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A B S T R A C T

An increasing number of ships are being equipped with sensors and devices for monitoring of operational
behavior, and the amount and access to operational data is gradually increasing. Due to various reasons
described in this paper, the operational data may contain erroneous data points that are critical to assess
prior to performing data analysis or building mathematical and statistical models. In this paper, a stepwise
method for preparation of data for ship operation and performance analysis is presented. The method deals
with removing jumps in the time series data, including loss of time synchronization between different
measurement subsystems, outlier detection, including repeated samples, dropouts and spikes and data selection
and extraction, including stationarity detection. The final result is a data set free from disturbances, distortions
and undesired physical effects, that can be used to improve the quality of a ship operation and performance
analysis.

1. Introduction

Ship operation and performance evaluation based on real ship
operational data, is gradually becoming more relevant as the amount
and access to operational data improves. The growing amount of
operational data is facilitated by an increasing number of ships being
equipped with sensors and devices for monitoring the operational
behavior. The complexity of the systems varies from simple systems
monitoring navigational variables such as position, speed, course and
heading, to more sophisticated systems monitoring fuel consumption,
propeller torque and/or thrust, propeller rpm, ship motions, rud-
der/azimuth angle, rotating machinery vibrations, heavy consumers
and even some weather parameters. Increasing amount and access to
large data sets of ships in operation is however not equivalent to a
better understanding of real ship behavior. At least, the researcher
should be aware of the data quality, but as the interest in data
processing increases, a more systematic view on the methods to handle
the data is required.

Over time, new techniques and tools for modeling have been de-
veloped, e.g. machine learning implementations such as deep learning,
which has changed and improved the capabilities of mathematical
and statistical modeling. However, what has not changed at all, being
almost a law of nature, is the so-called GIGO — garbage in garbage
out (Pyle, 1999, p. 23). That is, the quality of a data analysis will
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generally reflect the quality of the input data. Good data preparation is
therefore essential to practical modeling in the real world (Pyle, 1999,
p. 24). A related and widely used term is data preprocessing. (Pyle, 1999,
p. 112) introduced eight steps of data preparation, from the initial
activity of accessing the data to the final process of building the data
model. The overall purpose of data preparation is to transform data
sets in such a way that the information content is best exposed to the
modeling tool (Pyle, 1999, p. 122). In this paper, it is assumed that data
is available. This means that data is collected, but equally important
that the data is accessible to the user in terms of legal ownership,
data format and data connectivity. It is also assumed that the model
strategy is selected, i.e. that the user has knowledge of the most suitable
models to build for the ship operation and performance analysis. It
should however be noted that issues concerning data accessibility are
not so rare. Experience shows that lack of standards in terms of e.g. type
of sensor, sensor quality, sensor naming schemes, signal meta data
information, ship instrumentation and interfaces, data recorders, data
communication and data transmission highly limits the accessibility of
the data. Lack of standards or simply just ignoring available standards
during preparation for in-service monitoring might become particularly
challenging in a future signal interpretation, and will require a more
careful adaption of methods and procedures to new installations. Scarce
documentation of sensor quality with sensor descriptions and signal

https://doi.org/10.1016/j.oceaneng.2020.107730
Received 20 March 2020; Received in revised form 25 June 2020; Accepted 28 June 2020

http://www.elsevier.com/locate/oceaneng
http://www.elsevier.com/locate/oceaneng
mailto:oyvind.dalheim@ntnu.no
mailto:sverre.steen@ntnu.no
https://doi.org/10.1016/j.oceaneng.2020.107730
https://doi.org/10.1016/j.oceaneng.2020.107730
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2020.107730&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ocean Engineering 212 (2020) 107730

2

Ø.Ø. Dalheim and S. Steen

meta data information may lead to the final question whether or not it
will be virtually possible to prepare the data for analysis. Along with
entire fleets gradually becoming more digitized, standardization of ship
instrumentation is fortunately getting more and more attention, includ-
ing from ship classification societies and international federations with
international standards such as ISO15926 (ISO, 2011) and ISO19848
(ISO, 2018). Other relevant tools that have been developed are the
Functional Mock-up Interface (FMI), the SFI system and IMOs Common
Maritime Data Structure (CMDS) initiative. To further improve the
utilization of ship in-service data and to ease the process of preparing
vessels for in-service monitoring as well as maintaining sensors and
relevant instrumentation, a continued focus towards global standards
for in-service monitoring should be maintained. This will further en-
courage the objectives and ambitions related to the development of a
general data preparation toolbox.

Assuming data is collected and accessible, the data preparation
starts with selecting the signals that, according to the selected model
strategy, contain the required information for the analysis. In literature
this is referred to as feature selection or reduction of data width, that is
known to have a significant contribution to the overall computational
effort. With a subset of features in hand, it is further critical to ensure
that the data quality is sufficient, by identification and correction of
signal distortions and disturbances. Going from physical ship behav-
ior to a final data sample includes several steps, and the steps can
introduce various kinds of disturbances and signal distortions to the
data. First of all, each sensor has its individual quality in terms of a
range and accuracy specification, that sets the premises for capturing
the physical behavior and the level of sensitivity. From the physical
sensor or measurement device, the signal enters the transducer, which
converts the physical measurement into an electrical signal. The elec-
trical signal is further amplified using a signal amplifier. The signal
then goes through an analog-to-digital conversion (ADC), that samples
the analog signal from the sensor and converts it to a stream of binary
values. The stream of binary values finally enters the data logger. The
transducers, amplifiers, ADC and data logger form the components of
what is referred to as the data acquisition system (DAQ). All parts of
a DAQ can potentially introduce distortions and disturbances to the
data (Vaseghi, 2008). The most common distortions and disturbances
are excessive instrumentation noise, signal clipping, intermittent noise
spikes, temporary signal dropouts, power line pickup and spurious
trends (Bendat and Piersol, 2010). In addition to the concern regarding
the quality of each individual signal, unphysical relationship between
the signals may also be present. This happens particularly if the analysis
exploits data originating from multiple subsystems, and is seen as a
missing time synchronization or time delay of the signal (Swider and
Pedersen, 2017).

Use of operational data for modeling of ship behavior has to con-
sider to what extent all of the data, all of the time is suitable for doing
the intended analyses. Data depth, or just simply the length of the time
series, does not have quite the same impact on computational effort as
data width (Pyle, 1999, p. 120). Yet, more important, the subset of data
should reflect the relationships that the model tries to analyze. In this
paper, depth reduction is referred to as data extraction, indicating that
proper time intervals of the time series data are extracted from the com-
plete data set, to form intervals of data suited for the particular analysis
of interest. Data extraction is also known as splitting of data. For a
wide range of practical purposes for ship operation and performance
analysis, the data extraction deals with identification of stationary time
intervals. Other special cases can be extraction of port to port trips,
extraction of specific operational modes, engine configurations, severity
of weather parameters, etc.

It has been found that data preparation generally takes approxi-
mately 80% of the total data engineering effort (Zhang et al., 2010),
and in the recent literature, particularly in data mining applications,
there has been a more focused effort into data preparation. The research
emphasizes development of practical techniques and methodologies for

data preparation (Zhang et al., 2010). While literature puts effort into
data preparation as a complete process in relation to general data min-
ing approaches, there is limited literature on the details of preparing
ship monitoring data for analysis. A review of recent literature shows
that (Petersen, 2011) summarized some of the most important aspects
of the data preparation process for mining of ship operation data, with a
short presentation of asynchronously sampled data, missing values and
outliers and feature extraction. For further improvements, the authors
suggested to study the feature extraction process, as well as the data
extraction process considering window size relative to the application,
the selected models and features, in more detail.

Hansen (2011) presented an overview of the required steps from
data acquisition to statistical analysis of ship performance, including
discussion of sampling rate, stationarity, time synchronization and
spike removal. The descriptions of sampling rate, stationarity and time
synchronization were of a more general type. Regarding spike detec-
tion, a more detailed discussion was given, with instructions of two
methods to detect spikes in monitored ship data. A considerable amount
of material related to fault detection and fault tolerant systems has been
published by the control community, for ships particularly related to
control of general ship components (engine, propulsion system, rudder,
etc.). A fault tolerant system is characterized by inherent fault detection
procedures that initiate necessary decisions in order to prevent a further
propagation of their effects (Blanke et al., 2015). A virtual example of
fault detection developed for shipboard monitoring and decision sup-
port systems was presented by Lajic and Nielsen (2009). Nielsen et al.
(2012) summarized important findings on fault-tolerant monitoring and
decision support systems by using a frequency domain model to detect
faults in ship motion variables used in sea state estimation. Rong et al.
(2020) developed a method for probabilistic characterization of ship
trajectories along a given route that enabled real-time ship trajectory
anomaly detection. Fault detection in a control perspective is generally
solved under real-time constraints, considering past information up to
the current time instant. During analysis of historical data, e.g. in a
ship performance analysis, one has the advantage of rather using sets
of time series data, which enables delayless filtering of the sensor data.

Swider (2018) introduced the concept of data preprocessing in rela-
tion to analysis of power systems onboard ships using monitored data.
A thorough introduction to the most common sources of distortions was
given, as well as mathematical descriptions of methods for investigating
data quality and relation between signals. For data cleaning the concept
of digital filtering was presented, but no instructions or practical exam-
ples of spike removal, removal of repeated values or zero dropping were
given. Methods for time synchronization were presented, and further
elaborated in Swider and Pedersen (2017).

