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GLOBAL BIFURCATION OF WAVES WITH MULTIPLE CRITICAL
LAYERS\ast 
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Abstract. Analytic global bifurcation theory is used to construct a large variety of families
of steady periodic two-dimensional gravity water waves with real-analytic vorticity distributions,
propagating in an incompressible fluid. The waves that are constructed can possess an arbitrary
number of interior stagnation points in the fluid and corresponding critical layers consisting of closed
streamlines. This is made possible by the use of the so-called naive flattening transform, which has
previously only been used for local bifurcation.
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1. Introduction. In this paper, our concern shall be two-dimensional traveling
water waves, propagating in an inviscid and incompressible fluid of finite depth atop a
flat bed. The waves will be purely gravitational---that is, we neglect the influence of
surface tension. Moreover, we make the assumption that the waves have not overturned,
meaning that the free surface can be described as the graph of a function, which we
shall call \eta : \BbbR \rightarrow \BbbR in what follows.

The steady-frame fluid domain, stationary with respect to the wave, will be
denoted by

\Omega \eta :=
\bigl\{ 
(x, y) \in \BbbR 2 : 0 < y < d+ \eta (x)

\bigr\} 
,

where d > 0 represents the unperturbed fluid depth, with x marking the horizontal
direction, and y the vertical direction. Furthermore, we will write

S\eta := \{ (x, d+ \eta (x)) : x \in \BbbR \} 

for the free surface and
B := \{ (x, 0) : x \in \BbbR \} 

to signify the flat bed. These components of \partial \Omega \eta are assumed to be positively separated,
with S\eta situated above B.

The waves are required to satisfy the steady incompressible Euler equations

(1a)
\nabla \cdot [(u - cex)\otimes (u - cex)] +\nabla (p+ gy) = 0,

\nabla \cdot u = 0

in \Omega \eta , where u : \Omega \eta \rightarrow \BbbR 2 is the velocity field, and p : \Omega \eta \rightarrow \BbbR is the pressure. The
constant c > 0 is the wave speed, and g > 0 is known as the acceleration due to
gravity, while ex := (1, 0) is the horizontal unit vector. We may interpret the individual
equations in (1a) as representing conservation of momentum and mass, respectively.
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GLOBAL BIFURCATION OF WAVES WITH CRITICAL LAYERS 5067

To finish the description of the governing equations for steady water waves, we
also require boundary conditions: First, we have the kinematic boundary conditions,
which read

(1b) \eta \bot \cdot (u - cex) = 0 on S\eta 

and

(1c) ey \cdot u = 0 on B,

naturally ``attaching"" the boundary of the fluid domain to the velocity field. Here,
\eta \bot := ( - \partial x\eta , 1) yields the nonnormalized normal vector on S\eta in terms of the surface
profile \eta .

The final boundary condition is the dynamic boundary condition

(1d) p = 0 on S\eta ,

ensuring that the pressure is continuous across the interface. This is where surface
tension would have entered had we not neglected it. Collectively, (1a)--(1d) is known
as the steady water-wave problem.

Of particular interest to us are rotational steady waves, for which the scalar
circulation density

\omega := \nabla \bot \cdot u, where \nabla \bot := ( - \partial y, \partial x),

does not vanish identically. This quantity is known as the vorticity of the fluid.
Conveniently, if a stream function \psi : \Omega \eta \rightarrow \BbbR is introduced through \nabla \bot \psi := u - cex,
then the identity

\omega = \nabla \bot \cdot \nabla \bot \psi = \Delta \psi 

holds throughout \Omega \eta .
We can go further than this still: If we have a smooth solution of the steady

water-wave problem (1), and c - u \cdot ex = \partial y\psi > 0 in \Omega \eta , then there exists a vorticity
distribution \gamma : \BbbR \rightarrow \BbbR such that

(2a) \Delta \psi + \gamma (\psi ) = 0 in \Omega \eta ;

see, e.g., [4, section 2]. Of course, this merely constitutes a sufficient condition for \gamma 
to exist. There is nothing preventing us from postulating the existence of a vorticity
distribution, even when the hypothesis above fails in the presence of interior stagnation
points where u - cex = \nabla \bot \psi = 0. Having access to a vorticity distribution is highly
convenient mathematically.

By employing elementary vector-calculus identities, we find that

\nabla \cdot 
\bigl( 
\nabla \bot \psi \otimes \nabla \bot \psi 

\bigr) 
= \nabla 

\biggl( 
1

2
| \nabla \psi | 2 + \Gamma (\psi )

\biggr) 
, \Gamma (t) :=

\int t

0

\gamma (s) ds

for solutions of (2a). Combining this identity with (1a) and (1d), we are led to the
free-surface Bernoulli equation

(2b)
1

2
| \nabla \psi | 2 + g\eta = Q on S\eta 
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5068 KRISTOFFER VARHOLM

for some constant Q >  - gd. Together with (2a) and the demand that

\psi = \mu on S\eta ,(2c)

\psi = \Upsilon on B,(2d)

for two constants \mu ,\Upsilon \in \BbbR , which is the form that the kinematic boundary conditions
(1b) and (1c) take for stream functions, these equations give rise to solutions of the
steady water-wave problem in (1).

If we appeal to the integral

\Upsilon  - \mu =

\int d+\eta (x)

0

(u(x, y) \cdot ex  - c) dy,

which is independent of the choice of x \in \BbbR , we see that the difference between the
constants in (2c) and (2d) may be interpreted as a relative mass flux.

1.1. Previous work. The mathematical study of solutions to variants of the
steady water-wave problem (1) has a rich and extensive history---going back hundreds of
years. Most of the earlier literature concerned irrotational waves, where the reader may
find surveys such as [16, 27] of interest. Comparatively, the study of rotational steady
waves specifically is much more recent, especially when they are allowed to stagnate.
Rotation is of course ubiquitous in nature, essentially being induced whenever there
are nonconservative forces at play, but also introduces new nontrivial mathematical
challenges.

One could argue that the first rotational water-wave result was the explicit
infinite-depth Gerstner wave [14]; see also [3] for a modern treatment, including recent
developments in the field of nonlinear water waves more generally. However, a much
more compelling case can be made for the doctoral thesis [9]. There, Dubreil-Jacotin
introduced the semihodograph transform for (2), treating the stream function as the
vertical variable. They subsequently used the transform in an existence theorem for
small-amplitude periodic solutions, and it has since seen wide use and become a staple
tool in the field. In particular, we must single out its use in the seminal paper [4],
which was the first large-amplitude result in the same setting.

One significant downside of the semihodograph transform is that it precludes the
presence of interior stagnation points, or their corresponding critical layers of closed
streamlines, in the fluid. The reason for this is that \psi y must necessarily have a definite
sign in order to enable the use of \psi as a vertical variable. Therefore, if stagnation is a
desired feature, a different way of dealing with the free boundary must be utilized.

An early existence result for stagnant waves was [12], furnishing linear stagnant
waves with constant vorticity. This paper would lead to the first nonlinear existence
result in [31], where Wahl\'en constructed small-amplitude waves with one critical layer
for constant \gamma . Instead of the semihodograph transform, they used the same naive
flattening transform that we shall soon introduce (see (6)). In the decade following
this paper, there has been a flurry of activity concerning waves with stagnation points:
In [6] a different approach from that of [31] was used, restating the problem as a
pseudodifferential equation using conformal mapping. While highly specialized for
constant vorticity, the framework is elegant and potentially allows for overhanging
waves. The authors of [6] would later go on to further develop this framework with
Strauss in [5], establishing the existence of large amplitude waves. We should also
mention here that there is another global result in the presence of capillary effects [23].

At the same time, there has been a parallel endeavor of considering more ``in-
teresting"" vorticity distributions, expanding on the use of the flattening transform
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GLOBAL BIFURCATION OF WAVES WITH CRITICAL LAYERS 5069

from [31]. Even taking the step up to affine vorticity distributions [1, 10, 11, 13] admits
waves with an arbitrary number of critical layers. These works also provide results
for bimodal [1, 11] or even trimodal [13] waves. Small-amplitude solutions for very
general vorticity distributions \gamma were examined in [18]. See also [20] for a recent result
involving n-modal waves for ``almost""-affine vorticity distributions, giving a partial
answer to a question posed in [13].

In this paper, our goal is to, in a sense, unite these two efforts: We show that
the framework of [11, 31] can be extended in such a way that it can be used for
large-amplitude waves as well.

