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A B S T R A C T   

Variable renewable generation demands increasing amount of flexible resources to balance the electric power 
system, and batteries stand out as a promising alternative. Battery models for optimization typically represent the 
battery with power and energy variables, while the voltage, current, charge variable space is used for simulation 
models. This paper proposes a non-linear battery storage optimization model in the voltage, current, charge 
variable space. The battery voltage is conceived as an empirical function of both state-of-charge and charge 
current and represented through bi-variate cubic splines. The voltage source converter losses are also approxi
mated with a cubic spline function. Compared to energy-based storage models, the results show that this 
approach enables safe operation closer to the battery voltage and current limits. Furthermore, it prefers operating 
around high state-of-charge due to the higher efficiency in that region.   

1. Introduction 

1.1. Motivation and background 

The increasing amount of variable renewable energy in the electric 
power system increases the demand of flexible resources and energy 
storage. Battery energy storage systems (BESS) are capable of delivering 
and consuming high power almost instantaneously, and BESS costs are 
decreasing rapidly. BESS is expected to play an important role in 
ensuring efficient and reliable operation of the electric power system. 
They are also easy to install and goes hand in hand with distributed 
power generation. 

BESS installed in low voltage grids also have positive effects in me
dium and high-voltage grids [1]. Different applications of BESS systems 
are described in reference [2–4], such as energy trade, ancillary services 
and grid support, and customer energy management. The optimal 
strategy for BESS operation depend on the application, but the overall 
goal is to balance load and generation both in the time domain and 
geographically. Customer energy management is demonstrated in [5] 
where load is shifted due to grid tariff design in combination with PV. 
Energy trade is shown in [6] where the price differences over time is 
utilized for arbitrage, and a grid support application is shown in [7] 
where battery is applied for voltage control. Several applications are 

often combined, such as simultaneous operation in day-ahead market 
(energy trade) and frequency reserve market (ancillary service) [8,9]. 

Batteries can be modelled both in the current, voltage, electric 
charge variable space, and in the power, energy variable space, hereby 
referred to as IVQ-model and PE-model respectively. The IVQ-model 
represents the battery state by counting charge in coulomb or ampere- 
hours, while the battery state for the PE-model is represented as en
ergy in joule or watt-hours. The IVQ-model treats voltage and current as 
individual variables, while the PE-model is a special case of the IVQ- 
model with constant battery voltage. Since the battery voltage de
pends on both state of charge (SOC) and discharge current, the battery 
efficiency will also depend on those. 

Existing battery simulation models span from simple models based 
on basic electric circuits to generic models with controlled voltage 
source [10]. One of the most common generic models is the Shepherd 
model [11], which has been further developed in [12,13]. All these 
models describe the battery behaviour in a more detailed and accurate 
way than the PE-models, and they provide insight into the battery 
voltage characteristics. However, an accurate model demands a complex 
model structure with many parameters, whereas a simpler model with 
fewer parameters will be less accurate. 

Techno-economic BESS optimization models are dominated by PE- 
models [2,5,6,8,9]. In [14], an optimization model considering varia
tions in efficiency for changing battery states is presented. Reference 
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[15] compares battery operation optimization including degradation 
with a PE-model, an equivalent circuit model and a single particle 
model, where the equivalent circuit- and the single particle model are 
IVQ-models. The single particle model combines detailed modelling, 
optimal operation and degradation well, but it requires a very detailed 
parametric description of the BESS. 

Optimal BESS operation also relies on a accurate representation of 
power electronics. Many optimization models consider the battery and 
the voltage source converter (VSC) as a joint unit with a fixed charge and 
discharge efficiency. However, the VSC efficiency both depends on 
current and voltage. Reference [16] suggests the modelling of the VSC 
losses for optimization as a second order polynomial of current. The 
small scale VSC in [17] is provided with efficiency curves as a function of 
AC side power and DC side voltage. Detailed simulation of battery and 
power electronics is conducted in [18] showing that round-trip effi
ciency both depends on charge/discharge power and SOC, which is not 
accounted for in the PE-models. 

1.2. Contributions and organization 

The contribution of this paper is a non-linear IVQ-model for battery 
storage optimization. The battery voltage and the VSC power loss is 
embedded with cubic splines generated from empirical data of the 
battery voltage and the VSC efficiency. The cubic splines are imple
mented directly into the non-linear optimization problem. The model 
accounts for voltage and efficiency variations due to SOC and charge/ 
discharge power, and efficiency variations in VSC. The battery voltage 
splines also encapsulate the battery series resistance. Moreover, since 
battery operation limitations are defined by voltage and current indi
vidually instead of power, this model enables safer operation close to the 
battery boundaries. Since the battery voltage is described by empirical 
data, it could also be updated based on measurement data as the battery 
degrades. Finally, the modelling method can easily be adapted to other 
battery types as well as other storage technologies such as hydrogen and 
hydro-power. 

