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Abstract. We study an inverse problem where an unknown radiating source
is observed with collimated detectors along a single line and the medium has
a known attenuation. The research is motivated by applications in SPECT
and beam hardening. If measurements are carried out with frequencies ranging
in an open set, we show that the source density is uniquely determined by
these measurements up to averaging over levelsets of the integrated attenuation.
This leads to a generalized Laplace transform. We also discuss some numerical
approaches and demonstrate the results with several examples.

1. Introduction. We consider the following one-dimensional inverse problem: The
intensity of radiation from an unknown source in a known medium is measured at
multiple frequencies. How uniquely does this determine the density of the source?
A more detailed description of the model is given in section 1.1 below.
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This physical problem boils down to the following mathematical question on the
interval I = (a, b): Given a function p : I → R, does the knowledge of the function

D(λ) =
ˆ b

a

λp(x)ρ(x)dx (1)

for λ in an open set U ⊂ (0, 1) determine the function ρ : I → R uniquely? Uniqueness
of ρ depends on the properties of p in a peculiar way.

We denote by P : L2(I) → L2(I) the unique projection onto L2(I, σ(p)), the
subspace of L2(I) consisting of σ(p)-measurable functions. Here σ(p) is the smallest
sigma-algebra on I which makes p measurable and contains sets of zero Lebesgue
measure. This operator satisfies for any ρ ∈ L2(I) that the function Pρ is σ(p)-
measurable and for every σ(p)-measurable A ⊂ I we haveˆ

A

Pρ(x)dx =
ˆ
A

ρ(x)dx.

If I has measure one, the operator is the conditional expectation E [ρ|σ(p)]; for more
on conditional expectation we refer to the books [7, chapter 2][15, chapter 5]. For
more details on the operator, see section 2.1.

The conclusion is that the data D does not in general determine ρ, but it does
determine the projection Pρ and nothing more. We have unique determination
precisely when σ(p) is the whole Lebesgue algebra. This is formulated precisely in our
main theorem, which we prove in two different languages; by a measure-theoretical
approach in section 2 and a probabilistic one in section 3:

Theorem 1.1. Suppose ρ ∈ L2(I) and p ∈ L∞(I). Let U ⊂ (0, 1) be a nonempty
open set. Then the following are equivalent:

1. The function D(λ) defined in (1) vanishes for all λ ∈ U .
2. Pρ = 0, that is, the function ρ is orthogonal to L2(I, σ(p)).
3. For all A ∈ σ(p) it holds that

´
A
ρ(x)dx = 0.

The probabilistic approach also works with ρ ∈ L1(I) and with U a sequence
with a cluster point. The next corollary follows immediately.

Corollary 1. If the functions D1 and D2 arise from the functions ρ1 and ρ2 by (1),
then D1 = D2 if and only if Pρ1 = Pρ2.

The linear map ρ 7→ D is injective if and only if σ(p) is the whole Lebesgue
algebra. This happens, in particular, when p is injective.

The function D : U → R defined by (1) is the data, and it depends linearly on the
unknown function ρ. Therefore it follows from the theorem that a function ρ ∈ L2(I)
is determined by D up to an element of the space L2(I, σ(p))⊥ ⊂ L2(I), which is
the kernel of the linear operator ρ 7→ D. Another way of viewing this is that the
push-forward of ρdx under p is recovered.

The theorem completely characterizes what can be said about ρ, given p and D.
If the attenuation coefficient is strictly positive (see section 1.1), then p is strictly
increasing and the source density ρ is determined fully uniquely.

For a concrete situation where the result applies, consider a medium composed
of a single material. That material has been CT scanned so as to determine its
density β(x). Then suppose another substance is added, and it emits radiation on a
broad spectrum. The density of this new material on a single line can be monitored
by measuring intensity of radiation coming along that line at multiple frequencies
with a collimated detector. If β > 0, this information determines the density ρ of
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the source uniquely. To monitor the intensity of the source as a function of time
after the initial CT scan, it is sufficient to use a single line for measurements. This
idea is similar to that used in SPECT and PET where a CT scan is first needed to
map the attenuation before something else is used to image the radiating source.
For more on related imaging modalities, see section 1.2.

1.1. The model. Suppose the source of radiation is f(ω, x) and the attenuation
coefficient is µ(ω, x). The frequency ω takes values in an open set U ⊂ (0,∞) and
x ∈ I = (a, b). The measurement is the intensity of radiation at a, which is given by

M(ω) =
ˆ b

a

e−
´ x

a
µ(ω,y)dyf(ω, x)dx

according to Beer-Lambert’s law [14]. The physical problem is to recover the source f
using the measurement M(ω) for a large number of frequencies ω.

