vivid E95 scanner (GE Vingmed Ultrasound, Horten, Norway).
Cardiac output (CO) was calculated on the basis of the cross‐sectional area of the left ventricle outflow tract (measured
immediately proximal to the points of insertion of the aortic leaflets) and velocity time integral derived from PW
Doppler.

Fractional flow reserve
FFR was measured using Verrata Plus (Philips Volcano, San Diego, USA) pressure wires according to standard practice.
Intra‐coronary nitroglycerine (0.2 mg) was given to all patients before advancing the pressure wire into the coronary
arteries, and hyperemia was induced by continuous intravenous infusion of adenosine at a rate of at least 140μg/kg/
min. Pressure was measured over several cardiac cycles, and FFR measurements were taken during the nadir (lowest
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observed value). After measurement, the interventional cardiologist removed the pressure wire back to the equalisation
point at the tip of the guiding catheter to ensure that there was no drift. Invasive pressure tracings were recorded and
made available for further processing.

Clinical data
Standard non‐invasive diastolic/systolic pressure measurements were performed on both arms as part of clinical routine
before ICA using an automatic, digital blood pressure device, Welch Allyn ProBP 3400.

2.2 | Reduced‐order model

Here, we briefly describe the methodology presented in Fossan et al19 for the computation of FFR using a reduced‐order
model. FFR predictions obtained with the exact setting proposed in Fossan et al19 will be denoted as FFRRO* , while
predictions obtained using the improved version of the reduced‐order model introduced in this section will be denoted
as FFRRO* . This is valid throughout the rest of the paper unless otherwise specified.

2.2.1 | Vessels segmentation and computational domain meshing

Segmentation of coronary vessels is performed using the open‐source software ITK‐SNAP. 24 The output of ITK‐SNAP is
a labelled voxel volume identifying segmented vessels and a surface mesh of the segmented volume (in VTK format).
Coronary arteries are segmented until their presence is not distinguishable from surrounding tissue. With this, the
resulting average (±standard deviation) outlet radius of coronary arteries included in the computational domain is
0.9±0.23 mm. Surface mesh processing, addition of flow extensions, and 3D meshing are performed using the open‐
source library Vascular Modeling ToolKit (VMTK).25,26 The 3D volume meshes form the basis for both the reference
3D model and the reduced‐order model. For the latter, centerlines are extracted from 3D domains using a centerline
extraction algorithm available in VMTK.

2.2.2 | Domain definition

The resulting network of centerlines obtained by the processing steps briefly illustrated in Section 2.2.1 can be concep-
tually described as a directed graph G = (V, E), where

• V are the vertices of the graph, which in this application can represent junctions/bifurcations, a root node, and
terminal nodes of the network, hereafter called outlets.

• E is a set of ordered pairs of vertices, in this case representing vessels.

Graph G will have M edges (or vessels) and N vertices. vroot is the vertex at the root of the network, while

vjout; j ¼ 1; …; Nout, are outlets and vjb; j ¼ 0; …; Nb, are vertices representing coupling points among vessels, see
Figure 1. Vessel ej is described by a set of Kj nodes produced by the centerline extraction algorithm cited in Sec-

tion 2.2.1. Each node kjl; l ¼ 1; …; jKjj, is marked as belonging to a bifurcation region (Kj
b ∈ Kj), belonging to a ste-

nosis (Kj
s ∈ Kj), or belonging to a 1D domain (Kj

1D ∈ Kj). The masking of such regions is explained in detail in
Fossan et al.19

Here, we modify the domain definition reported in Fossan et al19 as follows:

• the spacing between nodes k is reduced from 0.5mm to 0.125mm;
• an additional criteria for masking stenotic regions on the basis of the gradient of the radius in the longitudinal direc-

tion is added. In Fossan et al,19 a detected stenosis was marked until the estimated stenosis degree (SD) was below
12%. Here, we require that SD > 12% ∨ jdr

dx
j < 0:05. In practice, even though the estimated stenosis degree is below

12%, we continue to mark the region as a stenosis if the location represents a compression
dr
dx

< 0:05 or an expansion

dr
dx

> 0:05.
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2.2.3 | Mathematical models

Let us consider a single vessel ej. In regions of ej labelled as 1D domain, ie, Kj
1D ∈ Kj, blood flow is modelled according

to a 1D steady state blood flow model, ie,

∂Q
∂x

¼ 0; (1a)

FIGURE 2 A, Vessels at a bifurcation

(graph vertex depicted as a hollow square)

with corresponding nodes (circles), nodes

masked as belonging to the bifurcation

region depicted as filled circles. B,

Bifurcation region, nodes are collapsed

into one node per vessel (filled circles), at

which vessels are coupled using (2b). C,

Single vessel with corresponding nodes

(circles), nodes masked as belonging to a

stenotic region are depicted as filled

circles. D, Vessel is split into two vessels,

stenosis region nodes collapsed into one

node per vessel (filled circles), at which

the resulting vessels are coupled using (2b)

and (3)

FIGURE 1 Centerline extracted from

one subject of the study population. Graph

G structure is shown with white rectangles

representing vertices. In particular, root,

outlet vertices, and edges are evidenced.

Edges' regions marked as bifurcation areas

are shown in red, stenotic areas are shown

in green, and 1D domains are shown in

blue. The original 3D segmentation from

which centerlines are extracted is shown

as a transparent surface
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∂
∂x

Q2

A

� �
¼ −

A
ρ
∂P
∂x

þ −2 ζ þ 2ð Þμπ
ρ

Q
A
; (1b)

where A is the cross‐sectional area of the vessel, Q is the blood flow rate, and P is the blood pressure. Moreover,
ζ=4.31,19 ρ=1.05g/cm3 is the blood density, and μ=0.035dyne/cm2s is the blood viscosity. The cross‐sectional area A
is assumed constant in time and equal to the area obtained from the segmentation of medical images. Then, the prob-
lem unknowns are pressure P and flow rate Q.

Regions masked as bifurcations and stenoses are not modelled using a continuous model. Nodes belonging to such
regions are collapsed into a single point, and coupling conditions apply. See Figure 2 for a graphical illustration of this
aspect. Coupling for both connection types (bifurcations and stenoses) is performed by enforcing the following relations
at the coupling point

∑
T

i¼1
Qi ¼ 0; (2a)

P1 þ λ
ρ
2
U2

1 ¼ Pi þ λ
ρ
2
U2

i þ ΔPi i ¼ 2; …; T; (2b)

where T is the number of vessels sharing a vertex with the bifurcation/stenosis. For stenoses, we have that T=2,
while in the case of bifurcations, we have T≥ 2. ΔP is an additional pressure loss, and λ is a coefficient that can assume
values between zero and one. At bifurcations, ΔP is set to zero and λ is set to one, so that Equation (2a) describes
continuity of total pressure. At coupling points representing stenoses, we set λ=0, and ΔP is computed as proposed in
Seeley and Young,27 namely

ΔP ¼ Kvμ
A0D0

Qþ Ktρ
2A2

0

A0

As
−1

� �2

QjQj; (3)

where A0 and As refer to cross‐sectional areas of the normal and stenotic segments, respectively. Similarly, D0 and Ds

represent the normal and stenotic diameters. Furthermore, Kv and Kt are empirical coefficients, with

Kv ¼ 32 0:83Ls þ 1:64Dsð Þ· A0=Asð Þ2=D0, Kt=1.52,
27 whereas Ls is the length of the stenosis.

2.2.4 | Boundary conditions

In this work, we consider two alternative sets of outlet boundary conditions: prescribed flow rate at outlets or resistive
elements coupled to outlets. See Section 2.4 for motivation on the two different setups introduced here.

