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ABSTRACT

Injection molding is a complicated process, and the final part quality depends on many
machine and process parameters settings. To increase controllability of the injection
molding process, acquisition of the process data is necessary. This paper describes the
architecture and development of a prototype of an open application programming
interface (API) for injection molding machines (IMMs), which has the potential to be
used with different IMMs to log and set the necessary process parameter values. At the
moment, the API includes an implementation of EMI data exchange protocol and can
be used with ENGEL IMMs with CC300 and RC300 controllers. Data collection of up to
97 machine and process parameters (the number might vary depending on the type of
machine at hand), obtained from sensors installed in the machine by the manufacturer
is allowed. The API also includes a module for the acquisition of data from additional
3d party sensors. Industrial Raspberry Pi (RevPi) was used to perform analog-to-
digital signal conversion and make sensors data accessible via the API prototype. The
logging of parameters from the machine and from sensors is synchronized and the
sampling frequency can be adjusted if necessary. The system can provide soft real-time
communication.

Subjects Real-Time and Embedded Systems, Scientific Computing and Simulation

Keywords Application programming interface (API), Data acquisition system, Injection molding,
Open source, Industry 4.0, Cyber-physical systems

INTRODUCTION

Manufacturing systems gradually become more sophisticated due to an increasing demand
on quality of manufactured products, production system performance, as well as economic
profitability (Yin et al., 2014). Therefore, data acquisition, process monitoring and control
are becoming more and more important in the manufacturing industry (Negri, Fumagalli
& Macchi, 2017). A significant number of studies stress the importance of collection and
analysis of data from different manufacturing processes and injection molding is no
exception (Vrabic, Kozjek & Butala, 2017). The concepts of Industry 4.0 and cyber-physical
systems (CPS) are important drivers for this development.

It is becoming increasingly common to demand machine tools equipped with sensors
from the machine tool manufacturers, and later to add sensors from the 3d party
sensor suppliers. Appropriate sensors in machine tools, dies and molds can provide
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useful information such as temperature and pressure, while communication protocols,
e.g., MTConnect and OPC/UA allow the recording of the necessary controller signals (Lee,
Kao & Yang, 2014). Using data acquired from these sensors can assist quality control
routines and could establish models for suggestion of optimal process parameters (Zhao
et al., 2014), decrease scrap rates and energy usage through the elimination of production
cycles that produce defect parts and minimize unwanted “manual adjustments and
variations on product quality” (Saldivar et al., 2016).

Before the start of the production of an injection molded part, parameter values such as
holding pressure, backpressure, cooling time, injection speed, screw speed and others need
to be set. These parameter settings influence the part quality, and erroneous parameter
values might cause various defects (Zhao et al., 2014; Ogorodnyk ¢ Martinsen, 2018). To aid
the operation of the IMMs, many suppliers offer manufacturing execution systems (MES),
which include data logging functions. These systems can be more or less complicated,
although they will usually provide such functions as monitoring of machine status, remote
access to machine set-up, data logging of machine and process parameters and displaying
the data in a feasible way. Examples of such systems are TIG’s authentig (TIG. TIG authentig,
2020), ARBURG’s Host computer system (ALS) (ARBURG. Host computer system , ALS),
KraussMafei’'s MaXecution (KraussMaffei. MaXecution, 2020), MES HYDRA (MDPV.
Manufacturing Execution System HYDRA, 2020), SAP Manuacturing Execution (SAP. SAP
Manufacturing Execution, 2020) and Polmak Plastik QMaster (Polimak_Plastik. Polmak
Plastik Products, 2020).

There are, however, challenges for the usage of these systems for analysis and research
purposes.

1. They are rather costly and often compatible only with newer generations of IMMs and
IMM controllers.

2. It might be hard to synchronize data logging from machine built-in sensors with
logging of data from 3d party sensors installed in the mold.

3. The MES systems often log data only once per production cycle and this might lead to
missing information about the process dynamics and peak values of process parameters.

4. Commercially available MES software has a closed architecture that does not always
allow to access all the machine and process data of interest, this might be an obstacle
in terms of research and advanced process data analysis.