To do this, structural assumptions on µ and f are needed. We assume that they
both factor: µ(ω, x) = α(ω)β(x) and f(ω, x) = ε(ω)ρ(x). The functions β and ρ can
be regarded as the spatial densities of the absorbent and the source. The functions α
and ε correspond to “spectral densities” and depend on the physical process behind
attenuation and emission. We note that similar assumptions have been made in an
earlier study [10, remark 1].

If both the absorbent and the source are composed of a single material, this factor-
ization is well-justified. The rate of absorption or emission is directly proportional to
the density, and the functions α and ε are simply the coefficients of proportionality
which may well — and generally do — depend on frequency. If there are multiple
materials, the frequency dependence can be different for the different materials, and
the overall attenuation coefficient and source no longer factorize.

We introduce two auxiliary functions, φ(ω) = e−α(ω) and p(x) =
´ x
a
β(y)dy. We

work on a frequency range where α(ω) > 0, and so φ(ω) = λ ∈ (0, 1). We assume
that there is a function η : U → R so that φ(η(λ)) = λ for all λ ∈ U . That is, η is a
right inverse of φ, and it exists for some interval U if, for example, α is continuously
differentiable and non-constant.

With these assumptions the measurement M(ω) may be processed to yield the
data

D(λ) = M(η(λ))
ε(η(λ))

used in the equation (1) as a function of λ.

1.2. Background. In the inverse problem presented above, the goal is to reconstruct
the source when the attenuation is known. Well-studied imaging modalities with the
same goal are instances of emission computer tomography. We mention single-photon
emission computed tomography (SPECT) and positron emission tomography (PET).

In both SPECT and PET a radioactive substance is injected into the target. The
substance decays and emits gamma radiation, which is detected outside the target.
From these measurements, one tries to reconstruct the location of the radioactive
substance. In SPECT, the substance emits single gamma-ray photons, which are then
detected. In PET, it emits positrons, which soon combine with an electron, shooting
two gamma ray photons to opposite directions; this pair is then detected [18, 10, 31].
In SPECT, some radioactive substances radiate at several frequencies [31].

In both PET and SPECT the reconstruction is improved if the anatomy of
the target is known a priori [10]. A CT scan is a common approach. Once the
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anatomy is known, the values of attenuation can be recovered based on known values.
We likewise assume a known attenuation and an unknown source; hence, we are
investigating a model of one-dimensional multispectral SPECT/PET.

When a multispectral X-ray beam passes through a material, low-energy photons
are typically attenuated more strongly than high-energy ones, which changes the
frequency profile of the beam. This is called beam hardening [4]. Our model is
consistent with this phenomenon – we assume the factorization µ(ω, x) = α(ω)β(x),
where the α is the dependency of the attenuation on the frequency. Our model can
not only take beam hardening into account but make use of it.

Multispectral (also multi-energy, multichromatic, spectral, spectroscopic, energy-
selective, energy-sensitive, energy discrimination, or colour) X-ray tomography
started with the work of Alvarez and Macovski [1]. Incoming photons are classified
in a number, often two, of energy bins according to their energy by the photon-
counting detectors, after which one can make separate reconstructions at different
energy levels or attempt a joint reconstruction from all the available information.
The two energy levels are especially natural due to Compton and photoelectric
effects [1]. The main challenges are that the measurement devices are expensive
and that the smaller amount of radiation leads to worse reconstructions at every
energy level [30]. For more on multispectral X-ray tomography we refer to the
reviews [17, 19].

Recovering source terms in an attenuating medium can be formulated as the
attenuated or exponential X-ray or Radon transform [6, section 8.8][13][18, section
VI-C][29, chapter 8], which is a multidimensional theory that only uses measurements
at a single frequency. The attenuated Radon transform has an explicit inversion
formula [24, 23, 9]. The present reconstruction theory is one-dimensional, and the
X-ray transform with or without attenuation is never injective in one dimension.
The key is to use several different attenuations or weights along the fixed line, and
in our case this is achieved by using a large number of frequencies.

A different way of using several weights is to study the momentum ray trans-
form [29, 16]. In that problem, one defines the momentum ray transform for points
(x, ξ) ∈ TSd−1 by (

Ikf
)

(x, ξ) =
ˆ ∞
−∞

tk 〈f(x+ tξ), ξm〉dt

for suitable tensor fields f , and tries to recover f from the integrals indexed by all
points (x, ξ) and sufficient number of powers k. The usual X-ray transform I0 of
a tensor field only determines the field up to a gauge, but using moments up to
the order of the tensor field determines it uniquely. For recent results in tensor
tomography, we refer to [25, 26, 13], and we also mention the classical book of
Sharafutdinov [29]. In the same spirit of using moments, in the works [5, 20, 21] the
moments of noisy measurements are related to the moments of the unknown density
function.

