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Abstract: We propose the design of a hybrid controller for fixed-wing unmanned aerial vehicles
which guarantees global exponential tracking of attitude references on the two-sphere. The
chosen attitude representation is singularity-free and can be exploited to apply proportional
feedback along the shortest path in the natural configuration space, giving it an advantage
to conventional design methods based on Euler angle reprentations. The design includes the
concept of synergistic potential functions to overcome the problem of a vanishing potential
at the additional undesired equilibrium on the compact manifold. It employs proportional-
derivative feedback with the relative velocity as an exogeneous input and allows for integration
into conventional autopilot architectures. The controller is well-suited for the recovery from
large attitude disturbances and the performance is demonstrated in a numerical example.
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1. INTRODUCTION

In this paper, we present a controller design for exponential
tracking of roll/pitch references on the two-sphere, given
to a fixed-wing Unmanned Aerial Vehicle (UAV) in order
to follow desired climb and turn rates. This is a core
function that any autopilot relies on to achieve higher-
level control objectives such as path-following. A common
control approach is based on Euler angles as a minimal
attitude representation that is subject to a singularity
referred to as gimbal-lock (Beard and McLain, 2012). This
is not an issue in normal flight conditions, but may cause
problems in situations where the aircraft is in agile flight
or has to recover from severe wind disturbances (Johansen
et al., 2014). One possible remedy is to design the con-
troller directly on the configuration manifold where the
corresponding attitude is unique and globally defined. The
attitude of the aircraft is represented by elements of SO(3),
which is the set of 3-by-3 rotation matrices. Stabilizing
attitude references on this manifold would constrain the
yaw angle and therefore not result in a well-defined control
problem in a bank-to-turn maneuver where the yaw motion
is typically controlled indirectyly through the roll angle
(Beard and McLain, 2012). Possible approaches to this
problem include the design of an alternative control archi-
tecture (Kai et al., 2019) or a lower-dimensional attitude
representation as done in Chaturvedi et al. (2009). The for-
mer authors design a continuous, time-invariant controller
for attitude representations evolving on the two-sphere,
denoted by S2. This attitude is referred to as reduced
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attitude (Chaturvedi et al., 2011), and shown to consitute
a lower-dimension manifold of SO(3), where elements are
invariant to rotations about a specified inertial axis. This
makes it a suitable attitude representation for roll/pitch
control, since the reduced attitude can be defined such that
it is invariant to changes in the yaw angle.

Smooth geometric controllers on S2 have also been pre-
sented in Bullo et al. (1995) in the context of spin-axis
stabilization of satellites. As continuous, time-invariant
controllers, they suffer from vanishing proportional action
close to additional undesired equilibra, which is a conse-
quence of the topological obstruction to global stabiliza-
tion that exist for any compact configuration manifold
(Bhat and Bernstein, 2000). To overcome the resulting
performance limitations (Chaturvedi et al., 2009) and to
achieve global attitude stabilization, hybrid controllers for
attitude tracking problems have appeared in Mayhew and
Teel (2011) for quaternions and have recently been pre-
sented for Sn in Casau et al. (2019), with application to
general rigid bodies and multirotor UAVs. The discussed
controllers steer the attitude along the shortest possible
path on the sphere, as opposed to controllers based on
Euler angles. By using hybrid methods based on synergis-
tic potential functions (Mayhew and Teel, 2013), robust
and global exponential stability can be guaranteed. To
the best of our knowledge, despite their desirable transient
behaviour and stability properties, these methods have not
been targeted at fixed-wing UAVs. The main contribution
of this paper is to provide a suitable adaption for this
type of aircraft. The aforementioned references control a
body-fixed axis relative to an inertial frame, which is not
directly applicable in a bank-to-turn maneuver. Instead,
the direction of gravity relative to a body-fixed frame



can be used, considering coupled dynamics in roll/pitch
and a controller design that fits well into conventional
autopilot architectures. Assuming bounded aerodynamic
quantities which enter as exogeneous signals, we provide
stability proofs to show global exponential tracking on
S2 for the closed-loop system. This extends our work in
(Coates et al., 2020).

2. PROBLEM FORMULATION

2.1 Notation

We represent the full attitude of the UAV by elements of
the special orthogonal group of order three which defined
as

SO(3) = {R ∈ R3×3 : R>R = I, det(R) = 1}. (1)

The matrix R ∈ SO(3) is referred to as a rotation matrix,
and its columns describe axes of the body-fixed frame
relative to an inertial reference frame. The two-sphere is
embedded in R3 and defined by the set

S2 = {x ∈ R3 : ‖x‖ = 1}, (2)

where ‖x‖ =
√
x>x is the Euclidean norm of a vector x and

x> denotes the transpose. We let R≥0 and N denote the
set of non-negative real and natural numbers, respectively,
with R>0 as positive real numbers. The tangent space at
a point x ∈ S2 is defined as the set of three-dimensional
vectors that are orthogonal to x