Prescribed flow rates at outlets

Pressure is prescribed at vroot, namely Proot ¼ P̂root, where P̂root is the prescribed pressure. Then, we set

Qj
out ¼ Q̂j; j ¼ 1; …; Nout, where Q̂j; j ¼ 1; …; Nout, are the flows to be prescribed deriving from methods described

in Sections 2.5 and 2.6. Defining flow rate at outlets implies that flow rate over the entire network is fixed. Then, the
only remaining unknown is pressure along 1D domains, and pressure drops over stenotic regions. Such pressure is
obtained integrating (1) for Q given along the 1D domains and evaluating coupling relations (2b) and (3) where appro-
priate. A reasonable strategy is to start at vroot and traverse the entire tree, but other choices are possible.

Resistive elements coupled to outlets

As in the previous case, pressure is prescribed at vroot, namely Proot ¼ P̂root. Then, we consider resistive elements coupled

to outlets with resistances Rj
out; j ¼ 1; …; Nout. In this case, flow rate is unknown over the entire network, and a non-

linear algebraic system has to be solved to find the flow rates at outlets Qj
out; j ¼ 1; …; Nout, which solve (1), (2b), (3),

and Proot − P̂root ¼ 0. More details on the numerical treatment of the modelling setup strategies presented here are given
in Fossan et al.19
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2.3 | 3D modelling

3D simulations are used to validate the reduced‐order model proposed in Fossan et al19 and improved in this work.
These simulations are performed considering segmented coronary trees as rigid domains with a prescribed pressure
as inlet boundary condition and either prescribed flows (via prescribed parabolic velocity profile) or lumped‐parameter
models attached to each network outlet, according to the modelling pipeline described in Section 2.4. Furthermore, the
flow is assumed laminar, and blood is modelled as an incompressible Newtonian fluid. The open‐source library
CBCFLOW,28 based on FEniCS29 is used to solve the resulting mathematical model. The incompressible Navier‐Stokes
equations are solved using the incremental pressure correction scheme, described in Simo and Armero.30 Tetrahedral
elements compose the computational mesh where the velocity field is approximated using piecewise‐quadratic polyno-
mials, while linear polynomials are used for pressure. The solver implementation follows very closely the one reported
in Mortensen and Valen‐Sendstad.31 3D meshes were constructed using the open‐source library VMTK.25,26 The
meshing refinement level was determined by a meshing algorithm parameter called edge‐length factor lf, which was
set to lf=0.21 for all simulations. A mesh independence study showed that such discretisation provides mesh‐
independent FFR predictions for a set of four patient‐specific geometries. A full description of the underlying mathe-
matical models and their numerical treatment is provided in Fossan et al19 and references cited therein.

2.4 | Overall modelling strategy

FFR is normally measured at one or more points in the coronary tree. In the current computational context, we simulate
a hyperemic state for the entire coronary tree. Therefore, we refer to a hyperemic state as the condition under which
virtual FFR measurements are performed. Assuming that a network of coronary branches for a given patient with
related parameters is available (see Section 2.2), we proceed as follows in order to obtain a hyperemic state:

1. define total baseline coronary flow by one of the methods described in Section 2.5: q;
2. distribute flows among the network's Nout outlets according to one of the methods described in Section 2.6: Qout,l,

with l=1,…,Nout;
3. perform a simulation with prescribed inlet pressure Proot=Pproximal and prescribed outlet flows defined in previous

step to find Pbln
out;l; with l ¼ 1; …; Nout;

4. compute resistances at outlets as

Rbln
out;l ¼

Pbln
out;l − Pv

Qbln
out;l

; with l ¼ 1; …; Nout; (4)

where Pbln
out;l is the pressure at the l-th outlet resulting from the simulation performed in previous step and Pv is a

reference venous pressure, which is set to Pv=5mmHg throughout this work;
5. perform a simulation with prescribed inlet pressure Proot=Pproximal and prescribed resistances at outlets. Such resis-

tances are computed as

Rhyp
out;l ¼

Rbln
out;l

TCRI
; with l ¼ 1; …; Nout ; (5)

where TCRI is the so‐called total coronary resistance index, ie, the factor by which peripheral coronary resistance drops
from its value at baseline conditions to its value in hyperemia. In this work we use TCRI=4, unless otherwise stated.4

TABLE 1 Parameters needed to run a simulation using pipeline described in Section 2.4

Parameter/Data Symbol Source/Equation/Table

Coronary tree centerlines with radii ‐ post‐processed CCTA‐derived segmentation

Pressure at inlet Pproximal Clinical non‐invasive measurement

Baseline flow q Table 3

Branch split ‐ Table 4 or coupled branches (see Section 2.6)

Total coronary resistance index TCRI TCRI=4, as in Wilson et al4

aAbbreviation: CCTA, coronary computed tomography angiography.
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Simulation results from point 5 of the previous list represent the hyperemic state from which FFR can be evaluated at
any point of the network as

FFRj
RO ¼ Pj

Pproximal
; (6)

where Pj is the predicted pressure at the jth node of the network. We remind the reader about the fact that if predictions
are obtained with the setting proposed in Fossan et al,19 ie, without the modifications introduced in Section 2.2.2, then
those predictions will be denoted as FFRRO* . Table 1 summarises necessary data and parameters for prediction of FFR
with the reduced order model.

2.5 | Methods for baseline coronary flow estimation

In this work, we explore a number of methods to estimate baseline coronary flow, q. In selecting the methods to be
used, we sought to include methods that use different types of data. In particular, we included methods that rely on
CO estimation, as well as methods that use LVM and a method based on population studies. A description of such
methods follows.

2.5.1 | CO‐based methods for baseline coronary flow estimation

We consider two alternative methods to determine CO. The first method consists of simply using the CO derived from
patient‐specific ultrasound (US) measurements acquired as explained in Section 2.1.2. CO derived from US measure-
ments will be called COUS hereafter. The second method uses a formula to estimate stroke volume from patient‐specific
parameters.32 Such formula, originally proposed in de Simone et al,33 is given as

SV ¼ PP* × ð0:013 ×WÞ−ð0:007 × YÞ−ð0:004 × HRÞ þ 1:307½ � ; (7)

where W is weight in kilograms, Y is age in years, and HR is heart rate in beats per minute. Moreover, PP* is

PP* ¼ ð0:49 × PPÞ þ ð0:3 × YÞ þ 7:11 ; (8)

where PP is pulse pressure, PP=SBP−DBP, with SBP and DBP being systolic and diastolic blood pressure (in mmHg),
respectively. Then, CO is computed as

CODeSimone ¼ HR × SV : (9)

Once CO is estimated by either of the two methods, we compute baseline coronary flow as

qXGuyton ¼ γCOX ; (10)

where γ=0.045 is the fraction of CO that flows into the coronary branches,34 and X={US,DeSimone} are the two consid-
ered CO estimation methods.