The Hausdorff moment problem [28, 32] asks: Given a sequence (sn), does there
exist a measure µ such that, for all n ∈ N,

sn =
ˆ 1

0
xndµ?

If it exists, is it unique? In our problem, we know that the measure ρ(x)dx exists
and want to understand its uniqueness, or, in the language of moment problem
literature, determinacy. More fundamentally, whereas in the moment problem one
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couples the measure with polynomials, we use polynomials of a function p, which
might not be continuous or injective.

Our main theorem turns out to be similar to an inverse problems result for the
variable exponent p(·)-Laplacian [3]. The methods are quite similar, but in the
variable exponent case the equivalent of the measurements λ are explicitly related
to a quantity Kλ, which cannot be expressed analytically as a function of λ, and
the measurements are, using the notations in this paper,ˆ

I

ρ(x)Kp(x)/(p(x)−1)
λ .

The intermediate quantity Kλ causes complications in the proofs, but the final
results are similar to the present ones. In another result the exponent p has been
recovered [2], which suggest that it might be possible to recover the attenuation
from known sources in the present model.

Our problem can also be seen as inverting a generalized Laplace transform [32].
Namely, if ρ is continuously differentiable and satisfies ρ′ > 0, then after changing
the variable of integration in (1) from x to y = p(x) and writing λ = e−α (see
section 1.1), the data can be rewritten as

D(λ) = D̃(α) =
ˆ b̃

ã

e−αyρ̃(y)dy,

where ã = p(a), b̃ = p(b), and ρ̃(y) = ρ(p−1(y))/p′(p−1(y)). Therefore D̃ is the
Laplace transform of ρ̃. However, when p is less well-behaved, such reduction to
Laplace transform does not work. We also point out that putting p(x) = x in
theorem 1.1 implies that if ρ is a compactly supported L2 function whose Laplace
transform vanishes on an interval, then ρ = 0. This corollary is of course not new [32,
chapter 2, section 6].

One can also think of equation (1) as a Fredholm integral equation of the first kind
for the compact operator D̃ : L2(I)→ L2(U) given by D̃(ρ)(λ) :=

´ b
a
λp(x)ρ(x)dx.

1.3. Discussion. If p is piecewise constant — which corresponds to the attenuation
being a sum of delta functions corresponding to thin absorbent films — then the
data D determines the average of ρ on every piece. Nothing else is determined, and
the averages of ρ over the levelsets of p is optimal information.

If p is strictly increasing — which corresponds to strictly positive attenuation
— then heuristically the levelsets are points and the averages should determine ρ
uniquely. This is indeed the case, as the sigma-algebra generated by p is the full
Lebesgue algebra.

Non-negativity of the attenuation coefficient implies that p is increasing. The
model can be extended to the case where p : (a, b)→ [0,∞], where p =∞ corresponds
to the intensity being attenuated all the way to zero. If p =∞ on some subinterval
[b′, b) ⊂ (a, b), then the data tells nothing about ρ on this subinterval as λp = 0 on
this set. Therefore we may restrict the problem to the interval (a, b′) with no loss of
data. It is thus reasonable to assume that on the interval of interest p <∞.

Very weak regularity assumptions on the attenuation coefficient β are sufficient.
If β ∈ L1(I), then p is absolutely continuous, which is more than enough for our
theorem.

Physically p is increasing (since β ≥ 0), but for mathematical purposes it may
be any bounded measurable function. If I = [−1, 1] and p(x) = x2, then the
sigma-algebra σ(p) generated by p consists of subsets of I that are symmetric with
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respect to reflection up to an error of measure zero. Then the data D determines the
symmetric part of ρ uniquely but does not constrain the antisymmetric part at all.

The rough idea of the proof is that linear combinations of functions x 7→ λp(x)

indexed by λ ∈ U can be used to approximate any σ(p)-measurable function I → R.
Thus D = 0 is equivalent with ρ being perpendicular to the subspace of these
functions. This implies that variations of ρ within levelsets of p are undetectable.
This phenomenon is well-illustrated by a simple observation which we provide next.

Proposition 1. Suppose c ∈ R and let ρ ∈ L2 (I) be such that supp (ρ) ⊆ p−1 ({c})
and ˆ

p−1({c})
ρ(x)dx = 0.