TxS2 = {y ∈ R3 : x · y = 0}. (3)

Similarly, the normal space represents the space of all
vectors parallel to x and can be defined as

NxS2 = {(z ∈ R3 : z · y = 0, y ∈ TxS2}. (4)

Let the orthogonal projector Π⊥x : S2 7→ TxS2 and parallel

projector Π
‖
x : S2 7→ NxS2 be defined as

Π⊥x = I − xx>, Π‖x = xx>, (5)

such that the vector y ∈ R3 can be orthogonally decom-

posed to y = Π⊥x y + Π
‖
xy. Given two vectors x, y ∈ R3,

the cross product can be represented as a matrix multi-
plication x × y = S(x)y, where S(x) = −S>(x) is the
skew-symmetric matrix defined as

S(x) =

[
0 −x3 x2

x3 0 −x1

−x2 x1 0

]
. (6)

For vectors x, y, z ∈ R3, the following identities will be
used:

x · (y × z) = y · (z × x) (7)

‖x× y‖2 = ‖x‖2‖y‖2 − (x>y)2 (8)

S3(x) = −S(x) (9)

x× y = ‖x‖‖y‖ sin(θ)n, (10)

where θ is the angle between x and y and n is the unit
vector orthogonal to both vectors defined by the right-
hand rule. For a more compact notation, we will only use
time arguments when solutions or time-varying signals are
considered.

2.2 Dynamic Model

The attitude dynamics of the UAV are given by

Ṙ = RS(ω) (11)

Jω̇ = S(Jω)ω + τ, (12)

where ω ∈ R3 denotes the angular velocity in the body-
fixed frame, J = J> ∈ R3×3 denotes the inertia matrix and
τ ∈ R3 is an external torque vector. Given aileron, elevator
and rudder deflections δa, δe, δr ∈ R we define the control
input vector u = [δa, δe, δr] and model the torque in the
control-affine form

τ = f(ω, vr) +G(ω, vr)u, (13)

where vr = [vr1 vr2 vr3 ]
> ∈ R3 denotes the (air-)relative

velocity vector. The function f(ω, vr) is the part of the
attitude dynamics which is independent of u, sometimes
referred to as drift term. The control effectiveness matrix
G(ω, vr) ∈ R3×3 defines the aerodynamic coupling from
the control surface deflections to the torque vector. This
torque vector formulation is compatible with models in the
standard literature, see e.g. Stevens et al. (2015), Beard
and McLain (2012), which we briefly summarize now. Let
vb ∈ R3 be the linear velocity vector in the body-fixed
frame and w ∈ R3 be the wind velocity vector in the
inertial frame. Then the relative velocity vector is defined
as vr = vb − R>w. It can be represented in terms of
magnitude and spherical direction by

Va = ‖vr‖ =
√
v2
r1 + v2

r2 + v2
r3 (14)

α = atan2(vr1 , vr3), β = atan2(vr2 , vr1) (15)

with airspeed Va ∈ R, angle of attack α ∈ R and sideslip
angle β ∈ R. They are used in the aerodynamic model in
the general form

f(ω, vr) =
1

2
ρV 2

a Swing

[
bCl(α, β, ω)
cCm(α, β, ω)
bCn(α, β, ω)

]
(16)

G(ω, vr) =
1

2
ρV 2

a Swing

[
bClu(α, β, ω)
cCmu(α, β, ω)
bCnu(α, β, ω)

]
, (17)

where ρ ∈ R denotes the air density and Swing, b, c ∈ R
are the planform area, span and aerodynamic chord of
the wings, respectively. Note that for a compact notation,
we only include vr in the function arguments, α and
β follow from (15). The functions Cl, Cm, Cn are the
aerodynamic coefficients for roll, pitch and yaw moment.
The aerodynamic coefficients Clu , Cmu

and Cnu
map the

control input to the resulting torque vector. For UAVs that
are dependent on control surface deflections to deflect an
airstream, a sufficiently large airspeed is needed to ensure
controllability. This leads to the following assumption:

Assumption 1. Given a positive airspeed Va ≥ Va ∈ R+,
the matrix G(ω, vr) has full rank.

We also need an additional assumption to ensure that the
torque vector is uniformly bounded:

Assumption 2. There exist constants cf , cG > 0 such that
‖f(ω, vr)‖ ≤ cf and ‖G(ω, vr)‖ ≤ cG.