2.5.2 | LVM‐based methods for baseline coronary flow estimation

Alternatively to the use of CO to determine total baseline coronary flow q, several investigators have used LVM to
perform such estimate. Here, we select two methods and propose modifications to them. In Kishi et al,35 q is com-
puted as

qKishi ¼ β × TMM ; (11)

where β=0.8mL/min/g is a reference value for myocardial tissue perfusion,36 and TMM stands for total myocardial
mass, computed as
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TMM ¼ 3
2
× LVM : (12)

It is worth noting that no other patient‐specific information than LVM is used. A method that accounts for additional
patient‐specific information is the one used for FFR prediction in Sharma et al.37 In this case, the observed association
between the product SBP×HR is considered in the computation of baseline flow, which reads

qSharma ¼ ð0:08 × ð0:7 × HR × SBP × 0:001 − 0:4ÞÞ × TMM ; (13)

where TMM is computed with (12). Since, as it will be shown later in Section 3.1, Table 2, baseline coronary flows com-
puted using (11) and (13) are very low compared with reference values, we propose to modify both methods. The reason
for the underestimation of baseline coronary flow in these cases is related to the rather low TMM derived from the
hypothesis stated in (12). In both modified methods, we use

TMMMolina ¼ 2:4 × LVM : (14)

The constant value 2.4 was determined by considering that the ratio of reference TMM reported in Molina and
DiMaio38,39 over LVM for patients included in this study (2.39 (0.34) and 2.34 (0.42) for men and women, respectively).
Moreover, in the case of qSharma, the constant 0.08 was replaced by 0.14 in order to force average flow over the popula-
tion to be in accordance with reference values.40 See Table 2 for details. Modified baseline flow estimates are denoted asbqKishi and bqSharma for qKishi and qSharma, respectively.

2.5.3 | Population‐based methods for baseline flow estimation

Here, we simply specify flows to left and right coronary branches as specified in Sakamoto et al. 40 Average flows are
differentiated according to the dominance of the coronary vasculature. Table 2 summarises the different values for total
coronary flow, as well as for left and right branches.

Table 3 summarises the different methods used to determine coronary flow and how they are computed.

TABLE 2 Baseline coronary flows from Sakamoto et al40

Branch Symbol Flow, mL/min (Right‐dominant) Flow, mL/min (Left‐dominant)

Left branch qSakamoto
LB 156.58 209.27

Right branch qSakamotoRB 113.42 57.73

Total qSakamoto 270.00 267.00

TABLE 3 Summary of baseline coronary flow estimation methods

Method Data Equations

qUSGuyton COUS (10)

qDeSimone
Guyton W, Y, HR, SBP, DBP (10)

qKishi LVM (11), (12)

q̂Kishi LVM (11), (14)

qSharma LVM, HR, SBP (13), (12)

q̂Sharma LVM, HR, SBP (13)‐mod, (14)

qSakamoto Table 2 ‐

Note. All data used was acquired non‐invasively in ambulatory conditions unless otherwise stated.

Abbreviation: CO, cardiac output; DBP, diastolic blood pressure; HR, heart rate; LVM, left ventricle mass; SBP, systolic blood pressure; US, ultrasound; W,
weight (in kilograms); Y, age (in years).
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2.6 | Flow distribution

There is a variety of methods used in the literature to distribute baseline coronary flow among the coronary vessels. A
major difference is given by the fact that some practitioners model a single branch (left or right), while others consider
both branches simultaneously. In order to account for this aspect, we have applied the methods described below in two
different settings, namely, applying the methods on single branches or on both coupled branches.

2.6.1 | Distal Murray

Murray's law41 is the most commonly used method to distribute coronary flow; see previous studies37,42 for example. It
expresses a proportionality between flow and vessel diameter

Q ∝ dξ ; (15)

with ξ=3 from theoretical considerations on minimum work. Distal Murray (DM) flow distribution implies that for a
given network with Nout outlets, flow is distributed among all outlets using (15) and outlets' diameters.

2.6.2 | Proximal Murray

In this case, one traverses a given network from its root, and flow is split at each bifurcation applying (15) among
daughter vessels. The diameter used here was taken as the average vessel diameter, computed over vessel nodes that
were not marked as belonging to stenoses or bifurcation areas. See Section 2.2 for an explanation and further references
on how these nodes are marked. This method was used in previous studies,35,43 in the context of FFR prediction.

2.6.3 | Transluminal Attenuation Gradient

Here, we implement the method proposed in Kishi et al,35 where authors hypothesise an inverse relation between flow
and transluminal attenuation gradient (TAG), ie, Q∝−1/TAG. The interesting feature of this approach is that it uses
information on flow distribution properties of a given patient by directly looking into how contrast is advected in the
coronary tree during CCTA acquisition. TAG is essentially the gradient of voxel intensities, quantified as Hounsfield
Units (HU) in the CCTA image averaged along a given vessel. TAG is computed for each terminal point of the vessel
network by computing HU along centerline nodes and fitting a first‐order polynomial to the resulting data points
(arc‐length versus HU: HU(x)=HU0+TAG·x, with x the centerline arc‐length). Intensities along the path are computed
by averaging CCTA voxel intensities around each centerline node. Candidate voxels are those in a volume of 5×5×5
voxels centred at a given centerline node. In order to be included, a candidate voxel has to fall within the segmented
vessel lumen and has to have a HU value that is below a threshold in order to exclude calcifications and artefacts. Such
threshold is set equal to the average plus two standard deviations of HU values for all voxels contained in the segmented
lumen volume. For a detailed definition of TAG and its computation in coronary trees; see Kishi et al35 and references
cited therein. TAG is computed for each patient considered in this study using CCTA images, segmented vessels lumen
volume, and extracted centerlines.

2.6.4 | Branch flow split for single branch distribution

In the case in which a single coronary branch is considered for simulation, a further assumption is necessary since we
depart from total baseline coronary flow, and a branch‐specific flow is needed. Two strategies are followed. One strategy
consists of splitting flow between left and right branches as observed in Sakamoto et al40 and reported in Table 4. The
second one regards simply imposing average coronary flows to left and right branches, specified in Table 2.

TABLE 4 Baseline coronary flow splits derived from Sakamoto et al40

Branch Right‐Dominant Percentage of Total Flow Left‐Dominant Percentage of Total Flow

Left branch 58.00 78.38

Right branch 42.00 21.62
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Having defined the three flow distribution strategies that will be explored in this work, we can define a set of simu-
lation settings that will be used for each of the baseline flow estimation methods described in Section 2.5 and
summarised in Table 3. In fact, for each one of those baseline flows, we have YZ flow splits, with Y={PM,DM,TAG}
and Z={S,C}. S and C correspond to cases where flow distribution is applied to single and coupled branches,
respectively. Table 5, together with Table 3, provides the reader with a complete overview of all modelling assumption
combinations used in this study, so that the equations and parameters used for a specific simulation setup can be easily
retrieved.

2.7 | Sensitivity analysis

We conduct uncertainty quantification and sensitivity analysis (UQ&SA) to rank the influence of uncertain input
parameters on FFR prediction. In Fossan et al,19 a wide range of parameters were analysed in terms of UQ&SA; how-
ever, the most influential parameters were those related to coronary flow, TCRI, and minimum stenotic radius. Other
input parameters such as Pproximal, Murray coefficient, and rheological parameters (ρ, μ) were less influential. On the
basis of these considerations, we perform a sensitivity analysis on the uncertain input parameters q, TCRI, and SD, with
the uncertainty in SD affecting the minimum radius. q was modelled as a (truncated at ±3 std) normal distribution with
a mean and standard deviation deriving from the per patient mean and standard deviation obtained with four of the
patient‐specific baseline coronary flow estimates studied in this work, qUS

Guyton, q
DeSimone
Guyton , q̂ Kishi, and q̂ Sharma. We model

the hyperemic factor TCRI as a gamma distribution with shape parameter 3, scale factor 0.75, and shifted to 1.19 For our
dataset of 105 FFR measurements, clinically relevant stenoses were quantified in terms of SD using QCA and QCACT,
where QCACT denotes QCA evaluated on the basis of segmented geometries. The standard deviation of QCA−QCACT

was 20% SD. To account for the uncertainty in stenosis geometry, we introduce a global parameter ΔSD, to be applied
to all stenotic regions of a network such that the stenosis degree is given by SD=SDsegmented+ΔSD, where SDsegmented is
the stenosis degree obtained from the original segmentation. Since we adopt a conservative approach where all detected
stenoses are included in a global parameter, we model ΔSD as a normal distribution with a mean of 0 and with a stan-
dard deviation of 15%.