In this paper, we present a stepwise method for preparation of
onboard monitored operational and navigational data for ship opera-
tion and performance analysis. The work is motivated by the increased
activity in the use of operational data, combined with a missing gen-
eral procedure for preparing the data for analysis along with detailed
instructions for implementation of the methods. The present literature
describes some of the available methods for data preparation. However,
it has been found that the descriptions of the methods are incomplete
and often exclude explicit guidelines on how the methods should be im-
plemented. In addition, the important discussion considering more of a
physical interpretation of the methods as well as how methodical input
parameters relate to the data is usually ignored. Using a combination of
methods from different sources poses additional challenges with regard
to the order in which the methods should be implemented. It is also
likely that the methods will be overlapping, or even worse that some
parts of the preparation will be incomplete. The main contribution of
this paper is therefore to unify the most physical interpretable methods
for data preparation in a stepwise procedure, that is easy to implement,
that considers in which order the methods should be applied and
which assures that the data is compatible between all the relevant
steps. The methods for data preparation that are presented are not
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only applicable for ships exclusively, but more or less required for all
kinds of operational analysis of real world data. Domain knowledge is
however beneficial, due to better assessment of data quality and for
better control of the input to the data analysis.

2. Preparing data for analysis

The concept of data preparation contains all steps to prepare and
preprocess the operational data for its particular analysis. That is,
selecting features for analysis, combining data quality assessment with
data quality improvement that removes erroneous data regions, and
running procedures for data extraction. The aim is to prepare a final
data set free from disturbances, distortions and undesired physical
effects, that improves the quality of the final results of a ship operation
and performance analysis. A laborious quality assessment of input
data will generally repay itself in terms of higher quality in the ship
operation and performance analysis, and form a basis for building
mathematical and statistical models with higher precision.

The description of data preparation is structured according to an
order that is recommended by the authors. For the best result of data
preparation it is recommended to follow this order during implementa-
tion of the methods. The first stage is to select all relevant features. This
is followed by identification of missing data and loss of time synchro-
nization for the selected features. After missing or unsynchronized data
are identified, the still intact time series intervals are further prepared
by identifying and removing erroneous data, referred to as outlier
detection. Finally, a suitable practice of data extraction is applied.

2.1. Feature selection

The first stage in data preparation is to select the features that
comprise all information required for doing the intended analyses,
forming the total set of features {𝑓1, 𝑓2 … 𝑓𝐹 }. Features are the various
measurement data that can be extracted from the monitoring system,
for instance motion measurements, propeller RPM, wind speed, rudder
angle, etc. By selecting particular features, the data analyst determines
which data that should be presented to the model (Pyle, 1999). Feature
selection is however not to be misinterpreted as feature extraction,
whose intention is to map the useful information content into a lower
dimensional feature space (Meyer-Bäse and Schmid, 2014). A thorough
check of the available signals is advised, as to ensure that all the
required information for further use is included, yet limited to the
amount of information that actually will be used in order to reduce
complexity and following computational effort. A list of available sig-
nals, including details of the variables and their units, should preferably
be at hand. However, experience shows that such a systematic overview
is generally missing and that the documentation of the measurements
can be rather insufficient. In that case, the configuration file in the data
logger can be informative with respect to descriptions of the signals.
Care should always be taken regarding the origin of measurement, its
unit and whether the signal is measured or calculated. It is during the
stage of feature selection that misinterpretations of measurements are
identified, and it is recommended to put effort into this stage.

2.2. Time vector jumps and synchronization

A ship typically has a variety of subsystems onboard, depending on
size, complexity, primary purpose and usage etc. This can for exam-
ple be systems for energy production, propulsion control, fire alarm,
main engines, cranes, heating, ventilation and air conditioning (HVAC),
navigation, cargo etc. When designing and setting up ship monitoring
systems, an important design perspective is how to set up and fetch data
from all the sensors installed on the ship. This applies to everything
from routing of signals to the sampling rates and internal filters of
the measurement variables. When available, a general approach is to
fetch data from the main control unit of each system. In the system

control unit, multiple signals are assembled together, and the unit may
have ports and options for data export. In other cases, data has to be
collected directly from each individual sensor.

For ship operation and performance monitoring, the systems and
sensors must communicate with a server that samples and stores the
data. Unfortunately, in various situations, delays, server latency or
other interruptions may occur, that prevents the data samples to be
logged in accordance with the system configuration. Other incidents
can cause conflicts in the communication channels between the server
and the measurement devices. If there is an interruption in the data
stream to the data logger, the result can be an inconsistent time series of
operational data. In the data set, this is typically revealed as temporary
delays or dropouts giving nonuniform spacing of data in time, referred
to as time vector jumps. For the individual signal, it is important to
identify such jumps in the data prior to applying filters, making time
averages and analyzing the frequency content of the signal. When
combining several measurement variables for a ship operation and per-
formance analysis, loss of time synchronization between the variables
can also be a problem. This happens mainly if the data acquisition is
separated into different modules or systems, and/or if various filter
frequencies are applied before the data arrives at the data logger.
Loss of time synchronization might also happen if a signal having a
GPS-based time stamp, i.e. coordinated universal time (UTC), is to be
merged with a signal getting its time stamp from the onboard DAQ. This
is particularly a concern if the ship experiences shifts in time zones, for
which the relative difference between two time vectors might change.
It is generally recommended to avoid local time stamps for all kinds
of in-service monitoring and data processing, and rather use a fixed
reference time stamp such as the unix timestamp. In this way it is made
explicit to the data analyst that the time reference is absolute and that
no further considerations regarding shift in time zones are necessary.
If the time stamp however is given by e.g. the DAQ in a local time
format, it is recommended to transform the time vector to unix time
prior to any further processing of the data. Complementary information
regarding time zone should preferably be used for the transformation.
If not available, the time zone can be established from GPS positional
data. In the data set, the various losses of time synchronization show
as corrupted correlations and unphysical relationships between the
measured variables, which is further critical for the building of robust
mathematical and statistical models.

Time vector jumps can be identified as outliers in the first order
differenced series of the time vector. If the time vector 𝐓 = (𝑡1, 𝑡2 … 𝑡𝑁 )
consists of 𝑁 discrete timestamps, the first order differenced series �̇�
is found as

�̇� = 𝐓(𝑖) − 𝐓(𝑖 − 1) = (𝑡2 − 𝑡1, 𝑡3 − 𝑡2,… , 𝑡𝑁 − 𝑡𝑁−1), 𝑖 ∈ {2…𝑁} (1)

where �̇� has a length of 𝑁 − 1. The standard deviation 𝜎�̇� of �̇� is
expressed in Eq. (3). If a tolerance of 𝑘 number of standard deviations
from the ideal uniformly spaced time vector is accepted, the criteria for
which an unintended jump in the time vector takes place between time
index 𝑖 and time index 𝑖 + 1 can be mathematically expressed as

|�̇�(𝑖) − 1∕𝑓𝑠| > 𝑘𝜎�̇� (2)

where 𝑓𝑠 is the sampling frequency in the DAQ.

𝜎�̇� =

√

√

√

√
1

𝑁 − 2

𝑁−1
∑

𝑖=1

(

�̇�(𝑖) − �̇�
)2

(3)

In Fig. 1, an example of time vector jump identification is presented
using 𝑘 = 1. The time vector used in the example originates from the
dynamic positioning (DP) system, which is responsible for collecting
signals from the global positioning system (GPS), gyro, wind sensor and
the motion reference unit (MRU). Ten situations of time vector jumps
larger than 𝜎�̇� are identified in this example, as illustrated in Fig. 1.
For the ease of implementation, the tolerance of 𝐓 relative to a time
vector with uniform sampling may also be set as a constant number. A
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general suggestion is to use half of the intended sampling interval as
the fixed tolerance, e.g. such that 𝑘𝜎�̇� = 1

2𝑓𝑠
.

When time vector jumps are identified, the corresponding time 𝑡𝑖
at which the jump takes place is saved to a matrix 𝐉, regardless of
whether the time vector leaves or enters a normal state with regular
time data. New time vector jumps are appended to this matrix as they
are identified, and the identification continues for all the measurement
subsystems containing signals of interest. When the complete set of
time vectors from all included subsystems are checked for jumps, the
elements of 𝐉 ∈ R𝑚×1 are sorted in ascending order. 𝐉 is finally used to
construct time intervals free from time vector jumps in all the signals,
by looping through the elements of 𝐉. The time intervals free from time
vector jumps are saved to a matrix 𝐐 ∈ R𝑞×2, where 𝑞 is the number
of intervals, see Eq. (4). Each interval has a starting (𝑡1) and ending
(𝑡2) time instant. By defining a minimum duration 𝑡min that all time
intervals should meet, a rejection of time intervals shorter than 𝑡min can
be included in the loop.

𝐐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑡11 𝑡12
𝑡21 𝑡22
𝑡31 𝑡32
⋮ ⋮

𝑡𝑖=𝑞1 𝑡𝑖=𝑞2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4)

After all time intervals are free from time vector jumps, the syn-
chronization of the subsystems should be checked. Synchronization of
subsystems means that all signals are mapped to a joint time reference,
and that the time reference represents the actual time of each physical
event. Prior to the synchronization, it should be known whether the
recorded timestamps in the data represent the time of the actual mea-
surement or if they represent the time when the measurement arrives
the data logger. In both cases, the time vector of each subsystem can be
used to synchronize the data. However, in measurement setups where
the timestamps represent the arrival of the measurement to the data
logger, a thorough investigation of signal and system delays should be
carried out. Low-pass filter frequencies applied to the digital signal is
also important to consider, since they induce a delay.