2.3 Reduced Attitude

We make use of the reduced-attitude vector Γ ∈ S2 as
presented in Chaturvedi et al. (2011) and define it here as
the representation of the vertical axis of the inertial frame

e3 = [0 0 1]
>

expressed in the body-fixed frame

Γ = R>e3. (18)



The same reduced-attitude parametrization has been
applied to stabilization of the inverted 3D pendulum
(Chaturvedi et al., 2009). Note that the reduced-attitude
vector is invariant to rotations about e3 and therefore
independent of yaw. In fact, given a roll angle φ ∈ [−π, π]
and pitch angle θ ∈ [−π2 ,

π
2 ], the reduced-attitude vector

can be parameterized as

Γ(φ, θ) = [− sin θ cos θ sinφ cos θ cosφ]
>
. (19)

An orthogonal decomposition of the angular velocity vec-
tor ω = ω⊥ + ω‖ with respect to Γ can be obtained using
(5) as

ω⊥ = Π⊥Γω ∈ TΓS2, ω‖ = Π
‖
Γω ∈ NΓS2. (20)

The kinematics for Γ follows from (11) and (18) as

Γ̇ = Γ× ω = Γ× ω⊥, (21)

where the second equality results from ω = ω⊥ + ω‖ and
Γ× ω‖ = 0. The derivative of (20) is given by

ω̇⊥ = Π⊥Γ ω̇ + ω⊥ × ω‖ (22)

ω̇‖ = Π
‖
Γω̇ + ω‖ × ω⊥. (23)

2.4 Reference System

Consider a time-varying reference trajectory for the re-
duced attitude Γd(t) ∈ S2, satisfying

Γ̇d = Γd × ωd (24)

for some desired angular velocity ωd(t) ∈ TΓd
S2. We

assume that ωd is twice continuously differentiable and
that its derivative is uniformly bounded, i.e. there exist
constants cωd

, cω̇d
such that

ωd(t) ∈ cωd
B, ω̇d(t) ∈ cω̇d

B, (25)

where B = {x ∈ R3 : ‖x‖ ≤ 1} is the closed unit
ball in R3. The reasons for this assumption are twofold.
First, the reference trajectory is smooth such that it
may be used in feedforward-terms of the control law.
And second, the differential inclusion of ω̇d(t) allows to
formulate an autonomous closed-loop system such that
hybrid invariance principles can be applied. We will also
need the projection ω⊥d , Π⊥Γωd ∈ TΓS2, satisfying

ω̇⊥d = Π⊥Γ ω̇d + ω⊥ ×Π
‖
Γωd + Π

‖
Γ(ωd × ω⊥). (26)

An example of a reference filter that can be used to
generate a reference trajectory (Γd(t), ωd(t), ω̇d(t)) based
on trajectories parametrized by Euler angles given in
Appendix E.

2.5 Control Objective

It follows from (12), (13), (21) and (22) that only the part
of the control input for which J−1G(ω, vr)u ∈ TΓS2 has
an effect on the reduced attitude. The control objective is
therefore to design a state feedback control law satisfying
J−1G(ω, vr)u ∈ TΓS2 such that Γ(t)→ Γd(t) and ω⊥(t)→
ωd(t) as t→∞.

3. CONTROL ALGORITHM DESIGN

3.1 Hybrid Controller

We use the framework presented in Goebel et al. (2012)
where a hybrid system can be defined as

(ξ̇, q̇) ∈ F(ξ, q), ξ ∈ C (27)

(ξ+, q+) = G(ξ, q), ξ ∈ D, (28)

with state ξ ∈ Rn. When the state is inside the flow set
C ⊂ Rn, its continuous motion is governed by the set-
valued flow map F : Rn ×Q ⇒ Rn ×Q. Complementary,
when the state is inside the jump set D ⊂ Rn it evolves
in the form of discrete jumps with its dynamics governed
by the jump map G : Rn 7→ Rn. The variable q ∈ Q is a
discrete logic state. The hybrid time domain (t, i) consists
of continuous time t ∈ R≥0 and jump time i ∈ N. In the
stability analysis of this section we will use the notation
V (t, i) instead of V (φ(t, i)) where φ(t, i) denotes a solution
to the system dynamics.

In the following we describe the design of a hybrid con-
troller which employs proportional feedback based on a
synergistic potential function as presented in Mayhew and
Teel (2013), coordinated by a set of modes. The magnitude
of the proportional feedback will depend on the gradient of
the potential function in the active mode, which vanishes
at the critical points of the potential function. The syn-
ergism property means that at all points other than the
reference where this occurs, there is another mode in which
the potential function has a significantly lower value. This
solves the problem of vanishing proportional action at the
the opposite direction of the reduced-attitude reference
and renders the desired equilibrium globally asymptoti-
cally or exponentially stable, depending on the design of
the sets C and D.

3.2 Potential Function

The design of a synergistic potential function Ψ : S2 ×
S2 × S2 ×Q 7→ R≥0 follows the approach presented in Lee
(2016) to use two modes which gives the set Q = {0, 1}.
The nominal mode q = 0 drives the reduced attitude in
the direction of the nominal reference Γd. The expelling
mode q = 1 will be designed such that the critical points
of its potential function are at maximum distance to both
the nominal reference and its antipodal pointi, i.e. they
evolve on the unit circle on S2 orthogonal to Γd. Let the
reference in the expelling mode be sd ∈ S2 satisfying

ṡd = sd × ωd. (29)

It follows from (24), (29) and the identity (7) that when sd
is initialized orthogonal to Γd, i.e. satisfies sd(0)·Γd(0) = 0,
it holds that sd(t) · Γd(t) = 0 for all time.