Therefore, in this article a question of how to design a universal API to control and
monitor injection molding for the next generation industrial systems is discussed. A prototype
solution of an open API that allows interaction with IMM’s control unit is presented and
made available through the following repository: https://github.com/SintefManufacturing/
IMM_API. The prototype allows collection of production data through EMI data exchange
protocol and can be built on to add support for other IMMs or new data collection
functionality.
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Figure 1 Research methodology steps.
Full-size Cal DOI: 10.7717/peerjcs.302/fig-1

BACKGROUND AND REQUIREMENTS TO THE PROPOSED
API

The described study is based on four main steps shown in Fig. 1. At first, a problem
and requirements analysis was conducted. This included review of several available
manufacturing execution systems, communication protocols used for connection of
IMMs to other devices, as well as studies related to the development of similar systems by
academia. In addition, the stakeholders’ needs and requirements for an IMM API were
identified. The primary stakeholders in this case are the companies and research institutions
participating in the project, while potential stakeholders include the IMM manufacturers,
other injection molding companies and researchers. The second step was dedicated to
summarizing which models and frameworks are to be used to develop the proposed API
prototype and creation of the implementation schemes of the system (UML diagrams).
The third step included development of the prototype. In the final step, the system was
tested with different sampling frequencies to assess its performance.

Injection molding process
Injection molding is one of the most widely used processes for production of polymeric
products, as about 30% of them are manufactured using this process (Osswald ¢
Hernandez-Ortiz, 2006). It is a cyclic process for production of identical parts through
injection of molten material into a mold cavity of a desired shape (Zheng, Tanner ¢» Fan,
2011). Tts main advantage is an ability to fabricate high volumes of parts of various sizes
and geometries, from the smallest components (micro-injection molding) to entire car
body panels. The reciprocating screw IMMs are mostly used for production of the injection
molded parts. Their main components are a hopper, a rotating screw, a heated barrel and
a clamping unit consisting of a mold typically made of two halves.

An injection molding cycle usually includes the following phases: plasticization, injection,
packing, cooling and ejection (Zheng, Tanner & Fan, 2011). During the plasticization stage
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plastic pellets are fed into the heated barrel through the hopper. Here they are melted,
mixed and homogenized with help of the reciprocating screw. When enough plastic melt
is accumulated, the screw moves forward and forces the molten material into the mold
cavity at high velocity and pressure (injection phase). When the mold cavity is 95-98%
full, the process switches from the constant velocity to the constant pressure control to
avoid pressure spikes. At the point, when the cavity is completely filled, the packing stage
starts: the screw stays in the forward position or keeps moving with a small displacement
to maintain the necessary holding pressure. The material cools down and shrinks allowing
another small portion of the material to enter the cavity. This stage continues until the
material in the cavity entrance solidifies. Next, the holding pressure is reduced to a value
close to zero and the part continues to cool down and solidify (cooling) until the mold is
opened and the part is ejected (ejection).

To achieve a repeatable process that allows production of high quality parts with specific
material properties, a significant number of machine and process parameters need to be
considered. Many of them, however, are dynamic, and adopt a characteristic curve over the
production cycle. Examples of such parameters are screw speed, rotation speed, material
cushion, mold temperature and pressure, etc. Most of these parameters can be acquired
from the IMM sensors installed by its manufacturer, however, some require additional
sensors in the molds, as for example, the mold temperature and pressure data. This data
is suggested as one of the essential indicators of production of the high quality parts,
as it reflects the evolution of the polymer conditions inside the mold, and is used and
investigated by both industry and academia (Zhao et al., 2014; Kurt et al., 2009; Kurt et al.,
20105 Ageyeva, Horvith & Kovics, 2019). There are a number of sensors available on the
market for installation in molds (piezoelectric/piezoresistive, strain gage, surface mounted
thermocouples, ultrasonic sensors, optical sensors, etc.). Some of them have operating
temperatures that do not allow insertion into the mold cavity and touching the molten
material (indirect, contact-free measurement), while others are able to operate in these
extreme conditions (direct measurement) (Ageyeva, Horvdth ¢ Kovdcs, 2019).

The frequencies for logging the IMM and mold data may differ depending on the
further use of this data, as well as on the size of the produced part. For example, if a part
is manufactured using micro-injection molding and its cycle time is equal to a couple
of seconds, a higher logging frequency might be of interest, however, if a bigger part is
produced and the cycle time is longer the frequency of interest might be lower.