Then, for all λ ≥ 0,
ˆ
I

(ρ(x) + ρ(x))λp(x)dx =
ˆ
I

ρ(x)λp(x)dx.

The proof is a straightforward calculation.

2. Main results. In this section we specify notation and prove the main theorem.
An alternative stochastic proof can be found in section 3.

2.1. Definitions and notation. We denote by L the Lebesgue sigma-algebra on
I = (a, b). We always use the Lebesgue measure dx. The sigma-algebra σ(p)
generated by a function p : I → R is also a sigma-algebra on I, and we define it
as the smallest sigma-algebra so that p is measurable and sets of zero Lebesgue
outer measure are measurable. For more on sigma-algebras generated by sets and
functions, see the books [7, chapter 1, definition 5][15, chapter 1].

The following lemma states that σ(p) does not depend on the representative of p.

Lemma 2.1. If g = h almost everywhere, then σ(g) = σ(h).

Proof. Write as σ̃(g) the preimage g−1(σ(R)), which is a sigma-algebra [15, lemma
1.3]. SupposeA ∈ σ̃(g). There then exists a measurableB ⊂ R such thatA = g−1(B).
Now (

A \ h−1(B)
)
∪
(
h−1(B) \A

)
⊆ {x ∈ I; g(x) 6= h(x)} ,

which is a null set. Because A = h−1(B) up to null sets, we have A ∈ σ(h).
If A′ ∈ σ(g), then it is equal to some A ∈ σ̃(g) up to null sets, and by the above

reasoning A′ ∈ σ(h).

The space Lq(I, σ(p)) is the space of σ(p)-measurable functions in Lq(I) up
to almost everywhere equality. If σ(p) = L (the Lebesgue sigma-algebra), then
Lq(I, σ(p)) = Lq(I).

Since L2 (I,L) is a complete Hilbert space and L2 (I, σ(p)) a closed convex set,
we can define the following unique orthogonal projection.

Definition 2.2. The mapping P is the orthogonal projection P : L2 (I,L) →
L2 (I, σ(p)).
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2.2. Lemmas.

Lemma 2.3. For all A ∈ σ(p) the projection P satisfiesˆ
A

fdx =
ˆ
A

Pfdx.

Proof. Since A ∈ σ(p), the characteristic function χA is in L2 (I, σ(p)). On the other
hand, f − Pf ∈

(
L2 (I, σ(p))

)⊥. Hence,
ˆ
A

fdx =
ˆ
I

χA (Pf + (f − Pf)) dx =
ˆ
I

χAPfdx =
ˆ
A

Pfdx.

Lemma 2.4. If a mapping Q : L2 (I,L)→ L2 (I, σ(p)) satisfies, for all A ∈ σ(p),ˆ
A

fdx =
ˆ
A

Qfdx,

then it is the orthogonal projection onto L2 (I, σ(p)).

Proof. The map Q is a linear projection by definition.
For the characteristic function χA of any A ∈ σ(p) we haveˆ

I

χA(f −Qf)dx = 0,

whence f −Qf is orthogonal to L2 (I, σ(p)), since any function there can be approx-
imated by measurable step functions. Because the range of Q is L2 (I, σ(p)) and f
is arbitrary, this shows orthogonality.

Recall the data D : R+ → R,

D(λ) =
ˆ b

a

λp(x)ρ(x)dx.

Lemma 2.5. Suppose λ0 is an interior point of an open set U ⊂ [0, 1]. If D(λ) = 0
for all λ ∈ U , then ˆ b

a

r(p(x))λp(x)
0 ρ(x)dx = 0 (2)

for all polynomial functions r.

Proof. The function D is smooth. In fact, it is complex analytic in a neighborhood
of U as a consequence of Morera’s theorem [27, theorem 10.17].

For any natural number k applying the operator λ d
dλ to D a total of k times gives(

λ
d

dλ

)k
D(λ) =

ˆ b

a

λp(x)ρ(x) (p(x))k dx.

Derivatives of all orders vanish at λ = λ0, whence
ˆ b

a

λ
p(x)
0 ρ(x) (p(x))k dx = 0

for all k. Finite linear combinations of these integrals give equation (2).
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The identity (2) holds for any function r that can be approximated by polynomials
in a suitable sense. We will next study this approximation.