In the following we let ξ = (Γ, ω⊥,Γd, sd, ωd) ∈ Ξ be the
continuous state of the hybrid system which evolves in the
space Ξ , S2×TΓS2×S2×S2×TΓd

S2. As in Mayhew and
Teel (2013) we define the synergistic potential function as

Ψq(Γ,Γd, sd) =

{
1− Γ · Γd if q = 0

a+ b(1− Γ · sd) if q = 1,
(30)

where the parameters a, b ∈ R>0 act as a bias and a scaling
factor to the expelling potential which are designed such
that Ψq is positive definite relative to Γd. The gradient of
Ψq with respect to Γ is given by

∇ΓΨq(Γ,Γd, sd) =

{
−Γd if q = 0

−bsd if q = 1.
(31)

Note that since S2 is a compact manifold and b is finite,
‖∇ΓΨq(Γ,Γd, sd)‖ is bounded.



3.3 Error States

The goal in either mode is to converge to the attitude
with minimum potential along the shortest path on S2.
This can be achieved by applying state feedback that is
proportional to the gradient of the potential function with
respect to Riemannian metric on S2. By (Bullo and Lewis,
2005, Lemma 11.6), the gradient vector field on S2 induced
by Ψq is given by dΨq(Γ) = S(Γ)2∇ΓΨq. It can be driven
to zero by proportional feedback in the direction of the
error vector

eΓq = −Γ×∇ΓΨq(Γ,Γd, sd) ∈ TΓS2. (32)

which can be interpreted as a rotation axis acting on Γ in
the direction of −dΨq(Γ) towards the reference. Let the
angular velocity error eω ∈ TΓS2 be defined by

eω = ω⊥ −Π⊥Γωd, (33)

which, using (22) and (26), can be shown to satisfy

ėω = Π⊥Γ

(
ω̇−ω̇d+ω⊥×(ω‖−Π

‖
Γωd)

)
−Π
‖
Γ(ωd×ω⊥). (34)

Note that, even though ω⊥ and ωd belong to different
tangent bundles, the angular velocity error in (33) provides
a valid comparison. This can be verified by showing that
that the sufficiently smooth map Π⊥Γ acts as a transport
map following the definition given in Bullo and Murray
(1999), which means that the equality

∇rΨ(Γ,Γd, sd)
>
S(r) = −∇ΓΨ(Γ,Γd, sd)

>
S(Γ)Π⊥Γ (35)

needs to be satisfied for r ∈ {Γd, sd}. Since this is the
case, Π⊥Γ is said to be compatible transport map to the
potential function Ψq, which is essential in the stability
proofs (Bullo and Lewis, 2005, Lemma 11.16).

3.4 Control Law

The control law is a combination of dynamic inversion,
feedforward terms and PD-like feedback in terms of eΓq

and eω. It is defined as

u = G−1(ω, vr)J
(
−Π⊥Γ J

−1
(
f(ω, vr) + S(Jω)ω

)
+ κ(ξ, q)

)
(36)

where κ : Ξ×Q 7→ TΓS2 is defined as

κ(ξ, q) = −ω⊥ × (ω‖ −Π
‖
Γωd) + Π

‖
Γω̇d − kpeΓq −Π⊥ΓKdeω,

(37)
with proportional gain kp ∈ R>0 and positive definite

gain matrix Kd = Kd
> ∈ R3×3. The vector vr is treated

as a bounded exogeneous signal. Clearly, this control law
only affects ω̇⊥ ∈ TΓS2, as can be seen from (12) - (13).
This leaves the possibility for an independent design of a
control law u‖ ∈ NΓS2 for other objectives such as turn
coordination (Coates et al., 2020).

3.5 Jump Map

In the nominal mode, the error vector eΓq drives the
reduced attitude in the direction on the sphere that lies on
the path of minimal distance between Γ and Γd, known as
the minimal geodesic path (Bullo et al., 1995). To extend
this path to the case where the expelling mode is active,
s+
d is chosen as

s+
d ∈ gsd(Γ,Γd, sd) ,


Γd × Γ

‖Γd × Γ‖
× Γd if Γ 6= ±Γd

sd otherwise
(38)

which in the first case gives the point on S2 that lies on
the geodesic path and satisfies the orthogonality constraint
with respect to the nominal reference. The second case is
included to ensure a well-defined solution.