Commercially available MES and solutions proposed by academia
MES are computerized systems used in manufacturing to obtain the necessary data
from the production floor in order to optimize the production output (Mahmoud et al.,
2015). A suitable data exchange protocol needs to be utilized to establish communication
between an IMM and an MES or a PC. Currently, the most widely used protocols are
EUROMAP63 and EUROMAP77. EUROMAP63 was developed in 2000 and uses file-
based data transfer (EUROMAP, 2020). EUROMAP77 was released in 2018 and is based
on OPC/UA to be applied in Industry 4.0 cases. EUROMAP77’s downside is that it is not
directly connected to the IMM’s control loop and thus it might not be able to guarantee
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real-time or soft real-time communication. Another example of a data exchange interface is
ENGEL Machine Interface (EMI). EMI is directly connected to the machine’s control loop
via Ethernet (TCP/IP protocol) and communication is based on XML byte streams. EMI is
much faster in comparison to EUROMAP63, as EMI exchanges data approximately every
0.05 s, while EUROMAP63 exchange period is 1-2 s, based on the authors’ experience.
There exist a significant number of manufacturing execution systems applicable to
injection molding. Table 1 shows functionality in terms of the process data collection
and openness of some of the MES systems used by the injection molding companies.
There are, other systems available on the market, however, most of them are similar to
each other in a sense that their functionality misses either (a) openness for changes and
addition of custom modules developed by the system’s users and not only developers, (b)
synchronized acquisition of data from both machine and 3d party sensors or (c) ability to
adjust the sampling rate. The functionality of the available systems could be adjusted to
enable realization of (a)—(c), thereby enabling a new use-case of the commercially available
systems making them more open and flexible for research and development purposes.
When it comes to the solutions proposed by academia, the authors have found only
a few examples of the development of open APIs capable of solving the above-described
challenges. The literature, however, does include examples of systems for the acquisition of
data from sensors additionally installed on the IMMs, and descriptions of rapid testing of
novel algorithm prototypes. In (Tellaeche ¢~ Arana, 2013) a “flexible data acquisition system
that allows rapid implementation of complex algorithms to assess their correct performance
and can be integrated in the quality control process” is proposed. The system is based on
one of National Instruments (NI) data acquisition systems (DAQs) and is used to log
data from two force sensors installed in a mold. No data from in-built machine sensors
are being used in this study, due to the inability to access it. A similar case is described
in (Zhou et al., 2017), where mold temperature, screw displacement and velocity data are
recorded through the installation of additional (not provided by machine manufacturer)
sensors in the IMM, as well as the mold. In Zhao et al. (2014), different types of sensors and
probes (thermocouples, displacement and pressure probes) are installed in an injection
molding machine and data collection cards are used to transform analog, discrete and
temperature signals to the digital ones. Most of this data can be acquired from sensors
already installed in an IMM by its manufacturer, but due to the restriction of commercial
software and hardware, new sensors needed to be installed to get easy access to data and
to test necessary algorithms and routines developed by researchers. Zhang, Mao (Zhang et
al., 2016), on the other hand, are trying to use some of machine built-in sensors, namely
hydraulic pressure sensor to estimate nozzle pressure values and increase controllability
of the injection molding process. In (Charest, Finn ¢ Dubay, 2018) pressure transducers,
thermocouples, velocity and position sensors, and flow sensors are installed and “interfaced
using National Instruments data acquisition boards and a PC” to acquire the IMM data.
Most of these reported studies use systems for data acquisition from 3d party sensors,
and are not using the machine built-in sensors, due to the lack of a suitable way to acquire
the data and communicate with the IMM controller. Development of an open API for the
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Table 1 Comparison of commercial MES.

Requirement TIG KraussMaffei AURBURG Host MES HYDRA SAP Polmak Plastik
authentig computer system (MDPYV, 2020) Manuacturing QMaster
(KraussMaffei, 2020) MaXecution (KraussMaffei, 2020) (ALS) (ARBURG, 2020) Execution (Polmak_Plastik, 2020)
(SAP, 2020)
1 Open for changes and addition of No No No No Yes No
modules by the user (not producer) (mostly for
business
applications)
2 Compatibility with EUROMAP63, EU- Yes No Yes Yes Yes Yes
ROMAP77, EMI
3 Acquisition of machine and process Yes Yes Yes Yes Yes Yes
parameters
4 Set values of machine and process pa- Yes Yes Yes Yes Yes Yes
rameters
5 Synchronized acquisition of data from No No No No No No
built-in and additional sensors
6 Possibility to change sampling rate No No No No No Yes

80URI0S JeindwioD) rieed
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IMMs by either MES producers or academia would bring new opportunities for research
and analysis of the machine and process data.

