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Summary

Knowledge about turbulence in the wind helps estimate and optimize the prof-
itability of wind turbines. Light detection and ranging (lidar) is a cost-efficient,
flexible, and accurate remote sensing technology for measuring wind velocities.
Comparisons of mean wind data from lidar and in situ anemometry show good
agreement, but estimates of turbulence such as turbulence velocity spectra and tur-
bulence intensity deviate significantly.

In this thesis, we present methods to predict lidar-derived turbulence velocity spec-
tra. For the case of a velocity–azimuth display (VAD) scanning continuous-wave
wind lidar, we introduce a numerical model that filters a spectral tensor so the re-
sulting spectra resemble those derived from lidar measurement data. For a Doppler
beam swinging (DBS) pulsed wind lidar, we sample computer-generated turbu-
lence data in a similar way to how a lidar measures real wind velocities. Averaging
the results from many data series leads to comparable results between simulated
and measured lidar spectra. With the help of the spectra, we then identify the
causes of systematic deviations between lidar measurements and in situ anemome-
try. These are, first, spatial averaging along the measurement volumes and, second,
cross-contamination between the three turbulence components, which we show has
a strong influence on the shape of the spectra and the total variance of the measure-
ment signal.

Two methods are presented to improve lidar measurements of the longitudinal and
vertical components of turbulence. First, we describe the method of squeezing
that reduces the cross-contamination effect and can be applied to DBS and VAD
scanning lidar. The method successfully reduces the effective separation distances
between the line-of-sight measurement locations involved in the wind vector re-
construction. Second, we present a two-beam method that removes the spatial
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averaging along the measurement cone of VAD scanning lidars by only using the
two lidar beams that point into the upstream and downstream directions.

Floating lidar introduces additional challenges in accurately measuring turbulence,
since the translational and rotational movement on water influences the measure-
ment data. Using data collected on a VAD scanning lidar mounted on a floating
buoy, we investigate the influence of motion in all six degrees of freedom on the
wind measurements. We present a motion-compensation method that can correct
for the motion-induced error on estimates of turbulence intensity, in cases when
time series of motion data and line-of-sight velocities are available.

This thesis concludes that turbulence measurements with currently available pro-
filing wind lidars deviate significantly from one-point measurements. The data
processing methods proposed here can overcome some of the measurement errors
and can be implemented with existing lidars without changes to their hardware.
Turbulence measurements from motion-compensated floating lidars can have an
accuracy similar to measurements from fixed lidars. Overall, more work is needed
to decrease the remaining uncertainty.



Sammendrag

Kunnskap om vindens turbulens er viktig for å bestemme og optimalisere lønn-
somheten til vindmøller. Lidar (engelsk for light detection and ranging) er en kost-
nadseffektiv, fleksibel og nøyaktig teknologi for fjernmåling av vindhastigheter.
Sammenligninger mellom målte middelhastigheter fra lidar og lokale vindmålin-
ger viser godt samsvar. Karakteristiske verdier som turbulensspektra og turbulens-
intensitet, som gir informasjon om styrken til fluktuasjoner i vindhastigheten, skil-
ler seg betydelig fra referansemålingene når det gjelder målinger med fjernmåling.

I denne avhandlingen presenterer vi metoder for å forutsi turbulensspektre basert
på lidarmålinger. Når det gjelder målinger med kontinuerlige bølgelasere i VAD-
modus (engelsk for velocity–azimuth display) presenterer vi en numerisk modell
som filtrerer en spektral tensor slik at de resulterende spektrene ligner dem i lidar-
målingene. For målinger med pulserte lasere i DBS-modus (engelsk for Doppler
beam swinging) forarbeider vi datamaskingenererte turbulensdata på samme måte
som en ekte lidar-enhet måler vinden. Hvis resultatene er gjennomsnittet for mange
dataserier, er de resulterende spektrene fra simulering og måling sammenlignba-
re. Vi bruker deretter spektrene for å identifisere årsakene til systematiske avvik
mellom lidar-målinger og lokale vindstyrkemålinger. Årsakene er for det første
gjennomsnittet av de romlig fordelte målte verdiene langs målevolumene, og for
det andre kryssforurensningen mellom de tre turbulenskomponentene, som har en
sterk innflytelse på spektrumsformen og målesignalets totale varians.

To metoder blir presentert for å forbedre lidemålingene av de longitudinale og
vertikale turbulenskomponentene. Først beskriver vi klemmetoden, som reduserer
kryssforurensning og kan brukes både i DBS-modus og i VAD-modus. Metoden
reduserer de effektive avstandene mellom måleplassene for siktlinjer som er in-
volvert i rekonstruksjonen av en vindvektor. Etterpå presenterer vi en to-stråle-
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metode som forhindrer romlig gjennomsnitt langs målekjeglen i VAD-modus ved
bare å bruke de to lidarstrålene som peker i og mot den midlere vindretningen.

Flytende lidar-enheter innebærer ytterligere utfordringer for nøyaktige turbulens-
målinger fordi translasjonen og rotasjonen av måleenheten på vann påvirker dens
måledata. Basert på data fra en flytende målebøye med en lidar-måleenhet som
opereres i VAD-modus, undersøker vi påvirkning av bevegelse i alle seks frihets-
grader på vindmålingene. Vi presenterer en metode som kan kompensere for feilen
forårsaket av bevegelsen på målinger av turbulensintensitet når tidsserier med be-
vegelsesdata og de radielle vindhastighetene målt langs strålens retning er tilgjen-
gelige.

Denne avhandlingen konkluderer med at turbulensmålinger med de for øyeblikket
tilgjengelige profilskapende lidarmåleinstrumentene avviker betydelig fra enkelt-
punktsmålinger. Databehandlingsmetodene som er foreslått her kan forhindre noen
av målefeilene og dessuten implementeres på eksisterende lidar-måleenheter uten
endringer av maskinvare. Turbulensmålinger av bevegelseskompenserte flytende
lidarenheter har en nøyaktighet som er sammenlignbar med den for en fast lida-
renhet. Videre arbeid er nødvendig for å redusere den gjenværende unøyaktigheten.



Zusammenfassung

Kenntnis über die Turbulenz des Windes hilft bei der Bestimmung und Optimie-
rung der Rentabilität von Windenergieanlagen. Lidar (engl. für light detection and
ranging) ist eine kosteneffiziente, flexible und genaue Technologie zur fernerkund-
lichen Messung von Windgeschwindigkeiten. Vergleiche zwischen gemessenen
mittleren Windgeschwindigkeiten von Lidargeräten und lokalen Windmessungen
zeigen gute Übereinstimmung. Kennwerte wie Turbulenzspektren und Turbulenz-
intensität, die Auskunft über die Stärke von Windgeschwindigkeitsschwankungen
geben, weichen bei fernerkundlicher Messung jedoch signifikant von Referenz-
messungen ab.

In dieser Dissertation präsentieren wir Methoden um auf Lidarmessungen basie-
rende Turbulenzspektren vorherzusagen. Für den Fall von Messungen mit Dauer-
strichlasern im VAD-Modus (engl. für velocity–azimuth display) stellen wir ein
numerisches Modell vor, das einen spektralen Tensor so filtert, dass die resultie-
renden Spektren denen von Lidarmessungen ähneln. Für Messungen mit gepulsten
Lasern im DBS-Modus (engl. für Doppler beam swinging) tasten wir computer-
generierte Turbulenzdaten auf die gleiche Weise ab, wie ein reales Lidargerät den
Wind misst. Wenn die Ergebnisse für viele Datenreihen gemittelt werden, sind die
resultierenden Spektren aus Simulation und Messung miteinander vergleichbar.
Mithilfe der Spektren identifizieren wir anschließend die Ursachen für systemati-
sche Abweichungen zwischen Lidarmessungen und lokalen Messungen der Wind-
geschwindigkeit. Die Ursachen sind, erstens, die Mittelung der räumlich verteilten
Messwerte entlang der Messvolumina und, zweitens, die Kreuzkontamination zwi-
schen den drei Turbulenzkomponenten, die einen starken Einfluss auf die Form der
Spektren und die totale Varianz des Messsignals hat.

Zwei Methoden werden präsentiert, um Lidarmessungen der longitudinalen und
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vertikalen Turbulenzkomponenten zu verbessern. Zum einen beschreiben wir die
Quetschmethode, die die Kreuzkontamination reduziert und sowohl im DBS-Mo-
dus als auch im VAD-Modus angewendet werden kann. Die Methode reduziert die
effektiven Abstände zwischen den einzelnen Messpunkten entlang der Sichtlinien,
die an der Rekonstruktion eines Windvektors beteiligt sind. Zum anderen präsen-
tieren wir eine Zweistrahlmethode, die im VAD-Modus die räumliche Mittelung
entlang des Messkonus verhindert, indem ausschließlich die zwei Lidarstrahlen
genutzt werden, die in und gegen die mittlere Windrichtung zeigen.

Schwimmende Lidargeräte stellen zusätzliche Herausforderungen an genaue Tur-
bulenzmessungen, da die Translation und Rotation des Messgeräts auf dem Was-
ser dessen Messdaten beeinflussen. Auf Grundlage von Daten einer schwimmen-
den Messboje mit einem im VAD-Modus betriebenen Lidarmessgerät, untersuchen
wir den Einfluss von Bewegung in allen sechs Freiheitsgraden auf die Windmes-
sungen. Wir präsentieren eine Methode, die den durch Bewegung verursachten
Fehler auf Turbulenzintensitätsmessungen ausgleichen kann, wenn Zeitreihen von
Bewegungsdaten und die entlang der Strahlrichtung gemessenen radialen Windge-
schwindigkeiten verfügbar sind.

Diese Dissertation schlussfolgert, dass Turbulenzmessungen mit den zurzeit ver-
fügbaren profilerzeugenden Lidarmessgeräten von Punktmessungen signifikant ab-
weichen. Die hier vorgeschlagenen Datenverarbeitungsmethoden können manche
der Messfehler verhindern und sind ohne Hardwareänderungen auf existierenden
Lidarmessgeräten umsetzbar. Turbulenzmessungen von bewegungskompensierten
schwimmenden Lidargeräten haben eine Genauigkeit, die mit der eines fixierten
Lidargeräts vergleichbar ist. Weitere Arbeit ist nötig, um die verbleibende Unge-
nauigkeit zu reduzieren.
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Chapter 1

Introduction

1.1 State of the art
This thesis is about wind velocity measurements which have many applications.
Some examples are weather forecasts incorporating wind speed data from different
locations [Ernst et al., 2007], wind load estimations on tall structures like bridges
and buildings being often based on wind speed measurements at the planned site
[Cheynet et al., 2017b], and aviation relying on information about the wind con-
ditions to provide safety [Shun and Chan, 2008]. In the field of wind energy,
wind speed measurements are used for two main purposes: first, the prediction of
electricity production, and second, the determination of structural loads of wind
turbines. The work presented here has applications in the wind energy sector, but
its findings can be applied to other sectors.

Knowledge about the mean wind velocity at the location of a wind turbine is key
to predict its electricity production because of the cubic relation between wind
velocity and power [Sempreviva et al., 2008], and the amount of turbulence is
also relevant for electricity production [Bardal and Sætran, 2017, Kaiser et al.,
2007, Gottschall and Peinke, 2008, Clifton and Wagner, 2014]. This is because
the cubic relation between wind velocity and power implies that turbulent wind
always contains more kinetic energy than steady wind of the same mean velocity.
In Kelberlau and Bracchi [2017] we show that not all of the excess energy that
is contained in turbulent wind can be extracted by wind turbines. This is caused,
first, by the high inertia of their rotors that leads to a slow response of the rotor
rotational speed to varying wind speeds and, second, by their long rotor blades
that do not offer ideal aerodynamic performance under the influence of turbulence
with length scales smaller than the blade length.
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2 Introduction

Estimating the turbulence at a designated wind turbine site can also assist in selec-
tion of a wind turbine type which is best suited to the expected structural loads in
order to minimize the levelized cost of energy [IEC61400, 2019, Fuglsang et al.,
2002, Thomsen et al., 2001, Sathe et al., 2012]. Real time information about
changes in wind velocity at a wind turbine site can be used to mitigate aerody-
namic loads [e.g. Aubrun et al., 2017, Schlipf et al., 2012].

Wind speed measurements are conventionally taken by in situ sampling with cup
or sonic anemometers on tall meteorological masts that reach the hub height of
the envisioned wind turbines. But the construction of tall meteorological masts is
expensive and requires construction permits and transportation of heavy building
materials to the site. After a mast has been erected, it is immobile and measure-
ments at changing locations are not feasible. A possibility to measure the wind
remotely from the ground is therefore favorable, and profiling wind light detection
and ranging (lidar) devices open up this possibility. These devices are placed on the
ground and can measure radial wind velocities along laser beams that they direct
into changing directions. Two different scanning strategies are currently used for
commercially available profiling wind lidar units. One is called velocity–azimuth
display (VAD) scanning and refers to lidar units that maintain a fixed elevation
angle of their laser beam while performing complete azimuth rotations. The other
scanning strategy is called Doppler beam swinging (DBS) and lets the laser beam
accumulate measurement data from one beam direction before it swings into the
next direction. Several of these radial wind velocities measured along the lines of
sight are then combined to reconstruct three-dimensional wind vectors.

The averages of these reconstructed wind vectors are accurate representations of
the real mean wind velocities at several adjustable height levels above the lidar
[Emeis et al., 2007, Smith et al., 2006]. One important limitation to this statement
is that the flow field above the lidar must be horizontally homogeneous in the mean
[Bingöl et al., 2008]. In other words, the mean wind vectors at each elevation must
be identical at all measurement locations. This requirement is fulfilled in non-
complex terrain, like offshore or in flat terrain without significant obstacles.

Measurements of instantaneous wind velocity, however, show errors because even
when the flow field is horizontally homogeneous in the mean, it is not homoge-
neous at each instance in time and space due to the spatial structure of wind speed
variations in the atmospheric boundary layer [Sjöholm et al., 2008]. This makes
turbulence measurements with profiling wind lidars challenging. Eberhard et al.
[1989] were the first to estimate second-order turbulence statistics from Doppler
lidar measurements. But comparisons of lidar-estimated velocity variance with
reference values from meteorological masts show large deviations [Peña et al.,
2009]. Sathe and Mann [2013] present a comprehensive overview of turbulence
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measurements with ground-based wind lidar.

Sathe et al. [2011] model the errors in the second-order statistics calculated from
lidar-measured time series of wind velocities. They find that the velocity vari-
ance calculated from lidar measurements of the three wind vector components
often lies far below the real value. But under conditions characterized by un-
stable atmospheric stratification, the horizontal components show systematically
higher values. There are several causes for these deviations. Among them are,
first, the line-of-sight velocity estimates are weighted averages of the radial wind
velocities within extended measurement volumes. This line-of-sight averaging ef-
fect has been extensively investigated [e.g. Sjöholm et al., 2009, Lindelöw, 2008,
Kristensen et al., 2011, Held and Mann, 2018]. Second, the combination of line-
of-sight velocities from spatially separated measurement locations leads to a cross-
contamination error during the wind vector reconstruction, when the relevant real
wind vectors are not identical. Wyngaard [1968] describes the effect for small-
scale turbulence measured with hot wires. However, little research has studied
the influence of cross-contamination on measurements with profiling wind lidar.
Sathe et al. [2011, 2015] and Newman et al. [2016a,b] mention contamination as a
source of error but do not describe it in detail.

In order to better understand the origin and magnitude of the cross-contamination
error, it is helpful to look at the turbulence velocity spectra derived from lidar
measurements. However, previous research has left important gaps. Hardesty
et al. [1982] observed interference effects when using lidar measurements that
were sampled along a vertical circular path to create turbulence velocity spectra.
However, their interpretation is not directly transferable to the situation of profiling
wind lidars because of the different orientation of the lidar beams. Canadillas et al.
[2010] present spectra from DBS pulsed wind lidar measurements and observe an
increase of spectral energy that cannot be caused by line-of-sight averaging. But
the real cause remains unknown. Sathe and Mann [2012] develop a model for pre-
dicting the spectra of DBS pulsed wind lidar and interpret the shape of the resulting
spectra. Their model is unfortunately limited to the case of inflow being aligned
with two of the lidar beams. For VAD scanning profiling wind lidar, no model for
predicting spectra is currently available.

Several methods to improve profiling wind lidar’s ability to measure turbulence
have been suggested. One of them is the six-beam method, which calculates the
second-order wind statistics from the variances of the lidar measured line-of-sight
velocities [Sathe et al., 2015]. The estimates resulting from this method are not
influenced by cross-contamination, and line-of-sight averaging is the primary re-
maining cause of error. The first drawback of this method is that its mathematical
requirements are not fulfilled (without any further assumptions) by VAD scanning
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with only one beam elevation angle, nor by DBS scanning with only five beam
directions. The second drawback is that the six-beam method cannot be used to
create time series of wind vectors. The spectral distribution of turbulent energy
therefore cannot be estimated with this method.

Another method to compensate for the effect of cross-contamination between the
velocity components is included in the turbulence error reduction model suggested
by Newman and Clifton [2017]. It works by applying a cascade of techniques like
noise removal, spectral fitting, using uncontaminated data from the vertical beam,
and machine learning with reference data from a collocated mast. In Newman
et al. [2016b], they present a more direct approach that works by means of auto-
correlation functions derived from collocated mast measurements. This method
is, however, only applicable when a meteorological mast is available. Additional
details about the different methods to improve lidar estimates of turbulence are
provided in articles 1 and 2 of this thesis.

Currently around 96% of the global installed wind power is located onshore, but
the share of offshore wind turbines is growing [GWEC, 2019]. Cost reductions are
essential to make electricity from offshore wind farms cheaper than conventional
power generation [Jansen et al., 2020]. The costs of constructing meteorological
masts offshore are very high, and in situ anemometry becomes prohibitively ex-
pensive as offshore wind farms move further away from the coast into deeper water
regions [Berkhout et al., 2019]. Floating buoys that carry profiling lidar devices
can be a cost-efficient alternative to acquire bankable wind data. But their motion
in waves and wind must be considered when measurement data from floating lidar
are analyzed. In general, estimates of average wind velocity are only slightly in-
fluenced by the motion of the floating buoy. Tiana-Alsina et al. [2017] show with
numerical simulations that the error on horizontal mean wind speed with a moving
lidar is small. Measurements show that good agreement with reference measure-
ments can be reached even without any form of motion compensation [Mathisen,
2013, Gottschall et al., 2014a]. For reliable determination of the mean wind di-
rection it is sufficient to compensate the measurement values for changes of the
average orientation in yaw direction [Gottschall et al., 2017].

In contrast, measurements of instantaneous wind vectors and the turbulence statis-
tics derived from them are strongly influenced by motion of the floating lidar in
all six degrees of freedom [Gottschall et al., 2014b]. Different methods have been
proposed to mitigate the influence of motion on turbulence estimates from float-
ing lidar devices. They include mechanical motion compensation [Tiana-Alsina
et al., 2015], low-pass filtering of measurement data [Gutiérrez et al., 2015], a mo-
tion compensation algorithm based on simulations of lidar sampling [Gutiérrez-
Antuñano et al., 2018, Yamaguchi and Ishihara, 2016], and compensation of the
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lidar data for the measured motion. None of these methods has proven to be re-
liable for measuring turbulence with profiling lidars with an accuracy similar to a
fixed lidar unit of the same type. Further details about these methods are provided
in article 3 of this thesis. In summary, the science of floating lidar is an emerging
research area, and the current state-of-the-art techniques have still not addressed
several knowledge gaps.

1.2 Research questions and aim
The work presented in this thesis is motivated by first, the importance of reliable
turbulence estimates from wind lidars; second, the difficulties involved in measur-
ing fluctuating wind velocities with profiling wind lidars; and third, the additional
challenges imposed by offshore deployment.

The overall research aim is to develop and evaluate methods that improve turbu-
lence estimates from commercially available fixed and floating profiling wind li-
dars. My hypothesis is that turbulence measurements from commercially available
profiling wind lidar can be improved by smart data processing.

In the following, three research questions are defined that direct the work presented
in the three articles that form the main part of this thesis.

Research question 1:

How does the effect of cross-contamination between the three turbulence velocity
components influence lidar-based wind velocity measurements in conjunction with
other systematic sources of error?

Answering this question requires a more detailed analysis of lidar sampling of tur-
bulent wind than what is currently available in the state of the art. As described in
section 1.1, previous works show that cross-contamination exists in lidar measure-
ments with diverging beams, but a deeper insight into the mechanisms that create
it is missing. The first research goal is to close this gap by presenting and analyz-
ing turbulence velocity spectra for both continuous-wave (cw) VAD scanning and
pulsed DBS lidar measurements in arbitrary wind directions. Turbulence velocity
spectra are good means of visualization for lidar measurement errors, especially
when the contribution of the different wind velocity components to the measure-
ments can be predicted. Finding possibilities to create such theoretical spectra is
therefore an important milestone in order to be able to investigate the influence of
the different error sources on lidar-measured turbulence. In addition, the spatial
and temporal aspects of the scanning strategies must be considered to understand
all features that appear in the spectra.
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Research question 2:

Can advanced data processing methods effectively reduce the error introduced by
cross-contamination and averaging along the measurement cone?

As mentioned in the description of the state of the art in section 1.1, none of the
previously described methods to improve turbulence estimates from profiling lidar
are able to correct lidar-measured time series of wind data. The work presented in
this thesis aims to improve lidar measurements of turbulent wind by reducing the
influence of cross-contamination on the measurement data. Cross-contamination
is caused by reconstructing wind vectors from line-of-sight velocities whose mea-
surement volumes are spatially separated. The goal is to mitigate the effect of
longitudinal separations, i.e., separations along the mean wind direction, from the
measurement data. This goal might be achieved by considering the time it takes
an air volume to move from its first to a second measurement location where it can
get measured again. The wind vectors can then be reconstructed from line-of-sight
velocities that where measured at locations that lie seemingly closer together. This
approach requires Taylor’s frozen turbulence hypothesis to be valid for the rele-
vant length and time scales. To prove the validity of this assumption is therefore a
milestone.

Averaging along the measurement cone is an effect that occurs when more line-
of-sight velocities than mathematically necessary are included in the wind vector
reconstruction process of VAD scanned line-of-sight data. This type of averaging
might be circumvented by limiting the number of line-of-sight velocities taking
into account the mean wind direction. After completion of the work on research
questions one and two, the thesis might also be able to give an answer about which
of the two lidar types, cw VAD or pulsed DBS, is better suited for measuring
turbulence.

Research question 3:

Is it possible to measure turbulence intensity with a floating lidar as accurately as
with a fixed lidar, when its motion is compensated for at a line-of-sight level?

When a lidar unit is mounted on a floating device like a buoy, it can move and its
measurement data is corrupted by the influence of the relative motion between the
lidar and the wind field, as described in section 1.1. A gap in research, though,
is the missing description and validation of a motion compensation algorithm that
can remove the effect of lidar motion on measurements in the field. Thus, the
last goal of this thesis is to develop and test such an algorithm. A prerequisite for
successful development of such an algorithm is to explain the different sources of
error caused by lidar motion. In this context, it is important to have the work on
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research question 1 completed because it helps to understand that motion in one
degree of freedom can influence more than one component of the reconstructed
wind vectors and that the magnitude of this contamination depends on frequency
and phase of the motion.

1.3 Overview of the articles
For article 1, "Better turbulence spectra from velocity–azimuth display scanning
wind lidar," published in Atmospheric Measurement Techniques, we work with a
VAD scanning cw wind lidar. The device we chose is an early predecessor of the
ZX 300 that is one of the two currently most widely used lidar devices in the wind
industry. Findings from work with this machine can thus easily be adapted by
the manufacturer of this lidar. We decided to base our analysis on the lidar-derived
turbulence velocity spectra of the three wind vector components and compare them
to spectra from reference instruments. In contrast to a comparison of only the
variances that is found in previous studies, a comparison of the spectra makes it
easier to determine causes for lidar specific measurement errors. This accounts in
particular in cases where the damping effects of averaging along the lidar lines-
of-sight and along the measurement cone, as well as the limited scanning rate is
counteracted for by the effect of cross-contamination. The article gives a thorough
description of these different sources of error that are inherent in VAD sampling of
turbulent wind by means of a cw Doppler lidar. Knowledge about the error causes
can help find methods for systematic error correction.

Following this, we present two new methods of processing line-of-sight velocity
data. One of these, which we named the method of squeezing, aims at eliminat-
ing the cross-contamination effect, i.e., influence on one velocity component by a
different velocity component. The second method is two-beam processing which
eliminates the averaging along the measurement circle. We model the lidar-derived
auto-spectra from conventional VAD processing and with the novel methods, and
compare them with results from measurement data from a collocated meteorolog-
ical mast. The model spectra allow it to analyse the contribution of the individual
wind velocity components, which is very useful in the process of understanding de-
viations between the shape of lidar-derived spectra and reference spectra. Such an
analysis can also help to find causes for deviations between the model and experi-
mental spectra. Furthermore, the availability of model spectra makes it possible to
identify the effects of the new data processing methods in the measurements and
to validate or discard the assumptions we made. This study is seeking an answer
to research questions 1 and 2.

Article 2, "Cross-contamination effect on turbulence spectra from Doppler beam
swinging wind lidar," published in Wind Energy Science, extends the findings of



8 Introduction

article 1 to a pulsed DBS wind lidar, which is another type frequently used in re-
search and industry. The article describes the application of the method of squeez-
ing that we introduced in article 1 to this lidar type. It illuminates the limitations
involved in the low number of available beam directions and low scanning rate.
The low number of lidar beam directions make the velocity spectra sensitive to the
wind direction relative to the beam directions which we consider in our analysis.
We put emphasis on this aspect because the current literature shows spectra from
this lidar type only for aligned inflow, yet the impact of the wind direction is large.
Appyling the two-beam method is not useful here because the mean wind direction
in most cases does not coincide with one of the azimuth angles of the lidar beams
and because averaging along the measurement circle is not relevant for this lidar
type.

The measurement geometry also prevents that a handy mathematical model like in
article 1 can be developed. We therefore decided to simulate the lidar processing
by sampling numerically generated wind data in a turbulence box for our compar-
isons with measurement data of a collocated meteorological mast. The resulting
simulated spectra are not as smooth as modeled spectra but serve the same purpose
well, i.e., having the possibility to visualize the influence of the different velocity
components on the lidar-derived spectra and to see the impact of the method of
squeezing. The article completes the answers to research questions 1 and 2 by
extending our findings to the case of a pulsed DBS lidar.

In article 3, "Taking the Motion out of Floating Lidar: Turbulence Intensity Es-
timates with a Continuous-Wave Wind Lidar," published in Remote Sensing, we
determine, analyze, and compensate for the motion-induced error on a floating li-
dar. I chose to include floating lidar into this thesis because of its high relevance
for offshore wind industry and because my previous work with line-of-sight ve-
locity data for article 1 and 2 created a solid foundation for studying the effects of
motion on a floating profiling wind lidar.

We chose the ZX 300, a VAD scanning cw wind lidar for our study because it
is the standard instrument for being mounted on the Fugro SEAWATCH Wind
LiDAR Buoy and because the available land-based reference lidar is of the same
type. We apply a motion compensation algorithm to the line-of-sight data of the
floating lidar. This advances the current state of the art for floating VAD lidar,
and makes it possible to correct not only the turbulence statistics but also each
single reconstructed wind vector. We measure a vertical velocity profile at eleven
altitudes. Thus, due to the consecutive focusing of cw lidar, we are confronted with
a sampling rate at each height level that is too low to create conclusive turbulence
velocity spectra. Therefore, we limit our work to the processing of turbulence
intensities which we compare with reference data from a land-based fixed lidar of
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the same type. This comparison makes it possible to isolate the effects caused by
the motion of the floating lidar from the lidar-specific errors that we determined in
article 1. The study uses also the findings of article 1 about cross-contamination to
describe the undesired influence of the motion in all six degrees of freedom on the
wind velocity measurements. The article aims to answer research question 3.

Fig. 1.1 gives an overview of the three articles.
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Figure 1.1: Overview of the three articles included in this thesis.



Chapter 2

Background

The initial source of wind energy is solar radiation. Fig. 2.1 shows that the amount
of solar energy that reaches the world’s surface is unevenly distributed. Close to
the equator and along the desert belts where the light’s mean angle of incidence
is high, the solar power is several times stronger than close to the poles where
the light hits the planet’s surface nearly tangentially [Manwell et al., 2010]. In
addition, the steady rotation of the earth and its ecliptic lead to a diurnal cycle of
illumination that is more pronounced at the equator than towards the poles. This
uneven distribution of solar radiation leads to differences in the surface tempera-
tures around the globe.

2.1 Origin of wind
The surface transfers its heat to the surrounding air that expands according to the
general gas equation. The resulting pressure forces accelerate the air molecules
along the pressure gradients. The latitudinal component of the resulting motion,
i.e., motion in the north or south direction, is influenced by the Coriolis force that
originates from the earth’s rotation and its nearly spherical shape. For example,
air moving north in the northern hemisphere is deflected east by the Coriolis force.
Fig. 2.2 shows the major wind belts, i.e., a simplified global pattern of wind direc-
tions without consideration of the shape and properties of the continents [Hiester
and Pennell, 1981]. Over the big oceans, this model often agrees with the prevail-
ing wind conditions. But the different absorption coefficients and heat capacities
of oceans, glaciers, and land masses make onshore and nearshore conditions more
complex and cause regional effects like the Mistral, Chinook, and Harmattan winds
[Lynn, 2011]. The weather and other local effects like monsoons, hurricanes, sea
breezes, mountain winds, thunderstorms, etc. make wind conditions often un-

11
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Figure 2.1: Annualized mean measurements for the period Feb 1985 – Apr 1989 for the
absorbed solar radiation in W m−2. The color key is under the plot and the contour interval
is 20 W m−2. Zonal mean profile panel is given at right. With permission adapted from
Trenberth and Stepaniak [2003]

Figure 2.2: Model of global wind zones and atmospheric pressure over the planet without
consideration of real topography. Adapted from Perlwitz et al. [2017]
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+ =

Figure 2.3: The effect of linear shear on a fluid volume can be decomposed into rigid-body
rotation and irrotational shear strain. Reproduced from Davidson [2015].

predictable. More comprehensive information about the large-scale atmospheric
circulation is described by e.g., Lorenz [1967].

2.2 Turbulence in the atmospheric boundary layer
At a single location the wind velocity is not constant but fluctuates. Long-term
measurements show seasonal fluctuations. Synoptic scale weather events are rep-
resented by fluctuations with periods of a few days. And diurnal changes of the
horizontal wind speed cause fluctuations with periods of 12 or 24 hours. For fluc-
tuations with shorter periods down to approximately one hour, the spectral energy
content decreases before it increases again for higher frequencies [Van der Hoven,
1957]. This frequency band of low energy content is called the spectral gap. Its
pronunciation varies with measurement height and from location to location as
shown in Larsén et al. [2016]. The spectral gap acts as the separation between
what is called mean wind speed variations and turbulence.

Turbulence production

The research object throughout this thesis is the turbulent wind velocity fluctua-
tions that occur faster than once per ten minutes. They are mostly created in the
atmospheric boundary layer, which is the lowest part of the troposphere from the
ground up to a few hundreds or thousands of meters above. In the atmospheric
boundary layer, the air flow is influenced by the presence of the ground. Depend-



14 Background

ing on its surface roughness, the ground exerts weaker or stronger frictional forces
which slow down the mean flow and create the vertical profile of wind velocity.
(An example can be seen in Fig. 7 of article 3.) The resulting shear forces are
also an important source of turbulence. A simplified visualization of this effect is
depicted in Fig. 2.3. In an air volume that is moving with the mean wind velocity,
the top side is attacked by faster surrounding air than the lower end. The resulting
shear stress will rotate and stretch the air package. This process is a transfer of
energy from the steady mean flow to the wind speed fluctuations and can be seen
as production of turbulence.

A second effect that can produce turbulence kinetic energy in the wind is caused
by thermal buoyancy. Besides having a vertical profile of horizontal mean wind
velocity, the atmospheric boundary layer has also a vertical temperature profile
which usually shows lower temperatures at high altitudes but can in some cases
also be inverted. The temperature profile determines the atmospheric stability
class and if buoyancy produces or suppresses vertical turbulence. An important
value for atmospheric stability is the adiabatic lapse rate. It is the temperature rate
of change with height at which air in an insulated flexible air balloon cools down
while it is moved upwards. The decreasing ambient pressure leads to a decrease
in density and temperature of the air inside the balloon. If the rate of temperature
change in the atmospheric boundary layer is identical to this adiabatic lapse rate
at all heights, the atmospheric stability condition is called neutral. Under neutral
atmospheric conditions, buoyancy does not have any effect on turbulence produc-
tion. But usually, the temperature profile deviates from the neutral stratification.
Unstable atmosphere is found when the local temperature profile is steeper than
the adiabatic lapse rate. Air warmed up close to the ground is then accelerated
by the force of buoyancy on its way upwards because it cools down more slowly
than the surrounding air. The resulting vertical motion produces turbulence kinetic
energy because an identical amount of cooler air sinks down and a circulation
occurs. Such a situation is often found during daytime, when the heating of the
ground is the strongest. Stable atmospheric stratification, on the contrary, sup-
presses turbulence because vertical motion is slowed down when buoyancy acts
against convection.

