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PREFACE 
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private partners are associated with this project: the Norwegian Public Roads Administration (Statens 

Vegvesen), the National Rail Administration (Bane Nor), Laval University, SINTEF, Glasopor and Leca. The 

project involved two PhD researchers who performed a dual analysis of frost susceptibility and heat 

transfer in crushed rock aggregates used in pavement infrastructure. This thesis focuses mainly on the 

frost susceptibility of such aggregates. 

The main supervisor of this thesis and associated papers was Professor Inge Hoff at the department of civil 

and environmental engineering at the Norwegian University of Science and Technology (NTNU), in 
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ABSTRACT 
 

In Nordic countries that experience seasonal frost, understanding how it affects the service life of linear 

transport infrastructures such as roads and railways is essential. Frost action both regroup frost heave and 

thaw weakening processes. This research focuses on frost heave, which occurs when three conditions are 

met: freezing temperature, water availability and frost-susceptible materials. Frost susceptibility is 

therefore defined as the ability of an unbound granular material (natural soil or crushed rock aggregate) 

to form ice lenses due to cryosuction, which is the suction of water to the frost front. Frost heave in a frost-

susceptible material lifts the layers above the freezing front. Many kinds of damage are attributable to 

frost heave, such as cracks in and unevenness of the road surface, making it uncomfortable and even 

dangerous for road users. Frost heave and subsequent thawing can significantly reduce the service life of 

roads and are accompanied by high associated maintenance and reparation costs. Knowledge of the frost 

susceptibility of the materials comprising the different layers of transport infrastructure is therefore crucial 

to optimal frost design.  

This research mainly aimed to characterize the frost susceptibility of crushed rock aggregates. Laboratory 

experiments using a multi-ring frost cell were carried out to estimate the segregation potential of the 0-4 

mm fraction of crushed rock aggregates. Twenty-four tests performed on nine different rock types found 

that crushed rock aggregates with a fines content of <63 μm between 11.6% to 25.5% are highly frost 

susceptible. The study found poor correlation between <63 μm fines content and segregation potential. 

The latter was used to characterize the frost susceptibility of the different crushed rock aggregates 

primarily for its capacity to estimate frost heave magnitude easily. The use of a grain size criterion, as 

presently used in Norway, seems to be efficient for dividing non-frost-susceptible from frost-susceptible 

aggregates, but does not allow estimation of crushed rock aggregates’ segregation potential with a good 

degree of confidence.  

As frost heave tests require a costly laboratory setup and specialist personnel, the segregation potentials 

of crushed rock materials were estimated using material index properties such as initial water content, 

liquid limit, mean particle size of the fine fraction and specific surface area of the fine fraction. This method 

is used by the Quebec Ministry of Transportation for soils, and the goal here was to assess the suitability 

of the methodology for use with crushed rock aggregates. It was found that estimation from material 

indexes gave segregation potential results within a range of ±15% compared to those obtained from frost 

heave tests. There was a direct correlation between the specific surface area of the fine fraction of a 

crushed rock aggregate and its segregation potential, from which an equation was developed. The study 

showed that the crushing phase had an effect on the frost susceptibility of the tested crushed rocks. 

Aggregates are more frost susceptible after the first crushing stage than after the third or fourth crushing 

stages. The hypothesis that the fine fraction is enriched by weak minerals at the first crushing could explain 

this behaviour, but further research is necessary before this theory can be presented with confidence. 

The design was optimized by modelling three road sections with different frost protection layers using the 

SSR model and the I3C ME software. The fully-instrumented test site is situated in the Røros municipality 

where harsh winters are the norm, with the freezing index of an average winter equal to that of regions 



 

 

 

x 

 

such as Oslo, Trondheim, Narvik, Tromsø etc. It was found that the SSR model is suitable for both frost 

penetration and frost heave estimation for thick (2.05 meters) layered road structures. The SSR also 

permitted the back-calculation of key parameters such as dry density, moisture content and segregation 

potential, making it useful for assessing existing infrastructure parameters. Using a segregation potential 

function, i.e. segregation potential according to time, was found to produce optimal frost heave 

estimations in a transient thermal regime.  
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1. INTRODUCTION 
 

This introduction chapter is divided into four sections: 1.1 research background; 1.2 research objectives 

and scope; 1.3 research approach; and 1.4 thesis structure.  

 

1.1 Background 
 

Frost heave-related damage to roads and railway infrastructure is a problem in countries that experience 

seasonal frost. Roads and railways are relatively thick infrastructures covering long distances and 

frequently pass through varied soil deposits, climatic and hydrologic conditions. The economic and design 

challenges of ensuring a stable, secure and durable infrastructure are numerous. 

 

The road system in Norway, with its relatively low population density, is extensive, resulting in significant 

budget restriction. The best frost design scenario would prevent the frost front reaching frost-susceptible 

sub-grade soil and control all construction materials for frost-susceptibility. This approach is already in 

place for main roads in Norway, but is not always realizable with the budget allocated to secondary and 

low-volume roads, which represent around 70% of the country’s road system. 

 

Road damage related to frost heave appears in different forms, mainly as unevenness (differential heaving) 

and as longitudinal and transversal cracks. When not repaired, frost-related damage, especially where salts 

are present, has a cumulative effect as cracks allow water to enter the upper layer of the system as 

happens on most roads. Lack of maintenance reduces the service life of a road, significantly raising the net 

cost of the infrastructure. Furthermore, unmaintained roads will eventually require costly rehabilitation. 

 

The cold winters of 2009-2010 and 2010-2011 in south-eastern Norway led to frost action-related 

complications on the transport infrastructure network. The consequences of the frost action were 

numerous; e.g. the speed limit of the fast train to and from Oslo airport was significantly reduced for 

several months, and premature aging and/or differential heaving issues were observed on several newly-

built road sections. The maintenance costs for these road sections were significantly higher than those 

first estimated. Some sections were planned to be completely reconstructed due to severe frost heave 

and frost action. Two hypotheses were suggested to explain frost design failure and consequent frost 

heave-related damage: i) frost penetrated deeper than estimated (sub-grade heave) and ii) blasted and 

crushed aggregates produced substantial heave (pavement-layer heave). 