TABLE 5 Summary of baseline coronary flow estimation and split methods

Branch Treatment Baseline Flow Branch Split Flow Distribution

Single branch qUSGuyton Table 4 DM/PM/TAG

qDeSimone
Guyton Table 4 DM/PM/TAG

�qUS
Guyton

Table 4 DM/PM/TAG

qKishi Table 4 DM/PM/TAG

q̂Kishi Table 4 DM/PM/TAG

qSharma Table 4 DM/PM/TAG

q̂Sharma Table 4 DM/PM/TAG

qSakamoto Table 2, first and second rows DM/PM/TAG

Coupled branches qUSGuyton ‐ DM/PM/TAG

qDeSimone
Guyton ‐ DM/PM/TAG

�qUS
Guyton

‐ DM/PM/TAG

qKishi ‐ DM/PM/TAG

q̂Kishi ‐ DM/PM/TAG

qSharma ‐ DM/PM/TAG

q̂Sharma ‐ DM/PM/TAG

qSakamoto Table 2, third row DM/PM/TAG

Abbreviation: DM, distal Murray; PM, proximal Murray; TAG, transluminal attenuation gradient.
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Sobol sensitivity indices, first‐order (Si) and total (ST,i), are widely employed44 and defined as

Si ¼ V E Y jZi½ �½ �
V Y½ � ; (16a)

ST;i ¼ 1 −
V E Y jZ¬i½ �½ �

V Y½ � : (16b)

Here, E Y jZ¬i½ � represents the expected value of the output Y for a fixed value of the uncertain input, Zi, and V X½ � is the
variance of some variable, X. Z is a vector that represents the uncertain input variables, Z ¼ q; TCRI; SD½ �ð Þ, and Z¬i

contains all elements of Z except Zi. SA results (which are obtained on a per patient basis) are summarised by averaging
the first‐order and total Sobol sensitivity indices over the population. Moreover, we compute weighted first‐order
sensitivity indices

ASi ¼ ∑n
k¼1S

k
i V Yk½ �

∑n
k¼1V Yk½ � ; (17)

and total sensitivity indices

TABLE 6 Study population characteristics. If not specified, presented results are reported as “mean (standard deviation)”

Characteristic Units Mean(std)

Generic data

No. of patients ‐ 63

No. of male patients Datum (percentage) 35 (55.56)

Age y 59.87 (7.77)

Height cm 173.62 (10.03)

Weight kg 85.28 (15.02)

Body mass index kg/cm2 28.17 (3.69)

MAP mmHg 103.48 (10.70)

Cardiac output L per min 5.07 (0.97)

CAD risk factor Datum (percentage)

Diabetes 8 (12.70)

Hypertension 33 (52.38)

Dislipidemia 18 (28.57)

Smoking 11 (17.46)

Previous CAD events 0 (0)

Invasive FFR measurements

FFR ‐ 0.81 (0.14)

FFR per vessel prevalence Datum (percentage) 33/105 (31.43)

FFR per patient prevalence Datum (percentage) 25/63 (39.68)

Lesions location

LAD artery Datum (percentage) 45 (42.86)

RCA Datum (percentage) 22 (20.95)

LCX artery Datum (percentage) 13 (12.38)

Diagonals Datum (percentage) 12 (11.43)

Marginals Datum (percentage) 8 (7.62)

RPDA Datum (percentage) 4 (3.81)

aAbbreviation: CAD, coronary artery disease; FFR, fractional flow reserve; LAD, left anterior descending; LCX, left circumflex; MAP, mean arterial pressure;
RCA, right coronary artery; RPDA, right posterior descending artery.
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AST;i ¼
∑n

k¼1S
k
T;iV Yk½ �

∑n
k¼1V Yk½ � ; (18)

where Sik and SkT;i are the sensitivities due to input i for FFR‐prediction k, and V Yk½ � is the variance of FFR‐prediction

k.19,45

Measures of uncertainty and sensitivity are estimated by the Monte Carlo method as described by Saltelli,46 and the
accuracy of UQ&SA results are assessed by evaluating the standard deviation of the estimates from 10 bootstrapped
samples47 until the standard deviation is below 0.033 (ie, 99% confident that obtained value is within ±0.1.).

TABLE 7 LVM and TMM quantification from CCTA. Reported values are average (standard deviation)

Sex LVM, g Reference LVM, g48 TMM (12) TMM (14) Reference TMM38,39

Male 141 (21) 116 (20) 211 (32) 338 (51) 331 (56)

Female 108 (19) 85 (14) 162 (28) 259 (45) 245 (52)

aAbbreviation: CCTA, coronary computed tomography angiography; LVM, left ventricle mass; TMM, total myocardial mass.

TABLE 8 Comparison of FFRRO vs FFR3D and FFRRO* vs FFR3D for selected 1D settings. Settings are single branch treatment, qUSGuyton
baseline flow, and DM flow distribution

Terminal RO Model Version a b r FFRX−FFR3D Acc. Sen. Spe. PPV NPV

Resistive X=RO 1.06 −0.04 0.98 −0.01 (0.03) 97.14 95.65 97.56 91.67 98.77

X=RO* 0.89 0.12 0.96 −0.03 (0.04) 96.19 82.61 100 100 95.35

3D flows X=RO 1.05 −0.03 0.94 −0.013 (0.056) 96.19 95.65 96.34 88.00 98.75

X=RO* 0.77 0.24 0.90 −0.043 (0.061) 92.38 65.22 100.00 100.00 91.11

Note. a and b are coefficients for linear fitting: FFRX=a FFR3D+b, while r is Pearson correlation coefficient.

Abbreviation: DM, distal Murray; FFR, fractional flow reserve; RO, reduced‐order; US, ultrasound.

FIGURE 3 Scatter plot and Bland‐

Altman of FFRRO vs FFR3D (top row) and

FFRRO* vs FFR3D (bottom row). The rest of

the settings are single branch treatment,

qUS
Guyton baseline flow, and DM flow

distribution. DM, distal Murray; FFR,

fractional flow reserve; RO, reduced‐order;

US, ultrasound
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3 | RESULTS

3.1 | Patient population and invasive measurements characteristics

A total of 63 patients that underwent invasive angiography and FFR measurements after clinical and CCTA examina-
tions indicated stable CAD were recruited. From these patients, a total of 105 FFR measurements were collected. FFR
measurements had a mean of 0.81 and a standard deviation of 0.14, with a per vessel positive FFR prevalence of 31.43%
and a per patient positive FFR prevalence of 39.68% for a cut‐off value of FFR≤ 0.8. See Table 6 for a summary of
population characteristics.

