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Abstract—This work revisits the problem of distributed adap-
tive filtering in multi-agent sensor networks. In contrast to
classical approaches, the formulation relaxes the Gaussian as-
sumption on the signal and noise to the generalized setting of
α-stable distributions that do not possess second- and higher-
order statistical moments. Most importantly, the considered
scenario allows for different characteristic exponents throughout
the network. Drawing upon ideas from correntropy-type local
similarity measures and fractional-order calculus, a novel class of
distributed fractional-order correntropy adaptive filters, that are
robust against the jittery behavior of α-stable signals, is derived
and their convergence criterion is established. The effectiveness
of the proposed algorithms, as compared to existing distributed
adaptive filtering techniques, is demonstrated via simulation
examples.

Index Terms—Distributed adaptive networks, α-stable signals,
fractional-order calculus, correntropy criterion, consensus fusion.

I. INTRODUCTION

Information processing over distributed multi-agent net-

works has recently attracted attention in many applications.

Adaptive learning is one of the most important aspects of

distributed information processing. In adaptive networks, the

interconnected nodes are capable of performing real-time data

processing and exchanging information with their neighbors

[1]. The distributed adaptive learning techniques such as con-

sensus, incremental, and and diffusion strategies allow these

nodes to carry out estimation tasks in a collaborative manner

[2]–[6]. The majority of current distributed signal processing

approaches assume a Gaussian model for signal and noise

[1], [2]. Although the Gaussian assumption leads to mathe-

matically tractable and computationally efficient solutions, it

becomes unrealistic in a large number of modern applications,

such as cases where the encountered signal exhibit sharp

spikes [7]–[12]. The behavior of such signals is accurately

modelled by the class of symmetric α-stable (SαS) random

processes [7]–[14]. Since SαS random processes do not pos-

sess finite second-order moments, except for the Gaussian

case, traditional distributed Wiener filtering techniques, that

are derived by minimizing the second-order moment of an
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error measure, exhibit considerable performance degradation

when applied to lower-order SαS signals [10], [14].

To address this issue, a distributed particle filter is pro-

posed in [15]; however, its considerable computational burden

makes impractical for use in real-time applications. More

recently, using the framework of fractional-order calculus

[16]–[18], cost effective adaptive filtering methods have been

proposed for processing α-stable signals [19]–[21]. Although

these distributed fractional-order filters [19] achieve improved

performance over the conventional distributed Wiener filtering

techniques, their performance is highly sensitive with respect

to the characteristic exponent value. Furthermore, the propa-

gation of residual jitters present in the local estimates cause

performance degradation.

On the other hand, correntropy criterion based adaptive

filtering techniques are adapt to dealing with situations where

the data is corrupted by heavier-tailed noise [22]–[29]. These

correntropy based adaptive filters have been successfully ex-

tended to distributed networks [30]–[32]. However, maximum

correntropy criterion (MCC) [23] and generalized maximum

correntropy criterion (GMCC) [25] are defined over second

and higher-order error moments, which compromises their per-

formance, specially in cases where both the signal and noise

are modeled as SαS signals. In summary, a comprehensive

filtering framework that can deal with jittery behaviour in

both signal and noise is lacking. Importantly, to the best of

our knowledge, there is no framework that can accommodate

signals characterized by different values of characteristic ex-

ponent across the network.

This paper proposes a novel class of distributed adaptive

filtering techniques based on maximizing a new fractional-

order correntropy criterion. Our main contributions here are

as follows:

• Based on the principles of correntropy-type local similar-

ity measure and fractional-order calculus, a novel class

of distributed fractional-order correntropy adaptive filters

that effectively regulate the strong jittery behavior of SαS

signals is derived;

• The derived class of filters render simultaneous learning

from α-stable signals characterized by different values of

characteristic exponent across the network;

• Conditions for the convergence of the proposed class of

filters are established;

Mathematical Notations: We denote scalars, column vectors

and matrices with lower case, bold lower case and bold upper-

case letters, respectively, while I represents the identity matrix

of appropriate size. Matrix transpose is denoted by (·)T and
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the symbol ⊗ designates the right Kronecker product operator.