Atmospheric stability

The qualitative description of turbulence production by shear and buoyancy forces
given above has to be quantified because for example a slightly unstable tempera-
ture profile can create large turbulent eddies when the shear forces are low in low
wind phases. The same temperature profile contributes less to the creation of tur-
bulence in strong wind phases when turbulent structures are rapidly torn apart by
high shear forces. Such a quantification can be made by means of the flux Richard-
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son number Rf . It sets the terms of turbulence production by buoyancy and shear
into a relation.

Rf =

g

θ
w′θ′

u′w′ δuδz
(2.1)

where g is gravity, z height, θ potential temperature, u and w are the longitudinal
and vertical wind velocity components, the prime denotes fluctuations around the
mean, and the overline represents averaging.

Since measurement values of the heat and momentum fluxes are not always avail-
able, the gradient Richardson number Ri

Ri =

g

θ
δθ
δz(

δu
δz

)2 (2.2)

can be used instead. It uses the vertical gradients of mean temperature and wind
speed that are easier to measure. Both Richardson numbers indicate neutral at-
mospheric stability when they are zero due to high shear forces and a weak con-
tribution of buoyancy. Stable and unstable conditions are determined by the sign
of the Richardson numbers with a negative value indicating unstable conditions
and a positive value indicating stable conditions. Since the denominator in both
formulas keeps a constant sign, the eddy sensible heat flux in Rf and the vertical
potential temperature gradient in Ri decide about stable or unstable atmosphere.

Both buoyancy and shear forces are usually the strongest close to the ground. But
shear forces decrease faster with height than buoyancy. The Richardson number is
therefore sensitive to the measurement height z. To express this height dependency
more explicitly the Monin-Obukhov stability parameter ζ can be used which is a
variation of the flux Richardson number Rf

Rf ≈ ζ =
z

L
(2.3)

where the Obukhov length

L =
−θu3

∗
kgw′θ′

(2.4)

with k being the von Kármán constant and u∗ the friction velocity. Like for the
Richardson number the sign of L determines the stability. The magnitude of the
Obukhov length is a measure for up to what height the shear production is the dom-
inant production term. A high absolute value of the Obukhov length means there-
fore that the occurring turbulence is hardly affected by buoyancy which defines
neutral atmospheric conditions. Low positive L values indicate very stable con-
ditions in which the buoyancy forces suppress shear driven turbulence effectively.
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Low negative L values mean accordingly that buoyancy is amplifying turbulence
production and that the atmospheric stratification is very unstable. A frequently
used stability classification based on the Obukhov length is for example given in
Gryning et al. [2007].

Turbulence modeling

Both production mechanisms create large-scale turbulent structures which have a
limited lifetime. They decay and transfer their energy into smaller eddies which
again distribute their energy into even smaller eddies and so on until the turbulence
kinetic energy is finally dissipated at the smallest scales of turbulence.

The spectral distribution of atmospheric turbulence can be modeled. Kaimal et al.
[1972] give universal equations for the auto-spectra of the three velocity compo-
nents for neutrally stratified flow over flat terrain according to

k1Fu(k1)

u2
∗

=
52.5k1z

(1 + 33k1z)
5
3

(2.5)

k1Fv(k1)

u2
∗

=
8.5k1z

(1 + 9.5k1z)
5
3

(2.6)

and
k1Fw(k1)

u2
∗

=
1.05k1z

(1 + 5.3k1z)
5
3

(2.7)

where k1 = 2πf/U is the wavenumber in longitudinal direction. These equations
describe the two-sided one-point spectra normalized by the friction velocity. The
IEC61400 [2019] standard suggests a slightly modified equation and parameters
so that the spectra are defined by the horizontal mean velocity and its variance.
Eqs. 2.5–2.7 do not contain information about the spatial structure of turbulence,
and a coherence model must be used to calculate two-point spectra based on the
Kaimal spectra.

The purpose of a coherence model is to represent the spatial extension of turbulent
structures. With two adjacent anemometers, identical wind velocities are measured
at the same time. But with increasing distance between them, only large-scale fluc-
tuations are measured simultaneously, while small-scale fluctuations become un-
correlated. IEC61400 [2019] suggests using equation 2.8 to estimate the coherence
between two points on a vertical rotor plane as a function of the wavenumber.

γ(r, k) = exp

−12

√(
kr2

2π

)2

+

(
0.12r

LC

)2
 (2.8)
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is the coherence between two points separated by the distance r in vertical or lateral
direction. LC is a coherence scale parameter. The use of the Kaimal model with
a coherence function assumes zero phase shift between the separated points. This
assumption does not hold in sheared flow [Chougule et al., 2012]. The non-zero
uw-cross-spectra are also not represented in the Kaimal model of turbulence.

A more sophisticated model of the complete second-order structure of atmospheric
boundary-layer turbulence is presented in Mann [1994]. It modifies the isotropic
spectral tensor presented in von Kármán [1948] to include the effects of uniform
shear by using Rapid Distortion Theory and eddy lifetime considerations. A sec-
ond model includes the blocking effect of the surface in addition. It is more com-
plex and because both models give very similar predictions, the second model is
not used in this thesis. The influence of thermal buoyancy is not considered in the
models which are therefore only valid for neutral atmospheric conditions. Exten-
sions for non-neutral conditions have been proposed [Chougule et al., 2017, 2018],
but they are more difficult to implement and are also not used in this thesis.

Based on only three input parameters, the uniform shear model is able to create
a spectral tensor. This tensor can be used to create spectra of all velocity com-
ponents as well as cross-spectra of any combination of components for arbitrary
separation distances. The three input parameters are the turbulence length scale
L, the eddy lifetime constant Γ, and the spectral multiplier in the inertial subrange
αε

2
3 . Fig. 2.4 gives an overview of the effect of each of the three parameters on

the shape the resulting spectra. In Fig. 2.4a it can be seen that increased values of
turbulence length scale L shift the peaks of the spectra towards smaller wavenum-
bers, i.e., larger eddies. The total variance increases accordingly due to the longer
lifetime of large eddies. The plots in Fig. 2.4b show that the spectral multiplier
in the inertial subrange αε

2
3 can be seen as a measure of energy dissipation. In-

creasing the αε
2
3 value results in scaled up spectral values without any change in

the distribution of eddy sizes. Lastly as is visible in Fig. 2.4c, the eddy lifetime
constant Γ is a measure for the degree of anisotropy. Increased Γ values result in
wider spreading between the variances of the velocity components. The variance
sum of all components increases with Γ. For Γ = 0 the isotropic von Kármán
tensor would be recovered.

The three parameters can be determined by fitting modeled single point spectra to
measured turbulence spectra according to Mann [1998]. Resulting model spectra
and coherences show overall good agreement with measured spectra [Mann, 1994,
Chougule et al., 2014, Cheynet et al., 2017a, Eliassen and Obhrai, 2016].

Furthermore, the Mann model does not include wind evolution but assumes frozen
turbulence, which means that the coherence for longitudinal separations equals
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Figure 2.4: Variation of the three input parameters (a) L, (b) αε
2
3 , and (c) Γ to show

their effect on the uu (solid), vv (dashed), ww (dashed-dotted), and uw (dotted) one point
spectra created by the uniform shear model by Mann [1994]. The baseline case with
αε 23 = 0.02, Γ = 3.5, and L = 50 m is shown in red, lower (higher) values are plotted in
blue (green). Extremes are marked with ‘+’.
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unity, while field measurements regularly show values that are significantly lower
than one when the separation distance is large in comparison to the eddy size [Kris-
tensen, 1979, Simley and Pao, 2015, Chen et al., 2020]. For a more detailed de-
scription of the model and the equations that define it, see Mann [1994].

2.3 Lidar measurements of wind velocity
Lidar is an acronym for light detection and ranging which describes a technology
used for many applications. In the fields of meteorology and wind energy, it can
be used to measure wind velocities by determining the velocity of tiny particles
and liquid droplets moving with the air. Lidar devices emit laser light in a defined
direction. On its way, the light will occasionally hit particles that scatter a small
fraction of the emitted laser light into all directions. A very small portion of this
scattered radiation is directed back into the direction of its origin and will reach the
lidar unit where it is received and analyzed. While the emitted laser radiation has a
constant frequency f0 that is determined by the laser source, the received radiation
has a varying frequency that is a function of ∆v, the relative velocity between the
stationary lidar unit and the moving object that scatters the light. The cause for
the variation in the frequency of the backscattered light ∆f is the Doppler effect
according to

∆f =
∆v

c
f0 (2.9)

where c is the speed of light. The magnitude of the Doppler shift can therefore be
used to determine the wind velocity component in the beam direction.

It is unfortunately not possible to permanently receive backscattered radiation from
a narrowly defined measurement distance because particles and aerosols as poten-
tial scatterers of the laser light are stochastically distributed in the air and no scat-
tering objects might be at the desired measurement location while a measurement
is taken. That means in order to generate a sufficient Doppler signal, the lidar must
determine the radial velocities from accumulating data for some time and it must
accept values from a range of measurement distances. This results in averaging of
radial wind velocities measured along the beam directions, called the line-of-sight
averaging.

Throughout this thesis, two different types of wind lidars are used that tackle the
issue of line-of-sight averaging in different ways. Table 2.1 gives an overview of
the lidars used in this thesis. In article 1 and 3 we use data from a cw velocity–
azimuth-display (VAD) scanning wind lidar that emits laser radiation continuously.
The laser beam is focused onto one measurement distance. The signal processing
unit of the lidar cannot determine the measurement distance from where received
radiation originates. In principle, the received radiation could be backscattered
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Model name Windcube V2 ZX 300
Manufacturer Leosphere ZX Lidars
Country France United Kingdom
Laser technology pulsed continuous-wave (cw)

Scanning strategy
Doppler beam swinging
(DBS)

Velocity–azimuth display
(VAD)

Beam layout
4 inclined,
1 vertical

49 inclined

Zenith angle 28◦ 30.4◦ – 30.6◦

Elevation processing parallel consecutive
Time per cycle
(one height)

3.9 s 1 s

Time per cycle
(ten heights)

3.9 s 14.8 s

Averaging along
lines of sight

Range gate:
lP ≈ 26 m

Optical focussing (HWHM):
lR ≈ 0.745h2 × 10−3 m−1

with measurement height h

Table 2.1: Overview of the two most widely used profiling wind lidars

anywhere along the beam but due to the focusing, it is more likely that it was
backscattered in the proximity of the focus point. The symmetric spatial sensitiv-
ity around the focus point of a Gaussian beam is approximated by a Lorentzian
function [Mikkelsen, 2009]

ϕcw(s) =
lR/π

s2 + l2R
(2.10)

where s is the distance from the focus position and lR is the Rayleigh length that
can be approximated by

lR =
λd2

f

πa2
0

(2.11)

where λ is the laser wavelength, df is the focal distance, and a0 is the effective
aperture diameter of the telescope of the cw lidar. The operation principle of VAD
scanning implies a continuous motion of the laser beam describing a cone. This
motion during the accumulation time for one radial velocity estimate adds to the
line-of-sight averaging of a VAD scanning wind lidar. The accumulation time of
the cw lidar used in this work is very short (ta ≈ 1

49s). The arc length of the
measurement cone that is scanned during the measurement of each line-of-sight
velocity is

lA = fsDCπ (2.12)
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where fs ≈ 49 Hz is the sampling frequency of the VAD scanning lidar and DC is
the diameter of the measurement cone at the current focal distance.

The Doppler beam swinging (DBS) lidar we use for article 2 is a pulsed lidar
that determines line-of-sight velocities in a different way. It emits short pulses
of laser light and considers the time of flight in the analysis of the backscattered
radiation. A single laser pulse of the pulsed lidar used in our study has a dura-
tion of ∆t = 175 ns, which equals half a pulse length of lP = ∆tc

2 ≈ 26.2 m.
Backscattered radiation that is detected for example 500 ns after the pulse emis-
sion started could have traveled for t = 325 ns–500 ns with the speed of light
(tc ≈ 97.4 m–149.9 m). This means the backscattered radiation must have origi-
nated from a scatterer within the range gate of 48.7 m–74.9 m from the lidar be-
cause the total travel distance equals twice the distance between the lidar and the
scatterer. It is more likely that backscattered radiation originates from the center of
the range gate than from its ends because only the tip of the light pulse could have
traveled the furthest and illuminated a scatterer 74.9 m away, while the complete
light pulse had the chance to illuminate particles in the center of the range gate.
This results in a triangular weighting function

ϕp(s) =
lP − |s|
l2P

for |s| < lP and ϕ(s) = 0 for |s| ≥ lP . (2.13)

In contrast to ϕcw(s), the line-of-sight weighting function of a cw lidar, ϕp(s) is
independent of the measurement distance d.

During the measurement of one radial velocity, the beam direction of a DBS lidar is
fixed. The averaging along the line-of-sight is therefore the only spatial averaging
effect that occurs, but temporal averaging comes in addition. The accumulation
time of ta = 0.5 s during which data for one radial velocity value is collected leads
to temporal averaging along the mean wind direction. For determining the severity
of this temporal averaging it can be helpful to estimate the temporal averaging
length lT by multiplying the accumulation time ta by the prevailing mean wind
velocity U

lT = taU. (2.14)

The averaging along the beams plus the temporal averaging during the accumula-
tion time constitute the total line-of-sight velocity averaging effect.

The measured one-dimensional radial wind velocity does not fully describe the
three-dimensional wind velocity vector. In order to reconstruct all three vec-
tor components, line-of-sight velocity measurements from at least three different
beam directions must be merged. The Windcube with its five beams uses a vertical
beam to estimate the vertical component of the wind velocity and two opposing
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inclined beams for the reconstruction of each of the two horizontal wind velocity
components. A VAD scanning lidar like the ZX 300 combines measurements from
one or if desired three full prism rotations to reconstruct one single wind vector.

In articles 1 and 2, we describe in detail how the combination of measurements
sampled at different times and locations introduces additional averaging plus an
error in the reconstructed wind vector components. In line with Courtney and
Hasager [2016] and Pauscher et al. [2016], we call this error the cross-contamination
effect. It is also named contamination by the two-point correlation between the
components of the wind field [Sathe et al., 2015], variance contamination [New-
man et al., 2016a], and crosstalk [Wyngaard, 1968]. It can be understood as un-
desired redistribution of spectral energy from one wind velocity component to the
other caused by different instantaneous wind velocities at the measurement loca-
tions. Both effects, averaging and cross-contamination, do not affect the mean
values of the measured wind velocity and direction but only the estimates of the
instantaneous wind vectors and turbulence parameters based on them.



Chapter 3

Methods

3.1 Time series analysis
Many different parameters can be used to describe the statistical properties of tur-
bulence. We concentrate on spectra of the three turbulence velocity components in
articles 1 and 2 and on turbulence intensity in article 3. First follows a description
of how these values are calculated from wind velocity data. Wind can be seen as
a time-variant three-dimensional field of three-dimensional velocity vectors. That
means for every point in space, the wind conditions can be described by a time
series of velocity vectors. For analyzing wind data it is useful to separate the time
series of the velocity vector ~u into two parts which are, first, the mean velocity ~U
and, second, the turbulent velocity fluctuations ~u′ so that

~u = ~U + ~u′. (3.1)

For determining the mean wind velocity vector, an averaging period must be cho-
sen. The two most common values are ten minutes in wind energy research and
thirty minutes in meteorology. Both periods lay in the spectral gap that separates
microscale turbulence from mesoscale effects [Van der Hoven, 1957, Kang and
Won, 2016, Larsén et al., 2016]. Throughout this thesis, we use ten minutes as
the averaging period because it is most commonly used in wind energy. The as-
sumption that wind velocity fluctuations ~u′ are advected by the mean wind vector
~U is not exactly true because low-frequency velocity drifts occur due to weather
variability. If such trends are not removed from the data, increased velocity vari-
ance might occur [Hansen and Larsen, 2005]. The actual advection speed also
determines at which wavenumbers cross-contamination occurs. Deviations from
the theory are expected when it differs significantly from ~U . Also the efficacy of
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the method of squeezing can be impeded when the transportation of the turbulent
wind field occurs faster or slower than what is expected from ~U .

The standard output of wind velocity measurement devices is usually based on a
fixed coordinate system, i.e., the wind velocity vectors are given in three Cartesian
coordinates x, y, and z that are aligned with the physical orientation of the mea-
surement device. One example interval of 10 minutes of wind data is shown in
Fig. 3.1a. The x-axis of the anemometer is oriented north, the y-axis is pointing
east and the z-axis is directed vertically downwards. It can be seen that the vertical
z-component has an average value of approximately zero which is typical for mea-
surements in non-complex terrain. For useful interpretations of the horizontal wind
components, the values of x and y can easily be transformed into combinations of
horizontal wind velocity

vhor =
√
x2 + y2 (3.2)

and wind direction
θ = − arctan(y,−x) (3.3)

defined as the direction from which the air is approaching. These polar compo-
nents are the native data format of a cup-anemometer and a wind vane. The ver-
tical component vver = z remains unchanged. Fig. 3.1b shows the same data in
polar coordinates. From these values, we can estimate the mean wind velocity and
direction and can calculate the turbulence intensity that is defined as

TI =
σvhor
Vhor

(3.4)

where σvhor is the standard deviation of the horizontal wind speed fluctuations
and Vhor is the horizontal mean wind speed. Often, only the mean wind velocity
and the turbulence intensity are used to describe the wind conditions at a wind
site. However, it is clear that this description is incomplete when it comes to
describing the wind energy potential [Martin et al., 2016, Bardal and Sætran, 2017]
and especially aerodynamic loads on wind turbines [Thomsen and Sørensen, 1999,
Noda and Flay, 1999].

The longitudinal or along-wind component u of the wind has interesting proper-
ties that differ in a characteristic way from the lateral or crosswind component
v. However, the combination of horizontal wind speed vhor and wind direction
θ is not well suited to compare the two horizontal turbulence components with
each other. Thus, for a more in-depth analysis it is necessary to rotate the xyz-
coordinate system around the vertical axis, so that the first horizontal axis points
into the mean wind direction Θ, while the second horizontal axis points into a
lateral direction. The longitudinal wind component u is calculated according to

u = −x cos (−Θ) + y sin (−Θ) (3.5)
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Figure 3.1: Timeseries of one arbitrary ten-minute interval of wind velocity vector data
given in fixed cartesian coordinates x, y, and z (top), in polar coordinates vhor, θ, and
vver (middle), as well as aligned with the mean wind direction in a u, v, and w coordinate
system (bottom). Dashed lines show the mean values of the wind vector components and
dashed-dotted lines have a distance of one standard deviation around the mean values of
u, v, and w.
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Figure 3.2: Different visualizations of spectral data of u from Fig. 3.1c. Logarithmic
abscissa (b–d), vertical axis pre-multiplied by f (c&d), spectral values averaged into log-
arithmically spaced bins (d) and additional wavenumber scale (d). Vertical dashed lines at
f50 = 0.017 Hz divides the spectra into two halves of identical variance.

and the lateral component v is

v = x sin (−Θ) + y cos (−Θ) (3.6)

where Θ is the mean wind direction. Fig. 3.1c shows the time series of u, v, and w
for the example data. u is nearly identical to vhor. The mean value of v is zero by
definition and the vertical component w = z remains unchanged. A comparison
of the velocity variances shows that σ2

u > σ2
v > σ2

w. This anisotropy is typical
for turbulence in the atmospheric boundary layer. We can also recognize that the
turbulent fluctuations around the mean occur with a wide range of frequencies. In
order to quantify the spectral composition of the time series, it must be transferred
into the frequency domain.



3.2. Turbulence velocity spectra 27

3.2 Turbulence velocity spectra
In order to calculate the spectral distribution of the velocity variance we apply a
discrete Fourier transformation to the time series of u according to

F(u(f)) =
N∑
n=1

u(n) exp
−i2π(f − 1)(n− 1)

N
(3.7)

where u(n) are the wind speed samples n = 1 . . . N where N is the total number
of samples in the interval and f is the frequency that is being evaluated. The
real part of F(u(f)) is the double-sided amplitude spectrum of u and the energy
spectrum can be calculated according to

Suu(f) =
|F(u(f))|2

Nfs
. (3.8)

The first half of Suu(f) for f = 0 Hz–2 Hz is plotted in Fig. 3.2a on linear axes.
The total area under the curve equals half of the velocity variance σ2

u and the
dashed vertical line divides this area into two halves. It is difficult to see that half
of the variance is contained in the fluctuations that occur with a very low frequency
below f50 = 0.017 Hz. A semi-logarithmic presentation of the same spectrum
is given in Fig. 3.2b. The logarithmic display of the abscissa puts focus on the
energy containing range of the auto-spectrum. Unfortunately, the stretching of the
abscissa causes that the vertical line at f50 no longer divides the area under the
curve into two halves. In Fig. 3.2c this problem is solved again by pre-multiplying
the spectral values on the vertical axis by the frequency. The area under the curve
is now proportional to the velocity variance again but the high density of values at
high frequencies impedes the readability of the spectrum. Therefore, we sort the
spectral values into logarithmically spaced frequency bins and plot their average
for Fig. 3.2d. The resulting spectrum shows the spectral distribution of velocity
variance nicely. A peak is visible at f1 ≈ 4.5× 10−2 Hz that corresponds to a
period of T1 ≈ 22 s. This peak in the spectrum could be associated with the
approx. 22 s long wind speed variations visible in Fig. 3.1c that have their peak
around t = 95 s and t = 164 s. When the spectra of very many ten-minute intervals
are averaged such distinct peaks disappear and the results become smoother. With

k =
2πf

U
(3.9)

we can transform the spectra from being functions of the frequency to depend
on the wavenumber k1. In article 1 and 2 we compare spectra from wind lidar
measurements to spectra from reference measurements, models or simulations.
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3.3 Comparison of field measurements
In all three articles we compare datasets acquired from field measurements, i.e.,
measurements under uncontrolled wind conditions. It is important to evaluate the
accuracy of the measurements that serve as reference values. Most studies that
aim at evaluating the performance of profiling wind lidars are comparisons with
measurements from in situ anemometers that are attached to meteorological masts
[e.g. Courtney et al., 2008, Smith et al., 2006, Peña et al., 2009, Sathe et al., 2011].
These can be cup-anemometers that measure only the horizontal components of
wind speed and are known to show some attenuation of small-scale turbulence
in their data [Yahaya and Frangi, 2004]. In most cases ultrasonic anemometers
are used, which are calibrated in wind tunnels according to ISO16622 [2002].
However, there is some controversy if the wind tunnel calibrations can always
be trusted in atmospheric turbulence and which flow-distortion compensation al-
gorithm should be applied [Peña et al., 2019, Wyngaard, 1981]. When they are
carefully installed and well maintained, ultrasonic anemometers are usually accu-
rate and reliable enough to draw valuable conclusions from comparisons of spectra
and TI values from lidar and sonic anemometers. But this accounts only for data
that are averaged over many measurement intervals.

For individual intervals of only ten minutes, random deviations are significant.
Contini et al. [2006] report random errors of variance measurements with two
identical high frequency ultrasonic anemometers that are separated by only 1m.
They show that the lowest achievable uncertainty for turbulence intensity in their
campaigns is as low as σTI1 m

≈ 0.01 when the averaging period is set to ten
minutes. When the spatial separation between the anemometers is increased to
9 m, the uncertainty nearly doubles to σTI9 m

≈ 0.02. This shows how sensitive
measurements of second-order statistics are even for small separation distances.

In addition to the uncertainty that is created by the reduced coherence between
measurements at separated locations, the number of samples taken in each ten-
minute interval influences the statistical error. Fig. 3.3 shows the time series vhor
from Fig. 3.1b and two sets of 40 linearly spaced sample values. It can be seen that
the blue series of samples show a slightly higher variance than the samples marked
in red. The only difference between the two sets of samples is their position on
the time series. For all possible positions on the time series an uncertainty of
σTIN40

≈ 0.0063 can be calculated for this example with N = 40 samples which
corresponds to one value every 15 s. This is approximately the time it takes a cw
lidar like the ZX 300 to scan and refocus to each of the ten elevation levels one after
another. A more universal approach to quantifying the uncertainty of sampling of
random processes would be for example to use the formulas presented in Benedict
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Figure 3.3: Time series of vhor. Red and blue markers show each 40 linearly spaced
sample values separated by an arbitrary time lag. Mean values (dashed) and one standard
deviation around it (dashed-dotted) are given. Resulting turbulence intensities are shown.

and Gould [1996]. Their application, however, requires independence between the
samples, which is not given in the example presented here because the sampling
period is similar to the integral time scale T ≈ 15 s of vhor.

3.4 Scatter analysis: Deming regression
Presenting two sets of measurement data in a scatter plot visualizes their depen-
dency. In Fig. 3.4 the arbitrary ten-minutes of vhor data from Fig. 3.1b are plotted
on the x- and y-axis, but a temporal offset of 2 s is introduced in order to create
scatter. Both datasets have the same statistics, so no trend is expected in the data. It
is possible to apply a linear regression model and determine the line that intersects
the cloud of data points while minimizing the sum of the squares of the vertical
distances between regression line and data points. The result of this simple linear
regression is shown in blue in Fig. 3.4. The linear regression line has a positive
intersect with the y-axis (b = 0.63 m s−1) and a slope below unity (m = 0.91).
This regression line does not predict the correlation between the x and y data cor-
rectly. The reason is that both data sets have the same non-zero statistical error.
The "reference" values on the x-axis are not closer to the "real" values than the
sample values on the y-axis.

In this situation it is better to calculate the Deming regression line that minimizes
the sum of the squares of the diagonal distances between data points and regres-
sion line [Cornbleet and Gochman, 1979, Adcock, 1878]. It is plotted in red in
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Figure 3.4: Scatter plot of measured horizontal wind velocities. The y-axis shows the
same data like the x-axis but the values are shifted by 2 s. Linear (blue) and Deming (red)
regression lines and their equations are shown in the plot.
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Fig. 3.4 and its equation is approximately y = x. This example shows that when
the statistical error of the data on the abscissa is non-zero and identical to the un-
certainty of the data on the vertical axis, only the Deming regression line allows
valid conclusions about correlations in the data. The comparison of measurements
from two similar measurement devices is such a situation. Another example is a
situation in which the statistical error resulting from the measurement set-up domi-
nates the measurement uncertainty of the measurement devices. We therefore used
the Deming regression for the scatter plot in article 3.

3.5 Lidar modeling
In article 1 we present a model for predicting turbulence velocity spectra from
VAD scanning cw lidar like the ZX 300. The model considers the line-of-sight
averaging effect, the averaging along the measurement circle and also the redistri-
bution of spectral energy between the different velocity components u, v, and w
that we call the cross-contamination effect in articles 1–3. The model is a mathe-
matical representation of how the lidar measures turbulence. It can be understood
as a spectral filter function that is multiplied by a spectral tensor that represents
the spatial structure of turbulent wind speed fluctuations. We use the Mann [1994]
model of turbulence to create spectral tensors Φij(k) that contain the auto- and
cross-spectra of all three velocity components as well as the two-point second-
order statistics, i.e., the coherences and phases for any combination of wind ve-
locity components at any spatial separation. The same method of modeling filter
functions that represent the lidar sampling of turbulence is used for example in
Sathe et al. [2011].

Modeling makes it possible to get smooth spectra that allow for a detailed analysis
of the results of all filtering effects that are considered in the model. The com-
ponents of the model spectral tensor can be switched on or off to determine their
individual influence on the modeled lidar spectra. The range and resolution of
wavenumbers at which the model is evaluated and the computational precision can
be selected freely to allow for fast computations in the development phase and fi-
nal results of the desired accuracy. The disadvantage of modeling lidar processing
is that the resulting equations are not always easy to grasp and can get increasingly
cumbersome when the scanning strategy becomes more complex. Sometimes as-
sumptions need to be made to simplify the model equations that might introduce
errors that can be difficult to quantify.

3.6 Lidar simulation
A model for the prediction of turbulence velocity spectra from a pulsed DBS wind
lidar is presented in Sathe and Mann [2012]. This model assumes that the angle
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between the mean wind direction and two of the lidar beam directions is zero, but
from Sathe et al. [2011] we know that DBS lidar measurements of velocity vari-
ances are sensitive to this relative angle. It is unfortunately very cumbersome to
develop a model that works for all wind directions. To be still able to predict the
spectra of a pulsed DBS wind lidar for arbitrary inflow directions, we chose an
approach for article 2 that is different from the numerical modeling in article 1.
Instead of finding an appropriate filter function which resembles the lidar process-
ing, we sampled computer-generated velocity vectors in the same way a real wind
lidar measures the wind. That means we first generated three-dimensional boxes
of three-dimensional wind vectors based on the Mann spectral tensor according to
Mann [1998]. A lidar simulator was then programmed to sample the data in the
same way the Windcube measures in the field. The sampling considers the line-
of-sight averaging including accumulation time, the scanning geometry, the beam
timing, and the wind vector reconstruction process. The resulting time series can
then be transformed into spectra which can be compared with the spectra from
the model tensor. One computer-generated turbulence box represents one single
realization of the underlying statistics based on a random seed. The ensemble av-
erage of all possible realizations show the statistics of the turbulence model but
every single realization contains strong random deviations from the model spectra.
Therefore, sampling in a turbulence box requires a high amount of computer mem-
ory because data for many ten-minute intervals must be sampled and averaged to
get spectra that are relatively smooth, especially at low wavenumbers.

Sampling in a turbulence box as a method to simulate lidar measurements is flexi-
ble and easy to implement. For a very high number of realizations, the simulation
results are comparable to the results of a corresponding model. Simulations make
it easy to predict the effect of lidar accurately even for complex scanning geome-
tries and beam timing.

3.7 Motion compensation
For offshore applications at great water depths, the construction of meteorologi-
cal masts becomes prohibitively expensive. Wind measurements with lidar units
installed on floating buoys can therefore be an economical alternative. But wind
lidars measure the relative velocity between the laser light and scatterers in the
atmosphere. Therefore, the motion of the buoy and variations in its orientation
influence the reconstructed wind vectors in such a way that turbulence estimates
from floating lidar are higher than from fixed lidar.

In contrast to the case of a lidar being mounted on a vessel, the motion of a buoy
mounted lidar is characterized by motion around a fixed zero position. Different
studies are available that investigate the effects of such motion on measurements of
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wind velocity in different ways. Hellevang and Reuder [2013] compare mean wind
velocity values from lidar units mounted on a motion platform with measurements
from collocated fixed reference lidar and find small deviations. Wolken-Möhlmann
et al. [2010] show with lidar sampling simulations of the two most commonly used
profiling lidar types that the time series of reconstructed wind velocities are influ-
enced by lidar motion and that tilting of the lidar is the largest contributor to the
motion-induced deviations. In Wolken-Möhlmann et al. [2017] they show that the
effect of motion on mean wind speed and turbulence intensity is frequency depen-
dent. In Bischoff et al. [2018] a lidar simulator is coupled with a hydrodynamic
model of a buoy that computes realistic motion data based on sea state data as
input parameters. The results of such a simulation environment might be used to
predict the expected uncertainty in floating lidar results.

For our own description of the motion-induced error on the turbulence estimates
of floating lidar in article 3, we use some of the findings of article 1 where we
analyze the cross-contamination effect, i.e., how wind velocity fluctuations of one
orientation can be attributed to the measurement of a different wind vector com-
ponent when they occur within certain frequency ranges. The same effect occurs
when the motion of a floating lidar resonates with the lidar sampling frequency.
An example is fore and back motion of the lidar in mean wind direction. If this
motion occurs with a very low frequency, the lidar interprets the motion correctly
as what it is: horizontal motion superimposed on the wind vector. But when the
oscillations of buoy motion coincide with the lidar prism rotation frequency the
motion is attributed to the estimates of vertical wind velocity. Thus, it is important
to compensate for the motion in all six degrees of freedom on a line-of-sight level
instead of assuming that the measurement cone is static throughout a measurement
cycle. In article 3, section 2.3 we give a comprehensive description of the different
motion-induced error sources that influence the reconstructed wind vectors of a
VAD scanning profiling wind lidar.

For article 3, we stored the Doppler spectra of a floating ZX 300 wind lidar and
recorded its motion data. We compensated the line-of-sight velocities for the ef-
fects of measured motion by, first, subtracting the contribution of the translational
lidar movement and, second, corrected the scanning geometry by considering the
deviations from the standard azimuth and elevation angles for each beam direc-
tion. The minor impact of measuring at varying elevations where wind shear leads
to differences in mean wind velocity is, thirdly, also considered in the motion com-
pensation approach.