There are, of course, several papers on stagnant waves that do not fit neatly into
our categorizations above. For instance, a recent paper [21] constructs small-amplitude
nonsymmetric waves with critical layers using a spatial-dynamics approach, as opposed
to the bifurcation-theoretic nature of the above results. There is also a preprint [19] on
solitary waves with constant vorticity and a critical layer connecting with the bed, again
using spatial dynamics. Finally, there are several papers on solitary capillary-gravity
waves with compactly supported vorticity [25, 28], including two recent ones dealing
with the stability of such waves [22, 29]. These waves are stagnant, but we remark
that the waves with immersed point vortices do not possess vorticity distributions in
the traditional sense.

1.2. Plan for this article. In section 2, we formulate the problem and describe
its linearization. Of noteworthy importance is the key generalization of the so-called
\scrT -isomorphism from [11] to nontrivial solutions. Section 3 is used to study the kernel
of the linearization, in particular resulting in Theorem 9. This section is also used to
state our local bifurcation result, Theorem 17. Following this, we briefly discuss the
special cases of constant and affine vorticity in section 4. Finally, section 5 extends the
local curves to global ones, which is the central event of this paper. Our main result
here is Theorem 18, which concerns the global solution curves obtained by applying
analytic global bifurcation theory. An interesting feature of its proof is the use of an
alternative near-surface flattening to prove the necessary compactness.

2. Formulation. After a convenient choice of scaling, we may set the unperturbed
depth and gravitational acceleration to d = g \equiv 1, switching out (2b) for

(2b \star )
1

2
| \nabla \psi | 2 + \eta = Q on S\eta 

instead. At this point, we make a regularity assumption, the first half of which is
necessary for us to be able to apply analytic global bifurcation theory later.

Assumption 1 (regularity of \gamma ). The vorticity distribution \gamma : \BbbR \rightarrow \BbbR is real
analytic, with bounded derivative.

The trivial solutions of (2) are those corresponding to parallel flows beneath a
flat surface, and in particular those for which \eta \equiv 0. We define the trivial stream
function \psi = \psi (\Lambda ) to be the unique solution---the existence of which is ensured by
Assumption 1---of the initial value problem

(3)
\psi 
\prime \prime 
+ \gamma (\psi ) = 0 for y \in (0, 1),

\psi (1) = \mu , \psi 
\prime 
(1) = \lambda 

for \Lambda := (\mu , \lambda ) in the set

(4) \scrU := \{ (\mu , \lambda )\underbrace{}  \underbrace{}  
\Lambda 

\in \BbbR 2 : \lambda \not = 0\} 
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5070 KRISTOFFER VARHOLM

of permissible parameters. Here, the restriction on \lambda ensures that there is no technically
problematic surface stagnation present at the trivial solution. The corresponding
values of Q and \Upsilon are determined from (2b \star ) and (2d), namely,

Q(\Lambda ) =
1

2
\lambda 2,(5)

\Upsilon (\Lambda ) = \psi (0; \Lambda ).

We will often leave out explicit dependence on \Lambda from our notation for readability,
especially for \psi .

Remark 2. We mention that the solutions of (3) can be written down explicitly
only for very special choices of \gamma , such as when the vorticity distribution is either
constant or affine.

By flattening the fluid domain through what we shall call the naive flattening
transform \Pi : \Omega \eta \rightarrow \Omega 0, defined by

(6) \Pi (x, y) =

\biggl( 
x,

y

1 + \eta (x)

\biggr) 
,

the water-wave problem in (2) becomes

(7)

\biggl( 
\partial x  - s\eta x

1 + \eta 
\partial s

\biggr) 2

\^\psi +
1

(1 + \eta )2
\^\psi ss + \gamma ( \^\psi ) = 0 in \Omega 0,

1 + \eta 2x
2(1 + \eta )2

\^\psi 2
s + \eta = Q on S0,

\^\psi = \mu on S0,

\^\psi = \Upsilon on B,

where s is used to distinguish the vertical variable in the flattened domain. For
notational simplicity, we will henceforth use \Omega := \Omega 0 and S := S0.

Write now

(8) \^\psi = \^\psi ( \^\varphi ,\Lambda ) := \psi (\Lambda ) + \^\varphi ,

where \^\varphi is a disturbance from \psi that vanishes at both the bottom and the surface.
The trivial solution in this definition takes care of the Dirichlet boundary conditions
in (7). We will typically use the notation w = (\eta , \^\varphi ) for the pairs living in the space

(9) X = X1 \times \^X2 := C2,\beta 
\kappa ,\mathrm{e} (\BbbR )\times \{ \^\varphi \in C2,\beta 

\kappa ,\mathrm{e} (\Omega ) : \^\varphi | S = \^\varphi | B = 0\} 

for some fixed H\"older exponent \beta \in (0, 1). Here, the subscripts denote 2\pi /\kappa -periodicity
and evenness in the horizontal direction, respectively.

If we further define the open subset

(10) \scrO := \{ (w,\Lambda ) \in X \times \scrU : 1 + \eta > 0, sgn(\lambda ) \^\psi s| S > 0\} 

of X \times \BbbR 2, we may define the analytic map \scrF = (\scrF 1,\scrF 2) : \scrO \rightarrow Y by

(11)

\scrF 1(w,\Lambda ) :=
1 + \eta 2x

2(1 + \eta )2
( \^\psi s| S)2 + \eta  - 1

2
\lambda 2,

\scrF 2(w,\Lambda ) :=

\biggl( 
\partial x  - s\eta x

1 + \eta 
\partial s

\biggr) 2

\^\psi +
1

(1 + \eta )2
\^\psi ss + \gamma ( \^\psi ),

D
ow

nl
oa

de
d 

11
/0

3/
20

 to
 1

29
.2

41
.2

29
.3

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL BIFURCATION OF WAVES WITH CRITICAL LAYERS 5071

where the natural codomain of \scrF is the space

Y = Y1 \times Y2 := C1,\beta 
\kappa ,\mathrm{e} (\BbbR )\times C\beta 

\kappa ,\mathrm{e}(\Omega ).

Note in particular that \Lambda \mapsto \rightarrow \psi (\Lambda ) defines an analytic map from \BbbR 2 into the space
C2,\beta ([0, 1]) =: V by a simple argument involving the implicit function theorem applied
to the map F : V \times \BbbR 2 \rightarrow V defined through

F (\zeta ,\Lambda )(s) := \zeta (s) - \mu  - \lambda (s - 1) +

\int s

1

\int t

1

\gamma (\zeta (r)) dr dt.

The idea of the definition in (11) is that it combines (7) with (8), and the value of
Q from (5). Thus (0,\Lambda ) is a solution of the equation

(12) \scrF (w,\Lambda ) = 0

in \scrO for every \Lambda \in \scrU by construction. Moreover, these are the only solutions with the
flat surface \eta \equiv 0.

Remark 3. The last condition for membership in \scrO ensures that there is no
stagnation on the surface, and that

sgn( \^\psi s| S) = sgn(\lambda ),

whereupon the line segment between (0,\Lambda ) and (w,\Lambda ) is always contained in \scrO for
any (w,\Lambda ) \in \scrO . A further implication is that the slice

(13) \scrO \lambda := \{ (w, \mu ) \in X \times \BbbR : (w, \mu , \lambda ) \in \scrO \} 

is connected for any fixed \lambda \not = 0.

Our objective from here on is to further investigate the solution set of (12) in \scrO .
The first observation we make is that solutions of (12) are more regular than generic
elements of \scrO , as a consequence of the following theorem.

Theorem 4 (analyticity of solutions). Suppose that (w,\Lambda ) \in \scrO is a solution of
(12) under Assumption 1. Then the following hold:

(i) The surface profile \eta is analytic.

(ii) The stream function \^\psi extends to an analytic function on an open set con-
taining \Omega .

Proof. The proof is essentially the same as the one for [1, Theorem 2.5], but using
nonlinear elliptic regularity theory instead of linear theory; see, for instance, [24].