Finally, (·)〈τ〉 denotes the elementwise implementation of the

function g(z) = |z|τ sign(z), where sign(·) and | · | return the

sign and the absolute values of their input, respectively.

II. PRELIMINARIES

In various real-world applications such as underwater acous-

tics [7], wideband communications [8], financial data mod-

eling [9], audio signal processing [10], [11] and random

fluctuations of gravitational fields [12], the simple Gaussian

assumption on the signal and noise processes is not reasonable.

These signals can be more accurately approximated by α-

stable distributions.

In general, α-stable distributions do not have an explicit

closed form expression for their probability distribution func-

tions1 However, the class of real-valued α-stable random pro-

cesses with elliptically symmetric distributions, which is often

referred as symmetric α-stable (SαS), have the characteristic

function of the form [33]

Φz(s) = E[exp(isTz)] = exp(isTξ) exp
(
− (

1

2
sTΓzs)

α

2

)
,

(1)

where Φz(·) is the characteristic function of z, i2 = −1, with

E[·] denoting the statistical expectation operator. The positive

definite covariance matrix, Γz, determines the elliptical shape

of the distribution of z that is centered around the mean vector

ξ. The characteristic exponent, α ∈ (0, 2] in (1) governs the

tail heaviness of the density function [33]. Small values of α
correspond to strong impulsiveness, resulting in heavier tails.

Excluding the Gaussian case, SαS random processes have

only finite statistical moments of orders strictly less than

α [14]. Therefore, when it comes to filtering solutions, it

is implicitly assumed that α ∈ (1, 2], so that conditional

expectations can be established. Without loss of generality,

hereafter it is assumed that signals are real-valued SαS random

processes with α ∈ (1, 2].

III. PROPOSED DISTRIBUTED SOLUTION

Consider a sensor network modeled as a connected graph

G = {N , E}, where the node setN represents the agents of the

network and E is the set of edges that represents bidirectional

communication links between the nodes, i.e., (k, l) ∈ E if

nodes k and l are connected. Furthermore, the set Nk denotes

the neighborhood of node k including itself and the cardinality

of the set Nk is denoted by |Nk|. At time instant n, node k
observes the unknown parameter vector w∗ through the input

signal vector xk,n and output signal yk,n, which are related

via the linear model

yk,n = xT
k,n w⋆ + υk,n, (2)

where υk,n represents the observational noise and random

sequences υk,n and xk,n are assumed zero-mean and SαS.

The objective here is to estimate w∗ collaboratively over a

network.

1Important special cases include the Lévy distribution (α = 0.5), Cauchy
distribution (α = 1) and Gaussian distribution (α = 2).

Recently, correntropy criterion based adaptive filters are

shown to be effective against presence of impulsive noise [23],

[25], [26]. However, since SαS random signals have finite

statistical moments of order less than α, MCC and GMCC

based distributed adaptive filters [30], [31] are not a reasonable

choice when both the signal and noise are SαS signals. The

lack of second and higher-order moments of the error measure

becomes the main hurdle in establishing the convergence

criterion of the mentioned techniques. Furthermore, the usage

of ordinary calculus makes these techniques unstable [19]. In

order to overcome these issues, we use the fractional-order

correntropy criterion which is defined over the fractional-

order of the error measure [34]. Therefore, the estimates

{wn : n = 1, 2, . . .} are chosen so that they maximize

Jn =
1

|N |

∑

l∈N

E
[
exp

(
−

ǫl,nǫ
α′−1
l,n

2β2

)]
, (3)

where ǫl,n = yl,n− ŷl,n, with ŷl,n denoting the estimated filter

output, with β > 0 specifying the bandwidth of the kernel. The

parameter α′ ∈ (1, α) is a real-valued constant that guarantees

a concave shape to the cost function (3). It also ensures that

the (α′− 1)-order error measure at each agent, i.e., ǫl,nǫ
α′−1
l,n ,

has finite statistical expectations.