What makes our approach unique in floating lidar research is that it is able to
correct the time series of measurement data instead of just the turbulence statistics.
A prerequisite for this ability is to synchronize the motion and lidar data. We
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solved this by determining the timing at which the motion compensation has the
strongest effect. A detailed description of the motion compensation algorithm and
its ability to synchronize the measurement data is given in article 3, sections 3.2
and 3.3.



Chapter 4

Discussion

4.1 Discussion of the results
Articles 1, 2, and 3 included in this thesis address all three research questions
successfully that directed this doctoral work. In section 1.1 it is pointed out that
several publications on turbulence estimates of profiling wind lidar refer to cross-
contamination as a source of error but none of them describes it in enough detail
for a complete analysis. This gap in knowledge led to the first research question
of this thesis: "How does the effect of cross-contamination between the three tur-
bulence velocity components influence lidar-based wind velocity measurements
in conjunction with other systematic sources of error?" In answering this question,
turbulence velocity spectra are a powerful tool. But a model to predict spectra from
profiling lidar was only available for a pulsed DBS lidar like the Windcube and it
can predict the spectra only if the wind direction is aligned with two of the lidar
beams. The model for spectra from a VAD scanning cw lidar presented in article 1
as well as the DBS pulsed wind lidar spectra presented in article 2 are therefore
novel. A limitation to the usefulness of the predicted spectra is that they require a
spectral tensor that represents the real wind conditions sufficiently accurately. In
cases where the spatial structure of turbulence deviates from the two-point statis-
tics of the chosen spectral tensor, the predicted spectra cannot be correct. Also
instrument noise and other factors that lead to imperfect measurements are not
represented in our model spectra. The analytical solutions to calculate characteris-
tic points in the spectra are another contribution of this thesis to the previous state
of the art.

The answer to research question 1 is as follows. DBS and VAD scanning profiling
wind lidars reconstruct wind vectors from line-of-sight measurements which orig-
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inate from measurement volumes that are separated in space. While the average of
many of such wind vectors lies close to the reference mean wind speed, each single
value is erroneous. The cause for this error lies in the spatial structure of turbu-
lence. Velocity measurements at two widely spatially separated points show low
coherence, but the wind vector reconstruction algorithms used by profiling lidar
devices assume identical wind velocities within all measurement volumes during
each sampling cycle. The instantaneous inhomogeneity of the wind field leads to a
redistribution of spectral energy between the three velocity components. Articles
1 and 2 give a detailed description of this cross-contamination effect.

The body of literature does not offer any method that is successful at removing
the effect of cross-contamination on the reconstructed wind vectors from profil-
ing wind lidars. The second research question of this thesis is thus: "Can ad-
vanced data processing methods effectively reduce the error introduced by cross-
contamination and averaging along the measurement cone?" We introduce the
method of squeezing and apply it to both market-leading profiling wind lidar. The
novelty of the method lies in the approach to measure an air volume from two dif-
ferent directions with only one lidar device. We also suggest two-beam processing
of VAD measurement data as a method to avoid averaging along the measurement
cone.

The details of the two methods are described in articles 1 and 2. The application of
the method of squeezing to measurement data and comparison with model spectra
proves that it is a reliable tool to minimize cross-contamination caused by longi-
tudinal separation of the measurement locations. The results also indirectly prove
that the assumption of frozen turbulence is sufficiently valid for our approach. The
ZX 300 lidar measures once per second in each azimuthal direction. Squeezed
processing can therefore reduce the effect of longitudinal separation to nearly zero
when only one elevation level is scanned. This is a minor limitation because when
turbulence shall be estimated, a high scanning rate is required in any case. The
two-beam processing also eliminates the lateral spacing and averaging along the
measurement cone for the determination of the longitudinal and vertical wind ve-
locity components. With both methods applied, line-of-sight averaging is the only
lidar-specific effect that remains in the determination of these two wind velocity
components. Unfortunately, we found no possibility to improve measurements of
the lateral wind component that always suffer from lateral separations when it is
measured with diverging beams from a single lidar unit. Fortunately, the lateral
turbulence is of low importance in most wind energy applications.

The situation is different for the Windcube lidar which scans each of its four cardi-
nal beam directions once every 3.9 s. This slow sampling in comparison with the
ZX 300 lidar leads to longer remaining longitudinal separations after squeezing,
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but we still show satisfactory efficacy of the method of squeezing in the results.
A more critical issue is that the low number of only four scanned azimuth angles
makes the measurements sensitive to whether the mean wind direction is aligned
with any of the beams. Measurements of longitudinal turbulence show good re-
sults for inflow from one of the four beam directions when squeezed processing is
applied. But large errors that cannot be eliminated by squeezed processing occur
for all other wind directions. For applications in which the vertical component of
turbulence is of interest, the fifth beam of the Windcube is a crucial advantage. As
with VAD scanning lidar, lateral wind velocity estimates of a DBS lidar cannot be
corrected by the method of squeezing.

For measurements of turbulence spectra, a high sampling frequency is desirable to
cover a wide range of wavenumbers. In this context it becomes relevant that the
two market-leading wind profilers, besides employing a different scanning strat-
egy, also use different laser technology. The ZX 300 as a cw lidar requires optical
focusing onto the desired measurement elevation. That means only one wind vec-
tor can be reconstructed from each scanning cycle. When a vertical profile of wind
speeds shall be measured, the sampling frequency decreases because each height
is measured subsequently and additional time is required to refocus the laser beam.
The Windcube, being a pulsed lidar, needs more time for one scan cycle but mea-
sures at all height levels simultaneously. The sampling frequency of the ZX 300
lidar is therefore only higher when no more than two elevations are scanned. For
more measurement heights, the Windcube measures faster. Example times for one
and ten height levels are listed in table 2.1.

Although averaging along the beams is not the primary focus in this thesis, we
point out that line-of-sight averaging of cw lidar measurements is advantageous
at short focal distances, as the Rayleigh length depends quadratically on the fo-
cal distance. Pulsed lidars are superior for high measurement distances because
their range gate length is independent of the measurement distance. Access to
line-of-sight velocity data is straightforward when a Windcube lidar is used. Its
standard output data contain line-of-sight velocities and signal-to-noise ratios. The
ZX 300 on the contrary requires the user to stream Doppler-spectra manually to
a connected PC. Line-of-sight velocities can then be calculated from the Doppler-
spectra, but it is difficult to filter them for bad data.

Considering the advantages and drawbacks of both lidar systems, it is not possible
to determine whether one of them is better suited to all tasks. The ideal lidar
device for measurements of turbulence spectra would have a short line-of-sight
averaging length of not more than approximately 10 m that is independent of the
measurement distance. It would measure at a set of relevant elevations with a high
frequency around 1 Hz. It would furthermore follow a VAD scanning strategy and
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should still have a vertical beam. Another desirable property from a research point
of view is convenient availability of the line-of-sight velocities.

The third research question that drives the work presented in this thesis is regarding
lidar measurements from a floating buoy. I wanted to find out: "Is it possible to
measure turbulence intensity with a floating lidar as accurately as with a fixed lidar,
when its motion is compensated for on a line-of-sight level?" Prior to this thesis the
literature was lacking a proven and reproducible method to compensate the time
series of a floating profiling lidar for the effects of motion. Also the description
of the effects of motion on the measurements was incomplete. Thus, after having
understood how fixed profiling wind lidars measure wind vectors, a logical step
was to analyze in what way the motion of a floating lidar influences its turbulence
measurements.

The increase in measured turbulence intensity on floating lidar can be ascribed
mostly to rotation and to a lesser extent to translational motion of the lidar unit.
The effect of wind shear on the measurements is minor. With our motion com-
pensation algorithm we show that when accurate motion measurements and the
individual lidar line-of-sight velocities are available, the influence of motion on
turbulence intensity can be compensated for. This is true even if the timing of
both signals is not synchronized before the motion-compensation processing. The
ability of our processing to synchronize the signals is another contribution to the
state of the art. The amount of motion-induced turbulence intensity is dependent
on the motion state (i.e., mean tilt angle, tilt direction, and tilt period) and the mean
wind conditions (i.e., wind speed and direction). The method we present can un-
fortunately not be used when either motion data or line-of-sight velocities are not
available.

The methods presented in this thesis offer novel smart processing of data from
commercially available fixed and floating profiling wind lidar and improve their
turbulence estimates. The thesis reaches thus its overall research goal and confirms
its hypothesis.

4.2 Recommendations for further work
The method of squeezing can be used to reduce the effect of longitudinal separa-
tion of the measurement volumes, but it does not counteract the effect of lateral
separations. One possibility to eliminate the cross-contamination due to lateral
spacing would be to deflect two of the Windcube beams twice. First, in such a way
that they point horizontally in two different directions away from the lidar unit
and then a second time so that they intersect with the vertical beam at a common
point. Such a setup as depicted in Fig. 4.1 could reduce cross-contamination to
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Mirrors

Figure 4.1: Deflecting two lidar beams by mirrors (orange) so that they intersect with the
vertical beam in one point above the lidar. This measurement setup allows for turbulence
measurements with low cross-contamination between turbulence components.

a very low degree without the need for a multi-lidar setup like the Windscanner
[Mikkelsen et al., 2008]. The three remaining unchanged beams can help with the
challenging task of determining the correct azimuth and elevation angles of the
deflected beams. With a robust procedure to estimate the scanning geometry in
place, measurements in non-homogeneous wind fields could also be valid.

For determining turbulence velocity spectra, it is necessary to reconstruct individ-
ual wind vectors. When only the second-order turbulence statistics are required,
it could be advantageous to derive them from the variance of the line-of-sight ve-
locities according to Sathe et al. [2015]. With a few assumptions, their six-beam
method could be adapted to the five beams of the Windcube. Processed like this,
the lidar measurement results would not be affected by cross-contamination, and
averaging along the lines-of-sight would be the only remaining filtering effect.

This line-of-sight averaging effect is the biggest remaining challenge for lidar
remote sensing of wind turbulence, and efforts should be made to mitigate it.
Brinkmeyer and Waterholter [2013] show how the measurement volume of cw
lidars could be reduced. Another much simpler possibility could be to average all
Doppler spectra from all individual beam directions that were acquired during one
ten (or 30)-minute interval like shown in Branlard et al. [2013] before processing
them according to the six-beam method [Sathe et al., 2015]. The resulting compo-
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nents of the Reynolds stress tensor would then be free of cross-contamination and
would also not be impacted by line-of-sight averaging.

For floating lidar research, a method should be developed that can achieve results
that are similar to the results we present in article 3 but acquired without the need
for radial velocities. A study could be performed in which measured motion data
and ten-minute average wind data could be used as input for a lidar simulator that
determines the motion-induced turbulence intensity.
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Abstract. Turbulent velocity spectra derived from velocity–
azimuth display (VAD) scanning wind lidars deviate from
spectra derived from one-point measurements due to aver-
aging effects and cross-contamination among the velocity
components. This work presents two novel methods for min-
imizing these effects through advanced raw data process-
ing. The squeezing method is based on the assumption of
frozen turbulence and introduces a time delay into the raw
data processing in order to reduce cross-contamination. The
two-beam method uses only certain laser beams in the recon-
struction of wind vector components to overcome averaging
along the measurement circle. Models are developed for con-
ventional VAD scanning and for both new data processing
methods to predict the spectra and identify systematic differ-
ences between the methods. Numerical modeling and com-
parison with measurement data were both used to assess the
performance of the methods. We found that the squeezing
method reduces cross-contamination by eliminating the res-
onance effect caused by the longitudinal separation of mea-
surement points and also considerably reduces the averaging
along the measurement circle. The two-beam method elimi-
nates this averaging effect completely. The combined use of
the squeezing and two-beam methods substantially improves
the ability of VAD scanning wind lidars to measure in-wind
(u) and vertical (w) fluctuations.

1 Introduction

Wind speed measurements are an integral element of wind
site assessment. Traditionally such measurements have been
based on in situ sampling with anemometers attached to tall
meteorological masts that reach up to hub height. Such masts
are immobile and expensive to erect. It is therefore favor-
able to implement remote-sensing devices, such as conically
scanning profiling lidars, that measure wind velocities at ad-
justable height levels above the ground remotely.

Pulsed and continuous-wave wind lidars are the two types
of profiling lidars that are currently commercially available.
The velocity–azimuth display (VAD) scanning strategy was
introduced by Browning and Wexler (1968) and is usually
applied for continuous-wave profiling lidars like the ZX 300
(previously ZephIR 300) produced by Zephir Ltd. Advanced
processing of VAD-acquired data is the object of investiga-
tion here.

Validation studies that compare measurements from me-
teorological masts and ground-based profiling lidars report
good agreement for first-order statistics, namely the 10 min
mean wind velocities and directions (Kindler et al., 2007;
Smith et al., 2006; Medley et al., 2015; Kim et al., 2016). The
estimation of second-order statistics of the turbulence in the
wind by means of VAD scanning pulsed Doppler lidar was
first demonstrated by Eberhard et al. (1989). But such turbu-
lence estimates from VAD scanning lidars deviate from clas-
sical measurements with cup or sonic anemometers (Sathe
and Mann, 2013; Peña et al., 2009; Canadillas et al., 2010).
Sathe et al. (2011) model the second-order statistics of pulsed
and continuous-wave profiling lidars. The resulting velocity
variances are influenced by the effects that arise from sensing
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the three-dimensional wind field by averaging over spatially
distributed volumes. In order to better understand the actual
behavior of the lidar in comparison to reference measure-
ments, turbulence spectra of the three wind components u,
v and w can provide much-needed insight. Sathe and Mann
(2012) model and analyze turbulence spectra, but only for
pulsed lidars that use Doppler beam swing (DBS) scanning.
A simplified model for turbulence spectra from VAD scan-
ning wind lidars is presented in Wagner et al. (2009). How-
ever, it does not include the effect of cross-contamination and
cannot be used to predict the turbulence spectra of real lidars.

The six-beam method developed by Sathe et al. (2015) is
an alternative to VAD scanning that results in more accurate
second-order statistics of turbulence. But its application re-
quires a vertical laser beam and a half-cone opening angle of
45◦, which makes it unusable with commercially available
profiling wind lidars.

Newman et al. (2016) propose another method to com-
pensate for the contamination by means of autocorrelation
functions derived from collocated mast measurements. This
method is, however, only applicable when a meteorological
mast is available. In comparing and evaluating the ability
of different lidar scanning strategies to measure turbulence,
Newman et al. (2016) conclude that cross-contamination of
the different velocity components is one of the primary dis-
advantages of current profiling lidars.

The research presented here demonstrates two methods
aimed at overcoming the effects of cross-contamination and
averaging along the measurement circle that are inherent in
the standard VAD scanning strategy. Both methods are based
on modified line-of-sight velocity data processing and can be
applied to currently available lidars without changes in their
hardware. The line-of-sight averaging effect remains unre-
solved.

The first method incorporates Taylor’s frozen turbulence
hypothesis and introduces a time lag into the wind vector
reconstruction process. Bardal and Sætran (2016) measure
two-point correlations of horizontal wind speeds from two
meteorological masts that are separated by 79 m in line with
the mean wind direction. They find that the cross-correlation
coefficient is around 0.8 when a temporal lag compensates
for the time required for the wind to cover the distance be-
tween the two measurement points. Without delaying the sig-
nal, the cross-correlation coefficient reaches only half of that
value. Applied to VAD scanning lidars, that justifies the as-
sumption that when the processing of line-of-sight measure-
ment data is delayed by the time needed to cross the mea-
surement circle, the lidar measurements will be more real-
istic. This approach is hereafter called “squeezing” and re-
duces the cross-contamination effect that currently distorts
the shape of turbulence spectra acquired with VAD scanning
lidars.

The second method is to use only the radial velocities from
lines of sight that point into the mean wind direction (down-
wind) and against it (upwind) to determine the components

Figure 1. Lidar geometry definitions and coordinate system.

of the wind that are oriented in line with the mean wind di-
rection (u) and vertical direction (w). This eliminates the av-
eraging along the measurement circle.

The aim of the research presented here is to demonstrate
whether one of the two modified data processing algorithms
or their combination leads to improved turbulence measure-
ments from standard VAD wind lidars. For each method, we
present a numerical model and experimental results. We dis-
cuss the effects of the two methods individually and com-
bined.

This research has several practical applications. The reli-
able elimination of cross-contamination and averaging along
the measurement circle would lead to a reduction of the
systematic error of wind lidar measurements that is depen-
dent on the prevailing wind conditions and the measurement
height. In particular, estimations of the timescale of turbu-
lence could be made with higher certainty, which would sup-
port future boundary layer research by means of profiling
wind lidars. In addition, estimating the energy content of the
wind components at specific wave numbers with higher cer-
tainty could also help to better predict the operational wind
loads of wind turbines and other structures.

Section 2 summarizes the VAD scanning process and de-
scribes, in detail, the averaging and cross-contamination ef-
fects it implies for the measurement of turbulence. In Sect. 3
the suggested modified data processing methods are de-
scribed before they are modeled alongside the conventional
processing in Sect. 4. The measurements are described in
Sect. 5 before the results are compared with the model pre-
dictions in Sect. 6. Section 7 concludes with the most impor-
tant findings.
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2 Lidar theory

2.1 Coordinate system and preliminaries

Figure 1 shows the measurement circle of diameter DC of a
VAD scanning lidar and how it is created by the laser beams
that are deflected from the zenith by the half-cone open-
ing angle φ and rotate around the zenith with continuously
changing azimuth angle θ . The beams are focused at a point
at distance df from the lidar, which is located at the origin of
a three-dimensional left-handed coordinate system. Five of
the laser beams are depicted, four in the cardinal directions
and one with an arbitrary azimuth angle. The mean wind di-
rection 2 determined from 10 min intervals is zero when the
wind blows from north to south. The wind vector

u=

 u

v

w

 (1)

is composed of the wind components u, v and w that are
aligned with the axes of the coordinate system when2= 0◦.
Reynolds decomposition is used for the description of the
wind field so that

u= U +u′, (2)

where u′ represents the wind speed fluctuations in all three
directions and U is the mean wind velocity vector.

2.2 Taylor’s frozen turbulence hypothesis

The frozen turbulence hypothesis published by Taylor (1938)
assumes that turbulence is advected by the mean wind ve-
locity U into the mean wind direction 2. During the trans-
port process the turbulence remains unchanged, i.e., turbu-
lence measured at one point in space gives information about
the turbulence found further downwind some time later. That
means for a velocity vector field u when U is aligned with
the x axis that

u(x,y,z, t)= u(x−U t,y,z,0). (3)

The hypothesis is widely used and it is known from exper-
iments that the assumption of frozen turbulence is valid to
a high degree for large eddies. For example, Schlipf et al.
(2010) measured the inflow velocities of an operating wind
turbine at different distances from the rotor plane in order
to test the hypothesis of frozen turbulence. They found it to
be valid for large-scale wind fluctuations with wave numbers
k > 1.25×10−1 m−1. Willis and Deardorff (1976) show that
the hypothesis lacks validity when

σu/U > 0.5. (4)

This implies that the validity of the hypothesis depends on
the amount of turbulence and that a high degree of validity is
expected when the velocity variance is low compared to the
mean wind speed.

2.3 VAD measurement principle

Continuous-wave wind lidars continuously emit a focused in-
frared laser beam into the air and detect the small portion
of the radiation that is backscattered by particles along the
beam path towards the beam’s origin. The velocity of the
backscattering particles relative to the beam direction is then
determined by analyzing the Doppler shift between the fre-
quencies of outgoing and incoming radiation. It is assumed
that the backscatterers are lightweight enough to move with
the instantaneous wind speed u. The measured radial line-
of-sight velocities vr are hence equal to the wind velocity
projected onto the beam direction. In order to estimate the
three-dimensional wind vector u, a minimum of three inde-
pendent line-of-sight measurements from different directions
must be combined.

When VAD scanning is used, the beam is deflected by
a wedge prism by a constant half-cone opening angle φ
from the zenith and rotated around the zenith with a steadily
changing azimuth angle θ . Many radial velocities vr are ac-
quired during one full rotation of the prism. For example in
the case of the ZX 300 (previously ZephIR 300), N = 49
Doppler spectra are calculated and used to determine the
same number of radial velocities. All of them are used to
reconstruct one wind vector by applying a least-squares fit to

vr = |Acos(θ −B)+C|, (5)

where the best fit parameters A, B and C represent the wind
data according to

vhor = A/sin(φ)
2= B ± 180◦

vver = C/cos(φ). (6)

The sign of the radial velocity is usually unknown. We are
thus faced with a directional ambiguity of ±180◦, but this
does not affect the turbulence analysis here. The wind data
vhor, 2 and vver can be translated into wind vectors u easily.

The wind velocity estimations that result from this pro-
cessing underlie several effects that distinguish them from
one-point measurements. These effects can be divided into

– averaging

a. along the lines of sight
b. along the measurement circle and

– cross-contamination

a. due to longitudinal separation
b. due to lateral separation.

2.4 Averaging effects

2.4.1 Line-of-sight averaging

In situ wind speed measurements taken with cup anemome-
ters or ultrasonic anemometers have a small measurement
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Table 1. Key specifications of the lidar used in the measurements.

Description Abbr. Value Unit

Measurement height h 78 [m]
Half-cone angle φ 30.6 [◦]
Cone diameter DC 92.3 [m]
Focus distance df 90.6 [m]
Prism rotation fS 1 [Hz]
Measurements per cycle N 50 [1]
Laser wave length λ 1550 [nm]
Effec. aperture diam. a0 24 [mm]
Mean wind speed Umean 19.5 [ms−1]
1. Resonance λres1 184.5 [m]

kres1 0.034 [m−1]
2. Resonance λres2 61.5 [m]

kres2 0.102 [m−1]
No. of cycles to cover τ M 0–5 [1]
Rayleigh length lR 7.03 [m]
Full width at half maximum 2lR 14.07 [m]

volume that can be considered a point. Lidar measurements,
in contrast, sense wind velocities along an extended stretch of
the line of sight of the laser beam. In the case of continuous-
wave lidars, the laser beam leaves the lidar optics with a di-
ameter that corresponds to its effective aperture size a0 and
is focused onto a focus point. The distance between the lidar
optics and the focus point is the focal distance df. The sig-
nal of the backscattered radiation originates from anywhere
along the illuminated beam, according to a distribution func-
tion that has its maximum at the focus point and is propor-
tional to the intensity of the laser light along the beam (Son-
nenschein and Horrigan, 1971).

A definite range gate, such as for pulsed lidars, is there-
fore not applicable to continuous-wave lidars. Instead, the
Rayleigh length lR is a measure of the distance between the
focus point and the point at which the cross section of the
beam has twice the area of the cross section at the focus
point. According to Harris et al. (2006), it is given by

lR =
λdf

2

πa02 , (7)

where λ is the laser wavelength and a0 is the effective aper-
ture diameter. The Rayleigh length is quadratically propor-
tional to the focal distance df that increases linearly with the
selected measurement height level. The degree of line-of-
sight averaging is thus strongly dependent on the measure-
ment height level and is higher for larger heights. The values
of lR, a0 and df for the lidar used in our experiments are given
in Table 1.

The intensity of backscattered radiation is a function of
the distance s from the focus point along the beam. It is suf-
ficiently well approximated by a Lorentzian function,

F(s)=
lR/π

s2+ lR
2 , (8)

where s is the distance from the focus position (Mikkelsen,
2009).

All Doppler spectra that are retrieved during the radial
velocity acquisition time are averaged, and the focus point
sweeps over a considerable arc of the measurement circle
during this time. This arc length lA is

lA =
DCπ

N
, (9)

where N is the number of line-of-sight measurements vr
taken during one rotation. In experimental data, the arc aver-
aging effect is contained in the radial velocities. In the mod-
els here, we account for this by averaging along the measure-
ment circle.

The Doppler spectra of each line-of-sight measurement re-
semble the probability density function of the radial wind ve-
locities along the line of sight (Branlard et al., 2013). But by
determining one single velocity value for each line-of-sight
measurement, the turbulence information they contain is fil-
tered out.

The additional temporal averaging along the lines of sight
is very low, as one measurement takes only 1

N
s. The effect

of line-of-sight averaging is very strong for high wave num-
bers but has some effect on long turbulent structures as well.
The effect of line-of-sight averaging is considered in the nu-
merical models and the discussion in this study. But none of
the presented data processing methods can avoid the line-of-
sight averaging effect.

2.4.2 Measurement circle averaging

As described in Sect. 2.3 lidars use all measurement data of
at least one full rotation of the prism to reconstruct one wind
vector. The resulting system of equations is overdetermined,
and in order to find a solution a quadratic best fit is applied.
The more line-of-sight velocities that are used to reconstruct
a wind vector, the stronger the averaging and thereby the
larger the loss of turbulent kinetic energy in the measurement
data. The residual of the best fit is a measure of the degree of
this form of averaging but is usually not used in the process-
ing.

The diameter DC of the measurement circle is

DC = 2h tanφ, (10)

with h being the measurement height and φ the half-cone
opening angle. The spatial separation between the points that
one reconstructed wind vector is composed of thus linearly
increases with measurement height. The larger the cone di-
ameter, the stronger the circle averaging. Turbulence with a
length scale below the diameter of the averaging circle is af-
fected the most.

In addition to the spatial separation of the measurement
points along the measurement circle, the acquisition time
must be considered. The mean wind motion carries the air
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while it is probed, which might further increase the separa-
tion of measurement points in the mean wind direction. The
ZephIR 300 measures one full rotation in 1 s, and the distance
the air moves within this time is usually small compared to
DC. The effect of temporal averaging is therefore often small
compared to the spatial averaging. One example for the path
of measurements that is averaged over is given in Fig. 4a.
The circle diameter represents the spatial averaging, and the
shift along-wind with the speed U represents the temporal
averaging.

2.5 Cross-contamination

2.5.1 Cross-contamination due to longitudinal
separation

Another cause for differences in the shape of turbulence
spectra from one-point measurements and their counterparts
from VAD scanning lidars is cross-contamination of differ-
ent velocity components. VAD scanning lidars combine mea-
surements from spatially separated locations where differing
velocities may prevail as if they were collected at one point.
This leads to a redistribution of turbulent energy among the
velocity components u, v and w. Lidar-derived spectra of
one of the components can at certain wave numbers show
lower energy values than the original wind spectrum of that
component but may also show too high values due to a con-
tribution from a different velocity component. To better un-
derstand cross-contamination we divide the effect into two
different types of separations. First we look into longitudinal
separations, i.e., separation along the mean wind direction.
Fluctuations at two points separated in line with the wind are
highly correlated. If the assumption of frozen turbulence is
correct, the coherence would be 1 for all separation lengths
and all wave numbers. One example of cross-contamination
of correlated fluctuations between two longitudinally sepa-
rated points is visualized in Fig. 2. The chosen wavelength
of the wind fluctuations equals twice the separation distance.
This can be called the first resonance wavelength. The reso-
nance wavelengths are given by

λres,n =
2DC

2n− 1
. (11)

The corresponding resonance wave numbers are

kres,n =
(2n− 1)π
DC

, (12)

where n= 1, 2, 3. . . The resulting values for the first two
resonance points are given in Table 1.

The two beam directions in line with and against the mean
wind direction can be used to determine ulidar and wlidar by
using the formulas on the right-hand side of the figure. This
example looks at these two lines of sight. The v component
can be ignored because transverse fluctuations are not de-
tected by the upstream and downstream beams. The example

Figure 2. Visualization of cross-contamination caused by longitu-
dinal spacing of measurement points 1 and 2. The wavelength of
u′ and w′ equals twice the separation distance of the focus points
of the lidar (indicated by box with yellow symbol). The resulting
measurement values of the u component are contaminated by fluc-
tuations in the w direction and vice versa.

demonstrates a case with isotropic turbulence, i.e., arbitrary
but identical amplitudes for fluctuations in all orientations.
Averaging along the lines of sight is ignored here for sim-
plicity. The first column of graphs in the figure isolates the
u fluctuations u′ and shows the resulting lidar-measured sig-
nal for the two radial velocities in the upwind and downwind
directions, i.e., vr1 and vr2. When these two signals are com-
bined in the usual way, the reconstructed wind speed com-
ponents u′lidar and w′lidar differ strongly from the real inflow
conditions u′ andw′. The lidar is blind to wind speed fluctua-
tions in the u direction and instead attributes the fluctuations
to some extent to the estimation of w′lidar. The same is done
for w′ in the second column, and the resulting effect is the
reverse. The vertical fluctuations w′ are interpreted solely as
amplified fluctuations of u′lidar.

The last column combines the two previous cases and
shows the resulting distribution of amplitudes that depends
on the half-cone opening angle φ. When φ < 45◦ the lidar is
more sensitive to vertical variations than to horizontal ones,
and the contamination of u′ caused by w′ is more severe than
vice versa.

In a more realistic situation, turbulence is non-isotropic
and the amplitude of w′ at this first resonance wave number
is often considerably lower than the amplitude of u′, which
leads to a different distribution of contamination, which can
be estimated as follows. We use Eqs. (31) and (33) to define
the lidar-derived variance in the u direction:

σ 2
u,lidar =

〈(
1v

−2sinφ

)2
〉
. (13)
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In general, the differences of the line-of-sight velocities
aligned with the mean wind 1v contain contributions from
wind fluctuations in the u and w directions 1vu and 1vw,
respectively. Here we look at the resonance case in which
1vu = 0 and thus 1v =1vw. We get

σ 2
u,lidar,res =

〈(
1vw

−2sinφ

)2
〉
=

〈(
2w′ cosφ
−2sinφ

)2
〉

= cot2φσ 2
w,res ≈ 2.86σ 2

w,res, (14)

when φ = 30.6◦ as for the lidar we used in this study. The
subscript “res” indicates that the equation is only valid for
inflow fluctuations at resonance, as in the example given be-
fore.

In Sect. 4 we develop a model to predict lidar-derived
spectra. This model was used to create the plots shown in
Fig. 3. Figure 3a shows the modeled spectra of the wind com-
ponents, uwind and wwind, as solid black and red lines. The
parameters of the underlying spectral tensor are given in Ta-
ble 1. They were chosen to best represent the wind conditions
found during the experiment presented in Sect. 6. The model
was used to estimate the u component of the wind from two
lidar beams that point in the upwind and downwind direc-
tions. Also here, we did not include line-of-sight averaging
to isolate the effect of cross-contamination. The principle of
the setup is the same as explained for Fig. 2 but now we see
results for all inflow wave numbers and use anisotropic tur-
bulence. The resulting lidar-derived spectrum ulidar,sum of the
u component of the wind is the sum of the lidar’s interpreta-
tion of the wind components ulidar,u and ulidar,w. We see that
the lidar-estimated spectrum of ulidar,sum lies a bit below the
target spectrum of uwind for most wave numbers but not at the
first and second resonance points that are marked with grey
dashed vertical lines. There it exceeds the target spectrum.
The reason becomes apparent when we look at the compo-
nents ulidar,u and ulidar,w that ulidar,sum is composed of. We
find that the lidar sees uwind nearly to its full extent for very
low wave numbers but when we come close to the resonance
points ulidar,u drops to zero. The contribution of the vertical
wind ulidar,w shows a mirrored behavior and is amplified ac-
cording to Eq. (14) since φ < 45◦.

2.5.2 Cross-contamination due to lateral separation

When the lines of sight under consideration are not longitu-
dinally but laterally separated, they do not face resonance but
instead a second form of cross-contamination. The strength
of the contamination depends then on the coherence of the
turbulence for the given lateral separation. When the fluc-
tuations at the two selected focus points are very coherent
i.e., their correlation is close to unity, we can expect that the
lidar-derived wind speed estimates are correct and no cross-
contamination occurs. This can be observed at very low wave
numbers at which a high degree of coherence is expected.
The other extreme is found at the other end of the spectrum

Figure 3. Modeled cross-contamination effect inherent in (a) the u
spectrum from two longitudinally separated points with 1x =DC
and (b) the v spectrum from two laterally separated points with
1y =DC. The solid lines are the spectra of the involved wind com-
ponents. The dotted lines show the contribution of these wind com-
ponents to the lidar spectra (circle markers). Averaging along the
lines of sight is excluded.

at which small fluctuations measured at both focus points
are uncorrelated. The lidar-derived spectrum is there a lin-
ear combination of the variances of the involved components
v and w according to

σ 2
v,lidar =

〈(
1v

−2sinφ

)2
〉

=

〈(
1vv

−2sinφ

)2
〉
+

〈(
1vw

−2sinφ

)2
〉
. (15)

In the case of fully uncorrelated fluctuations we know
that 1vv =−v′ sinφ and 1vw = w′ cosφ and the variance
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σ 2
v,lidar,unc of the lidar-derived v velocity is

σ 2
v,lidar,unc =

〈(
−v′ sinφ
−2sinφ

)2
〉
+

〈(
w′ cosφ
−2sinφ

)2
〉

=
1
2

(
σ 2
v,unc+ σ

2
w,unccot2φ

)
≈ 0.5σ 2

v,unc+ 1.43σ 2
w,unc (16)

for the lidar with a half-cone opening angle of φ = 30.6◦.
These two situations and all cases in between are shown in
Fig. 3b. The difference from the plots in Fig. 3a is that the two
beams that point into and against the v direction are used here
to estimate the v-spectrum vlidar,sum. The target spectrum of
the v component of the wind vwind is given as well as the w-
spectrumwwind that contaminates the signal. From the vlidar,v
and vlidar,w curves it can be seen that at very low wave num-
bers hardly any contamination occurs but mainly because the
w-component wwind itself contains a low energy density at
low wave numbers. As it increases for higher wave numbers,
the contamination also becomes more severe. In this exam-
ple wwind dominates the lidar spectrum vlidar,sum for all wave
numbers above approximately k1 = 1.4× 10−2 m−1. The re-
sult is that the lidar overestimates the v variances for all
wave numbers. Such an effect is also reported by Wyngaard
(1968). Thus, it is essential for accurate turbulence measure-
ments to minimize spatial separation.

