
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Fast divergence-conforming reduced basis methods for stationary and
transient flow problems
To cite this article: E Fonn et al 2020 J. Phys.: Conf. Ser. 1669 012031

 

View the article online for updates and enhancements.

This content was downloaded from IP address 129.241.230.238 on 05/11/2020 at 11:49

https://doi.org/10.1088/1742-6596/1669/1/012031
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssbv9L2DakoQXO83hRo5OiNXgVg6VoC4IOWi-5gPf9hYA62cTxl8kjt-2Vt3Q3GRqPWqQvFu1XUGPop3J8sJK0hjSu30EPzxteFHa_FqyRlQUkl_KpVJpk8Hq7oQIVM_UtJI7HfF_NWNceF4YBH0ngVVLpZTgwxs0n6TeBwyBudWQPt54yPWg8Eog2wX-uAZ_XtnSBjfIqkqR4teMT5M3SVa_lI3d-JaqVgcNIqNo-AuYl9THWH&sig=Cg0ArKJSzGoSx-txhX4I&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

EERA DeepWind'2020

Journal of Physics: Conference Series 1669 (2020) 012031

IOP Publishing

doi:10.1088/1742-6596/1669/1/012031

1

Fast divergence-conforming reduced basis
methods for stationary and transient flow problems

E Fonn1, H van Brummelen2, T Kvamsdal1,3 and A Rasheed1,4

1 Department of Applied Mathematics and Cybernetics, SINTEF Digital
2 Department of Mechanical Engineering, Eindhoven University of Technology
3 Department of Mathematical Sciences, Norwegian University of Science and Technology
4 Department of Engineering Cybernetics, Norwegian University of Science and Technology

E-mail: eivind.fonn@sintef.no

Abstract. Reduced basis methods (RB methods or RBMs) form one of the most promising
techniques to deliver numerical solutions of parametrized PDEs in real-time with reasonable
accuracy [1]. For the Navier-Stokes equation, RBMs based on stable velocity-pressure spaces do
not generally inherit the stability of the high-fidelity method. Common techniques for working
around this problem (e.g. [2]) have the effect of deteriorating the performance of the RBM in
the performance-critical online stage.

We show how divergence-free reduced formulations eliminates this problem, producing
RBMs that are faster by an order of magnitude or more in the online stage. This is most
easily achieved using divergence-conforming compatible B-spline bases, using a transformation
that can maintain the divergence-free property under variable geometries. See [3] for more
details.

We also demonstrate the flexibility of RBMs for non-stationary flow problems using a
problem with two stages: an initial, finite transient stage where the flow pattern settles from
the initial data, followed by a terminal and infinite oscillatory stage characterized by vortex
shedding. We show how an RBM whose data is only sourced from the terminal stage nevertheless
can produce solutions that pass through the initial stage without critical problems (e.g. crashing,
diverging or blowing up).

1. Introduction
Conventional methods for simulating partial differential equations include well-established
techniques such as Finite Volume Methods (FVM), Finite Difference Methods (FDM) and Finite
Element Methods (FEM). Common to all of these methods is the large number of degrees of
freedom that is typically required to accurately model a physical system, often numbering in
the millions or billions. Given the good and well-established approximation properties of FVM,
FDM and in particular FEM, such models are usually classified as high-fidelity models. Problems
of this size are not generally possible to solve in practical timeframes except on specialized
hardware, and even then they may require several days of computing time. This prohibits the
use of high-fidelity models in time-critical on-site analyses, e.g. for developing predictive digital
twins [4].

This computational complexity is also at odds with the increasing demand for real-time
low-cost models for the repetitive solution of physical models in many-query scenarios. This
is particularly relevant in optimization, control systems, inverse and inference problems and
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uncertainty quantification. Common for many of these applications is that the model in question
is parametrized by a suitably small number of input parameters. It is often required to be able
to provide solutions in the sub-second regime.

Reduced-order modeling (ROM) provides a paradigm to address the aforementioned
challenges. ROM is a rapidly developing field [5]. The general aim of ROM is to replace
the original model with a reduced model of very modest computational complexity. Within this
general framework of ideas, one of the most promising is that of reduced basis methods (RBM).
This method dates back to the 1980s with work from [6, 7, 8, 9, 10, 11, 12]. Excellent modern
introductions can be found in [1, 13].