3.6 Closed-loop System

We can now describe the closed-loop dynamics of the
hybrid system. The continuous kinematics of Γ,Γd, sd are
given by (21), (24) and (29), respectively. The closed-loop
dynamics for ω⊥ are given by (12), (13), (21), (22) and the
control law (36). Both references are governed by the same
kinematic equation as the reduced-attitude vector and the
derivative of the angular velocity reference is included in
cω̇d

B which allows for the formulation of an autonomous
system (Mayhew et al., 2011). The resulting continuous
motion of the closed-loop system is governed by

Γ̇
ω̇⊥

Γ̇d
ṡd
ω̇d
q̇

 ∈ F(ξ, q) ,


Γ× ω⊥

κ(ξ, q) + ω⊥ × ω‖
Γd × ωd
sd × ωd
cω̇d

B
0

 . (39)

The discrete motion is independent of the control law and
only has an effect on the mode and the expelling reference
which results in jumps governed by

Γ+

ω⊥+

Γ+
d

s+
d

ω+
d
q+

 = G(ξ, q) ,


Γ
ω⊥

Γd
gsd(Γ,Γd, sd)

ωd
1− q

 . (40)

3.7 Hybrid Controller Sets

To coordinate the control laws, we use the difference
between the potential of the current mode to the minimum
potential, referred to as synergy gap by (Mayhew and Teel,
2013). It is defined as

µ(Γ, q) = Ψq(Γ,Γd, sd)−min
ν∈Q

Ψν(Γ,Γd, sd). (41)

Let us further introduce the constant hysteresis parameter
δ ∈ R>0 to define the sets C,D ⊂ Ξ×Q as

C = {(ξ, q) : µ(Γ, q) ≤ δ}, (42)

D = {(ξ, q) : µ(Γ, q) ≥ δ}. (43)

The following proposition establishes conditions on the
potential function such that it is synergistic and positive
definite relative to Γd:

Proposition 1. Let the sets C, D be given by (42) and (43),
with synergy gap µ defined in (41). Then the potential
function Ψq in (30) is a synergistic potential function with
gap exceeding δ satisfying

0 < δ < min{2− a− b, a− 1, a+ 2b− 1}. (44)

Proof. See Appendix A.



The closed-loop hybrid system is defined such that it
satisfies the hybrid basic conditions (Goebel et al., 2012,
Assumption 6.5) which makes it nominally robust to mea-
surement noise. The next proposition provides a collection
of these conditions.

Proposition 2. Consider the sets C in (42), D in (43) and
the maps F , G in (39),(40). Then, the following is satisfied:

(i) The sets C and D are closed.
(ii) The map F is outer semicontinuous and locally

bounded relative to C and F(ξ, q) is convex for every
(ξ, q) ∈ C.

(iii) The map G is outer semicontinuous and locally
bounded relative to D.

Proof. See Appendix B.

The stability results can be summarized in two proposi-
tions that need the following additional assumption:

Assumption 3. The parameters a, b, δ ∈ R are such
that Ψq in (30) satisfies (44) according to Proposi-
tion 1. Further, the time-varying reference trajectory
(Γd(t), sd(t), ωd(t), ω̇d(t)) satisfies (24), (25) and (29).

Proposition 3. Let Assumption 1 and Assumption 3 hold.
Consider the closed-loop hybrid system H = (C,F ,D,G)
with F , G defined in (39), (40) and the sets C, D given by
(42), (43). Then the set

A = {(ξ, q) ∈ Ξ×Q : Γ = Γd, ω
⊥ = ωd} (45)

is globally asymptotically stable for H.

Proof. See Appendix C.

It follows from (32) and (33) that inclusion in the set A
implies eΓq = 0 and eω = 0. An additional condition for
inclusion in the jump set based on the angular velocity
error can be shown to yield a stronger stability result.
The next proposition summarizes the conditions for global
exponential stability.

Proposition 4. Let Assumption 1 and Assumption 3 hold.
Consider the closed-loop hybrid system H = (C,F ,D,G)
with F , G defined in in (39), (40) and the sets C, D ⊂ Ξ×Q
given by

C = {(ξ, q) : µ(Γ, q) ≤ δ or ‖eω‖ ≥ Beω}, (46)

D = {(ξ, q) : µ(Γ, q) ≥ δ and ‖eω‖ ≤ Beω} (47)

where Beω ∈ R>0 is constant. Then the set

A = {(ξ, q) ∈ Ξ×Q : Γ = Γd, ω
⊥ = ωd} (48)

is globally exponentially stable for H.

Proof. See Appendix D.

Note in the proof to Proposition 4 that Beω may be chosen
arbitrarily large such that it does not necessarily impose
practical limitations. Moreover, the sets C and D are closed
and the maps F and G are not changed. The hybrid basic
conditions are thus also satisfied for Proposition 4.