2.1. Linearization around a solution. In preparation for both local and global
bifurcation, we require the linearization of (12) around its solutions. It is straightfor-
ward, but laborious, to compute the partial derivatives

D\eta \scrF 1(w,\Lambda )H =

\biggl( 
1 - 1 + \eta 2x

(1 + \eta )3
\^\psi 2
s

\biggr) 
H +

\eta x \^\psi 
2
s

(1 + \eta )2
Hx,

D \^\varphi \scrF 1(w,\Lambda )\^\Phi =
1 + \eta 2x
(1 + \eta )2

\^\psi s
\^\Phi s
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5072 KRISTOFFER VARHOLM

for \scrF 1, where restrictions to S are implied, and similarly

D\eta \scrF 2(w,\Lambda )H =

\Biggl( 
s\eta xx \^\psi s

(1 + \eta )2
 - 4s\eta 2x

\^\psi s

(1 + \eta )3
+

2s\eta x \^\psi xs

(1 + \eta )2
 - 2

1 + s2\eta 2x
(1 + \eta )3

\^\psi ss

\Biggr) 
H

+

\Biggl( 
4s\eta x \^\psi s

(1 + \eta )2
 - 2s \^\psi xs

1 + \eta 
+

2s2\eta x \^\psi ss

(1 + \eta )2

\Biggr) 
Hx  - s \^\psi s

1 + \eta 
Hxx,

D \^\varphi \scrF 2(w,\Lambda )\^\Phi =

\biggl( 
\partial x  - s\eta x

1 + \eta 
\partial s

\biggr) 2

\^\Phi +
1

(1 + \eta )2
\^\Phi ss + \gamma \prime ( \^\psi )\^\Phi 

for \scrF 2. These expressions are of course valid for any (w,\Lambda ) \in \scrO , regardless of whether
this pair is a solution of (12), but appear quite formidable. It turns out that if (w,\Lambda )
is a solution of (12), then Dw\scrF (w,\Lambda ) can be transformed into an operator that is
easier to study.

To that end, let us introduce the space

X2 := \{ \Phi \in C2,\beta 
\kappa ,\mathrm{e} (\Omega ) : \Phi | B = 0\} ,

which differs from \^X2 (see (9)) only through the relaxation of the Dirichlet condition
on S. The purpose of introducing this space is to ``encode"" both H (i.e., capital \eta )
and \^\Phi in a single variable.

If (w,\Lambda ) \in \scrO is such that also \eta \in C3,\beta 
\kappa ,\mathrm{e} (\BbbR ) and \^\varphi \in C3,\beta 

\kappa ,\mathrm{e} (\Omega ), we may define
a---soon to be motivated---bounded linear operator \scrL (w,\Lambda ) \in Lin(X2, Y ) by

(14)
\scrL 1(w,\Lambda )\Phi :=

1 + \eta 2x
(1 + \eta )2

\^\psi s\Phi s +

\biggl( 
\gamma (\mu ) - 1 + \eta 

\^\psi s

\biggr) 
\Phi  - 

\Biggl( 
\eta x \^\psi s

1 + \eta 
\Phi 

\Biggr) 
x

,

\scrL 2(w,\Lambda )\Phi := D \^\varphi \scrF 2(w,\Lambda )\Phi ,

with the functions in the definition of \scrL 1(w,\Lambda ) evaluated on S. Furthermore, for
\scrL 2(w,\Lambda ), we interpret D \^\varphi \scrF 2(w,\Lambda ) as extended to X2 \supset \^X2 in the natural way. For
convenience, we note that the operator defined in (14) simplifies to

(15)
\scrL 1(\Lambda ) := \scrL 1(0,\Lambda )\Phi = \lambda \Phi s +

\biggl( 
\gamma (\mu ) - 1

\lambda 

\biggr) 
\Phi ,

\scrL 2(\Lambda ) := \scrL 2(0,\Lambda )\Phi = (\Delta + \gamma \prime (\psi ))\Phi 

at the trivial solutions.
In particular, we have the required increased regularity for \scrL (w,\Lambda ) to be well

defined when (w,\Lambda ) is a solution of (12), due to Theorem 4. Moreover, in this case we
can relate Dw\scrF (w,\Lambda ) to the operator \scrL (w,\Lambda ), which is the reason for its introduction.
This is done by utilizing a suitable generalization of the so-called \scrT -isomorphism
from [11].

Theorem 5 (\scrT -isomorphism). Suppose that (w,\Lambda ) \in \scrO satisfies (12). Then

(16) \scrT (w,\Lambda )\Phi :=

\Biggl( 
 - 1 + \eta 

\^\psi s| S
\Phi | S ,\Phi  - s \^\psi s

\^\psi s| S
\Phi | S

\Biggr) 

defines an isomorphism \scrT (w,\Lambda ): X2 \rightarrow X, and

(17) \scrL (w,\Lambda ) = Dw\scrF (w,\Lambda )\scrT (w,\Lambda ).
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Proof. Inspired by the procedure that was presumably used to arrive at the \scrT -
isomorphism for trivial solutions in [11], we suppose the existence of some element
\^f \in X2 which enjoys the property

(18) D \^\varphi \scrF 2(w,\Lambda )
\bigl( 
\^fH
\bigr) 
=  - D\eta \scrF 2(w,\Lambda )H

for all H \in C2,\beta 
\kappa ,\mathrm{e} (\BbbR ), and which furthermore does not vanish at any point on the surface.

Again, we view the derivative D \^\varphi \scrF 2(w,\Lambda ) as naturally extended to an operator on

X2 \supset \^X2. Let g := \^f | S , which by supposition has a definite sign. Then the operator
\scrT (w,\Lambda ): X2 \rightarrow X defined by

(19) \scrT (w,\Lambda )\Phi :=

\biggl( 
 - \Phi | S

g
,\Phi  - \^f

\Phi | S
g

\biggr) 
is easily seen to be an isomorphism and yields

Dw\scrF 2(w,\Lambda )\scrT (w,\Lambda )\Phi =  - D\eta \scrF 2(w,\Lambda )

\biggl( 
\Phi | S
g

\biggr) 
+D \^\varphi \scrF 2(w,\Lambda )

\biggl( 
\Phi  - \^f

\Phi | S
g

\biggr) 
= D \^\varphi \scrF 2(w,\Lambda )

\biggl( 
\^f
\Phi | S
g

\biggr) 
+D \^\varphi \scrF 2(w,\Lambda )

\biggl( 
\Phi  - \^f

\Phi | S
g

\biggr) 
= D \^\varphi \scrF 2(w,\Lambda )\Phi ,

whence the second component of (17) is satisfied.
We have shown that the property in (18) is key to establishing the theorem, and

this equation turns out to be simpler to consider on the unflattened \Omega \eta instead. Define

therefore the pullbacks \psi = \^\psi \circ \Pi and f = \^f \circ \Pi , where we recall that \Pi is the
flattening transform from (6). Then the left-hand side of (18) becomes

(20) (\Delta + \gamma \prime (\psi ))(fH) = (\Delta + \gamma \prime (\psi ))fH + 2fxHx + fHxx,

while the right-hand side turns into

(21)

\biggl( 
2\eta 2xy\psi y

(1 + \eta )3
+

2\psi yy

1 + \eta 
 - y\eta xx\psi y

(1 + \eta )2
 - 2\eta xy\psi xy

(1 + \eta )2

\biggr) 
H + 2

\biggl( 
y\psi y

1 + \eta 

\biggr) 
x

Hx +
y\psi y

1 + \eta 
Hxx

after a lengthy computation. By comparing (20) and (21), we see that the only possible
solution candidate of (18) corresponds to

f =
y\psi y

1 + \eta 

and that we need only verify that the coefficients in front of H in (20) and (21) are
equal. Note that f has the correct regularity for \scrT to be well defined, because \psi and
\eta are analytic by Theorem 4. Additionally, \psi y does not vanish on the surface, because
of the postulation that (w,\Lambda ) \in \scrO .

One may now check by direct calculation that

(\Delta + \gamma \prime (\psi ))

\biggl( 
y\psi y

1 + \eta 

\biggr) 
=

2\eta 2xy\psi y

(1 + \eta )3
+

2\psi yy

1 + \eta 
 - y\eta xx\psi y

(1 + \eta )2
 - 2\eta xy\psi xy

(1 + \eta )2

+
y

1 + \eta 
(\Delta \psi + \gamma (\psi ))y,

D
ow

nl
oa

de
d 

11
/0

3/
20

 to
 1

29
.2

41
.2

29
.3

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5074 KRISTOFFER VARHOLM

where the first terms are precisely the ones in front of H in (21), while the last term
vanishes because \psi solves (2a). Hence (18) holds for

\^f = f \circ \Pi  - 1 =
s \^\psi s

1 + \eta 
,

for which (19) becomes (16). Finally, direct computation yields

Dw\scrF 1(w,\Lambda )\scrT (w,\Lambda ) =
1 + \eta 2x
(1 + \eta )2

\^\psi s\Phi s  - 
\eta x \^\psi s

1 + \eta 
\Phi x

 - 

\Biggl( 
1 + \eta 

\^\psi s

+
1 + \eta 2x
(1 + \eta )2

\^\psi ss +
\eta 2x

\^\psi s

(1 + \eta )2
 - \eta x \^\psi xs

1 + \eta 

\Biggr) 
\Phi ,

where
1 + \eta 2x
(1 + \eta )2

\^\psi ss +
\eta 2x

(1 + \eta )2
\^\psi  - \eta x

1 + \eta 
\^\psi xs =

\Biggl( 
\eta x \^\psi s

1 + \eta 

\Biggr) 
x

 - \gamma (\mu )

on S because \scrF 2(w,\Lambda ) = 0, and so (17) holds.