Requirements to an open application programming interface for IMMs
Based on the above-described challenges to the commercially available MES, as well as
on the project proposal related to this research certain functional requirements were
formulated:

1. The API should be compatible with different communication protocols
(EUROMAP63, EUROMAP77, EMI).

2. The interface should be open so that building upon existing software and rapid
algorithm prototyping is possible if/when necessary.

3. The API should be capable of providing real-time or soft real-time logging depending
on the end-user’s needs. Real-time scheduling communication means that missing a data
sampling deadline (each 0.3 s, for example) is considered an error, while soft real-time
means that it is better not to miss the deadline, but it is not an error to do so (Lee ¢~ Seshia,
2016). In case of the prototype further described in this article, a soft real-time logging
and a 2 Hz sampling rate were required to be implemented based on the stakeholders’
requirements extracted from the related project proposal.

4. The acquisition of several parameter measurements per production cycle should be
ensured.

5.1t should be possible to get values of up to 97 desired machine and process parameters
of an IMM (depending on the IMM’s model) and additionally installed sensors (if any).

6. The option of setting values of machine and process parameters, where the parameters
are accessible, should be provided.

7. The setting of the values should not conflict with the IMM safety installations and
non-permitted values that are too high or too low shall not be overwriting the permitted
ones.

8. The developed system should ensure the synchronized acquisition of data from
machine built-in sensors and 3d party sensors. In case of the prototype solution, logging
of data from the IMM’s built-in sensors should be synchronized with temperature and
pressure mold multi-sensors.

In addition, such non-functional requirement as security needs to be considered. API
implementations should ideally allow application layer security—such as authenticated
access over secure HTTP via TLS, but this aspect is out of scope for this work. To sum up: a
simple, open and safe application programming interface (API) which can get and set values
of different parameters on the IMM, as well as values from additionally installed/external
sensors, should be developed. To meet the above-listed requirements the API needs to
include the functions/ methods shown in Table 2.

DESIGN AND IMPLEMENTATION OF THE API'S
PROTOTYPE

An API is a software product that includes a number of clearly defined methods for
communication between different components, in our case, between an IMM, a PC
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Table2 “ParameterList” description.

Name of method Description of method

start_logging(sampling_rate) By executing this method the system starts logging IMM’s
process parameters with specified by a user sampling rate.
“sampling_rate” parameter is the user-desired sampling
rate in Hz. The logging sequence is stopped by launching
the idle() method.

get_process_param(names) This method returns actual and set values of chosen process
parameter or list of parameters. Parameter name(s) is/are
given as “names” argument of the method. This method is
independent of the control loop.

get_async_act_sample(params) Returns unsynchronized current value(s) of process
parameter(s). Name of one or more parameters are given as
“params” argument of the method. Method is independent
of the control loop.

set_process_param(name,value) This method sets a desired value of a specified process
parameter on the IMM. Arguments “name” and “value”
mean respectively process parameter’s name and desired
value of that parameter.

get_samples(number_of_shots) Method returns data sampled during certain number
of production cycles (shots) buffered in a FIFO queue.
“number_of_shots” parameter defines how many
shots/cycles in the past user is interested in.

event() Set APD’s state to an event, can be launched externally with
method event_sample().

event_sample() Trigger an event based sampling. The state has to be an
event.

idle() Set interface’s state to idle, a passive state where the

connection is maintained.

disconnect() Connection is ended and the API is shut down.

and/or a data acquisition system connected to mold sensors. To develop the proposed API
prototype, the Unified Process methodology for software development has been followed.
This methodology includes four main phases: inception, elaboration, construction and
transition (Jacobson, Booch ¢ Rumbaugh, 1999).