4. NUMERICAL EXAMPLE

We use the model of the Aerosonde UAV with the non-
linear aerodynamics as described in Beard and McLain
(2012) and compare two controllers. First, a continuous
controller that employs the nominal mode throughout the
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Fig. 1. Control surface deflections of aileron δa, elevator
δe and rudder δr for the continuous controller (blue)
and the hybrid controller (orange).
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Fig. 2. Attitude response represented by the angles roll φ
and pitch θ for the continuous controller (blue) and
the hybrid controller (orange) including the reference
(green).

simulation and second, the presented hybrid controller
that may switch to the expelling mode in addition. A
stability analysis showing semiglobal exponential stability
of the continuous controller is presented in Coates et al.
(2020). The airspeed is treated as an exogeneous signal
and controlled via a PI-Controller through the propeller
throttle.

The controller parameters are chosen as kp = 9.5, Kd =
8I3, a = 1.25, b = 0.6. We simulate the recovery from a
large initial attitude disturbance and set the initial state
such that Γ(0) = −exp(e1ε)Γd with ε = π/180 and e1 =

[1 0 0]
>

. In terms of Euler angles, this corresponds a roll
angle of -179 degrees and pitch angle of -21.26 degrees. The
yaw angle is set to zero. The reference is parameterized
according to (19) with zero roll angle and 21.26 degrees
pitch angle, which is the trim condition for wings-level
ascending flight at 35 meters per second airspeed. Note
that the initial attitude is thus far from the given reference.

As shown in Fig. 2, the continuous controller remains
close to the initial attitude up to 3 seconds whereas the
hybrid controller reacts instantly and uses the expelling
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Fig. 3. Angular rate response represented by roll rate
p, pitch rate q and yaw rate r for the continuous
controller (blue) and the hybrid controller (orange)
including the reference (green).
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Fig. 4. Results of the relative velocity represented by
airspeed Va, angle of attack α (AOA) and sideslip
angle β (SSA) for the continuous controller (blue) and
the hybrid controller (orange).

potential with a larger gradient up to 3.5 seconds into the
simulation before switching to the nominal potential (cf.
Fig. 5). As a consequence, the hybrid controller recovers
faster from the descend at a lower speed (cf. Fig. 4)
and returns to ascending flight two seconds before the
continuous controller, with similar actuator usage (cf.
Fig. 1). A drawback of the hybrid controller however is
the decceleration close to the expelling reference as shown
in Fig. 3 and Fig. 5. This suggests using a dynamic
extension in which the control action is given by a dynamic
weighting of both configuration error vectors as done
in Berkane et al. (2017) or Mayhew and Teel (2013).
Future work will also address performance of the hybrid

0 2 4 6 8 10
0

0.5

1

1.5

2

Time [s]

P
ot

en
ti

al
[-

]

Fig. 5. Trajectories of the potential functions for the con-
tinuous controller (blue) and the hybrid controller
(orange). The values for the nominal potential func-
tion Ψ0 (dashed), the expelling potential function
Ψ1 (dotted), and the activated potential function Ψq

(solid) are shown.

controller in the face of non-vanishing disturbances and
model perturbations. Another aspect is the extension
to the optimal use of the actuators while respecting
saturation constraints, potentially in a model predictive
control scheme.

Appendix A. SYNERGISTIC POTENTIAL FUNCTION

We first show that Ψq describes a synergistic potential
function with synergy gap exceeding δ. This is to say that
at every critical point other than the nominal reference the
difference to the other potential function is larger than
some specified δ. To this end, denote the set of critical
points of Ψq for a fixed q ∈ Q as

CritΨq = {(Γ,Γd, sd) ∈ (S2)3 : eΓq = 0}. (A.1)

From the definition of eΓq it follows that at all critical
points, the reduced attitude Γ is parallel to the gradient of
the potential function ∇ΓΨq. The set of all critical points
follows as ∪q∈QCrit Ψq = {(±Γd), (±sd)}. For {Ψq}q∈Q to
be centrally synergistic relative to Γd with gap exceeding δ,
the condition ∪q∈QCrit Ψq\{Γd} ⊂ D needs to be satisfied.
At (Γ, q) = (−Γd, 0), the potential function evaluates to
Ψ0(−Γd) = 2 and Ψ1(−Γd) = a+ b, where we use the fact
that sd ·Γd = 0. To include that point in the jump set, the
synergy gap needs to satisfy

µ(−Γd, 0) = 2− a− b > δ > 0. (A.2)

At the critical points of the expelling mode, the nominal
potential evaluates to Ψ0(±sd) = 1 and for the expelling
potential we have Ψ1(−sd) = a + 2b and Ψ1(sd) = a.
Therefore the synergy gap also has to satisfy

µ(−sd, 1) = a− 1 > δ > 0 (A.3)

µ(+sd, 1) = a+ 2b− 1 > δ > 0. (A.4)

Then by (Mayhew and Teel, 2013, Proposition 1), the
potential function Ψq is centrally synergistic relative to
Γd with synergy gap exceeding δ given by (44).