The fundamental concept of RB methods is to formulate the problem on a function space
with very low dimension, where the basis functions are tailored to the solution of the model
in the parameter regime of interest. In comparison, while e.g. FEM can boast well-established
asymptotic approximation properties, the approximation power per degree-of-freedom is clearly
limited. RB methods seek to construct a basis with optimal approximation properties for
the given class of solutions, under the premise that the cost of constructing the basis is
inconsequential. This premise arises because of the offline/online division. The offline stage,
where the basis is constructed, is run only once, the result of which is a RBM which can be used
in the online stage, to be run for each parameter query.

This paper is concerned with the application of a divergence-free RBM for Navier-Stokes
flow problems. This method is detailed in [3] for stationary flow problems, where significant
performance improvements were found relative to a traditional RBM with velocity, pressure and
stabilizing “supremizer” modes, as in [2]. Some of the theory and results from [3] is repeated
here.

Further, we aim to investigate the applicability of RBMs to non-stationary flow problems
characterized by multiple “stages”: a flow problem with a significant but finite “ramp up” stage
followed by a non-terminating flow pattern characterized by vortex shedding. In this context
we envision that the vortex shedding stage is of primary interest, and it is therefore desirable
to avoid including degrees-of-freedom which are sourced from the ramping-up stage. From an
approximation utility point of view, such degrees-of-freedom are costly and not beneficial. We
will demonstrate that an RBM whose solution space has been sourced only from the vortex
shedding stage is able to produce a time-stepping sequence that can robustly reach this stage.

2. Parametrized Navier-Stokes equations
We consider the non-stationary Navier-Stokes equations,

∂tu+ (u · ∇)u− ν∆u+∇p = f in [0, T ]× Ω, (1)
∇ · u = 0 in Ω, (2)

u = g on ΓD, |ΓD| > 0 (3)
−pn+ ν(∇u)n = h on ΓN, (4)

u(t = 0) = u0 on Ω. (5)

where ν is the viscosity, u, p are the unknown velocity and pressure, f , g,h,u0 correspond to
exogenous and initial data, Ω ⊂ Rd is the domain of interest with boundary ∂Ω = ΓD ∪ ΓN,
ΓD ∩ ΓN = ∅, n denotes the external unit normal vector, and T is the upper boundary in time.

The weak Galerkin formulation of the problem is to find (u, p) members of suitable function
spaces, such that for all (w, q), also members of suitable function spaces, it holds that

m(u̇,w) + a(u,w) + c(u,u,w) + b(p,w) = d(w), (6)
b(q,u) = 0, (7)
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where the linear, bilinear and trilinear forms m, a, b, c, d are defined as

m(u,w) =

∫
Ω
u ·w, (8a)

a(u,w) = ν

∫
Ω
∇u : ∇w, (8b)

b(p,w) = −
∫
Ω
p∇ ·w, (8c)

c(u,v,w) =

∫
Ω
(u · ∇)v ·w, (8d)

d(w) =

∫
ΓN

h ·w +

∫
Ω
f ·w. (8e)

In the following it will be assumed that all function spaces involved in this formulation are
closed under linear combinations. This is generally not the case, unless g ≡ 0, but the process
for transforming a non-homogeneous model into a homogenous one by the use of a lift function
is well known, see e.g. [3].

We now consider the case when the problem (1)–(5) depends on a number of parameters. We
will denote by P the parameter space, and by µ any given element of P.

The effect of varying parameters influences not only the solutions u and p, but also the weak
forms (8a)–(8e) directly. This is most obviously the case for example with physical parameters
such as the viscosity ν in (8b), data parameters such as g,h (the former entering (8a)–(8e) via a
parameter-dependent lift function), but one may also consider geometric parameters, where the
domain Ω itself may be transformed.

For geometric parameters, it is necessary to define a reference domain Ω̂, a mapping
χµ : Ω(µ) → Ω̂, and function space mappings for velocity and pressure,

πv
µ : [H1(Ω̂)]d → [H1(Ω(µ))]d, (9)

πp
µ : L2(Ω̂) → L2(Ω(µ)). (10)

Thus, for example, (8b) can be properly parametrized as

(π∗
µa)

(
û, ŵ;µ

)
= a

(
πv
µû, π

v
µŵ;µ

)
(11)

In this way, the entirety of (8a)–(8e) can be formulated as a parameter-dependent homogeneous
problem on a fixed reference domain, involving fixed, function spaces for velocity and pressure
which are closed under linear combinations. See [3] for further details.