VAD scanning along the whole measurement circle is
more complex than using only two beams. Examining the
two beams aligned with or perpendicular to the mean wind
direction is not sufficient to fully understand the effect of
cross-contamination. For circle scans, all three wind speed
components are involved in contaminating all the beams that
do not point in the four cardinal directions. We refer to the
model presented in Sect. 4.1 and especially Eqs. (24), (25)
and (26) of the spectral weighting functions therein to better
understand which components influence another.

The lidar can also be configured to perform a so-called
3 s scan, in which one measurement cycle is built from data
from three full rotations. This limits the cross-contamination
but comes at the cost of much stronger averaging along the
measurement circle, especially in strong wind cases, and a
sampling rate that is 3 times slower. The ability to measure
turbulence with this approach is so weak that it is not further
investigated in this paper. Instead, the next chapter suggests
two methods that can be used to reduce both averaging and
cross-contamination.

3 Modified data processing

3.1 Squeezed measurement circles

In conventional VAD data processing, each measurement cy-
cle consists of the radial velocities that are acquired during

one full rotation of the prism. The data used in the recon-
struction of one wind vector thus originates from an air vol-
ume with the shape of a cone with a diameter of DC at the
height of focus. This results in the abovementioned cross-
contamination effects.

One way to eliminate the cross-contamination due to lon-
gitudinal separation and mitigate the averaging along the
measurement circle lies in making use of Taylor’s frozen tur-
bulence hypothesis. As mentioned in Sect. 2.2, the hypoth-
esis assumes that turbulent structures are transported by the
mean wind motion without changing. This implies that all
turbulent structures that enter the measurement cone at one
time are identical after some time t when they leave the cone.
The time it takes to cross the measurement circle can be esti-
mated for all azimuth directions θ by

t (θ)= cosθ
DC

U
, (17)

where U is the mean wind velocity calculated from conven-
tional VAD processing.

The basic idea here is to introduce a time lag τ = t into
the data processing so that each air package that is involved
in the reconstruction of one wind vector is scanned twice:
once when it enters and again when it leaves the measure-
ment cone. The composition of the measurement circles is
shown in Fig. 4 from a coordinate system that is moving
with the mean wind U . In this example DC = 92.3 m and
U = 19.5 ms−1. With conventional VAD data processing,
the measurement circle is made up of allN consecutive mea-
surements from one cycle (red segment). By contrast, the
lower part of Fig. 4 illustrates the introduction of the time
delay τ , in which line-of-sight measurements from a total of
M = 6 different measurement cycles are combined to esti-
mate one wind vector (green segments). In other words, with
conventional data processing, a measurement cycle is com-
posed of volumes that are widely spatially distributed. The
new proposed method picks measurement data taken from
what we term a squeezed measurement circle (SMC).

A restriction that comes with the idea of squeezing is that
the circle sample rate fS must be high enough to be able to
select measurements that were acquired with a time differ-
ence reasonably close to τ . That drastically limits the number
of measurement heights that should be selected, especially in
strong wind cases. For the measurements analyzed in this pa-
per, the lidar scanned continuously at only one height level,
which in general makes sense to measure turbulence effec-
tively.

3.2 Two-beam method

The conventional method of averaging data from all avail-
able lines of sight to reconstruct three-dimensional wind vec-
tors leads to strong averaging along the measurement circle.
The method is known to deliver reliable values for the mean
wind speed and direction. The directional information allows
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Figure 4. Selection of line-of-sight measurements for the recon-
struction of one wind vector for when (a, in red) conventional
VAD processing and (b, in green) the method of squeezed measure-
ment circles is applied. Within the red and green segments, small
red and green rings indicate the particular beams selected for two-
beam processing. In this example, U = 19.5 ms−1, DC = 92.3 m
and fS = 1 Hz.

it to determine the two beams that lie in the upstream and
downstream directions. Within the red and green segments
of Fig. 4, small red and green rings indicate these particular
beams. These two beams can in a second processing step be
used to estimate the u and w components of the wind vectors
for turbulence estimations. The resulting values are then not
averaged along the measurement circle. This is comparable
to the DBS method in cases in which the mean wind blows
in line with two of the lines of sight. But an advantage of the
two-beam method over the DBS strategy is that the relative
angle between the mean wind and the two beams is kept con-
stant in any prevailing wind direction. This is an advantage
since beams pointing upwind and downwind are immune to
contamination by the cross-wind component v.

When the two-beam method is combined with the idea of
squeezing, then measurements of the u and w components
are taken at virtually one focus point following the flow. Only
the line-of-sight averaging and some minor longitudinal sep-
aration among the different locations along the two beams
remain.

That is unfortunately not true when estimating the v com-
ponent of turbulence. Instead, several problems occur. Intu-
itively, one would choose a beam direction perpendicular to
the mean wind direction in order to estimate the v compo-
nent of the wind. But the radial velocities in this line-of-
sight direction are often close to zero, and such estimates
from continuous-wave lidars are usually not reliable (Mann
et al., 2010; Dellwik et al., 2010). The transverse v compo-

nent must therefore be estimated by either VAD processing
or selecting a different third beam direction. In the latter case
the results would then be influenced by contamination not
only from w but also from the u component. This lies out-
side the scope of this study. Therefore no v data from mea-
surements are processed with the two-beam method.

Like conventional VAD processing, the SMC method and
two-beam method require a wind field that is statistically ho-
mogeneous in the horizontal directions to yield correct re-
sults.

4 Description of the model

The mathematics of deducing the lidar-measured spectrum
from the second-order statistics of turbulence is very con-
voluted. Therefore, we make the assumption that the mea-
surements are performed much faster than it takes the air to
move from one side of the scanning circle to the other; i.e.,
we assume that 1

fS
� τ . Effectively, the scanning circle is

measured continuously. It is difficult to assess the magnitude
of the error committed by the assumption of continuous mea-
surements, but we assume it is negligible.

4.1 VAD and SMC

In order to model spectra obtained from conventionally
VAD-processed lidar data, we closely follow the method of
Sathe et al. (2011). They use the geometry of the lidar scan
and its along-beam weighting function together with infor-
mation on the spatial structure of surface-layer turbulence
(Mann, 1994). The focus point of the lidar is at a distance
df away in the direction given by the unit vector

n(θ)= (−cosθ sinφ,−sinθ sinφ,cosφ), (18)

where θ is the azimuth angle and φ is the half-cone opening
angle. The line of sight or radial wind speed that the lidar is
measuring is modeled as

vr(θ,x)=

∞∫
−∞

ϕ(s)n(θ) ·u((s+ df)n(θ)+ xe1)ds, (19)

where ϕ is the spatial weighing function of the continuous-
wave lidar that we assume to be a Lorentzian function with
the Rayleigh length lR. u is the three-dimensional velocity
field suppressing the time argument since we are assuming
Taylor’s hypothesis. The integration variable s is the distance
along the beam from the focus point. The dot product assures
that we obtain the line-of-sight velocity. We use x, the coor-
dinate aligned with the mean wind vector, instead of time. e1
is the unit vector aligned with x.

The w, u and v components of the velocity are calculated
by the first three Fourier coefficients of vr as a function of θ ;
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i.e., w is calculated from

A(x)=
1

2π

2π∫
0

vr(θ,x)dθ. (20)

In Sathe et al. (2011) variances are calculated for a conically
scanning continuous-wave lidar and it is trivial to extend that
to spectra. Spectra were in fact calculated in Sathe and Mann
(2012) but only for a pulsed system. In Sathe et al. (2011) the
variances for a conically scanning continuous-wave system,
e.g., a ZephIR 300 (Smith et al., 2006; Kindler et al., 2007),
were given by〈
w2
〉
cos2φ =

∫
8ij (k)αi(k)α

∗

j (k)dk, (21)〈
u2
〉
sin2φ =

∫
8ij (k)βi(k)β

∗

j (k)dk, (22)〈
v2
〉
sin2φ =

∫
8ij (k)γi(k)γ

∗

j (k)dk, (23)

where ∗ means complex conjugation. The spectral weighting
functions α, β and γ are

αi(k)=
1

2π

2π∫
0

ni(θ)eidfk·n(θ)e−l|k·n(θ)|dθ, (24)

βi(k)=
1
π

2π∫
0

cosθni(θ)eidfk·n(θ)e−l|k·n(θ)|dθ, (25)

γi(k)=
1
π

2π∫
0

sinθni(θ)eidfk·n(θ)e−l|k·n(θ)|dθ. (26)

The spectra measured by the conically scanning lidar will be

cos2φFZw (k1)= T̂f (k1)

∞∫∫
−∞

8ij (k)αi(k)α
∗

j (k)dk2dk3 (27)

and likewise for the u and v components.

T̂f (k1)= sinc2
(
k1Lf

2

)
, (28)

where sincx = sinx
x

is included in Eq. (28) to account for the
finite time of circle scanning before a velocity estimate is ob-
tained. Lf is the mean wind speed multiplied with this finite
time (see Sathe et al., 2011, for details).

To apply the method of squeezing and model the spectra
we obtain from SMC processing, we now substitute Eq. (19)
with

ṽr(θ,x)=

∞∫
−∞

ϕ(s)n(θ)·u((s+df)n(θ)+(x−dfn1(θ))e1)ds .

(29)

Following the exact same steps as in Sathe et al. (2011) but
using Eq. (29) instead of Eq. (19) we arrive at Eqs. (21)–
(23) but with the complex exponential in Eqs. (24)–(26) ex-
changed with

eidf(k·n(θ)−k1n1(θ)). (30)

4.2 Two-beam method

Only the up- and downwind beams to determine the u and w
components of the wind vector could introduce less averag-
ing than using the whole circle.

When the mean wind is blowing from the north, the unit
vectors in the up- and downwind directions are called nu and
nd, respectively. Their unit vectors are

nu
= (−sinφ,0,cosφ) (31)

and with the opposite sign on the first component for nd.
Parallel to Eq. (19) the line-of-sight velocity measured by

the upwind beam is assumed to be

vu(x)=

∞∫
−∞

ϕ(s)nu
·u(snu

+ dfn
u
+ xe1)ds. (32)

The u component estimated by the lidar is normally

ulidar =
1v

nu
1− n

d
1
, (33)

where

1v = vu(x)− vd(x)

=

∞∫
−∞

ϕ(s)
[
nu
·u((s+ df)n

u
+ xe1)

−nd
·u((s+ df)n

d
+ x)

]
ds. (34)

The correlation function of 1v is

R1v(r)= 〈1v(x)1v(x+ r)〉

=

∞∫∫
−∞

ϕ(s)ϕ(s′)×
〈[

nu
·u((s+ df)n

u
+ xe1)

−nd
·u((s+ df)n

d
+ xe1)

]
×
[
nu
·u((s′+ df)n

u
+ (x+ r)e1)

−nd
·u((s′+ df)n

d
+ (x+ r)e1)

]〉
dsds′. (35)

Expanding the product inside the ensemble average (〈〉) and
using the definition of the correlation tensor of the velocity
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field, Rij (r)≡
〈
ui(x)uj (x+ r)

〉
, one obtains

R1v(r)=

∞∫∫
−∞

ϕ(s)ϕ(s′)× (36)

{
nu
i n

u
jRij ((−s+ s

′)nu
+ re1)

+ nd
i n

d
jRij ((−s+ s

′)nd
+ re1)

− nu
i n

d
jRij (s

′nd
− snu

+ df(n
d
−nu)+ re1)

− nd
i n

u
jRij (s

′nu
− snd

+ df(n
u
−nd)+ re1)

}
dsds′.

Now we use the relation between the velocity covariance ten-
sor and the spectral velocity tensor

Rij (r)=

∫
8ij (k)exp(ik · r)dk, (37)

where
∫

dk ≡
∫ ∫ ∫

∞

−∞
dk1dk2dk3, to express the auto-

covariance function as

R1v(r)=

∞∫∫
−∞

ϕ(s)ϕ(s′)

×

{
nu
i n

u
j

∫
8ij (k)

exp
(
ik · ((−s+ s′)nu

+ re1
)

dk

+ nd
i n

d
j

∫
8ij (k)

exp
(
ik · ((−s+ s′)nd

+ re1

)
dk

− nu
i n

d
j

∫
8ij (k)

exp
(
ik · (s′nd

− snu
+ df(n

d
−nu)+ re1

)
dk

− nd
i n

u
j

∫
8ij (k)exp

(
ik · (s′nu

− snd
+ df(n

u
−nd)

+ re1

)
dk
}

dsds′. (38)

By interchanging the order of integration of k and the s’s
we can cast the expression in terms of the Fourier trans-
form of ϕ, which in the case of a Lorentzian function is
ϕ̂(k)= exp(−lR|k|). Thereafter, we Fourier transform R1v
with respect to r to obtain the spectrum F1v(k1). After that
process the first term in Eq. (38) becomes

nu
i n

u
j

∫
8ij (k)ϕ̂(k ·n

u)ϕ̂(k ·nu)dk2dk3,

and upon rearrangement we finally obtain

F1v,n(k1)=

∫
8ij (k)

{
nu
i n

u
j

∣∣ϕ̂(k ·nu)
∣∣2+ nd

i n
d
j

∣∣∣ϕ̂(k ·nd)

∣∣∣2
− 2nu

i n
d
j ϕ̂(k ·n

u)ϕ̂(k ·nd) (39)

× cos
(
dfk · (n

d
−nu)

)}
dk2dk3 .

The derivation of the spectrum obtained from squeezed pro-
cessing is parallel to the normal spectrum. The only differ-
ence lies in the definition of 1v. Now we define it as

1vs(x)= v
u(x− nu

1df)− v
d(x− nd

1df). (40)

Using the exact same steps that led to Eq. (39), we see that
the cosine term in that equation has to be substituted with 1
and we get

F1v,s(k1)=

∫
8ij (k)

{
nu
i n

u
j

∣∣ϕ̂(k ·nu)
∣∣2+ nd

i n
d
j

∣∣∣ϕ̂(k ·nd)

∣∣∣2
−2nu

i n
d
j ϕ̂(k ·n

u)ϕ̂(k ·nd)

}
dk2dk3 .

(41)

To obtain the spectrum of u, F1v,(s) simply has to be divided
by (nu

1− n
d
1)

2 according to Eq. (33).
When obtaining the spectrum of v, we simply exchange

the unit vectors of the up- and downwind beams nu and nd in
all equations by the values of the west- and eastbound beams
nw and ne. In order to obtain the spectrum of w, 1v defined
in Eq. (34) has to be replaced by the sum of both radial ve-
locities vu(x)+vd(x), and F1v,(s) must eventually be divided
by (nu

3+ n
d
3)

2.
To compare the different methods to calculate spectra from

a lidar, Eqs. (39) and (41) have to be evaluated with a model
for the spectral tensor. We chose the spectral tensor from
Mann (1994) and select the model parameters so that the
model spectra resemble the spectra from available sonic mea-
surements. The selected parameters are L= 65 m, 0 = 4 and
αε

2
3 = 0.023 m

4
3 s−2. The unfiltered u target model spectrum

that we will later compare the model results against is given
by

Fu(k1)=

∫
811(k)dk2dk3 (42)

and parallelly for the second and third wind components.
The model was tested by comparing the theoretical spectra
with results from processing computer-generated wind field
turbulence data (Mann, 1998) and was found to predict all
four data processing methods, i.e., VAD, SMC, two-beam
and squeezed two-beam, accurately for all three wind speed
components.
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5 Description of the measurements

5.1 Test site and instrumentation

The test data were collected at the Danish National Test Cen-
ter for Large Wind Turbines at Høvsøre. The test site is lo-
cated in West Jutland, Denmark, 1.7 km east of the North
Sea. Apart from the dunes along the coastline, the terrain is
nearly flat. The Høvsøre meteorological mast is located to
the south of a row of five wind turbines. The reference data
were acquired with a Metek USA-1 sonic anemometer that
is mounted at 80.5 m in height above the ground. It is at-
tached to a 4.3 m long boom pointing north. Mast effects can
be observed when the wind is blowing from the south. Tur-
bine wake effects influence the measurement signal when the
wind blows from the north. For the data set in this study, the
inflow is undisturbed. A detailed description of the test site
is given in Peña et al. (2016).

Collocated with the meteorological mast, the lidar mea-
surements were taken by a Qinetiq lidar that was configured
to continuously scan at 78 m above the ground. The lidar is
comparable to the current ZX 300 (previously ZephIR 300)
but the effective aperture size is slightly lower, which results
in a longer Rayleigh length and thus greater line-of-sight av-
eraging. The lidar was equipped with an opto-acoustic mod-
ulator that makes it possible to detect the direction of the
radial velocities. Line-of-sight velocities calculated from the
centroid of the Doppler spectra are used in the data process-
ing. The precision of these lidar measurements is not ex-
actly known but is in general better than 1 % (Pedersen et al.,
2012).

Measurement data of 32 subsequent 10 min intervals are
used. The data were acquired on 20 November 2008 between
10:30 and 15:50 local time. The mean wind velocity mea-
sured by the sonic anemometer during this period varied from
14.2 to 22.6 ms−1 with an average of 19.5 ms−1 and a stan-
dard deviation of 2.0 m s−1. The turbulence intensity varied
from 4.7 % to 14.0 %, with a mean of 8.8 % and standard
deviation of 2.0 %. The wind blew from the northwest and
the atmospheric stability was neutral. Table 1 summarizes the
most important information about the experimental setup.

5.2 Data processing

The time series of all 10 min intervals derived from all pro-
cessing methods are used to compute turbulence spectra. The
measurement rate for the lidar is 1 Hz. Although it would
have been possible in the two-beam processing to calculate
measurement values with a rate of 2 Hz by using every newly
retrieved radial velocity together with its predecessor, it was
decided to use only independent measurements acquired ev-
ery full second. The sonic anemometer measures with a rate
of 20 Hz. These high-frequency data are down-sampled by
the use of the MATLAB function “resample” to a frequency
of 1 Hz. The function includes a low-pass filter to avoid anti-

aliasing. The data rate is thus for all methods 1 Hz. The an-
alyzed frequency range from 1

600 to 1
2 Hz equals the wave

number range from roughly 5.4× 10−4 to 1.6× 10−1 m−1.
The spectra are then averaged for all intervals and the results
are then binned into 30 logarithmically spaced wave number
intervals spread across the wave number axis to avoid high
density of values and maintain readability towards higher
wave numbers.

The effects of de-trending (Hansen and Larsen, 2005) and
spike removal (Hojstrup, 1993) on the spectra were both neg-
ligible for this data set, so neither was applied here.

6 Discussion of the results

6.1 u spectra

Figure 5 shows the spectra of the u fluctuations for all pro-
cessing methods from measurement data (triangle markers)
and the corresponding model predictions (solid lines). We
will first discuss the results from processing the whole mea-
surement circle shown in Fig. 5a, followed by the discussion
of the results of the two-beam method, shown in Fig. 5b.

6.1.1 Circle processing

To begin with, the model predictions of conventional VAD
processing and the new SMC method are compared against
each other and with regard to the true u target model spec-
trum acquired from the spectral tensor according to Eq. (42).
The model prediction of the conventionally processed VAD
lidar data shows some attenuation of the spectral energy even
for very low wave numbers. This can be partly explained by
the infinitely long tails of the line-of-sight averaging func-
tion given in Eq. (8). That means that even very large eddies
are slightly weakened by the underlying Lorentzian func-
tion. Averaging along the measurement circle might also
have some small additional impact on large-scale turbulence.
Both averaging effects become more and more severe for in-
creasing wave numbers until the measured spectral energy
reaches values close to zero at roughly k1 = 10−1 m−1 and
above. The tendency of increasing attenuation with regard to
the target spectrum is interrupted around the first resonance
frequency that is indicated by a vertical grey dashed line at
k1 = 3.4× 10−2 m−1. Here the energy density increases and
reaches coincidentally roughly the value of the target spec-
trum. This behavior is as expected an effect of the cross-
contamination with energy from both the w spectrum and to
a small extent also from v. A resonance effect at the second
resonance frequency is hardly pronounced since the energy
is nearly fully consumed by the line-of-sight averaging.

The SMC model spectrum predicts a similar shape but
without the cross-contamination effect from longitudinal
separation. Thus, we find no resonance in the computations.
The total variance of the u fluctuations σ 2(u′) is lower here
since less additional energy from the w component is con-
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Figure 5. Modeled (solid lines) and measured (triangle markers) u
spectra from data processing for which (a) all radial measurements
are used and (b) only two beams are used. Colors correspond to the
processing method. The grey vertical dashed lines represent the first
and second resonance wave numbers.

tained in the uSMC signal. The signal is still contaminated
by contributions from other components because the lateral
separation cannot be reduced by squeezing. But the averag-
ing along the measurement circle is so strong that for exam-
ple for wave numbers above around k1 = 10−2 m−1 less than
half of the energy of the target spectrum is expected to be
detected by the lidar.

First, when the model is compared with the measurement
data, the chosen spectral tensor does not fit the actual wind
conditions in the wave number range below k1 = 10−2 m−1.
The extra energy at low wave numbers compared to the spec-
tral tensor model for this site has been observed before and is
related to the inhomogeneous landscape at Høvsøre with its
sea-to-land transition in the main wind direction (Sathe et al.,
2015) and mesoscale effects that overlay the expected spec-
tral gap (Larsén et al., 2016). Luckily, this does not severely
impede the analysis since the most interesting effects are ex-
pected at higher wave numbers and tendencies can still be
determined from the relative distances between the markers
and lines without matching the absolute values. Next, the

comparison of data from sonic measurements and VAD as
well as SMC-processed lidar data shows in the very low wave
number range at k1 < 3×10−3 m−1 that VAD processing and
SMC processing produce similar results with a slight ten-
dency towards lower energy densities in the SMC-measured
spectrum that is not found in the model computations. A pos-
sible explanation is that the fluctuations of the u and espe-
cially the w component in the real wind field are not per-
fectly correlated, i.e., the frozen turbulence hypothesis that
the model assumes is slightly violated. The result is a small
contribution of wwind to ulidar that appears to a greater extent
in the VAD-processed spectrum. The reason for the differ-
ence is that the correlation is closer to unity in the case of
SMC processing.

Apart from some exceptions (e.g., at k1 = 3× 10−3 m−1),
a relatively increasing averaging effect towards higher wave
numbers is found for the lowest wave numbers as expected.
In the wave number range k1 = 10−2 to 6× 10−2 m−1 the
sonic spectrum and the VAD spectrum follow the corre-
sponding modeled spectra nicely through the first resonance
point. That shows that the cross-contamination caused by
longitudinal separation is present in the measurements and
is properly modeled.

The spectrum derived from SMC-processed data shows a
clear tendency towards its modeled spectrum but does not
completely reach it. It does not show the resonance effect
seen for VAD processing, but the overall energy level is
higher than predicted for k1 > 10−2 m−1. It is not possible
to determine what causes this deviation. One possible reason
is that the model assumes a perfect delay of the measurement
timing. In reality this is not possible due to only discrete ac-
quisition times being available. Also the air packages are in
reality not always advected with the exact mean wind speed
and direction. Both imperfections justify that the behavior of
real SMC processing lies in between the modeled SMC and
VAD processing.

For k1 > 7×10−2 m−1 VAD- and SMC-processed data are
nearly identical. As shown in Schlipf et al. (2010), the as-
sumption of frozen turbulence is not valid for high wave
numbers. In this region, fluctuations separated by the dis-
tances between the relevant focus points are uncorrelated and
the squeezing has no effect. The lack of coherence also ex-
plains that the values are higher than predicted because the u
spectrum is highly contaminated by w and v fluctuations.

6.1.2 Two-beam processing

The plotted model spectrum for the conventional two-beam
processing method shows a significantly lower averaging ef-
fect compared to whole circle processing methods at all wave
numbers except in the very low wave number region, where
the methods are expected to perform similarly well.

With the two-beam method it is expected that fluctuations
with the highest wave numbers analyzed are to some ex-
tent included in the spectrum, while they were close to zero
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when circle processing was applied. The normal two-beam
processing in the model is prone to cross-contamination at
both resonance points (vertical dashed lines). This situation
is explained in detail in Sect. 2.5. In contrast, the method of
squeezing applied to the two-beam processing shows as ex-
pected no cross-contamination in the model calculations.

Overall, spectra calculated from the two-beam processed
measurement data show good agreement to the model. It is
important to keep in mind that, due to the poor fit of the
measured spectra of the horizontal wind components and
the modeled spectra at low wave numbers, we can com-
pare the relations between the different methods but not ab-
solute values. At low wave numbers, the measured spec-
tra are on average closer to the target spectrum than in the
case of circle processing. The slightly lower energy content
of squeezed measurements that we observed and explained
for circle processing is found here as well. Also, when it
comes to deviations from the modeled behavior, like for ex-
ample the higher energy density at some wave numbers (e.g.,
k1 = 3× 10−3 m−1), we find similar tendencies as in circle
processing, and the reason is likewise unclear.

The strong cross-contamination at the first resonance fre-
quency is clearly represented in the normal two-beam pro-
cessing and can be completely avoided by squeezing the two
focus points to virtually one point. It is worth mentioning that
the squeezing procedure works more like expected when ap-
plied to the two-beam method than when applied to the circle
processing. This can be explained by the error caused by not
having continuous but only discrete delaying times τ avail-
able. The relative impact of this error is lower in the case of
the two-beam method because then the maximum separation
distance DC must be compensated for. In circle processing
mode, the shorter separations for which the relative error is
larger also contribute to the result.

At k1 > 7× 10−2 m−1 the two processing methods result
in nearly identical values again, and we assume the lack of
coherence of short eddies to also be the cause here.

6.2 v spectra

Figure 6 shows the spectra of the v fluctuations for all avail-
able data processing methods from both measurement data
(triangle markers) and the corresponding model predictions
(solid lines). Also here, we first discuss the results from
processing the whole measurement circle shown in Fig. 6a,
followed by the discussion of the results of the two-beam
method shown in Fig. 6b.

6.2.1 Circle processing

The modeled spectra of conventionally VAD-processed li-
dar measurements predict energy densities that slightly ex-
ceed the target spectrum for very long fluctuations with k1 <

1.3× 10−2 m−1. This behavior can be explained by uncorre-
lated w fluctuations between the eastern and western sides of

Figure 6. Modeled (solid lines) and measured (triangle markers)
v spectra from all data processing methods. Colors correspond to
processing method.

the measurement circle that contaminate the v signal. This
contamination is slightly stronger than averaging that is very
weak at low wave numbers.

By contrast, fluctuations shorter than approximately k1 =

1.3× 10−2 m−1 appear dampened in the spectrum, and fluc-
tuations with higher wave numbers k1 > 10−1 m−1 are not
even present in the v spectrum due to the strong averaging.
Unlike the u spectrum, the v spectrum does not have char-
acteristic behavior around the first resonance wave number.
This is not surprising because the lines of sight that are the
most important for the detection of v fluctuations lie, accord-
ing to Eq. (26), orthogonal to the mean wind direction in
which turbulence is advected. Thus, no resonance occurs.

When the model spectrum for SMC processing is an-
alyzed, we find a higher variance for all wave numbers
above approximately k1 = 1.3×10−2 m−1. Reduced averag-
ing along the measurement circle is the reason for the higher
energy in the SMC spectrum. It is caused by the following:
the process of squeezing reduces the longitudinal separation
of the focus points ideally to zero while the lateral separa-
tion remains unchanged. We know that the lines of site per-
pendicular to the mean wind direction on both sides of the
measurement circle are the most important for the determi-
nation of vlidar. Let us assume these are the easterly and west-
erly beams. The exact east- and westbound beams are not
affected by the process of squeezing. But for example the
northeast and the southeast beams (respectively the north-
west and northeast on the other side) see different turbulent
structures in conventional VAD processing. With SMC pro-
cessing, these two beams see the same structure. In the sub-
sequent calculation of the v component all lines of sight are
combined and the pairs of radial velocities that lie in line with
the mean wind contribute with the average of their ampli-
tudes. This average of amplitudes is lower than the common
amplitude measured by the beam pairs under SMC process-
ing. More simply, there is less averaging along the measure-
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ment circle when SMC is applied. As a result, the spectrum
of SMC shows higher energy densities for all wave numbers
at which uncorrelated fluctuations dominate.

Now we compare the measurements with the model. Un-
fortunately, similar to the u fluctuations, the target spectrum
does not represent the sonic measured values properly, es-
pecially for low wave numbers. We will therefore concen-
trate on the tendencies and proportions between the spectra
from different methods. While the model predicts the behav-
ior at the lowest wave numbers more or less satisfactorily,
we are faced with two outliers at k1 = 1.65× 10−3 m−1 and
k1 = 2× 10−3 m−1 for which both the VAD and SMC pro-
cessing lead to excessive energy estimations. The reason is
unclear and not further investigated. At all other wave num-
bers, the agreement of model and measurements is very satis-
factory. In particular, the differences between the two meth-
ods are found in the measurements, as predicted. The good
agreement between model spectra and measurement spectra
at wave numbers above approximately k1 = 2× 10−2 m−1

might be surprising with regard to the poor agreement of
sonic measurements and target spectrum. The reason is that
the shape of the lidar v spectra is mainly determined by the
cross-contamination from the w component, which, as we
describe in Sect. 6.3, agrees better with its model representa-
tion.

The identity of VAD- and SMC-derived measurement
spectra that we saw for u fluctuations for k1 > 7×10−2 m−1

is found here at k1 > 10−1 m−1. The reason is obvious when
we look at the relevant longitudinal separation distances.
They are much shorter when processing v fluctuations than u
fluctuations, and the assumption of frozen turbulence is more
valid for short separation distances. Therefore squeezing can
maintain its effect into a somewhat higher wave number re-
gion.

6.2.2 Two-beam processing

When the two-beam method is applied, i.e., using only the
east and west beams to derive the v component of the wind
vector, the method of squeezing has no effect. In comparison
with the whole circle processing, the two-beam method is
characterized by lower energy estimates at low wave num-
bers and higher energy estimates at higher wave numbers
(see Fig. 6). One reason for the first is assumed to be the
lower coherence of v fluctuations separated by the full dis-
tance DC. That implies that two-beam processing gets a
somewhat lower contribution of vwind to vlidar. A second rea-
son is that there is not cross-contamination from u on v oc-
curring for the two-beam processing. The higher energy con-
tent at high wave numbers results from the absence of aver-
aging along the measurement circle.

The model cannot be compared with measurements be-
cause the line-of-sight velocities of the east and west beams
were erroneous. The absolute values we measured are unreal-
istically biased towards nonzero values. This effect has been

Figure 7. Modeled (solid lines) and measured (triangle markers) w
spectra from data processing for which (a) all radial measurements
are used and (b) only two beams are used. Colors correspond to
processing method. The grey vertical dashed lines represent the first
and second resonance wave numbers.

previously reported (Mann et al., 2010; Dellwik et al., 2010).
We included the model behavior of two-beam processing for
the sake of completeness and to show that the availability of
reliable measurement data for the east and west beams would
be of hardly any use.

6.3 w spectra

Figure 7 shows the spectra of the w fluctuations for all pro-
cessing methods from both measurement data and the cor-
responding model predictions. Again, we discuss the results
from processing the whole measurement circle first and then
the results of the two-beam method.

6.3.1 Circle processing

To begin with, we compare the model predictions of con-
ventional VAD processing and the new SMC method against
one another and with regards to the w target spectrum. The
results of the actual measurements follow. The model predic-
tion of the conventionally processed VAD lidar data shows
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some attenuation of the spectral energy even for very low
wave numbers. The reason is mainly the infinitely long tails
of the line-of-sight averaging function and to a lesser extent
the averaging along the measurement circle. Both averaging
effects become quickly stronger for increasing wave num-
bers. The spectrum from VAD processed data is expected to
drop at the first resonance point marked with a grey dashed
vertical line in Fig. 7. This drop is minor due to the over-
all low energy level present in the spectrum. The spectrum
reaches a value near its final minimum with variance val-
ues close to zero already at around k1 = 5× 10−2 m−1 just
after crossing the first resonance point. w fluctuations with
higher wave numbers are not detectable with conventional
VAD processing. According to the model, the SMC process-
ing improves the situation slightly by removing the longitu-
dinal separation that makes lidar blind tow fluctuations at the
resonance points with VAD processing. Squeezing the mea-
surements also helps improve the measurements well above
and below the resonance wave number. But still, due to the
remaining averaging effects, only a minor fraction of the en-
ergy in the vertical wind can be detected with both methods
at wave numbers above roughly k1 = 10−2 m−1.