The Python3 programming language was chosen to program all the prototype modules,
as it is easy to use, has a number of versatile features and libraries, can be utilized to practice
distributed computing and be further extended in C++ or C. The IMM used in this study
supports EUROMAP63 and EMI data exchange protocols. As mentioned before, EMI is
capable of exchanging data significantly faster than EUROMAPG63, therefore, it was selected
to be used in the prototype implementation. PCMEF (presentation, control, domain and
foundation) architectural framework (Maciaszek ¢ Liong, 2005; Madeyski ¢» Sochmialek,
2005) was applied for development of the API prototype’s distributed architecture. At the
same time, the OSI 7 layer model (Open Systems Interconnection model) (Kurose ¢ Ross,
2010) was followed for the creation of the communication design of the API, since the EMI
exchange protocol is also based on this model.
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Figure 2 Open API for IMM architecture diagram.
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Description of the proposed system

The proposed prototype API includes database and System APIs, which combines IMM
interface and Data acquisition system for additional sensors (DAQ Interface) modules, as
shown in Fig. 2. The System API is used (1) for the establishment of a connection with the
injection molding machine and requesting and setting the corresponding parameter values,
(2) for acquisition of data from any additionally installed machine and mold sensors. Note
that the data from the IMM is only accessed through establishment of connection with
the IMM and not acquired directly from the IMM sensors. This is due to a fact that the
IMM has its own DAQ that is connected to the installed sensors and is logging their values
during the machine runs. The database is needed for organized storage and easy access to
sampled data.

The API prototype

The API prototype uses Pyro4 (Pyro, 2020), xml.etree.ElementTree, socket, thread, queue
and datetime Python libraries, where Pyro4 is Python Remote Objects library that is used
to enable distributed computing between network-based objects.

The data is logged only when the machine mold is closed in order to minimize the
amount of memory used for data storage. To detect the mold closing, a “mold force”
parameter is used. The software unit waits until the mold force parameter reaches a value
of >300 kN and then starts data collection. It stops when the mold force parameter value
becomes lower than the above-specified value.

Currently, data from each production cycle (in this case defined as from mold closing
to mold opening) are written to a separate file of a user-specified type (.csv, .json, .pickle)
and are stored in a folder chosen by a user on the PC connected to the IMM. A proper
database management unit needs to be further developed and added to the system in future
versions, to provide a scalable way of storing process data.
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Accessing the IMM parameters data

To access the necessary IMM parameter values the prototype uses a list of Uniform Resource
Identifiers (URIs) and their correspondence to different parameters on the IMM for the
establishment of machine to machine communication. The URISs list was obtained from
private communication with ENGEL. A .csv file was created that included all URIs and
machine and process parameters of the IMM provided by ENGEL. This file can be updated
to enable or disable the collection of certain parameters depending on the necessities of a
user.

The API prototype can enable three different modes “Idle”, “Fixed cycles” and “Flexible
cycles” depending on the application. In the “Idle” mode controller ensures that connection
is up and that application is able to access the interface’s methods for asynchronous
interaction, while the “Fixed cycles” mode is a periodical sampling mechanism of
parameters from the IMM that samples all of the parameters simultaneously. The sampling
results are available in the queue for the application process. “Flexible cycles” mode takes
care of the unbalanced update sampling frequencies to avoid oversampling.

Machine parameters on the IMM can have different update frequencies depending on
the sampling limitations of the data acquisition system on the IMM. These frequencies
can also be manipulated by the user via the IMM’s general user interface. The updating
frequencies typically vary from 10 to 1000 ms. At the first run in the “Flexible cycles” mode,
the interface acquires the sampling frequency of each parameter from the IMM and groups
parameters that have the same update rate. In this mode, the interface checks the last
datetime, when each parameter group was updated, and determines if it is time to acquire
a new portion of data from the IMM.

Acquisition of additional sensors data

When it comes to acquisition of data from sensors additionally installed on an IMM or
in its molds, the data logging is synchronized. In order to enable the synchronization, the
event_sample() method described in Table 2 needs to be triggered for both IMM and the
DAQ used for the additional sensors data sampling.

This study included the use of a mold with two pressure and temperature multi-sensors.
Figure 3 depicts a typical scenario of the API’s use and interaction of its components, where
the necessary parameters data is accessed on the IMM and logged from the additional
sensors through the RevPi. Communication with an IMM is established through the
IMMProxy module and the 3d party sensors DAQ though the DAQProxy and the requested
parameter values are obtained.

