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Abstract

Autonomous airdrop is a useful basic operation for a fixed-wing unmanned aerial system. Being able to deliver an object to a
known target position extends operational range without risking human lives, but is still limited to known delivery locations.
If the fixed-wing unmanned aerial vehicle delivering the object could also recognize its target, the system would take one step
further in the direction of autonomy. This paper presents a closed-loop autonomous delivery system that uses machine vision
to identify a target marked with a distinct colour, calculates the geographical coordinates of the target location and plans a
path to a release point, where it delivers the object. Experimental results present a visual target estimator with a mean error
distance of 3.4 m and objects delivered with a mean error distance of 5.5m.

Keywords Real-time machine vision - Autonomous UAV - Target recognition - Path planning - Guidance and control - Target

identification

1 Introduction

There are numerous situations where delivery of a small
object from an unmanned flying vehicle could be useful.
Fixed-wing aircraft are capable of significantly larger range
and speed compared to hovering aircraft. Placement of sen-
sors on top of an iceberg is one area of application that
requires long range. A possible success scenario could be
a fixed-wing unmanned aerial vehicle (UAV) scanning a
marine area looking for icebergs, then deploying sensors
on the iceberg. Using a UAV instead of manned aircrafts
for this purpose would minimize the risk for human lives at
the same time as keeping the costs down: Manned aircrafts
demand another dimension for the amount of fuel used, hiring
a plane or a helicopter is costly and flying low in the Arctic is
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quite risky. The UAV could be launched from and later return
to a ship, further prolonging the operational range. Another
application is cargo transport in rural areas, or emergency
equipment in search and rescue operations.

Precision drops have been researched for both civil and
military use: Williams and Trivailo (2006) discusses a tech-
nique for cable guided delivery from a fixed-wing manned
aircraft, Wright et al. (2005), Benney et al. (2005), Tavan
(2006) and Joshua and Eaton (2013) describe a military
precision airdrop system from fixed-wing aircrafts, using a
steerable parachute to guide large cargo to the ground. Klein
and Rogers (2015) presents simulation results where a prob-
abilistic mission planner for unguided drops with parachutes
is used. Gerlach et al. (2016) uses airdrops with parachutes
while optimizing the travel distance required to recover the
dropped objects to a base station. VanderMey et al. (2015)
wants to improve the precision of drops with parachutes
by offering a model-based framework. All of these studies
are performed on, or intended for, larger, manned aircraft
releasing its load from a high altitude. McGill et al. (2011)
describes flight tests for deployment of global positioning
system (GPS) sensors on icebergs, and the research describes
use of manually guided, small UAVs. UAVs would bring an
extensive advantage over manned aircraft when operating
off-shore, keeping the human in the loop safely on-board a
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ship or another platform. If the UAV is small as well, the
costs would be reduced further in case of loss of the vehicle.

To determine where to release the object, the UAV could be
provided with the geographical coordinates of a pre-detected
iceberg, then autonomously fly there and perform its mission.
However, as icebergs move, though slowly, the observation
of the iceberg would have to be very recent or the velocity
estimated. Even though it is possible to detect icebergs using
a satellite (Enderlin et al. 2018; Shi et al. 2017; Schaffer et al.
2017; Sulak et al. 2017; Zakharov et al. 2017; Moctezuma-
Flores and Parmiggiani 2017; Kucheikoa et al. 2016), the
information latency may be hours or days, and various con-
ditions like surrounding sea ice can make this difficult and
can cause false detections (Zakharov et al. 2017). A solution
could be to use the same UAV to detect the icebergs (Leira
et al. 2017) and to deliver the object.

This paper presents research on a closed-loop autonomous
solution for a UAV to deliver a small object on a given target.
The UAV scans an area looking for specific visual features
and uses machine vision with real-time on-board data pro-
cessing to identify a target on the ground. It then calculates
a release point and flies autonomously to this point, where
it releases the object to fall down ballistically on the target.
A visual spectrum camera is used to collect images from the
area where the target is expected to be located. Real-time
image processing based on colour segmentation is used to
detect the target and find the pixel position in the image.
Georeferencing (Leira et al. 2015; Helgesen et al. 2017) is
used to transform pixel coordinates from a single image into
more informative Earth-fixed coordinates. Because georefer-
enced coordinates based on a single observation (image) can
be uncertain, the mean georeferenced position, reconstructed
from a batch of images, is used as the position of the target.
These coordinates are sent to the drop algorithm which is
responsible for calculating the release point and execute the
drop.

The main contribution in this paper is a closed-loop
method for autonomous air drops. Not only does the system
deliver objects to the target, it is also able to autonomously
locate the target using on-board sensors and processing.
Experimental results validate the method, and all processing
is performed in real-time on-board the UAV. The solution
builds on the publications in Mathisen et al. (2017) and Leira
et al. (2015), where this paper’s novel contribution is the
combination of a target detection system, a target position
estimation system, an airdrop planning system and a guid-
ance and control system. The airdrop planning system is
simpler and more precise than the one described in Mathisen
et al. (2017): The airdrop planning system presented in this
present paper does not optimize its path frequently, like the
one in Mathisen et al. (2017), but it contains a more finely
tuned ballistic model and presents more reliable results where
the ability to deliver is higher. Moreover, the detection and
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georeferencing systems are implemented on the on-board
computer and used in real-time, which was not the case in
Leira et al. (2015). Therefore, this paper also shows that tar-
get detection through image-processing and georeferencing
can be conducted in real-time on a small embedded computer
with limited processing capacity.

2 Closed-loop autonomous delivery system

The system consists of three separate subsystems, the target
recognition and position estimation subsystem, the airdrop
planning subsystem, and the guidance and control subsystem,
as illustrated in Fig. 1. The subsystems are executed on the
on-board computer, performing all their processing in real-
time.

The target recognition system is responsible for estimat-
ing Earth-fixed coordinates for the target on the ground. The
input to this subsystem is visual spectrum images and tar-
get characteristics. An automatic search pattern is used to
capture images and the detection algorithm searches for the
target signature in the images. If the target is detected, Earth-
fixed coordinates are calculated with georeferencing. When
a sufficient amount of observations and a reliable estimate
of the target coordinates are gathered, the subsystem sends
these to the airdrop planning system.