Appendix B. PROOF OF PROPOSITION 2

To show that C and D are closed, note that Ψq is contin-
uous for q ∈ Q and that the minimum of two continuous
functions is continuous. The synergy gap µ in (41) then is
the difference of two continuous functions, which makes it
continuous. Therefore the sets C andD are closed. The unit



ball B is compact and convex for any (ξ, q) ∈ C such that
ωd, ω̇d are bounded by assumption. All remaining compo-
nents of F are continuous and single-valued functions on
C. Thus, the map F is convex and locally bounded relative
to C and outer semicontinuity follows from (Goebel et al.,
2012, Lemma 5.10), which shows (ii). Further, note that
S2 is compact and hence s+

d = gsd(Γ,Γd, sd) ∈ S2 is locally
bounded relative to D and the graph of gsd : S2×S2 7→ S2

given by

gph gsd = {(Γ,Γd, sd) ∈ S2 × S2 × S2 : sd ∈ gsd(Γ,Γd, sd}
(B.1)

is closed. Since D is closed, outer semiconituity of gsd rel-
ative to D follows from (Goebel et al., 2012, Lemma 5.10).

Appendix C. PROOF OF PROPOSITION 3

Given (30), (33) and (21) - (24), the closed-loop solution
to Ψq can be shown to satisfy

Ψ̇q = eΓq · eω, (C.1)

where (9) used. The time-derivative of the error vectors
are given by

ėΓq = −S(ωd)eΓq + S(∇ΓΨq)S(Γ)eω (C.2)

ėω = −kpeΓq −Π⊥ΓKdeω −Π
‖
Γ(ωd × eω) (C.3)

which can be found using (7), (22) and (26). To show
asymptotic stability, let a Lyapunov function candidate
be defined as

V = kpΨq +
1

2
eω
>eω. (C.4)

It follows from (C.1) and (C.3) that for (ξ, q) ∈ C along
solutions of the closed-loop system, V satisfies

V̇ (t, i) = −eω>Π⊥ΓKdeω ≤ −λmin(Kd)‖eω‖2 , uc(ξ).
(C.5)

It follows from Kd being positive definite that uc(ξ) ≤ 0
such that V (t, i) is non-increasing along flows. In D, the
mode is switched to the lower potential which leads to the
difference during jumps

V (t, i+ 1)− V (t, i) = −kpδ , ud. (C.6)

This shows that the growth of V (t, i) along solutions to
H is bounded by uc(ξ) ≤ 0 and ud < 0. Note that
by requiring the reference to be bounded, the dynamics
of closed-loop system in (39) and (40) are autonomous
and hybrid invariance principles can be applied. Then by
(Goebel et al., 2012, Theorem 8.8) we have that for an
arbitrary c ∈ V (Ξ, Q) each precompact solution to H
converges to the nonempty set that is the largest weakly
invariant subset of

Ω = V (c)−1 ∩ cl (uc(0)−1), (C.7)

where V (c)−1 denotes the preimage of the Lyapunov
function candidate at c and uc(0)−1 denotes the preimage
of uc at 0 for which cl (uc(0)−1) gives the closure. Then
from (C.5) we see that cl (uc(0)−1) leads to eω = 0 which
implies ėω = 0. We substitute this into (C.3) to see that
eΓq = 0 which gives (Γ, q) ∈ Crit Ψ. Since all critical
points except (Γd, 0) are included in D, it follows that
A is the largest weakly invariant subset of Ω. Thus all
precompact solutions of H converge to A. Further note
that A is compact and cl (C) ∪ D = Ξ × Q and therefore
G(D) ⊂ cl (C)∪D. Since V is positive definite with respect
to A it follows from (Goebel et al., 2012, Theorem 8.8) and
(Goebel et al., 2012, Corollary 8.9 (iii)) that A is globally
asymptotically stable.

Appendix D. PROOF OF PROPOSITION 4

This proof aim of the proof is to show global exponential
stability as defined in (Teel et al., 2013). Along continuous
flows and for bounds, Ψq and eΓq are assumed for a fixed q,
unless specified otherwise. We first show that the potential
function is uniformly quadratic (Bullo and Murray, 1999).
Since all critical points other than Γd are excluded from
the flow set C, there exists a constant γ such that the
potential function can be bounded from above (see Lee
(2015)) as

Ψq(Γ,Γd, sd) ≤
1

2
γ‖eΓq‖2. (D.1)

To show a lower bound, we use scaling in each mode and
define bq as b0 = 1 and b1 = b. It then follows from (31)
and (32), using (8) that the potential function is uniformly
bounded by

1

2bq
‖eΓq‖2 ≤ Ψq(Γ,Γd, sd) ≤

1

2
γ‖eΓq‖2. (D.2)