Table 7 shows a comparison of LVM for the study population versus reference values taken from a large CT study for
healthy young subjects.48

FIGURE 4 Scatter plot and Bland‐

Altman of FFRRO vs FFR3D (top row) and

FFRRO* vs FFR3D (bottom row). The rest of

the settings are single branch treatment,

qUSGuyton baseline flow, and DM flow

distribution. FFRRO and FFRRO* were

obtained by prescribing the hyperemic

outlet flows from the 3D solution instead

of running the FFR‐pipeline described in

Section 2.4. DM, distal Murray; FFR,

fractional flow reserve; RO, reduced‐order;

US, ultrasound

TABLE 9 Comparison of FFRA vs FFRB for selected cases where FFR3D was available. Other settings common to all simulations are single

branch treatment and qUS
Guyton baseline flow

Comparison Type
Flow
Distribution a b r FFRA−FFRB Acc. Sen. Spe. PPV NPV

RO vs 3D DM 1.06 −0.04 0.98 −0.01 (0.03) 97.14 95.65 97.56 91.67 98.77
PM 1.06 −0.04 0.98 −0.01 (0.03) 95.24 84.62 98.73 95.65 95.12
TAG 1.08 −0.05 0.98 −0.01 (0.04) 94.29 80.00 100.00 100.00 92.59

RO vs invasive
measurement

DM 0.64 0.34 0.58 −0.05 (0.13) 81.90 57.58 93.06 79.17 82.72
PM 0.63 0.34 0.57 −0.04 (0.14) 80.95 54.55 93.06 78.26 81.71
TAG 0.77 0.21 0.62 −0.03 (0.14) 83.81 60.61 94.44 83.33 83.95

3D vs invasive
measurement

DM 0.62 0.35 0.60 −0.04 (0.12) 80.95 54.55 93.06 78.26 81.71
PM 0.64 0.33 0.62 −0.03 (0.12) 81.90 60.61 91.67 76.92 83.54
TAG 0.75 0.22 0.66 −0.01 (0.12) 83.81 69.70 90.28 76.67 86.67

Note. a and b are coefficients for linear fitting: FFRA=a FFRB+b, while r is Pearson correlation coefficient.

Abbreviation: DM, distalMurray; FFR, fractional flow reserve; PM, proximalMurray; RO, reduced‐order; TAG, transluminal attenuation gradient; US, ultrasound.
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3.2 | Validation of reduced‐order model versus 3D

Figure 3 shows scatter plots and Bland‐Altman plots for a comparison of FFR predicted by 3D and reduced‐order
models, while a numerical characterisation of the comparison is given in Table 8. The modelling setup used to obtain
such results was described in Section 2.4, while the particular model parameter definition used included single branch
treatment, qUS

Guyton baseline coronary flow, and DM flow distribution. Results are shown for the domain definition setup

described in Fossan et al19 and the modified version proposed here. Figure 4 and Table 8 show results for FFR predic-
tions obtained with current method and the one originally proposed in Fossan et al19 for the case in which the hyper-
emic simulation is performed replacing resistive elements at outlets with the flows extracted from 3D simulations.

Table 9 reports indexes on the agreement of predicted FFR by the reduced‐order model with respect to results
obtained using 3D simulations, as well as comparisons of reduced‐order model predicted FFR and 3D model predicted
FFR versus invasive measurements, for the three flow distribution strategies considered in this work.

3.3 | Baseline coronary flow and FFR prediction by different strategies

Table 10 shows resulting baseline coronary flows and perfusion indexes for strategies proposed in Section 2.5.
Table 11 shows accuracy indexes for predicted FFR with respect to invasive FFR for all possible combinations of

baseline flow estimation and flow distribution strategies. Only results using qKishi and qSharma are not reported, since
baseline flows obtained with these two methods resulted in values well below physiological ranges with 151±32mL/
min and 93±27mL/min for qKishi and qSharma, respectively (see Table 10). Moreover, Table 12 shows results for coupled

branches treatment and �qUS
Guyton baseline flow on a per vessel basis, differentiating results among (major branches

departing from) left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA).

3.4 | UQ and SA

Figure 5 shows results from the sensitivity analysis described in Section 2.7 in terms of the averaged and uncertainty
weighted (see (17) and (18)) sensitivity indices. In the top panel, we have summarised the sensitivity indices when all
105 cases are considered, whereas in the bottom panel, only cases (N=37) where average predicted FFR is
0.7<FFRRO<0.9 are considered.

4 | DISCUSSION

4.1 | Patient population and derived measurements

The study population is considered representative for patients with suspected CAD being referred for CCTA.
Since two of the methods to determine baseline coronary flow introduced in Section 2.5 depend on TMM, it is impor-

tant to discuss results presented in Table 7. We observe that average LVM values for males and females are normally
larger than the ones reported as reference values for healthy subjects in Fuchs et al.48 The higher‐than‐reference LVM
values observed for the population under study are supported by reported left ventricle hypertrophy in patients with sta-
ble treated chest angina49 and by the fact that elevated LVM is a recognised marker for cardiovascular risk.50 Moreover,
TMM values obtained using relation (12) are well below reference values, while usage of relation (14) produces TMM
estimates slightly above TMM reference values, in line with what is observed for LVM values. This apparent underesti-
mation of TMM by relation (12) will have an impact in flow computations, as we will discuss later in Section 4.3.

TABLE 10 Comparison of total baseline coronary flow, q, and coronary perfusion assuming TMM is 1.5 or 2.4 times LVM

qUS
Guyton qDeSimone

Guyton �qUS
Guyton qSakamoto qKishi q̂Kishi qSharma q̂Sharma

q, mL/min 227±42 278±53 229±0 270±1 151±32 241±52 93±27 261±77

q/(1.5×LVM), mL/g/min 1.2±0.3 1.5±0.5 1.3±0.3 1.5±0.3 0.8±0.0 1.3±0.0 0.5±0.1 1.4±0.3

q/(2.4×LVM), mL/g/min 0.8±0.2 1.0±0.3 0.8±0.2 0.9±0.2 0.5±0.0 0.8±0.0 0.3±0.1 0.9±0.2

Note. Reported values are averages (standard deviation) for all 63 patients.

Abbreviation: LVM, left ventricle mass; TMM, total myocardial mass.
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TABLE 11 Comparison of FFRRO vs FFRm for all cases with exception of those obtained using qKishi and qSharma; see text for motivation

Branch Baseline Flow
Treatment Flow Distribution a b r FFRRO−FFRm Acc. Sen. Spe. PPV NPV