The following multiplicative system theorem is a version of the monotone class
theorem [15, theorem 1.1] written in terms of functions, rather than sets [7, chapter 1,
theorems 19–21].
Lemma 2.6 (Multiplicative system theorem, [7, chapter 1, theorem 21]). Suppose H
is a vector space of real-valued bounded measurable functions on a measurable space X.
Suppose H contains constant functions and is closed under the pointwise convergence
of uniformly bounded increasing sequences of functions. Let E ⊆ H be closed under
pointwise multiplication, and let G be the sigma-algebra generated by E.

Then H contains all bounded G-measurable functions.
We note that the multiplicative system theorem considers a vector space of

functions H and a subset E, whereas we operate with Lebesgue spaces of equivalence
classes of functions.

We consider the set of functions
Ẽ = {λp(·)

0 r(p(·)) ; r polynomial} ⊂ L∞(I).

Recall that σ(p) is the smallest sigma-algebra that makes p measurable and
contains sets of measure zero.
Lemma 2.7. The closure of Ẽ in the L2(I)-norm is L2(I, σ(p)).

The proof is by Nathaniel Eldredge [8], and similar to proofs in variable exponent
Calderón’s problem [3, lemmas 18 and 27]. We omit the space L2 from the notation
of the closure.

Proof of lemma 2.7. The function λp(·)
0 is σ(p)-measurable and bounded away from

zero and infinity. Therefore it may be “divided out” and it suffices to prove the
lemma in the case λ0 = 1. We write as E the space of polynomials of p.

Every continuous function of p is σ(p)-measurable, so the equivalence classes of
the functions in E form a subspace of L2 (I, σ(p)). The space L2 (I, σ(p)) is closed
in L2(I), since a converging sequence in L2 has a pointwise almost everywhere
converging subsequence [27, theorem 3.12], and the limit of such a subsequence is, as
the limit of measurable functions, measurable with respect to the same sigma-algebra.
Hence, we have E ⊆ L2 (I, σ(p)), where we understand E as a space of equivalence
classes of functions.

For the other direction, L2 (I, σ(p)) ⊆ E, we start by considering the vector
space H = {f ; [f ] ∈ E ∩ L∞ (I)}, which consists of all functions whose equivalence
classes are in E∩L∞ (I). It satisfies all the assumptions of the multiplicative system
theorem:
• Constant functions are bounded and polynomials of the function p.
• If a uniformly bounded sequence converges pointwise, then the sequence of the

squared absolute values of the functions also does so, as do their equivalence
classes. By monotone convergence, the Lp norms of the sequence converge.

We have that all representatives of E are in H and E is closed under pointwise
multiplication. By multiplicative system theorem (lemma 2.6), H contains all
bounded σ(p)-measurable functions, whence L2 (I, σ(p)) ∩ L∞ (I) ⊆ E ∩ L∞ (I).

Consider a (not necessarily bounded) equivalence class of functions h ∈ L2 (I, σ(p))
and define

hn(x) = max (−n,min (h, n)) .
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Then, for all n ∈ N, hn ∈ H ⊂ E and hn → h in L2(I) as n→∞, so h ∈ E.

We note that we use a slightly different formalism than the paper of Brander and
Winterrose [3]; here, σ(p) is a completion of a sigma-algebra, whereas they instead
use a mapping [g]σp

→ [g]L, which maps equivalence classes without the completion
into equivalence classes with it. This leads to superficial differences in the proof of
lemma 2.7 when compared to the similar proofs of [3, lemmas 18 and 27].

2.3. Proof of theorem 1.1. We are now ready to prove our main result. Let us
first recall equation (1):

D(λ) =
ˆ b

a

λp(x)ρ(x)dx.

We also recall for convenience the main theorem, which is stated as:

Theorem (Theorem 1.1). Suppose ρ ∈ L2(I) and p ∈ L∞(I). Let U ⊂ (0, 1) be a
nonempty open set. Then the following are equivalent:

1. The function D(λ) vanishes for all λ ∈ U .
2. Pρ = 0, that is, the function ρ is orthogonal to L2(I, σ(p)).
3. For all A ∈ σ(p) it holds that

´
A
ρ(x)dx = 0.

Now we are ready to prove it.

Proof of theorem 1.1. 1 =⇒ 2: By lemma 2.5 the L2 inner product between ρ and
all polynomials of p is zero. This implies that ρ is orthogonal to the L2 closure of the
space of polynomials of p, which, by lemma 2.7, is L2(I, σ(p)). Hence the projection
is also zero.

2 =⇒ 1: Let λ ≥ 0. Since λp(x) is σ(p)-measurable and bounded, we have
λp(x) ∈ L2 (I, σ(p)). By orthogonality the L2-inner product in equation (1) is zero.