3. Model order reduction
To apply the RB method, we first solve the high-fidelity Navier-Stokes problem for a suitably
large and varied choice of parameter instances µ. The resulting ensemble is then compressed
using Proper Orthogonal Decomposition (POD) [14] into a reduced basis which can be
represented as a tall matrix V of m columns, where each column represents one reduced basis
function.

The reduced system of equations can then be formulated. Given a high-fidelity model
represented as

A(µ)u(µ) = f(µ) (12)
where A(µ) and f(µ) are the discrete system matrix and right hand side arising from (6)–(7),
we make the assumption that the solution coefficient vector u(µ) can be written in terms of the
columns of V ,

u(µ) ≈ V ur(µ) (13)



EERA DeepWind'2020

Journal of Physics: Conference Series 1669 (2020) 012031

IOP Publishing

doi:10.1088/1742-6596/1669/1/012031

4

where the vector ~ur(µ) is the coefficient vector in the reduced basis. Since (12) is now
overdetermined, we can reduce the system from the left in a similar manner, effectively forming
a reduced Galerkin formulation.

V ᵀA(µ)V ur(µ) = V ᵀf(µ). (14)

For a modest number of reduced basis functions m, this system is small and quickly solvable.
However, unless certain assumptions on A and f are met, it may not be possible to quickly
assemble it. We call this the assumption of affine representations: that A and f can be written
in the form

A(µ) =

M∑
i=1

θi(µ)Ai, f(µ) =

N∑
i=1

ξi(µ)fi. (15)

This allows us to compute all matrices V ᵀAiV in the offline stage, whence

V ᵀA(µ)V ᵀ =
M∑
i=1

θi(µ) [V
ᵀAiV ] (16)

is easily and quickly assembled in the online stage.
The assumption (15) is not always easily realized, especially when it comes to geometric

parameters. In many cases it may be necessary to approximate it with various interpolation
techniques, such as the Empirical Interpolation Method (EIM) [1]. For the model problems in
[3] the affine representation was produced with explicitly truncated series expansions.

4. Divergence-free reduced basis methods
It can be readily observed from (6)–(7) and (8a)–(8e) that if the velocity solution and test
spaces are fully divergence-free, the expressions involving the b-form vanish, and the continuity
equation is trivially satisfied. This desirable state of affairs is not easily realized with high-fidelity
methods, because generic divergence-free function spaces are difficult to make.

Isogeometric analysis (IGA) has recently come to the forefront in this field. While IGA
velocity basis functions are also not in themselves divergence-free, the method, more easily
than for classical finite element methods, allows the formulation of divergence-conforming
discretizations, which produce strongly divergence-free solutions [15, 16, 17, 18, 19, 20, 21, 22].

In a classic RBM setting, each basis function is a linear combination of weakly divergence-free
high-fidelity solutions, thus also weakly divergence-free. If, as with IGA, the high-fidelity method
can produce strongly divergence-free solutions, the reduced basis functions will also be strongly
divergence-free, so a velocity-only reduced formulation is possible. The pressure solution can be
recovered, if necessary, using supremizers [2] as a stabilizing velocity test space. The details for
this can be found in [3].

Divergence-free RBMs can be significantly faster than conventional RBMs, as we demonstrate
in Section 5. The reason for this is that the velocity solution can be achieved with the solution of
a linear system whose size is equal to the dimension m of the reduced velocity basis. If required,
the pressure can then be recovered through another Petrov-Galerkin linear system of size m
using supremizers as test functions. On the other hand, without divergence-free basis functions,
the full 3m× 3m system cannot be cleanly decoupled.

In case of parameter-dependent domains, it is necessary that (9) is divergence-conforming,
i.e. it maps divergence-free functions in one geometry to divergence-free functions in the reference
geometry. This is generally not the case for simple pullback transforms, but will be satisfied by
e.g. the Piola transform [3, equation (64)].
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u∞ ϕ

Figure 1. NACA0015 Airfoil: (Left) Sketch of the airfoil flow problem and its parameters.
Solid lines indicate Dirichlet boundaries, and dotted lines indicate Neumann boundaries. (Right)
Sample domain with ϕ = −π/4.