EVALUATION OF THE API PROTOTYPE’S PERFORMANCE

Used hardware

In order to develop and test that the application programming interface is able to satisfy
requirements specified in “Requirements to an open application programming interface
for IMMSs”, an “ENGEL insert 130 vertical injection molding machine with CC300 control
unit was used. A mold for ISO 527-2 (ISO, 2012) dog bone parts (15 mm thickness) with
two temperature and pressure Kistler multi-sensors type 4021B10H1P1 was used to test the

Ogorodnyk et al. (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.302 10/20


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.302

PeerJ Computer Science

SystemAP| | | IMMProxy ‘ | Injection moulding machine (IMM) | | DAQProxy | ‘ RevPi
T T r

sample_shots() B

s

connect()

result

result

! reset() ey
reset()
event()
I—
event()

__waitMo)

dClosing()

LoopJ

Eatl EEE ELE b

frigger_event }E H

@ﬂ

Continues to trigger event Pnti\ the mould is open

get_param_value() I
I
E Data from IMM's sensors !|

trigger_event()

get_value()
ADC value

2 Samples are saved

idle)

idleq()

get_samples() oy

samples

get_samples()

e =N N ]

!

|

H
1

( __checkMouldOpening()
1

H

-

|t

samples

logout()
Log out of the IMM m

=5

Figure 3 Interaction Sequence Diagram showing ordering of calls to the API and underlying calls for

data acquisition.

Full-size Gal DOI: 10.7717/peerjcs.302/fig-3

system’s performance with different sampling rates. The sensors’ characteristics are shown

in Table 3. The dog bone specimen parts (Fig. 4) are mostly used to define mechanical

properties of various materials and are used by both industry and academia for those

purposes.

To transform analog signals from sensors into digital ones a RevPi (RevPi, 2020b)—

Industrial Raspberry Pi is used, namely RevPi Core3 and RevPi Analog Input Output

(AIO) modules. RevPi Core3 is a computing unit that uses Raspbian Jessie as the operating

system and Preempt-RT patched kernels of version 4.9.52-rt37-v7. RevPi AIO is an analog

input/output extension module for the RevPi Core3 which includes necessary analog

inputs and outputs to connect to the sensors and to send converted sensor signals to the

Core3 unit. The modules are connected through PiBridge (RevPi’s modules connector).
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Figure 4 Dog bone specimen (ISO 527-2) with 15 mm thickness.
Full-size Gal DOI: 10.7717/peerjcs.302/fig-4

Table 3 Pressure and temperature sensor characteristics.

Specifications Kistler type 4021B10H1P1
Model Measuring chain
Calibration Calibrated by Kistler
Measuring Range pressure (Bar) 0..1000

Measuring Range temperature (°C) 0..350

Temperature accuracy (°C) +5

Diameter (mm) 21

Height (mm) 91.5

Natural Frequency (kHz) >165

The RevPi AIO performs analog-to-digital conversion (ADC) with a 24-bit delta-sigma
converter (Baker, 2016) (model ADS1248) (RevPi, 2020a).

The reason for choosing RevPi is that, unlike commercial DAQs from manufacturers
like NI and HBM, RevPi has a significantly lower cost and is an open, modular industrial
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Table 4 Statistics of overhead measurement for RevPi.

Sampling Mean [s] Std. 5th 95th Overhead

rate [Hz] dev. [s] percentile percentile over 0.025s [%]
100 0.02532 0.02049 0.022 0.025 0.96

50 0.02611 0.02392 0.023 0.025 1.29

33 0.03001 0.02246 0.023 0.03 1.14

2 0.5006 0.00082 0.5 0.501 0.00

Table 5 Statistics of overhead measurement for IMM DAQ.

Sampling Mean [s] Std. dev. [s] 5th percentile 95th percentile Overhead

rate [Hz] over 0.025s [%]
100 0.02533 0.01475 0.023 0.025 1.67

50 0.02611 0.01736 0.023 0.025 2.43

33 0.03001 0.01945 0.023 0.031 1.73

2 0.5006 0.01303 0.5 0.501 2.34

PC (RevPi, 2020b). Due to this, it can provide flexibility in which software alternatives
can be used together with it. The biggest disadvantage in comparison to commonly used
commercial data acquisition systems is RevPi AIO’s maximum sampling rate at 640 Hz.
In practice, the sampling rate can be significantly lower due to load on the PiBridge.
Further on, the update rate of the data values is reduced by a factor of 5 according to the
documentation of the RevPi. As a result, if the analog-to-digital conversion sampling rate
is 640 Hz, it will provide an update rate of 128 Hz on RevPi Core3. Due to this RevPi might
not be the optimal solution, however, as the described API is a prototype, RevPi is a good
demonstration tool.