 

Norway’s newest roads are built entirely of crushed rock aggregates and include a frost protection layer 

between the sub-base and the sub-grade soil. The design system to qualify the frost susceptibility of 

crushed aggregates is based on a grain-sized criterion, mostly on the basis of what is known about natural 

gravel and natural soil. Crushed rock aggregates have gradually replaced natural gravel over the last 

decades for many reasons including the ease of local production, the depletion of natural gravel resources, 
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ecological reasons (i.e. water stream protection and transport distances), their superior mechanical 

properties and better quality control (i.e. shape, mineralogy,  fine content and grading curves). The 

Norwegian Public Roads Administration revised its requirements in the 2014 Road Construction Handbook 

N200 and again in 2018. A wide variety of aggregates was allowed in the frost protection layer before the 

2014 revision as untreated blast rock from levelling and cuts. The 2014 revision prohibited the use of 

untreated blasted rock aggregates to prevent heterogeneity-related problems, as well as accommodating 

better particle size distribution. Specifically, i) the maximum particle size was set to 500 mm or half the 

thickness of the frost protection layer, ii) at least 30% must be <90 mm fraction, and iii) the percentage of 

allowed fines (<63 microns) was set at 2-15%, calculated from material <22.4 mm fraction. The 2018 

revision reduced the percentage of allowed fines to 2-7%, calculated from material <90 mm fraction. These 

changes were mostly based on empirical experience. 

 

The Frost Protection of Roads and Railways (FROST) project was established to investigate frost heave, 

frost penetration, thermal properties and heat transfer in crushed rock aggregates. This thesis focuses on 

the frost susceptibility of crushed rock aggregates and field validation of frost depth and frost heave in 

such materials. Questions were raised about crushed rock’s frost susceptibility. There have been several 

studies of this subject over the last decades, but few have presented criteria for frost heave calculation. 

Calculations of frost heave is invariably related to frost penetration as the frost front position in function 

of time have to be known to estimate the heave contribution of the material found at designated depth. 

This study uses and extends previous studies on this subject, of which the principles are summarized in 

the next paragraphs. 

 

Grain size was judged a reliable criterion for dividing non-frost susceptible and frost susceptible materials 

(Chamberlain, 1981), but does not allow estimation of heave magnitude, and its precision when predicting 

the frost susceptibility of base and subbase materials is disputable, as reported by Janoo et al. (1997, cited 

in Konrad and Lemieux, 2005). Segregation potential, developed by Konrad and Morgenstern (1981) was 

chosen as the frost heave criterion as it has been proven reliable for estimating heave magnitude in linear 

transportation infrastructure (Konrad, 1980; Konrad and Morgenstern, 1982a; Konrad 1994; Konrad 1999; 

St-Laurent, 2006). The segregation potential of fine fractions in crushed rock aggregates has been 

investigated by Konrad (2005), who presents six different crushed rock aggregates: four sedimentary, one 

volcanic and one plutonic. His study suggests that crushed rock aggregates may be quite frost susceptible. 

The same study also presents a methodology for estimating the segregation potential of geomaterials and 

soils using index parameters such as the liquid limit, specific surface area and the 50% passing of the fine 

<75 um. Bilodeau (2009) investigated the segregation potential of three crushed or partially crushed 0-20 

mm rock aggregates, as widely used in Canada and the US; and Konrad and Lemieux (2005) present an 

investigation of the segregation potential of three 0-20 mm crushed rock aggregates. 

 

Saarelainen’s (1992) frost penetration investigation inspired this study. Saarelainen calls his model the SSR 

model. It also integrates segregation potential to compute both frost heave according to frost depth. 

Saarelainen’s investigation was performed on six Finnish sites and was found to estimate both frost heave 

and frost depth accurately. The Quebec Ministry of Transport included the SSR model in its practice in 
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2006, with extended validation presented by St-Laurent (2012). Further validation was provided by 

Saarelainen et al. (2015). The model uses almost the same input parameters as a more classical method 

(dry density, thermal conductivity, water content, grain density, freezing index etc.), making it easy to 

implement. Its ability to calculate both frost heave and frost depth makes it a powerful design and 

optimisation tool. 

 

To recapitulate, a grain-size criterion as the one existing in the Norwegian regulation permit to divide frost 

and non-frost susceptible material with a reasonable accuracy but i) the heaving magnitude is not 

calculated, that could lead to unexpected or faster infrastructure degradation and service life loss  and ii) 

it is an empirical criterion, limiting design optimization and development. The leading work on which this 

thesis is based are the studies from Konrad (2005) on frost susceptibility of crushed rock aggregates, from 

Konrad and Lemieux (2005) on the determination of SP using index parameters and from Saarelainen 

(1992) on the SSR model.  

 

1.2 Research objectives and scope 
 

The main objective of this research is the investigation of the frost susceptibility of crushed rock aggregates 

for linear transportation infrastructures. The crushed rock aggregates are defined as processed rock 

material from quarry production, blasted beforehand, which goes through several crushing and screening 

steps to arrive at a final graded product. The frost susceptibility being wide in its meaning, it was therefore 

divided in smaller research entities that connected all together. The first part of the work focuses on 

determining the frost susceptibility of different types of crushed rock aggregates commonly found in 

Norway using their segregation potential. As frost heave tests are costly and time-consuming, the next 

part investigates the possibility of determining the segregation potential for crushed rock aggregates 

satisfactorily using soil index parameters. The determination of frost depth in function of time is necessary 

for estimating frost heave magnitude using the segregation potential. The third part evaluates calculation 

of frost depth in layered roads and railway structures with frost protection layers of different grading and 

mineralogy, and compares the results with in situ measurement of a test site. The last section assesses a 

heat balance model at the frost front that permit to calculate both frost depth and heave according to 

time and freezing index magnitude. The results from the model were also compared to in situ 

measurement at a test site. 

 

This research is considered relevant to improving knowledge of the frost susceptibility of crushed rock and 

transport infrastructure design optimization. Ultimately, it proposes the use of relatively simple calculation 

tools to numerically predict the behavior of transport infrastructure under freezing stress. The general 

objective is to improve knowledge of frost design by moving from a rigid empirical system to knowledge-

based design optimization. 

 

The work completed for the realisation of these objectives included: 

 

a) Investigate actual Norwegian design guidelines regarding regulations on crushed rock aggregates. 
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b) Produce a literature review on crushed rock aggregate’s segregation potentials. 

c) Gather different crushed rock aggregates of various mineralogy and different locations in Norway. 

d) Perform and a full geotechnical characterization of crushed rock aggregates, including full particle 

size distribution, grain density, X-ray diffraction, specific surface area, liquid limit and hydraulic 

conductivity. 

e) Build the laboratory frost heave test setup and calibrate it. 

f) Perform frost heave tests on 0-4 mm fraction of crushed rock aggregates 

g) Support and participate in the construction and follow up of data at the Røros experimental site. 

h) Analyse and modelling of frost depth and frost heave at the Røros experimental test site. 