The fit between target spectrum and measurement data in
the low wave number region is good for the w component.
This was not the case for the u and v components. The results
of Larsén et al. (2016) show that the spectra for vertical fluc-
tuations are not prone to contributions from the mesoscale
spectrum. The measurement data overall support these model
predictions and show that the process of squeezing functions
well over the entire frequency range in this study. In detail,
we only find some mismatch for very low wave numbers at
which k1 < 10−3 m−1. The measured spectra lie above the
target spectrum here although we expected some attenuation.
The discrepancy is caused by the real u-wind spectrum being
much higher than the underlying target spectrum; see Fig. 5.
We already found that large-scale u fluctuations are also not
perfectly correlated and thus contaminate the measured li-
dar spectra, which is not considered in the model. At higher
wave numbers we find reasonable forecasting of measured w
spectra by the model.

6.3.2 Two-beam processing

The modeled two-beam spectra in Fig. 7b lie considerably
closer to the target w spectrum for all wave numbers. That
can be explained by the absence of circle averaging. The
strong influence of resonance visible at the two first reso-
nance wave numbers underlines the importance of squeezing
when striving for more realistic spectra from lidar measure-
ments.

At low wave numbers with k1 < 10−2 m−1 the measured
spectra contain higher energy densities than modeled spec-
tra. A similar but less pronounced effect was found in circle
processing only at the lowest wave numbers. The explanation
we gave there must therefore be supplemented by mentioning

that the assumed decorrelation is stronger for the maximal
separations that are involved in the two-beam method. The
further comparison of spectra from experiment and model
shows that the process of squeezing also leads to the ex-
pected effect in the case of using only two beams to deter-
mine the w component of the wind vector. As in the case of
u fluctuations, this statement must be limited to wave num-
bers k1 < 7× 10−2 m−1.

6.4 Extended discussion

The results discussed here are extracted from a single data
set that covers one measurement height and a narrow band
of mean wind speeds, turbulence conditions and inflow di-
rections at a single location. The reason for working with
such a limited data set lies in the fact that very few data are
available where a commercial VAD scanning wind lidar, col-
located to a meteorological mast, is scanning continuously at
one height level, while saving at least the line-of-sight veloci-
ties. Currently, the only option to save line-of-sight velocities
acquired by a ZephIR 300 is to stream the data manually to
a connected PC. The situation is further complicated by the
fact that in the normal “profiling mode” the lidar focuses to
a reference height of 38 m periodically for filtering purposes.
Therefore, the only known way to focus at one particular al-
titude continuously is to switch the unit to “turbine mode”.
In this way, we acquired some data for the investigation, but
their overall quality was lower than the historic data that we
eventually selected as the best available data.

In further studies different setups and turbulence con-
ditions should be investigated. Changing the measurement
height has the strongest influence on the lidar-derived
spectra. For example, increasing the measurement height
would, first, make the averaging along the measurement
circle more severe due to the increased measurement cir-
cle diameter. Second, the resonance wave numbers are then
shifted towards lower values, which leads to different cross-
contamination due to lateral separation. Third, the cross-
contamination due to lateral separation becomes even more
severe due to the longer separation distances of opposite line-
of-sight beams. Fourth, a further increase in the focus dis-
tance leads to even stronger line-of-sight averaging. Fifth,
the time lag that is introduced for squeezing must be longer,
and the frozen turbulence hypothesis loses some more of its
validity. Changing the half-cone opening angle to a smaller
value would on the one hand reduce the first three of the
aforementioned effects effectively, but on the other hand it
would lead to much stronger cross-contamination due to the
increased sensitivity to w fluctuations according to Eqs. (14)
and (16). Lidar measurements at lower mean wind speeds
give the turbulence more time to evolve while crossing the
measurement circle, which might lead to a deviation from
the predicted spectra at somewhat lower wave numbers than
observed in our results. The numerical models will work
for all turbulence intensities, and the shape of the spectra is
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mainly determined by the degree of anisotropy and the tur-
bulence length scale. Atmospheric stability conditions other
than neutral would not change the way the lidar measures.
But a modified spectral tensor model like the one presented
in Chougule et al. (2017) could be used to better compare
model values with experimental results.

7 Conclusions

This paper presents two advanced data processing meth-
ods for improving turbulence spectrum estimations with
VAD scanning wind lidars, with an aim to reduce cross-
contamination and averaging effects. The models of these
approaches, developed in Sect. 4, are supported by the com-
parison with experimental data. Discrepancies can be ex-
plained for the most part by the limitations of the frozen tur-
bulence hypothesis that underlies the model calculations yet
has slightly reduced validity in real measurements. The fact
that the spectra in the experiment do not agree very well with
the spectral tensor model is also a cause of differences.

We found that the method of squeezing eliminates the res-
onance effect caused by the longitudinal separation of com-
bined measurement points successfully. It also considerably
reduces the averaging along the measurement circle.

The method of using only two beams for the estimation of
the u and w components of the wind vector eliminates the
averaging along the measurement circle completely. When
it is combined with the method of squeezing, the measure-
ments deviate from the sonic measurements mainly due to
line-of-sight averaging. This combination of both methods
substantially improves the measurability of the w spectrum,
which is hardly measurable with current VAD processing.

Accurate measurements of the v spectrum remain dif-
ficult, even with the approaches described here. The two-
beam method is not applicable to current continuous-wave
lidars, which in most cases are homodyne. Whether the use
of squeezed measurement circles always leads to systemat-
ically better results is unclear because the resulting spectra
are dominated by contamination from w fluctuations of the
wind.

In conventionally processed lidar data, cross-
contamination compensates for averaging effects, meaning
that in general total variance might be close to target
values but for the wrong reasons. For systematically better
turbulence measurements from VAD scanning lidars, the
findings presented here should be included in raw data
processing. Both approaches presented here can be applied
to any existing VAD scanning continuous-wave profiling
lidar unit.
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Abstract. Turbulence velocity spectra are of high importance for the estimation of loads on wind turbines and
other built structures, as well as for fitting measured turbulence values to turbulence models. Spectra generated
from reconstructed wind vectors of Doppler beam swinging (DBS) wind lidars differ from spectra based on
one-point measurements. Profiling wind lidars have several characteristics that cause these deviations, namely
cross-contamination between the three velocity components, averaging along the lines of sight and the limited
sampling frequency. This study focuses on analyzing the cross-contamination effect. We sample wind data in
a computer-generated turbulence box to predict lidar-derived turbulence spectra for three wind directions and
four measurement heights. The data are then processed with the conventional method and with the method of
squeezing that reduces the longitudinal separation distances between the measurement locations of the different
lidar beams by introducing a time lag into the data processing. The results are analyzed and compared to turbu-
lence velocity spectra from field measurements with a Windcube V2 wind lidar and ultrasonic anemometers as
reference. We successfully predict lidar-derived spectra for all test cases and found that their shape is dependent
on the angle between the wind direction and the lidar beams. With conventional processing, cross-contamination
affects all spectra of the horizontal wind velocity components. The method of squeezing improves the spectra to
an acceptable level only for the case of the longitudinal wind velocity component and when the wind blows par-
allel to one of the lines of sight. The analysis of the simulated spectra described here improves our understanding
of the limitations of turbulence measurements with DBS profiling wind lidar.

1 Introduction

Wind energy research and industry depend on reliable mea-
surements of wind velocities for wind site assessment and
load prediction. Remote sensing devices such as vertical pro-
filing lidars can measure wind velocities at adjustable height
levels from the ground. The ease of installation and mobility
of ground-based lidars make them superior to conventional
in situ anemometry on tall meteorological masts.

Vertical profiling wind lidars emit a laser beam in different
directions and can estimate the radial component of the wind
velocity along sections of the beam. Measurements of the ra-
dial velocity in at least three different directions are then used

to reconstruct three-dimensional wind vectors. Depending on
the type of lidar being applied, either velocity–azimuth dis-
play (VAD) scanning or Doppler beam swinging (DBS) is
used as the scanning strategy. When VAD scanning is ap-
plied, the laser beam performs continuous azimuth scans at
a fixed elevation angle (Browning and Wexler, 1968). With
DBS the beam is directed into certain directions, where it
accumulates measurement data for a defined time before it
swings into the next direction. Turbulence statistics can be
derived from VAD scanning (e.g., Eberhard et al., 1989; Kr-
ishnamurthy et al., 2011; Smalikho, 2003) or DBS (e.g.,
Frehlich et al., 1998; Kumer et al., 2016; Bodini et al., 2019).
An advantage of DBS is that the signal-to-noise ratio of each
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radial velocity estimate increases with accumulation time in
each direction. The possibility to measure in a vertical direc-
tion is another advantage of DBS wind lidars. The Windcube
produced by Leosphere (Saclay, France) is a widely used ver-
tical profiling pulsed Doppler wind lidar that uses DBS to
reconstruct three-dimensional wind vectors from five inde-
pendent line-of-sight (LOS) velocity measurements.

Profiling lidars have proven to be accurate tools for mea-
suring mean wind speed and direction in noncomplex ter-
rain (Emeis et al., 2007; Smith et al., 2006; Gottschall et al.,
2012; Kim et al., 2016). However, the measurement of tur-
bulence with ground-based profiling wind lidars is inaccu-
rate, due to their extended measurement volumes, the limited
sampling frequency for each line-of-sight measurement and
the large spatial separation between the measurement vol-
umes (Sathe and Mann, 2013; Newman et al., 2016). The
second-order statistics of turbulence measured by profiling
wind lidars show that the measurement error depends on sev-
eral factors: the measurement principle of the lidar used, the
conditions of the atmospheric boundary layer, the measure-
ment height, and, in the case of the Windcube, also on the
angle between the mean wind direction and the orientation
of the lidar beams (Sathe et al., 2011).

Measured auto- and co-spectra of the three turbulent wind
velocity components show the spectral distribution of the
wind velocity variance. IEC standard 61400-1 (IEC, 2019)
recommends using such one-point spectra for finding the
model parameters anisotropy γ , length scale L and dissipa-
tion factor αε2/3 of the uniform shear model of turbulence
(Mann, 1994). This can be done by fitting the parameters
to the measured spectra. The found parameters can then be
used in the process of determining aerodynamic loads on
wind turbines and other built structures. But estimations of
turbulence spectra from wind lidar data deviate significantly
from reference measurements taken at meteorological masts
due to their measurement principle. Canadillas et al. (2010)
present measured turbulence velocity spectra from a Wind-
cube that show characteristic differences in comparison to
reference measurements from sonic anemometers. The lidar
spectra show, e.g., spectral energies that are too high in a
wide range of frequencies due to cross-contamination and
gaps at frequencies that correspond to the limited sampling
frequency of the lidar beams. Such spectra are modeled in
Sathe and Mann (2012) for an older Windcube version. The
same model can, with minor modifications, be used to pre-
dict spectra from the current version of the Windcube, which
samples faster and includes a vertical beam. The major draw-
back of the model is that it cannot predict spectra for cases
in which the wind inflow is not parallel to two of the lidar
beams.

In the study we present here, we overcome this limitation
by sampling velocity values in a computer-generated turbu-
lence box and processing them in a similar fashion to how
DBS scanning pulsed lidar samples wind velocities in the
atmosphere. The results of this artificial sampling are com-

pared to measured DBS pulsed lidar spectra acquired from
field measurements. This method makes it possible to pre-
dict lidar-derived turbulence velocity spectra for all relative
wind directions.

In addition to conventional DBS processing of radial wind
velocities, we reconstruct the three-dimensional wind vectors
with the method of squeezing introduced in Kelberlau and
Mann (2019a). This method minimizes cross-contamination
for VAD scanning wind lidars (e.g., ZX 300) by introducing
a time lag into the data processing that compensates for the
duration it takes to advect an air volume from one lidar beam
to the other.

In this study, we assess whether the method of squeezing
is also advantageous for DBS scanning wind lidar such as the
Windcube and to what extent it improves estimation of tur-
bulence velocity spectra. The aim of the work presented here
is prediction of turbulence velocity spectra from DBS scan-
ning wind lidars and making turbulence measurements more
accurate by applying a modified data processing algorithm.

Following this, Sect. 2 presents the theory of how a pulsed
Doppler beam swinging wind lidar determines radial wind
velocities and reconstructs three-dimensional wind vectors.
The method of squeezing is also briefly presented. In Sect. 3,
we describe the methods applied in this study. These consist
of (i) field measurements with a Windcube V2 and collocated
reference measurements with sonic anemometers on a large
meteorological mast and (ii) sampling of computer-generated
turbulence data. We present and discuss the results of both
field measurements and simulations in Sect. 4 and describe
our key findings in the conclusions in Sect. 5. A nomencla-
ture can be found in Appendix A.

2 Lidar theory

2.1 Coordinate system and preliminaries

This study uses a right-handed coordinate system aligned
with the horizontal mean wind vector. The component u
points in the mean wind direction, v is the transversal wind
component, and w points vertically upwards, such that for
the wind vector u it accounts for the following equation:

u=

 u

v

w

 . (1)

We also use Reynolds decomposition with a timescale of
10 min to divide the wind vectors into a mean part U and
a fluctuating part u′, such that

u= U +u′. (2)

U is the mean wind speed, the transversal component V is
by definition zero, and the vertical mean velocity W in non-
complex terrain is typically also close to zero. The mean val-
ues of the components of u′ are by definition zero, but their
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statistical variance provides important information about the
amount of turbulence in the wind. It is defined as follows:

σ 2
u =

〈
u′u′

〉
, (3)

where 〈〉 means ensemble averaging. The variance of the
other two components σ 2

v and σ 2
w can be calculated accord-

ingly.

2.2 Line-of-sight velocity retrieval

The Windcube lidar emits laser beams into five fixed direc-
tions. As shown in Fig. 1, four beams are inclined by the
zenith angle φ from the vertical and separated along the hori-
zon by the azimuth angle θ . The fifth beam points verti-
cally upwards. The beam directions define the internal fixed
right-handed coordinate system of the Windcube. In accor-
dance with the documentation of the Windcube, the x com-
ponent is oriented from LOS1 towards LOS3, the y com-
ponent points from LOS2 towards LOS4, and the vertical
z component points downwards along LOS5. In the default
setup, the LOS1 beam is oriented towards north. If this is not
the case, a directional offset θ0 must be considered in the data
processing. Unit vectors n that point into the direction of the
five beams are defined as

ni =

 cos( i−3
2 π ) sinφ

sin( i−3
2 π ) sinφ
−cosφ

 for i = 1. . .4,

and

n5 =

 0
0
−1

 . (4)

A small portion of the emitted laser radiation is backscat-
tered in the direction of origin. This backscattered radiation
has a wavelength that is slightly different from the emit-
ted radiation. The difference in wavelength is caused by the
Doppler effect and is proportional to the component of the
wind in the respective beam direction, which is as follows:

vri = ni · xi, (5)

where xi is the wind velocity vector at the measurement
points in the coordinate system of the Windcube. The
Doppler shift can be detected and is used to determine the
line-of-sight velocities, i.e., the radial velocities in the cor-
responding beam direction. Unlike continuous-wave lidars,
pulsed lidars can determine signed line-of-sight velocities for
multiple height levels simultaneously. These line-of-sight ve-
locities are the weighted average of the radial wind veloci-
ties along the stretch of the lidar beam that is illuminated by
the range gate. A reasonable weighting function to model the
line-of-sight averaging is the convolution of the laser pulse

Figure 1. Visualization of the beam configuration of the Windcube
V2, relevant lengths and angles, and the two coordinate systems
used by the lidar and in wind data analysis. For better visibility,
only LOS2 is depicted as a beam, with the range gate indicated in
red along the blue laser beam.

shape with the interrogation window. In the case of the Wind-
cube, the emitted laser pulses are 175 ns long and thus illu-
minate air volumes of 175ns× c = 52.46m in length along
the line of sight, where c is the speed on light. The backscat-
tered radiation recorded by the laser detector at one point in
time originates from a line-of-sight segment that cannot be
shorter than half of this length. If the laser beams were per-
fectly collimated and rectangular and interrogation windows
of the same length were chosen, a triangular function would
be the correct weighting function to account for the higher
likeliness of a scatterer to be located closer to the center of
the pulse than its ends. However, the beams of the Wind-
cube are not collimated but focused permanently to a height
level of approximately 100 m in order to optimize the carrier-
to-noise ratio. In addition, its light pulses are not perfectly
cut-in and cut-out at their ends. The triangular function is
thus only an approximation of the real situation. We refer to
Lindelöw (2008) for more details. However, as in Sathe and
Mann (2012), we use a triangular weighting function

ϕ(s)=
lp− |s|

l2p
for |s|< lp,

and

ϕ(s)= 0 for |s| ≥ lp, (6)

where s is the distance from the midpoint of the range gate
and lp = 26m is the approximate half length of the range gate
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to simulate the lidar-derived weighted radial velocity

ṽri =

∞∫
−∞

ϕ(s)ni ·u ((s+ df)ni)ds, (7)

where df is the distance of the center of the range gate from
the lidar.

2.3 DBS measurement principle

The line-of-sight velocities are processed in order to recon-
struct three-dimensional wind vectors. These are based on
the fixed right-handed coordinate system of the Windcube.
The Windcube calculates one new wind vector component
whenever a new line-of-sight measurement becomes avail-
able. The x component is calculated when a radial velocity of
either LOS1 or LOS3 is retrieved. The newly updated line-of-
sight velocity is then combined with the immediate precursor
of the opposing direction according to

x =
ṽr1 − ṽr3

2sinφ
. (8)

The y component is calculated from LOS2 and LOS4 ac-
cording to

y =
ṽr2 − ṽr4

2sinφ
. (9)

Here, the latest LOS2 beam is combined with the previous
LOS4 beam and vice versa. In Fig. 2 it can be seen that,
e.g., the measurement of the 17th beam that the lidar emits
(LOS2) is combined with the 14th beam (LOS4) and the 19th
beam (LOS4) is combined with the 17th beam (LOS2) to cal-
culate two values of y.

The vertical z component can be estimated directly from
the vertical beam result whenever a new LOS5 measurement
becomes available so that

z= ṽr5 . (10)

In addition to the three wind components, the Windcube es-
timates the horizontal wind velocity

Vhor =

√
x2+ y2, (11)

the horizontal wind direction clockwise from north

2= θ0− arctan(y,−x), (12)

and their 10 min average values V hor and 2 marked with an
overline.

In order to rotate the three wind vector components into
the coordinate system aligned with the mean wind direction,
we calculate

uDBS =

 uDBS
vDBS
wDBS

=
 x cosα+ y sinα
x sinα− y cosα

−z

 , (13)

Table 1. Line-of-sight beam geometry and timing: t is the accu-
mulated time after the first beam measurement, and 1t is the time
difference between the current and the previous beam measurement.

LOS no. φ θ t 1t

1 28◦ 0◦ 0.00 s –
2 28◦ 90◦ 0.72 s 0.72 s
3 28◦ 180◦ 1.44 s 0.72 s
4 28◦ 270◦ 2.16 s 0.72 s
5 0◦ – 3.13 s 0.97 s
1 28◦ 0◦ 3.85 s 0.72 s
...

...
...

...
...

where α =2− θ0 is the relative inflow angle. The resulting
wind vectors are updated at slightly varying times because
swinging the Doppler beam from one line of sight to the next
and accumulating measurements takes approximately 0.72s
for the inclined beams and 0.97s for the vertical beam. We
do not know the reason for the different times required to
change the beam direction. This leads to an average wind
vector refresh rate of approximately 1.3Hz, although each
beam is updated with a frequency of no more than 0.26Hz.
Table 1 provides an overview of the beam geometry and the
timing.

2.4 Measurement errors due to cross-contamination

The w component is measured directly from the vertical
beam. However, the reconstruction of the horizontal wind
components u and v involves the combination of measure-
ment values from two spatially separated air volumes. These
reconstructions are correct only if the wind vector is identi-
cal at all measurement volumes. For the calculation of aver-
age wind speeds, it is sufficient that the average wind vector
is identical at all measurement volumes. But for every sin-
gle wind vector to be correct, the wind field would need to
be static. In a turbulent wind field, the single reconstructed
wind vectors are erroneous due to cross-contamination of the
different wind velocity components.

The cause of this error lies in combining radial velocities
from spatially separated air volumes. The separations can be
categorized into longitudinal separations (along the direction
of the mean wind) and lateral separations (orthogonal to the
mean wind direction). Assuming Taylor’s frozen turbulence
hypothesis (Taylor, 1938), wind velocities sampled at two
longitudinally separated points are perfectly correlated but
have a temporal offset between the two measurement signals
that corresponds to the time needed for the mean wind speed
to cover the distance between the two points. Whenever the
wavelength of the measured turbulence equals 2/n times the
separation distance, with n= 1,3,5. . ., a resonance effect oc-
curs. The wind speed component being measured cannot be
detected in these cases and is replaced by contributions of
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Figure 2. Visualization of the measurement geometry of the Windcube V2 with the five beam directions: LOS1–LOS5 (color coded). Top
view of 30 consecutive line-of-sight measurements in a coordinate system that is moving with the mean wind. The angle between the mean
wind and the LOS1–LOS3 axis is α = 67.5◦. Measurement locations (dots) are numbered by their order in time (first number) and position
in wind direction (second number). Longitudinal and lateral separation distances for combinations of LOS2 and LOS4 beams are shown.

other wind speed components. In contrast, for n= 0,2,4. . .
no resonance effect occurs (see Fig. 2 in Kelberlau and Mann,
2019a).

The distance D between two opposing measurement
points is

D = 2h tanφ, (14)

where h is the measurement height, and D is the diameter of
the dotted circle in Fig. 2. The longitudinal separation dis-
tances for the beam combination LOS1 and LOS3 can be
calculated according to

rlong,13 = |D cosα| . (15)

rlong,24 for the beam combination LOS2 and LOS4 can be es-
timated by swapping the cosine in Eq. (15) by a sine. rlong,24
is also shown in Fig. 2.

Equation (13) shows that the components u and v in the re-
constructed wind vectors are composed of contributions from
two different beam combinations. These are LOS1 and LOS3
(see Eq. 8) as well as LOS2 and LOS4 (see Eq. 9). In order to
calculate longitudinal separations that are representative for
the reconstructed wind velocity components, we must intro-
duce a weighting and calculate

rrep,u =
|cosα| × rlong,13+ |sinα| × rlong,24

|cosα| + |sinα|

=
D

|cosα| + |sinα|
, (16)

for the u component and

rrep,v =
|sinα| × rlong,13+ |−cosα| × rlong,24

|cosα| + |sinα|

=
|sin(2α)|D
|cosα| + |sinα|

, (17)

for the v component. The resulting representative longitudi-
nal separation distance values for the Windcube for four mea-
surement heights 40, 60, 80, and 100 m and for three relative
wind inflow angles α = 0, 22.5, and 45◦ are given in Table 2.
From these distances, the wave numbers at which we ex-
pect resonance can easily be determined with kres = nπ/rrep,
where n is an odd integer. Lateral separation distances rlat,ij
could be estimated in a similar way. But compared to longi-
tudinal separations, the situation is different for wind veloc-
ity fluctuations measured at two laterally separated points.
The spatial structure of turbulence leads to the wind veloc-
ity fluctuations becoming less correlated as the distance be-
tween the two measurement points increases. The coherence
of the fluctuations is also weaker for small eddies than for
large turbulent structures. That means that a turbulent struc-
ture can only be detected at two laterally separated points if
the length scale of the turbulent structure is large compared
to the separation distance. Lateral separation leads to con-
tamination that occurs gradually without resonance points at
specific wave numbers.

If the mean wind is aligned with two opposing lines of
sight, e.g., blows in the LOS1–LOS3 direction, then the
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Table 2. Representative longitudinal separation distances influenc-
ing the u and v component of uDBS for all investigated test cases.
All values given in m.

α = 0◦ α = 22.5◦ α = 45◦

h rrep,u rrep,v rrep,u rrep,v rrep,u rrep,v

40 42.5 0.0 32.6 23.0 30.1 30.1
60 63.8 0.0 48.8 34.5 45.1 45.1
80 85.1 0.0 65.1 46.0 60.2 60.2
100 106.3 0.0 81.4 57.6 75.2 75.2

u component of the wind vector is reconstructed from two
points that are only separated longitudinally. That means
each turbulent structure is measured twice: once when it
passes the LOS1 location and then some time later at the
LOS3 location. Assuming frozen turbulence, measurements
from points that are separated longitudinally are fully corre-
lated, and resonance occurs at specific wave numbers. The
v component, in contrast, is in this case reconstructed from
the laterally separated points of LOS2 and LOS4, and a re-
duced correlation is found depending on the size of the tur-
bulent structure and the separation distance. No specific res-
onance wave numbers are found. For a comprehensive de-
scription of the cross-contamination effects due to isolated
longitudinal and isolated lateral separation, see Kelberlau
and Mann (2019a). Here we look at the more complex case
when the mean wind inflow is not aligned with two opposing
line-of-sight directions. Estimates of one horizontal wind ve-
locity component can then be contaminated by contributions
from both other wind velocity components. For a manual es-
timation of the cross-contamination effect for non-aligned in-
flow we first derive the lidar-estimated wind vector compo-
nent uDBS as a function of the real wind vector at all four
measurement locations. When, Eqs. (8) and (9) are set into
Eq. (13) we get

uDBS =

(
ṽr1 − ṽr3

)
cosα

2sinφ
+

(
ṽr2 − ṽr4

)
sinα

2sinφ
. (18)

We assume no line-of-sight averaging, thus vri = ṽri and use
Eqs. (4) and (5). After rearranging we get

uDBS =
cosα

2
(−x1+ z1 cotφ− x3− z3 cotφ)

+
sinα

2
(−y2+ z2 cotφ− y4− z4 cotφ) . (19)

After transferring the wind velocity components x,y,z into
the u,v,w coordinate system we get

uDBS =
cosα

2

(
− u1 cosα− v1 sinα−w1 cotφ

− u3 cosα− v3 sinα+w3 cotφ
)

+
sinα

2

(
− u2 sinα+ v2 cosα−w2 cotφ

− u4 sinα+ v4 cosα+w4 cotφ
)
. (20)

With Eq. (3) we can describe the total lidar variance as a
function of the wind vector fluctuations at the four measure-
ment points as

σ 2
u,DBS =

〈
u′DBS

2
〉
=

1
4

〈((
u′1 cosα+ v′1 sinα+w′1 cotφ

+ u′3 cosα+ v′3 sinα−w′3 cotφ
)

cosα
+
(
u′2 sinα− v′2 cosα+w′2 cotφ

+ u′4 sinα− v′4 cosα−w′4 cotφ
)

sinα
)2〉
. (21)

A similar formula can be found for the transversal compo-
nent

σ 2
v,DBS =

〈
v′DBS

2
〉
=

1
4

〈((
u′1 cosα+ v′1 sinα+w′1 cotφ

+ u′3 cosα+ v′3 sinα−w′3 cotφ
)

sinα
−
(
u′2 sinα− v′2 cosα+w′2 cotφ

+ u′4 sinα− v′4 cosα−w′4 cotφ
)

cosα
)2〉
. (22)

Power spectral densities FDBS at particular wave numbers
are composed of the same linear combinations of wind com-
ponents as the total variances in Eqs. (21) and (22). These
equations are thus helpful when analyzing the extent of cross
contamination at particular wave numbers. As an example,
we now take the case when the mean wind direction and
one of the lines of sight create an angle of 45◦. We assume
2= 90◦ and θ0 = 45◦ because this situation is found in the
measurements described later in this study. However, the re-
sults are identical for all setups in which the relative wind
inflow α = 45◦. In this case, LOS4 and LOS3 are separated
purely longitudinally from LOS1 and LOS2, and LOS2 and
LOS3 are separated purely laterally from LOS1 and LOS4,
as shown in Fig. 3. This opens up the possibility of deter-
mining the cross-contamination effect for four extreme con-
ditions. These four extreme conditions are characterized by
either full or no longitudinal resonance, as well as either per-
fect or no lateral correlation. In the first case (a) when no
resonance occurs and the lateral correlation is perfect, we as-
sume identical wind vectors at all four points. We use u′

1,a =

u′
2,a = u′

3,a = u′
4,a = u′

I. In the second case (b) when no
resonance occurs but the lateral correlation is zero, we use
u′

1,b = u′
4,b = u′

I and u′
2,b = u′

4,b = u′
II, where u′

I and
u′

II are independent vectors. In the third case (c) resonance
between the longitudinally separated points occurs and the
fluctuations at laterally separated points are perfectly cor-
related. We use u′

1,c = u′
2,c =−u′

3,c =−u′
4,c = u′

I. The
fourth case (d) is characterized by longitudinal resonance
and zero lateral correlation. We use u′

1,d =−u′
4,d = u′

I and
u′

2,d =−u′
3,d = u′

II, where u′
I and u′

II are independent
vectors. Figure 3 gives an overview of the conditions we as-
sume for these four cases (a) to (d). With these assumptions,
Eq. (21) provides the lidar estimates of the power spectral
density values Fu,DBS as linear combinations of the spec-
tral values of the three wind components Fu, Fv and Fw, as
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Figure 3. Overview of the assumptions made to determine the
cross-contamination values listed in Table 3. In cases with no res-
onance, the wind vectors u′

I,II are identical at the longitudinally
separated measurement points. In resonance cases they have an op-
posite sign. In cases with laterally correlated velocities, the wind
vectors at laterally separated measurement points are identical. In
cases with no correlation at points that are laterally separated, the
wind vectors u′

I and u′
II are independent.

shown in the lower half of Table 3. The resulting linear com-
binations of power spectral densities that compose the lidar-
measured u and v components of turbulence for the case with
α = 0◦ are shown in the upper half of the same table.

Table 3 can be read as follows. First, choose the aligned
(α = 0◦) or non-aligned case (α = 45◦). Then select the wind
component of interest: Fu,DBS or Fv,DBS. Next, decide if the
situation with or without resonance is more relevant for the
wave number of interest. Finally, select a block of values that
either represents the case with perfect lateral correlation or
that assumes laterally uncorrelated fluctuations. The sum of
the variances of the wind components multiplied by the val-
ues given in this block is the theoretical lidar-derived vari-
ance of the selected component. It is usually unclear to which
degree the fluctuations are correlated, but the table can still
be used for rough estimations. If you look for example at the
resonance case for u, you will find that the lidar does not de-
tect longitudinal wind fluctuations at all, while the lidar esti-
mated u variance Fu,DBS is composed of a weakened v signal
of between 0.00 and 0.50 times the real v fluctuations and an
amplified w signal of between 3.54 and 7.07 times the real
w fluctuations, depending on the degree of lateral correlation.
The values given in the table can explain many of the effects
we later see in the lidar-derived spectra for non-aligned in-
flow.

Table 1 shows that the radial velocity for each line of sight
is determined not continuously but once every 3.85s. This
means turbulent fluctuations that occur with a corresponding
frequency cannot be detected by any of the Windcube’s lidar

Table 3. Expected contribution of the power spectral densities Fu,
Fv and Fw of the wind velocity components on the lidar-derived
values of Fu,DBS and Fv,DBS for aligned and non-aligned inflow
with α = 0◦ and 45◦.

α = 0◦

Fu,DBS Fv,DBS

– lat. corr. lat. uncorr.

No resonance 1.00Fu 0.00Fu 0.00Fu
0.00Fv 1.00Fv 0.50Fv
0.00Fw 0.00Fw 1.77Fw

Resonance 0.00Fu
0.00Fv – –
3.54Fw

α = 45◦

Fu,DBS Fv,DBS

lat. corr. lat. uncorr. lat. corr. lat. uncorr.

No resonance 1.00Fu 0.50Fu 0.00Fu 0.00Fu
0.00Fv 0.00Fv 1.00Fv 0.50Fv
0.00Fw 0.00Fw 0.00Fw 3.54Fw

Resonance 0.00Fu 0.00Fu 0.00Fu 0.50Fu
0.00Fv 0.50Fv 0.00Fv 0.00Fv
7.07Fw 3.54Fw 0.00Fw 0.00Fw

beams. The respective wave numbers are

kscan =
2π

U · 3.85 s
. (23)

At these wave numbers (kscan) we expect sudden drops in all
lidar-derived spectra.