The airdrop planning subsystem receives a target position
estimate as input. It calculates a path from the UAV’s current
position through a truncated Dubins path (Beard and McLain
2012) to an ideal release point, where the UAV should release
the object it carries. The output of this path planning algo-
rithm is a series of reference points that are ordered in pairs,
creating reference lines for the UAV to follow. These refer-
ence lines are sent to the guidance and control subsystem.

In the guidance and control subsystem, a line of sight
(LOS) guidance algorithm (Beard and McLain 2012) cal-
culates the desired course the UAV should follow, and thus
guides the UAV. In the longitudinal plane, an unpublished
LOS-based controller (Nevstad 2016) based on You et al.
(2012) keeps the UAV’s height stable.

The navigation system is provided by the autopilot, which
receives set-points from the guidance and control subsystem
and performs low-level control of the UAV. The autopilot
delivers wind estimates to the airdrop planning subsystem
and guidance and control subsystem.

If something should happen and the UAV does not get
close enough to the release point, it experiences a missed
target and has to start over and recalculate the release point.
The interface between the first two subsystems is the coordi-
nates of the target, which the target recognition and position
estimation subsystem has estimated, and which the airdrop
planning subsystem uses as input to its path planning algo-
rithm. The interface between the airdrop planning subsystem
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Fig.1 Closed-loop on-board autonomous delivery system

and the guidance and control subsystem is the set of reference
points. Moreover, the airdrop planning subsystem receives
position and velocity estimates as feedback from the guid-
ance and control system. This modular structure is beneficial
when it comes to improving the system, as each subsystem
can be developed separately as long as the interface is main-
tained.

Fig. 2 Raw image with the blue tarpaulin visible in the middle of the
image

2.1 On-board target recognition and position
estimation

This section describes the target detection algorithm and geo-
referencing. As a proof of concept, the target is chosen to be
the blue tarpaulin displayed in Fig. 2. The target has a dis-
tinct colour which is easy to separate from the background in
the visual spectrum. Therefore, the target detection algorithm
utilizes colour segmentation, which is a simple and effective
strategy in this particular case. However, it should be noted
that any computer vision algorithm that segments an image
into target and non-target regions could easily be integrated
with the overall system described in this paper.

A pixel in a visual spectrum image is normally represented
as a 3D-vector with three colour values, namely R (red), G
(green) and B (blue). However, it is possible to represent
pixels in different ways, and colour segmentation is usually
easier to conduct in the so called HSV (hue, saturation, value)
colour space. The HSV colour space separates colour infor-
mation from lighting and reduces the impact from variations
in lighting conditions. Thresholding techniques can, there-
fore, be conducted in a more reliable manner.

The main goal with colour segmentation is to create a
binary image, which is separated into foreground (target)
and background (no target). This is achieved through thresh-
olding. After a new image is sent from the camera to the
the on-board computer, the following steps are performed to
search for targets:

1. Transform the colour space of the image from RGB to
HSV.

2. Use thresholding to detect blue regions in the image that
matches the target signature. In this work the detection
is based on colour, but any visual characteristic(s) of the
target could be used. This gives you a binary image where
detected regions are white and other regions are black.
Figure 3 shows the resulting image after this operation.

3. Search for contours in the binary image to find pixels that
are connected and creates a region.
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Fig. 3 The binary image after thresholding. The tarpaulin is easy to
distinguish from the background

4. Calculate the area of all detected regions and only keep
the detections with similar size as the target. Since the
size of the target decreases with the altitude of the UAYV,
it can be necessary to adjust the size in real-time if the
altitude varies much. This step is used to filter out noise
and regions that only consists of a few pixels. Moreover,
regions inside larger regions will also be removed with
this approach. Various extensions with other features (e.g
filter regions by shape) could also be used.

5. Calculate the pixel centre of the detection. If the centre is
located a sufficient distance from the image border, it will
be kept as a valid detection. Because of a large field of
view, the horizon will be visible during turns with large
roll angles, and detections too close to the border are
discarded because they can be caused by the horizon or
sky.

Figure 4 shows the resulting image where the image in
Fig. 2 is processed through the steps above. The white circle
is the detected centre of the tarpaulin and the red regions show
the contours detected in the image. It is desirable to avoid
false detections. Thus, it is necessary to use ranges for the
thresholding operation that are strict and avoids contours with
a colour that is somewhat similar. That is also the reason for
why the entire tarpaulin is not marked in Fig. 4 since the blue
colour is weaker near the boundary of the tarpaulin. Neverthe-
less, this is not restricting the accuracy of the detected posi-
tion in the image. This is because the position is calculated
as the centre of the detection so it is only necessary to detect
aregion that is centered around the true centre and not neces-
sary to find the whole boundary of the tarpaulin. However, it
is important to find the majority of the tarpaulin so it is not fil-
tered out by the area requirement. In addition, missing the true
centre with a few pixels may not be critical as it corresponds
to a small distance in the Earth-fixed coordinate frame.

When a valid and accepted detection is located in an
image, the next step is to use georeferencing to find Earth-
fixed coordinates. Georeferencing is the transformation of
image pixels into an Earth-fixed north-east-down (NED) ref-
erence system.
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Fig. 4 The resulting processed image with the detection marked. The
red areas mark the detected contours and the white circle marks the
center of detection that is used for georeferencing. Notice that multiple
red contours are displayed in the image, and that contours within con-
tours are removed after this image is generated so that only the largest
contour remains (Color figure online)

Given the pixel coordinates of the centroid of an object
(u, v) and by assuming that the object is located at the ground,
the object’s position (North and East coordinate) in the NE
frame can be found by the following equation (Leira et al.
2015)

Nobj u

1 obj —1 p—1

T EY | =GypET v (1)
1 1

where G y g is the extrinsic camera parameter matrix (camera
attitude and position) given by