 

 

1.3 Research approach 
 

This research focused on design, the common goal of each investigation being to improve knowledge 

about the studied concept and its applicability for design purposes. The main direction that was pointed 

out was to i) assess and improve knowledge about the frost susceptibility of crushed rock aggregates, ii) 

analyse observed and estimated frost depth into different frost protection layers, iii) validate the results 

of the analysis of the frost susceptibility of crushed rock material via a simple laboratory test and iv) 

determine a valid model for thick-layered infrastructure. 

 

The research was conducted on one specific objective at a time. Paper A presents Norway’s frost design 

challenges and fully describes the Røros experimental test site. The main part of the study was to install 

and calibrate the newly acquired frost heave cell constructed at Laval University, Quebec, Canada. A set 

of seven different crushed rock aggregates of varying mineralogy reflecting, to our best knowledge, 

Norway’s commonest rock types were chosen for testing following determination of their segregation 

potential. This work is presented in Paper I. Frost penetration of the road sections’ different frost 

protection layers is analyzed in Paper II and Paper B. In parallel, an in-depth crushed rock index parameters 

measurements were performed on all crushed rock aggregates tested in the frost heave cell. This allowed 

assessment of the use of Konrad’s (2005) normalized segregation potential concept and is presented in 

Paper III. Finally, road sections’ different frost protection layers were fully modelled using the SSR model 

integrated with the I3C-ME software to assess the use of the model with thick-layered pavement 

structures. The results are presented in Paper IV. 

 

This is a paper thesis, with a summary of the theory, methodology and main research outputs presented 

in the following pages. All relevant literature reviews, specific methodologies and detailed analyses are 

presented in the published papers. 
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2. FROST ACTION ON TRANSPORTATION INFRASTRUCTURE 
 

Roads in cold climates may be subject to frost heave problems during the cold season and to weakening 

as a result of the spring thaw (Andersland and Ladanyi, 2004). These effects are commonly divided into 

frost heave and spring thaw events, but are inseparable elements of frost action. They generate damage 

including various types of differential deformation, different asphalt cracking patterns and loss of bearing 

capacity. 

Frost heave normally occurs when the frost front reaches a frost-susceptible subgrade soil beneath a 

road’s foundation (Doré, 1997) (Figure 1). Deformation can be due to the ice segregation phenomenon 

(the creation of ice lenses). Ice segregation can also occur in the pavement material when the fine content 

is not adequately controlled. In a typical road structure with ca 10 cm of asphalt, 30 cm of crushed rock 

aggregate (0-20 mm grading) and ca 50 cm of gravelly sand subbase, around 10 mm of frost heave is 

expected before the frost front reaches the subgrade soil, where there is only a small percentage of fines 

(Bilodeau, 2009). Doré et al. (1998, cited by Bilodeau, 2009) found 8-10 mm heave from a 0-20 mm base 

layer in a Canadian field test in Quebec. Konrad and Lemieux (2005), also in Quebec, found that a frost 

heave magnitude of ca 10 mm was caused solely by the base layer freezing. 

 

Figure 1: Frost segregation in a road infrastructure (Mahoney et al. 1986) 

Frost heave can be uniform, or can create differential deformation when the underlying frost susceptible 

material is distributed heterogeneously. A constant uniform road infrastructure heave will cause little or 

no problems during the winter period apart from the possible occurrence of longitudinal cracks in the 

center of the road. These cracks are formed because roadside embankments insulated by snow generate 

deeper frost penetration (and subsequent heave) in the centerline compared to at the road’s edges 

(Zubeck & Doré, 2009) (Figure 2). 
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Figure 2: Longitudinal cracking formation in the centerline (Zubeck and Doré, 2009) 

Spring thaw of the road has various consequences. As for frost penetration in winter, thaw penetration 

happens faster in the centerline than on the roadsides. The surface water remains in the upper part of the 

road because it cannot drain vertically nor horizontally due to the underlying and side frozen layer. This 

‘pool’ phenomenon drastically increases the interstitial pore pressure and therefore decreases 

significantly (sometimes almost totally) the effective bearing capacity of the top layers (Figure 3). This 

effect is enhanced by frost heaving as it been demonstrated by Uthus (2007) and Konrad (2008) that water 

content is expected to raise in crushed rock aggregates layers by cryosuction when the frost front progress 

downward. 

 

Figure 3: Seasonal ground freezing beneath a pavement structure (Andersland and Ladanyi, 2004) 

This phenomenon leads to the creation of settlements, cracks, holes and rutting. The same problems also 

affects deeper structure layers as the thaw front progress in depth. A large amount of water from ice 

lenses melting will create a water super-saturation of the material with the same effect as previously 

described. 

In Norway, considerable costs are directly linked to frost action year after year (Hoff et al., 2002). According 

to the press article in Teknisk Ukeblad - Bygg (2014),  the average costs of road construction for the 

Norwegian Public  Road Administration (NPRA) ranges from a) 50 to 90 million kroners per kilometer for a 

2-lanes, 6.5 meters wide road to b) 140 to 230 million kroners per kilometer for a 4-lanes, 19-22 meters 

wide road. There is few financial analysis on how much cost frost related damage. An example was found 
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in two articles from Teknisk Ukeblad - Bygg (2010a and 2010b) where portion of a 10 km stretch on 

highway 2 between Kløfta and Nybakk experience severe frost heave in 2010. This stretch was somehow 

new, built in 2007. The repair cost were estimated between 40 to 45 millions Norwegian kroner. According 

to the project manager at that time, the error came from the design phase, which point out the importance 

of having a solid comprehension of material properties and climate. It is therefore important that those 

large investments for road building are to be protected by avoiding any deterioration and then assure and 

their service life expectancy. 
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3. FROST DESIGN IN NORWAY 
 

The frost susceptibility of soil is based on fine particle passing percentage by mass. This criterion was 

mainly developed by Nordal in the 1960s, based on Casagrande’s conclusions (1932). The Frost I Jord 

committee (1976) created today’s frost design. The frost susceptibility of a granular outbound material is 

divided into four categories ranging from non-frost susceptible (T1) to highly frost susceptible (T4) 

depending on its fractions < 2, 20 and 200 microns calculated from the <22.4 mm fraction. Table 1 presents 

the T1 to T4 frost susceptibility classes. 

Table 1: Frost susceptibility classes (modified from Frost I Jord, 1976; Handbook N200, 2014 & 2018) 

 

The first step in evaluating the need for a frost protection layer is to assess the material class of the sub-

grade (natural) soil. If a construction is to be placed on a T3- or T4-class soil, frost protection must be 

included in the design. Main roads are designed to prevent frost penetrating a potentially frost susceptible 

sub-grade (Figure 4). The thickness of each of the road’s layers is therefore adjusted to ensure this. 