Going from multiple time vectors representative for each mea-
surement subsystem to a joint time reference representative for the
complete set of data, implies a selection of the most representative time
reference. The following section presents a time reference selection
technique for selecting the subsystem that best represents the complete
set of systems. First, the summed difference between the time reference
arrays 𝐓(𝑠𝑖) and 𝐓(𝑠𝑗 ) of two subsystems 𝑠𝑖 and 𝑠𝑗 are calculated for
all 𝑀 subsystems. Each sum is organized in a matrix, see Fig. 2. The
total time difference between subsystem 𝑗 and 𝑖 = {1…𝑀} is found
by adding up all elements in each column, forming the column sum
for subsystem 𝑗 denoted CS𝑗 shown in Eq. (5). The column sum CS𝑗 is
further weighted to a weighted column sum WCS𝑗 by the number of
applied signals in the subsystem relative to the total number of applied
signals in all subsystems, represented by a count function as in Eq. (6).
This step is to avoid excessive amount of interpolation in the data.
The next step is to select the most representative time reference for all
signals as the subsystem with lowest weighted sum of time differences.
This time reference is finally used to establish a modified joint time
reference �̂�, that has uniform spacing in time, i.e. has a constant
sampling interval 𝑡𝑠. This is an important step with reference to an
upcoming frequency analysis or digital filtering in the ship performance
analysis.

CS𝑗 =
∑

𝑖=1…𝑀

∑
[

𝐓(𝑠𝑗 ) − 𝐓(𝑠𝑖)
]

(5)

WCS𝑗 = CS𝑗 ⋅
𝑐𝑜𝑢𝑛𝑡(𝑠𝑗 )

∑

𝑖=1…𝑀 𝑐𝑜𝑢𝑛𝑡(𝑠𝑖)
(6)

The modified joint time reference is established from a first time
instant 𝑡𝑠𝑡𝑎𝑟𝑡, followed by adding the constant sampling interval 𝑡𝑠 to the
previous time instant, up to the last time instant before a time vector
jump takes place. This is repeated for each time interval 𝑖 = {1… 𝑞}
between the time vector jumps, as given by 𝐐 in Eq. (4). The uniform
sampling interval 𝑡𝑠 should preferably be the same sampling interval as
is configured in the DAQ. The first time instant in each interval (𝑡𝑖𝑠𝑡𝑎𝑟𝑡)
needs a careful selection to avoid excessive amount of interpolation
in the data. In short, this means that the final time reference should
seek maximum overlap with its parent time vector. This can be done
by identifying a time shift 𝛥𝑡𝑖 that minimizes the squared difference
(𝑆𝑖) between the original time vector and the modified time vector for
the jump free interval 𝑖. The minimization problem is

𝑆𝑖 =
∑

𝑘=1
[𝐓𝑖

𝑘 − �̂�𝑖
𝑘(𝛥𝑡

𝑖)]2 (7)

𝜕𝑆𝑖

𝜕𝛥𝑡𝑖
= 0 (8)

which gives

𝛥𝑡𝑖 = 1
𝑝𝑖

𝑝𝑖
∑

𝑘=1
[𝐓𝑖

𝑘 − 𝐓𝑖
1 − (𝑘 − 1)𝑡𝑠] (9)

𝑡𝑖𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑖1 + 𝛥𝑡𝑖 (10)

where 𝑝𝑖 is the length of the jump free time vector 𝑖 that runs from 𝑡𝑖1
to 𝑡𝑖2, as given in Eq. (4). The first time instant (𝑡𝑖𝑠𝑡𝑎𝑟𝑡) of the modified
time vector for the jump free interval 𝑖 is then given as in Eq. (10), and
the corresponding modified time vector is found as

�̂�𝑖 = (𝑡𝑖𝑠𝑡𝑎𝑟𝑡, 𝑡
𝑖
𝑠𝑡𝑎𝑟𝑡 + 𝑡𝑠, 𝑡

𝑖
𝑠𝑡𝑎𝑟𝑡 + 2𝑡𝑠, … , 𝑡𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑡𝑠) (11)

𝑛 ∈ N is the number of elements in �̂�𝑖 and should satisfy Eq. (12).
This is to ensure that the elements of �̂�𝑖 is within the jump free
interval between 𝑡𝑖1 and 𝑡𝑖2. By resampling all the data (free from time
vector jumps) to this modified joint time reference, the data set will
be completely synchronized with a minimum amount of computational
effort, and the introduction of interpolation errors is minimized.

𝑛 =

⌊

𝑡𝑖2 − 𝑡𝑖𝑠𝑡𝑎𝑟𝑡
𝑡𝑠

⌋

(12)

Swider (2018) described the available methods for data resampling
as resampling using low-pass filters FIR, comb filter integrating CIC,
Lagrange interpolation, spline function and resampling in frequency
domain. Due to the optimized selection of the modified time vector �̂�,
a recommended practice for the data resampling is to simply use linear
interpolation or a low order spline interpolation.

Due to various reasons, there are situations where a time vector can
be distorted or even unavailable, which means that signal synchroniza-
tion by use of time vectors is not feasible. In order to synchronize the
subsystems without the use of time vectors, it is either required that
some variables are measured by more than one subsystem, or that some
variables can be combined to establish new complementary variables,
which enables use of the cross-correlation function to check for system
delays. In Fig. 3, a time series example that shows poor synchronization
of two subsystems is given. The example shows the rotational speed
of the propeller shaft of a ship (in % of maximum) measured by
two different subsystems. By visual inspection, a distinct time delay
between the signals is found. Swider and Pedersen (2017) presented a
synchronization method that identifies time delays by maximizing the
cross-correlation function 𝑅𝑥𝑦 between two signals 𝑥 and 𝑦. The signals
should measure the same physical property, but should be handled
by two different subsystems. A straightforward implementation of this
method identifies the average time delay for the input signals. Swider
and Pedersen (2017) reported that the delay can change over time, for
example due to gaps in the data logger, and recommended a split of
data into smaller time windows for which the time delay is estimated.
The approach of splitting signals into smaller time windows to account
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Fig. 1. Identification of data jumps by using the first order differenced series �̇� of the time vector 𝐓. In the figure, the value of 1∕𝑓𝑠 is subtracted from �̇� to show the relative
difference between the ideal uniformly spaced time vector with a sample frequency of 𝑓𝑠, and the real sampled time vector 𝐓. The upper inset plot shows a detailed view of the
small variations in the sampling interval.

Fig. 2. Selection of best time reference for time synchronization of subsystems.

for time varying delays, is however not necessary when following
the time vector jump identification technique presented in this paper.
By first identifying the time vector jumps, the complete data set is
naturally divided into continuous time intervals where synchronization
by the use of the average time delay is suitable.

2.3. Outlier detection

Outlier detection is used to detect, and where appropriate, remove
anomalous samples from data (Hodge and Austin, 2004). An outlier can
briefly be described as a data point that is not based on a true physical
value. Other commonly used notions are ‘‘spikes’’ or ‘‘drop-outs’’, but
the main concept is that the values depart from the main modes of
variability of the majority of the data (Gervini, 2012). Hereby, when
referring to outliers, the term covers all data points that most probably
are unphysical. This includes spikes, repeated values and drop-outs,
where drop-outs appear as zero, a certain sensor dependent value, or
NaN. Examples of spikes, drop-outs and repeated values are shown in a
time series of wind anemometer data in Fig. 4, including detailed inset
plots that illustrate the nature of outliers identified by visual inspection.
For this particular signal, the events of drop-outs and repeated values
take place at the same time, and last for approximately ten seconds.

Some of the drop-outs appear as zeros, other as a certain (but non-
persistent) negative value. Similarly as for the drop-outs, the spikes can
appear interchangeably with repeated values, as for example identified
in the inset plot corresponding to data around time index 6200 into the
time series. In other situations, the spikes behave very different, such
as shown in Fig. 5, where spikes in the propeller rpm data measured on
the propeller shaft are identified. In this case the spike value, more or
less, remains persistent for a short period of time, until the signal starts
decreasing towards a value similar to what was the case prior to the
spike incident. This behavior is probably caused by signal clipping. Yet,
experience shows that the maximum value is not necessarily consistent,
and certainly not across various measurements. This complicates the
identification of such spike data. In Fig. 5, the inset plot is given to
show the true variability of the propeller rpm that is concealed by the
scaling of the 𝑦-axis.

Due to the various behavior of outliers, there are, unfortunately,
no such thing as a universal outlier detector. Various approaches have
their pros and cons depending on the data structure, dimensionality,
parameter distribution etc. As a coarse classification, Hodge and Austin
(2004) separated the fundamentals of outlier detection based on the
amount of prior knowledge of data normality and abnormality. From
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Fig. 3. Measurements of shaft RPM not synchronized.

outlier detection without any prior knowledge of the data, outlier de-
tection having knowledge of normality of the data, to outlier detection
having knowledge of both normality and abnormality. For most ship
operation and navigational data, knowledge of data normality is gen-
erally available as the sensor installations measure predefined physical
properties through systems usually having known system configura-
tions. With relevance for onboard ship performance and navigation
monitoring systems, Perera (2016) developed a fault detection method
considering normality of data through linearization of ship performance
and navigation conditions, by the use of principal component analysis
(PCA). The method assumed single Gaussian type distributions only.
As most performance and navigational data generally are not of single
Gaussian type, the method depends on an appropriate pre-clustering of
the performance and navigational data.

Detecting outliers without any prior knowledge of the data is less
robust than incorporating either or both normality and abnormality.
Without information of the normal state, the abnormal data can be hard
to separate from the normal data, particularly in data sets having a
considerable amount of outliers. One simple way of including informa-
tion of data normality is by using physical laws and specific domain
knowledge of the feature being measured. Based on such domain
experience, the maximum and minimum values a process variable can
take can be set, from which outliers can be identified. Such outliers are
usually referred to as obvious outliers (Qin, 1997).