At every time instant n, at node k, the estimate of w∗, i.e.,

wn, can be updated in a steepest ascent manner as

wn+1 = wn + η∇α′−1Jn, (4)

where ∇α′−1 denotes the (α′ − 1)-order gradient operator

and η is the positive real-valued gain. Using the fractional

differentials [16]–[18] to evaluate ∇α′−1 and absorbing the

extra multiplicative terms into gain η, the adaptation rule for

wn can be obtained as

wn+1 = wn + η
∑

l∈N

g(ǫl,n)ǫl,nx
〈α′−1〉
l,n =

1

|N |

∑

l∈N

ψl,n+1,

(5)

where

ψl,n+1 = wn + µ g(ǫl,n) ǫl,n x
〈α′−1〉
l,n , (6)

is the intermediate estimate of w∗ at node k and time index

n. The term g(ǫl,n) = exp(−(ǫl,nǫ
α′−1
l,n )/(2β2)), is a function

of the fractional-order of the estimation error and µ = η|N |
is the adaptation gain. The average in (5) can be evaluated in

a distributed manner using an average consensus filter (ACF)

[35], [36]. Operation of the ACF at its mth iteration is given

by

hk,(m) = hk,(m−1) +
∑

l∈Nk

alk
(
hl,(m−1) − hk,(m−1)

)
, (7)

where hk,m is the estimate of the ACF at node k after m
iterations and the combiner coefficients alk are non-negative

and satisfy
∑

l∈Nk
alk = 1 [35]. If matrix A with [A]l,k =

alk, is doubly stochastic and satisfies the conditions stated in

[35], we then have

lim
m→∞

hk,(m) =
1

|N |

∑

l∈N

hl,(0). (8)
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Hereafter, the ACF at node k after m iterations is depicted in

the schematic form as

hk,(m) ← ACF ← {∀l ∈ N : hl,(0)}.

The ACF described in (7)-(8) is used to perform the update

operation (5) in a distributed manner. The proposed distributed

fractional-order correntropy adaptive filter (DFCAF) is sum-

marized in Algorithm 1, where wk,n denotes the weight vector

estimate local to node k.

Algorithm 1: DFCAF

For nodes k = 1, 2, · · · ,K:

Estimated Filter Output: ŷk,n = xT
k,nwk,n,

Error: ǫk,n = yk,n − ŷk,n,

Local Update:

ψk,n+1 = wk,n + µ g(ǫk,n) ǫk,n x
〈α′−1〉
k,n , (9)

Average Consensus Update:

wk,n+1 ← ACF ← {∀l ∈ N : ψl,n+1}. (10)

Remark 1. Given that at each node k, g(ǫk,n) ∈ (0, 1]
and (α′ − 1) ∈ (0, 1), the sharp spikes present both in

signal and noise processes are effectively regulated during the

local update stage. This circumvents the problem of sharp

jitters propagating over the network. Hence, Algorithm 1

always achieves lower steady-state error than the conventional

distributed fractional-order adaptive filter (DFAF) [19].

Remark 2. For the case of α′ → 2 and the ACF only iterated

once, Algorithm 1 operates akin to the distributed maximum

correntropy criterion filter (DMCC) [30]. Moreover, for the

case that β →∞, the Algorithm 1 reduces to the DFAF.

Remark 3. A more robust update term than that in (9), is

attainable if input is normalized with respect to the input

vector, which is given by

ψk,n+1 = wk,n + µ g(ǫk,n) ǫk,n
x
〈α′−1〉
k,n

‖xk,n‖α
′

α′

, (11)

where ‖xk,n‖
α′

α′ = xT
k,nx

〈α′−1〉
k,n .