Single qUSGuyton DM 0.64 0.34 0.58 −0.05 (0.13) 81.90 57.58 93.06 79.17 82.72

PM 0.63 0.34 0.57 −0.04 (0.14) 80.95 54.55 93.06 78.26 81.71

TAG 0.77 0.21 0.62 −0.03 (0.14) 83.81 60.61 94.44 83.33 83.95

qDeSimone
Guyton DM 0.72 0.25 0.57 −0.02 (0.15) 81.90 63.64 90.28 75.00 84.42

PM 0.71 0.25 0.57 −0.02 (0.15) 79.05 57.58 88.89 70.37 82.05

TAG 0.87 0.11 0.61 0.00 (0.15) 82.86 69.70 88.89 74.19 86.49

�qUS
Guyton

DM 0.66 0.32 0.57 −0.05 (0.14) 81.90 57.58 93.06 79.17 82.72

PM 0.65 0.33 0.56 −0.04 (0.14) 80.95 57.58 91.67 76.00 82.50

TAG 0.79 0.19 0.61 −0.02 (0.14) 86.67 69.70 94.44 85.19 87.18

qSakamoto DM 0.75 0.23 0.58 −0.03 (0.15) 84.76 69.70 91.67 79.31 86.84

PM 0.73 0.24 0.58 −0.02 (0.15) 82.86 69.70 88.89 74.19 86.49

TAG 0.88 0.10 0.62 0.00 (0.15) 84.76 72.73 90.28 77.42 87.84

q̂Kishi DM 0.64 0.33 0.57 −0.04 (0.14) 83.81 63.64 93.06 80.77 84.81

PM 0.63 0.34 0.55 −0.04 (0.14) 83.81 63.64 93.06 80.77 84.81

TAG 0.77 0.20 0.60 −0.02 (0.14) 85.71 66.67 94.44 84.62 86.08

q̂Sharma DM 0.67 0.31 0.56 −0.04 (0.14) 81.90 60.61 91.67 76.92 83.54

PM 0.65 0.32 0.56 −0.03 (0.14) 82.86 60.61 93.06 80.00 83.75

TAG 0.80 0.17 0.60 −0.01 (0.15) 83.81 60.61 94.44 83.33 83.95

Coupled qUSGuyton DM 0.67 0.31 0.55 −0.04 (0.15) 80.00 54.55 91.67 75.00 81.48

PM 0.63 0.34 0.53 −0.04 (0.15) 78.10 48.48 91.67 72.73 79.52

TAG 0.87 0.11 0.61 −0.01 (0.16) 86.67 78.79 90.28 78.79 90.28

qDeSimone
Guyton DM 0.76 0.22 0.54 −0.02 (0.17) 82.86 66.67 90.28 75.86 85.53

PM 0.70 0.26 0.52 −0.01 (0.16) 81.90 63.64 90.28 75.00 84.42

TAG 0.95 0.02 0.61 0.02 (0.17) 85.71 78.79 88.89 76.47 90.14

�qUS
Guyton

DM 0.70 0.29 0.54 −0.04 (0.15) 80.95 57.58 91.67 76.00 82.50

PM 0.65 0.32 0.53 −0.04 (0.15) 77.14 42.42 93.06 73.68 77.91

TAG 0.91 0.08 0.61 −0.00 (0.16) 88.57 78.79 93.06 83.87 90.54

qSakamoto DM 0.78 0.20 0.55 −0.02 (0.16) 82.86 66.67 90.28 75.86 85.53

PM 0.73 0.24 0.54 −0.01 (0.16) 80.95 60.61 90.28 74.07 83.33

TAG 0.98 0.00 0.63 0.02 (0.17) 83.81 78.79 86.11 72.22 89.86

q̂Kishi DM 0.68 0.30 0.55 −0.04 (0.15) 82.86 63.64 91.67 77.78 84.62

PM 0.63 0.34 0.51 −0.03 (0.15) 81.90 57.58 93.06 79.17 82.72

TAG 0.88 0.10 0.60 −0.00 (0.16) 87.62 78.79 91.67 81.25 90.41

q̂Sharma DM 0.70 0.28 0.54 −0.03 (0.15) 82.86 63.64 91.67 77.78 84.62

PM 0.64 0.32 0.51 −0.03 (0.16) 79.05 54.55 90.28 72.00 81.25

TAG 0.88 0.09 0.59 0.00 (0.16) 87.62 78.79 91.67 81.25 90.41

Note. For each column representing different accuracy measures, we have highlighted the best (green), second best (blue), and third best (red) measures. a and b

are coefficients for linear fitting: FFRRO=a FFRm+b, while r is Pearson correlation coefficient.

Abbreviation: DM, distal Murray; FFR, fractional flow reserve; PM, proximal Murray; TAG, transluminal attenuation gradient.
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4.2 | Validation of reduced‐order model

Validation of the reduced‐order model using a 3D model as reference is significantly more extensive than previously
published results. In Fossan et al,19 an earlier version of the reduced‐order model described here was validated on a
population of 13 patients and 23 FFR measurements for a single flow configuration. Moreover, in Blanco et al,17 a
population of 20 patients and 32 FFR measurements for a single flow configuration was considered. Here, we consider
63 patients, 105 FFR measurements, and three different flow configurations.

Results depicted in Figure 3 show that the agreement between predicted FFR values by both models is satisfactory, as
confirmed by results reported in Table 8. It is worth noting that the presented results allow to make a two‐fold assess-
ment of the reduced‐order model results. On one hand, while using resistive elements at terminals, we can see how the
entire modelling pipeline described in Section 2.4 is affected by using a simpler and computationally cheaper model
with respect to using the 3D model. On the other hand, by imposing terminal flows from the results obtained using

TABLE 12 Comparison of FFRRO vs FFRm for different coronary segments. The rest of the settings are: coupled branches treatment and

�qUS
Guyton baseline flow

Coronary
segments

Flow
Distribution a b r FFRRO−FFRm Acc. Sen. Spe. PPV NPV

All DM 0.70 0.29 0.54 −0.04 (0.15) 80.95 57.58 91.67 76.00 82.50
PM 0.65 0.32 0.53 −0.04 (0.15) 77.14 42.42 93.06 73.68 77.91
TAG 0.91 0.08 0.61 −0.00 (0.16) 88.57 78.79 93.06 83.87 90.54

LAD DM 0.72 0.29 0.56 −0.06 (0.15) 80.70 57.14 94.44 85.71 79.07
PM 0.74 0.27 0.60 −0.06 (0.14) 77.19 38.10 100.00 100.00 73.47
TAG 1.02 −0.01 0.70 −0.01 (0.14) 91.23 80.95 97.22 94.44 89.74

LCX DM 0.58 0.34 0.44 −0.00 (0.21) 71.43 57.14 78.57 57.14 78.57
PM 0.38 0.51 0.32 −0.02 (0.22) 66.67 42.86 78.57 50.00 73.33
TAG 0.73 0.17 0.46 0.05 (0.25) 76.19 85.71 71.43 60.00 90.91

RCA DM 0.90 0.11 0.72 −0.03 (0.08) 88.46 60.00 95.24 75.00 90.91
PM 1.11 −0.10 0.75 0.01 (0.09) 84.62 60.00 90.48 60.00 90.48
TAG 0.54 0.43 0.55 −0.03 (0.08) 92.31 60.00 100.00 100.00 91.30

Note. For each column representing different accuracy measures, we have highlighted the best (green), second best (blue), and third best (red) measures. a and b

are coefficients for linear fitting: FFRRO=a FFRm+b, while r is Pearson correlation coefficient.

Abbreviation: DM, distal Murray; FFR, fractional flow reserve; PM, proximal Murray; TAG, transluminal attenuation gradient.

FIGURE 5 The average first‐order and

total sensitivity indices. The top two bar

plots represent sensitivities when all 105

cases were considered, whereas in the

bottom two, only cases (N=37) where

fractional flow reserve (FFR) is in the

critical region 0.7<FFRRO<0.9 are

considered
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the 3D model, we can focus on how well the reduced‐order model reproduces pressure drops for fixed flows. As it can be
clearly seen, the mismatch between results obtained using both models are larger in the case of prescribed flows at out-
lets of the reduced‐order model. Consequently, this is the case where the benefits obtained by modifications to the orig-
inal model proposed in Fossan et al19 can be better observed. Furthermore, results reported in Table 9 show that
predicted FFR deviations of the reduced‐order model with respect to FFR predicted with the 3D model are small com-
pared with errors in FFR prediction versus invasive measurements with bias (standard deviation) of −0.01 (0.03) and
−0.05 (0.13) for FFR3D versus FFRRO and FFRm versus FFRRO, respectively. Importantly, when comparing diagnostic
accuracy indexes for reduced‐order and 3D model predicted FFR versus invasive measurements, one can see that these
are only marginally affected by the used model. These considerations allow us to conclude that results discussed in the
following sections are mostly affected by the different modelling hypotheses used (boundary conditions) and not by
errors in the description of the fluid mechanics introduced by the reduced‐order model. Nevertheless, we note that
the disagreement between reduced‐order model results and 3D model results leaves room for further reduced‐order
model improvement, as discussed in Section 4.5.

4.3 | Baseline coronary flow and FFR prediction by different strategies

4.3.1 | Predicted baseline coronary flow

When comparing FFR predictions by different model setups made in Section 3.3, we have excluded results obtained
using baseline coronary flows qSharma and qKishi. The reason for this choice can be inferred from average baseline cor-
onary flows reported in Table 10. In fact, predicted average flows for qSharma and qKishi, as well as average myocardium
perfusion rate for qSharma, are well below physiological values of 250 mL/min and 0.8 mL/g/min.34 Moreover, it is
remarkable how these quantities are in line with reference values for methods using relation (14) to compute TMM
and where flow is not derived from perfusion rates, ie, qUS

Guyton, q
DeSimone
Guyton , qSakamoto, and q̂Sharma.