Yet, there are several types of outliers that obey the physical lim-
its of the measurement variable. Spikes, repeated values and drop-
outs might be present within the physical constraints of a variable,
but still represent unphysical measurements. Spikes are recognized
as data points representing sudden changes relative to the previous
data points. In stationary conditions, sudden changes are more or less
straightforward to identify. In more time varying conditions such as
during heavy weather, ship maneuvering, acceleration and decelera-
tion, course change etc., the spikes can be more troublesome to identify
amongst all the data points representing physical variations. Outlier de-
tection should however work under both stationary and non-stationary
conditions.

To overcome the complexity of various types of outliers found in
a wide range of signals, the method for outlier detection is separated
into blocks that are specialized towards identifying a particular nature
of outliers. First of all, this simplifies use of domain knowledge for in-
cluding information on abnormality, as various types of outliers can be
identified separately. Secondly, this simplifies adaption to alternative
domains and new use of the methods. In each block, the identified
outliers are added to an array 𝐎𝑓𝑗 , individually for each of the selected
features 𝑓1, 𝑓2 … 𝑓𝐹 . This is for assembling the complete set of outliers
for each feature variable, as to prepare for an upcoming outlier re-
placement. The blocks are presented in the succeeding sections. Outlier
replacement is described subsequently.

2.3.1. Block 1: Obvious outliers
The first block runs a detection of outliers based on physical con-

straints. That is, by simply setting a minimum and a maximum value
for each measurement variable. The minimum and maximum values
should be based on knowledge of the sensor and the physical process
being measured. Sensor knowledge deals with the operating range of
the sensor, for example the maximum torque a shaft torque sensor can
measure. Physical knowledge deals with the possible values a source
of measurement can generate, for example the maximum rpm of the
engine. Naturally, the engine rpm cannot possibly take negative values,
which means that the minimum value for the engine rpm should be
zero.

The minimum and maximum values for each feature 𝑓𝑗 are set
to allow for the full range of possible values. To avoid introducing
additional signal clipping, it is recommended to set the minimum
and maximum values slightly lower and higher than the actual sen-
sor/physical limits. The time index to the data points that exceed the
maximum and minimum limits are saved to 𝐎𝑓𝑗 .

2.3.2. Block 2: Repeated values
The second block runs a check for repeated values. Remark that

this is relevant for continuous variables only, which rules out mea-
surements that either have been rounded off to a very few number of
digits, or measurements that are pre-filtered using e.g. a median filter.
Continuous variables can take all values, meaning that a certain value
repeating itself might indicate a problem with either the sensor or the
DAQ. For that reason, there is doubt whether or not these particular
measurements relate to physical behavior.

Repeated values are identified using the first differenced series of
each feature. For each synchronized time interval, given as the row
element 𝑖 of matrix 𝐐 in Eq. (4), the first differenced series �̇�𝑖

𝑓𝑗
of the

feature values 𝐘𝑖
𝑓𝑗

= (𝑦1, 𝑦2, 𝑦3 … 𝑦𝑛)𝑓𝑗 of feature 𝑓𝑗 is found as

�̇�𝑖
𝑓𝑗

= (𝐘𝑖
𝑓𝑗
(𝑘) − 𝐘𝑖

𝑓𝑗
(𝑘 − 1)), 𝑘 ∈ {2… (𝑡𝑖2 − 𝑡𝑖1 + 1)} (13)

The time index 𝑘 to all repeated values for feature 𝑓𝑗 are found by
searching for �̇�𝑖

𝑓𝑗
= 0. When repeated values are identified, the time

index is added to 𝐎𝑓𝑗 . Note that because repeated values are identified
from the differenced series, each time index added to 𝐎𝑓𝑗 must be
increased by 1 before they are added to the outlier array.

Experience has shown that repeated values might as well occur
interchangeably with drop-outs or spikes. Examples of this is found in
the inset plots in Fig. 4, where a certain value repeats itself immediately
after a spike or drop-out. To identify such behavior, the first differenced
series, however now with time lag 2, is found for each synchronized
time interval. The series is referred to as �̇�𝑖,𝑘−2

𝑓𝑗
, and is expressed in

Eq. (14).
The time index 𝑘 to all repeated values for feature 𝑓𝑗 are found by

searching for �̇�𝑖,𝑘−2
𝑓𝑗

= 0. When repeated values are identified, the time
index is added to 𝐎𝑓𝑗 . Similar as for time lag 1, each time index added



Ocean Engineering 212 (2020) 107730

7

Ø.Ø. Dalheim and S. Steen

Fig. 4. Spikes, repeated values and drop-outs in wind speed measurements from wind anemometer onboard a platform supply vessel (PSV). Inset plots for detailed inspection for
some of the outliers.

Fig. 5. Spikes in propeller rpm data from shaft sensor onboard the PSV. Inset plot to show the true variability of propeller rpm that is concealed by the large scale on the 𝑦-axis.

to 𝐎𝑓𝑗 must be increased by 1 before they are added to the outlier
array.

�̇�𝑖,𝑘−2
𝑓𝑗

= (𝐘𝑖
𝑓𝑗
(𝑘) − 𝐘𝑖

𝑓𝑗
(𝑘 − 2)), 𝑘 ∈ {3… (𝑡𝑖2 − 𝑡𝑖1 + 1)} (14)

2.3.3. Block 3: Drop-outs
Signal drop-outs appear as zero, a certain sensor dependent value,

or NaN values. They can be identified by simply searching for a
match between the feature values and 0 or NaN. Presence of certain
sensor dependent values are not straightforward to identify, as they
are individual for the particular feature. However, sensor dependent
values taking place subsequently will nevertheless be identified in block
2. Similar as for the other outlier detection blocks, the time indices to
all drop-outs should be added to 𝐎𝑓𝑗 .

When searching for zeros, one should be aware of the nature of the
particular feature. If zero is a likely physical value, marking zeros as
outliers should be avoided.

2.3.4. Block 4: Spikes
Spikes are seen as sudden changes towards values either far outside

the entirety of the feature data set, or values that significantly deviate
from the rest of the data points in a similar context. With respect to
time series data, a similar context generally refers to samples taking
place in a temporal proximity.

Detection of spikes should work under both stationary and non-
stationary conditions. Hansen (2011) presented use of two methods for
detecting spikes in data collected by the ship performance monitoring
system onboard a PostPanamax container vessel. The first method was
a spike detection rule based on evaluating the running mean and the
running standard deviation in a defined time frame, to compare a
sample with previous and future values. Similar methods are straight-
forward to implement and mostly effective, but yet best suited for
stationary conditions. The second method presented by Hansen (2011)
was the CUSUM (cumulative sum) test, that incorporates a statistical
framework into spike detection. The CUSUM test is generally effective

in stationary conditions, however, experience with ship monitoring
data has indicated some challenges with detection of false positives.

The suggested approach for spike detection, working in both sta-
tionary and non-stationary conditions, is by using digital filters. This
was also recommended by Swider (2018). In most cases the linear
filters are applicable, such as low-pass and band-pass filters. In other
cases, nonlinear filters are more suitable such as the median filter.
Detecting outliers using digital filters is similar to comparing sample
values with a running mean and standard deviation, however, the
running mean is replaced by a proper low-pass filtered version of the
signal. The standard deviation 𝜎𝑌 , see Eq. (15), is evaluated from
the frequency content above the low-pass cutoff frequency. That is,
from the difference between the base signal 𝐘 and the filtered signal
𝐅𝐘, expressed as �̃� in Eq. (16). The standard deviation 𝜎𝑌 is used to
form a spike detection envelope around 𝐅𝐘, for which exterior samples
are marked as outliers. The width of this envelope controls the spike
detection sensitivity. Further control is given to the spike detection by
using some constant 𝑚 representing the number of standard deviations
from 𝐅𝐘 the samples are allowed to vary. In total this forms a spike
detection as mathematically expressed in Eq. (17). An example of wind
speed data with an envelope of 5𝜎𝑌 (𝑚 = 5) is shown in Fig. 7. The
example is extracted from the same wind speed data shown in Fig. 4,
and a low-pass cutoff frequency of 0.1Hz is used for the filtered signal
𝐅𝐘.

𝜎𝑌 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

�̃�(𝑖) − �̃�
)2

(15)

�̃� = 𝐘 − 𝐅𝐘 (16)

|�̃�| > 𝑚𝜎𝑌 (17)

The cutoff frequency and the envelope constant 𝑚 control the spike
detection. By lowering the cutoff frequency, more of the higher fre-
quency variations are potentially identified as spikes. The standard
deviation 𝜎𝑌 will however naturally increase when the cutoff frequency
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is lowered, causing an increased signal envelope, and by that, allowing
larger variations relative to 𝐅𝐘. The envelope constant 𝑚 has a direct
influence on the spike detection in terms of adjusting the accepted dis-
tance from 𝐅𝐘 the signal is allowed to vary. A general recommendation
is to set 𝑚 ∈ {3…8}. More specifically, 𝑚 = 5 is usually sufficient. For
each feature variable, the cutoff frequency should be set relative to the
expected frequencies of known system dynamics. A general recommen-
dation is to set the cutoff frequency slightly below the highest frequency
of known dynamics. Note however that the sampling frequency, and
hence the Nyquist frequency, limits the highest frequency that can be
observed in the data. To construct an example: a ship sailing at 10 knots
in head sea waves with mean wave period of 10 𝑠 will get a frequency of
encounter around 0.13 Hz. The encountering waves will cause the most
high frequent, physical system dynamics in terms of vessel surging. If
the DAQ samples speed over ground at a frequency 𝑓𝑠 > 2 ⋅0.13 Hz, the
surging can be observed in the data. By following our recommendations
for spike detection, the cutoff frequency for low-pass filtering should be
set slightly below the highest frequency representing physical behavior.
A cutoff around 0.10 Hz is therefore convenient. To illustrate how this
relates to the ship monitoring data, an example of SOG data and low-
pass filtered SOG data with an envelope of 5𝜎𝑌 (𝑚 = 5) is shown in
Fig. 6. The filter noticeably removes the high frequency oscillations,
while the envelope outlines the variability caused by vessel surging.
By using a spike detection rule as expressed in Eq. (17), the envelope
will effectively identify spikes as for example can be seen around time
index 6290 in Fig. 6.