Remark 6. It is worth noting that if \scrF 2(w,\Lambda ) = 0, and we define the pullbacks

\psi = \^\psi \circ \Pi and \~\Phi = \Phi \circ \Pi , then

\scrL 1(w,\Lambda )\Phi = \psi y\partial 
\bot \~\Phi  - 

\biggl( 
\partial \bot \psi y +

1

\psi y

\biggr) 
\~\Phi ,

(\scrL 2(w,\Lambda )\Phi ) \circ \Pi = (\Delta + \gamma \prime (\psi ))\~\Phi ,

where the functions in the expression for \scrL 1 are evaluated on S\eta . By \partial \bot , we here
mean the nonnormalized normal derivative \partial \bot := \eta \bot \cdot \nabla for S\eta . Viewed through this
lens, \scrL (w,\Lambda ) closely resembles the operator \scrL (\Lambda ) for the trivial solutions in (15).

We also mention that, while outside the scope of this paper, the \scrT -isomorphism
can be employed even with the pseudostream function of waves in a stratified, incom-
pressible fluid.

3. Kernel and local bifurcation. The purpose of this section is to describe the
kernel of the operator \scrL (\Lambda ) from (15) and to give the corresponding local bifurcation
results for one-dimensional kernels. This extends parts of [1, 11] to more general
vorticity distributions, albeit with a slightly different bifurcation parameter. The
paper [18] deals with the same problem, in more detail, but with a quite different
approach. Since our primary concern is global bifurcation, we present the results with
this goal in mind. Note that Assumption 1 is much stronger, especially the analyticity,
than what is actually necessary for most of this section.

To simplify the description of the kernel of \scrL (\Lambda ), we define u = u(s; z) to be the
solution of the initial value problem

(22)
u\prime \prime (s; z) + (\gamma \prime (\psi (s)) - z)u(s; z) = 0,

u(0; z) = 0, u\prime (0; z) = 1,

where z acts as a parameter, and primes indicate derivatives with respect to s. Note
that u is entire in the parameter z (see, for instance, [26, Chapter 5]) and that u also
has a suppressed dependence on \Lambda through \psi . For real values of z we may introduce
the corresponding Pr\"ufer angle \vargamma = \vargamma (s; z) as the unique continuous representative
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GLOBAL BIFURCATION OF WAVES WITH CRITICAL LAYERS 5075

of arg(u\prime + iu) with \vargamma (0; z) = arg(1) = 0. This representative is well defined since u
and u\prime cannot vanish simultaneously, due to u being the solution of (22). The Pr\"ufer
angle satisfies the first order equation

\vargamma \prime (s; z) = cos(\vargamma (s; z))2 + (\gamma \prime (\psi (s)) - z) sin(\vargamma (s; z))2

at the cost of this equation being nonlinear.
Recall that the derivative of \gamma is bounded by Assumption 1. To facilitate the

remainder of this section, we introduce the two quantities

\rho := inf \gamma \prime and R := sup \gamma \prime ,

as they are ubiquitous. The next lemma describes the behavior of the Pr\"ufer angle
\vargamma (1; z) with respect to the parameter z. We will encounter this angle while describing
the kernel.

Lemma 7 (properties of \vargamma ). The Pr\"ufer angle \vargamma (1; \cdot ) is strictly decreasing, and
in fact \vargamma z(1; \cdot ) < 0. Moreover, it satisfies the bounds

(23) \sigma (z  - \rho ) \leq \vargamma (1; z) \leq \sigma (z  - R)

for all z \in \BbbR , where \sigma : \BbbR \rightarrow (0,\infty ) is the (single-valued) function defined by

\sigma (z) = arg

\biggl( 
cosh(

\surd 
z) + i

sinh(
\surd 
z)\surd 

z

\biggr) 
,

with \sigma (0) = \pi /4. In particular, \vargamma (1, - \infty ) = \infty and \vargamma (1,\infty ) = 0 (in the sense of
limits).

Proof. By differentiating (22) with respect to z, multiplying by u, and integrating
by parts, one arrives at the identity

u\prime z(1; z)u(1; z) - uz(1; z)u
\prime (1; z) =

\int 1

0

u(s; z)2 ds,

which implies that

\vargamma z(1; z) =
uz(1; z)u

\prime (1; z) - u(1; z)u\prime z(1; z)

u(1; z)2 + u\prime (1; z)2

=  - 
\int 1

0

u(s; z)2 ds

u(1; z)2 + u\prime (1; z)2
< 0,

proving the first part of the proposition.
Define now \~u = \~u(s; z) by

\~u(s; z) :=
sinh(s

\surd 
z)\surd 

z
,

and \~\sigma = \~\sigma (s; z) by
\~\sigma (s; z) := arg(\~u\prime (s; z) + i\~u(s; z)),

choosing the representative in the same way we did for \vargamma . To obtain the bounds
described in (23), it suffices to observe that \~\sigma (0; z) = 0, and that the differential
inequalities

\~\sigma \prime (s; z  - R) \geq cos(\~\sigma (s; z  - R))2 + (\gamma \prime (\psi (s)) - z) sin(\~\sigma (s; z  - R))2
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5076 KRISTOFFER VARHOLM

0

0

z

Fig. 1. The graph of a particular instance of l( \cdot ,\Lambda ), with the lower and upper bounds furnished
by Proposition 8.

and

\~\sigma \prime (s; z  - \rho ) \leq cos(\~\sigma (s; z  - \rho ))2 + (\gamma \prime (\psi (s)) - z) sin(\~\sigma (s; z  - \rho ))2

hold by direct computation. Then

\~\sigma (s; z  - \rho ) \leq \vargamma (s; z) \leq \~\sigma (s; z  - R)

for all s \geq 0, and in particular we have (23) from the special case s = 1.

Since the function u introduced in (22) is entire in the parameter z, we may define
a function l by

(24) l(z,\Lambda ) :=
u\prime (1; z)

u(1; z)
,

which consequently is meromorphic in z. Observing that l(z,\Lambda ) = cot(\vargamma (1; z)) on the
real axis, we immediately obtain the following result, illustrated in Figure 1.

Proposition 8 (properties of l). The derivative of l is positive on the real axis,
except at the poles of l, which are all simple. Moreover, l satisfies the bounds

(25) v(z  - R) \leq l(z,\Lambda ) \leq v(z  - \rho ),

where

v(z) := cot(\sigma (z)) =

\surd 
z

tanh(
\surd 
z)
,

on the (possibly empty) intervals

Ij :=

\Biggl\{ 
(R - (j + 1)2\pi 2, \rho  - j2\pi 2), j \geq 1,

(R - \pi 2,\infty ), j = 0.

Finally, the point z = 0 is a pole of l if and only if \psi \lambda (0) = 0, and if not, then

(26) l(0,\Lambda ) =  - 
\psi \mu (0)

\psi \lambda (0)
.
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GLOBAL BIFURCATION OF WAVES WITH CRITICAL LAYERS 5077

Proof. In order to show that (26) holds, it suffices to observe that

u(s; 0) = \psi \mu (0)\psi \lambda (s) - \psi \lambda (0)\psi \mu (s)

for all s \in [0, 1]. Indeed, the right-hand side satisfies (22) (with z = 0) by differentiation
of (3) and vanishes at s = 0. It also has the correct derivative at s = 0 since

\psi \mu (0)\psi 
\prime 
\lambda (0) - \psi \lambda (0)\psi 

\prime 
\mu (0) = \psi \mu (1)\psi 

\prime 
\lambda (1) - \psi \lambda (1)\psi 

\prime 
\mu (1) = 1,

where we have used that the Wronskian of \psi \mu and \psi \lambda is constant.

We are now equipped with everything we need to describe the kernel of the
operator \scrL (\Lambda ).

Theorem 9 (kernel of \scrL (\Lambda )). Let \Lambda \in \scrU . A basis for ker\scrL (\Lambda ) is then given by
\{ \Phi n\} n\in M , where

\Phi n(x, s) := cos(n\kappa x)u(s;n2\kappa 2)

and M =M(\Lambda ) is the finite set of all n \in \BbbN 0 satisfying the kernel equation

(27) l(n2\kappa 2,\Lambda ) = r(\Lambda ),

where

(28) r(\Lambda ) :=
1

\lambda 2
 - \gamma (\mu )

\lambda 
,

and l is the function defined in (24).