System’s performance in terms of real-time and soft real-time logging
In order to assess the system’s performance in terms of its ability to comply with different
sampling rates, the API was installed on the RevPi, where three different processes needed
to be handled: handling the IMM, handling Kistler sensors signals and synchronization
of data acquisition from the injection molding machine and mold sensors. All tests were
conducted at length of 4900 samples for sampling rates at 100, 50, 33 and 2 Hz. The IMM
machine was turned on and the RevPi was connected to the mold sensors, however, no
IMM production runs were performed, therefore, most of the parameter values logged
are constant or equal to zero. The ability of the system to set the corresponding machine
parameter values was not tested during these tests. The collected data can be found in
the supplemental files. Tables 4 and 5 show the mean, standard deviation, 5th and 95th
percentiles, as well as the percentage of samples with overhead over 0.025 s among the
logged sampling rates, while Fig. 5 depicts histograms for the corresponding sampling rates
data. The overhead was calculated based on the following equation:

Overhead = (sampling_mte(real Ynt1 — sampling _rate(real )n) — sampling _rate(given),
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where sampling_rate(real) is a sampling rate performed by the system for samples n+ 1
and n.

Based on the results shown in Tables 4 and 5, it is easy to see that real-time restrictions
of the system apply. For the test with 100 Hz sampling rate, the mean sampling rates that
the system performs are around 0.025 s (39.49 Hz) on both IMM and the RevPi. This
means that the system cannot comply with the given sampling rate. Examining results from
sampling at 50 Hz, it is possible to see that the system performs better than with 100 Hz
sampling rate. In this case, the performed mean sampling rate is around 0.026 s (38.29 Hz)
(for both IMM and the RevPi).

Even better results can be seen at sampling rate at 33 Hz. Here, the average sampling is
close to 0.03 s or 33.3 Hz, while the number of overhead values over 0.025 s is 1.14 and
1.73 for the RevPi and the IMM’s DAQ respectively. This indicates that 33 Hz can be one
of the appropriate sampling rates for the proposed APIL

At the same time, 2 Hz sampling rate has the mean value for both IMM and the RevPi
at around 0.5 s (1.99 Hz). On the IMM there are 2.34% of samples that have the overhead
value higher than 0.025 s, while on the RevPi there are none. Regarding real-time demands,
results show that a number of samples with the overhead value higher than 0.025 s are
present at logging with any of the tested sampling rates except for the 2 Hz rate for the RevPi.
This happens because the system tries to compensate for the sampling deviation, when
launched in the “Flexible cycles” mode to avoid oversampling. The RevPi demonstrates
that it is able to perform real-time sampling with 2 Hz or lower sampling rate and soft
real-time on higher speeds. To improve the system’s performance in term of the real-time
performance a more powerful DAQ needs to be used.

At the same time, API’s unpredictability comes, among other things, from Python’s
memory management mechanism. It uses reference counting collector and generational
garbage collector, known as “gc module’ for memory reclaim (PythonSoftwareFoundation,
2020). Unlike many other languages, it does not necessarily release the memory back to the
operating system, but instead keeps some parts of already allocated memory for use in the
future. It is also possible to see that the IMM process is more unpredictable than the RevPi
process. This is caused by necessity to establish the server/client connection with the IMM,
while there is no such necessity, when the RevPi is directly connected to the sensors and
acquires the data from them. It is important to remember that the RevPi is used to access
and record the IMM’s parameter values, while their acquisition is performed by the IMM’s
internal DAQ, and only the mold sensors are directly connected and the corresponding
signals are logged by the RevPi.

DISCUSSION AND FUTURE WORK

The developed API prototype complies with requirements that were defined in
“Requirements to an open application programming interface for IMMs” and is a modular
system open for any necessary changes. Its openness is the main difference between
the proposed API and commercially available systems with similar functionality. It is
possible to see from Table 1 that listed commercial MES (except SAP Manufacturing
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Execution (SAP. SAP Manufacturing Execution, 2020)) do not include the possibility of
adding any modules developed by the system’s user, unless a new module is bought from
the software producer. At the same time, they also do not allow to change parameters
sampling rate and synchronization of data acquisition from built-in or external sensors.