A second example of outlier detection is shown in Fig. 7 based on
wind speed measurements. Fluctuations in a wind field are typically of
a more low frequency type compared to waves, with periods reported
to range from a couple of minutes up to several hours in the North Sea
(Vincent et al., 2011). As wind and waves usually occur together, there
might be some variability in the wind speed measurements originating
from vessel surging. In situations where this is most prominent, the
vessel surging is however usually negligible compared to the wind
speeds, so the filtering may rather consider the typical frequencies in
the wind field itself. Assuming fluctuations with periods down to three
minutes, the cutoff frequency can be set around 5.0E-3 Hz. As shown in
Fig. 7, this noticeably removes the high frequency oscillations, while
the envelope (using 𝑚 = 5) outlines the more frequent variability. Yet,
the envelope will effectively work as a spike identifier as for example
can be seen around time index 2500.

Filters require uniform sampled data. Above all, there should be
no jumps in the time vector data. It is therefore essential to both run
the check for time vector jumps and perform the time synchronization
before initiating the block of spike detection.

2.3.5. Outlier replacement
As much as identification of outliers is an important topic in data

preparation, it is just as important to consider how to deal with the
outliers. For each feature 𝑓𝑗 , outliers are identified and saved to 𝐎𝑓𝑗 .
Because detection of outliers are separated into blocks, duplicates of
outliers may be indexed and added to the outlier arrays. As a first step
of dealing with the outliers, unique indices should be identified and
extracted from 𝐎𝑓𝑗 , as well as sorted in ascending order. The unique
and sorted indices are written to the modified outlier array �̂�𝑓𝑗 .

Outliers may come as individual occurrences and or in clusters of
consecutive values (Pyle, 1999, p. 322). This is the reason for adding
feature specific outliers to an array during outlier detection rather
than performing a direct outlier replacement, as it gives more control
of the outliers. �̂�𝑓𝑗 are used to separate between individual outliers
and clusters of consecutive outliers, for which data rejection may
seem more reasonable than data replacement. Extracting the clusters of
consecutive outliers follows a similar strategy as for time vector jumps,
by identifying when the first differenced series of �̂�𝑓𝑗 , by consistent
notation given as �̇�𝑓𝑗 , exceeds a certain limit. Because the features have
been synchronized using an equally spaced time vector with interval 𝑡𝑠,

this limit is nothing else than equal to 𝑡𝑠. Using mathematical notation,
all individual outliers or clusters of outliers are separated into outlier
intervals by searching for �̇�𝑓𝑗 > 𝑡𝑠. The end of the outlier interval (𝑡𝑖2) is
the time instant in 𝐎𝑓𝑗 for the index in �̇�𝑓𝑗 at which �̇�𝑓𝑗 > 𝑡𝑠 is satisfied.
The start of the next outlier interval (𝑡𝑖+11 ) is then the subsequent time
instant in 𝐎𝑓𝑗 . The time indices of the starting point (𝑡𝑖1) and the end
(𝑡𝑖2) of each outlier interval 𝑖 are saved to the two-column matrix 𝐖, as
shown in Eq. (18).

𝐖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑡11 𝑡12
𝑡21 𝑡22
𝑡31 𝑡32
⋮ ⋮

𝑡𝑖=𝑤1 𝑡𝑖=𝑤2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

For individual occurrences of outliers or even for small clusters of
outliers, a simple and effective outlier replacement seems the most
reasonable. For longer clusters of consecutive outliers it might be more
reasonable to reject rather than to replace the data. The decision be-
tween outlier replacement and rejection should be based on a maximum
allowed number of consecutive outliers, that in combination with 𝐖
decides which outlier intervals should be rejected and which outlier
intervals should be replaced.

The maximum number of consecutive outliers that seem reasonable
to replace depends on the application of the data. Using the original
resolution of data should limit the accepted number of consecutive
outliers compared to using windows of data for which features such
as mean and standard deviation are extracted.

The outlier replacement values should not introduce a pattern into
the data that is not actually present. The simplest form of outlier
replacement is by using linear interpolation between two adjacent
data points, next quadratic, cubic or spline interpolation. There should
however be reasons to expect a nonlinear variation between consec-
utive samples before using a higher order interpolation method than
linear interpolation. An even more sophisticated approach for outlier
replacement is by using a digital filter, for which the pattern and
variation in the data can be preserved up to a certain frequency. For
individual outliers, a simple linear interpolation is however generally
sufficient. For consecutive outliers, yet up to the maximum limit, a
low-pass digital filter is recommended for outlier replacement.

Outlier replacement through either interpolation or by using a
digital filter have to consider time vector jumps. Outliers should be
replaced considering the adjacent measurements only, not by approxi-
mations running across a jump in time. Filtering or interpolating across
jumps in time can possibly introduce non-existing patterns to the data.
It is therefore highly recommended to use the time intervals free from
time vector jumps, given by 𝐐 in Eq. (4), to construct the data basis for
interpolation or digital filtering.

The replacement values are generated from information that is
already present in other measurements, and regardless of replacement
method, the estimated values are somewhat smoothed. To preserve
some of the variability, noise can be added to the replacement values. In
that case, the noise should be based on the existing variability, e.g. by
sampling from a Gaussian distribution with zero mean and standard
deviation equal to the upfront standard deviation of the measurement
variable. For a ship operation and performance analysis, adding noise
to the outlier replacement is however generally not important, as data
will be averaged over a certain window.

2.4. Data validation

Data validation is a term that may refer to the general process of
checking data quality, similar to data preparation, with the aim of
detecting faulty measurements to finally arrive at a reliable data set.
In this paper, data validation refers to the more stand-alone process
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Fig. 6. Extract of speed over ground (SOG) data (𝐘) with envelope of ±5𝜎𝑌 relative to low-pass filtered SOG (𝐅𝐘) with cutoff frequency 0.1 Hz.

Fig. 7. Extract of wind speed data (𝐘) with envelope of ±5𝜎𝑌 relative to low-pass filtered wind speed (𝐅𝐘) with cutoff frequency 5.0E-3 Hz.

of checking whether the measurements are reasonable. Data integrity
is another term often used in computer science. However, this is
somewhat more related to the integrity in storage, like file system con-
sistency, accessibility of data and avoiding corrupted files (Sivathanu
et al., 2005). Data free from outliers, time vector jumps and with
complete time synchronization may appear as good quality data during
an individual examination. However, seen in relation to other measure-
ment sources the data may be unphysical, for example a ship at service
speed having zero rotational speed of the propeller, or a propeller
having maximum rotational speed while the engine is standby. There
are various reasons for the mismatch between signals, such as mis-
calibrated sensors, error in routing of signals, sensor drift, various
signal disturbances and other hardware or software related malfunc-
tions. Data validation is the final data preparation step to ensure that
such unphysical data is rejected as input to the ship performance
analysis.

In cases where historical measurement data is available and it is
reasonable to believe that this data can be trusted, new measurements
can be validated against regression models that are based on similar
data. In other cases where no such prior reference to a proper and
reliable signal behavior is at hand, there are generally two ways to
perform data validation that are relevant for ship monitoring data. The
most straightforward way is a direct validation between sensors mea-
suring the same property. A ship may have, largely dependent on ship
class, coexistent subsystems such as multiple GPS-units, compasses,
motion reference units (MRU) and wind sensors, for which data validity
can be checked by directly comparing the similarity of the data. A
second way to perform data validation is by connecting measurements
through various combinations, both linear and non-linear, to establish
new variables from which time series similarity can be evaluated. That
is, using physical knowledge and domain knowledge in particular,
to calculate properties that additionally are measured by dedicated
sensors. In the absence of such dedicated sensors, data validation may

even be performed between two calculated properties. For ships in
particular, there are numerous possible variable connections, and some
examples are listed in Table 1.

The approach to data validation goes through a similarity measure,
referred to as 𝐷 with a complimentary subscript. A number of strate-
gies for time series similarity measures exist, from absolute similarity
(e.g. singular vector decomposition, canonical correlation analysis, re-
gression and correlation analysis) to relative similarity measures such
as distance measures (e.g. Euclidean distance), correlation measures
(e.g. correlation coefficient), or principal component analysis (PCA),
Fourier transform, and metric based measures (Lhermitte et al., 2011).
The strategies have gained focus within domains such as pattern recog-
nition, climatology and oceanography, serving as decision criterion
in several time series clustering and classification techniques, each
having their strengths and weaknesses as further discussed in Lhermitte
et al. (2011). In data preparation, the aim is to validate the various
data sources rather than performing a precise pattern recognition, so a
simple strategy for similarity estimation can be accepted.

When measurements are either coexistent or combined to express
the same physical property, a perfect time series similarity should
have a linear correlation coefficient 𝐷𝐶𝐶 equal to one. This means
that both strength and direction of the linear relationship between
the two variables are intact. 𝐷𝐶𝐶 is however a measure of the linear
relationship, and does not evaluate the direct difference in time series
values, which means that it is unable to reveal amplitude scaling
or amplitude translation. Therefore, the difference in, or preferably
the ratio between, the arithmetic average of each corresponding time
series should include as a complementary similarity measure. This
ratio between averages is referred to as 𝐷𝑅𝐴, and is mathematically
expressed in Eq. (19). Amplitude scaling may be caused by e.g improper
placement of a sensor, or by energy pickup in sensor wiring, while
amplitude translation may be a typical result of improper sensor cali-
bration. In Eq. (19), subscript 1 and 2 of 𝐘 represent feature 1 and 2 for
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Table 1
Examples of variable connections for evaluation of time series similarity.