4.3.2 | Effect of baseline coronary flow and its distribution on FFR prediction

Results presented in Table 11 clearly show that the flow distribution strategy for which our reduced‐order model
delivers better agreement with invasive measurements is the one based on TAG. In fact, linear fit coefficients and Pear-
son correlation coefficient are always better for TAG for fixed branch treatment and baseline flow estimation strategy. A
closer look into how flow distribution methods effect FFR prediction on a vessel basis can be done from data shown in
Table 12. Here, it becomes evident that TAG outperforms other flow distribution strategies for LAD and LCX but not for
RCA. The overall better performance is due to the fact that lesions located in LAD and LCX (and their branches)
account for almost 83 % of total lesion number, in combination with the fact that TAG systematically results in more
blood flowing into the LAD with respect to flows obtained with DM and Proximal Murray (PM). For example, for

coupled branches treatment and �qUS
Guyton, average (standard deviation) flow in the LAD are 74 (26), 71 (26), and 89

(32)mL/min for DM, PM, and TAG flow distribution strategies, respectively. Such a pattern can be observed for all sim-
ulations reported in Table 11. The larger flow can compensate for underestimated stenosis severity or it can simply
mean that TAG is better reflecting the flow distribution among vessels. This last observation is supported by the fact
that TAG incorporates patient‐specific information about flow distribution (via intensity gradients along vessels), while
DM and PM are based on geometrical information alone.

The best performing method in terms of correlation to invasive measurements has the following setting: coupled
branches treatment, qSakamoto, and TAG flow distribution. On the other hand, the best method in terms of diagnostic

accuracy has the following setting: coupled branches treatment, �qUS
Guyton, and TAG flow distribution. Since this last

method ranks second in terms of linear fitting coefficients, we will denote it as FFROPT
RO throughout the rest of this work.

Diagnostic performance for different modelling choices can vary significantly. In particular, sensitivity among
explored model setups varies between 48.48% and 78.79%. It is interesting to observe that maximum sensitivity
(78.79%) is achieved for coupled branches treatment, TAG flow distribution, and all baseline coronary flow estimation
methods, pointing out to the fact that flow distribution is more determinant than baseline coronary flow estimation.

Although errors (FFRRO−FFRm) standard deviation varies for different model setups, such fluctuations are very
small with respect to standard deviation absolute values, with larger variations among results obtained using different
baseline flow definition methods rather than within single baseline flow definition methods. In other words, standard
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deviation changes seem to be mainly due to the use of different baseline flow estimation methods, rather than by flow
distribution strategies. Another conclusion that can be made from standard deviation variation across used modelling
setups is that none of the investigated methods seems to reduce error standard deviation significantly, although several
of them imply using patient‐specific information. This result is not surprising if one considers the origin of patient‐
specific information used by the different methods. In qUS

Guyton, we use ultrasound‐derived CO, for which measurement

errors of 690mL/min have been reported. Such errors propagate to baseline coronary flow, which, in this case, is com-
puted as 4.5 % of CO and imply an error in flow of approximately 31mL/min or 14 % of baseline coronary flow. The
standard deviation of qUS

Guyton in our population is 42mL/min and is thus comparable with the measurement error.

Another method using CO estimates is qDeSimone
Guyton , where the formula for determining stroke volume (7) was obtained

by fitting experimental data, with a resulting Pearson correlation coefficient r=0.45, 33 denoting large uncertainty in pre-
dicted values. Moving forward among methods, we consider now q̂Sharma. In this case, (13) is used. This relation involves
a fitting of experimental data (on dogs) relating HR and SBP to oxygen consumption, with r=0.87, 51 combined then to
another fitting of experimental data on the relation between coronary flow and oxygen consumption.52 There are addi-
tional sources of errors for these patient‐specific baseline flow estimation methods. The fraction of CO that flows into
the coronaries, γ in (10), is assumed constant. Moreover, as already discussed, some methods make use of SBP and
HR. These quantities are known to vary for the same patient depending on many factors. For our patient population,
we observe that Pearson correlation coefficients for SBP and HR when comparing quantities acquired non‐invasively
and quantities measured during invasive FFR procedures are 0.09 and 0.29, for SBP and HR, respectively. All these
considerations support the results shown here that evidence no benefit in terms of error standard deviation reduction
by using patient‐specific baseline flow estimation methods. However, this conclusion does not preclude that a better,
currently nonreported baseline flow estimation method would result in improved FFR predictions.

Previously reported relative low impact of prescribed inlet pressure in FFR prediction frameworks19,21 was confirmed
in this study. Table 13 shows the completely neglectable impact of using different values for the prescribed inlet pres-
sure, including pressure measured non‐invasively, pressure acquired during invasive FFR measurement (the actual
value to compute invasive FFR), and a fixed value of 100 mmHg, demonstrating that this parameter is of little impor-
tance when predicting FFR.

Figure 6, left panel, shows a scatter plot of invasive FFR versus average predicted FFR (for all methods shown in
Table 11), including maximum variation ranges and standard deviation. Average standard deviation is 0.048, with larger
values for lower FFR values, as it can be seen in Figure 6, right panel. These results reinforce observations made while
analysing data reported in Table 11 on the fact that baseline coronary flow estimation and flow distribution strategies

FIGURE 6 Left panel shows a scatter

plot of FFRRO,avg vs FFRm, where FFRRO,

avg is the average FFR predicted from the

simulations summarised in Table 11. The

range (blue) of predicted FFRRO and

standard deviation, FFRRO,std (green) are

also indicated by the vertical error bars.

Right panel shows FFRRO,std as a function

of FFRRO,avg

TABLE 13 Comparison of FFRRO vs FFRm for different ways of estimating the proximal boundary condition. The rest of the settings are

coupled branches treatment, �qUS
Guyton baseline flow, and TAG flow distribution

Inlet pressure a b r FFRRO−FFRm Acc. Sen. Spe. PPV NPV

Clinic 1.03 −0.03 0.65 0.00 (0.16) 89.47 79.31 93.94 85.19 91.18

100 1.02 −0.02 0.65 0.00 (0.16) 88.42 79.31 92.42 82.14 91.04

Invasive 1.04 −0.04 0.66 0.00 (0.16) 88.42 79.31 92.42 82.14 91.04

a: FFR, fractional flow reserve; TAG, transluminal attenuation gradient.
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have limited impact on overall performance of the FFR prediction framework: Average of predicted FFR standard devi-
ation to baseline flow and flow distribution methods is 0.048 while predicted FFR measurement error standard devia-
tion is 0.15. This fact indicates that the availability of better baseline flow estimation and flow distribution methods
will have a significant but limited impact on FFR prediction performance. Such impact can increase if one considers
that the precise definition of one of the parameters with larger impact on FFR predictions, the TCRI,19,21 depends on
a baseline condition. These findings are further supported by our sensitivity analysis, where we see that the effect of
the uncertainty in baseline coronary flow is rather low, compared with the influence of TCRI and SD. Results indicate