GnE = [rl r2 _R;ngcam] (2)

r1 and r are the first and second column vector of R0,
which is the rotation matrix for the rotation from the NED
frame to the UAV’s camera frame. p_,,, is the position of
the camera center given in NED frame coordinates. A is a
scaling factor required to isolate the normalized homoge-
neous coordinates of the North-East position of the object,
[N°Pi E°Pi 11T, K is the intrinsic camera parameters, i.e
the matrix transforming the normalized homogeneous pixel
coordinates [u, v, 1] from image coordinates (pixels) to cam-
era coordinates (world units). K can be estimated by standard
camera calibration algorithms (Helgesen et al. 2019).
Georeferencing will not be described in further detail
since it is described more closely in several other articles
(Leira et al. 2015; Helgesen et al. 2017; Rehak et al. 2013;
Hemerly 2014). However, a few important considerations
and challenges need to be addressed. Georeferencing utilizes
a nonlinear transformation to find Earth-fixed coordinates.
The transformation depends on the attitude and position of
the camera, which again depends on the pose of the UAV.
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Therefore, errors between the estimates in the navigation sys-
tem and the true pose of the UAV will lead to errors in the
georeferenced position. Moreover, mounting misalignment
errors between the camera and the navigation system can
also produce errors in the georeferenced position. The error
in the georeferenced position is proportional to the altitude
when errors in roll, pitch and yaw are considered. There-
fore, it is important to have a reliable navigation system that
is synchronized in time with the camera and calibrated to be
careful when the camera and navigation system are mounted.
Georeferencing also depends on the intrinsic matrix of the
camera, so it is necessary to perform a camera calibration.
To reconstruct 3D-coordinates in the Earth-fixed frame from
a 2D-image, an assumption called the flat-earth assumption
is used. With the flat-earth assumption, it is assumed that all
pixels are located on the same height (form a planar surface)
so that the coordinate indicating the height above the ground
is known through the altitude of the UAV. This is described
more closely in the aforementioned articles.

The georeferenced position from a single image can be
somewhat inaccurate. Moreover, false detections are prob-
lematic if only a few measurements are used. Therefore, it is
desirable to combine several measurements of the position
to get a filtered estimate instead of a single measurement.
It is possible to use a Kalman filter to estimate the posi-
tion with a suitable motion model, and this corresponds to
tracking the target in time. In this paper, the mean georef-
erenced position is used since this is a proof of concept and
false measurements are not expected to be a large issue with
the tailor-made detection algorithm. Moreover, the target is
known to be stationary, but that may not be the case for other
objects such as icebergs. Nevertheless, if false detections or
a moving target can be expected, it is better to use a track-
ing filter to remove noisy measurements and outliers that fit
poorly with the rest of the data. When the required amount of
measurements are received, the mean position of the target
is sent to the airdrop planning subsystem.

2.2 Ballistic model

To calculate the ballistic path of the falling object released
from the UAV, the use of Newton’s 2nd law, assuming only
air resistance and gravity acting on the object, leads to the
ballistic equations:

— o -
Uy
. Z 4
X= Uy _2%2 (vx —wx) Vi 3)
'?y =582 (vy —wy) V,
bed Ly — B8 (v —w) Vr |
2
Ve = \/(Ux - wx)2 + (Uy - wy) + (v — wz)z 4)

The vector x contains the position and velocity in the iner-
tial reference frame, where x points in the north direction, y
points in the east direction and z points in the down direction.
V- is the speed of the vehicle in the inertial frame relative to
the air and wy, wy, w; are the wind velocity components in
the inertial frame. The constants Cp, m, A, p and g are the
drag coefficient, mass and area of the released object, the air
density and the standard acceleration due to gravity.

2.3 Airdrop planning

Once the on-board computer knows the coordinates of the
target, it calculates a release position for the UAV. To calcu-
late the release position, the ballistic equations for a falling
object (3) are simulated from a start height equal to the release
altitude, with a given release airspeed and a release direction
opposite to the estimated wind direction. If there is no esti-
mated wind, the release direction is set to be one that gives
the shortest flight path for the UAV. Throughout the simu-
lated drop, the wind is updated according to the wind profile
power law (5) described in Touma (1977), where p is 1/7.

wi Z1\?
wo - Z> ’
w1 = wind at height Z,

wy = wind at height Z»,

p = exponential parameter 5)

The computation of the geographical coordinates of the
release point is given in Algorithm 1:

Algorithm 1 Compute Release Point

releasePoint.lat = target.lat
releasePoint.lon = target.lon
z = release height
x=y=0
while z > 0 do
Update wind estimate
Update airspeed V.
Simulate equation (3) 1 timestep
end while
Displace releasePoint with (-x,-y) meters in (north,east) direction

The ballistic equation (3) is simulated from the release
height to zero heigh or ground level. Then the release coor-
dinates are equal to the target coordinates, shifted —xm in
the north direction and — y m in the east direction.

Once the release pose has been calculated, the on-board
computer calculates a path to the release point, approaching
it against the wind direction. This path is based on a Dubins
path, which gives the optimal path from one directed point to
another, using a selected turn radius as radius for the curves
in the path (Beard and McLain 2012). The first step to create
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the path is to construct a line through the release point in
the same direction as the wind. At a given distance d, which
would depend on the terrain and dynamics of the UAV, away
from the release point at the same altitude, a point p is placed,
see Fig. 5. Tangent to p, a circle with radius r is constructed.
Its center s will be the first reference sent to the guidance
and control subsystem, with the UAV’s current position as
starting reference for the line. The UAV is supposed to fly
towards the point s, and upon approaching it, loiter around it
in a clockwise direction. Once it reaches the point p, it will
recalculate the release point and draw a new line through the
release point, using the same direction for the line as origi-
nally intended. The reason for recalculating the release point
is to get the current ground velocity, instead of calculating
it based on the air velocity of the vehicle and the estimated
wind velocity, as the ground velocity is dependent on the
direction of the vehicle. From point p to the release point,
the direction of the UAV is fixed.