 

Figure 4: Typical Norwegian road structure designed for main roads built on a frost-susceptible subgrade 

When considering the secondary roads, accounting for 70% of the country’s road network, the design is 

based on limiting differential frost heave, but without calculating frost heaving magnitude. The design is 

therefore based on engineering judgment, and would be prone to vary at different degree according to 

< 2 µm < 20 µm < 200 µm

T1 -- < 3 --

T2 -- 3-12 --

T3 >401) > 12 < 50

T4 < 40 > 12 > 50

1) Soils with more than 40% of < 2 µm are considered as moderatly frost susceptible (T3).

High

Material < 22,4 mm

Mass %

Non/ Negligible

Low

Moderate

Frost susceptibility Class
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the designer experience. It is known that frost heave affect to variable degree those infrastructures, but 

no allowed frost heave limits nor any frost heave magnitude estimation methods are presently integrated 

to frost protection design in those cases. 

Table 2 resumes the different road class according to the mean average daily traffic (ADT), number of 

lanes, sub-grade soil’s group, statistical period of return of the design freezing index, FI (noted F10 and F100 

for 10 and 100 years period of return) and the allowed maximum infrastructure total thickness. 

Table 2: Norway frost protection design chart (modified from Handbook N200, 2018) 

      

ADT Lanes Sub-grade Soil's group FI period of return 
Structure maximum 

thickness (m) 1) 

> 8000 ≥ 4  T3, T4 F100 2.4  

> 8000 < 4 T3, T4 F10 2.4  

1501-8000  T3, T4 F10 1.8  

≤ 1500  T3, T4 
Measures to prevent 

differential frost heave 
to be assessed 2) 

1.8  

1) The term 'maximum' in this context means that the specified thickness is normally sufficient to avoid 
unacceptable frost heave, although the frost depth is greater than maximum structure thickness. 

2) Measures to prevent differential frost heave should be based be based on the F10 frost index return 
period.  

 

Maximum layer thickness were decided empirically, mainly to avoid creep and deformation of the natural 

sub-grade but also for economical considerations. The freezing indexes for the whole of Norway can be 

found online at http://www.vegvesen.no/kart/visning/frostsonekart. This is believed to be a serious 

improvement to climatic data accessibility and precision compared to the table format in Handbook N200 

(2014). 

A frequent way of estimating frost depth from road authorities is to use a modification of Stefan’s 

equation, to include heat capacity. Equation 1 shows the modified Stefan’s solution that adds sensible 

heat to the latent heat factor (ISO-13793). The total amount of sensible heat in the frozen layer is obtained 

by multiplying the volumetric heat capacity by the mean annual air temperature (Tm). The depth to which 

sensible heat is considered varies from designer to designer; one to two meters being regularly used. The 

cooling effect decreases linearly downwards from the freezing front to the selected depth. 

 

Equation 1 

FD = √
7200 · FIs · λf

L + C · Tm
 

http://www.vegvesen.no/kart/visning/frostsonekart
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where FIs is the surface freezing index (°C·h), λf is the thermal conductivity of the frozen ground (W/(m·°C)), 

L is the latent heat of water in the soil (Lw·wvol = J/m3), C is the specific heat capacity of unfrozen ground 

(J/(m3·°C)) and Tm is mean air annual temperature (°C). 

It is possible to calculate the necessary FI for the frost front to penetrate a depth h in layer i (FIi) in a multi-

layered system from the integration of the modified Stefan’s solution for a multi-layered system (Nordal, 

1989). 

Equation 2 

FIi =  f ∙ Li ∙ hi ∙ (
h1

λ1
+

h2

λ2
+ ⋯ +

hi−1

λi−1
+

hi

2λi
) 

 

where FIi is the freezing index necessary for the frost front to reach hi in layer i, i is the number of layers 

considered, 𝑓 is a conversion factor from MJ to W·h (1 MJ = 277.78 W·h), Li is the soil’s latent heat in layer 

i (MJ/m3), hi is the frozen thickness of layer i (m), and hi/ λi is the thermal resistance of layer i (°C/W). Total 

estimated frost penetration is calculated from the sum of the contributive FIs for each layer. 
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4. THEORY AND APPLICATION 
 

The relevant literature and concept found on segregation potential and on the SSR model used for this 

study are presented in this section. Frost heave according to the segregation potential of crushed rock 

aggregates is presented in section 4.1 and the SSR model is presented in section 4.2. 

 

4.1 Frost heave and segregation potential 
 

Frost heave is the uplifting of the ground surface due to ice formation. Three conditions are necessary for 

frost heave to occur: a sub-freezing temperature, access to water, and a frost susceptible soil 

(Chamberlain, 1981; Konrad, 1999). The frost susceptibility of a soil refers to its ability to form ice lenses. 

Chamberlain (1981) states that more than a hundred methods for evaluating soil frost susceptibility were 

proposed between 1929 and 1981. Most are based on grain-size, but only a few allow the estimation of 

expected heave. This thesis does not describe all theories and methods for determining frost heave but to 

focus on the frost susceptibility of crushed rock using the segregation potential. 

The theory of segregation potential was first developed to find a way of including frost heave magnitude 

in pipeline design in discontinuous permafrost areas, as a solution to both the imprecision of empirical 

methods and the complexity of fundamental thermodynamic analysis (Konrad, 1980). 

Empirical methods require long-term observation and are mostly site-specific, making their application to 

other sites difficult (Konrad, 1980). As an example of empirical methodology, Kivikoski (1983, cited by 

Saarelainen, 1992) relates frost heave to frost penetration at test sites in Finland over a 30-year period. 

Figure 5 presents the relationship developed using only the square root of the freezing index with fit 

parameters. The test site was a partially paved road maintenance yard with ca 25 cm of gravel on top of a 

sandy silt. The site was followed from 1959 to 1982 to develop the empirical relations. The average values 

(ave) and ±5 % interval confidence (5% and 95%) of the magnitude of heave (h) and frost penetration (𝑧𝑓) 

are presented. Different road administration used this empirical relationship (i.e. 𝑧𝑓 = 𝑎√𝐹𝐼 ± 𝑏) to 

estimate frost depth in typical road structures (Stenberg, 1994). 
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Figure 5: Empirical relation between frost heave and frost penetration in function of the freezing index developed at the Piipola 
test site in Finland from 1959 to 1982 (Kikovski, 1983) 

Sætersdal in the frost I jord (frost actions in soils) research project (1976) proposed an empirical 

methodology to estimate frost heave magnitude. 