IV. CONVERGENCE ANALYSIS

A. Network-Wide Model

Before proceeding to the network-level analysis, we

define the optimal filter coefficient vector w⋆
net =

1|N | ⊗ w⋆, estimated filter coefficient vector wnet,n =
col{w1,n,w2,n, . . . ,w|N |,n}, input data matrix Xn =
blockdiag{x1,n,x2,n, . . . ,x|N |,n} and observation noise vec-

tor υnet,n = col
{
υ1,n, υ2,n, . . . , υ|N |,n

}
, where col{·} and

blockdiag{·} denote the columnwise stacking operator and

block diagonalization operator, respectively. The symbol 1|N |

is a column vector of size |N | × 1 with every element taking

the value one. Using above definitions, the network-level data

model and error vector are given by

yn = col{y1,n, y2,n, . . . , y|N |,n} = XT
nw

⋆
net + υn,

ǫn = col
{
ǫ1,n, ǫ2,n, . . . , ǫ|N |,n

}
= yn −XT

nwnet,n.
(12)

Using the above definitions, from (9) and (10), the global

model of the proposed DFCAF can be stated as

wnet,n+1 = A
(
wnet,n + µ Gǫ

n X〈α′−1〉
n ǫn

)
, (13)

where

A = Am ⊗ I,

Gǫ
n = diag{g(ǫ1,n), g(ǫ2,n), · · · , g(ǫ|N |,n)} ⊗ I.

(14)

B. Mean Convergence Analysis

Denote the global weight deviation vector of the DFCAF

at n-th index as w̃net,n = w⋆
net − wnet,n, and recall that

Aw⋆
net = w⋆

net (since A is doubly stochastic); then from

(13), w̃net,n can be recursively expressed as

w̃net,n+1 = Bnw̃net,n − µ Gǫ
n X〈α′−1〉

n υn, (15)

where Bn = A
(
I − µ Gǫ

n Xn

)
with Xn = X

〈α′−1〉
n XT

n

= diag(X 1,n,X 2,n, . . . ,XK,n), with X k,n = x
〈α′−1〉
k,n xT

k,n.

In the following, we establish the condition of convergence of

the proposed algorithm. For this, we assume the following:

A1: For all k ∈ N , the input signal vectors xk,n are assumed

to be temporally independent,

A2: The noise process υk,n is assumed to be zero-mean i.i.d.

and independent of all input and output data,

A3: For all k ∈ N , the quantity g(ǫk,n) is assumed to be

independent of other quantities.

Remark 4. At each node k and time instant n, we always have

0 < g(ǫk,n) ≤ 1. Furthermore, in worst case scenario, i.e.,

when g(ǫk,n) = 1, the proposed algorithm reduces to DFAF

[19]. Therefore, A3 is a reasonable assumption and it does not

alter the convergence behavior of the proposed algorithm.

Theorem 1. Assume the data model (12) and the assumptions

A1-3 hold. Then, a sufficient condition for the proposed

DFCAF to converge in mean is

0 < µ <
1

max
∀k∈N

{max
∀i
{E[g(ǫk,n)]λi(E[X k,n])}}

, (16)

where λi(·) denotes the ith eigenvalue of its argument matrix.

Proof. Taking the statistical expectation E[·] on both sides of

(15) and using the assumptions A1-3, we obtain

E[w̃net,n+1] = E[Bn]E[w̃net,n], (17)

where E[Bn] = A
(
I − µ E[Gǫ

n] E[X n]
)
. A sufficient con-

dition for limn→∞ E
[
w̃net,n

]
to attain a finite value is that

‖E[Bn]‖ < 1 for all n, where ‖ · ‖ is any matrix norm. To

derive a convergence condition in terms of µ, we use the block

maximum norm [37] of the matrix E[Bn], i.e., ‖E[Bn]‖b,∞.

From the properties of the block maximum norm, we have

‖E[Bn]‖b,∞ = ‖A
(
I− µ E[Gǫ

n] E[Xn]
)
‖b,∞

≤ ‖A‖b,∞‖I− µ E[Gǫ
n] E[X n]‖b,∞

= ‖I− µ E[Gǫ
n] E[Xn]‖b,∞

(18)

In (18), we used the result ‖A‖b,∞ = (‖AT ‖∞)m = 1.