The system is not using new updates of the wind velocity at
this point. The reason for this is to handle small wind speeds
as well, since the wind direction can vary a lot when there
is little wind. When there is stronger wind, a small change
in the wind will not affect the wind vector significantly, so
the system is robust to changes in the wind. In turbulent
wind conditions, the wind in point p can be subject to a
sudden gust and turn out to be very different from the wind
in the release point, and an update in point p would not give
much improvement. A solution could have been to update the
release point continuously, as suggested in Mathisen et al.
(2017), but more focus here was given on creating a robust
system and eliminating other sources of error, see Sect. 5.

The reference points for the line through the new release
point are sent to the guidance and control subsystem, which
follows the line using desired roll, speed and climb rate com-
mands for the autopilot. When the UAV is within a given
distance from the release point and starts moving away from
the release point, a command is sent to the drop mechanism
to make it release the object. When the object is released, the
planis ended. If the UAV starts moving away from the release
point without being within the release proximity circle, the
algorithm would be disrupted and a new release point would
have to be calculated to restart the algorithm. This situation
is named a missed target situation in Fig. 1.

2.4 Guidance and control

The guidance module will steer the UAV along the reference
line against the wind, while keeping a constant, stable height.
The advantage of using a LOS guidance law, as opposed to a
more simplistic pure pursuit towards the release point, is that
not only is the end destination of the flight decided, but also
the route the UAV will take towards it. As the release point
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is dependent on the direction of the release velocity vector,
this is imperative for the algorithm.

The implementation of the guidance law is based on Park
et al. (2007), which finds a commanded lateral acceleration
that brings the UAV closer to the desired path.

2

gy = 2L—i sin 7, (6)

where V, = |vy, vy, v;] is the ground speed, L; is the
tunable length of a vector, starting from the UAV, which inter-
sects the desired path in front of the UAV, while 7 is the angle
between the this vector and the velocity vector of the UAV,
see Park et al. (2007, fig.1). The desired roll angle can then
be found from:

¢aq = cos 6 arctan <t%m) , (7)

where 0 is the pitch angle.

Due to the sensitivity in the drop location to lateral motions
of the UAYV, the length d of the approach to the release point
should be large enough for the transients in roll and cross-
track error to be negligible. Further, the tuning of the lateral
control should not be too aggressive. A small cross-track
velocity at the time of release, applied to reduce a small cross-
track error, could affect the drop target error more than the
small cross-track error itself. Thus, it can be beneficial to
choose a relatively large L.

The longitudinal controller is an cascaded LOS-based con-
troller based on You et al. (2012). It consists of a height
controller, which provides a desired climb rate fzd accord-
ing to LOS theory and calculates a desired pitch and desired
throttle based on the desired climb rate and desired speed.



Autonomous Robots (2020) 44:859-875

865

The desired pitch 6, is found from Nevstad (2016):

0g = —c1 (Y — va) +va + rim, (8)

where ¢ is a constant, y is the flight path angle and y; is
the desired flight path angle. oy, is the trim angle of attack.
The desired flight path angle or (negative) climb rate is found
from Nevstad (2016):

Kphev+Kihfev) ©)

= yp + arctan

Yd = Vp ( A
where y, is UAV’s the rotation around the y-axis, K

and K;;, are the proportional and integral gains and A is

the lookahead distance. The speed controller is found from
Nevstad (2016):

t

8thr = Kp,va Va +Ki,va / Va (‘E) dt +8htr,trim +Kp,evev (I) 5
0

(10)

where 8, is the desired throttle, K, ,, and K ,, are pro-
portional and integral gains, Va = Vu — Va.desirea and the
last term is a proportional gain to minimum the vertical-track
error e,. In this paper, the UAV keeps a constant height and
speed. For further insight into the longitudinal controller, see
Nevstad (2016).

The input to the guidance and control system is a reference
line from one waypoint to another. The autopilot performs
the low-level control of roll, pitch and throttle using the Ardu-
plane controllers, and provides estimated wind velocity along
with position, velocity and attitude of the UAV.

3 Flight test

The subsystems of the closed-loop autonomous delivery sys-
tem were tested in the spring of 2018. Separate tests of the
target recognition and position estimation subsystem, the
airdrop planning system and the guidance and control sub-
system were carried out, before the whole system was tested.
All tests were performed in wind no stronger than 10 m/s.

3.1 Unmanned aerial system architecture

The unmanned aerial system (UAS) that these experiments
were performed on uses the X8 UAV from Skywalker Tech-
nology. This is a flying wing with a pusher propeller, where
an electric motor has been used. The payload consists of a
Pixhawk autopilot (Pixhawk 2018) with Ardupilot Flight-
stack (ArduPilot 2018) as firmware, a beaglebone black

Fig.7 The payload inside the UAV’s fuselage

(beagleboard.org 2018) as payload computer where the cus-
tom airdrop system code is implemented on an AM335x,
1GHz ARM Cortex-A8 processor, an Axis M1025 network
visual spectrum Camera mounted rigidly underneath the
UAV fuselage, pointing directly downwards, with a maxi-
mum resolution of 1920 x 1080 pixels and a field of view
of 94 degrees, a Ubiquity Rocket M5 SGHz communication
link and an EFL.A405 Servoless Payload Release, controlled
by a PWM signal and holding the object to be released. To
navigate, the system uses an external ublox NEO6 GPS (U-
blox 2017). Ardupilot delivers wind estimates (ArduPilot
2018). The system architecture is described more thoroughly
in Zolich et al. (2015), and the UAV and payload used in the
case study are shown in Figs. 6 and 7.

The software on the payload computer uses the LSTS
toolchain (LSTS 2015), which consists of the modular and
open source embedded software DUNE, the inter-module
communication protocol (IMC), the light-weight linux based
operating system GLUED and ground station and control
center Neptus. DUNE is the software used to implement the
airdrop system. It consists of several modules performing
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Fig.8 The organization of the DUNE tasks used in this mission

their own task, like guidance, target detection or command-
ing the drop mechanism. These tasks communicate with each
other using IMC messages, which are placed on a bus and
available for any task that has subscribed to this particular
message. A working set of these tasks are included in each
mission by specifying them in a DUNE configuration file.
When the software in the payload computer is started, the
only tasks that are active are those decided in the configura-
tion file. The user can plan the mission and observe the UAV’s
path and actions from the control centre Neptus. Neptus also
communicates with IMC messages, and can access the same
messages as the DUNE tasks. When the mission is over, all
IMC messages and log data can be downloaded through Nep-
tus’ mission review and analysis centre. In the payload used
in this mission, the DUNE tasks are organized as shown in
Fig. 8. Control commands and navigation data are exchanged
between DUNE and Ardupilot using the MAVLINK proto-
col. The LSTS toolchain is published in Pinto et al. (2012),
Pinto et al. (2013). The image processing uses Open Source
Computer Vision Library (OpenCV) (OpenCV 2018).