Using (C.4), let a Lyapunov function be

Vε = V + εe>ω eΓq (D.3)

for some ε ∈ R>0. From (D.2) and defining z =

[‖eΓq‖ ‖eω‖]> we see that Vε can be bounded by

1

2
z>M1z ≤ Vε ≤

1

2
z>M2z, (D.4)

where the matrices M1,M2 ∈ R2×2 are given by

M1 =

kpbq −ε
−ε 1

 , M2 =

[
kpγ ε
ε 1

]
. (D.5)

Next, we show that there exists a λ > 0 such that along
solutions of the closed-loop dynamics, Vε can be bounded
by

Vε(t, i) ≤ Vε(0, 0)exp(−λt). (D.6)

During jumps, the difference in Vε is given by

Vε(t, i+ 1)− Vε(t, i) = −kpδ + εeω
>(eΓq+ − eΓq), (D.7)

which can be bounded using (10) and the triangle inequal-
ity such that

Vε(t, i+ 1)− Vε(t, i)
≤ −kpδ + ε‖eω‖‖Γ× (Γd − bsd)‖ (D.8)

≤ −kpδ + ε‖eω‖(‖Γd‖+ |b|‖sd‖) (D.9)

≤ −kpδ + εBeω (1 + |b|). (D.10)

The right side of the last inequality is non-positive for

ε ≤ kpδ

Beω (1 + |b|)
, (D.11)

which shows that Vε is non-increasing during jumps. Next
we show that there exists a positive definite matrix M3 ∈
R2×2 such that along flows, Vε satisfies

V̇ε(t, i) ≤ −z>M3z. (D.12)

The upper bound of V̇ is given by (C.5) and it remains to
find a bound for the time-derivative of the cross-term in
(D.3). From (C.2), (C.3) we see that

d

dt
(e>ω eΓq) = e>ω (S(∇ΓΨq)S(Γ))eω − kp‖eΓq‖2

− eΓq
>(Kd + S(ωd))eω (D.13)

≤ ‖∇ΓΨq‖‖eω‖2 − kp‖eΓq‖2

+ (λmax(Kd) +Bωd
)‖eΓq‖‖eω‖, (D.14)



where (10) is used. From (C.5) and (D.12) follows

M3 =

 εkp − ε
2

(λmax(Kd) +Bωd
)

− ε
2

(λmax(Kd) +Bωd
) λmin(Kd)− ε‖∇ΓΨq‖

 .
(D.15)

The matrices M1,M2,M3 are positive definite for any ε
satisfying

ε < min
q∈Q

{√
kp
bq
,

4λmin(Kd)

4kp‖∇ΓΨq‖+ (λmax(Kd) +Bωd
)2

}
,

(D.16)
which shows that (D.6) is satisfied for all initial conditions
with λ = λmin(M3). We can then apply (Teel et al., 2013,
Theorem 1) to conclude global exponential convergence
of Vε. Then Vε = 0 if and only if Ψq = 0 and eω = 0
and hence Γ → Γd and ω⊥ → ωd, which shows that A is
globally exponentially stable.

Appendix E. REFERENCE FILTER

An expression for the reduced-attitude vector Γ in terms
of the Euler angles roll and pitch is given by (19). Differ-
entiating leads to

Γ̇ =

 − cos(θ)θ̇

− sin(θ) sin(φ)θ̇ + cos(θ) cos(φ)φ̇

− sin(θ) cos(φ)θ̇ − cos(θ) sin(φ)φ̇

 . (E.1)

For ω⊥ ∈ TΓS2 we can invert (21) using (19) and (E.1) to
get

ω⊥ = Γ̇×Γ =

 cos2(θ)φ̇

cos(φ)θ̇ + sin(θ) cos(θ) sin(φ)φ̇

− sin(φ)θ̇ + sin(θ) cos(θ) cos(φ)φ̇

 , (E.2)

with derivative
ω̇⊥ = Γ̈× Γ, (E.3)

where Γ̈ = [Γ̈1, Γ̈2, Γ̈3]
>

can been found by differentiat-
ing (E.1), with elements given by

Γ̈1 = sin(θ)θ̇2 − cos(θ)θ̈ (E.4)

Γ̈2 = − cos(θ) sin(φ)(θ̇2 + φ̇2)− 2 sin(θ) cos(φ)θ̇φ̇ (E.5)

− sin(θ) sin(φ)θ̈ + cos(θ) cos(φ)φ̈

Γ̈3 = − cos(θ) cos(φ)(θ̇2 + φ̇2) + 2 sin(θ) sin(φ)θ̇φ̇ (E.6)

− sin(θ) cos(φ)θ̈ − cos(θ) sin(φ)φ̈.

Given twice continuously differentiable reference trajecto-
ries φd(t), θd(t) and their first and second derivatives (e.g.
using third order linear reference filters (Fossen, 2011)),
the relations (19) and (E.1) - (E.6) can be used to generate
continuous signals Γd(t), ωd(t), ω̇d(t), which are needed to
implement the tracking controller (36).
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