Measured property Calculated property

Shaft power measured in frequency converter Product of shaft rotational speed and torque
Propeller rpm measured on propeller shaft Product of engine rpm and gear ratio
Surge velocity measured by MRU Variance of speed over ground
Trim angle from depth measurements fore and aft Average pitch angle measured by MRU
Ship course from GPS Change of longitude and latitude position

which the ratio of arithmetic average is found. Superscript 𝑖 represent
the time vector interval index, as given in Eq. (4).

𝐷𝑅𝐴 =
𝐘
𝑖
1

𝐘
𝑖
2

=

∑𝑡𝑖2
𝑡=𝑡𝑖1

𝑌1(𝑡)

∑𝑡𝑖2
𝑡=𝑡𝑖1

𝑌2(𝑡)
(19)

If either the linear correlation coefficient or the ratio between the
average levels is far from unity, the time series are considered not being
similar. This generally indicates that at least one of the measurement
sources is not suited for data analysis or mathematical modeling.
The appropriate actions to take will depend on certain conditions. In
situations where more than two coexistent sensors are available, each
one of them can be validated against the others. If this results in a
certain measurement source standing out in terms of low data similarity
relative to the other coexistent sensors, the particular measurement
should me ignored. Similar strategy can be used in cases where mul-
tiple combined measurements are available. If however the available
coexistent or combined measurement sources limits to two, this kind of
strategy is not feasible. The data validity procedure should then rather
evaluate which measurement that seems the most reasonable. A simple
way of considering reasonableness is to check for obvious errors, for
example to check if either of the two measurements have no variation.
If no obvious errors can be identified, the suggested approach is to
construct a new variable that is the average of the two measurements.

In practice, there might be situations where special attention should
be given either 𝐷𝐶𝐶 or 𝐷𝑅𝐴. If the data analysis depends on the mean
value of a signal rather than instantaneous values, similarity expressed
through 𝐷𝑅𝐴 should be given more emphasis over 𝐷𝐶𝐶 . This is e.g. the
case when analyzing ship performance, as the impact from individual
waves on ship speed and propulsion power should be filtered using time
averaging. If the data analysis rather depends on variability, such as
standard deviation or a frequency analysis, 𝐷𝐶𝐶 should be given more
emphasis over 𝐷𝑅𝐴. A relevant type of analysis is e.g. analysis of vessel
motions for shipboard sea state estimation, which recently has gained
interest in the literature (Nielsen, 2017). Interpretation of far from
unity is case specific, so whether a similarity should be accepted or not
depends on the monitoring system and each individual sensor. The use
of data validation through 𝐷𝐶𝐶 and 𝐷𝑅𝐴 may therefore be considered
more informative rather than conclusive.

With respect to 𝐷𝐶𝐶 , there might be need for filtering the data
before checking the correlation between measurements. The sensor
noise typically varies among a collection of sensors, and this has a
direct influence on 𝐷𝐶𝐶 . In a wide range of data analyses, the high
frequency content such as sensor noise is, in any case, irrelevant for
the result. Hence, it is not necessarily critical that two coexistent or
combined measurements correlate in the sense of a complete frequency
resolution. If high frequency content rather should be disregarded,
low-pass filtered versions of the measurements should be used for
calculating 𝐷𝐶𝐶 . However, note that identical cutoff frequency must be
used for the low-pass filtered measurements entering the calculation of
the correlation coefficient.

The validity of a measurement should preferably not be evaluated
directly for the complete data set. As a signal disturbance may come
and go, or a sensor may perform a self calibration, the data can be
valid in parts of the data set. It is therefore recommended to do the data
validation in batches of data, e.g. corresponding to the time intervals

free from time vector jumps as given in matrix 𝐐, see Eq. (4). The time
intervals free from time vector jumps are even ready for filtering, as
each interval is associated with a regularly spaced time vector.

2.5. Data extraction

Depending on the planned type of data analysis, there are various
reasons for extracting parts of the data set. Data extraction is also
known as splitting of data or data clustering. The general reason
for doing data extraction is that inference of monitored data should
consider the conditions during data acquisition, as this basically forms
the assumptions for interpreting the data. This is particularly important
when building data based mathematical models, as it helps choosing
the proper modeling tools and methods, and to ensure that limitations
and assumptions in the methods are fully met. Examples of data extrac-
tion methods can be port to port trips, which can be used for analyzing
performance of weather routing services, fuel consumption and optimal
speed in transit. Extraction of specific operational modes, which can be
used for assessment of power system design (Swider, 2018), detailed
analysis of maneuvers or other special cases of operations as for exam-
ple dynamic positioning (DP). Extraction of data for which a particular
thruster configuration is operative, as for example a thruster running
with constant rotational speed (rpm) or constant power, or a propeller
running with constant blade pitch.

In a wide range of data analyses, a general requirement is that
the data is sampled under stationary conditions. That is, there are
no transient behavior in the data, and inference can be made based
on a single realization. If statistical parameters are estimated under
the assumption of stationarity, while some non-stationary behavior is
present, it is likely that the parameter estimates will be biased. For a
ship, there are a number of ways that stationarity can be interpreted.
Stationarity in ship speed, thrust admission, ship course, ship motions
and weather conditions to mention some of them.

As the motivation behind data extraction is to get control of the
input data to the various types of analyses, the choice of method to
extract data should be selected thereafter. A combination of methods
might also be the most reasonable choice for data extraction. In most
practical applications, assessment of stationarity in the data is required,
at least to some extent. Stationarity is also probably the most tricky
requirement when it comes to data extraction. With respect to analysis
of ship performance, the quality of the analysis is, among other factors,
inversely connected to the amount of transient behavior in the data.
A primitive, but fast and interpretable consideration is to study ship
performance under a port to port trip. That is, analyzing consumed
power or consumed fuel relative to the forward speed without including
low speed maneuvering. A further improvement of this analysis is to
filter out voluntary changes of operational control variables during the
transit, such as forward thrust caused by changes in propeller rpm, or
ship heading caused by azimuth or rudder control.

For the purpose of preparing data for a ship performance analysis,
the following sections present two methods of data extraction. The first
section presents a simple method to extract data acquired during transit
between two ports, a so-called trip identifier. The subsequent section
presents a computationally efficient method to extract stationary parts
of the in-service measurement data, based on the work presented in
Dalheim and Steen (2020).
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2.5.1. Port to port trips
Many ships operate on a more or less scheduled route when it

comes to which ports and destinations they are serving. This typically
gives a circular pattern to the anchoring, which in combination with
a geospatial mapping tool can be used to identify port departure
and arrival. If no geospatial mapping tool is available, the time of
arrival and departure can be identified using geofences, or virtual
perimeters of a geographical area, around the relevant destinations in
combination with the geographical position of the ship. A geofence can
notify the point in time when leaving and entering a destination, from
which data can labeled as a trip. There are however many ships that
have more flexible schedules, which makes use of geofencing more
cumbersome, less precise, and by that, less relevant. A more general
procedure is therefore to identify trips by using the measured ship
speed. During a trip, the ship will usually enter transit mode when
low speed maneuvering is completed, and similarly end its transit when
initiating low speed maneuvering. The start of a trip in transit mode can
therefore be identified when the ship speed exceeds a certain limit, and
correspondingly end when the speed goes below this limit. The speed
limit should to some extent be set depending on ship type, size and the
area of operation, but a forward speed of 4 knots is found to be useful.
Exceptions are for ships typically operating at low speed, for example
trawlers, for which it is necessary to combine the forward speed with
measurements of the force in the trawl, or by using propeller rpm for
identification instead of ship speed.

2.5.2. Stationary data
Identification of stationary parts of in-service measurement data is

a more complex type of data extraction, yet an essential type of data
extraction with respect to performing a ship performance analysis of
high quality. It concerns splitting of data into time intervals for which
one can assume that certain physical properties are free from transient
behavior. In statistics, the strongest form of stationarity is referred to as
𝑠𝑡𝑟𝑜𝑛𝑔, 𝑠𝑡𝑟𝑖𝑐𝑡 or 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 stationarity. A weaker form of a stationarity is
referred to as 𝑛th order 𝑤𝑒𝑎𝑘𝑙𝑦 stationary, for which all joint moments
up to order 𝑛 exist and are time invariant (Box and Jenkins, 1976, p. 8).
Time series analysis often consider second order weakly stationarity,
which means that a time series has constant mean and variance. For
many practical applications though, the requirements are even less
strict, and the condition of 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 is rather used. Steady state refers
to a condition where the process has a constant mean, and does not
require the associated noise and disturbances to be stationary.

Steady state parts of time series data are formed by identifying time
points at which certain properties of the time series data change. This
is referred to as change-point detection. Dalheim and Steen (2020)
developed a change-point detector based on hypothesis testing of the
process value inside a moving window. The basic assumption was that
the underlying process could be modeled by a deterministic linear
trend model, as expressed in Eq. (20). In the equation, 𝑎𝑡 refers to a
zero mean white noise process with constant variance 𝜎2𝑎 , 𝑏0 represents
the intercept of the linear model and 𝑏1𝑡 the linear deterministic drift
component formed by the slope 𝑏1 and the relative time 𝑡 within
the moving window, starting from 𝑡 = 0 for all windows. Under the
assumption of independent normal innovations (𝑎𝑡), the null-hypothesis
that the process signal is stationary about the window sample intercept
(𝑏0) can be tested using a two-tailed t-test on �̂�1, based on the 𝑡-value
in Eq. (21). The estimate of the linear slope (�̂�1) is found by ordinary
least squares estimation.