3.2 Adaptation to the UAS architecture

To adapt the closed-loop autonomous delivery system to the
UAS architecture presented above, some tuning and modifi-
cation were needed. The object to be released from the UAV
is attached on the underside of the UAV’’s fuselage, see Fig. 9.
The UAV used in these experiments has a propeller on the
hind part, in which the released object could get entangled.
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Fig.9 The object to be released attached to the underside of the UAV’s
fuselage

Therefore, this could compromise the path of the released
object and potentially destroy the propellers. To avoid this
problem, the motor is turned off a short time before releas-
ing the object, causing the propellers to fold. As this causes
the UAV to lose speed, especially in strong wind, the release
point is based on a ground speed that is lower than the UAV’s
speed in the point p, Fig. 5. Empirical tuning showed that a
speed reduction compensation of 2.0 m/s was sufficient to
produce a mean velocity error in the release point approxi-
mately at zero. This is elaborated in Sect. 5.2.

3.3 Dropped object

The object to be released in the case studies is a small disc
carved out of PVC, see Fig. 10. The disc is approximated as
a sphere during the fall, since it will spin around and there
is no better way to approximate the surface area during a
drop. The best guess for the surface area will therefore be
the largest surface area of the disc, given by 72. The mass,
air density and acceleration due to gravity are known. The
drag coefficient Cp was identified through empirical tuning
of the ballistic equation, and the tuning process is given in
Table 1. The wind varied from around 8 m/s in the beginning
of the testing to around 6 m/s at the end of the testing, at
one point as low as 4 m/s, keeping the same direction. The
model used for the ballistic equations in (3) is simple and
may ignore other forces that can act on the object, assuming
that they are negligible. Therefore, the along-track error in
a drop result is attempted compensated for by adjusting the
drag coefficient assumed in the model (3). If the calculations
use a drag coefficient that is larger than the object’s actual
drag coefficient, then the calculated along-track drop path of
the object will be shorter than the actual along-track drop path
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Fig. 10 The object released from the UAV during the test cases

of the object. If the calculations use a drag coefficient that
is smaller than the object’s actual drag coefficient, then the
calculated along-track drop path of the object will be longer
than the actual along-track drop path of the object. Based on
this, a drop where the object landed ahead of the target would
call for a decrease of the drag coefficient estimate, while a
drop not reaching the target would call for an increase of the
drag coefficient estimate. The numerical parameters of the
ballistic equations in (3) are given in Table 2.

3.4 Test procedure

This section describes the test procedure for the different
subsystems.

3.4.1 Airdrop subsystem test and tuning

To test the airdrop subsystem only, the same procedure was
followed both for tuning of the system and for repeating the
tests with the accepted parameters. The UAV was launched
manually and set to an automatic loiter controlled by the
autopilot. Then the target coordinates were sent manually to
the payload computer from the ground station, and the opera-
tion started. The UAV performed its manoeuvre as described
in Sect. 2.3, before the pilot once again took control over the
UAV and landed it manually.

3.4.2 Target recognition and position estimation

It was desirable to tune the target recognition and position
estimation system in real-time. Therefore, images were sent
to the ground station during flight so that different parame-
ters could be adjusted online. This was important so that the
tarpaulin could be detected effectively and limit the number
of false detections. Moreover, the mean georeferenced posi-
tion was also sent to the ground station so that the accuracy
of the mean georeferenced position could be monitored. The
raw image was downscaled to a resolution of 640 x 360 pix-
els to reduce the computational load and the following values
for the thresholding operation were chosen during testing:

— Hue (has a range from O to 180)—values in the range
from 100 to 110 kept as a possible target. This is where
the blue colour is located in Hue.

— Saturation (has arange from 0 to 1)—values from 0.75 to
1 kept as a possible target. The saturation value models
various shades of colour and a large value gives a bright
colour with less gray shades.

— Value (has a range from 0 to 1)—values from 0.75 to 1
kept as a possible target. The value component gives the
amount of black and white and a large value represents a
larger amount of white.

Note that these parameters are tailored for detecting the
tarpaulin robustly. The large saturation and value components
are chosen since the tarpaulin has a bright blue colour without
gray shades. The parameters need adjustment if targets with
different properties are searched for.

If a pixel has values corresponding to the ones above and
fulfills the intervals for all the channels (H, S and V), the cor-
responding pixel in the binary image is kept as one belonging
to a target. Pixels outside of these intervals are not considered
as a target and marked as background in the binary image.
When searching for contours in the binary image, the largest
contour with an area above 50 pixels is kept as possible detec-
tion. Moreover, if the detected centre position of the contour
is more than 60 pixels from the horizontal image borders
and 30 pixels from the vertical image borders, the detection
is validated and sent to the georeferencing algorithm. The
position acquired with georeferencing is used to update the
mean position of the target.