2⇐⇒ 3: This is lemmas 2.3 and 2.4.
If p injective, then σ(p) = L and injectivity of ρ 7→ D follows.

3. Probabilistic interpretation. In this section we prove the main theorem in
probabilistic language. We make frequent use of the basic properties of conditional
measures [15, section 5, especially theorem 5.1] [7, chapter 2, number 41]. Let F
be the sigma-algebra of Lebesgue-measurable sets on R (sometimes restricted to
I without changing the notation) and let P(A) = dx

b−a be the Lebesgue measure
rescaled into a probability measure. Then (I,F ,P) is a probability space. We use
the Iverson bracket notation

[p ∈ A] =
{

1, if p(x) ∈ A
0, if p(x) /∈ A.

Theorem 3.1. Suppose ρ ∈ L1 (I,F ,P) and p ∈ L∞ (I,F ,P). Let U ⊂ R+ be a
nonempty open set and write D (λ) = Eλpρ.

Then the following are equivalent:
1. For all λ ∈ U we have D(λ) = 0.
2. E (ρ|p) = 0 holds P-a.s.
3. For all A ∈ F we have E[p ∈ A]ρ = 0.

Remark 1. In 1 in the theorem, it is sufficient that there exists a countably infinite
set of frequencies λ with a cluster point λ0 such that D(λ) = 0.
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We prove the theorem with the remark included, as the remark is stronger than
the theorem.

Proof. We show that the first and the second condition are equivalent and that the
second and the third condition are equivalent.
2 =⇒ 1: For all λ ∈ R+

D(λ) = Eλpρ = E (E (λpρ|p))
= E (λpE (ρ|p)) = 0.

2 ⇐⇒ 3: Define ξ = E (ρ|p). Then, by definition, ξ is the unique σ(p)-measurable
random variable in L1 (I,F ,P) satisfying E[p ∈ A]ξ = E[p ∈ A]ρ. Now, 2 implies 3:

E ([p ∈ A]ρ) = E ([p ∈ A]E (ρ|p)) = 0.
On the other hand, 3 implies 2. For all A ∈ F

E[p ∈ A]ρ = 0 = E[p ∈ A] · 0.
Thus, by uniqueness of ξ, we have ξ = 0 as a random variable, which is claim 2.
1 =⇒ 2: Let V be a countably infinite set of points µ with cluster µ0. Write
µj = log λj and suppose they converge to µ0 as a strictly increasing or a strictly
decreasing sequence (by taking a subsequence without changing the notation). Since
p is bounded, we can define D̃ by D̃(µ) = D(eµ) = 0 for all µ ∈ V .

By using j + 1 consecutive points from the sequence (µk), that is the points
µn, µn+1, . . . , µn+j , we can construct the Lagrange polynomial Lj,n approximation
of order j for a function f , namely

Lj,n(µ) =
j∑
i=0

lj,n,i(µ)f(µn+i)

where the function lj,n,i is the Lagrange basis polynomial

lj,n,i(µ) =
j∏

k=0,k 6=i

µ− µk
µi − µk

.

These are defined for every function f , for every n = 1, 2, . . . and for every j =
1, 2, . . . .

The jth order Lagrange polynomial Lj,n coincides with the function f (at least)
in j + 1 points in the interval In between µn and µn+j , so by Rolle’s Theorem the
jth order derivative L(j)

j,n coincides with the f (j) at least in one point in the interval
I. Therefore, by the Lagrange approximation, the derivatives of order j of the error

Rj,n(µ) = f(µ)− Lj,n(µ)
for a smooth function f ∈ Cj+1 is bounded in the interval In by

sup
µ∈In

| ∂(j)
µ Rj,n(µ)| ≤ sup

µ∈I
|f (j+1)(µ) | |µn − µn+j |.

Since the distance |µn − µn+j | → 0 as n→∞, the jth derivative of the Lagrange
polynomial ∂(j)

µ Lj,n evaluated at µn is an approximation of the jth derivative of
the function f evaluated at µn. Let an,j,i = ∂

(j)
µ ln,j,i(µn) be the corresponding

coefficient in the expansion

(∂(j)
µ Lj,n)(µn) =

j∑
i=0

∂(j)
µ ln,j,i(µn)f(µn+i) =

j∑
i=0

an,j,if(µn+i)
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Note that the coefficients don’t depend on the function f , but only on the in-
dices n, i, j and the sequence (µn). Hence, we assume that the function f(µ) = eµp,
which is a smooth function with random coefficient p in the exponent. Moreover,
the jth derivative of f is f (j)(µ) = pjf(µ).