The actual interpretation of what 𝑖𝑠 significant needs to be con-
sidered for the particular application of the steady state detector.
In general, it concerns identifying the critical variables for what we
aim to study using steady state models. A thorough interpretation of
steady state relevant for a number of ship monitoring data analyses
can be found in Dalheim and Steen (2020). The present work limits to
identifying data sampled under a constant command of the ship. More
specifically, the identification of time intervals at which the propeller

rotational speed (rpm) and the propeller pitch angle are kept constant,
which is required for the most common types of ship performance
modeling.

𝑧𝑡 = 𝑏0 + 𝑏1𝑡 + 𝑎𝑡 (20)

𝑡1 =
�̂�1
�̂�𝑏1

(21)

The steady state detector has two parameters that must be set;
the significance level 𝛼 and the window length 𝑛. The significance
level controls the accepted slope in the window by representing the
probability of rejecting a zero slope (𝑏1 = 0) when a zero slope in fact
is true, i.e. the probability of conducting a type I error. If steady state
in a process value is critical for the application of the time series data,
the steady state detection must ensure a low probability of incorrectly
accepting a zero slope. This will increase the reliability in the steady
state data, but might at the same time cause a rejection of large parts
of the data set, which is unfavorable for data completeness. Similarly,
the less critical variables should accept a higher slope in the data
window, which means accepting a higher probability of conducting a
type II error. The second parameter, the window length, is the number
of samples used to form the moving window. This is essential in the
consideration of which effects to remove from the data. A long window
is e.g well suited for detecting non-stationarity in slow processes, like
sensor drift causing the sensor value to accumulate with time. A long
window is however not suited for detecting unsteady behavior with
short duration. In general, the window length should exceed the auto-
correlation persistence of known system dynamics that are acceptable
even for a condition of steady state, but yet short enough to detect
undesirable changes of short duration.

2.6. Overview of data preparation

The suggested procedures for preparing ship monitoring data for
a ship operation and performance analysis have been presented. The
entire process of data preparation, from initially possessing roughly
raw historical time series data to the completion of a fully utilizable
and functional data set ready to analyze, has been split into minor
basic parts as a means to offer excellent overview, control and simple
customization. The data preparation steps are summarized in the flow
diagram given in Fig. 8.

3. Results

The data preparation tools have been developed and evaluated using
two separate sets of times series data, each of them corresponding to
one complete year of data (365 days). The data is sampled at 1 Hz
by the in-service monitoring systems installed on two ships: a platform
supply vessel (PSV) and a general cargo/multipurpose vessel (MPV),
both designed by Kongsberg Maritime AS. The PSV is mainly serving
offshore platforms in the North Sea. It has an overall length of almost
100 m, beam and max draft of 20 m and 7 m respectively, and a dead
weight of about 5000 dwt. The vessel is equipped with diesel electric
machinery, and azimuthing propulsion system consisting of twin azipull
type AZP100CP. The typical service speed of the vessel is about 10–12
knots.

The MPV is mainly carrying cargo along the Norwegian coast. It has
an overall length of almost 120 m, beam and max draft of 20 m and
5 m respectively, and a dead weight of about 5000 dwt. The vessel is
purely run on liquefied natural gas (LNG) and is fitted with a hybrid
shaft generator, rudder and a single screw controllable pitch propeller.
The typical service speed of the vessel is about 15 knots.

The in-service monitoring system installed on each of the vessels
collect sensor data from selected vessel equipment. The data acquisition
is divided into different systems, that provides measurement data to the
data logger. The data logger on each vessel is configured to sample at
a frequency of 1 Hz. The data logger further provides time stamps to
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Fig. 8. Flow diagram showing all basic parts of the data preparation steps and how
they are related, from data set to data analysis.

the incoming data, which means that each system-based collection of
measurement data gets its own time stamp. The data is stored on a
server running on the ship, and data transfer to shore is performed on
a regular basis.

The following sections evaluate the methods developed for data
preparation of ship in-service data, with regard to a ship operation
and performance analysis. The evaluation of the methods is structured
according to the recommended practice given in Section 2.

3.1. Feature selection

Each of the two case vessels has more than 100 sensors installed,
from which measurement data can be extracted. For a ship opera-
tion and performance analysis there is a certain, but limited, set of
measurement variables that is required for doing a proper analysis. In
Table 2, a short list of features selected for doing a ship operation and
performance analysis is given. The first column indicates from which

Table 2
Short list of features selected for doing a ship operation and performance analysis.

System Signals

T-sense optical torque measuring system Torque, (Thrust)
RPM

Motion reference unit 6 dof motion measurements
Global Positioning System (GPS) unit Speed over ground

Latitude, Longitude
Course

Doppler SpeedLog Speed through water
Power management RPM/Propulsion power

Azimuth/Rudder angle, Propeller
pitch angle
Depth stern, Depth bow

Gyrocompass Heading
Anemometer Wind speed

Wind direction

system the measurements are acquired from. The second column of the
table presents descriptive names of the variables that are measured.

3.2. Time vector jumps and synchronization

Evaluation of time vector jump identification is carried out by
summing up the total number of time intervals free from time vector
jumps, as well as the total number of samples that is removed due
to jump identification. In the evaluation, the tolerance of 𝐓 relative
to a time vector with uniform sampling is set as half of the intended
sampling interval (𝑡𝑠 = 1s), e.g. such that 𝑘𝜎�̇� = 0.5s with reference
to Eq. (2). To avoid unnecessary short time intervals, a minimum
duration of 60s is set for the intervals free from time vector jumps.

For the PSV, the one year data set has to be split into 31 time
intervals in order to avoid time vector jumps. In terms of amount of
data, this means that 5.6% of the data has to be removed, corresponding
to 494 h of data. For the MPV, the one year data set has to be split into
541 time intervals in order to avoid time vector jumps. Even though
time vector jumps occur more frequently for the MPV, the jumps are
generally shorter in length. In terms of amount of data, only 1.0% of
the data has to be removed, corresponding to 86 h of data.

The established intervals free from time vector jumps are suited
for checking the time synchronization. Because all jumps are removed,
maximization of the cross-correlation function can be used directly to
identify the average time delay between signals.

3.3. Outlier detection

Outlier detection is evaluated by summing up the total number of
outliers identified in each of the two one year data sets. Results are
given in Table 3 and Table 4 for the PSV and the MPV respectively.
The amount of data identified as outliers relative to the total amount
of data is given in the rightmost columns in the tables.

For the PSV, the amount of outliers in the data is generally below
1%, except for the longitude position of the vessel for which outliers
constitutes 1.02% of the one year data set. Similar amounts of outliers
are detected for the MPV, i.e. mostly less than 1%. The propeller
shaft thrust measurement however reveals a large amount of outliers,
amounting to nearly 20% of the data set. The main cause of this is
found to be drop-outs to negative values, where each drop-out has a
significant time persistence. Next, the rudder angle measurement has a
considerable amount of outliers with nearly 8% of the data set identified
as outliers. Similar as for the thrust measurement, the outliers are
mainly drop-outs to either a large or to a small rudder angle, with
significant time persistence.

During the recent outlier detection, no limit for the maximum
number of consecutive outliers that decides upon data replacement
or data rejection was set. The quantities listed in Tables 3 and 4 are
hence referring to the amount of data that should either be replaced or
rejected for further use.
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Table 3
Outliers identified in the one year data set of the PSV.

Measurement variable Number of outliers [−] Out of one year [%]

Speed over ground 41 593 .136
Speed through water 32 759 .107
Latitude 227 584 .745
Longitude 311 040 1.019
Course 23 602 .077
Heading 43 645 .143
Wind speed 98 411 .322
Wind direction 264 534 .866
Pitch motion 41 525 .136
Roll motion 43 716 .143
Azimuth angle port side 564 .002
Azimuth angle starboard 600 .002
Shaft rpm port side 645 863 2.115
Shaft rpm starboard 574 308 1.881
Shaft torque port side 305 105 .999
Shaft torque starboard 293 210 .960
Pitch angle port side 6 828 .022
Pitch angle starboard 6 326 .021
Depth bow 2 916 .010
Depth stern 4 278 .014

Table 4
Outliers identified in the one year data set of the MPV.

Measurement variable Number of outliers [−] Out of one year [%]

Speed over ground 110 148 .353
Speed through water 132 030 .423
Latitude 4 254 .014
Longitude 62 778 .201
Course 49 527 .159
Wind speed 579 008 1.854
Wind direction 161 928 .518
Pitch motion 654 .002
Roll motion 3 238 .010
Rudder angle 2 480 484 7.942
Shaft rpm 41 955 .134
Shaft torque 63 630 .204
Shaft thrust 6 146 287 19.678
Pitch angle 2 311 .007
Depth bow 299 719 .960
Depth stern 73 096 .234

3.4. Data validation

To demonstrate and evaluate the method for data validation, two
examples of time series data showing poor data similarity in terms
of either the linear correlation coefficient (𝐷𝐶𝐶 ) or the ratio between
averages (𝐷𝑅𝐴) are shown. The corresponding similarity measures are
given in Table 5 for each of the two examples. The first example (Fig. 9)
shows the wind speed measured by two coexistent wind anemometers
onboard the PSV. The value of 𝐷𝑅𝐴 indicates that the two coexistent
measurements are not equal in terms of their mean value (𝐷𝑅𝐴 = 78%).
In addition, 𝐷𝐶𝐶 indicates a linear correlation below unity (𝐷𝐶𝐶 =
92%). Considering the time series data in Fig. 9, the reduced linear
correlation is apparently caused by a stronger drop in wind speed
measured by sensor 1 compared to sensor 2 about halfway into the time
series. The second example (Fig. 10) shows the roll angle measured
by two coexistent MRUs onboard the PSV. The value of 𝐷𝑅𝐴 indicates
that the two coexistent measurements are far from equal in terms of
their mean value (𝐷𝑅𝐴 = 330%). The linear correlation is however
very close to unity (𝐷𝐶𝐶 = 98%). This behavior is also evident in
the figure, showing that the two coexistent measurements follow each
other, however at two different mean levels.