Proof. Suppose that \Phi \in X2, and write it as a Fourier series

\Phi (x, s) =

\infty \sum 
n=0

an(s) cos(n\kappa x)

in the horizontal direction. By inserting the series into (15), we deduce that \Phi \in 
ker\scrL (\Lambda ) if and only if each coefficient an solves the regular Sturm--Liouville problem

a\prime \prime n(s) + (\gamma \prime (\psi (s)) - n2\kappa 2)an(s) = 0,

an(0) = 0, \lambda a\prime n(1) +

\biggl( 
\gamma (\mu ) - 1

\lambda 

\biggr) 
an(1) = 0

for all n \in \BbbN 0. Trivially, an = 0 is always a solution, but not always the only one: It
is well known that this Sturm--Liouville problem has nonzero solutions, spanned by
u( \cdot ;n2\kappa 2), if and only if (27) is satisfied. There are only finitely many solutions of
(27), as n2\kappa 2 \in I0 for all sufficiently large n \in \BbbN 0, and l is strictly increasing there.

Remark 10. The function l will depend nontrivially on \Lambda unless \gamma \prime is a constant,
namely, when the vorticity is either constant or affine. We also mention that we would
typically like to avoid the degenerate case where n = 0 solves (27). For this reason,
(26) can occasionally be useful.

Exactly one-dimensional kernels can be found under certain assumptions on \gamma ,
especially if we are willing to relinquish control of the wavenumber \kappa > 0. One way
is to, in essence, require that \gamma be close enough to affine to enable us to exploit
the bounds in (25). Note that there is no loss of generality in limiting the scope to
M(\Lambda ) = \{ 1\} , by redefining \kappa , as long as the only interest is in one-dimensional kernels
M(\Lambda ) \not = \{ 0\} .
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5078 KRISTOFFER VARHOLM

Proposition 11 (kernel construction).
(i) Suppose that n2\kappa 2 \in Ij for some j \in \BbbN 0, and further that \mu is such that

\gamma (\mu )2 >  - 4v(n2\kappa 2  - R),

with v as defined in Proposition 8. Then there exist \lambda \not = 0 such that n \in M(\Lambda ).
More precisely, such \lambda can always be chosen to satisfy

(29) \lambda \in 

\Biggl\{ 
(0, - 2/\gamma (\mu )), \gamma (\mu ) < 0,

( - 2/\gamma (\mu ), 0), \gamma (\mu ) > 0,

if v(n2\kappa 2  - R) \leq 0, and

(30) \lambda \in 

\left\{     
( - \infty , 0) or (0, - 1/\gamma (\mu )), \gamma (\mu ) < 0,

( - \infty , 0) or (0,\infty ), \gamma (\mu ) = 0,

( - 1/\gamma (\mu ), 0) or (0,\infty ), \gamma (\mu ) > 0,

otherwise.
(ii) Assume that 0 \in Ij for some j \in \BbbN 0, and let \mu \in \BbbR . For any \kappa > 0 such that

\kappa 2 \in I0 and

v(\kappa 2  - R) > max(v( - \rho ), - \gamma (\mu )2/4)

there is a \lambda \not = 0, which can be chosen according to (29) or (30), such that
M(\Lambda ) \equiv \{ 1\} . In particular, this is the case for all sufficiently large \kappa > 0.

Proof. We know by Proposition 8 that if n2\kappa 2 \in Ij , then

v(n2\kappa 2  - R) \leq l(n2\kappa 2,\Lambda ) \leq v(n2\kappa 2  - \rho ),

where it is crucial that the bounds do not depend on \Lambda . Observe that

inf
\lambda \not =0

r(\mu , \lambda ) =  - 1

4
\gamma (\mu )2

for every \mu \in \BbbR , with the infimum attained at \lambda =  - 2/\gamma (\mu ) as long as \gamma (\mu ) \not = 0. In
the same event, we also have r(\mu , - 1/\gamma (\mu )) = 0. Moreover, r(\mu , \lambda ) \rightarrow \infty as \lambda \rightarrow 0,
and r(\mu , \lambda ) \rightarrow 0 as | \lambda | \rightarrow \infty . The first part of the proposition now follows from the
intermediate value theorem applied to r(\mu , \cdot ) - l(n2\kappa 2, \mu , \cdot ), on appropriate intervals
chosen according to either (29) or (30).

For the second part of the proposition, observe that the hypothesis of the first
part is satisfied with n = 1 and j = 0. Thus, there is some \lambda \not = 0 such that 1 \in M(\Lambda ).
Moreover, by the assumptions and Proposition 8 we have

l(0,\Lambda ) \leq v( - \rho ) < v(\kappa 2  - R) \leq l(\kappa 2,\Lambda ),

whence 0 /\in M(\Lambda ). Finally, l(n2\kappa 2,\Lambda ) > l(\kappa 2,\Lambda ) for all n \geq 2, since l is strictly
increasing on I0. Thus M(\Lambda ) = \{ 1\} .

Remark 12. Kernels of arbitrarily large finite dimension exist when \gamma is affine [1],
but it is unclear if, and in what sense, the existence of multidimensional kernels
generalizes to more general vorticity distributions. We will not pursue this question
here.
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3.1. The Fredholm property of \bfscrL (\Lambda ). Let us introduce the notation

\scrT (\Lambda ) = (\scrT 1, \scrT 2)(\Lambda ) := \scrT (0,\Lambda ), \Lambda \in \scrU ,

for the \scrT -isomorphism at the trivial solutions, mirroring our use of \scrL (\Lambda ) in (15). If
we also equip Y with the inner product (inducing a finer topology)

(31) \langle w1, w2\rangle Y := \langle \eta 1, \eta 2\rangle L2
\kappa (\BbbR ) + \langle \^\varphi 1, \^\varphi 2\rangle L2

\kappa (\Omega ), wi = (\eta i, \^\varphi i),

we can state a useful lemma. In particular, we will employ it to describe the image of
\scrL (\Lambda ).

Lemma 13 (symmetry for \scrL (\Lambda )). The identity

\langle (\scrT 1(\Lambda )\Phi ,\Phi ),\scrL (\Lambda )\Psi \rangle Y = \langle \scrL (\Lambda )\Phi , (\scrT 1(\Lambda )\Psi ,\Psi )\rangle Y

holds for all \Phi ,\Psi \in X2.

Proof. By one of Green's identities, we have\int 
\Omega 

(\Phi \Delta \Psi  - \Psi \Delta \Phi ) dx ds =

\int 
S

(\Phi \Psi s  - \Phi s\Psi ) dx,

where the integrals are understood to be over one period. Therefore

\langle \Phi ,\scrL 2(\Lambda )\Psi \rangle L2
\kappa (\Omega ) = \langle \scrL 2(\Lambda )\Phi ,\Psi \rangle L2

\kappa (\Omega ) +

\int 
S

(\Phi \Psi s  - \Phi s\Psi ) dx,

and as a consequence, we find

\langle (\scrT 1(\Lambda )\Phi ,\Phi ),\scrL (\Lambda )\Psi \rangle Y = \langle \scrL 2(\Lambda )\Phi ,\Psi \rangle L2
\kappa (\Omega ) +

\int 
S

(\Phi \Psi s  - \Phi s\Psi ) dx

+

\int 
S

\Phi (r(\Lambda )\Psi  - \Psi s) dx

= \langle \scrL 2(\Lambda )\Phi ,\Psi \rangle L2
\kappa (\Omega ) + \langle \scrL 1(\Lambda )\Phi , \scrT 1(\Lambda )\Psi \rangle L2

\kappa (\BbbR )

= \langle \scrL (\Lambda )\Phi , (\scrT 1(\Lambda )\Psi ,\Psi )\rangle Y

by direct computation.

Since \scrL (\Lambda ) is a simple elliptic operator (with boundary conditions), it is a standard
result that it, and by consequence Dw\scrF (0,\Lambda ) through Theorem 5, is Fredholm of
index zero. Stated more precisely, we have the following.

Lemma 14 (Fredholm property of \scrL (\Lambda )). Suppose that \Lambda \in \scrU . Then \scrL (\Lambda ) is a
Fredholm operator of index zero. Moreover, its image is the orthogonal complement of
the subspace

Z(\Lambda ) := \{ (\scrT 1(\Lambda )\Phi ,\Phi ) : \Phi \in ker\scrL (\Lambda )\} 

in Y with respect to the inner product in (31).

We omit the proof of Lemma 14, opting only to motivate the result by noting that
the inclusion

im\scrL (\Lambda ) \subset Z(\Lambda )\bot 

is an immediate corollary of Lemma 13. The opposite inclusion is less trivial. See, for
instance, [30] for a proof in a similar setting.
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3.2. Transversality and local bifurcation. An additional benefit of introduc-
ing the kernel equation (27) is that the transversality condition for local bifurcation,
appearing in the Crandall--Rabinowitz theorem, can be expressed using a differentiated
version of this equation. To prove this, we exploit the characterization of im\scrL (\Lambda )
given in Lemma 14.