Therefore, we have for every n and every j that

E (ρLj,n(µn)) = E

(
ρ

j∑
i=0

an,j,ie
pµn+1

)
=

j∑
i=0

an,j,iD̃(µn+i) = 0

since D̃(µ) = 0 for every µ ∈ V . Since the random variable p is bounded, we may
apply dominated convergence and we obtain

E
(
ρpjeµ0p

)
= lim
n→∞

E (ρLj+1,n(µn)) = 0

for every j = 0, 1, . . . . that implies that with linearity that we have Er(p)eµ0pρ = 0
for all polynomials r.

The same approximation would be obtained with iterated differences, when these
are defined recursively for sequences λ = (f(µn))n as

d(1, µ, λ)n = λn+1 − λn
µn+1 − µn

d(j + 1, µ, λ)n = d(j, µ, λ)n+1 − d(j, µ, λ)n
µn+j+1 − µn

where the high-order differences use the right scaling. If the differences would form a
grid, these would be the usual higher order stencil approximations. However, showing
that this works in general is easiest to show via Rolle’s Theorem and therefore, leads
directly to the Lagrange approximation.

Now, by standard argument, since p has compact range, the boundedness of p
implies by Stone-Weierstrass that for all continuous functions f we have Ef(p)eµ0pρ =
0. Monotone convergence then implies that

E[p ∈ J ]eµ0pρ = 0 for all intervals J
=⇒ E (eµ0pρ|p) = 0 holds P-a.s.
⇐⇒ eµ0pE (ρ|p) = 0 holds P-a.s.,

which implies claim 2 in the theorem.

4. Numerical demonstration. To generate the synthetic measurement data Dj ,
we compute the integrals ˆ 1

0
λ
p(x)
j ρ0(x)dx = Dj (3)

by using the Simpson (2n+ 1)-point quadrature rule, where n = 64. In all of our
examples, the measurements are corrupted by small additive Gaussian white noise
with standard deviation σ equal to 0.5 % of the maximum of absolute value of the
measurements.

Next, to solve the inverse problem of recovering ρ0 in (3) from the measure-
ments Dj we first substitute instead of ρ0 the piecewise linear form

ρ0(x) ≈
N∑
k=1

fkφk(x),
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where φk are the hat-functions

φk(x) =


x− xk+1

xk − xk+1
, xk ≤ x ≤ xk+1

x− xk−1

xk − xk−1
, xk−1 ≤ x < xk,

0, otherwise.

Then (3) becomes
N∑
k=1

fk

ˆ 1

0
λ
p(x)
j φk(x)dx = Dj + Ej , (4)

where Ej is an error term which we ignore in the sequel. In practise, the integrals
appearing in (4) can be numerically precomputed for a given function p. Finally
equation (4) can be written as the linear system Af = D and solved by some
regularization method.

We avoid committing inverse crime [22] by generating the measurements Dj

independently of the theory matrix A. Indeed, the measurements are obtained by
integrating the precise model (3) and adding noise, while the theory matrix A is
computed by only integrating the known function λp(·) against φk, k = 1, . . . , N ,
while avoiding the use of the unknown ρ0. Further, we shall use smaller number
of measurements Dj than the number of unknowns fk. In our case the number of
measurements and unknowns will be 300 and 400, respectively.

The computation is not very demanding and can be expected to work on a modern
computer. The numerical work is done in Matlab.

4.1. Regularization. Since the properties of this problem depend quite drastically
on the functions p and ρ, at this point we opt to not propose any universal solution
to the problem. Rather, this part should be regarded as a demonstration that the
problem can in principle be solved numerically. As is usual in inverse problems, the
linear problem Af = D is rather unstable and regularization methods are necessary.
We have tested Tikhonov, total variation (TV), and conjugate gradient least squares
(CGLS) regularization methods.

In Tikhonov regularization [11, 22] one solves the minimization problem

arg min
{
‖Af −D‖2

2 + α‖f‖2
2
}
.

This classical regularization method is very simple to implement and in our tests
works well with low noise-levels when the unknown ρ0 is reasonably smooth. The
down-side to the L2-penalty is that it promotes smoother solutions, failing to recover
discontinuous and irregular functions.

The TV-regularization instead aims to minimize the expression

arg min
{
‖Af −D‖2

2 + α‖f ′‖1
}
.

The L1-penalty term allows some steep gradients and thus can be used when ρ is
more irregular [11, 22].