FIGURE 7 Scatter plot and Blant‐

Altman of FFRRO,best vs FFRm, where

FFRbest is the best FFR prediction (in

terms of absolute error) from all the

simulations summarised in Table 11. The

top panel shows results when all

measurements are included, whereas

those in the bottom row (5) measurements

which had errors (FFRRO,best−FFRm)

larger than two standard deviations were

excluded. FFRRO,best−FFRm are −0.02

(0.09) and −0.02 (0.03) for the top and

bottom panels, respectively. FFR,

fractional flow reserve

FIGURE 8 Histogram of TCRI, where

TCRI in this case is calculated on the basis

of the baseline resistance of simulations

corresponding to the best performing

setting (coupled branches treatment,

�qUS
Guyton baseline flow, and TAG flow

distribution) and hyperemic resistance

corresponding to FFRbest. Measurement

locations which had errors (FFRRO,best

−FFRm) larger than two standard

deviations where excluded and cases which

resulted in TCRI values larger than 15 were

excluded from this analyses. FFR,

fractional flow reserve; TCRI, total

coronary resistance index
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that the uncertainty in the stenosis degree has the largest influence on FFR‐prediction uncertainty, with average first‐
order and total sensitivity indices of 0.71 and 0.74, and uncertainty weighted sensitivity indices of 0.87 and 0.89, respec-
tively. TCRI has a significant but much lower influence with average first‐order and total sensitivity indices of 0.22 and
0.27 and uncertainty weighted sensitivity indices of 0.08 and 0.11, respectively. Baseline coronary flow has a minor
influence in comparison, with average first order and total sensitivity indices of 0.04 and 0.07 and uncertainty weighted
sensitivity indices of 0.03 and 0.04, respectively. The influence of TCRI and q is slightly increased when only cases in the
critical region 0.7<FFRRO<0.9 are considered. The average standard deviation in predicted FFR is 0.12. However, we
note that the uncertainty in how the flow is distributed is not considered and may be seen in relation to the fact that
the average standard deviation resulting from the UQ&SA (0.12) is slightly lower than average predicted FFR measure-
ment error standard deviation (0.15).

The above made observations allow us to conclude that other parameters than the ones studied here have to be
addressed in order to improve FFR prediction accuracy. In particular, we consider now TCRI and make a post‐
processing experiment by:

• extracting best matching FFR predictions of all simulations shown in Table 11;
• considering FFROPT

RO as the setting for reference baseline conditions; and
• compute TCRI as the ratio of peripheral resistance (with respect to FFR measurement location) for best matching

simulation versus peripheral resistance for reference baseline setting.

Selected best matching predictions versus measurements are shown in Figure 7, while Figure 8 shows a histogram of
obtained TCRIs. Such results show that, for the given modelling framework, available segmentations and flows in phys-
iological ranges, rather accurate FFR predictions can be obtained, if a highly variable TCRI is considered. Correspond-
ing accuracy, sensitivity, and specificity are 94%, 85%, and 99% when all measurements are included and 97%, 90%, and
100% when outliers are excluded. Interestingly, TCRI distribution emerging from this analysis reflects the high variabil-
ity observed in coronary flow reserve, which has shown to display a gamma distribution shape when directly measured
on patients.53

4.4 | Use of reduced‐order models for the development of clinical decision support tools

The capacity of exploring a large number of modelling hypotheses, as well as parameter space via sensitivity analysis, is
facilitated by the fact that we use an accurate reduced‐order model of the problem under investigation. This fact points
to one of the strengths of reduced‐order models, which is that of being computationally cheaper and generally more
robust than more complex models in terms of numerical issues such as convergence and stability of the overall
algorithm. Advantages in terms of problem setup, preprocessing, and postprocessing over more complex models are also
relevant. Moreover, errors introduced by reduced‐order models can be compensated by the fact that one can explore a
larger portion of possible solutions. However, such errors must be acceptable, which in the context of this work means
that clinical decisions should not be affected by them.

4.5 | Limitations and future work

The present work has several limitations. The most relevant one is probably the fact that, although we explore certain
modelling hypotheses, other are kept fixed and are inherent to our FFR prediction framework (segmentation method,
modelling pipeline, etc). This fact is kept in mind throughout the text and only claims that we think are valid for any
model‐based FFR prediction framework are mentioned as such. The impact of patient‐specific TCRI on FFR prediction
diagnostic accuracy was only partially addressed. In fact, in Section 4.3.2 we show that a highly variable TCRI would
have a significant impact in the diagnostic accuracy of our FFR prediction method. Ideally, we should assess how a
patient‐specific TCRI computation would perform in comparison to other methods, but to the best of our knowledge,
no methodology to estimate TCRI non‐invasively and without the use of drugs or additional imaging is currently
available. Another component that can vary greatly among patients is total baseline coronary flow. In this case, we have
considered quantification methods that depend on patient‐specific information such as CO or LVM. However, one
should ideally use a direct total baseline coronary flow measurement method. Such methods are being developed in
the context of ultrasound imaging and magnetic resonance imaging and, once available, have the potential to provide
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highly valuable information for FFR prediction tools. See Fiorentini et al54 and Schwitter et al55 for recent developments
in ultrasound and magnetic‐resonance coronary flow estimation methods.

Another aspect to be considered is the fact that the reduced‐order model is not perfectly reproducing 3Dmodel results.
Therefore, results are influenced not only by boundary conditions but also by errors in solving fluid mechanics within the
computational domain representing epicardial vessels. This is common to any FFR prediction strategy based on reduced‐
order models. Here, we prefer to be aware of such errors and try to minimise them, rather than to embed them in the
modelling framework and lose control on error causes when comparing FFR prediction and invasive measurements.

The prevalence of positive FFR values is not optimal, and one would desire a more homogeneous distribution of
invasive FFR values to work with. However, we observe that this is an issue faced by virtually all published works
on FFR prediction methods and is probably related to the intrinsic dynamics of how FFR is used in the clinic, with
many measurements performed on lesions that reveal to be functionally nonsignificant.

Finally, the results from the UQ & SA depend on the assumed input uncertainties, and here we did not include
uncertainties/variability due to differences in how baseline coronary flow is distributed. More importantly, the way
in which the uncertainty of the stenosis geometry was modelled, via a global parameter effecting all stenotic regions,
may have synthetically increased the influence of this parameter and is not necessarily entirely realistic. Nevertheless,
results shown here should still be considered as valid for giving a clear indication to where attention should be focused
in order to reduce uncertainty in FFR‐prediction.

4.6 | Conclusions and future work

In this work, we have first improved and validated a reduced‐order model for FFR prediction and then tested the impact
of different methods proposed in the literature to estimate and distribute baseline coronary flow on FFR predictions.
Both tasks were performed on a dataset regarding 63 patients with stable CAD and 105 invasive FFR measurements.

The proposed reduced‐order model introduces errors with respect to the 3D model, which are significantly smaller
than errors observed for predicted FFR versus invasive measurements. Moreover, diagnostic performance was only
marginally affected by the use of the reduced‐order model for cases in which 3D simulation results were available
(63 patients, 105 invasive FFR measurements, 3 different setups for 3D simulations).

We have shown that methods for baseline coronary flow estimation and its distribution can affect the diagnostic
performance of an FFR‐prediction framework significantly. Moreover, the influence of methods for flow distribution
is greater than that of methods for baseline flow estimation, and we find that TAG flow distribution outperforms flow
distribution methods based on Murray's law for all tested setups. However, we observe that none of the investigated
methods for baseline coronary flow estimation and distribution results in a significant reduction in error standard
deviation for predicted FFR versus invasive FFR measurements. Finally, we see that for our modelling framework
the diagnostic accuracy on a per‐vessel basis can vary significantly.

In future work, we will regard the further improvement of our reduced‐order model in terms of its capacity to repro-
duce the physics of 3D models in a more accurate manner. Moreover, we will look into better ways of characterising
baseline coronary flow by means of, for example, non‐invasive determination of baseline flow at selected vessels.
Finally, we will consider how to better define a patient‐specific TCRI, since we think that this factor plays a crucial role
in representing patient‐specific variability in coronary physiology relevant for FFR prediction.
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Chapter 9
Machine learning augmented
reduced order model for
FFR-prediction
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