Proposition 15 (transversality condition). Suppose that \Lambda \in \scrU , and thatM(\Lambda ) =
\{ n\} for some n \in \BbbN 0. Then

(32) Dw\mu \scrF (0,\Lambda )\scrT (\Lambda )\Phi n /\in imDw\scrF (0,\Lambda )

if and only if the transversality condition

(33) l\mu (n
2\kappa 2,\Lambda ) \not = r\mu (\Lambda )

is satisfied. Here, the functions l and r are those defined in (24) and (28), respectively,
and the subscripts denote partial derivatives.

Proof. We first observe that by the identity

Dw\mu \scrF (0,\Lambda )\scrT (\Lambda ) +Dw\scrF (0,\Lambda )\scrT \mu (\Lambda ) = \scrL \mu (\Lambda ),

which follows from (17), we have that the condition

\scrL \mu (\Lambda )\Phi n /\in im\scrL (\Lambda )

is equivalent to (32). Further, this condition is, in turn, equivalent to

\langle \scrL \mu (\Lambda )\Phi n, (\scrT 1(\Lambda )\Phi n,\Phi n)\rangle Y \not = 0,

or

(34)

\int 1

0

\gamma \prime \prime (\psi (s))\psi \mu (s)u(s;n
2\kappa 2)2 ds \not = \gamma \prime (\mu )

\lambda 
u(1;n2\kappa 2)2,

by Lemma 14.
We immediately recognize that \gamma \prime (\mu )/\lambda =  - r\mu (\Lambda ) on the right-hand side of (34).

The result finally follows by observing that\int 1

0

\gamma \prime \prime (\psi (s))\psi \mu (s)u(s;n
2\kappa 2)2 ds =  - u(1;n2\kappa 2)2l\mu (n2\kappa 2,\Lambda ),

which is obtained by differentiating (22) with respect to \mu , multiplying by u( \cdot ;n2\kappa 2),
and integrating by parts with respect to s. Note that u(1;n2\kappa 2) is necessarily nonzero,
since (27) is satisfied by hypothesis.

Remark 16. A completely analogous transversality condition to (33) holds if \lambda is
used as the bifurcation parameter instead of \mu . The only change needed is to exchange
the partial derivatives for ones with respect to \lambda .

We can now apply the Crandall--Rabinowitz theorem (see [7] or, for a more modern
exposition, [2]) to obtain small-amplitude waves that solve (12). This extends the
corresponding theorem in [11] to more general vorticity distributions than affine. Recall
that \scrU and \scrO \lambda are sets of permissible parameters and solutions, respectively introduced
in (4) and (13). Note that a similar result to Theorem 17, also for small-amplitude
waves, was previously obtained in [18].
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Theorem 17 (local bifurcation). Let \Lambda \ast \in \scrU and suppose that M(\Lambda \ast ) = \{ n\} for
some n \in \BbbN , so that

kerDw\scrF (0,\Lambda \ast ) = span \{ \scrT (\Lambda \ast )\Phi n\} ,

where M and \Phi n are as in Theorem 9. If the transversality condition (33) holds, there
exists an analytic curve \scrK \mathrm{l}\mathrm{o}\mathrm{c}

\Lambda \ast = \{ (w(t), \mu (t)) : | t| < \varepsilon \} of solutions to

(35) \scrF (w, \mu , \lambda \ast ) = 0

in \scrO \lambda \ast , with

w(t) = t\scrT (\Lambda \ast )\Phi n +O(t2) (in X)

and

\mu (t) = \mu \ast +O(t2)(36)

as t\rightarrow 0. The solutions on the curve \scrK \mathrm{l}\mathrm{o}\mathrm{c}
\Lambda \ast have wavenumber n\kappa , and

(37)

\mu ( - t) = \mu (t),

\eta ( - t)(x) = \eta (t)
\Bigl( 
x+

\pi 

n\kappa 

\Bigr) 
,

\^\varphi ( - t)(x, s) = \^\varphi (t)
\Bigl( 
x+

\pi 

n\kappa 
, s
\Bigr) 

for all | t| < \epsilon and (x, s) \in \Omega .
In addition, there is a neighborhood of (0, \mu \ast ) \in \scrO \lambda \ast in which all solutions of (35)

are either trivial or on the curve.

Proof. The only parts of the theorem that do not follow directly from the Crandall--
Rabinowitz theorem are

(i) the claim that the solutions have wavenumber n\kappa ,
(ii) the symmetry properties in (37), and
(iii) the asymptotics in (36).
Here, part (i) follows by redefining \kappa such that n = 1 before applying the Crandall--

Rabinowitz theorem, while part (ii) can be obtained by observing that (w, \mu ) is a
solution of (35) if and only if\Bigl( 

x \mapsto \rightarrow \eta 
\Bigl( 
x+

\pi 

n\kappa 

\Bigr) 
, (x, s) \mapsto \rightarrow \^\varphi 

\Bigl( 
x+

\pi 

n\kappa 
, s
\Bigr) 
, \mu 
\Bigr) 

is a solution. Lastly, part (iii) is an immediate corollary of the just-proved symmetry
of \mu in (ii).

4. Explicit examples. We believe there is value in pausing to record the two
simplest forms of vorticity distributions here, for which many aspects of the theory
become significantly more explicit.

4.1. Constant vorticity. If the vorticity distribution is constant, that is, of the
form

\gamma (t) \equiv \omega 0

for some fixed \omega 0 \in \BbbR , then the trivial solutions (solving (3)) are given by the quadratic
polynomials

\psi (s; \Lambda ) = \mu + \lambda (s - 1) - 1

2
\omega 0(s - 1)2
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5082 KRISTOFFER VARHOLM

for every \Lambda \in \scrU . Consequently

\Upsilon (\Lambda ) = \mu  - \lambda  - 1

2
\omega 0,

and we see that

u(s; z) = \~u(s; z) =
sinh(s

\surd 
z)\surd 

z
,

with the notation taken from the proof of Lemma 7, solves (22). Hence

l(z,\Lambda ) = v(z) =

\surd 
z

tanh(
\surd 
z)

in the kernel equation (27). This can also obtained directly from Proposition 8 in this
case, as \rho = R = 0.

Bifurcation with respect to \mu is never possible for constant vorticity, as (33) can
never be satisfied. Therefore Theorem 17 does not apply in the way it is stated here.
This is not unexpected, as changing \mu merely constitutes a constant shift of \psi , and
one may equally well set \mu \equiv 0. Bifurcation with respect to \lambda , on the other hand, can
be done from either of the simple bifurcation points

(38)
1

\lambda n,\pm 
=
\omega 0

2
\pm 

\sqrt{} \Bigl( \omega 0

2

\Bigr) 2
+

n\kappa 

tanh(n\kappa )

for any n \in \BbbN . This is because the transversality condition with respect to \lambda becomes
\omega 0\lambda n,\pm \not = 2, which is always satisfied. Global bifurcation for the constant case,
including stagnation, has already been studied in great detail in [5].

The trivial solution corresponding to a bifurcation point in (38) exhibits stagnation
if and only if \omega 0 \not = 0, the sign is chosen opposite that of \omega 0, and

n\kappa 

tanh(n\kappa )
\geq 1 +

1

\omega 2
0

holds. This stagnation presents as a critical line of stagnation points at s = 1+\lambda n,\pm /\omega 0,
opening up to a single critical layer of closed streamlines in each minimal period of
nearby solutions on \scrK \mathrm{l}\mathrm{o}\mathrm{c}

\Lambda \ast . See [31, Theorem 4.1] or [5, Theorem 16] for more details.

4.2. Affine vorticity. As discussed in [11], it is sufficient to instead consider
only linear vorticity distributions of the form

\gamma (t) = \omega 0t

for fixed \omega 0 \not = 0. The trivial solutions take the form

\psi (s; \Lambda ) = \mu cos(
\surd 
\omega 0(s - 1)) + \lambda 

sin
\bigl( \surd 
\omega 0(s - 1)

\bigr) 
\surd 
\omega 0

and are therefore trigonometric when \omega 0 > 0, and hyperbolic when \omega 0 < 0. Accord-
ingly,

\Upsilon (\Lambda ) = \mu cos(
\surd 
\omega 0) + \lambda 

sin
\bigl( \surd 
\omega 0

\bigr) 
\surd 
\omega 0

,

and
u(s; z) = \~u(s; z  - \omega 0), l(z,\Lambda ) = v(z  - \omega 0),
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with \~u and v as in the case of constant \gamma above.
Even with this simplest choice of nonconstant vorticity distribution, there is a

much richer structure of bifurcation points. Furthermore, the transversality condition
for one-dimensional bifurcation is trivially satisfied for \mu , so Theorem 17 does apply
when the other hypotheses are met. We also mention that this condition reduces to

\omega 0\mu \lambda \not = 2

when \lambda is used as the bifurcation parameter. See the works [1, 11, 13] for local
bifurcation results with slightly different choices of parameters (which are quite hard
to generalize to nonaffine \gamma ), including thorough exploration of the resulting kernel
equation.