Equation 3 

h = β ∙
∆FI

93000 ∙ ∑
zi
λi

 

where h is the heave (m), β is the frost heave factor developed by Sætersdal (ibid), ∆FI is the freezing 

index contribution from when it reaches a frost susceptible underlying subgrade (°C·h), ∑
zi

λi
 is the sum of 

the thermal resistivity of the non-frost susceptible layers above the subgrade (m2∙°C), zi is the thickness of 

layer i (m) and λi is the frozen thermal conductivity of layer i (W∙m/°C). β has values from 0.1 to 0.7 for 

less to more frost susceptible soil. At my knowledge, this methodology does not appear to be frequently 

use nowadays due to the complexity of determining the ∆FI and particularly the β with precision. The frost 

heave factor was investigated on a great number of test roads by the Swedish National Road and Transport 

Research Institute and integrated in their early design (Stenberg, 1994).  

All criteria based on grain size for determining frost heave magnitude have proven imprecise for the 

purpose, and are therefore mainly used for qualitative classification (Chamberlain, 1981). 

Fundamental thermodynamic analysis requires accurate measurement of unfrozen water content and the 

hydraulic conductivity of the partially frozen zone (frozen fringe) and unfrozen water content, all of which 

are difficult to measure precisely in practice and are costly and time-consuming to perform (Konrad, 1980). 

Some models include the chemical potential of water and the system’s entropy , osmotic pressure and 

enthalpy, as in the model developed by Loch (1978) using the Gibbs-Duhem equation. These parameters 
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are not practically measurable for engineering application. The large amount of data required by certain 

models makes them hard to use for engineering purposes, often leading to the application of default 

values for unknown parameters, raising the uncertainty of the output.  

Konrad (1980) observed that for the same soil, the velocity of water intake rose linearly compared to the 

thermal gradient applied during a frost heave test, as shown in Figure 6 for the Devon silt. 

 

Figure 6: Relation between water intake velocity and temperature gradient at the beginning of the steady state regime (Konrad, 
1980) 

Figure 7 presents the temperature, hydraulic conductivity and suction profile in the frozen fringe. 

 

Figure 7: Temperature profile, permeability (inverse of hydraulic conductivity) and suction profile at the beginning of the steady 
state in the frozen fringe (modified from Konrad and Morgenstern, 1981). The doted lines present the simplified relation for 
hydraulic conductivity and suction used in the segregation potential theory 

The segregation potential (SP) is defined as a relationship between water intake velocity and thermal 

gradient at the beginning of the steady state (Konrad and Morgenstern, 1981). When no overburden 

pressure is applied, the segregation potential is express as SP0: 

Equation 4 

SP0 = v
∇T⁄  
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where ∇𝑇 is the temperature gradient (°C/mm) in the frozen fringe,  v is the water intake velocity (mm/d) 

at thermal steady state. The SP0 is therefore expressed in mm2/°C·day. Some works also express SP in 

mm2/°C·h, or mm2/°C·s. In this text I use SP or SP0, which are to be considered equal when the overburden 

pressure = 0, as explained further below. 

The SP merges the suction profile and the mean hydraulic conductivity of the frozen fringe, therefore 

simplifying the parameters needed for more complex models. The complete development of the equation 

can be consulted in Konrad (1980) and Konrad and Morgenstern (1980, 1981) and is summarized in 

Equation 5 from Konrad 1994. 

Equation 5 

v =  
Pw − Pu

d
Kf = (

Pw − Pu

Ts
Kf) ∇T = SP ∙ ∇T 

where Pw is the suction pressure at the base of the ice lens, Pu is the suction pressure at the frost front, d 

is the fringe thickness at the beginning of the steady state’s start time, Ts is the segregation freezing 

temperature and Kf is the mean permeability of the frozen fringe. 

Segregation potential theory allowed estimation of heave magnitude in the field (Konrad and 

Morgenstern, 1982a). The proposed relation is expressed in Equation 6. 

Equation 6 

h = 1.09 ∙ ∑ SP ∙ ∇T− ∙ dt 

where h is the segregational heave, ∇T− is the thermal gradient in the frozen soil and dt is the duration of 

the freezing period. In field estimation the SP for field have to be corrected for overburden pressure. The 

SP according to overburden pressure is obtained from Konrad and Morgenstern (1982b): 

Equation 7 

SP =  SP0e−σa 

 

where SP is the segregation potential (mm2/°C·h) accommodated for overburden pressure, SP0 is the 

segregation potential without any overburden pressure, σ is the overburden pressure (MPa), and 'a' is a 

parameter of soil sensitivity to overburden pressure (MPa-1). The 'a' parameter can be estimated with the 

percentage of clay particles <2 μm using Figure 8 (Knutsson et al. 1985). 



THEORY AND APPLICATION 

 

 

17 

 

 

Figure 8: Sensitivity to overburden pressure parameter 'a' in function clay particle % (Knutsson et al., 1985) 

Other methods of calculating a soil’s sensitivity to overburden pressure 'a' can be found in Konrad (2005) 

where it is related to the mean particle diameter in the fine fraction < 80 μm (d50ff). 

Equation 8 

a = 5(d50ff)
0.45 

 

4.1.1 Factors influencing the segregation potential 
 

According to Konrad (1999), the key parameters that govern a material’s frost susceptibility are its particle 

size distribution, mineralogy, texture and overburden pressure. The particle size distribution is important 

because it dictate the critical fine content at which the coarse pore fraction are filled with fine fraction. A 

coarse matrix soil with the coarse pore fraction filled with fines is more frost susceptible than one not, or 

partially filled with fines (Bilodeau, 2009). The mineralogy of the fines content is known to affect the 

susceptibility to frost. Brandl (2008) enumerates the mineralogy criteria used in Austria, which does not 

correlate directly with the segregation potential. In general mineralogy and texture affect unfrozen water 

content, dry density and porosity, which are very important in the hydraulic conductivity of the frozen 

fringe during freezing (Konrad, 1999). The overburden pressure has the effect of lowering the freezing 

segregation temperature of a soil, decreasing its frost susceptibility. In general clay has low and sand high 

sensibility to overburden pressure. 

Figure 9 presents the structure profile of a typical Canadian road, typically built with ca 20-30 cm of a 0-20 

mm graded base layer and ca 50-60 cm of sand as a filter layer noted subbase. This type of structure is 

common around the world. The figure presents the water content and pore pressure profiles according to 

depth and water level.  
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Figure 9: Suction and water content profile according to water table and frost depth in a typical Canadian road structure 
(Konrad, 2014) 

As the figure shows, SP will be ≈ 0 at the limit of the capillary rise of the soil, will be in function of the 

suction above the water table level and in function of the overburden pressure below the water table 

level. The suction was investigated by Konrad and Morgenstern (1982a) in Devon silt (Figure 10). 

 

Figure 10: Segregation potential in function of suction at the frost front in Devon silt (Konrad and Morgenstern, 1981) 

According to Konrad and Morgenstern (1981), the suction at the frost front,∆P, can be estimated by 

applying Darcy’s law to unfrozen soil only, using Equation 9. 