The remainder of this paper is organized as follows: Section 2 pre
sents mathematical model of BESS, VSC, load, market and solar PV, 

Section 3 presents numerical values used in this model, Section 4 pre
sents results from numerical examples demonstrating the model capa
bilities, and Section 5 draws the conclusions and suggests further work. 

2. Model description 

This section presents an IVQ-model for a BESS, VSC, load and grid 
connection as shown in Fig. 1, where the objective is to minimize 
operation costs. Symbols used for the mathematical modelling are 
described in the nomenclature. A corresponding PE-model is also pre
sented as a comparison to investigate the differences between the IVQ- 
and the PE-model. 

2.1. Battery energy storage system 

BESS are assembled by multiple chemical cells connected in series or 
parallel. This section will outline a non-linear IVQ-model, and a simple 
quadratic PE-model. 

2.1.1. Assumptions 
This paper studies battery operation for daily market optimization, 

typically 24–48 hours ahead. Therefore, self discharge and change in 
voltage characteristics due to degradation are neglected. Faster tran
sients, which are more pronounced at high SOC [13], demanding time 
resolution down to a few seconds are also neglected. Wiring losses 

Nomenclature 

Sets and indices 
t Time step index 
n / m Degree of x / y in spline function 
i / j Spline function indices along x / y axis 
xi / yj Spline function control point at index i /j 
txi / tyj Spline knot at index i / j 

Parameters 
ΔTt Step length at time t (h) 
ηc / ηd Battery charge/discharge efficiency 
p̂l

t Load forecast at time t (kW) 
p̂PV

t PV generation forecast at time t (kW) 
cp

t /cs
t Power purchase/sale price at time t (€ /kWh) 

Emin/ Emax Battery min/max storage energy (kWh) 
Ib,ch / Ib,dch Battery max charge/discharge current (A) 
MCb,max BESS marginal end-value at empty storage (€ /kWh) 
Nb

par Number of battery cells in parallel 
Nb

ser Number of battery cells in series 
Pb,ch / Pb,dch Battery max charge/discharge power (kW) 
Pp,max/Ps,max Maximum purchase/sale (kW) 
PVSC,max VSC maximum AC conversion power (kW) 
PVSC,loss

0 /PVSC,loss
2 VSC loss constant/quadratic term 

Qmin/ Qmax Battery min/max storage charge (Ah) 
Vb, avg Battery average voltage (V) 
Vb,min / Vb,max Battery min/max operating voltage (V) 

Variables and functions 
Ce(e) BESS energy end value function (€ ) 
Cq(q) BESS charge end value function (€ ) 
et BESS SOC (energy) at time t (kWh) 
fb
v (qt , ibt ) Battery voltage function (V) 

fVSC
loss (p

VSC,AC
t ) VSC loss function (kW) 

ibt Battery discharge current at time t (A) 
pb,ch

t / pb,ch
t BESS charge/discharge power at time t (kW) 

pb,DC
t DC discharge power from battery at time t (kW) 

pc
t /pd

t BESS PE-model charge/discharge power at time t (kW) 
pPV

t / pPV,curt
t PV generation and curtailment at time t (kW) 

pp
t /ps

t Power purchase/sale at time t (kW) 
pVSC,AC

t Power from VSC to AC bus at time t (kW) 
pVSC,DC

t Power to VSC from DC bus at time t (kW) 
pVSC,loss

t VSC power loss at time t (kW) 
qt BESS SOC (electric charge) at time t (Ah) 
vb

t Battery voltage at time t (V)  

Fig. 1. Test system topology.  
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internal in battery and between VSC are much lower than other in
efficiencies and will not be accounted for. 

2.1.2. PE-Model 
A basic BESS optimization model is shown in (1), (2), (3), (4), (5), 

(6). The model assumes that the charge and discharge efficiencies are 
fixed. Numerical examples will later show the limitations of this 
assumption. This formulation often includes a charge/discharge 
complementarity constraint to prevent simultaneous charging and dis
charging. Since the system in this paper allows curtailing generation at 
no cost, this constraint has been excluded to avoid mixed integer 
variables. 

et =

∫ t

0

(

ηcp
c
t −

1
ηd

pd
t

)

dt (1)  

Pb,ch = Ib,chVb,avg (2)  

Pb,dch = Ib,dchVb,avg (3)  

Emin ≤ et ≤ Emax (4)  

0 ≤ pc
t ≤ Pb,ch (5)  

0 ≤ pd
t ≤ Pb,dch (6)  

2.1.3. IVQ-Model 
A representation closer to the battery chemistry is considering the 

SOC in terms of charge q in ampere hours (7), and the voltage as a 
function of SOC and discharge current (8). Both values are given for an 
individual battery cell under the assumption that all battery cells will 
have identical SOC at all times. Equation (9), (10), (11) show the bounds 
for SOC, current and voltage respectively. 

qt =

∫ t

0

(
− ib

t

)
dt (7)  

vb
t = f b

v

(
qt, ib

t

)
(8)  