Using [37, Lemma D. 5], it is seen that E
[
w̃net,n

]
con-

verges under ρ
(
I − µE[Gǫ

n] E[Xn]
)

< 1, or, equivalently,



4

∀k, i : |1 − µE[g(ǫk,n)]λi(E[X k,n])| < 1, where ρ(·) denotes

the spectral radius of the argument matrix. After solving the

above convergence condition, we arrive at (16).

Remark 5. The condition on α′ (i.e., α′ ∈ (1, α)) ensures the

existence of E[X k,n], so that the bounds on µ can be evaluated.

Upon recalling that 0 < g(ǫk,n) ≤ 1, which implies 0 <
E[g(ǫk,n)] ≤ 1, it can be seen that the convergence conditions

of the DFAF are also sufficient for the convergence of the

proposed algorithm.

Remark 6. Analysis similar to that in the proof of Theorem

1 shows that the convergence of the normalized version is

guaranteed for 0 < µ < 1.

V. NUMERICAL SIMULATIONS

In this section, we conduct simulations to demonstrate the

effectiveness of the proposed DFCAF in the context of system

identification. For this, we considered a randomly generated

network with the topology shown in Fig. 1(a).
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(a) Network topology with 20 agents.

0 4 8 12 16 20

Node index

1.5

1.6

1.7

1.8

1.9

2
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Fig. 1: Network topology and node profile statistics.

The goal is to collaboratively estimate the 16-tap optimal

parameter vector w∗ which was generated from a standard

Gaussian distribution. In all simulations, the input signal and

the observation noise were taken to be SαS signals. The value

of the characteristic exponent, α, varied from node to node and

its distribution against the node index k is shown in Fig. 1(b).

At each node, the parameter α′ was taken to be 1.3. The non-

negative coefficients in the ACF were obtained through the

Metropolis rule [35] and the ACF was iterated for 5 times

to approximate the required averages. The adaptation gain µ
of the proposed unnormalized and the normalized DFCAF

algorithms was set to 0.065 and 0.2, respectively. The kernel

bandwidth parameter β for both proposed filtering approaches

was fixed at 1.6. The network-level mean absolute deviation

(MAD) (given by 1
|N |E[‖w̃net,n‖1]) was considered as the

performance metric. The proposed class of DFCAF algorithms

was simulated and the corresponding learning curves, i.e.,

network-level MAD (in dB) vs iteration index n, obtained by

averaging over 500 independent experiments, are plotted in

Fig. 2. For comparison, Fig. 2 also includes MAD performance

curves of the distributed LMS (DLMS), DMCC [30] and

DFAF [19]. To provide a fair comparison, the adaptation gain

of these filters was adjusted to match the convergence rate (top

graph of Fig. 2) and steady-state MAD (in bottom graph of

Fig. 2) of the proposed filters.
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Fig. 2: MAD curves of the proposed distributed filters. MAD

curves of the DLMS, DMCC [30] and DFAF [19] are also

included for comparison.

From Fig. 2, we see that the proposed distributed filters

efficiently identified the system and clearly outperformed

the other approaches. In contrast, the DLMS, DMCC and

DFAF approaches performed poorly and their steady-state

estimates still exhibit the sharp spikes. On the other hand,

since the fractional-order correntropy is insensitive to the

jittery behavior of the SαS signals, the proposed distributed

approaches do not exhibit any sharp spikes in the MAD

performance. Also note that when the ACF was iterated for

only once, the other approaches exhibited degradation in their

MAD performance compared to the case of iterating the ACF

five times, however, the proposed class of distributed filters

exhibited similar performance.

VI. CONCLUSIONS

Distributed adaptive learning in the presence of real-valued

SαS signals has been considered, and a novel class of dis-

tributed adaptive filters, based on maximizing the fractional-

order correntropy criterion, has been derived. The performance

of the proposed algorithms has been analyzed and the condi-

tions for their convergence have been established. Simulations

results confirmed the superiority of the proposed algorithms

over state-of-the-art.
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