3.4.3 Full system test

To test the entire system, a similar procedure as described
above was followed: The target used for these tests was a 3
m x 5 m blue tarp, laid out on the ground, see Figs. 2 and
11. First, the UAV was launched manually, then the autopi-
lot assumed control of the UAV and controlled it in a given
search pattern. In this search pattern, the target recognition
task detected and estimated the coordinates of the target con-
tinuously, until the ending criterion was met. 10 full system
tests were conducted initially where the ending criterion was
a manual verification of the estimated target position. Thus,
the operator needed to approve the estimated target position
before it was sent to the precision drop system. Typically
70-115 images with detections were used to get an accuracy
corresponding to a few meters (see Fig. 15). The manual ver-
ification was used as a safety layer to ensure that the accuracy
of the estimated target position was acceptable. Note that the
estimated target position could not be changed or adjusted
during the verification, but that the operator could prevent the
precision drop module from starting in case of poor accuracy.
To further illustrate that this can be done autonomously with-
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Table 1 Drag coefficient tuning

results Drag coefficient Error (m) Comment Wind speed (m/s)
0.9 22 Too long 8
0.9 14 Too long 8
0.75 21 Too long 9
0.75 12 Too long 7
0.6 17 Too long 8.5
0.6 13 Too long 8
0.4 6 Too long 6
0.4 10 Too long 8
0.3 1 Too long 8
0.3 9 Too short 10
0.3 20 Too long 8
0.3 2 Too long 8
0.3 22 Too long 9
0.3 3 Too long 6
0.25 11 Too long 6
0.25 6 Too short 7
0.25 3 Too long 7
0.25 10 Too long, skew 4
0.25 5 On line 6
0.25 13 Too long, skew 6
0.25 2 On line 6.6
0.25 8 Too long 8
0.25 3 Too long, skew 6
0.25 12 Too short 55

Tab!e? Num.erical values for Property Value

ballistic equation
m 0.312 kg
P 1.246 kg/m3
A 0.011304 m?

Cp 0.25
g 9.81 m/s?

out human interaction, a final test was executed. The ending
criterion in this test was simply a check of the total number
of detections and the estimated target position was automat-
ically approved after 75 images with detections of the tarp.
After 75 target detections, the mean georeferenced position
was sent to the precision drop system, which then started
automatically. Note that a more advanced strategy such as
investigating the derivative of the mean position to find out
if convergence is reached faster can be used together with
a requirement for the minimum amount of detections. After
the ending criterion was met, the target position coordinate
estimates were sent to the airdrop planning system, and the
UAV performed its maneuver as described in Sect. 2.3.
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Fig. 11 The tarp used as target in the full system test, laid out on the
ground

4 Results

The results of the case studies described in Sect. 3 are given
here. All airdrop tests were performed at an altitude of 50 m,
and the target recognition subsystem operated on an altitude
of 100 m. The reason for using different altitudes was to
operate each subsystem with optimal conditions, to optimize
the results in this proof of concept research. For the target
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Fig. 12 Landing position from precision drop tests. The number on the
crosses correspond to the numbers in Table 3

recognition subsystem, the ground coverage is proportional
to the altitude. However, increasing the ground coverage also
increases the coverage of a single pixel. Therefore, an altitude
of 100m was decided to give a reasonable trade-off between
ground coverage and detail level. The uncertainty of a drop
increases with the altitude. Therefore, an altitude of 50 m was
decided to be high enough to maintain safety, though still as
low as possible. The commanded airspeed was 18 m/s.

4.1 Drop tests with known target

The results from the 10 airdrops performed without the tar-
get recognition system, i.e. with known target position, are
shown in Fig. 12. These drops have a mean absolute error of
7.19 m with a standard deviation of 3.70 m, and the mean
value of all drops is placed 3.01 m away from the target
with a standard deviation of 7.81 m. In Table 3, the Target
Drop Error, Release Point Error and Release Velocity Error
of each drop are presented. Target Drop Error is the distance
from the object’s landing position to the target, the Release
Point Error is the distance from the calculated release point
to the position where the UAV actually released the object,
and the Release Velocity Error is the velocity that the UAV
had while releasing the object, subtracting the velocity that
it was supposed to have while releasing the object. During
these tests, the estimated wind varied between 4 and 8 m/s.

4.2 Drop tests with closed-loop autonomous
delivery system

The full system with target recognition and drop was tested
with 11 drops, and the results are shown in Fig. 13. These
drops have a mean absolute error of 5.51 m relative to the

East - Meters

Fig. 13 Landing positions and target estimates from the full system
test. The numbers correspond to the numbers in Table 4

true target position, with a standard deviation of 3.75 m, and
4.41 m relative to their corresponding estimated target, with
a standard deviation of 3.05 m. The estimated targets have a
mean error of 3.37 mrelative to the real target with a standard
deviation of 1.31 m. The mean value of all drops is 1.68 m
away from the real target, with a standard deviation of 6.66 m,
and 0.51 m away from their corresponding estimated target,
with a standard deviation of 5.51 m. The mean value of all
the target estimates is 2.01 m away from the real target, with
a standard deviation of 3.13 m. In Table 4, the results are
presented. The column Real Target Drop Error [m] is the
delivered object position error relative to the real target, the
column Estimated Target Drop Error [m] is the delivered
object position error relative to the estimated target position
and the column Target Estimation Error [m] is the error of
the estimated target position (georeferencing) relative to the
real target position. We see that coincidentally, the best hit
relative to the real target was drop 11, which was the drop
without human in the loop. During these tests, the wind varied
between 1 and 5 m/s, where the 6 last drops had a different
wind direction than the first 5, which means that the UAV
approached the release point from a different angle (as it
always releases its object against the wind).

The results of the target detection and position estimation
system are displayed in Figs. 14 and 15. Each test corre-
sponds to one curve in Fig. 15 and the error in the end is also
stated as the Target Estimation Error in Table 4. Notice that
for almost every test, convergence is reached after approxi-
mately 30-40 measurements so it may not be necessary with
a larger amount of measurements. Notice also that one test is
standing out from the rest because of a couple of false detec-
tions that moves the mean estimated position significantly.
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Table 3 Precision drop system