Equation 9 

∆P =  |Pu − Pb| =
v ∙ lu

Ku
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where Pu is suction pressure at the frost front, Pb is suction pressure at the bottom of the unfrozen soil 

sample, v is water flux, lu is the length of unfrozen soil sample and Ku is the permeability of the unfrozen 

soil. 

The rate of cooling also has a direct effect on the segregation potential, as described in Konrad (1980) and 

Konrad and Morgenstern (1982a), who plot segregation potential, suction pressure and rate of cooling to 

create the frost heave envelope for Devon silt in Figure 11. 

 

Figure 11: Segregation potential in function of suction at the frost front and rate of cooling in Devon silt (Konrad, 1980) 

It is therefore important that the segregation potential is a 3D envelope, and not a single 2D relation. For 

engineering purposes, the laboratory test therefore limits the suction at the frost front by putting the 0°C 

isotherm near the base of the sample at a relatively low rate of cooling. The 2D interpretation have then 

its limitation, as discussed by Nixon (1991). The rate of cooling should represent that expected in the field 

to determine representative segregation potential from a frost heave test (Konrad 1994). 

Konrad (1999) has empirically estimated segregation potential using soil index properties, based mainly 

on the work of Rieke (1983). An empirical relationship was developed using the specific surface and d50ff 

and validated for highly frost susceptible till. The d50ff is the 50% passing fraction in mass, measured on 

the <80 μm fraction. Konrad found that the shape and mineralogy of the fines content influenced the 

unfrozen water content in the frozen fringe. Konrad (1999) explained that unfrozen water content can be 

categorised as capillary (or pore) water and adsorbed water. Capillary water can move easily in the soil 

pores and adsorbed water cannot. The adsorbed water was found to be proportional to the specific surface 

area. An empirical relationship between d50ff and capillary water (inversely related to the specific surface 

area (Ss)) for clay-fines related soils was developed at a water content ratio over liquid limit (w/wL) ≈ 0.7. 

This relationship was developed for all types of soil and geomaterials and is presented in the segregation 

potential and crushed rock aggregates section of Konrad’s 2005 study. 
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4.1.2 Segregation potential of crushed rock aggregates 
 

The frost susceptibility of clean and free draining crushed rock aggregates ranges from negligible to low 

(FHA, 2017). A relatively high fines content, however, can make crushed rock aggregate frost-susceptible. 

The definition of fine material varies from < 80 μm in Canada to < 75 μm in the US and < 63 μm in Europe. 

The maximum fines content possible to limit frost susceptibility to a ‘low’ or ‘low to medium’ Cold Region 

Research Laboratory (CRREL) category ranges from ca 8-12% for a 0-20 mm crushed rock aggregate 

(Chamberlain, 1981). A fines content of <20 μm is often included in grain-based criterion as developed by 

Casagrande (1931, cited by Chamberlain, 1981). The fine content that is allowed in materials by different 

transportation administrations varies significantly (Chamberlain, 1981). Some agencies that use grain-size 

based criteria combine this with other restrictions such as plasticity index (e.g. CRREL, 1981), capillarity 

(e.g. Finnish Transport Infrastructure Agency), and mineralogy (e.g. Austrian Federal Road Administration) 

criteria. Figure 12 presents segregation potential as a function of % passing 0.02 mm (20 μm), adapted by 

the Quebec Ministry of Transport (MTQ) from the frost susceptibility classification chart of the US Army 

Corps of Engineers, Cold Region Research Laboratory (CRREL, 1981). The soil/aggregate taxonomy is based 

on the United Soil Classification System (USCS). Figure 12 illustrates the variability of the average 

segregation potential of coarser aggregates. A well-graded gravel (GW) with 2% passing 0.02 mm can 

therefore be characterized as having a frost susceptibility varying between negligible and medium, which 

does not provide sufficient accuracy for high-class road projects. 

 

Figure 12: SP0 in function of % passing 20 μm, and according to USCS soils taxonomy, adapted from the 1981 CRREL Chart 
(modified from St-Laurent, 2006) 
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Basing frost susceptibility calculation on grain-size therefore has flaws as with a given fines content it can 

vary significantly and the heave rate is difficult to transpose to specific field conditions. It can be concluded 

that trying to estimate the magnitude of heave using soil classification and fines content of < 75 or 20 μm, 

could lead to significant errors. 

Most of segregation potential development was done for subgrade soils, as silt and clay are the most frost 

susceptible soils. The main studies on the segregation potential of crushed rock aggregates are Konrad 

(2005), Konrad and Lemieux (2005), Nurmikolu (2005), Konrad (2008) and Bilodeau (2009). The main 

direction and findings of their work are presented in the next paragraphs. 

Konrad (2005) tested the < 80 μm fraction of basalt, dolostone, granite, limestone, quartzite and 

greywacke and determined that the SP of crushed rock aggregate fines ranges from medium to very high, 

with associated SP of 84-310 mm2/°C∙d. Tests by Rieke (1983) were used to develop a normalized SP, 

allowing the estimation of SP0 for clay fines and non-clay fines granular materials. Normalized SP involved 

the estimation of empirical SP0 ref and Ssref. Normalized SP (i.e. SP0/SP0 ref) has a linear relationship with 

Ss/Ssref when non-clay fines drive the frost heave response (Ss/Ssref < 1), and an exponential relationship 

when driven by clay fines (Ss/Ssref >1). The relationship takes different forms depending on the w/wL ratio 

(equations 10 to 13). 

 If Ss/ Ssref < 1 (non-clay mineralogy dominance in frost heave behaviour) 

 

for w/wL = 0.7 ± 0.1  →  𝑆𝑃0.𝑛 = 𝑆𝑃0 𝑟𝑒𝑓  ∙  𝑆𝑠
𝑆𝑠𝑟𝑒𝑓

⁄    Equation 10 

for w/wL > 0.8   → 𝑆𝑃0.𝑛 = 𝑆𝑃0 𝑟𝑒𝑓  ∙ (0.08 + 1.42 (𝑆𝑠
𝑆𝑠𝑟𝑒𝑓

⁄ ))  Equation 11 

 If Ss/ Ssref > 1 (clay mineralogy dominance in frost heave behaviour) 

for w/wL = 0.7 ± 0.1  → 𝑆𝑃0.𝑛 = 𝑆𝑃0 𝑟𝑒𝑓  ∙  (𝑆𝑠
𝑆𝑠𝑟𝑒𝑓

⁄ )
−0.85

  Equation 12 

for w/wL > 0.8   → 𝑆𝑃0.𝑛 = 𝑆𝑃0 𝑟𝑒𝑓  ∙ 1.5 (𝑆𝑠
𝑆𝑠𝑟𝑒𝑓

⁄ )
−0.55

  Equation 13 

It was shown that crushed rock aggregates follow the relationship of Ss/Ssref < 1 and w/wL > 0.8, as shown 

by the results for “fines Qc” (representing the crushed rock aggregates studied by Konrad in 2005), in 

Figure 13. 
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Figure 13: Normalized segregation potential as a function of normalized specific surface area. Fines Qc and basalt are crushed 
rock aggregates (modified from Konrad, 2005). 