5. Numerical example: Stationary 2D flow around NACA0015 airfoil
The following example considers two-dimensional stationary Navier-Stokes flow around a
NACA0015 airfoil. Flow around such airfoils are relevant for harvesting wind energy, as cross
sections of wind turbine blades typically are at least partly composed of NACA airfoils. High
fidelity models using isogeometric finite elements have been developed in [23, 24].

The airfoil is suspended at the center of an “O”-mesh, and Uniform inflow velocity is applied
as a Dirichlet condition at the left semicircle, g = (u∞, 0). The airfoil has varying angles of
attack ϕ, realized by rotating the entire mesh through an angle that varies with the distance from
the center, in such a manner that the mesh deformation vanishes at the external boundary, as
seen in Figure 1. This is done in order to maintain the parameter-independence of the Dirichlet
and Neumann boundary sets ΓD and ΓN.

The parameters of interest for the RBM study is µ = (ϕ, u∞) with

P = {(ϕ, u∞) | ϕ ∈ [−35◦, 35◦], u∞ ∈ [1m/s, 20m/s]} .

The viscosity ν was fixed at ν = 1/6m2/s, and the airfoil has a chord length of 1m, giving an
approximate maximal Reynolds number of Re = 120.

Two discretizations were compared: a conventional Taylor-Hood method with quadratic
velocities and linear pressures, and a divergence-conforming discretization with mixed quadratic-
linear velocities and linear pressures. The latter method produces strongly divergence-free
reduced velocity basis functions, enabling the aforementioned divergence-free RBMs. The
derivation of affine representations for this geometry transformation is a nontrivial matter, out
of scope for this paper. We refer to [3] where this is performed explicitly as a truncated Taylor
expansion in ϕ.

For both discretizations, an ensemble of 225 snapshot solutions were generated on the
15 × 15 Gauss quadrature points in the parameter domain P.1 RBMs were then generated
with M = 10, 20, 30, 40, 50 basis functions for each of the reduced bases, giving a total of
1 The generation of an RBM using snapshots on a parameter space is theoretically equivalent to minimizing the
integral of an error expression by substituting the integral with a quadrature expression, see [1]. For this reason,
it is suitable to sample the parameter space at the Gauss points.
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Figure 2. NACA0015 Airfoil: Measured mean relative error as a function of mean time usage
(in seconds), for velocity (H1-seminorm) and pressure (L2-norm). The markers correspond to
m = 10, 20, 30, 40, 50 degrees of freedom in velocity and pressure separately. The time reported
includes both the velocity solution and the pressure recovery or reconstruction, as appropriate.
At an error level of ∼ 1% the divergence-free method has a speedup factor of ∼ 10×. Bottom
left is better.

m = 30, . . . , 150 degrees of freedom in total, corresponding to M each for velocity, pressure and
supremizers, the latter of which play the role as a stabilizing space. The performance of the two
discretizations was evaluated on a set of 15×15 uniformly spaced points in the parameter space,
chosen so as to avoid the parameter values used to generate the ensemble.

For evaluating an RBM, the principal quantity of choice is the mean relative error, defined
as the mean expected relative error between the high-fidelity solution and the reduced solution,
as taken over a suitably dense sampling of the parameter space.

Figure 2 shows the true mean relative error as a function of online solver time. This reveals the
divergence-free reduced basis method to be significantly faster for comparable accuracy, because
it allows a velocity and a pressure solution to be found through one m×m linear system each,
rather than a full 3m × 3m linear system as with conventional methods. At an error level of
roughly 1% the divergence-free RBMs are already faster by a factor of about 10, which can be
extremely valuable in the time-sensitive online stage.

Finally, Table 1 shows the mean wall-time taken for a high-fidelity or reduced solution for
both methods. This again highlights the significant speed improvements achievable with RBMs,
but also how quickly they can deteriorate as the reduced basis grows. The divergence-conforming
method scales much better in terms of reduced degrees-of-freedom.