tests # Target drop error Release point Release velocity error Wi.nd velocity at release
(m) error (m) (vx, vy) (m/s) point (wy, wy) (m/s)
1 11.06 2.13 (3.07, — 1.48) —4.39,3.81
2 5.82 1.76 (—=0.53,0.55) —6.97,3.80
3 2.95 2.62 (0.21, 0.28) —6.94,1.34
4 9.91 1.71 (1.57,1.21) —4.51,2.46
5 5.44 1.68 (1.02, 0.25) —8.14,0.97
6 10.99 1.19 (1.61, 0.96) —5.65,-0.29
7 2.27 1.74 (1.64, —0.24) —6.54,0.69
8 8.27 3.21 (2.01, 0.03) —17.29,1.60
9 3.25 2.40 (—0.43, -0.22) —6.17,0.74
10 11.92 2.39 (—3.52,0.66) —6.14,0.73
This is actually the first test and the thresholding values were 50r
changed to the ones listed in Sect. 3.4.2 after this test. These 401
detections are caused by the blue horizon being detected dur- .l °
ing sharp turns and could be filtered out with a more advanced
detection framework or by a tracking filter. If a tracking filter 20y
was used, consistency analysis could have revealed that the =107
false measurements could not possibly be originated from the g ol
tarpaulin. However, after the adjustment of the thresholding 2
ranges, no more false detections were experienced through- 107
out the the 10 other tests. -20¢
The location of georeferenced points in Fig. 14 is inter- 300 o
esting since they are distributed in a symmetric way around
the true position (the origin), but very few detections are “or
-50 . ‘ ‘ ‘ ‘ .

very close to the origin. This indicates that a system-
atic error is present in the navigation system which is
canceled by observing the tarpaulin from different orien-
tations and positions. A bias in the height may give this
kind of distribution and is not unlikely considering the
fact that the flat-earth assumption is used together with a
single-frequency GPS receiver. In addition, since the mean
georeferenced position is quite accurate when observing
the target from different poses, it is not considered to be
of great importance to compensate for the bias explic-
itly.

The tracking performance of the LOS Guidance system is
shown in Fig. 16. Each test corresponds to one curve, which
shows the UAV’s distance from the tracked line of sight. As
all of the lines tend to converge to zero, the tracking in the
release point is fairly accurate.

5 Error analysis

The standard deviations in the positions of all delivered
objects are 7.81 m for the tests without target identification
and 5.51 m relative to the estimated target for the tests with
closed-loop autonomous delivery system. These standard
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Fig. 14 Distribution of the georeferenced positions for all 11 closed-
loop tests. The true position of the target is for illustration purposes in
the origin of NED
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Fig. 15 Error in the mean georeferenced position as a function of the
number of measurements in all closed-loop tests
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Table 4 Closed-loop

autonomous delivery system # Real target drop Estimated target Target estimation Wi.nd velocity at re}ease
tests error (m) drop error (m) error (m) point (wy, wy) (m/s)

1 5.53 4.32 5.34 —1.51, 1.10

2 5.32 2.56 2.88 0.13,2.58

3 5.00 2.29 4.35 —0.97,3.12

4 6.76 5.19 1.75 —1.02,3.15

5 3.49 2.21 1.81 —1.60, —2.84

6 10.19 6.94 4.36 —3.27,-2.04

7 2.44 7.15 4.75 —1.75,-0.09

8 13.90 11.36 3.99 —3.56, —0.74

9 4.61 3.20 2.06 —2.96,0.52

10 2.97 1.10 3.80 —2.04,—-0.95

11 0.43 2.15 2.01 0.29, 2.06

100

Tracking Error [m]

10 20 30 40 50 60 70
Time [s]

Fig. 16 Tracking performance of the LOS Guidance system as a func-
tion of the number of measurements in all closed-loop tests

deviations indicate that there remain errors and uncertainty to
the system that is not controlled. It is possible to organize the
possible sources of error into sources of error affecting the on-
board target recognition and position estimation subsystem,
sources of error affecting the airdrop planning subsystem,
sources of error affecting the guidance and control subsys-
tem, and sources of error affecting all three subsystems. In
turn, the sources of error affecting the airdrop system can be
divided into along-track errors and cross-track errors. The
cross-track errors are the ones caused by oscillations in the
guidance and control subsystem.

5.1 Sources of error affecting the on-board target
recognition and position estimation subsystem

The main error source for the target recognition and position
estimation system is related to the georeferencing algorithm.

Attitude errors in the navigation system will have a large
influence on the georeferenced position. Therefore, time syn-
chronization between the camera and the navigation system
is imperative and it is important that the navigation sys-
tem is calibrated to be aligned with the true body axes of
the UAV. It is also important to minimize the misalignment
errors between the camera and the naviagation system so
careful mounting is necessary. Bias in the inertial sensors
in the navigation system can also be an issue. The error in
the georeferenced position grows linearly with the altitude
for navigation errors in the attitude. Thus, it is important to
limit attitude errors as much as possible. If a constant bias is
present in the system, it is desirable to design a search-pattern
where the target is approached from different directions. This
can contribute to cancel out the error. Approaching the target
from the same position and with the same orientation will
in general not remove the bias and will then give a constant
error in the georeferenced position.

It can also be errors in the detection algorithm so that the
detected pixel position is a few pixels away from the true
centre. With an altitude of 100m and image resolution of
640 x 360 pixels, a single pixel covers approximately 23 cm
on the ground. Missing the centre with a few pixel is, there-
fore, a small error compared to a situation where e.g. the
roll estimate is a couple degrees from the true roll angle.
False detections can be an issue, as experienced in the first
test, but was not encountered during the other tests because
the detection algorithm was tuned to be strict and only find
regions with a definite blue colour. As a consequence, the
tarpaulin was not detected in several images where it was
visible because of the small acceptable range in the thresh-
olding operation. Nevertheless, missing the tarpaulin in some
images was considered to be a safer option than getting false
detections that could demolish the mean georeferenced posi-
tion.
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The dominating source of error affecting the on-board
target recognition and position estimation subsystem is mis-
alignment in the orientation of the camera with respect to
NED (between the true orientation and the one given by
the navigation system). This can be caused by estimation
errors in the attitude given by the navigation system or that
a constant bias is introduced during mounting of the cam-
era and navigation system. Since the georeferencing error is
proportional with the altitude for errors in the orientation,
care should be taken during mounting. The error is limited
by approaching the target from different directions since a
constant bias will be mitigated by a varying path. The geo-
referencing error turns out to be a relatively small error, based
on the estimates shown in Fig. 13, and the remaining error
is most likely dominated by errors in the orientation of the
camera.