Qmin ≤ qt ≤ Qmax (9)  

− Ib,ch ≤ ib
t ≤ Ib,dch (10)  

Vb,min ≤ vb
t ≤ Vb,max (11)  

2.1.4. Battery package 
Let Nb

serrepresent the number of cells in series and Nb
parthe number of 

cells in parallel, hence the total number of cells is Nb
ser⋅Nb

par. The battery 
discharge power is given by (12). The DCsuperscript is used to distin
guish power on DC and AC side of the VSC. 

pb,DC
t = vb

t ⋅Nb
ser⋅i

b
t ⋅Nb

par (12)  

2.2. Voltage source converter 

The voltage source converter (VSC) converts between DC and AC 
power in both directions. Typical DC sources and loads are battery 
storages and solar PV generations, but other DC loads and sources can 
also occur. The VSC is also subject to losses, and [16] suggests to model 
the losses with constant, linear and quadratic terms of the AC side cur
rent. For the PE-model, a convex relaxation with a constant and a 
quadratic term will be used to model VSC losses. For the IVQ-model, the 
losses are approximated with a cubic spline function. 

2.2.1. Assumptions 
The AC side is often part of a large utility grid with relatively stable 

voltage, hence the effects of voltage variation on this side are neglected. 
Moreover, the efficiency variations due to DC side voltage in [dataset] 
[17] are relatively small, hence they are neglected. Therefore, the losses 
will solely depend on the DC side power. 

2.2.2. Model 
The VSC efficiency is undefined when pVSC,AC

t = 0yielding a discon
tinuous function. Therefore, the power loss is expressed as the absolute 
power loss instead. The conversion from efficiency to absolute power 
loss is explained in Section 3.3. The IVQ-model uses a cubic spline 
function (13). The properties of cubic spline functions are discussed 
more in detail in Section 2.6, but the function shape will typically be 
close to quadratic. The PE-model uses a convex relaxation of a poly
nomial function (14). The VSC AC and DC power and losses for both 
models are tied together as shown in (15) where the losses always are 
positive. 

pVSC,loss
t = f VSC

loss

(
pVSC,AC

t

)
(13)  

pVSC,loss
t ≥ PVSC,loss

0 + PVSC,loss
2

(
pVSC,AC

t

)2 (14)  

pVSC,DC
t = pVSC,AC

t + pVSC,loss
t (15)  

2.3. Load, generation and utility grid 

The solar PV generation and load are given by separate forecasts. 
Generation curtailment and import from the power grid are decision 
variables. 

2.3.1. Assumptions 
To keep computational burden modest, uncertainties in forecasts are 

not accounted for. Generation can be curtailed, and power can be pur
chased from or sold to the utility grid at a fixed or variable exogenous 
positive price. In one of the examples, the effect of only being able to 
change the purchase/sale volume hourly will be studied. This aligns well 
with typical market structures where the energy is traded hourly either 
in the day-ahead or intra-day market. If forecast data has fewer data 
points than the optimization problem, data is re-sampled with linear 
interpolation. 

2.3.2. Model 
The relation between solar PV generation, forecast and curtailment is 

shown in (16). 

pPV
t = p̂PV

t − pPV,curt
t

pPV
t ≥ 0

(16) 

The PV generation is injected on the DC side, while the power 
exchanged with the utility grid is injected on the AC side. The PV and the 
BESS share a common VSC. Storing energy from utility grid yields larger 
losses than PV generation since power injected on the AC side must pass 
the VSC before being stored in the battery. 

Utility grid imports and exports are permitted within certain limits as 
shown in (17). 

0 ≤ pp
t ≤ Pp,max

0 ≤ ps
t ≤ Ps,max (17) 

The resulting DC and AC bus power balances are shown in (18) and 
(19) respectively. 

pVSC,DC
t = pPV

t + pb,DC
t (18)  

p̂l
t = pVSC,AC

t + pp,AC
t − ps,AC

t (19)  
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2.4. Objective function 

The objective function is given by the integral of the power exchange 
costs minus the BESS end storage value (20), which is described in 
Section 2.7. 

min
∫ T

0

(
cp

t pp
t − cs

t p
s
t

)
dt − Cq(q) (20)  

2.5. Integration rule 

The integrals of (1), (7) and (20) can be discretized and solved 
numerically using methods for solving ordinary differential equations 
(ODE). Some of the simplest methods for solving the initial value 
problem in (21) are forward Euler (22), backward Euler (23) and the 
trapezoidal method (24). 

y
′

(t) = f (t, y(t)), y(t0) = y0 (21)  

yn+1 = yn + h⋅f (tn, yn) (22)  

yn+1 = yn + h⋅f (tn+1, yn+1) (23)  

yn+1 = yn +
h
2
(f (tn, yn)+ f (tn+1, yn+1)) (24) 

The choice of method is of minor importance for the PE-model in (1) 
since the charging and discharging are independent of SOC. This paper 
has used forward Euler integration as shown in (25). 

et+1 = et + ΔTt

(

ηcp
c
t −

1
ηd

pd
t

)

e1 = einit

eend = eT + ΔTT

(

ηcp
c
T −

1
ηd

pd
T

)
(25)  

However, in the IVQ-model the discharge power is function of voltage, 
while the voltage is a function both SOC and charge/discharge current. 
Hence, the choice of integration method will affect the results. More
over, the choice of step length will also be more critical with respect to 
both the precision and the numerical stability. 