3.5. Data extraction

Evaluation of data extraction is carried out by presenting various
examples of time series intervals formed by applying the data extraction

Table 5
Calculated time series similarity based on coexistent sensors
onboard the PSV.

Measurement DCC DRA

Wind speed (anemometer) 0.920 0.780
Roll angle (MRU) 0.982 3.302

methods as presented in Section 2.5. First, a simple port to port trip
identification is shown for each of the two case vessels. Then, examples
of steady state identification are shown using various data from the two
case vessels.

3.5.1. Port to port trips
An example of trip identification using speed over ground measured

on the PSV is shown in Fig. 11. The speed limit is set to 4 knots.
The identified trip has a duration of approximately 8.5 h, and consists
mainly of transit operation at service speed of 12–14 knots. In Fig. 12
a similar trip identification for the MPV is shown. The identified trip
has a duration of approximately 19.5 h, and consists mainly of transit
operation at service speed of 13–15 knots. In both cases, the time series
data before and after the identified trip is found to be mainly low speed
maneuvering of short duration. Trip identification based on speed over
ground measurements is a very primitive tool to extract data of transit
operation. Yet, it is straightforward to implement and gives a fast and
robust splitting of the data into trips.

3.5.2. Stationary data
Data extraction based on identification of steady state time intervals

has been tested and evaluated using time series data from the PSV.
Fig. 13 presents three examples of steady state identification on ship
control variables that are critical for a ship performance analysis,
i.e. the propeller rpm, the propeller pitch and the ship heading. The
time series data of the propeller rpm and the propeller pitch are
extracted from the same time interval. This interval takes place in
between two time vector jumps and lasts for about 100 min. The ship
heading data is extracted from a separate time interval, lasting for
about 210 min. The reason for presenting a separate time interval is
simply because the ship heading was constant throughout the time
interval used for the propeller rpm and pitch. The color in the figures
indicates the local state identification, with green color representing the
time intervals where the particular variable probably is at steady state.
The three measurement variables are all checked for steady state using
a significance level 𝛼 = 1%, but with individually selected window
lengths. For the propeller rpm measurement a window of 5 min (𝑛 =
300) is used. Evaluating the result presented in Fig. 13(a) shows that
the method successfully rejects the two parts of the time series that by
visual inspection clearly is not at steady state, more specifically the rpm
drop and rebuild between time ≈ 18 and 32 min and between time ≈ 40
and 46 min into the time series. The propeller pitch angle is checked
for steady state using a window of 30 s (𝑛 = 30). The short window
length is set because changes in propeller pitch angle generally occur
more frequently and are of shorter duration compared to the propeller
rpm. The result is presented in Fig. 13(b), showing how the propeller
pitch angle (measured in % of maximum pitch angle) is reduced and
increased between time ≈18 and 48 min into the time series. The steady
state detection rejects most parts of this data. However, due to the small
window, there are even some short time intervals in between that are
accepted as steady state, e.g. between time ≈ 22 and 27 min. The third
example of steady state identification considers the ship heading using
𝛼 = 1% and a window of 20 min (𝑛 = 1200). The long window is set
because a change in ship heading generally is a slow process, expected
to occur infrequently during a traditional transit operation. The result
is shown in Fig. 13(c), and agrees well with visual inspection. Short
intervals of apparently steady state data have been rejected due to non-
sufficient length compared to the window size. The small but distinct
changes in heading are successfully rejected as steady state, for example
as shown between time ≈ 30 and 50 min.
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Fig. 9. Data validation of wind speed measured by two coexistent anemometers onboard the PSV.

Fig. 10. Data validation of roll angle measured by two coexistent motion reference units (MRU) onboard the PSV.

Fig. 11. Trip identified for the PSV using port to port extraction. Low speed maneuvering set to be initiated at a forward speed below 4 knots.

Fig. 12. Trip identified for the MPV using port to port extraction. Low speed maneuvering set to be initiated at a forward speed below 4 knots.

3.6. Data preparation for ship performance analysis

The presented data preparation tools are evaluated with respect to
a ship performance analysis of a platform supply vessel (PSV) and a
general cargo/multipurpose vessel (MPV). The result of a thorough data

preparation is high quality data fully customized for the particular type
of analysis. High quality means that errors, distortions and unphysical
relationships are omitted as input to the data analysis. Fully customized
means that only data relevant for the particular analysis is extracted
from the data set.
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Fig. 13. Time series of propeller rpm data, propeller pitch data and ship heading data showing local steady state (green) based on a 𝑡-test of the estimated slope inside a moving
window. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

To evaluate the final result of the data preparation tools applied
on ship monitoring data, a ship performance evaluation in terms of a
speed–power analysis is given for each of the two case vessels. Except
from the data preparation, no additional corrections are made to the
speed and propulsion power data. A plot of the propulsion power
vs the forward speed is descriptive in that it presents the variation
in consumed power relative to the variation in speed. The plot is
particularly descriptive for the ship performance if shown together with
the calm water speed–power relation, as it provides a more precise
impression of both the amount of operational data not matching the
expected calm water relation as well as how far the operational data
deviates from the expected calm water relation.

Fig. 14 shows the speed–power data from the one year data set of
the PSV, along with curves for the calm water speed–power relation
at three different vessel draughts. The blue colored markers represent
data prior to application of the data preparation tools, corresponding
to 30 537 481 samples. Note however that data exceeding the physical
constraints of either the propulsion power or the forward speed are left
out, as the most extreme values explode the dimensions of the axes,

making the majority of data unreadable. For the PSV the amount of
data exceeding the physical constraints, and therefore not shown in the
figure, amounts to approximately 150 000 samples, corresponding to
32 h of operation.

The speed–power plot illustrates that the data preparation tools
removes unphysical data as well as data that is likely to originate from
unsteady behavior. It shows that the prepared data becomes more fitted
to the calm water curves as a lower baseline, and that the data for
which the forward speed of the vessel is low while the propulsion power
is high is removed from the prepared data set. Out of the one year data
set from the PSV, 59.7% of the data was removed during data prepara-
tion in combination with port to port trips data extraction, while 73.3%
of the data was removed during data preparation in combination with
steady state identification of propulsion power, propeller pitch angle
and ship heading.

Similarly as for the PSV, the speed–power data from the one year
data set of the MPV is shown in Fig. 15. The blue colored markers
represent data prior to application of the data preparation tools, cor-
responding to 31 234 048 samples. For this vessel the amount of data
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Fig. 14. Speed–power relationship for the platform supply case vessel, showing data prior to (blue colored markers) and post data preparation (gray colored markers). The
triangular markers represent the scaled model test data of the calm water performance at three vessel draughts. Except from the current data preparation, no additional corrections
are made to the speed and shaft power data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Speed–power relationship of the general cargo/multipurpose case vessel, showing data prior to (blue colored markers) and post data preparation (gray colored markers).
The triangular markers represent the scaled model test data of the calm water performance at two vessel draughts. Except from the current data preparation, no additional
corrections are made to the speed and shaft power data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

exceeding the physical constraints of either the propulsion power or the
ship speed corresponds to approximately 1 h of operation. The speed–
power plot from the MPV data illustrates the performance of the data
preparation tools very well. The prepared data fits nicely to the calm
water curves as a lower baseline, and the majority of the data showing
a combination of low forward speed and high propulsion power is
removed from the prepared data set. Out of the one year data set from

the MPV, 70.0% of the data was removed during data preparation in
combination with port to port trips data extraction, while 80.8% of
the data was removed during data preparation in combination with
steady state identification of propeller rpm, propeller pitch angle and
ship heading.

The most prominent difference between the two speed–power plots
based on the PSV and the MPV ship monitoring data sets is the lower
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left region of the scattered data, representing low forward speed and
medium propulsion power. For the PSV, a major part of this data
persists in the prepared data set. For the MPV, most of this data is
removed in the prepared data set. This difference can be explained by
domain knowledge and logical reasoning. The PSV operates in a more
exposed wave and wind environment compared to the MPV, which
means that a larger speed loss is expected to take place. The PSV
also has a more unfavorable ship length to wave length ratio, which
also affects the speed loss. The MPV is therefore expected to have less
amount of data in the low forward speed medium propulsion power
region, corresponding to large speed loss, compared to the PSV.

4. Conclusion

A stepwise recommended practice for preparation of in-service mea-
surement data for ship operation and performance analysis has been
presented and evaluated. The presented methods for preparation of in-
service measurement data have been demonstrated and shown to be
efficient tools for obtaining high quality in-service data. It is shown
how the data preparation improves a ship performance analysis, by
presenting a speed–propulsion power relation for two case vessels
having different vessel designs.

It is generally recommended to follow this procedure for data
preparation concerning most kinds of time series data from continuous
monitoring of physical processes. However, it is still encouraged to
use specific domain knowledge during the implementation. This is
particularly relevant during data extraction, both in terms of selecting
variables and in setting the necessary parameters for steady state
identification. By following this practice, more focus can be given to the
actual data analysis compared to the data preparation, still preserving
that only high quality data is used as input to the data analysis.
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