5.2 Sources of error affecting the airdrop planning
subsystem

One source of error that would effect the airdrop system is
an incorrect wind estimator. However, Mathisen et al. (2017)
shows that the target error due to 1 m/s increase in wind will
be approximately 0.1 m. The same paper shows that the target
error due to 1 m error in altitude is about 0.4 m, and that the
target error due to 1 m/s error in the ground speed is about
3.4 m.

The main source of error affecting the along-track error
of the precision drop system seems to be the release velocity
error. It arises when the UAV does not have the ideal veloc-
ity at the release point, and is caused by a combination of
the UAV’s longitudinal speed controller not functioning per-
fectly, and the UAV losing speed when the motor is turned
off. As the lost speed due to no motor power is expected,
it is attempted compensated for, which is the main reason
behind recalculating the release point in point p, Fig. 5. The
UAV is commanded to fly with an airspeed of 18 m/s on
the LOS through the release point, but the final release point
is calculated based on the ground speed that the UAV has
in point p, Fig. 5. From this ground speed, 2 m/s is sub-
tracted and the ballistic path is calculated using this as the
initial ground speed. With an approximately constant wind
speed, the ground speed resulting from a commanded con-
stant airspeed should be approximately constant as well. Still,
there are some variations, which are presented as the release
velocity error in Table 3. The mean value of the difference
between the calculated release ground speed for the UAV
and the actual release ground speed is (0.26, —0.58) m/s,
which means that a speed reduction constant of 2 m/s is close
to correct. The size of the speed reduction constant will be
dependent on the time without the motor turned on, before
releasing the object, and the strength of the wind. When the
UAV has a longer gliding time, the speed reduction will be
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larger, and for a shorter time, the speed reduction will be
smaller. A stronger head wind will also give a larger speed
reduction. A measure to reduce the mean release speed error
could be to model this relationship instead of using a con-
stant time with the motor turned off, and a constant speed
reduction.

Comparing Table 3 and Fig. 12, a weak correlation
between the release velocity error and target error can be
indicated. We see that drop 2 and 10, which were too short,
had release velocities that were smaller than they should have
been, and drop 1 and 8, which were too long, had release
velocities larger than they should have been. Drop number 3,
7 and 9 have the smallest target errors, and drop 3 and 9 have
the smallest release velocity errors as well. Following the
same train of thought, according to Fig. 12, drops 1, 3, 4, 6,
7, 8,9 should have a release velocity where the x-component
should be positive and drops 2 and 10 should have a release
velocity where the x-component should be negative. Except
for drop 9, this is true. Looking on the east-component of the
release velocity error, drops 1 and 9 should have a negative
y-component whereas drops 2, 5, 6 and 10 should have a
positive y-component. This is true in all cases. For the rest
of the drops, the effect of the different release velocity error
components are not as pronounced.

Another possible source of error affecting the along-track
error could be model mismatch. As mentioned in Sect. 3.2,
the ballistic equations in (3) are simple, and it is possible
that some effects are omitted. However, it is likely that these
effects are small, and that the model mismatch comes from
an incorrect drag coefficient. Even though the tuning led to
a drag coefficient of 0.25, which was found sufficent, it is
not perfect. Mathisen et al. (2017) shows that the effect of a
faulty drag coefficient is between 0.1 and 0.4 m, and that the
effect increases with increased speed.

The main source of along-track error affecting the airdrop
planning subsystem is the release velocity error, which varies
with the wind speed, but which is not modelled thoroughly.
The relative importance of this source of error is quite large,
and this error could profitably be minimized by work in the
relationship between head wind and release speed reduction.

5.3 Sources of error affecting the guidance and
control subsystem

Errors in the guidance and control subsystem will appear
when the UAV is not able to follow aline correctly. This could
be caused by the algorithm not being robust enough against
the wind disturbances, because the algorithm is poorly tuned
in general or against this particular UAV. The lookahead dis-
tance A mentioned in Sect. 2.4 was tuned in the initial airdrop
planning subsystem tuning, to compensate for a more oscil-
lating system.
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The cross-track error of the dropped object is most likely
caused by oscillations while trying to follow the LOS through
the release point. Inspection of the path of the UAV during
this part of the flight showed that it was not entirely straight,
and moreover, that the roll of the UAV was not equal to zero.
Tuning of the guidance control has attempted to avoid these
errors, so they are minimal, but still present. The cross-track
error of the LOS guidance can also be seen in the cross-track
component of the release point error, see Table 3.

This is measured by the tracking performance, shown in
Fig. 16. As we can see from the figure, the tracking error
tends to zero in the release point. This is assumed to be a
relatively small source of error.

5.4 General sources of error

As both the target recognition system and the precision drop
system are dependent on an accurate positioning system, an
error here will cause an error in both the georeferenced posi-
tion and in the drop precision. An example of this is the
GPS mean sea level (MSL) height, which changed every
time the autopilot was rebooted. However, this altitude error
was assumed constant throughout the test. The circular error
probability (CEP) velocity and horizontal position accura-
cies of the autopilot’s GPS receiver are 0.1 m/s and 2.5 m
respectively (U-blox 2017), which means that the horizontal
position inaccuracy will be dominating according to the error
analysis in Mathisen et al. (2017). The RMS accuracy for the
timepulse signal of the GPS is 20 ns (U-blox 2017), which is
negligible, but there is also a time delay from when the GPS
solution is valid to it gets to the computer. This is attempted
compensated for by calculating the position of the UAV 0.1 s
ahead, based on the current values for velocity and position.

These sources of error are not assumed to be relatively
important, as they are constant and will presumably disappear
when the system is tuned.

6 Conclusion

The experimental results show that the closed-loop
autonomous delivery system can deliver objects from a small
fixed-wing UAV with an expected target error distance of
less than 6m from 50m altitude and 18 m/s speed, based
on a machine vision based target estimate with an expected
error of less than 4 m. The system has been proven to work
in wind velocities ranging from 1 to 8 m/s. There are some
known sources of error, where the release velocity error
is the relatively most important ones. However, they have
been attempted reduced during tuning. The intention of this
research is to be used as a proof of concept, without focusing
on eliminating all possible sources of error.
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