Because the data are not acquired continuously we expect
a second effect that influences the shape of the lidar-derived
turbulence velocity spectra. In the previous subsection we es-
timated the longitudinal separations (Table 2). These sepa-
rations represent statistical averages and not actual separa-
tions. The actual separations could only be identical to these
values if the lidar acquired line-of-sight velocity values con-
tinuously, which is not the case. Take the example of wind
blowing along the x axis from LOS1 to LOS3. When an air
volume is measured at LOS1, it continues moving towards
LOS3. When the lidar subsequently takes a sample at LOS3,
the actual separation distance between these two air volumes
is less than the physical distance between the lines of sight.
Conversely, when an air volume is measured at LOS3 first, it
will have advected further away by the time the next sample
is taken at LOS1. In this case, the actual separation distance
will be larger than the physical distance between LOS1 and
LOS3. As in Table 1, the time difference of 1t13 = 1.44s
between a measurement of LOS1 and LOS3 deviates from
the time difference 1t31 = 2.41s between measurements at
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LOS3 and LOS1. The actual separation distances are then

rreal,13 = rlong,13+1t13U,

and

rreal,31 = rlong,13−1t31U. (24)

The turbulence velocity spectra that we later derive from the
lidar measurements can be seen as the average of two types of
spectra: the ones we get from reconstructing the wind vector
components of only LOS1 with the previous LOS3 measure-
ments and the ones we get from reconstructing the wind vec-
tor components of only LOS3 with the previous LOS1 mea-
surement. These averaged spectra deviate significantly from
the spectra expected from continuous sampling if the product
of mean wind speed and the time between the measurements
is large compared to the average separation distances. The
resonance peaks are then less pronounced and extend over a
wider range of wave numbers.

2.5 Squeezed wind vector reconstruction

One method to avoid cross-contamination caused by longitu-
dinal separation is presented in Kelberlau and Mann (2019a).
It is called the method of squeezing and aims to remove
the longitudinal separation distances rreal,ij by introducing
a temporal delay τ =

rreal,ij
U

into the data processing. The
length of this temporal delay corresponds to the time it takes
the mean wind to transport the frozen turbulence field along
the separation distance. The approach assumes the frozen
turbulence hypothesis. This assumption makes it possible to
measure one turbulent structure at different points in space
when the separation between the points is aligned with the
mean wind direction and when the time between the mea-
surements equals the time it takes the mean wind to transport
the turbulent structure from one point to the other. The line-
of-sight measurements taken by the Windcube are unfortu-
nately not continuous. Therefore, the chosen temporal delay
can only be a multiple n of the refresh rate of a particular line-
of-sight measurement, i.e., τ = n · 3.85s. As a consequence,
the actual longitudinal separation distances for a squeezed
pair of radial velocity measurements cannot become zero.
But geometrical considerations show that they are reduced
to

rreal,SQZ,ij =1tijU,

where the subscript SQZ indicates the squeezed wind vec-
tor reconstruction. An example is given in Fig. 2, where
the lengths of rreal,ij can be compared with the lengths of
rreal,SQZ,ij . This shows that it is impossible to completely
avoid the resonance effect due to longitudinal separation.
However, it is possible to shift the resonance wave number
away from the high-energy region into a lower-energy region
where the measurement signal is already strongly attenuated

by the line-of-sight averaging. The lateral separations, on the
contrary, remain unchanged by the application of squeezed
processing.

3 Methods

3.1 Field measurements

The measurement data used for this study originate from a
measurement campaign in which a Windcube V2 was collo-
cated to the 116.5m high meteorological mast at the Danish
National Test Center for Large Wind Turbines at Høvsøre,
Denmark. The test location lies approximately 1.7km east
of the North Sea, which is bordered by a stretch of dunes.
Otherwise the terrain has no significant elevations. For ref-
erence measurements, the meteorological mast is equipped
with Metek USA-1 ultrasonic anemometers at 10, 20, 40, 60,
80, and 100 m heights. For a more detailed description of the
test site we refer to Peña et al. (2016).

The measurements span a period from 11 September 2015
until 26 May 2016, with no measurements taken between
9 November 2015 and 17 February 2016. The lidar is posi-
tioned around 13m to the west of the meteorological mast
and oriented with its LOS1 in the northeast direction so
that θ0 = 45◦. An overview about the orientation of the lidar
beams is given in Fig. 4.

3.2 Sampling in a turbulence box

Sampling in a turbulence box is a method to simulate wind
lidar measurements in very large computer-generated wind
fields. The creation of such wind fields, according to Mann
(1998), requires less computational power than, for example,
large eddy simulation (LES). LES was successfully used be-
fore to analyze coherent structures in wind fields (e.g., Staw-
iarski et al., 2015) and wind profiles (e.g., Gasch et al., 2020)
but predicting lidar-derived turbulence velocity spectra re-
quires much more turbulence data. An advantage of using
LES is that Taylor’s frozen turbulence hypothesis does not
need to be applied, but a drawback is that fine-scale turbu-
lence would be suppressed.

To be able to predict lidar-derived spectra in a turbulence
box, we first determined the three model parameters, i.e., the
turbulence length scaleL, the degree of anisotropy 0, and the
dissipation factor αε2/3 for all test cases by fitting the sonic-
derived spectra to the Mann (1994) uniform shear model of
turbulence. We then used these parameters to create large tur-
bulence files that contain possible values of the three velocity
components u, v, and w. In order to limit the required mem-
ory, we divided the desired box size into 32 separate files
with different random seeds for each test case. Each of the
files consists of 32768× 128× 32 points. The selected spa-
tial resolution is 2 m per point so that all files for one test
case represent an air volume of 2 097 152 m length, 256 m
width and 64 m height. These boxes contain turbulence statis-
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Figure 4. Aerial pictures of the location of the Windcube 13m to the west of the meteorological mast at Høvsøre with the location of the
measurement points along the lines of sight (left) and the landscape around the measurement location in the inflow directions (right). The top
of the map is oriented to the north. Adapted from © Google Maps.

tics that are similar to what the underlying spectral tensor
describes. We created a MATLAB script that samples data
within the turbulence boxes similar to how a Windcube sam-
ples wind velocities in the real atmosphere. The script first
imports the turbulence files and cuts them into 10 min inter-
vals, whose spatial length depends on the desired mean wind
speed U . The script then considers a realistic timing by im-
porting the timestamp data of an arbitrary Windcube .rtd file,
which is a standard output data file type that contains the
line-of-sight velocities of every single beam including their
timing and carrier-to-noise ratio. Next, it defines the location
of the center of the range gate for all beams at all desired
height levels within a 10 min interval. Different inflow di-
rections are imitated by altering the orientation of the beams
with θ0. These locations are then moved into the horizontal
central plain of the turbulence box. The program defines a
total of 27 points along all lines of sight, centered around the
midpoints of the range gates. These points have a distance of
1 m from each other. The turbulence velocities are then in-
terpolated to these 27 points and projected onto the line-of-
sight direction. A triangular weighting function is eventually
multiplied to calculate the line-of-sight averaged radial ve-
locities. From this point on, the data processing is identical
to the processing of the lidar measurement data as described
in Sect. 2.3.

3.3 Data selection

We filter the field data to include only the 10 min intervals
in which the mean wind velocity at 80 m above the ground
was within an interval of U = 8± 0.5 m s−1. The reference
height of 80 m was selected arbitrarily. Using only one ref-

erence height in the filtering process assures that the same
10 min intervals are used for all four investigated height lev-
els: h1 = 40m, h2 = 60m, h3 = 80m and h4 = 100m. The
mean wind velocity U = 8 m s−1 was selected because it is
the most frequent in the dataset. A narrow velocity bin is
selected, thus the time delay used in the processing of ac-
tual measurements is identical with the time delay chosen
for sampling in a turbulence box. Three narrow wind sec-
tors around 21 = 135◦, 22 = 112.5◦ and 23 = 90◦ are cho-
sen for the analysis. The width of the sectors is ±5◦. In the
first case, the wind is aligned with two of the lines of sight,
namely LOS2 and LOS4 (α = 90◦), in the second case the
offset is 22.5◦ (α = 67.5◦), and in the third case the offset
is 45◦ (α = 45◦). As shown in Fig. 4, the three inflow direc-
tions are dominated by flat farm land and the water of Nis-
sum Fjord. The small town of Bøvlingbjerg lies in the east-
southeast direction and is approximately 3 km away. Within
2 km, only one farm might have some minor influence on the
measurements in the first wind sector. The selected measure-
ment sectors are neither affected by the wind turbines to the
north nor by the sea-to-land transition to the west of Høvsøre.
The data are additionally filtered to only contain intervals of
neutrally stratified atmospheric conditions in order to achieve
a good fit with the Mann model of turbulence. The filter cri-
terion is a Monin–Obukhov length |LMO|> 500m based on
measurements 20 m above the ground. Furthermore, to as-
sure high quality of the analyzed measurement data, we filter
out intervals with less than 100 % data availability. There-
fore, each line-of-sight measurement in the filtered dataset
has a carrier-to-noise ratio better than the Windcube’s stan-
dard threshold of −23 dB. After filtering, 49, 31 and 27 in-
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tervals of 10 min remain for the analysis of the first, second
and third wind sector, respectively.

3.4 Data processing

The lidar data from field measurements and sampling in a
turbulence box are processed according to Eqs. (8) to (13).
For every line-of-sight measurement, this processing creates
a new component of the uDBS and the uSQZ vectors. In Fig. 2,
two numbers are assigned to most of the measurement loca-
tions. The first number increases with the time of measure-
ment. The second number though is increasing with the lo-
cation along the mean wind direction. Where only one num-
ber is shown, both numbers would be identical. In the pro-
cess of reconstructing the squeezed wind vectors, it is es-
sential to assign new timestamps that follow the order of
the second numbers according to where the measurements
where taken. In practice, we project all measurement loca-
tions onto a vector that is pointing into the mean wind di-
rection and evaluate all line-of-sight velocities in the order
they fall along this vector. For reconstructing the horizontal
wind speed components with the method of squeezing, we
combine every radial velocity with the closest radial veloc-
ity originating from a beam with the opposite azimuth angle
taken behind the current measurement location. The times-
tamp of this reconstructed component then depends on the
average position of both measurement locations on the mean
wind vector. In order to create equidistant timestamps for the
wind vectors uDBS and uSQZ, we generate a linearly spaced
time axis with 1t = 0.96 s and assign the wind components
with the nearest neighbor method. This time step equals one
quarter of the Windcube’s cycle time and was chosen because
the Windcube generates four wind vectors during one mea-
surement cycle. Thus, we reach that all measurement data are
used with no change in velocity variance, which would occur
if interpolation would be applied. The data from the ultra-
sonic anemometers is uniformly spaced with a sample rate of
20 Hz and is resampled to a rate of 4 Hz with an anti-aliasing
filter applied to reduce the amount of data.

We calculate double-sided power spectral densities as
functions of the wave number k1

Fij (k1)=

〈
ûi û
∗

j

〉
Nks

, (25)

where .̂ is the discrete Fourier transformation, ∗ the complex
conjugate, 〈〉 the ensemble average of all 10 min intervals, N
the number of measurements in one interval, and ks =

2πfs
U

is the sampling wave number, where fs is the sampling fre-
quency. For the cross-spectra (i 6= j ) we use the real part of
Fij . We then divide the k1 axis into 35 logarithmically spaced
bins and average the spectral values in each bin. By doing so
we even out the spectra in the low wave number region, avoid
the high density of data points in the high wave number re-
gion, and align the sonic and lidar values for ease of com-

parison. The spectral values are eventually pre-multiplied
with their wave numbers and plotted on a linear vertical axis,
while the wave numbers are on a logarithmic horizontal axis.
Displayed like this, any portion of the area under the spectra
for a range of wave numbers is proportional to the variance
of the signal in this wave number range (Stull, 1988).

4 Results

Complete results are presented in Figs. A1 to A3 in the Ap-
pendix. Here we will present the results of two measurement
height levels h2 = 60m and h4 = 100m and two inflow wind
directions 2= 135◦ and 2= 90◦. These four cases alone
show all relevant effects.

4.1 Simulation results

For the presentation of the results of our study, we will first
discuss the simulated spectra without considering the exper-
imental results. The lidar simulator opens up the possibility
of analyzing the influence of the single wind velocity com-
ponents on the spectra by switching them on or off in the
turbulence box. This method helps in understanding what
the final lidar spectra consist of. Figures 5 and 6 show these
simulated spectra for the inflow wind directions 2= 135◦

and 2= 90◦, respectively. The solid black lines are the tar-
get spectra that originate from sampling single points along
the u direction of the turbulence box with a frequency of
4 Hz. These target spectra are not completely smooth due
to the finite length of the generated turbulence files, but
they resemble the model spectra well enough for the pur-
pose of this study. The red and yellow lines show the shape
of the lidar spectra with conventional DBS processing and
squeezed SQZ processing, respectively. Solid lines are the
resulting spectra when all three wind velocity components
are switched on. Dashed lines show the spectra when only
the u component is activated. Dashed–dotted lines represent
spectra generated from the v component alone and dotted
lines are for the w component alone. The method of show-
ing the influence of the single components on the resulting
lidar spectra cannot be used for cross-spectra. That is why
we do not discuss the uw spectra here but only show the re-
sults together with the measurements in Sect. 4.2.

4.1.1 Aligned inflow

To begin with, we take a look at the results from2= 135◦ in-
flow, i.e., the wind field is moving parallel to the azimuth an-
gle of LOS2 and LOS4 (see Fig. 4). We see in Fig. 5 that only
the u andw components of the wind field are involved in cre-
ating the lidar spectra of the u component. With the method
of DBS applied, the resulting lidar spectrum is correct only
for very low wave numbers where k1 < 4×10−3 m−1. At in-
creasing wave numbers the lidar underestimates the u fluctu-
ations in the wind field more and more, until it hardly detects

Wind Energ. Sci., 5, 519–541, 2020 www.wind-energ-sci.net/5/519/2020/

81



F. Kelberlau and J. Mann: Cross-contamination effect on turbulence spectra from DBS wind lidar 529

Figure 5. Turbulence velocity auto-spectra derived from sampling in a turbulence box for the case of aligned inflow with 2= 135◦ and
θ0 = 45◦. The measurement heights are h2 = 60 m (a, c, e) and h4 = 100m (b, d, f). Black, red and yellow lines are target, DBS-processed
and SQZ-processed lidar spectra. Dashed, dashed–dotted and dotted lines show the influence of the u, v and w component on the resulting
spectra. The vertical solid line marks the wave number that corresponds to the lidar sampling frequency kscan and the vertical dashed lines
show the first and second resonance wave numbers kres.
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them at the first resonance wave number, which is marked
with a dashed grey vertical line. In parallel, thew fluctuations
increasingly contaminate the lidar measurements. Between
the first and the second resonance wave number, the cross-
contamination effect is lower again but it does not disappear
completely. The reason is that two different longitudinal sep-
aration distances are involved in the wind vector reconstruc-
tion process, as described at the end of Sect. 2.4 (rreal 6= rrep).
We also see that the energy content at the second resonance
wave number is much lower than at the first resonance wave
number, although the w fluctuations in the target spectrum
in this wave number region are similarly strong. The rea-
son is that the line-of-sight averaging is stronger for higher
wave numbers and limits how much of the turbulence in the
signal is being detected. The main difference between the
two elevation levels 60 and 100 m is that the resonance peaks
are higher and shifted to the left for measurements at 100 m.
The reason is mostly that the longer longitudinal separation
distance at higher elevations corresponds to lower resonance
wave numbers according to Table 2 and less line-of-sight av-
eraging comes into effect at these lower wave numbers. The
slightly different parameters of the underlying spectral ten-
sors also influence the results of course.

The wave number that corresponds to the sampling fre-
quency of each lidar beam is marked with a solid grey verti-
cal line. We cannot detect any turbulence at this wave num-
ber and the signal is strongly weakened close to it. This ef-
fect accounts for all test cases, wind velocity components and
elevations. For even higher wave numbers the measurement
signal recovers, until the lidar spectra stop at the wave num-
ber that corresponds to half of the wind vector reconstruction
frequency.

Comparing the results from conventional DBS processing
with the results for squeezed processed SQZ sampling shows
the striking advantage of the new method for aligned wind
cases. The method of squeezing leads to u spectra that are
very similar to the target spectra. The region of the spec-
tra that contains most of its kinetic energy is hardly con-
taminated. That is advantageous, for example, when the tur-
bulence length scale is determined. The resonance point is
shifted into the region where line-of-sight averaging and the
attenuation due to the limited sampling frequency are strong.
In the transition zone, the increasing averaging effect com-
pensates for the increasing contamination. That means the
very good agreement between target and lidar spectra is
partly misleading and should not be interpreted as a perfect
spectrum of pure u fluctuations.

The situation is very different for the v spectra. The con-
ventional DBS processing hardly deviates from the squeezed
processing. The small differences visible between the red and
the yellow curves are due to the modified time scalar that is
used in squeezed processing, according to the description in
the first paragraph of Sect. 3.4. The lidar measured v spectra
contain the correct amount of spectral energy from the v fluc-
tuations only in the very low wave number region. As the

coherence of the v fluctuations declines at higher wave num-
bers, they become less detectable by the lidar. In addition, the
lidar-derived v spectra are dominated by uncorrelatedw fluc-
tuations due to the lateral separation of the involved measure-
ment volumes. The squeezed processing does not improve
the situation because it cannot decrease lateral separations.

The simulated spectra of the vertical wind velocity fluctu-
ations w are not contaminated by other wind speed compo-
nents. The line-of-sight averaging becomes relevant for wave
numbers of approximately k1 > 3×10−2 m−1. The strongest
deviation from the target spectrum is found at the wave num-
ber kscan that corresponds to the sampling frequency of the
Windcube.

4.1.2 Non-aligned inflow

The situation is more complex for cases in which the incom-
ing wind is not aligned with two of the lidar beams. As an
example, we take a closer look at Fig. 6, which shows the
simulation results for wind from 90◦. The inflow in this case
is centered between two neighboring beams, which can be
seen as the strongest case of non-aligned inflow. The behav-
ior of all other inflow angles lies between this case and the
previously discussed case of aligned wind from 135◦.

Even at the lowest wave numbers the estimation of the
u component is not correct. This is the most problematic
characteristic of non-aligned inflow. From Table 3, we know
that even without resonance, we cannot measure the u com-
ponent of turbulence correctly if the lateral correlation is be-
low unity. The spectra show that we indeed measure lower
values of kinetic energy at low wave numbers by underesti-
mating the u fluctuations in the turbulence box. The contri-
bution of u fluctuations at increasing wave numbers becomes
further reduced by the influence of the longitudinal reso-
nance. Towards the resonance wave number contamination
occurs. In addition to the contamination by the w component
like in the aligned wind case, we are also faced with some
contamination from v fluctuations. Due to the shorter longi-
tudinal separations listed in Table 2 compared to the aligned
wind case, the second resonance point is weakly pronounced,
especially at 60 m elevation. The application of squeezed
processing shifts the cross-contamination successfully into a
region of lower energy content, but it cannot help derive bet-
ter estimates of the turbulent energy in the low wave number
region.

We now look at the predicted spectra of the transversal
wind component v. In the very low wave number region, the
actual v fluctuations are nearly correctly interpreted due to
the assumption of high lateral coherence of the v component
for very low values of k1. Unfortunately, the spectra are con-
taminated by a significant parasitic contribution of w fluctu-
ations for which the coherence in the spectral tensor model
is lower. With increasing decorrelation of the three wind ve-
locity components at increasing wave numbers, the contami-
nation becomes rapidly stronger. At the first resonance point,
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Figure 6. Turbulence velocity auto-spectra derived from sampling in a turbulence box for the case of non-aligned inflow with 2= 90◦ and
θ0 = 45◦. The measurement heights are h2 = 60 m (a, c, e) and h4 = 100m (b, d, f). Black, red and yellow lines are target, DBS-processed
and SQZ-processed lidar spectra. Dashed, dashed–dotted and dotted lines show the influence of the u, v and w component on the resulting
spectra. The vertical solid line marks the wave number kscan that corresponds to the lidar sampling frequency and the vertical dashed lines
show the first and second resonance wave number kres.
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the cross-contamination of v by w is reduced but is to some
degree replaced by cross-contamination from u fluctuations.

The decreasing influence of w and the additional cross-
contamination by u on the DBS lidar-derived v spectra can
be removed by applying the method of squeezing. Nonethe-
less, the cross-contamination effect due to lateral separation
is so strong that the spectra are not significantly better than
the conventionally acquired ones. The DBS lidar-derived ve-
locity spectra for non-aligned wind are thus of limited use as
they do not represent the actual wind conditions.

4.2 Comparison with measurements

Figures 7 and 8 show the spectra for the same test cases
as discussed in the subsection above. Now we compare the
simulation results with measurement values. Markers in the
plots are the spectra resulting from the field measurements,
while solid lines, as before, correspond to the results from
sampling in a turbulence box. First, we take a look at how
well the theoretical target spectra displayed as solid black
lines represent the spectra derived from the measurements of
the sonic anemometers, which are depicted as black mark-
ers. The fitting of measurement data to the Mann spectral
tensor model was successful. Overall, the model represents
the measurements to a satisfactory degree. The measurement
spectra show more scatter in the low wave number region,
which is random variation caused by the limited amount of
analyzed measurement data for the corresponding test cases.
The agreement in the high wave number region where high
statistical significance smooths out the derived spectra is in
most cases very accurate. Discrepancies between sonic mea-
surements and the spectral tensor in a certain wave number
range have an effect on how well the theoretical spectra pre-
dict the lidar measurements. For example, the v target spec-
tra at both heights and wind directions show lower values
for medium wave numbers than the measured spectra. The
uw target spectra, by contrast, show higher energy values in
the low wave number region than what we actually measured.
This has previously been reported by Mann (1994, Fig. 7a)
and in Held and Mann (2019, their Fig. C1). The uniform
shear plus blocking (US+B) model by Mann (1994) and the
model by de Maré and Mann (2016) match observations of
the uw spectrum better than the uniform shear (US) model
of Mann (1994) that was used here, but they are much harder
to implement and perform calculations with.

The method of sampling in a turbulence box is success-
ful at predicting the shape of velocity spectra from a DBS
scanning wind lidar. All characteristic features, i.e., cross-
contamination, line-of-sight averaging, and limited sampling
frequencies are found in the spectra of both measurements
and simulations. But some deviations must be pointed out.
In the test cases with non-aligned inflow from 90◦ and most
other cases (Figs. A1–A3), the measured DBS-processed
u spectra show increased values at wave numbers below
the first interference wave number. That means that cross-

contamination is likely stronger than predicted by the model
at wave numbers below the first resonance point. We see
three possible explanations for this behavior. First, Table 3
shows that the cross-contamination of the u component by
w fluctuations for non-aligned wind inflow in the resonance
case is much stronger when the coherence is high. Eliassen
and Obhrai (2016) show for an offshore location and a ver-
tical separation of 40 m that the Mann model of turbulence
underestimates the amount of coherence of the w compo-
nent in a wide range of wave numbers (see also Mann, 1994,
Fig. 8). Assuming that the same occurs with transversal sep-
arations, we found a potential explanation for why the simu-
lations of the non-aligned cases underestimate the u variance
at wave numbers below the resonance point. At higher wave
numbers, the prediction is correct again because the correla-
tion is close to zero, both in the spectral tensor and in reality.
A second possible explanation lies in the limited validity of
the frozen turbulence assumption. Real turbulence is not per-
fectly correlated over long separation distances, so uncorre-
lated w fluctuations might contaminate the u measurements.
And third, we must also expect that turbulence is not always
advected with the 10 min mean wind speed U but is some-
times slower or faster. This influences at which wave num-
bers the cross-contamination occurs.

The prediction of the u spectra resulting from squeezed
processing is overall precise but has a slight tendency to-
wards underestimating the spectral values in the medium
wave number range. Based on the available data, it is not
possible to determine the definite cause of the higher spec-
tral values in the DBS- and SQZ-processed u measurements.
However, we assume that the main reason is inaccurate rep-
resentation of the co-coherences in the wind by the chosen
spectral tensor. Sathe et al. (2011) also predict slightly lower
total u variances and significantly lower v variances with
their model than they get from measurements. However, our
predictions of v variances are more accurate, and we there-
fore cannot draw conclusions from the comparison with their
work.

The shape of the lidar-derived spectra of the transversal
component v for both processing methods is fairly accurately
predicted by the simulation. The few significant differences
can in most cases be explained by the aforementioned dis-
crepancies between the spectral tensor and the actual wind
conditions. For example, at 135◦ at 60 m elevation, the lidar
measured v fluctuations in the wave number range around
k = 2× 10−2 m−1 are considerably stronger than predicted
because the actual wind fluctuations in the v and w direc-
tions are also higher than assumed by the selected spectral
tensor.

The spectra of the vertical wind fluctuations w are in some
cases very accurately predicted by the simulations, for ex-
ample in the case with inflow from 135◦ at 60 m elevation. In
other cases, we predict considerably higher values than what
is measured, e.g., at 135◦ at 100 m elevation and vice versa,
for example, at 112.5◦ at 80 m where we measure stronger
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Figure 7. Turbulence velocity auto-spectra and uw cross-spectra derived from sampling in a turbulence box and measurements for the case
of aligned inflow with 2= 135◦ and θ0 = 45◦. The measurement heights are h2 = 60m (a, c, e) and h4 = 100m (b, d, f). Black, red and
yellow lines are target, DBS-processed and SQZ-processed lidar spectra from sampling in a turbulence box. Markers are spectra from field
measurements. The vertical solid line marks the wave number that corresponds to the lidar sampling frequency and the vertical dashed lines
show the first and second resonance wave number.
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Figure 8. Turbulence velocity auto-spectra and uw cross-spectra derived from sampling in a turbulence box and measurements for the case
of non-aligned inflow with2= 90◦ and θ0 = 45◦. The measurement heights are h2 = 60m (a, c, e) and h4 = 100m (b, d, f). Black, red and
yellow lines are target, DBS-processed and SQZ-processed lidar spectra from sampling in a turbulence box. Markers are spectra from field
measurements. The vertical solid line marks the wave number kscan that corresponds to the lidar sampling frequency and the vertical dashed
lines show the first and second resonance wave number kres.
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low-frequency turbulence with the lidar than with the sonic
anemometer (Fig. A2). The reason for this behavior is un-
known.

The uw cross-spectra are predicted well for both data pro-
cessing methods for aligned inflow. For inflow conditions
in which the wind direction is not aligned with two of the
beams, the prediction of the DBS-processed data is off. We
assume that the reason for this behavior is the same as what
caused the differences between the DBS-processed u mea-
surements and simulations.

5 Conclusions

We have shown that with the help of sampling in a turbu-
lence box, it is possible to predict turbulence velocity spectra
from DBS wind lidar for all wind directions. We have ana-
lyzed these spectra theoretically and in comparison with field
measurements.

The shape of the spectra from a Windcube V2 DBS
lidar is influenced by the effects of line-of-sight averag-
ing, its limited sampling frequency, and strongly by cross-
contamination. We have shown that the influence of cross-
contamination on the spectra of the horizontal components
of turbulence is dependent on the alignment of the lidar
beams to the incoming wind direction. Only the measure-
ment of vertical wind fluctuations is independent of wind di-
rection due to the availability of a beam pointing vertically
upwards. The auto-spectrum of each horizontal wind speed
component is distorted by the influence of the other two wind
components. The uw cross-spectrum also suffers from cross-
contamination.

The method of squeezing applied in the wind vector recon-
struction process minimizes the cross-contamination effect
on the measured u component of turbulence when the wind
blows parallel to one of the beam’s azimuth angles. Only in
this case are the lidar-derived spectra reasonably close to the
spectra of the u component of the wind, thus turbulence pa-
rameters like turbulence length scale and the dissipation fac-
tor might be estimated from it.

In all other cases, the estimations of the horizontal com-
ponent spectra of turbulence are very erroneous due to the
parasitic influence of the components of turbulence on one
another, and one should not trust them. In no case should tur-
bulence velocity spectra from DBS wind lidar be fitted to a
turbulence model.

Multi-lidar arrangements use three separate lidar devices,
whose beams intersect at one point in space and minimize
separation distances (Mann et al., 2009). A different possi-
bility to avoid cross-contamination would be to deflect the
inclined beams of one single DBS wind lidar first into a hor-
izontal direction away from the device and second towards a
point above the device where they intersect. Such a setup re-
quires precise alignment of the deflected beams but would
not require horizontal homogeneity of the wind field and
could measure turbulence more accurately.
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Appendix A: Nomenclature

c Speed of light (m s−1)
D Diameter of measurement cone (m)
df Distance from lidar to center of range gate (m)
F Power spectral density (m2 s−1)
fs Sampling frequency (s−1)
h Measurement height (m)
i,j Beam numbers 1 to 5; Wind vector components 1 to 3
k Wave number (m−1)
ks Sampling wave number (m−1)
kres Resonance wave number (m−1)
kscan Wave number of LOS sampling frequency 0.26 Hz (m−1)
lp Half length of range gate (m)
N Number of measurements per 10 min interval
n Integer index
ni Unit vector along beam i

rlat,ij Nominal separation distance in lateral direction w.r.t. 2 for beam combination ij (m)
rlong,ij Nominal separation distance in longitudinal direction w.r.t. 2 for beam combination ij (m)
rrep,u Representative separation distance in longitudinal direction w.r.t. 2 for the reconstruction of u (m)
rrep,v Representative separation distance in longitudinal direction w.r.t. 2 for the reconstruction of v (m)
rreal,ij Real separation distance in longitudinal direction w.r.t. 2 for beam combination ij considering t (m)
rreal,SQZ,ij Actual separation distance in longitudinal direction w.r.t. 2 for beam combination ij considering t ,

squeezed processing (m)
s Distance from center of range gate (m)
t Beam timing (s)
u,U,u′ Total, mean and fluctuating part of wind velocity vector (m s−1)
u,v,w Longitudinal, transversal and vertical wind velocity component w.r.t. 2 (m s−1)
Vhor,V hor Horizontal wind velocity, 10 min mean (m s−1)
vri Radial wind velocity in beam i direction (m s−1)
ṽri Line-of-sight velocity of beam i (m s−1)
x Wind velocity vector in Windcube coordinates (m s−1)
x,y,z Wind velocity component in LOS1–LOS3, LOS2–LOS4 and LOS5 directions (m s−1)
α Relative inflow angle 2− θ0 (◦)
θ0 Heading of LOS1 (offset from north) (◦)
θ Beam azimuth angle (◦)
2,2 Wind direction, 10 min mean (◦)
σ 2 Velocity variance (m2 s2)
φ Zenith angle (half cone opening angle) (◦)
ϕ Triangular weighting function
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Figure A1. Turbulence velocity auto-spectra and uw cross-spectra derived from sampling in a turbulence box and measurements for the case
of aligned inflow with 21 = 135◦ and θ0 = 45◦.
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Figure A2. Turbulence velocity auto-spectra and uw cross-spectra derived from sampling in a turbulence box and measurements for the case
of non-aligned inflow with 22 = 112.5◦ and θ0 = 45◦.
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Figure A3. Turbulence velocity auto-spectra and uw cross-spectra derived from sampling in a turbulence box and measurements for the case
of non-aligned inflow with 23 = 90◦ and θ0 = 45◦.
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Abstract: Due to their motion, floating wind lidars overestimate turbulence intensity (TI) compared
to fixed lidars. We show how the motion of a floating continuous-wave velocity–azimuth display
(VAD) scanning lidar in all six degrees of freedom influences the TI estimates, and present a method
to compensate for it. The approach presented here uses line-of-sight measurements of the lidar and
high-frequency motion data. The compensation algorithm takes into account the changing radial
velocity, scanning geometry, and measurement height of the lidar beam as the lidar moves and
rotates. It also incorporates a strategy to synchronize lidar and motion data. We test this method with
measurement data from a ZX300 mounted on a Fugro SEAWATCH Wind LiDAR Buoy deployed
offshore and compare its TI estimates with and without motion compensation to measurements taken
by a fixed land-based reference wind lidar of the same type located nearby. Results show that the TI
values of the floating lidar without motion compensation are around 50% higher than the reference
values. The motion compensation algorithm detects the amount of motion-induced TI and removes
it from the measurement data successfully. Motion compensation leads to good agreement between
the TI estimates of floating and fixed lidar under all investigated wind conditions and sea states.

Keywords: floating lidar; turbulence intensity; line-of-sight; motion compensation; wind vector
reconstruction

1. Introduction

Wind velocity measurements are important for the wind energy industry to validate assumptions
about wind conditions at a wind farm site. Lidar measurements that sense the wind remotely from
the ground can be used instead of in-situ anemometry on meteorological masts. The installation of
such masts offshore is even more expensive than onshore. As wind projects move further offshore into
deeper water areas, masts are no longer a feasible alternative. Floating lidars are more cost-effective
than masts [1] and potentially the only viable option. Validation campaigns testing floating lidar
systems against data from meteorological masts have shown that estimations of the mean wind
velocity by floating lidar are robust and reliable [2,3]. Even without any form of motion compensation,
the errors in mean wind speed are small [4–6]. For estimates of the wind direction, a simple yaw
compensation at the ten-minute level is sufficient [2].

By contrast, estimates of turbulence intensity (TI) require advanced motion compensation
because floating lidar systems show stronger wind velocity fluctuations than non-moving lidars [5].
The magnitude of this motion-induced error depends on the amplitude and period of the motion which
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result from the floating platform type used and the prevailing sea state [7]. Trusting in such erroneously
high TI values could, for example, result in extra costs caused by choosing overdesigned wind turbines.
Different methods have therefore been proposed to mitigate or remove the motion-induced error in TI
estimates from floating lidar systems.