The equation 10 to 13 established a relationship between Ss and SP. Ss had an effect on the unfrozen 

water content, dimension and tortuosity of water channels (Konrad, 2005; Bilodeau, 2009). Frost 

susceptibility increases with increasing Ss in aggregates with a relatively small fine content. When Ss 

reaches a higher value the increased volume of adsorbed water in the material matrix has the effect of 

reducing the water channel dimensions (and increasing tortuosity, described in Konrad, 1999), resulting in 

a reduction of the hydraulic conductivity of the frozen fringe and therefore also of frost susceptibility. 

Konrad and Lemieux (2005) studied the effect of different fines % in 0-20 mm graded crushed rock 

aggregates (base material).They tested different percentages (5, 10 and 15% of < 80 μm) of granitic fines 

in a 0-20 mm fraction, varying the percentage of the clay content (10, 50, 75 and 100% of kaolinite) in the 

fines. They demonstrated that segregation potential can be medium to high even at a low percentage of 

fines. A set of graphs showing the relationship between frost heave rate and thermal gradient for 5, 10 

and 15% fines containing 10, 50 and 75% of kaolinite clay were produced from their work. The segregation 

potential according to the same 5 variation of fines and kaolinite clay were also presented. Frost heave 

rates and segregation potential were proven to increase with an increasing percentage of fines. Frost 

heave rates and segregation potential also increased with the increasing proportion of kaolinite clay in the 

granitic fines fraction. Figure 14 present an example showing the heaving rate according to thermal 

gradient for a crushed rock with fine content of 5 percent in which the percentage of kaolinite clay varied 

from 10 to 75 percent. 
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Figure 14: Frost heave rate according to temperature gradient for a 0-20 mm graded crushed rock base that contain 5% of granitic 
fines and a proportion of kaolinite clay in the 5% fines of 10, 50 and 100%, defined by K10, K50 and K100. Numbers 1 to 4 are the 
freeze run numbers (Konrad and Lemieux, 2005) 

Nurmikolu (2005) studied 132 frost heave tests on 0-31.5 mm graded ballast of different crushed rock 

aggregates used in railway infrastructures. Most of the aggregates were gathered in situ in order to 

estimate the effect of long-term ballast degradation. Some of the tests were performed on new crushed 

rock aggregates. Different rock types including mainly granite but also granodiorite, mica-schist, mica-

gneiss, talc pyroxenite and cordierite-mica gneiss were tested. Nurmikolu used the frost heave coefficient, 

which is the same as segregation potential, for his analysis. The fine contents <63 μm of the tested 

aggregates were mainly between 5 and 6%. His results showed different SP values, mainly from ca 24-40 

mm2/°C∙d for fines content of 5-6%. One typical frost heave test as analysed in Finland is presented in 

Figure 15. The SP is determined when the frost heave coefficient stabilizes during the frost heave test, 

here being about 1.3 mm2/K∙h (≈31 mm2/°C∙h). 

 

Figure 15: Frost heave test interpretation of a 0-31.5 mm ballast material with ~ 5% of fines <63 μm (Nurmikolu, 2005) 



THEORY AND APPLICATION 

 

 

24 

 

Konrad (2008) performed ramped-freezing tests on three base granular materials (0-20 mm) with a < 80 

μm fines content of up to 7%, and degrees of saturation near 60%. A gneiss with biotite, a limestone and 

a monzonite were tested. The measured SPs were ca 20 mm2/°C∙d, which are classified as low. Konrad 

observes that water drawn to the freezing front during the frost heave test must be considered when 

analysing the behaviour of the material to frost action. In other words, not all of the water entering the 

system turned to ice, leading to a significant rise in the water content of the unfrozen part and a decrease 

in the dry density of the material. The water drawn and the rate of cooling effect can be expressed using 

a modified segregation potential, SPw. Konrad suggests that the normalized segregation potential method 

can be applied to determine the SP0 of a granular base material. 

 

Bilodeau (2009) performed frost heave tests on three 0-5 mm graded rock types: a limestone, a basalt and 

a gneiss, each with six different pre-established particle size distributions, making a total of 18 tests. He 

tested fine content percentages of (<80 μm) of 2, 4.5 and 7%, measuring their segregation potential under 

a 7 kPa overburden pressure in all tests (SP7kPa). The gneiss in general showed a very low segregation 

potential, the limestone a low segregation potential and the basalt a low to medium segregation potential. 

He developed a relationship linking the segregation potential to a statistical complex variable named ϒ, 

which is function of the curvature index of the fines (CuF), the specific surface area of the fines (SsF) and 

the porosity of the fine fraction (nf). Figure 16 shows the relation between SP and ϒ. This relationship was 

developed to estimate the segregation potential of crushed rock aggregates with low fines content. 

 

Figure 16: Relationship between SP and ϒ (Bilodeau, 2009) 

A relationship exist between fine fraction porosity (nf) and coarse fraction porosity (nc). The segregation 

potential of a granular material will be maximal when the nc is entirely filled by the fine fraction, and will 

be lower when the nc is partially filled with the fine fraction. Konrad (1999) estimated that the coarse 

fraction porosity is filled when having a fine content (<75 μm) of ca 15% and more. The nf reflects the 

water flow tortuosity in pore channels and was thoroughly described by Côté and Konrad (2003). Fine 

fraction porosity was defined by Côté and Konrad (2003) using Equation 14. 
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Equation 14 

𝑛𝑓 = 𝑛
(𝑛 + (1 − 𝑛) ∙ 𝑓𝑖𝑛𝑒𝑠 %)⁄ =  

(𝑛𝑐 − 𝑓𝑖𝑛𝑒𝑠 %)
(𝑛𝑐(1 − 𝑓𝑖𝑛𝑒𝑠 %))

⁄  

where 𝑛𝑓 is the fine fraction porosity (< 80 μm), 𝑛 is the porosity, 𝑛𝑐 is the coarse fraction porosity (> 80 

μm) and 𝑓𝑖𝑛𝑒𝑠 % is the fine particles content (< 80 μm). A lower fine fraction porosity will lead to higher 

tortuosity of the flow channels to the segregation front, for materials with a relatively low amount of fines 

%. as demonstrated by Konrad (2005) and shown in Figure 13. 