The open API prototype, on the other hand, can be modified to include additional
modules. The use of these modules can assist in increasing the quality yield and the overall
controllability of the injection molding process. The open application programming
interface is developed to simplify data collection and processing for optimization of the
injection molding process and bring IMMs closer to being cyber-physical systems capable
of self-regulation and self-control.

Keeping in mind operational safety, it should be noted that the prototype does not in
any way hinder operation of the IMM’s own control system. As a result, if a parameter
value that contradicts with the IMM manufacturers’ safety principles is attempted to be
set, the value will not be updated on the IMM. At the same time, if a value is updated, in
some cases, it might take time to reach the new stationary set point on the IMM. At the
moment, the proposed prototype does not check if the IMM has reached the new value
and this needs to be controlled by the IMM operator/user.

Future work should include development of the corresponding classes for the prototype’s
use with other data exchange protocols, such as EUROMAP77 to enable connection to
IMM:s of other manufacturers; testing of the system with other injection molding machines;
further development of the database management unit to allow storage of all the necessary
process data. Development of the prototype in terms of the real-time monitoring through
implementation of the specialized process architecture (for example, non-blocking queues,
concurrent read/write buffers) also needs to be continued. At the same time, a graphical
user interface (GUI) or a connector to an existing Industry 4.0 process monitoring platform
for the API needs to be implemented. The system’s security also needs to be worked on.
In addition, a question of how often the data should be sampled needs further and deeper
review. Collaboration with IMM manufacturers, as well as OPC/UA working group would
be highly beneficial for further development of the open API for IMMs and the injection
molding process compliance with Industry 4.0 paradigms. Adding functionality of the
proposed API to the commercially available MES would make them attractive to a broader
range of users, including those interested in extensive research and analysis of the injection
molding process.

An important aspect of Industry 4.0 is simplification of the integration and the
communication across different units and machines at the shop floor (Negri, Fumagalli ¢
Macchi, 2017; Kritzinger et al., 2018). A major motivation for the development of the API,
is the possibility to enable easy access to machine tool and process parameters data during
injection molding for several categories of IMM users. In order to move towards Industry
4.0, both hardware and software should become more open (without compromising
systems security and operational safety) for additional modifications by users instead of
staying as restricted as it is.
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SUMMARY

This paper has provided requirements, description of the development and capabilities
of the open API prototype for injection molding machines. The interface is open for
external interaction with the machine controller, allowing logging and setting values of
process parameters. The openness of the prototype also provides possibilities for rapid
algorithm prototyping and testing, when developing control strategies in the laboratory.
The prototype has been tested at 100, 50, 33 and 2 Hz sampling frequencies and can
comply with the 33 and 2 Hz rates. Setting of the machine parameters, however, has not
been performed during these tests.

As to the authors’ knowledge, there are currently no such open systems available. Similar
functionality might be provided by commercially available MES, but these systems often
have several limitations, such as: high cost, synchronization issues of data logged from
injection molding machine and additional sensors, etc.

The API prototype proposed in this paper is developed to provide soft real-time data
communication between a PC and an IMM through EMI data exchange protocol, as well
as allow connection with RevPi for data acquisition from sensors installed in a mold.
Even though RevPi has some advantages in terms of cost, openness and high flexibility,
its main disadvantage is the low sampling rate and a more powerful DAQ might be
necessary to acquire data with higher sampling rates. The interface delivers the possibility
of logging up to 97 machine and process parameters and allows building upon the API
to integrate necessary data processing algorithms or other modules. The system has been
developed using Python3 programming language and is open for changes, such as adding
EUROMAP77 or other desirable data exchange protocols. Distributed computing can be
practiced with the help of this API to provide additional flexibility and robustness. The
prototype is inspired by concepts of Industry 4.0 and cyber-physical systems.

The developed API prototype is based on necessity to move towards implementation of
Industry 4.0 and cyber-physical systems. The authors hope that it will be able to provide
the necessary flexibility for rapid prototyping of methods and algorithms that can lead to
enhancement of injection molding machines’ capabilities related to self-optimization and
control.
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