A small computation shows that at most one critical line is present at a trivial
solution when \omega 0 > 0, but that they can have any number of such lines if \omega 0 < 0 is
sufficiently negative. At a simple bifurcation point, these open up to critical layers in
nearby solutions on \scrK \mathrm{l}\mathrm{o}\mathrm{c}

\Lambda \ast , just as for constant vorticity. This means that solutions on
the local bifurcation curves can display arbitrarily many critical layers, as described
in [10].

5. Global bifurcation. Our local bifurcation result, Theorem 17, establishes
the existence of local curves of small solutions to (12). We will now proceed to the
main event of this paper, which is to use analytic global bifurcation theory, due to
Dancer [8] and Buffoni and Toland [2], to extend these local curves to global curves.
The principal result is the following theorem.

Theorem 18 (global bifurcation). The local curve obtained in Theorem 17 can
be uniquely extended (up to reparametrization) to a continuous curve

\scrK \Lambda \ast = \{ (w(t), \mu (t)) : t \in \BbbR \} \supset \scrK \mathrm{l}\mathrm{o}\mathrm{c}
\Lambda \ast 

of solutions to (35), such that the following properties hold:
(i) The curve can be reparametrized analytically in a neighborhood of any point

on the curve.
(ii) The solutions have wavenumber n\kappa and satisfy the symmetry properties (37)

for all t \in \BbbR .
(iii) One of the following alternatives occur:

(A) either

min

\biggl\{ 
1

1 + \| w(t)\| X + | \mu (t)| 
,min
x\in \BbbR 

(1 + \eta (t)),min
S

\bigm| \bigm| \^\psi s(t)
\bigm| \bigm| \biggr\} \rightarrow 0

as t\rightarrow \infty , or
(B) the curve is closed.

Remark 19. Alternative (A) would imply the existence of subsequences (tn)n\in \BbbN ,
with tn \rightarrow \infty , along which at least one of the following holds true: (i) the solutions
are unbounded; (ii) the surface approaches the bed; or (iii) surface stagnation is
approached.

Theorem 18 will follow directly from a slightly modified version of [2, Theorem
9.1.1], stated in [5, Theorem 6], if we can prove the required Fredholm and compactness
properties. Namely, that

(i) the derivative Dw\scrF (w, \mu , \lambda \ast ) is Fredholm of index zero not only when (w, \mu ) =
(0, \mu \ast ), but on the entire solution set of (35);
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(ii) for an appropriately chosen increasing sequence (\scrQ \lambda \ast 

j )j\in \BbbN of closed and bound-
ed subsets of \scrO \lambda \ast such that

\scrO \lambda \ast =
\bigcup 
j\in \BbbN 

\scrQ \lambda \ast 

j ,

the intersection

\{ (w, \mu ) \in \scrO \lambda \ast : \scrF (w, \mu , \lambda \ast ) = 0\} \cap \scrQ \lambda \ast 

j

is compact in X for each j \in \BbbN .
Thus, to establish Theorem 18, we are left to verify that these two conditions are
satisfied. We have already made some of the necessary preparations for this in previous
sections.

5.1. Verification of the global Fredholm property. The central tool we
will use to show that the Fr\'echet derivative of \scrF is Fredholm on the solution set of
(12) is the generalized \scrT -isomorphism from Theorem 5. As for the trivial solutions,
this reduces the problem to one for the simpler operator \scrL . First, we show semi-
Fredholmness whenever \scrL is well defined. Note that, importantly, (w,\Lambda ) need not be
a solution of (12) in the lemma.

Lemma 20. Let (w,\Lambda ) \in \scrO , with \scrO as in (10), be such that also \eta \in C3,\beta 
\kappa ,\mathrm{e} (\BbbR ) and

\^\varphi \in C3,\beta 
\kappa ,\mathrm{e} (\Omega ). Then \scrL (w,\Lambda ) has finite-dimensional kernel and closed range.

Proof. Recall the definition of \scrL (w,\Lambda ): X2 \rightarrow Y in (14). Since

(39)

\xi 21  - 2s\eta x
1 + \eta 

\xi 1\xi 2 +
1 + s2\eta 2x
(1 + \eta )2

\xi 22 = \xi \intercal 

\left(   1  - s\eta x
1 + \eta 

 - s\eta x
1 + \eta 

1 + s2\eta 2x
(1 + \eta )2

\right)   \xi 

\geq 1

(1 + \eta )2 + 1 + s2\eta 2x
| \xi | 2

for all \xi = (\xi 1, \xi 2) \in \BbbR 2, the operator component \scrL 2(w,\Lambda ) : X2 \rightarrow Y1 is strictly elliptic.
The inequality in (39) can be deduced from the eigenvalues of the matrix.

Furthermore, the coefficient in front of \partial s in \scrL 1(w,\Lambda ) is uniformly separated away
from 0 by how we defined \scrO . Combining now the Schauder estimates from Theorems
6.6 and 6.30 in [15], we deduce that there is a constant C = C(w,\Lambda ) \geq 0 such that

(40) \| \Phi \| X2 \leq C(\| \Phi \| L\infty + \| \scrL (w,\Lambda )\Phi \| Y )

for all \Phi \in X2. Standard arguments based on (40) can in turn be used to establish
the lemma.

Armed with Lemma 20, we can prove the desired Fredholm property by relating
\scrL (w,\Lambda ) and \scrL (\Lambda ) and then employing the stability of the Fredholm index.

Theorem 21 (global Fredholm property). Suppose that (w,\Lambda ) \in \scrO is a solution
of (12). Then the operator Dw\scrF (w,\Lambda ) is Fredholm of index zero.

Proof. Recalling Remark 3, we have (tw,\Lambda ) \in \scrO for every t \in [0, 1]. By Theorem 4
used on (w,\Lambda ), the necessary regularity for Lemma 20 to apply is also present. Thus
\scrL (tw,\Lambda ) has finite-dimensional kernel and closed range for each t \in [0, 1]. This is the
case even if (tw,\Lambda ) need not be a solution of (12) in general, except at the endpoints.
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In particular, the operators \scrL (tw,\Lambda ) are semi-Fredholm, so their Fredholm index is
well defined (albeit not necessarily finite), and stable under perturbation.

We can now use continuity of

t \mapsto \rightarrow ind\scrL (tw,\Lambda )

(see [17, Theorem IV-5.17]) to conclude that

ind\scrL (w,\Lambda ) = ind\scrL (\Lambda ) = 0

for every solution of (12). We have shown that \scrL (w,\Lambda ) is a Fredholm operator of
index zero, and the same is then true for Dw\scrF (w,\Lambda ) by (17), completing the proof.

5.2. Verification of the compactness property. Inspecting (10), it is clear
that a reasonable definition of the increasing sequences (\scrQ \lambda 

j )j\in \BbbN is to let

\scrQ \lambda 
j :=

\biggl\{ 
(w, \mu ) \in \scrO \lambda : 1 + \eta \geq 1

j
, sgn(\lambda ) \^\psi s| S \geq 1

j
, \| w\| X + | \mu | \leq j

\biggr\} 
for each j \in \BbbN . These sets are certainly both closed and bounded, and it is evident
that, indeed,

\scrO \lambda =
\bigcup 
j\in \BbbN 

\scrQ \lambda 
j

for every \lambda \not = 0.
We will use Schauder estimates to obtain compactness of the intersections

(41) \scrQ \lambda 
j \cap \{ (w, \mu ) \in \scrO \lambda : \scrF (w,\Lambda ) = 0\} 

for every \lambda \not = 0 and j \in \BbbN . In order to do so, we will use a different way of flattening
(2) than the naive (6), but only in a neighborhood of the surface. This strategy will
first give us control of \eta , which in turn can be leveraged to control \^\varphi .

Proposition 22 (compactness). The intersection in (41) is a compact subset of
X \times \BbbR for every \lambda \not = 0 and j \in \BbbN .