The IVQ-model in (7) can be written recursively (26). Applying the 
different integration methods on (26) yields sets of sparse difference 
equations: the storage balance for forward Euler (27), backward Euler 
(28) and trapezoidal (29). 

qt+1 = qt +

∫ t+1

t

(
− ib

t

)
dt (26)  

Forward Euler: 

qt+1 = qt − ΔTtit
q1 = qinit

qend = qT − ΔTT iT

(27)  

Backward Euler: 

qt+1 = qt − ΔTtit+1
q1 = qinit − ΔT1i1

qend = qT

(28)  

Trapezoidal method: 

qt+1 = qt −
ΔTt

2
(it + it+1)

q1 = qinit −
ΔT1

2
i1

qend = qT −
ΔTT iT

2

(29) 

Forward integration rewards discharge using high power since the 
high voltage at high SOC yields higher power per charge unit, and the 
SOC update is delayed due to forward integration. Likewise, it will also 
reward charging using high power, as less power is demanded per 
ampere hour stored compared to low voltage charging. On the other 
hand, backward Euler gives incentive to discharge with lower power as 
the SOC is changed in advance. For these reasons, the trapezoidal 
method yields the most accurate integration for continuous operation, 
but will also build a slightly denser system of equations as the storage 
balance equations contain two discharge variables instead of one. The 
objective function is integrated in the same manner as the storage. 

Overall, the presented approaches convert the ODE-constraints into a 
set of sparse difference equations (algebraic) of the same variables, 
which are only defined at a pre-determined set of time steps. These final 
sets of algebraic equations are used in the implementation of the opti
mization model, enabled by the use of non-linear programming solvers. 
Implementation and solution method are presented in Section 4.1. 

2.6. Cubic splines 

The constraints (8) and (13) will be modelled with cubic splines as 
these are compatible with non-linear programming, and possible to 
implement in interior point solvers. Interior point solvers are also rela
tively efficient at solving large-scale non-linear dynamic problems [19]. 

A spline function is a piece-wise polynomial function. A k degree 
spline function has continuous derivatives up to order k − 1, hence a 
spline function with degree 3 is guaranteed to have continuous de
rivatives up to order two. This is a necessary property for non-linear 
optimization tools requiring twice continuously differentiable func
tions. Spline functions are composed of multiple Bezier curves shown in 
(30). The Bezier curves are linear combinations of the Bernstein basis 
polynomials shown in (31) where n is the degree, and βν are known as 
Bernstein or Bezier coefficients. 

BZn(x) =
∑n

ν=0
= βνbeν,n(x) (30)  

beν,n(x) =
(n

ν

)
xν(1 − x)n− ν

,

ν = 0,⋯, n, x = [0, 1]
(31) 

A property of the Bezier curve is that the start and the end value of 
the function is a linear combination of the Bezier coefficients, and the 
same applies for the start and the end values for the derivatives of the 
curve. This makes them well suited for building piece-wise polynomial 
functions with continuous derivatives. 

A spline function can be uniquely described as a linear combination 
of basis functions as shown in (32), and this representation is known as 
B-splines. The spline function parameters are the control points xi and 
knots ti. The knots represent the distance between the control points. A k 
degree spline with n+ 1control points will consist of n − k+
1polynomial segments. The basis function is constructed in a recursive 
manner using the Cox-de Boor formula (33)[20]. The derivatives are 
also defined as a linear combination of the basis functions. 

Sn,t(x) =
∑

i
αiBi,n(x) (32)  

Bi,0 =

{
1 if ti ≤ x ≤ ti+1

0 otherwise

Bi,k(x) =
x − ti

ti+k − ti
Bi,k− 1(x) +

ti+k+1 − x
ti+k+1 − ti+1

Bi+1,k− 1(x)

(33)  

Moreover, the bi-variate spline function is given by (34) where n and m 
are the spline degrees of the two dimensions x and y respectively. The bi- 
variate spline describes a smooth surface given by a mesh of control 
points αij where the corresponding knots are txi, tyi. 
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Sn,m,tx,ty(x, y) =
∑

i

∑

j
αijBi,n(x)Bj,m(y) (34) 

Alternatively, the splines can also be described as a matrix of poly
nomials. This description is more extensive than the combination of 
basis splines, but the resulting function is differentiable in Julia/JuMP. 
Surface (i, j) of the bi-variate spline function on polynomial form is 
shown in (35). 