As suggested in Tiana-Alsina et al. [8], the lidar device could be mounted on a cardanic frame
that compensates for most of the rotational motion. Such a hardware solution increases the costs for
a floating lidar system and cannot compensate for errors that are caused by significant translational
motion of the platform; for example, those due to heave caused by waves. Gutiérrez et al. [9] proposed
simple window averaging of the time series of horizontal wind speed estimates, which acts as a
low-pass filter. The basic idea is that the motion-induced turbulence has the same frequency as
the buoy motion and can therefore be filtered out. The main drawback of this method is that the
sampling frequency of the lidar-measured time series must be higher than the frequency of the
motion of the platform. For many setups with currently available hardware, this is not the case.
Gutiérrez-Antuñano et al. [7] presented a simulation tool for more advanced motion compensation.
Based on amplitude and period of the buoy rotation, and mean wind conditions, the simulator
estimates the motion-induced error in the turbulence measurements. Corrected measurement data
show overall better results compared to reference lidar measurements, but the success of the method
varies depending on sea state. Yamaguchi and Ishihara [10] suggested a motion compensation
algorithm based on numerical simulations that shows promising results. However, the method
requires simultaneously measured line-of-sight velocities from different measurement heights, which
are available only from pulsed wind lidars. Gottschall et al. [5] described a motion compensation
algorithm to correct for the rotation of a floating pulsed wind lidar in roll, pitch, and yaw degrees of
freedom and show promising results. In Gottschall et al. [11], they describe an algorithm that corrects
the lidar derived line-of-sight velocities for the influence of motion in all six degrees of freedom but do
not disclose any details of the algorithm and do not describe the motion-corrected results.

The aim of the work presented here was to develop and validate a method that corrects TI
estimates from a floating continuous-wave wind lidar aboard a buoy being deployed offshore. For our
approach, we measure the motion of the buoy in all six degrees of freedom and record the line-of-sight
velocity spectra of the lidar. We then compensate for the motion of the lidar before we reconstruct the
wind vectors under consideration of the rotation of the buoy. A method to synchronize the lidar and
motion data is an integral feature of our approach. We applied this motion compensation algorithm to
measurement data from a SEAWATCH Wind LiDAR Buoy by Fugro carrying a ZX300M by ZX Lidar
(Ledbury, United Kingdom) and a MRU 6000 motion reference unit (MRU) by Norwegian Subsea (Oslo,
Norway) and analyzed the results in comparison to data from a nearby land-based fixed reference lidar
of the same type. The scope of this work is the question of whether a motion-compensated floating
lidar system can measure TI as reliably as a fixed reference lidar of the same type. TI is the most
widely-used parameter of turbulence. We will therefore limit our analysis to it after briefly presenting
the horizontal mean wind speeds. This article does not discuss the effects that lead to deviations
between lidar-derived turbulence estimates and in-situ anemometric values [12–14].

In Section 2, we describe the theory behind TI, the coordinate systems we use, and how the motion
of a velocity–azimuth display (VAD) scanning wind lidar influences its measurements. Section 3
describes our method to compensate for the lidar motion. This includes an explanation of how to
overcome the challenge of synchronizing the timing of lidar and motion data and how we emulated
the internal data processing of the lidar, which is typically not accessible. We also describe the
measurement setup and describe the wind and sea conditions during the experimental validation.
The results of the measurements are shown and discussed in Section 4 and we conclude the findings
of this study in Section 5. Readers who do not seek to understand how the motion compensation
algorithm works but are interested in its validation can continue reading from Section 3.5.
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2. Theory

2.1. Turbulence Intensity

Wind velocities at one point in space can be described by the vector

~u =

u1

u2

u3

 (1)

where u1 is the longitudinal component of the horizontal wind velocity in mean wind direction
clockwise from north Θ, u2 is the transversal component of the horizontal wind velocity, and u3 is the
vertical wind velocity component in a right-handed coordinate system. The mean wind conditions
~U are determined by averaging the values of ~u for a time interval. The ZX300 wind lidar stores the
time series of reconstructed wind vectors in the form of, first, the horizontal wind speed uhor; second,
the wind direction Θ; and third, the vertical wind speed uver. In our analysis we look at ten-minute
intervals of wind data. The average wind speed Uhor is the arithmetic mean of all N estimates of uhor
within each interval according to

Uhor =
1
N

N

∑
i=1

uhori
. (2)

As a measure for the amount of variation of uhor around Uhor, we introduce the standard deviation
of the horizontal wind speed

σuhor =

√√√√ 1
N − 1

N

∑
i=1

(uhori
−Uhor)2 (3)

which is an indicator of turbulence. Since turbulence is partly driven by frictional forces caused by the
mean wind speed, we normalize the wind speed variations by the mean wind speed Uhor, which leads
us to the definition of turbulence intensity:

TI =
σuhor

Uhor
. (4)

TI increases with surface roughness and decreases with height above ground [15]. Thermal
buoyancy forces are the second driver of turbulence. Their influence leads to high TI values at low
wind speeds. Unstable atmospheric stratification is also associated with high TI values, while stable
conditions decrease it.

2.2. Coordinate System and Vector Rotations

The SEAWATCH Wind LiDAR Buoy is depicted in Figure 1. The buoy is anchored to the seabed
with a catenary mooring line and floats on the water’s surface. In its initial position without the
influence of any wave, wind or current loads, its x, y, and z-axes are respectively pointing north,
east, and vertically down. In the presence of external forces, the buoy can move in all six degrees of
freedom. Translational motion in x, y, and z-directions is called surge, sway, and heave, respectively.
The horizontal distances are limited by the mooring system, and the vertical heave position follows
waves and the tide. Rotations around these three axes are called roll, pitch, and yaw, respectively.
The rotation in roll and pitch can be combined and their Pythagorean sum is then called tilt. The motion
in roll, pitch, and heave is mostly determined by the sea state, as the buoy follows the wave motion
with its characteristic periodicity. Surge, sway, and yaw motions typically occur with much longer
periods and are mostly caused by wind and current forces that balance out the restoring forces from
the mooring.
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Figure 1. Visualization of the SEAWATCH Wind LiDAR Buoy in pitched orientation. Shown are
the global right-handed North-West-Up (NWU) coordinate system and the north-east-down (NED)
reference frame of the motion reference unit (MRU) (gray); unit vectors~ex,~ey, and~ez along the rotated
body coordinate axes of the (MRU) (blue); unit vectors ~eθ0 , ~eθ270 , and ~eh defining the lidar frame of
reference (red); the line-of-sight (LOS) unit vector~eLOSθ0

for the azimuth offset angle θ0 (green); and the

LOS unit vector~eLOSθ
for an arbitrary θ (yellow). Additionally, the separation vector ~d between the

MRU and lidar prism is shown, as are the nominal and real azimuth (θ and θr) and zenith angles (φ
and φr). (Sketch not to scale).

For our computations, we use a global right-handed Cartesian north-west-up (NWU) coordinate
system. The MRU we use in this study is set up to calculate and record translational and rotational
position and velocity data in all six degrees of freedom; namely, translations in surge, sway, and heave,
and the Tait–Bryan angles roll, pitch, and yaw. The motion data is based on a right-handed
north-east-down coordinate system. The MRU is located approximately 1300 mm below the rotating
prism of the lidar. The lidar is positioned parallel to the x–y plane of the MRU but its heading is rotated
around the z-axis by θ0 = 30◦ from the x-direction towards the y-direction. Information about the
direction of each line-of-sight measurement relative to the lidar frame of reference is given in the form
of the fixed zenith angle φ and the azimuth angle θ relative to the heading θ0 of the lidar. A series
of vector rotations is required to transform this information and the orientation data, i.e., roll, pitch,
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and yaw angles, R, P, and Y, measured by the MRU, into information about the real zenith angle φr

and real azimuth angle θr of the lidar beam in the global coordinate system. The unit vector in the
x-direction ~ex of the MRU in global NWU coordinates after rotation is in accordance with C.3.8 in
Grewal et al. [16] given by

~ex =

 cos Y cos P
− sin Y cos P

sin P

 . (5)

The unit vector in the y-direction of the MRU in NWU coordinates after rotation is given by

~ey =

− cos R sin Y + sin R cos Y sin P
− cos R cos Y− sin R sin Y sin P

− sin R cos P

 . (6)

The unit vector in the z-direction of the MRU in NWU coordinates after rotation is given by

~ez =

sin R sin Y + cos R cos Y sin P
sin R cos Y− cos R sin Y sin P

− cos R cos P

 . (7)

~ez points downwards. We change its sign to create a unit vector ~eh that points upwards into the
direction of the laser beam before it is deflected by the lidar prism.

~eh = −~ez. (8)

~eθ0 , the unit vector in the direction of the lidar heading is determined by rotating ~ex by the
yaw-offset angle θ0 = 30◦ around~eh. This can be done by multiplying~ex by the rotation matrix

R =

 e2
1(1− cos α) + cos α e1e2(1− cos α)− e3 sin α e1e3(1− cos α) + e2 sin α

e2e1(1− cos α) + e3 sin α e2
2(1− cos α) + cos α e2e3(1− cos α)− e1 sin α

e3e1(1− cos α)− e2 sin α e3e2(1− cos α) + e1 sin α e2
3(1− cos α) + cos α

 (9)

where~e = ~eh is the axis of rotation and α = −θ0 the angle of rotation. A derivation of Equation (9) can
be found in Section 9.2 of Cole [17]. In order find the~eθ270 unit vector we simply use

~eθ270 = ~eh ×~eθ0. (10)

~eLOSθ0
, the unit vector that points into the line-of-sight direction for θ = 0◦ is defined by rotating

~eh by the half cone opening angle α = φ = 30.6◦ around~e = ~eθ270. The unit vector for a line-of-sight
measurement at a particular azimuth angle~eLOSθ

is found by rotating~eLOS0 by the negative azimuth
angle α = −θ around~e = ~eh.

The real zenith angle φr is the angle between the vertical up direction and the line-of-sight
measurement direction. It can deviate from φ when the buoy is rotated and can be determined by

φr = arccos~eLOSθ
·~eU (11)
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where~eU is the unit vector in the upwards direction. The real azimuth angle θr is the angle between
the horizontal north direction and the projection of the line-of-sight measurement direction onto the
horizontal plane. It can be determined by

θr = arccos

eLOSθ,1

eLOSθ,2

0


∣∣∣∣∣
[

eLOSθ,1

eLOSθ,2

]∣∣∣∣∣
·~eN (12)

where~eN is the unit vector in the north direction. The sign of θr must be switched for eLOSθ,2 > 0.
The next task is to determine the influence of the buoy motion on the line-of-sight velocities. We

first calculate the velocity vector of the lidar at the position of its prism and define the distance vector

~d = −1.3~ez (13)

that separates the location of motion measurement from the location of the lidar prism. The velocity at
the lidar prism is the sum of the translational velocities measured at the location of the MRU and the
rigid body motion caused by the angular velocity measured at the MRU location according to

~vlidar = ~exvx +~eyvy +~eDvD + (~exωx)× ~d + (~eyωy)× ~d (14)

The selection of the unit vectors ~ex, ~ey, and ~eD where the subscript D stands for “down”
corresponds to the orientation of the velocity data vx, vy, and vD, as defined in the setup of the
MRU. The terms for the influence of roll and pitch angular velocity ωx and ωy on the translational
velocity are sufficient when the distance vector ~d is oriented along the z-axis of the MRU. If ~d contains
non-zero elements for the first or second coordinate, a third term ωz for azimuthal rotation is required.

As a last step, the velocity vector ~vlidar must be projected onto the line-of-sight unit vector~eLOSθ

so that
vLOS = ~eLOSθ

·~vlidar (15)

is the projection of the translational velocity onto the line-of-sight unit vector. vLOS is the
motion-induced error in the line-of-sight velocity caused by motion.

2.3. The Motion-Induced Error in TI Measurements

Reconstructed wind vectors from a moving and a fixed lidar system differ. In the following
subsection, we categorize the measurement errors caused by lidar motion into three different effects.

2.3.1. Error in Radial Velocities due to Translational Motion

Translational motion of the lidar window in surge, sway, and heave according to Equation (14)
changes the relative velocity between the emitted laser light and the scatterers. Thus, it shifts the
detected Doppler frequency, which is proportional to the measured line-of-sight velocity. Stationary
motion in the three translational degrees of freedom leads to a one-to-one change in measured wind
velocity; e.g., a lidar being transported on a ship with velocity ~v along the ocean’s surface would
measure a wind velocity error of the same magnitude ∆~u = ~v. With the exception of a lidar being
mounted on a ship [18,19], all three velocity components of a floating lidar typically average zero
during a ten-minute interval, so that ~V = ~v = ~0. This leads to zero error in mean wind speed ~U,
but the measurements of the instantaneous wind speed ~u and the derived turbulence parameters
like TI are affected. The effect of translational motion on the instantaneous wind measurement is
frequency dependent.
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Oscillatory motion with a low frequency fv � 1 Hz affects the wind component of the same
orientation; i.e., the surge and sway components of motion v1 and v2 influence the horizontal wind
speed components u1 and u2; heave velocity v3 influences the vertical wind speed u3. Figure 2a
shows this effect of translational motion. The figure shows line-of-sight velocities of a VAD scanning
lidar on the y-axis plotted against the azimuth angle of the lidar beam θ on the x-axis. In all plots,
the wind direction is assumed to be aligned with the heading of the lidar so that Θ = θ0. The wind
velocity is Uhor = 5 ms−1. We also define that surge motion occurs with an arbitrary amplitude of
v̂1 = 1 ms−1 along the wind direction. Sway and heave have the same amplitude and are directed
perpendicularly to the wind direction. The figure visualizes the lidar-measured LOS velocities in
three ways: contribution of the wind, the lidar’s motion, and combined. The green lines represent
the contribution of the wind to the line-of-sight measurement as if it were to be measured by a lidar
without any translational motion. It has a cosine shape with peaks in the upward and downwind
directions. The contribution of the translational motion on the line-of-sight velocities is visualized
by the blue lines of varying darkness. The red lines show the sum of both contributions. We ignore
that the lidar used in this study cannot detect the sign of the radial velocities. We therefore show the
results of the wind vector reconstruction based on the absolute line-of-sight velocities according to
Equations (20) and (21) as markers: cyan colored circle markers show the reconstructed horizontal
wind speeds and brown cross markers show the reconstructed vertical wind speeds. Their location on
the x-axis represents the reconstructed wind direction. It can be seen in Figure 2a that e.g., a slow back
and forth motion in the wind direction (first row: surge) is detected in the same way as horizontal
wind fluctuations; sideways motion (second row: sway) is perceived as transversal wind; and up and
down motion (third row: heave) leads to a change of radial velocities in all line-of-sight directions. We
see as expected that surge motion influences the horizontal wind speed uhor; sway motion influences
the wind direction Θ; and heave motion leads exclusively to variation of the vertical wind speed
component uver.

But these behaviors are valid only for translational motion that fluctuates very slowly; i.e., with a
frequency much lower than one Hz, fv � 1 Hz, which is the frequency of the rotating prism in the
lidar corresponding to the time it takes to measure one full rotation of θ. Cross-contamination occurs
for fluctuations that occur with a frequency close to this value. Cross-contamination in this context
means that horizontal motion is interpreted as vertical wind speed fluctuations, and vertical buoy
motion is interpreted as horizontal wind speed fluctuations. In other words, surge and sway motion
of the buoy contribute to the estimates of vertical wind fluctuations, and heave motion is attributed
to the fluctuations of horizontal wind; i.e., TI. We can see this in Figure 2 column b. The plots show
what happens when translation occurs with a frequency of fv = 1 Hz. We call this the “resonance case”
because the azimuth angle θ and the magnitude of the surge/sway/heave velocity oscillate with the
same frequency. While the azimuth angle θ of the laser beam rotates by 180◦, the sign of the motion
velocity also changes. That means, the influence of motion on the line-of-sight velocities visualized
in blue reaches its peak in this situation not after one full prism rotation as in the case of very slow
fluctuations (see column a), but after every half rotation. As a consequence, the influence of motion
is attributed to the wind velocity in a different orientation. Horizontal surge and sway motion in
resonance leads to variations in vertical wind speed, and heave motion in resonance leads to variations
in horizontal wind speed and wind direction. A lidar device with a half cone opening angle φ < 45◦,
like the one used in this study, is more sensitive to vertical heave motion than to horizontal motion in
surge and sway. Heave in resonance therefore has a stronger influence on the horizontal wind speed
than surge and sway have on the vertical wind speed.

From this analysis, we learn that heave motion in the resonance case and low-frequency
fluctuations in surge and sway influence the TI estimates of a floating lidar. Heave motion must
not be ignored because the period of waves is close enough to 1 s to create cross-contamination. Motion
of the lidar in the surge and sway directions is not only created directly by translation of the buoy but
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also by tilting it when the center of rotation is not at the position of the lidar prism. Successful motion
compensation therefore requires consideration of all degrees of freedom of motion.

Figure 2. Overview of the influence of motion on line-of-sight estimates and reconstructed wind
vectors of a velocity–azimuth display (VAD) scanning floating lidar system. Shown are examples
of translational motion with v̂ = 1 ms−1 amplitude oscillating with frequency (a) fv � 1 Hz and
(b) fv = 1 Hz, and the rotational motion of 10.5◦ peak angle oscillating with (c) fv � 1 Hz and
(d) fv = 1 Hz, where 1 Hz is the rotation frequency of the lidar prism. Green lines (dashed in c,d)
are the radial velocity components of constant horizontal wind blowing in θ = 0◦ direction with a
magnitude of U = 5 ms−1 as a function of the lidar azimuth angle θ. Blue lines are the influence of
translational motion. Red lines are the total line-of-sight velocities. Color shades represent different
phases of the oscillatory motion. Circle and cross markers represent the reconstructed wind vectors
after conventional VAD processing, where the position on the y-axis is the magnitude and the position
on the x-axis is the wind direction Θ. More information in Section 2.3.1.

2.3.2. Change in Scanning Geometry due to Rotational Motion

A second effect of motion-induced measurement errors on a floating lidar is caused by tilting
of the platform. Rotations in pitch and roll directions change the real zenith angle φr of the lidar
beam. For example, a beam with an increased real zenith angle φr > φ has a higher sensitivity for
the horizontal wind components than what is assumed in the internal wind vector reconstruction
process using the constant half cone opening angle φ = 30.6◦. Low-frequency tilting of the platform
( fv � 1 Hz) can be imagined as tilting the complete measurement cone with its original half cone
opening angle φ. The cone then has an increased real zenith angle φr on one side and a decreased real
zenith angle on the other side. In such a situation, horizontal inflow causes the unsigned line-of-sight
velocities to differ between the two sides of the cone. With the conventional VAD processing, horizontal
wind is then misinterpreted as vertical wind. The third column c in Figure 2 visualizes this situation.
Translational motion is no longer involved in these examples. Instead, we see that the steady inflow
of horizontal wind leads to varying wind-induced line-of-sight velocities marked as dashed green
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lines due to the changing zenith angles φr. The magnitudes and shapes of these variations depend
on the amplitude and orientation of the low-frequency tilt motion. Pitch motion (second row) leads
to increased magnitude of the perceived wind velocity on one side of the measurement cone and a
decreased value on the opposite side. Because no translational motion is involved, the total line-of-sight
velocity marked in red is equal to the wind-induced line-of-sight velocity. The VAD processing leads to
wind data that show nearly exclusively vertical turbulence. Roll rotation (first row) leads to a deviation
from the sine shape of line-of-sight velocities but no systematic amplification on either side of the cone.
The deviations result in an increased residual in the best-fit of the wind data reconstruction but do
not lead to additional turbulence. Slow changes in the yaw angle (third row) lead to a phase shift in
the line-of-sight velocities, and as a result, to varying wind directions but do not cause any error in TI
because the estimates of uhor stay the same. In summary, static misalignment and slow changes in the
orientation do not have any influence on the estimates of TI.

However, when tilting occurs with a higher frequency close to fv = 1 Hz, the measurement cone
appears to become wider or narrower because the tilt angle of motion changes its sign as quickly
as the lidar azimuth angle moves by 180◦ to its opposite side. We can better understand this effect
with the help of the plots in the last column d of Figure 2. Pitch motion in resonance with the lidar
prism frequency (second row) can be understood as a stretched measurement cone with its maximum
deviation from the original shape at the two ends that point into and against the mean wind direction.
This geometry leads to either higher or lower sensitivity for the mean wind velocity on both sides
of the cone at the same time. The result is increased horizontal turbulence in the reconstructed
wind data. Rotations with resonance frequency in roll orientation (first row) also lead to increased
turbulence in the wind data but to a lower extent than pitch rotations. The reason is that the apparently
widened/narrowed cone has its maximum/minimum zenith angle at θ = 90◦ and θ = 270◦ where
the beams point perpendicular to the wind inflow angle. Yawing with resonance frequency (third
row) hardly occurs in reality, but it would have no effect on turbulence estimates. Instead, the cone
averaging would swallow the resulting asymmetry in the line-of-sight velocities.

Static tilt leads to a decrease in mean wind speed, and dynamic tilting also has a small effect
on mean wind speed that shall not be discussed here. We refer to Tiana-Alsina et al. [4] for more
information. We have learned that dynamic tilting of the floating lidar that occurs with a frequency
close to the lidar’s prism rotation frequency causes an increase in TI. The extent of this increase depends
on the mean wind speed and the angle between wind direction and tilt orientation. By contrast, static
and very low-frequency tilt motion, and yaw rotations, have no significant influence on the TI estimates.

2.3.3. Changing Measurement Elevation due to Rotation under the Influence of Wind Shear and Veer

Tilting the lidar not only leads to a changed scanning geometry, as described before in Section 2.3.2,
but also leads to changing measurement elevations. If the horizontal mean wind speed Uhor and its
direction Θ were to be identical at all heights above the ground, this would not have any consequences
for the turbulence measurements. But the presence of wind shear and veer, i.e., usually higher wind
velocities at higher elevations and changing wind directions with height, respectively, leads to a third
effect that is not captured in our above explanations. First, we look at the influence of wind shear. We
ignore the elevation variations caused by heave motion because they are small and assume that the
change in measurement elevation is exclusively created by tilting the lidar. When a lidar beam tilts
towards the horizon, so that its zenith angle is increased, its sensitivity for the horizontal mean wind
speed is also increased. Yet it measures the wind at a lower elevation, where the wind typically has
lower horizontal mean speed. Conversely, a beam rotated towards the zenith measures a lower fraction
of the horizontal mean wind speed, which is typically increased at the higher measurement elevation.
That means, the effect of wind shear is always directed against the effect of changed scanning geometry.
We can determine the relative magnitude between the two effects.

dvr,2(α, z) = U(z)(sin (φ + α)− sin φ) (16)
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is the change in line-of-sight velocity of a beam pointing into the direction of the mean wind U with a
half cone opening angle of φ that is tilted by tilt angle α towards the horizon. This equation does not
consider wind shear and represents only the changed scanning geometry, and therefore, the subscript 2

that refers to the second effect described in this section. With z being the initial measurement elevation,
we can calculate the change in elevation according to

dz(α, z) = z
(

cos (φ + α)

cos φ
− 1
)

. (17)

The change in line-of-sight velocity that considers not only the changed geometry as in
Equation (16) but also the wind shear is

dvr,2&3(α, z) = U(z + dz(α, z))(sin (φ + α)− sin φ). (18)

With these equations, we can define a wind shear reduction factor

k(α, z) = 1− dvr,2&3(α, z)− dvr,2&3(−α, z)
dvr,2(α, z)− dvr,2(−α, z)

(19)

where the numerator is the change in line-of-sight velocity for a rotation from−α to α when wind shear
is considered. The denominator describes the same but without considering wind shear. As a result, k
is the factor by which the effect of changed scanning geometry is reduced by the effect of wind shear.
Measured mean wind velocities can be used to create wind profiles by linear inter and extrapolation.
The resulting wind shear reduction factor is usually low. We found out that the dependency of k on
the tilt angle α is low, and it varies more with the measurement height z. Based on the measurement
data used for this study, we calculated the average values for all height levels z and tilt angles α to be
k = 5.8%. We therefore assume that the effect of wind shear compensates for this amount of the effect of
changed scanning geometry. The effect of wind veer might increase the measured turbulence again to
some unknown extent. The effect is difficult to quantify, because wind veer involves dynamic changes
in the wind direction which lead to significant deviations from the figures-of-eight, as explained in
Section 2.3.2. However, we consider wind veer in the motion compensation algorithm that we present
in Section 3.2.

All three effects described in this section are fully independent of the line-of-sight averaging.
That means motion-compensated wind statistics will miss the same amount of turbulence due to
averaging along the lines-of-sight as their uncompensated counterparts. The time of approximately
20 ms—during which the backscatter is accumulated for each line-of-sight Doppler spectrum—is so
short that we assume the motion as static during this time.

Wolken-Möhlmann et al. [20] reported that the influence of rotation on the total error is stronger
than the influence of translational motion, and our study supports this finding. Our computations also
show that the error of shear and veer in turbulent fluctuations is nearly negligible, but its influence on
the mean wind speed might be significant.

3. Method

3.1. Emulation of Conventional VAD Processing

The method we use in this study aims at eliminating the three previously described errors: firstly,
by correcting the radial velocity measurements for the influence of the lidar translation; secondly,
by employing a set of linear equations in the wind vector reconstruction process that consider the
real azimuth and zenith angles; and lastly, by interpolating the mean wind speed and direction onto
the actual measurement elevation. The method requires access to the radial velocity measurements
for each line-of-sight. The ZX300M used for this study stores wind data on its internal hard drive by
default for each reconstructed wind vector (“Wind_xxx@Y20yy_Mmm_Ddd.ZPH,” 1 Hz files) and
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their average over a period of ten minutes (“Wind10_xxx@Y20yy_Mmm_Ddd.ZPH,” 10-min files).
None of these standard output file types contains the required information about the line-of-sight wind
velocities. We therefore used the software “WaltzTM” to stream the Doppler spectra of all line-of-sight
measurements to the hard drive of a connected computer. Files saved in this way have user-defined
filenames with the ending .RAW.ZPH and can be extracted to readable comma separated files via
Waltz. These files do not contain the radial velocities as such, but they contain the Doppler spectra
for each line-of-sight measurement. In order to estimate the radial velocities from the spectra, we
first calculated the mean and the standard deviation of the twenty bins of highest Doppler frequency
(“FFTBin236” to “FFTBin255”) for each line-of-sight measurement. We assume that these high speed
bins are not influenced by the wind under normal conditions but contain only noise. We then removed
this noise floor from all bins by setting all spectral values to zero that are smaller than six of the standard
deviations after subtracting the mean values from all bins. Of the resulting spectra we calculated
the centroid bin and multiplied it by 0.1528 ms−1 to get the radial velocities of each line-of-sight
measurement [21,22]. We know from Pitter et al. [23] that the internal data processing algorithms
are more advanced than what we describe here. It likely incorporates cloud detection and fog filters.
Parameters for both are not known to us and can therefore not be imitated. Instead we use the
unfiltered line-of-sight velocities.

Forty-nine line-of-sight measurements which were consecutively taken at one height level are
the data basis for the reconstruction of each wind vector. From the radial velocities vr and associated
azimuth angles θ, the three-dimensional wind data can be calculated by applying a least-squares fit to

vr = |A cos (θ − B) + C| (20)

where A, B, and C are parameters that contain the wind data according to

uhor = A/ sin φ

Θ = B± 180◦

uver = C/ cos φ.

(21)

The sign ambiguity of the wind direction results from the use of unsigned line-of-sight velocities.
It is resolved with the help of wind direction measurements of a local weather station, though flipping
the sign of the wind vector neither influences the mean wind speed nor the turbulence intensity. As a
next step, we compare the time series of wind data with the results of the internal data processing
(i.e., the “Wind_xxx@Y20yy_Mmm_Ddd.ZPH” files) and filter out all values that are marked with a
“9998” or “9999” flag by the ZX300. Wind data processed in this way were intended to be identical to
the internally processed wind data. But a comparison shows deviations that are stronger and more
frequent at higher elevation levels.

Figure 3 shows a scatter plot of TI values estimated from the time series of wind data of the floating
lidar system. The TIunc values on the x-axis are based on horizontal wind velocities reconstructed by
the internal data processing while the TIemu,unc values on the y-axis are based on our own processing of
the raw data, which emulates the internal processing. The figure shows an interval of±0.01 around the
1:1 line. 19%, 33%, and 50% of all TI values measured at 30 m, 100 m, and 250 m elevations respectively
lie outside of this interval. This indicates that the simple centroid method we use for finding radial
velocities deviates from the unknown method ZX lidar uses. An analysis of Doppler spectra which
underlie the wind vectors showing the strongest deviations shows often double peaks that might
indicate the presence of clouds. Therefore, we assume that the differences are mostly caused by
filtering and cloud detection on a line-of-sight level and describe how we circumvent this problem in
Section 3.4.
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Figure 3. Comparison of turbulence intensity (TI) estimates based on wind data time series from
internal data processing vs. emulated data processing. Only three height levels shown for clarity.
The dashed-dotted lines limit a ±0.01 interval parallel to the dashed y = x line.

3.2. The Motion Compensation Algorithm

The first challenge that must be addressed for applying motion compensation on a line-of-sight
level involves the signs of the radial velocities. Radial wind velocity estimates from the ZX300 are
unsigned. That means that air moving along a single laser beam away from the lidar cannot be
differentiated from air moving towards the lidar, and the radial velocity is positive in both cases.
In order to still be able to subtract the motion-induced velocity component, we must assign a sign to
each line-of-sight velocity. We do this by reading the wind direction of each reconstructed wind vector
and assigning a negative sign to the half of the line-of-sight measurements that point into the wind
direction Θ± 90◦. This method requires that the mean wind ~U determines the sign of the individual
line-of-sight measurements and not turbulent fluctuations ~u′. This is an assumption which might be
violated at azimuth angles that are close to orthogonal to the wind direction Θ. These sideways beams
hardly detect the mean wind but mostly the turbulence of the transversal and vertical wind velocity
components. Mann et al. [24] and Dellwik et al. [25] report that radial velocity estimates from these
directions are biased away from zero, and thus erroneous in any case. Additionally, in periods with
very low mean wind speed, the assumption that the sign of radial velocities is determined by the wind
direction could be violated. Here it should be noted that measurements of very low wind speeds are
often of minor interest due to low power production and low structural loads associated with low
wind speeds. Additionally, under unstable atmospheric conditions with high variance of the vertical
wind speed component, sign errors are more likely because the sensitivity for vertical fluctuations is
larger than the sensitivity for horizontal fluctuations because of the half-cone opening angle φ < 45◦.
The signed line-of-sight velocities can then be corrected for the influence of the buoy’s motion. First,
the motion measured by the MRU in all six degrees of freedom must be projected onto unit vectors that
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point into the lidar beam direction according to Section 2.2. The magnitude of this projection is equal
to the contribution of the motion to the radial velocity measurement, which we therefore subtract from
the line-of-sight estimate.

In order to compensate for the effect of the lidar being rotated around its default orientation
in roll, pitch, and yaw directions, the velocity–azimuth display wind vector reconstruction function
(Equation (20)) is replaced by solving the following linear system

vr1 − vLOS1
vr2 − vLOS2

...
vrN − vLOSN

 =

u
v
w




sin θr1 sin φr1 cos θr1 sin φr1 cos φ1

sin θr2 sin φr2 cos θr2 sin φr2 cos φr2
...

...
...

sin θrN sin φrN cos θrN sin φrN cos φrN

 (22)

for u, v, and w where N is the number of line-of-sight measurements contributing to one measurement
circle. Because N = 49 in most cases, the linear system is overdetermined and must be solved using
least squares. u and v are the two horizontal wind speed components oriented towards θ = 0◦ and
θ = 90◦ respectively. Their Pythagorean sum is equal to uhor and the angle they create is Θ. w is equal
to uver.

In order to compensate for the effect of wind shear and veer on the measurements, we determine
the change in elevation due to rotation according to

∆z = h
( eLOSθ,3

cos φ
− 1
)

(23)

for each line-of-sight. We must then interpolate the measured mean wind vectors ~U at all measurement
heights h to get a velocity profile ~U(z) that can be used to determine the resulting mean wind
difference vector

∆~U(z) = ~U(z)− ~U(z + ∆z) (24)

which we multiply by the line-of-sight unit vector~eLOSθ
to get the value we eventually subtract from

the measured line-of-sight velocity.