Proof. Without loss of generality, we will assume that \lambda > 0, which fixes the sign
of \^\psi s| S . Let (w, \mu ) be any point of \scrQ \lambda 

j such that (w,\Lambda ) solves (12). Pull back \^\psi to

\psi = \^\psi \circ \Pi on \Omega \eta using the naive flattening transform from (6), and observe that

(42) \psi y(x, 1 + \eta (x)) =
\^\psi s(x, 1)

1 + \eta (x)
\geq 1/j

1 + j
\geq 1

(1 + j)2

for all x \in \BbbR . Also,

(43) | \psi yy(x, y)| =
| \^\psi ss(x, y/(1 + \eta (x)))| 

(1 + \eta (x))2
\leq (1 + j)3

for all (x, y) \in \Omega \eta . Together, (42) and (43) imply the lower bound

(44) \psi y(x, y) \geq 
1

2(1 + j)2

whenever

y \geq 1 + \eta (x) - 1

2(1 + j)5

through the mean value theorem.
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Furthermore

\psi 

\biggl( 
x, 1 + \eta (x) - 1

2(1 + j)5

\biggr) 
 - \mu \leq  - \epsilon j , \epsilon j :=

1

4(1 + j)7
,

and so we deduce the existence of a streamline \~\eta \in X1 satisfying both

 - 1

2(1 + j)5
\leq \~\eta (x) - \eta (x) < 0

and
\psi (x, 1 + \~\eta (x)) - \mu =  - \epsilon j

for all x \in \BbbR .

\Omega \eta \setminus \Omega \~\eta 

\Gamma 

R\epsilon j

Fig. 2. The setup in the proof of Proposition 22. We ignore whatever is occurring outside of
\Omega \eta \setminus \Omega \~\eta .

If we proceed to define the strips

R\epsilon := \BbbR \times ( - \epsilon , 0)

for \epsilon > 0, then the semihodograph transform \Gamma : \Omega \eta \setminus \Omega \~\eta \rightarrow R\epsilon j defined by

\Gamma (x, y) = (x, \psi (x, y) - \mu )

is a diffeomorphism between the closures of the same sets. See Figure 2. The transform
has an inverse of the form

(45) \Gamma  - 1(q, p) = (q, h(q, p)),

where the choice of letters for the variables is a matter of convention.
It is well known that the function h : R\epsilon j \rightarrow \BbbR implicitly defined by (45) (see,

e.g., [4, 9]) satisfies the second order quasi-linear elliptic boundary value problem

(46)
\scrS (h)h = \gamma (p+ \mu )h3p in R\epsilon j ,

1 + h2q + (2h - 2 - \lambda 2)h2p = 0 on p = 0,

where we have introduced the differential operator

\scrS (h) := h2p\partial 
2
q  - 2hqhp\partial q\partial p + (1 + h2q)\partial 

2
p .
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For the same reasons as in earlier results (such as [4]), Schauder estimates applied
directly to (46) do not help us here. However, while (46) is not suitable, it follows by
straightforward differentiation that the partial derivative \theta := hq (h is again actually
analytic on R\epsilon j due to Theorem 4) satisfies a similar boundary value problem, namely,

(47)
\scrS (h)\theta = 2hq(h

2
qp  - hpphqq) + 3\gamma (p+ \mu )h2phqp in R\epsilon j ,

h3p\theta + hphq\theta q  - (1 + h2q)\theta p = 0 on p = 0,

which can be used.
Just like in (39), we have strict ellipticity in (47), because

h2p\xi 
2
1  - 2hphq\xi 1\xi 2 + (1 + h2q)\xi 

2
2 \geq 

h2p
1 + h2p + h2q

| \xi | 2

for all \xi = (\xi 1, \xi 2) \in \BbbR 2. Moreover, it can be shown that (where the exact constant is
unimportant)

h2p
1 + h2p + h2q

\geq 1

(j + 1)6
,

whence the strict ellipticity is uniform in the choice of (w, \mu ) \in \scrQ \lambda 
j . The boundary

condition at p = 0 in (47) is also trivially uniformly oblique in the sense of [15, (6.76)],
because

1 + h2q \geq 1,

and this is again obviously uniform in the choice of (w, \mu ) \in \scrQ \lambda 
j .

Suppose that (wn, \mu n)n\in \BbbN , where as usual wn = (\eta n, \^\varphi n), is a sequence in \scrQ \lambda 
j such

that
\scrF (wn, \mu n, \lambda ) = 0

for all n \in \BbbN . Using (45), we may define an associated sequence (hn)n\in \BbbN of functions
hn : R\epsilon j \rightarrow \BbbR solving (46) with \mu = \mu n. Due to the bounds in the definition of \scrQ \lambda 

j , and
the uniform lower bound on \psi y from (44), we infer that this sequence is bounded in
C2,\beta 

\kappa ,\mathrm{e} (R\epsilon j ). As the terms of the corresponding sequence (\theta n)n\in \BbbN = (\partial qhn)n\in \BbbN satisfies
(47) with \mu = \mu n for each n \in \BbbN , we deduce from the Schauder estimate in [15, Theorem
6.30] that (\theta n)n\in \BbbN is bounded in C2,\beta 

\kappa ,\mathrm{o} (R\epsilon j/2). Note that, crucially, we do not need a
boundary condition at p =  - \epsilon j , as we can use interior estimates on R\epsilon j to procure a
global estimate on the smaller rectangle.

It follows that
(\partial x\eta n)n\in \BbbN = (\theta n( \cdot , 0))n\in \BbbN 

is bounded in C2,\beta 
\kappa ,\mathrm{o} (\BbbR ), and therefore that the sequence (\eta n)n\in \BbbN is bounded in C3,\beta 

\kappa ,\mathrm{e} (\BbbR ).
Recall next that (7) is strictly elliptic due to (39). This ellipticity is again uniform in
the choice of (w, \mu ) \in \scrQ \lambda 

j , because

1

(1 + \eta )2 + 1 + s2\eta 2x
\geq 1

(1 + j)2 + 1 + j2
\geq 1

2(1 + j)2

on \Omega by our definition of \scrQ \lambda 
j .

Having gained an additional bounded derivative for the surface profile, we can
now use the Schauder estimate in [15, Theorem 6.6] on (7) to infer that ( \^\psi n)n\in \BbbN , and
therefore ( \^\varphi n)n\in \BbbN , is bounded in C3,\beta 

\kappa ,\mathrm{e} (\Omega ). Finally, by boundedness of (\mu n)n\in \BbbN and
the usual compact embedding of H\"older spaces [15, Lemma 6.36], we conclude that the
sequence (wn, \mu n)n\in \BbbN has a convergent subsequence. The intersection (41) is therefore
compact, concluding the proof.
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6. Properties of the global curve. It is highly desirable to narrow down the
alternatives in Theorem 18. In particular, as in most global bifurcation results, one
would typically like to rule out alternative (B) entirely. The reason for this, of course,
is that this would guarantee the existence of truly large-amplitude solutions to (12).
That is not to say that solutions on a hypothetical closed curve are small, but they do
not ``blow up"" in the same way that solutions do in the event that (A) occurs.

Due to the loss of global maximum principles on \Omega \eta , ruling out alternatives in
Theorem 18 is significantly more difficult than for nonstagnant waves (and perhaps
even impossible in general without making further assumptions on \gamma ). Alternative (B)
was substantially ruled out for the special case of waves with constant vorticity in [5],
albeit in an entirely different framework, but it is not at all clear how to generalize
this to more general vorticity distributions.

Various nodal properties are preserved near the surface on the local curve \scrK \mathrm{l}\mathrm{o}\mathrm{c}
\Lambda \ast ,

but extending these near-surface properties to all of \scrK \Lambda \ast is challenging. One may
imagine an argument akin to the one in the proof of Proposition 22, where one works
in a neighborhood of the surface, only this time for the nodal properties. Despite
much effort, we have not been able to obtain conclusive results from this, and certainly
nothing close to being able to rule out alternative (B). An additional challenge is that
there are more trivial solutions of (2) than those we have described, namely, those
with a flat surface \eta \not = 0. It could indeed be that the curve loops back to the original
bifurcation point by first passing through one of these trivial solutions.

For these reasons, and more, we will leave the matter of exploring these alternatives
to future work. Still, there are certain things we can quite easily conclude, and which
we find worth mentioning. For instance, from (2b \star ) we can immediately infer the
upper bound

(48) \eta (t) <
1

2
(\lambda \ast )2

for every curve parameter t \in \BbbR , where the inequality is strict since there are no
stagnation points on the surface. Moreover, we note that if \scrK \Lambda \ast were to have a
subsequence ending in a wave of greatest height, with a stagnation point at the crest,
then it would necessarily have surface deviation \eta precisely equal to the right-hand
side of (48) at the crest.
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