Si,j,n,m,tx,ty(x, y) =
∑n

kn=0

∑m

km=0
βi,j,kn,km Δxkn

i Δykm
j

Δxi = x − xi

Δyi = y − yi

(35)  

Each polynomial surface is defined by (n+ 1)⋅(m+ 1)coefficients, for 
cubic splines in both x and y yields a 4 by 4 matrix with coefficients for 
each polynomial surface. These coefficients are obtained by evaluating 
(34) and its derivatives at the corners of the respective surfaces. 

The splines have been generated using the Python Scipy [21] func
tions bisplrep and splrep, which are based on [20]. 

2.7. Battery energy storage system end value 

In energy storage optimization, the storage tends to be emptied at the 
end of the optimization period, unless the end value is bounded by 
constraints, or the stored energy at the end is valuated in the objective 
function. A possible approach is to keep the end value fixed, for example 
to the initial value. However, the conversion between SOC in terms of 
charge and energy is not uniquely defined since the battery voltage 
depends on both SOC and charge/discharge current. Instead of keeping 
the end value fixed, an end value function is defined in this model. This 
enables comparison of the objective function through simulation of 
different cases even though the end point values are different. The 
valuation of end storage is a well established concept from hydro power 
scheduling [22,23], and [24] gives a general description also including 
PV generation. 

When the SOC is 100%, it is unable to receive more power, hence the 
energy marginal value is zero. On the other hand, an empty storage is 
not capable of supplying energy, hence it has a high marginal value 
MCb

max. For simplicity, the marginal value of the end storage is set to vary 
linearly between these to points. The marginal value function for a PE- 
model is shown in (36). The corresponding storage end value function is 
the integral of (36)as shown in (37). The value function is converted 
from energy in the PE variable space (kWh) to charge in the IVQ variable 
space (Ah) through a conversion (38) under the assumption that the 
BESS is charged/discharged at constant voltage. The same conversion is 
used to convert the storage max value between PE and IVQ variable 
space. The resulting storage end value function is shown in (39). 

MCe(eT) = MCb,max
(

1 −
eT

Eb,max

)

(36)  

Ce(eT) =
∫ eT

0 MCe(e) de

= MCb,max
(

eT −
eT

2

2Eb,max

) (37)  

eT = Vb,avg⋅Nb
ser⋅Nb

par⋅qT

= ceq⋅qT
(38)  

Cq(qT) = MCb,max⋅ceq

(

qT −
qT

2

2⋅Qb,max

)

(39)  

2.8. Model summary 

The objective and constraints of the PE-model and the IVQ-model are 
summarized in Table 1. 

The PE-model formulation is quadratic and convex. Note that 
simultaneous charging and discharging is possible to create artificial 
losses. In these situations, an equally good solution will be to curtail the 
generation. 

The IVQ-model is continuous and twice differentiable, but the con
straints are non-linear and non-convex. Ipopt searches for the optimal 
solution in an iterative manner, hence the spline functions are only 
evaluated at their current point for each iteration. Binary variables are 
therefore not needed to decide which segment of the spline function is 
active. However, the optimal solution is only local and can not be 
guaranteed to be the global optimum. 

3. Case study data 

This section presents numerical values used to describe the BESS and 
the VSC in the optimization problem, and the procedure for converting 
the data points into spline functions. The resulting BESS and VSC effi
ciencies are presented as well as the total system efficiency. Other 
general numerical values are presented in Table 2. Case-specific nu
merical results are presented in Section 4. 

3.1. Battery voltage splines 

The battery voltage is given by experimental values from a Nissan 
Leaf battery cell [dataset][25]. The cell has been charged at around 15 A 
and discharged at 30, 60 and 90 A while the voltage has been monitored. 
To generate the spline functions, the voltage has been sampled with 
uniformly distributed sample points in the SOC variable space q and for 
four selected charge/discharge currents yielding the bi-variate spline 
function fb

v (qt , ibt ). Fig. 2shows the resulting splines compared to the 
original sampling points for different smoothing factors. In addition, 
voltage curves for 0 A and 30 A are shown to verify if the spline model 
predicts reasonable voltage values between and outside the sampling 
points. Fig. 2a shows that a low smoothing factor yields an accurate fit 
for the data points marked with black dots. However, the voltage at 0 A 
should be between the voltage at 15 A and -30 A which is not the case in 
Fig. 2a, hence is likely to be overfit. The intermediate smoothing factor 
in Fig. 2b fits quite well with the data point. The 0A voltage is also be
tween the -30 A and the 15 A voltage, and the 30 A voltage seems to scale 
linearly compared to the other curves. However, the increasing slope for 
high SOC is not well captured for charging (positive current). The high 

Table 1 
Summary of PE- and IVQ-model equations.  