6. Numerical example: Transient 2D flow around a cylinder
The purpose of this section is to argue for the viability of limited reduced bases for non-stationary
flow problems. The model problem is flow around a cylinder at Re = 100 without any parameter-
dependence other than time. This is a setup that is known to produce vortex shedding, as seen
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Taylor-Hood Conforming
Time Speedup Time Speedup

Hi-Fi 39 s 110 s

m = 10 16ms 2400 10ms 11000

m = 20 79ms 490 17ms 6500

m = 30 290ms 130 32ms 3400

m = 40 750ms 52 61ms 1800

m = 50 1.6 s 24 100ms 1100

Table 1. NACA0015 Airfoil: Mean timings and speedup factors for the Taylor-Hood and the
divergence-conforming methods for different numbers of reduced degrees-of-freedom.

Figure 3. 2D cylinder flow: Vortex shedding in the wake of the cylinder at Re = 100. High-
fidelity solution on the left, and an RBM with m = 10 degrees of freedom on the right. The
coloring is according to flow speed magnitude.

in Figure 3.
Typically it takes several timesteps before a simulation reaches the stage where vortex

shedding occurs continuously without significant variation over time scales other than the
primary shedding frequency. We call this the terminal stage, and we propose that this is the stage
of primary interest in many RBM applications. For example, in optimal design applications,
one is generally interested in optimizing for the long term behaviour of a system. In contrast,
the time steps before reaching the terminal stage, which we shall call the initial stage, are often
of limited interest.

When designing an RBM for a non-stationary problem it is necessary that the reduced basis
provides sufficient approximative power in every stage. If the solution at the end of the intial
stage is poor, it is natural to imagine that no value can be found in the solution for the terminal
stage. One would conclude, therefore, that a successful reduced basis must account for degrees-
of-freedom from both stages. In this case, however, the vortex shedding behaviour develops
naturally from almost any initial condition. We argue that, in the application context previously
introduced, if an RBM can reach the terminal stage in any state whatsoever from which vortex
shedding can develop, such a method is equally as powerful as an RBM with full approximative
power for every stage.

In the following example, we performed a high-fidelity simulation around a cylinder of
radius 1m with an inflow velocity of u∞ = 1m/s at timesteps of ∆t = 0.5 s. The viscosity
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Figure 4. 2D cylinder flow: Long-term evolution of the drag force of limited RBMs in the intial
stage, as compared to the high-fidelity method.

was fixed at ν = 1/100m2/s giving a Reynolds number of Re = 100. After vortex shedding
stabilized, we collected 500 snapshots. Thus, no snapshots were collected from the initial stage.
As an initial condition, we used the stationary Stokes flow solution.

Figure 4 shows the behaviour of the drag force on the cylinder from four reduced models
compared to the high-fidelity method. We can see that the RBMs behave very differently in the
initial stage, and remain there for many more timesteps, but that they all reach the terminal
stage in due time, and that the drag force as reported by the reduced methods correspond well
to that reported by the high-fidelity method.

The timing results for this example are comparable to those in Table 1 per timestep, with
the caveat that the RBMs take 4–6× as many timesteps to reach the terminal stage. The
practical speedup factors are therefore about 600 for the Taylor-Hood method, and 2800 for
the divergence-conforming method at m = 10. For higher numbers of degrees-of-freedom, the
deterioration accelerates because of the tendency for larger RBMs to take longer to reach the
terminal stage, as seen in Figure 4. It is therefore of particular importance that the divergence-
conforming method has good performance characteristics for large m. It is also possible to use
a smaller RBM for the initial stage, only expanding the solution space once the terminal stage
is reached. Since reduced bases of different orders are nested, such a technique would not be
difficult to implement.

7. Conclusions
We have demonstrated a significant advantage to using divergence-conforming high-fidelity
methods to produce divergence-free reduced basis methods. The resulting RBMs are
considerably faster (∼ 10×) in the online stage than conventional RBMs with comparable
accuracy (∼ 1% relative error). This is owing to the “decoupling” effect of divergence-free
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basis functions, allowing separate solutions for velocity and pressure with two smaller linear
systems, as opposed to a simultaneous larger system for both fields.

We have also shown that limited numbers of basis functions are suitable for non-stationary
applications where the primary interest lies in the stable long-term behaviour of the system, as
opposed to the intial stages. Snapshots can be sourced only from the terminal stage of interest
without regard for the initial stages.
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