3.3. Time Synchronization

In order to correct the radial velocities for the influence of the motion, we must assign a timestamp
to each line-of-sight measurement. This timestamp must, first, be related to the timestamp of the
MRU, and second, be fine enough to resolve each line-of-sight measurement. In the default setup, two
different types of temporal information are contained in the lidar raw data output: “timestamps” and
“uptimems.” “Timestamps” contain information about date and time of each measurement, but they
are updated only once per second, which is too coarse in the context of wave motion. “Uptimems”
values, by contrast, assign a timestamp in milliseconds to each line-of-sight measurement, but these
values use a different clock independent of the clock used for “timestamps.” “Uptimems” values are
reset once the unit is switched off, and can therefore not be translated into date and time information
directly. We decided to combine the information of both variables as follows. First, we select the first
line-of-sight measurement of each day which has an updated “timestamps” but the same “reference”
value as the one immediately preceding. All line-of-sight velocities that are used for one wind vector
reconstruction have the same “reference” value. By using the same “reference” we avoid picking a
line-of-sight measurement that is the first after the lidar refocuses to a new measurement height, which
takes some unknown time. By doing so, we pick a line-of-sight measurement that was taken less than
approximately 20 ms after a new second of “timestamps” started. We then subtract the “uptimems”
value of this measurement from all “uptimems” values of the whole day. To create new timestamps
in milliseconds, we simply add the “timestamps” value of the selected measurement and these new
“uptimems” values. When we compare the “uptimems” data with the original “timestamps” data
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over a longer period, we find that while 24 hours of “timestamps” time passes, on average ≈ 1.2 s less
than 24 hours of “uptimems” time passes. That means that the newly created timestamps are finely
resolved but contain the same ≈ 1.2 s drift per day relative to the lidar’s system time. We will solve
this issue along with the synchronization of the MRU motion data and the lidar line-of-sight data.

Synchronization is crucial for successful motion compensation. The Doppler spectra of the lidar
are streamed to an embedded PC, and the motion data is saved by means of a data acquisition system
with a sample rate of 50 Hz. Both units are independently synchronized with a common GPS time
server, but they are not synchronized with each other. Therefore, we expect an offset between the
timestamps of the MRU and the lidar. To tackle this issue, we implement a method to synchronize
the two measurement devices. Its underlying basic assumption is that the motion of the buoy caused
by waves, current, and local wind is independent of the simultaneous wind vectors at measurement
height. From this assumption it follows that the motion-induced error described in Section 2.3 and
the current wind velocity are also independent variables. The turbulence measured by a floating lidar
in motion must therefore be larger than measurements with a fixed lidar of the same type. The ideal
motion compensation algorithm can reduce the measured turbulence down to exactly the level of
a fixed lidar if the timing between motion and lidar data is correct. A timing error must lead to
worse functionality; i.e., less compensation and consequently higher remaining turbulence. Due to the
periodicity of ocean waves, the compensation can even become negative if the timing offset equals half
the period length of the waves. In such a situation the algorithm would assume that the buoy is for
example moving upwards although the real motion is directed downwards. The motion compensation
would in that situation add turbulence instead of subtracting it. With these thoughts in mind, it is
now simple to find the correct timing between MRU and lidar data. We need to calculate the motion
compensation for different time lag values between MRU and lidar and determine the offset at which
the motion-compensated turbulence reaches its minimum.

Figure 4 shows the result of this procedure for an arbitrary ten-minute interval. The y-axis shows
motion-corrected standard deviation values of the horizontal wind speed σuhor averaged over all
measurement heights. The corresponding time lag between lidar and MRU timestamp is shown on the
x-axis. The absolute minimum is found at −0.16 s. This is the average offset between lidar and MRU
data for this ten-minute interval. The periodicity of the waves is visible, and leads to local minima
each separated by approximately 2.5 s. These local minima must not be confused with the absolute
minimum, which is the sweet spot we aim for.

Figure 4. Standard deviation of the motion compensated horizontal wind speed σuhor as a function
of timing offset between MRU and lidar data. σuhor is the mean of all height levels for one arbitrary
ten-minute interval. The absolute minimum at −0.16 s indicates the sweet spot that corresponds to the
real offset between the two datasets.
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Figure 5 shows this sweet spot for all ten-minute intervals we processed for this study. We see
the drift of approximately 1.2 s before the custom lidar timestamp is reset once per day, as described
earlier in this section. The drift seems to occur linearly, and a sweet spot is found for all intervals.

Figure 5. Timing offset at which the sweet spot from Figure 4 is found for all available
ten-minute intervals.

3.4. Data Handling

After applying the motion compensation algorithm, we have three different sets of horizontal
wind speed time series from the floating lidar. Of all three time series, we estimate TI according
to Equation (4). These are TIunc from the internally-processed uncompensated values as they are
stored in the 1 Hz files, TIemu,unc the values based on the emulated processing described in Section 3.1,
and TIemu,com from the motion-compensated time series. As shown in Figure 3, TIunc and TIemu,unc

are not identical. In order to get motion-compensated turbulence estimates from the floating unit
that are comparable to the internally-processed values of a fixed reference unit, we define the
motion-compensated turbulence intensities as

TIcom = TIunc − (TIemu,unc − TIemu,com). (25)

Effectively, the amount of motion-induced turbulence TIemu,unc − TIemu,com is deducted from
the uncompensated internally processed values to get compensated values that are comparable to a
reference lidar with the same internal data processing.

3.5. Instrumentation and Measurement Setup

In order to validate the performance of the motion compensation algorithm, we compare
measurements of the floating lidar with data from a fixed reference lidar. The validation campaign
took place between 04.04.2019 and 07.05.2019 close to Titran on the Norwegian island of Frøya.

The floating lidar system is a ZX300M (unit 593, filter version 1.061) by ZX Lidars (Ledbury, United
Kingdom) which is a vertical profiling, continuous-wave wind lidar. It is mounted on a SEAWATCH
Wind LiDAR Buoy by Fugro (Leidschendam, Netherlands). The buoy is equipped with an MRU 6000
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motion reference unit by Norwegian Subsea (Oslo, Norway) that measures the motion of the buoy in
all six degrees of freedom with an update frequency of 50 Hz. For land-based reference measurements,
a fixed ZX300 (unit 495, filter version 1.061) operating nearby onshore was used. The location of both
lidars is marked on the map in Figure 6.

37
0m

Figure 6. Map indicating the location of the floating lidar unit 593 and the land-based fixed reference
lidar unit 495. The elevation difference above sea level and the geometry of the measurement cones is
shown for all measurement heights. The selected offshore wind sector [135◦, 250◦] is indicated in dark
blue. (Map data adapted from www.kartverket.no).

Both lidar units are configured to measure the wind velocities at eleven heights, including the
fixed reference height of 38 m above ground. The ground elevation at the location of the land-based
reference lidar is 12 m above the mean sea level, and the window height is 2 m above the ground.
The floating lidar is located at sea level and its window height is 2 m above sea level. The measurement
heights are selected so that both lidars measure at ten identical elevations between 40 m and 250 m
above sea level, as shown in Figure 6. Validation tests such as described in Mark et al. [26] support
the assumption that lidar measurements with this setup are comparable for horizontal mean wind
speed and wind direction. Due to the 12 m higher elevation of the fixed reference lidar compared to
the floating lidar, its focus distances are slightly shorter for the same measurement height above sea
level. This results in reduced line-of-sight averaging and also a reduced diameter of the measurement
cone. The internal TI estimation of the ZX300 uses an empirical correction factor to make the lidar
derived TI values more comparable to values from cup anemometers [27]. This correction factor is a
function of measurement height and lidar measured TI. We do not apply this correction factor to our
TI estimates but we can use it to get an approximate idea of the impact of the reduced line-of-sight
averaging and reduced diameter of the measurement cone of the fixed reference lidar. We can take the
average value of TI = 5.0% that we measured with the fixed reference lidar during the measurement
period. The mean correction factor for all measurement heights is then 0.0086 higher for measurements
taken at 12 m higher elevations. From this we can conclude that we expect the floating lidar to measure
approximately 0.04% less turbulence intensity at comparable heights due to its longer focus length.
This is the only information we use the correction factor for in this study. All results shown in Section 4
of this paper are presented without application of the correction factor.

111



Remote Sens. 2020, 12, 898 17 of 29

To make a meaningful comparison of turbulence measurements at the two locations, it is important
to choose inflow wind directions in which the surface roughness is identical for both lidars. Thus, we
decided to include data from the southern offshore sector with the limits 135◦ and 250◦, as shown in
Figure 6. In this sector, no land is present within a radius of 6.4 km. Because this stretch of undisturbed
inflow is long compared to the distance between the two lidar units, we assume that both devices see
approximately the same turbulence.

3.6. Data Filtering

The measurement campaign consists of 4860 ten-minute intervals. However, as seen in Figure 5,
some data are missing due to irregularities in the required manual raw-data streaming, so only 4284
ten-minute intervals of raw data are available from the floating lidar. Before computations start, we
exclude intervals where for at least one height level the output in the ten-minute files is flagged with
either 9998 or 9999. These intervals are usually characterized by fog, very clear air with not enough
backscatter, or very low wind speeds. We also exclude intervals during which at least at one height
the measured mean wind velocity is below 1.5 ms−1, since they are of low relevance for wind power
and the wind vector reconstruction might be less accurate. Starting a new raw data file during one
ten-minute interval causes the raw data to be split into two files. We do not merge them but filter out
files for which less than 75% of the raw dataset is available. After this initial filtering, 3863 intervals
remain for data processing.

During processing of the remaining files, we check the internally-processed 1 Hz wind data files
for 9998 and 9999 flags and filter out each reconstructed wind vector which is flagged by the lidar
software. We also filter out all intervals for which the fixed reference lidar outputs a 9998 or 9999 mean
value for at least one height level. This keeps all intervals for which data are available from all height
levels from both lidar units. We then filter for inflow from the offshore sector [135◦, 250◦], leaving us
with a total of 889 intervals for comparison. Table 1 gives an overview of the wind conditions and
the motion states of the buoy during the observation periods that are included in the comparison
after filtering.

Table 1. Overview of wind conditions and motion state of the buoy during the periods that are included
in the results section. Wind conditions as measured by the fixed reference lidar.

Name Symbol Mean Min Max Std. dev. Unit

Mean wind speed U 7.2 1.4 22.1 3.2 [ms−1]
Turbulence intensity TI 5.0 0.6 41.6 3.7 [%]
Mean dynamic tilt angle α 2.91 0.62 8.73 1.84 [◦]
Mean tilt period Tα 2.51 2.11 2.70 0.10 [s]
Mean heave velocity |vheave| 0.13 0.03 0.41 0.08 [ms−1]
Mean heave displacement |δheave| 0.12 0.03 0.41 0.08 [m]

3.7. Measurement Uncertainty

We know of several sources of error that might lead to uncertainties in our results. During the
process of synchronizing the MRU and lidar data, we choose a time step of 40 ms in order to find a
good compromise between precision and computation time. For that reason, we expect that the sweet
spots shown in Figure 5 are on average 20 ms away from the correct values. In Figure 4 we see that the
resulting error has approximately a cosine shape with an average period of 2.5 s. We therefore expect
only a small statistical error of 1− cos (0.02× 2π/2.5) = 0.1% of the motion-induced TI due to this
timing error.

The manufacturer of the MRU has indicated an accuracy of the roll and pitch angle measurements
of ±0.02◦. Considering that the mean tilt angle is approximately two orders of magnitude higher, we
assume that the measurement error due to wrong tilt angles is below 1% of the rotation-induced TI.
The yaw angle error of the MRU is±0.5◦. A similar uncertainty should be expected from the alignment

112 Article 3: Taking the Motion out of Floating Lidar: TI Estimates with a CW Lidar



Remote Sens. 2020, 12, 898 18 of 29

between the lidar θ0 beam direction and the x-direction of the MRU. Both can result in increased
directional inaccuracy, which is not the object of investigation here. Uncertainties in surge and sway
velocities are unfortunately not specified by the manufacturer, but results from a hexapod test with
a JONSWAP motion spectrum with a peak period of 10 s and a significant amplitude of 0.5 m show
a velocity error of ±0.03 ms−1. Velocities in the heave direction are expected to have a smaller error
due to the well-defined zero baseline, which corresponds to an error of up to 0.4% of the TI induced
by translation at a horizontal mean wind speed of 7.2 ms−1. We can conclude that the accuracy of the
MRU is well-suited to the task, and we expect less than 1.5% combined systematic error due to timing
and precision of the motion measurement.

Strong statistical uncertainty arises from the test setup with two lidars measuring at two locations
separated by 370 m. In most cases, the mean wind direction is not aligned with the separation distance.
We assume that the wind vectors at both locations are independent. In addition, the lidars do not
sample the wind continuously. Measurement at eleven height levels plus the time required to refocus
the laser beam result in on average only N = 37 samples for each height during one ten-minute interval.
In the results (Section 4.5), we will quantify the statistical error of this slow sampling of independent
wind vectors with lidar devices to approximately 40% of the measured TI. We must therefore assume
that even if the motion compensation algorithm were to work perfectly, a high amount of scatter would
be found between the values measured by the fixed land reference lidar and the motion-compensated
floating lidar.

4. Results and Discussion

4.1. Mean Wind

Correct measurements of the mean wind velocity are an essential prerequisite for valid estimates
of TI. We therefore refer to Figure 7 which shows the average horizontal mean wind speeds for all
intervals included by measurement height. The mean wind speed of all measurements included
in the data comparison is 7.15 ms−1. The floating lidar measures on average 0.5% percent lower
wind velocities. When motion compensation is applied, the error is reduced to 0.2%. Most of this
deviation is found in measurements at elevations between 80 m and 120 m. It is difficult to say if the
real wind speed is absolutely identical at all elevations at both measurement locations. It is possible
that the small change in ground elevation between the two lidar units leads to a small speed up or the
increased surface roughness results in slowing the wind down slightly. Overall we conclude that the
two measurement locations are comparable in terms of horizontal mean wind velocity, as previously
reported [26], and that the motion compensation algorithm has a small influence that appears to
improve the mean wind velocities.
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Figure 7. Average of measured horizontal mean wind velocities from the floating lidar with (red)
and without (blue) motion compensation, as well as from the fixed reference lidar (green), sorted by
measurement height.

4.2. TI Profile

Figure 8 shows that the reference lidar measures an average value of TIref = 5.00% across all test
intervals. This TI value might seem low when compared with other offshore wind data. However,
the ZX lidar TI correction factor of, in this case, 1.37 that we did not include in our results would lift the
values to what we would expect from an offshore site [28]. Looking at TIref at different height levels,
we observe a characteristic profile with higher turbulence close to the ground, which creates turbulence
from uniform shear. TI decreases for increasing height and reaches its minimum at around 120 m.
For the highest elevation at 250 m, measured TI increases again slightly. Such a behavior has been
reported by Svensson et al. [29]. We think this could be due to lower Doppler signal quality at high
elevations that lead to an increased standard error of the wind vectors and thus higher TI estimates.

The floating lidar without any compensation measures a mean TIunc = 7.37%. The shape of
the profile is similar to the reference profile, but all values are on average approximately 50% higher
due to motion-induced turbulence. The motion compensation reduces the TI estimates to a level
of TIcom = 5.01%, which is very close to the reference value and equals a motion reduction factor
of 99.8%. Overall, the TIcom profile follows the TIref profile. The bar plots in Figure 8 visualize the
amount of motion-induced TI in two ways: first, we present the difference between the uncompensated
floating TIunc and fixed TIref measurements (green); second, we show the amount of motion-induced
TI detected by the algorithm (red), which is the difference between uncompensated floating TIunc and
compensated floating TIcom. Each pair of bars would have the same length if the motion compensation
algorithm were perfect and the measurements from both locations were fully comparable.
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Figure 8. Average TI for all measurements and sorted by measurement heights. Blue circle markers
indicate TI based on uncompensated measurements from the floating lidar. Red cross markers show
corresponding values with motion compensation. Green square markers stand for values from the
land-based fixed reference lidar for comparison. Bar plots show the motion-induced TI as the difference
between measurements with the floating lidar and the fixed lidar (green) compared to the amount of
motion-induced TI detected by the algorithm (red). The number of available measurement values at
each height is given.

We will now analyze the motion-induced TI at all but the highest elevation, which we will analyze
later. The lengths of all bars representing measured motion-induced TI at heights from 40 m to 200 m lie
in a narrow band of [−5%;+9%] around the mean of all heights marked by the horizontal dotted line.
The measured motion-induced TI values show above-average values from 60 m to 140 m. These height
levels coincide with where we measured lower values of mean wind speed from the floating lidar (see
Figure 7). We can show that the lower mean wind speed is responsible for approximately half of the
deviations from the mean measured motion-induced TI. With this correction in mind, we can say that
motion-induced TI is only weakly dependent on measurement height, with a slight tendency towards
lower values at high elevations. This suggests that rotational motion, as described in Section 2.3.2, is
dominant compared to the contribution of translational motion described in Section 2.3.1. Rotational
motion contributes velocity variance proportional to the mean wind speed. Because TI values are
normalized by the mean wind speed, the influence of rotation on the results has to be identical at all
measurement heights. By contrast, translational motion introduces an identical amount of velocity
variance at all heights, which results in lower motion-induced TI values at greater heights, where the
mean wind speed is faster. The effect of wind shear and veer described in Section 2.3.3 can be different
at each height, but we consider it to be of minor importance.

The motion-induced TI detected by our algorithm is very similar to the measured values, especially
when the remaining differences in mean wind speed from 80 m to 120 m are taken into consideration.

As mentioned before, the fixed reference lidar measures slightly higher TI at its highest
measurement level, 250 m, which could be caused by weak backscatter signal quality at this elevation.
The floating lidar shows the same effect but to a smaller extent. It seems that although both lidars
are of the same type, the error caused by low backscatter at the highest elevation affects the reference
lidar more than the floating lidar. This would explain why the measured, motion-induced TI is
erroneously low compared to the value our algorithm calculates. If this explanation is correct,

115



Remote Sens. 2020, 12, 898 21 of 29

the overall TI measured by the reference lidar is a bit higher than what we measure with a perfectly
motion-compensated floating lidar. Additionally, the shorter focus lengths and reduced measurement
cone diameters lead to slightly increased TI values from the reference lidar, as shown with the
help of the correction factor in Section 3.5. In this case, both effects combined seem to outweigh the
imperfections of the motion compensation nearly exactly, which explains the 99.8% overall performance
of the motion compensation algorithm.

4.3. TI vs. Velocity

In order to find out if the motion compensation algorithm works similarly well under the
influence of varying mean wind conditions, we look at Figure 9. The TIref estimates measured
by the land-based reference lidar gradually decrease with increasing wind velocity. At the lowest
wind speeds, the turbulence is dominated by thermal effects that do not increase with wind speed
proportionally [15]. TI therefore decreases at increasing wind speeds. However, for the strongest wind
speed bin, TI is slightly higher again, which can be explained by the increased surface roughness of
the wavy sea [28]. The increasingly rough sea state at increasing wind speeds is represented in the
figure by the gray and blue markers that indicate the measured mean tilt amplitude and mean velocity
of the buoy, respectively.

Figure 9. TI from all measurement heights binned by mean wind velocity. Legend as in Figure 8 plus
markers for the mean tilt amplitude α and mean translational velocity v that scale with the right hand
side y-axis.

The floating lidar shows higher TI values. We see that at low wind speeds < 4 ms−1 the
measured motion-induced TI is slightly higher than at intermediate wind speeds between 4 ms−1

and 7 ms−1, although the motion parameters tilt amplitude and translational velocity are the lowest.
The reason is probably that the translational motion is more important for the total motion-induced
TI at very low wind speeds. As an example, we can imagine two cases in which the amounts of
translational and rotational motion are identical but the mean wind speed is different. The identical
amount of translational motion leads to the same amount of measured velocity variance but higher
motion-induced TI in the low wind speed case. The identical amount of rotational motion leads to an
increase in velocity variance that is dependent on the wind velocity, and therefore leads to the same
amount of motion-induced TI. Taken together, motion-induced TI is higher for the low wind speed
case. In our lowest wind speed case, the amount of motion is lower than for higher wind speeds, but it
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is not as low as it would need to be to compensate for the effect we just sketched out. At higher wind
speeds above 5 ms−1 motion-induced, TI increases with wind speed due to the dominance of the effect
of rotational motion.

When the TI of the land reference lidar is now compared to the motion-compensated TI of the
floating lidar, we see overall good agreement, which means that the motion compensation algorithm is
able to correct for motion under all tested wind conditions. The strongest deviation is found for the
lowest wind velocities, where the actual TI reduction is underestimated by the motion compensation
algorithm. The reason could lie in how we assign a sign to the radial velocities. As described in
Section 3.2, the risk of assigning the wrong sign is higher for low wind speeds. With the wrong sign
assigned to some radial velocities, the motion compensation does not work correctly. This could explain
why we under-compensate the motion during low wind phases. Further investigation, e.g., with
in-situ anemometry, is required to test this explanation.

At high wind speeds above 10 ms−1 the algorithm slightly overestimates the amount of
motion-induced TI. Such high mean wind speeds appear jointly with high tilt amplitudes. In the next
subsection we provide a detailed analysis of this error.

4.4. TI vs. Tilt Angle

Figure 10 shows the TI values binned by mean tilt angles. TI measured by the land-based reference
lidar lies between 3.5% and 6.3%. Low tilt angles are correlated with high TI values via low wind
speeds. High tilt angles are also correlated with high TI values via rough sea states. It is therefore not
surprising that we do not see a systematic trend in the fixed reference lidar measurements.

The floating lidar overestimates TI. The extent of this overestimation is strongly dependent on the
tilt amplitude. Strong motion leads to measurements of high motion-induced TI. When the mean tilt
amplitude is below α < 1◦, the measured motion-induced TI is only 0.04%, which seems unrealistically
low in comparison to the value of 0.63% measured for 1◦ < α < 1.5◦. The reason could be that the
reference lidar always measures slightly higher amounts of TI compared to the floating lidar due to its
elevated location and lower measurement height above the ground.

Moreover, the motion compensation algorithm shows steadily increasing motion-induced
turbulence intensities for increasing tilt angles. However, while it slightly underestimates the real
conditions in most cases, an overestimation of the motion-induced turbulence is found at high tilt
angles α > 5◦. We suspect that deviations between the lidar’s internal data processing and the
results of our emulated processing correlate with the overestimation of motion-induced TI. We
therefore included the relative deviation of the mean wind speeds from internal processing Uunc and
emulated processing Uemu,unc into Figure 10 and see that the highest emulation error coincides with the
overestimation of motion-induced TI at high tilt amplitudes. A high emulation error is probably due
to the presence of clouds or fog that are handled differently by internal and emulated data processing.
Nearly all of the 100 intervals in the high tilt bin are shown in the strong motion example given in
Figure 11, which we will analyze next.
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Figure 10. TI from all measurement heights binned by α, the mean tilt angle of the buoy. Legend as in
Figure 8 plus markers for the horizontal mean wind velocity U and the relative emulation error ε that
refer to the right hand side y-axis.

4.5. Individual Error Analysis

All 889 intervals that contain measurements of 10 comparable height levels are shown in Figure 11a.
The figure depicts the difference between the TI values of the floating lidar and the fixed reference lidar.
These differences are the measurement error of the floating lidar with regard to the fixed reference
lidar. In accordance with the color scheme used for the profiles in Figures 8–10, the errors of the
uncompensated lidar are marked in blue, and the values of the compensated lidar are marked in
red. The degree of transparency of each marker represents the measurement height at which the
corresponding values are taken. Increasing transparency means increasing height. In addition to the
individual values, the moving means over 30-minutes of data are also plotted. Positive values mean
higher TI measured by the floating lidar. In gray, the mean tilt amplitude α is also plotted, which is a
good indicator of the error of the uncompensated floating lidar.

We see clearly that the biggest errors are found where the tilt angle is highest. Subfigure b to the
left under the main plot zooms into this strong motion case with a mean tilt amplitude of α > 5◦. TI
measured by the uncompensated floating lidar is much higher than the reference measurements for
nearly all intervals. However, around intervals 375, 422, and 437, they drop significantly, and at interval
452, the turbulence measured by the floating lidar without any compensation is even lower than the
measurements from the fixed reference. This is even more surprising when considering that the mean
tilt amplitude during these intervals is always > 5◦. We must therefore assume severe measurement
issues in one or both of the lidars. This assumption is supported by finding high emulation errors at
the same time intervals. This emulation error marked in yellow is, as explained before, an indirect
measure of the amount of filtering or cloud detection in the internal data processing of the floating
lidar. The values of motion-compensated TI in the proximity of these four intervals (375, 422, 437,
and 452) are on average below the reference line. We remember from Figure 10 that the strong wind
case which we look at here is characterized by overcompensated motion. But now it appears that
the error does not lie in the motion compensation but might already be contained in the turbulence
measurements of one or both of the lidar units. To strengthen this hypothesis, we now look at the test
cases with low motion where α < 1◦, shown in detail in the next subfigure.
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Figure 11. Top: (a) Overview of the individual error between TI measured by reference lidar and
uncompensated floating lidar (blue) and compensated floating lidar (red). Bottom: Close up view of
two examples of the plot above where the motion-induced turbulence is particularly high (b) and low
(c). (d) Probability density functions (PDF) of the error

The intervals in Figure 11c are in general characterized by a low error between floating and fixed
lidar measurements visible by the floating mean lines fluctuating around zero. The effect of applied
motion compensation is so low that both lines often overlap, which is reasonable, since the mean tilt
amplitude is always very low with an average value of α ≈ 0.8◦. Around interval 779 the TI error
suddenly jumps to 3% for both the uncompensated and the compensated cases, which have nearly
identical values. The cause of this significant error becomes clear when the 10-min mean values of TIre f
of the fixed reference lidar (green lines) are compared with the TIunc of the uncompensated floating
lidar (blue lines with markers). During interval 779, the floating lidar measures much stronger TI
values than the reference lidar. We think that the discrepancy between these two measurements cannot
be caused by the very low motion of the floating lidar. Instead, we assume that it is caused by poor
signal quality of the floating lidar in this particular situation. We cannot test this hypothesis, but it
is supported by the high level of activity of the filter in the floating unit just before and after the
suspicious interval.

The low motion case can be used for a second purpose, which is the approximate estimation of the
scatter resulting from measurements with two lidars at two different locations that take a low number
of samples per ten-minute interval (N ≈ 37). The average TI measured by the reference lidar during the
low motion case is TIref,low = 5.1%. The turbulence conditions are thus representative of the complete
studied dataset (TIref = 5.0%). The motion-induced TI for the low motion case according to the motion
compensation algorithm is just 0.2%. This value is so low that we now assume that the uncompensated
measurements from the floating lidar during the low motion case are comparable to measurements
from a fixed lidar. The error we find between the floating lidar and the fixed reference must therefore
be caused by the measurement setup. We calculate the standard error of the uncompensated samples
in the low motion case to be σerr,unc,low = 2.0%. This means the statistical error involved in sampling
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independent wind vectors with two lidar devices and only 37 measurements per ten minutes is
2.0%
5.1% ≈ 40% of the measured TI. Expressed differently, this means that 2.0%

2.5% ≈ 80% of the total standard
error we find in the compensated data for the entire campaign (σerr,com = 2.5%) is caused by the
measurement setup.

The histogram plotted in Figure 11d shows the probability density function of all individual
samples of the error between floating and reference lidar for uncompensated (blue) and compensated
(red) measurement data. While the uncompensated values show a bias of µerr,unc = 2.37% and a
standard deviation of σerr,unc = 3.16%, the compensated values show a bias of only µerr,com = 0.01%
and a standard deviation of σerr,com = 2.54%. Uncompensated values have a positive skewness of
serr,unc = 0.42. The motion compensation reduces this positive skewness and results in serr,com = 0.22.
The remaining skewness can be explained by the possibility for TI values to theoretically be infinitely
high but not negative. This limitation explains the skewness, which means that high positive error
values are more likely than high negative error values.

The analysis of the TI error leads to the conclusion that the biggest errors found between the
motion-compensated TI values from the floating lidar, and the TI values from the reference lidar are
likely not caused by an insufficiency of the motion compensation but rather by measuring TI with two
different units at two different locations. A longer dataset would probably mitigate the resulting effect
on statistical TI profiles like Figures 9 and 10.

4.6. Scatter Analysis

Figure 12 shows a scatter plot of the results. For each single TI measurement from each
measurement height, we plot the value of the floating lidar on the y-axis and the value of the fixed
reference lidar on the x-axis. The uncompensated data pairs are, as before, marked in blue, while
the results after compensation are shown in red. Additionally, here, the degree of transparency of
each marker represents the measurement height. Because all three datasets were acquired using
the same lidar measurement technology, we can assume that the reference values from the fixed
land-based lidar have significant uncertainty as high as the uncertainty of the floating lidar with
perfect motion compensation. We therefore decided to add Deming regression lines with λ = 1
according to Adcock [30] that are characterized by having minimized squared perpendicular distances
from the data points. This orthogonal regression avoids the positive offset and slope < 1 found when
conventional linear regression is applied to data with similar uncertainty for x and y values [31]. Data
pairs from a perfectly motion-compensated and a fixed lidar would be scattered around the y = x
diagonal line (black dashed line). It is apparent also from the scatter plots that the uncompensated
TI estimates of the floating lidar are too high, as most blue markers lie above the y = x line. This
overestimation of TI or positive turbulence intensity error appears to be nearly constant across the
entire range of turbulence intensities contained in the dataset. The blue regression line shows an offset
of 2.2% for very low turbulence cases. With its slope of 1.04, it reaches an error of 2.6% for TIref = 10%
where the data density is too low for statistically relevant conclusions. The standard error of the
regression line is σ = 0.16.

The red markers representing the compensated floating lidar results versus the reference lidar
also show high scatter of σ = 0.13, which is nearly centered around the y = x line. The determined
offset at the origin is only −0.03% and the slope of 1.01 leads to an error of motion-induced turbulence
of 0.07% for cases with TIref = 10%. Due to the minimization of the quadratic distances, the influence
of data points with high scatter is overrepresented in the calculation of the regression lines. But a
repeated analysis that excluded all TI values > 10% showed a regression line with a slope of 0.98,
an offset of 0.1%, and σ = 0.08. These values predicted by the linear regression model are very good.
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Figure 12. Scatter plot of turbulence intensities from the floating lidar uncompensated (blue) and
compensated (red) vs. from the land-based reference lidar. Deming regression lines are given in
corresponding colors. The equations of the regression lines and their standard deviations are listed.
The black dashed line is the y = x line. Some datapoints lie outside the plotted area.

5. Conclusions

We show that estimates of TI measured by a floating VAD scanning continuous-wave wind lidar
are comparable to those of a fixed land-based reference lidar of the same type when implementing an
algorithm to compensate for the motion of the floating lidar at the line-of-sight level in all six degrees
of freedom. A comparison of mean values of TI shows good agreement between motion-compensated
measurements from a floating lidar and a fixed reference lidar for a wide range of mean wind speeds
and buoy tilt angles. Strong scatter caused by the low sampling rate of the reconstructed wind vectors
at each measurement height is present in the results due to the high number of scanned elevation levels
(eleven), which results in a low number of samples per ten-minute interval. Additionally, the relatively
wide spatial separation between the floating lidar and the land-based reference lidar (370 m) increases
the expected amount of scatter. All reported TI values are lidar-measured. We expect them to deviate
from the real TI values and in this study do not try to assess or improve the capability of profiling
wind lidars to measure turbulence.

Successful motion compensation requires reliable time synchronization between motion data and
lidar data. We achieved this by computing the motion compensation within a range of time lags and
selecting the offset that results in the strongest reduction in measured wind velocity variance. A more
native solution, e.g., by increasing the resolution of the timestamp information of the lidar, would
be desirable. The method presented in this study requires access to the line-of-sight wind velocity
estimates of the ZX300 wind lidar. We therefore saved Doppler spectra measured by the unit on a
connected PC. This prevents the presented method from being applied on existing ZX300 data without
stored line-of-sight data. To determine the line-of-sight velocities from the Doppler spectra, we employ
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a simple centroid method which deviates from the internal data processing that we do not have access
to. To still get reliable motion-compensated turbulence information, we subtract the motion-induced
TI calculated by our own processing from the values estimated by the lidar’s internal data processing.
It would be advantageous if the internally processed line-of-sight velocities were available for motion
compensation by default, as is the case for example for the Windcube by Leosphere (Saclay, France).
Moreover, the availability of signed line-of-sight velocities would help to improve the accuracy of
motion compensation. Suggestions on how to determine the direction of the radial velocities measured
by continuous-wave wind lidars can be found in [32,33].

Further research should analyze measurements of a floating and a closely collocated fixed lidar
that simultaneously measure at only one height level. Such a setup would result in much smaller
statistical error and would perhaps make a time series comparison useful. Applying the method
presented here to a Doppler beam swinging wind lidar, such as the Windcube, could be a different
option for further work. This lidar type outputs its internally processed line-of-sight velocities by
default, but the accumulation time spent in each beam direction must to be considered when processing
motion data.
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Abbreviations

The following abbreviations are used in this article:

LOS Line-of-sight
MRU Motion reference unit
NWU North-west-up
Res. Resonance
Rot. Rotational
Std. dev. Standard deviation
TI Turbulence intensity
Transl. Translational
VAD Velocity–azimuth display
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