PE-model  

Objective (20), (37) and (38) 
Storage constraints (25) 
Other constraints (2) (3) (4) (5), (6), (14), (15), (16), (17), (18) and (19)  

IVQ-model  

Objective (20) and (39) 
Storage constraints (27), (28) or (29) 
Other constraints (8), (9), (10), (11), (12), (13) and (15), (16), (17), (18), (19)  

Table 2 
Model numerical values.  

Battery & VSC  

Vmin/Vmax/Vavg  3.20/4.15/3.90 V 

Qb,min/Qb,max/Qinit 0/29/20 Ah 
Ib,ch/Ib,dch 30/90 A 
VSCmax  25 kW  

Market  

Pp,max/Ps,max 10/10 kW 
cp/cs 10/9 € /kWh 
MCb,max 15 € /kWh  
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smoothing factor in Fig. 2c captures the increasing slope for high SOC at 
the cost of accuracy, especially for low SOC where the deviation be
tween the measured data points and the curves are significant. The in
termediate smoothing factor 0.01 will be used further. 

3.2. Battery modules and package 

The Nissan Leaf 2013 battery package configuration consisting of 48 
modules in series has been used. Each module has four cells, where two 
and two are in parallel. The experimental values in [25] has been ob
tained by cycling the battery cells between 3.0 V and 4.2 V. This 
configuration has Nb

ser = 96and Nb
par = 2yielding a voltage range from 

288.0 to 403.2 V. Note that the examples in this paper use conservative 
voltage limits to illustrate the properties of the IVQ-model. 

3.3. Voltage source converter loss curve 

VSC loss values are obtained from [17] (SBS3.7–10), where the ef
ficiency is given as function of AC side power. The efficiency is con
verted to absolute power loss as shown in (40), and the converted 
efficiency data points are used to generate the spline function 
fVSC
loss (p

VSC,AC
t ). To adapt the size of the VSC for the different cases, the 

pVSC,AC
t data points are scaled linearly with PVSC,max as the maximum 

value. 

Fig. 2. Comparison of bi-variate spline curve and measured data for battery cell 
voltage for different smoothing factors. 

Fig. 3. VSC efficiency.  
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pVSC
loss

(
pVSC,AC

t

)
=

(
1 − ηVSC( pVSC,AC

t

))
(40) 

The VSC efficiency curve as function of per unit power is shown in 
Fig. 3a. This efficiency curve is for the nominal DC voltage 360 V. The 
VSC power loss sampling points and the resulting spline function are 
shown in Fig. 3b, where the solid line represents the spline function that 
is used in the optimization problem. The smoothing factor is 0. 

The coefficients of the PE-model loss curve in (14) are fitted by 
evaluating the spline function for 0 and maximum power as shown in 
(41) and (42). 

PVSC,loss
0 = f VSC

loss (0) (41)  

PVSC,loss
2 =

f pu,VSC
loss

(
PVSC,max

)
− PVSC,loss

0
(
PVSC,max

)2 (42)  

3.4. Battery and system efficiency 

The battery round trip efficiency can be calculated based on the 
charge and discharge voltage. Assume the battery is charged at a con
stant current for a short optimization horizon, and then discharged with 
the same current. By neglecting the change in SOC due to the short time 
period, the battery round trip efficiency as a function of current and SOC 
can be found using (45). This has been mapped from the IVQ to the PE 
variable space, and the resulting numerical values are shown in Fig. 4a. 

pb,dch = fv
(
q, ib)⋅ib (43)  

pb,ch = fv
(
q, − ib)⋅ib (44)  

η =
pb,dch

pb,ch =
fv
(
q, ib

)

fv
(
q, − ib

) (45) 

When storing energy in the battery, the energy can either come from 
surplus solar PV generation, or be purchased from the grid. Since PV 
generation is injected on the DC side, it does not have to pass VSC before 
it is discharged. However, when energy is purchased for storage, it is 
first converted to DC and then must be converted back later when 
consumed by the load. The system DC efficiency is the efficiency asso
ciated with storing solar PV energy for later use, and the VSC efficiency 
is multiplied with the BESS efficiency once. The AC efficiency is the ef
ficiency when purchased energy is stored and consumed later, and the 
VSC efficiency is multiplied with the BESS efficiency twice. Both DC and 
AC efficiencies are shown in Fig. 4b and 4c respectively. 

Both figures show that the system efficiency is highest for moderate 
power since the battery efficiency is highest for low power, while the 
VSC has a standby power consumption which shifts the system optimum. 
The efficiency decreases almost linearly when the SOC is around 50%, 
while the non-linearity is more pronounced for both high and low SOC. 

4. Results and discussion 

This section presents the implementation and solving method for the 
proposed models. Moreover, a simulation based validation method is 
proposed. Finally, the results from two examples are presented to 
demonstrate the capabilities of the IVQ optimization model. Both ex
amples are built on the topology in Fig. 1 and the numerical values 
presented in Section 3, and solved using Ipopt in Julia/JuMP. The first 
example involves cycling of the battery, and demonstrates how the 
change in efficiency with respect to SOC influences the optimal solution. 
It also shows how the choice of step length and integration method can 
influence the accuracy of the numerical integration. The second case 
shows how the power delivery capability, due to voltage and current 
limits, is accounted for with an IVQ-model compared to a PE-model. 