Finally, the CGLS method is an iterative regularization procedure, where one
solves the least-squares problem

arg min
{
‖Afk −D‖2

2
}

subject to the condition that

fk ∈ span
{
ATD, (ATA)ATD, . . . , (ATA)k−1ATD

}
, k = 0, 1, 2, . . . ,
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Figure 1. Unknown ρ0 (dashed red line) and the numerical solu-
tion ρ (solid blue line) with 0.5% noise level. Example 1 (above)
and example 2 (below) with Tikhonov-solution (left), TV-solution
(middle) and CGLS-solution (right).

that is, the iterates belong to a Krylov subspace. Heuristically, this method attempts
to pick only the significant singular components of the solution fk, because the Krylov
subspaces take into account the (noisy) data D. Using only the significant singular
components allows one to reduce the effect of noise. We use the CGLS-algorithm of
Hestenes and Stiefel; see e.g. [11, 12].

4.2. Examples. Let the number of measurements be M = 300 and the number
of unknown coefficients of the hat functions be N = 400. In these examples the
measurement points λj are uniformly distributed on the interval (0, 1). We also
tested different distributions of λj on the interval (0, 1), but often a good result was
obtained with uniform distribution. Certainly this choice depends on the function p
and can be tailored for applications separately. The functions used in the examples
are as follows:

• Example 1: p(x) = x and ρ0(x) = sin(πx).
• Example 2: p(x) = x and ρ0(x) = 0.3χ(x), where χ(x) is the characteristic

function of the inverval (0.3, 0.6).

The results are presented in Figure 1, where the precise unknown ρ0 is depicted
with the red dashed line and the numerically computed solutions ρ are shown as
the solid blue line. Apparently Tikhonov- and CGLS-solutions work rather well
with smooth ρ0, while in the discontinuous case the TV-regularized solution is
considerably better.

4.3. The sets where p is constant. If the function p is constant in some set
of positive measure, the theory predicts that we can only hope to solve (3) up to
the average of ρ0 in that set. Let M = 300, N = 400, and ρ0(x) = sin(πx). The
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function p is given in the piecewise form

p(x) =



5/3x, x ∈ (0, 0.2],
1/3, x ∈ (0.2, 0.4],
5/3x− 1/3, x ∈ (0.4, 0.6],
2/3, x ∈ (0.6, 0.8],
5/3x− 2/3, x ∈ (0.8, 1].

Here the optimal information to recover is sin(πx) on the intervals (0, 0.2], (0.4, 0.6],
and (0.8, 1] and only the average value of 5/2π ≈ 0.796 on the intervals (0.2, 0.4] and
(0.6, 0.8]. The results are depicted in Figure 2, where the unknown ρ0 is shown in
red dashed line, the projection Pρ0 in black dot-dash line and the numerical solution
in solid blue line.

The numerical method is expected to produce a function whose projection (aver-
ages over sets where p is constant) is Pρ0. There are many such functions, and the
choice depends on regularization. With Tikhonov one expects to find the function
with minimal L2 norm – which is precisely Pρ0 – but with other regularizations
something else.
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Figure 2. Unknown ρ0 (dashed red line), ρ0 averaged over regions
where p is constant (black dot-dash line) and the numerical solution
ρ (solid blue line) with 0.5% noise level. Tikhonov-solution (left),
TV-solution (middle) and CGLS-solution (right).

4.4. Limited data. The theory states that it suffices to have measurements for
λj ’s in some open interval (a, b) ⊂ (0, 1). Let M = 300, N = 400, the source
density ρ0(x) = −0.5 sin(2πx) + 0.5, and p(x) = ex − 1. To test the solutions, we
used several smaller intervals, solved the problem with Tikhonov regularization
one hundred times, and collected the averaged l2-relative errors in the solutions
to Table 1. The respective solutions ρ are depicted in Figure 3. These solutions
are relatively good for all but the smallest interval (0.4, 0.5), where the numerical
solution is rather unstable. Note that the number of measurements is kept at
constant 300 for all solutions. We state without details that similar results are
obtained if the measurements are made in some union of open intervals (with large
enough measure) contained in (0, 1).
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Intervals (0, 1) (0.2, 0.8) (0.3, 0.6) (0.4, 0.5)
εrel 0.117 0.170 0.186 0.320
var 1.88 · 10−3 1.27 · 10−2 1.27 · 10−2 6.65 · 10−3

Table 1. Averaged relative errors and variances of one hundred
solutions on smaller intervals with noise level 0.5%.
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Figure 3. Unknown ρ0 (dashed red line) and the Tikhonov-solution
ρ (solid blue line) with 0.5% noise level and smaller measurement
intervals.
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