4.1. Implementation and solution method 

The problem is solved using the optimization toolbox JuMP (0.21.2) 
[26] in the programming language Julia (1.2) and the non-linear interior 
point solver Ipopt (3.12.10) [27]. Ipopt finds a local solution to 
non-linear and non-convex optimization problems where the objective 
and the constraint functions are twice continuously differentiable. 

Fig. 4. Battery and VSC efficiencies.  
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Computation time of Ipopt depends on problem structure as well as 
the underlying linear equality solver. Both the default solver in Ipopt, i. 
e. MUMPS, as well as the large scale solver PARDISO (6.0) [19] have 
been tested in this paper. PARDISO generally performs well on large 
scale systems [28]. 

Moreover, the voltage function and the VSC loss function must also 
be twice continuously differentiable. A common continuous function for 
describing this voltage is given by [12]. However, this function will 
often give a significant stationary offset compared to the actual voltage 
curve. 

JuMP supports automatic differentiation of user-defined non-linear 
functions [26]. Instead of using a rigorously defined polynomial, the 
voltage surface and the VSC loss are described with a cubic spline 
function. The cubic spline function is piece-wise polynomial, but has 
continuous derivatives up to order two, hence no integer variables are 
needed to solve the problem. Since the voltage is a function of both i and 
q, a bi-variate cubic spline function is used to approximate (8), and a 
uni-variate cubic spline function is used to describe the VSC losses in 
(15). 

4.2. Validation 

To verify feasibility of the proposed schedules from the optimization 
models, a simulation model is used. The simulation model is based on 
the IVQ-model with forward Euler, but the step length is shorter, only 1 
second. The simulation will therefore give a more accurate update of 
SOC under the assumption that the IVQ-model is the true model. 

The simulation model assumes the load, grid exchange, VSC AC 
power and battery discharge is given by the optimization, and simulates 
the battery current and voltage, VSC loss, PV curtailment and SOC. This 
comparison identifies how much the SOC in optimization will drift of 
from the simulation result due to the inaccuracy in numerical integra
tion. Since the PE-model does not include voltage and current as vari
ables, the simulation is also used to check for voltage and current limit 
violations in the model result. Note that the SOC from optimization is 
used in this case since the effect of SOC drift should be kept apart from 
other effects. This simulation method ensures that the load is always 
met, and will reveal if the proposed schedule causes violation of current, 
voltage or SOC limits. 

4.3. Optimality and integration method 

The system efficiency depends on SOC, hence the optimal strategy 
involves operating around the optimal SOC as well as hitting the optimal 
end value. The relation between charge-discharge power and SOC de
pends on the integration method. To demonstrate this, the net load (load 
minus generation) is set to a sine wave with period 2 hours and ampli
tude 10 kW. The system is optimized for 36 hours which involves 18 
charge/discharge cycles, which is long enough to let the battery cycling 
stabilize around the optimal SOC. Other numerical values of this test 
case are shown in Table 3 

The case is optimized with step length 30, 10 and 1 min, and Fig. 5 
shows the resulting optimized SOC, the simulation result and the opti
mization error (difference between optimization and simulation) at 10- 
minute optimization step lengths. Fig. 5a shows how the forward Euler 
cycles at lower SOC than the other methods, which is not optimal based 
on the efficiency surface shown in Figs. 4b, and 4c. The voltage at the 
beginning of a time step is used for integrating the SOC, hence for dis
charging the voltage will be higher than the actual voltage. The losses and the discharge current will therefore be underestimated and promote 

high discharge power. When charging, the voltage will be lower than the 
actual voltage, hence the charge current will be overestimated. In total, 
Fig. 5a shows that the simulated value drifts off from the optimized 
value and the error in SOC accumulated up to the value shown in 
Table 4. When the step size is reduced, the error is reduced significantly. 

Table 5 summarizes number of variables and constraints for the 

Table 3 
Numerical values for sine wave case.  

Pp,max/Ps,max 10.0/10.0 kW 
cp/cs 10.0/9.0 € 
PVSC,max 25.0 € /kWh  

Fig. 5. Comparison of optimization and simulation results for battery cycling 
with different integration methods with step length 10 minutes. 
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problems solved, and the respective computation time and number of 
iterations. The default linear solver in Ipopt, MUMPS, took between four 
and eight minutes solving the cases with one minute step length, and 
several of the other cases did not converge to the desired tolerance. 
Therefore, the PARDISO [19] solver was used instead, which gave a 
significant reduction in computation time for the largest cases and 
improved convergence tolerance. 

For longer step lengths, forward Euler showed convergence problems 
for small initial storage values, which is in accordance with its known 
properties. This is also confirmed by the higher number of iterations 
needed for these cases in Table 5. 

Fig. 5b and 5c show similar comparison for the trapezoidal method 
and backward Euler respectively. The trapezoidal method has a smaller 
error compared to the other methods, which is as expected, since the 
integration is based on the average voltage value for the time step. 
Backward Euler has a smaller deviation than forward Euler for the long 
time steps, while the error magnitude is almost identical for small step 
length. Backward Euler uses the voltage at the end of the time step to 
calculate the current, hence it will underestimate the needed charging 
current and overestimate the discharge current. 

4.4. Solar PV smoothing 

The numerical values for solar PV generation are acquired from [29], 
where the overcast series from Varennes with overcast cloud cover has 

been used. The series have variable time resolution with step length ≤
60s. This case demonstrates how the battery can be used to smooth the 
output from solar PV under the assumption that the system purchase/
sale only can be changed hourly. The PV generation is shown in Fig. 6 
together with the system sale for both the IVQ- and the PE-model. Other 
numerical values specific for this case are shown in Table 6. It is noted 
that despite the differences, the dispatch curves are shaped similarly, 
suggesting that for the non-convex IVQ model the optimizer didn’t 
converge to an obviously sub-optimal solution. 

Fig. 7 shows the simulated SOC for the IVQ- and the PE-model, and 
the error between simulation and optimization. The result show that the 
PE-model violates the SOC lower bound (remark 1, indicated with a 
numbered red circle), and that the error increases when the battery is 
discharged at high power. The PE-model assumes constant battery ef
ficiency, hence it does not capture the increasing loss for high discharge 
power causing the increase in error at remark 1. 

The battery voltage is shown in Fig. 8a, and the both the upper and 
lower voltage is violated for the PE-model (remark 1–4). It would have 
been possible to adjust the power and energy limits such that they were 
not violated, but that would also put unnecessary conservative limits on 
the discharge power or SOC in other situations. Similar violations are 
observed for the current in Fig. 8b (remark 1). 

Also note the difference is charging profile for the two models in 
Fig. 8c. Remark 1 and 2 shows how the charging is ramped down to 
avoid voltage limit violation, while at remark 3, the power is ramped up 
as the increasing battery voltage permits increasing charge power. 

5. Conclusions 

The IVQ optimization model enables operation closer to battery 
boundaries in terms of both voltage, current and SOC than a PE-model. 
Whereas a PE-model must implement conservative charge, discharge 
and SOC limits to ensure feasible solutions and battery life, the IVQ- 
model incorporates the voltage and current limits directly, allowing 
safe operation close to the battery limits. Moreover, the incorporation of 
the voltage surface and VSC efficiency with cubic splines enables the use 
of empirical data or updated measured data directly into the optimiza
tion model. The model can therefore be updated regularly through the 
battery lifetime providing optimal and feasible plans, even when the 
battery properties have changed due to degradation. Finally, the IVQ- 
model will ensure operation at the optimal SOC and charge/discharge 

Table 4 
Accumulated optimization error SOC (Ah) for different integration methods and 
step length with sine wave net load.  

Step length 30 min 10 min 1 min 

Forward 24.13 3.856 0.1222 
Trapezoidal –1.172 –0.1670 –0.003733 
Backward –2.950 –1.125 –0.1215  

Table 5 
Optimization statistics for different integration methods and step length with 
sine wave net load.  

Step length  30 min 10 min 1 min 

#Variables 1024 3040 30,256 
#Equality constraints 733 2173 21,613 
#Inequality constraints 74 218 2162 
#Iterations Forward 119 132 44  

Trapezoidal 46 39 50  
Backward 49 38 39 

Solve time (s) Forward 2.9 6.1 16.5  
Trapezoidal 1.6 2.0 20.0  
Backward 2.0 2.1 15.3  

Fig. 6. PV generation and system output for PV smoothing case.  

Table 6 
Numerical values for PV smoothing case.  

Ps,max 150.0 kW 
cs 10.0 € /kWh 
PVSC,max 150.0 kW  

Fig. 7. Battery SOC for PV smoothing case.  
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power yielding highest efficiency whenever possible. However, the re
sults are sensitive to choice of numerical integration method and step 
length. The trapezoidal integration method has similar scalability to 
problem size as forward and backward Euler, but significantly less error 
for similar step lengths. 

5.1. Further work 

A possible extension of this model is to incorporate degradation costs 
associated with operative variables such as SOC and charge/discharge 
power. The modelling principle may also be adapted to other types of 
storage technologies such as hydrogen or hydropower. 

Renewable generation is subject to uncertainty, and the error from 

uncertainty is integrated over time when it comes to storage operation. 
Combining the proposed method with stochastic renewable generation 
and load is therefore also important further work. 

Finally, the model may also be incorporated in an unbalanced OPF 
model using model predictive control to perform model-based conges
tion management through battery storage operation. 
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