 

4.2 SSR Model theory 
 

The Seppo Saarelainen Routanousu (SSR) model was developed in 1992 in Finland with the intention of 

calculating frost depth and resulting frost heave to an acceptable degree of accuracy (Saarelainen, 1992). 

The model is based on the heat flux balance at the frost front in frost-susceptible soils, and can be 

expressed, with all heat flow parameters in the equation in W/m2, as: 

Equation 15 

q− = q+ + qf + qs 

 

where q− =  λf∇T− is the heat flow through the frozen layers, q+ = λf∇T+ is the heat flow to the freezing 

front coming from the unfrozen layers underneath, qf is the heat flow released by pore water freezing, qs 

is the heat flow released by ice segregation (water flow drawn by cryosuction effect). Figure 17 presents 

the schematic of the parameters included in the SSR model. 

 

 

Figure 17: Heat balance equation at the frost front with associated parameters (modified from Côté and Konrad, 2009) 
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The left part of Figure 17 represents an idealized temperature distribution used to determine the heat flux 

balance at the frost front, while the right part of the figure represents the development of the heat flux 

balance equation using soil and material parameters. The equation’s first term (qf) comes from the 

solution developed by Stefan in 1891 and considers the release of latent heat into the conductive heat flux 

in the frozen layer. The second term (q+) is the conductive heat flux from the underlying unfrozen ground 

introduced by Saarelainen for the SSR model based on an empirical relationship between mean annual air 

temperature and thermal gradient developed by Skaven-Haug (1971). Finally, the heat flux from the 

release of latent heat produced by segregational ice formation (qs) was modelled using Konrad and 

Morgenstern’s (1981) segregation potential theory. Therefore the equation can be developed as: 

Equation 16 

λf∇T− = λu∇T+ + Ls

∆z

∆t
+ Lwv 

where the rate of water flow to the freezing front is modeled using the segregation potential theory 

Equation 17 

v = dv dt⁄ = SP ∇T− 

 

where λf is the thermal conductivity of the frozen layers (W/°C·m), ∇T− is the thermal gradient in the 

frozen layers (°C/m), λu is the thermal conductivity of the unfrozen layers (W/°C·m), ∇T+ is the thermal 

gradient in the unfrozen layers (°C/m), Ls is the volumetric latent heat of soil fusion at the freezing front 

(W·h/ m3), Lw is the volumetric latent heat of water fusion (W·h/ m3), ∆z is the increase in frost penetration 

during the time increment (m), ∆t is the time increment (h), v is the water flow rate (dv/dt) induced by 

ice segregation (m/h) and SP is the soil’s segregation potential at the freezing front (m2/°C·h), also called 

the frost heave coefficient in the Finnish literature (Saarelainen et al., 2015). 

 

When adapted to a multi-layered system, as much transportation infrastructure is, Equation 16 can be re-

written as: 

Equation 18 

λf

(Tf − Ts)

z∗
= λu∇T+ + Ls

∆z

∆t
+ Lw SP 

(Tf − Ts)

z∗
 

 

where Tf is the freezing temperature of soil (°C), Ts is the average surface temperature during period of 

time dt (°C), z∗ =  λfz  ∑(zi λfi⁄ ) + 0.5 ∆z, where λfz is the average thermal conductivity of the frozen 

layers, when reaching half of the calculated penetration  during the increment time, dt. Figure 4 shows 

details of the development of z∗, expressed as: 

Equation 19 

λfz =
z +

Δz
2

z
λz

+
Δz

2λΔz

   ⟶   λfz =
z +

Δz
2

∑(zi λfi⁄ )
   ⟶   λfz ∑(zi λfi⁄ ) −

Δz

2
= z 
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Figure 18: Computation of average thermal conductivity details 

 

where z∗ = z + ∆z, Ls = Lw ∙ w(
ρd

ρs
⁄ ), w is the gravimetric water content (w = Mw Ms⁄ ), Lw is 

the volumetric latent heat of water fusion (333 ∙ 103 kJ
m3⁄ = 92.5 ∙ 103 W ∙ h

m3⁄ ), ∆z ∆t⁄  is the 

rate of frost penetration (m/h). SP = SP0 e−aσ where SP0 is the segregation potential without 

overburden pressure, σ is the overburden pressure at the freezing front (MPa) and a is the 

overburden sensitivity of the soil (MPa-1). SP is expressed in mm2/°C·h. 

 

To compute the frost penetration increment ∆z at each time step in Equation 5, the Saarelainen 

iterative solution (1992) is presented as Equation 20: 

Equation 20 

∆z = (Tf − Ts)dt
(1 − SP ∙ Lw λfz⁄ )

(Lfz ∙ ∑(zi λfi)⁄ )
−

S ∙ ∇T+ ∙ λuz dt

Lfz
 

 

where ∆z is the increase in frost penetration during the time increment (m), (Tf − Ts)dt is the 

freezing index, FI (°C·h), which equals Tsdt when Tf is approximated as 0°C, SP is the segregation 

potential of the soil at the freezing front under actual overburden stress (m2/°C·h), λfz is thermal 

conductivity near the freezing front (W/°C·m), Lfz is the volumetric latent heat of the fusion of soil 

at the freezing front (W·h/ m3) and ∑(zi λfi)⁄  is the sum of all frozen layers thermal resistance, in 

m2·°C/W, zi and λfi being the thickness of frozen layer i (m) and the thermal conductivity of frozen 

layer i (W/°C·m) respectively. Note that Δz is also present in the following expression (in bold), 

making this solution iterative. 
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Equation 21 

∑(zi λfi)⁄ = Rfz =  
z1 + z2 + ⋯ + 𝚫𝐳

λ1 + λ2 + ⋯ + 2λfz
 

 

where S is a coefficient describing the intensity of heat flow from the ground, with S = 1 in 

November to S = 0.7 in April, ∇T+ is the temperature gradient of unfrozen ground at the freezing 

front (°C/m) and λuz is the thermal conductivity of the unfrozen soil at the freezing front (W/°C·m). 

 

The magnitude of heave is computed using a two-time step, one step considering segregated ice 

using the SP and the other considering pore water freezing. The heave of the segregated ice is 

compiled at each time step, using the SP of the actual layer in the freezing process (Equation 22): 

Equation 22 

∆hs = 1.09 ∙ [SP ∙ ∇T−] dt = 1.09 ∙ SP ∙
(Tf − Ts)dt

(λfz ∑(zi λfi)⁄ )
 

 

where ∆h is the increment in heave due to ice segregation (m). The expansion of pore water when 

freezing, ∆hp, must be taken into account for soils whose degree of saturation exceeds 85-90% 

(Orlov et al., 1977, cited in Saarelainen, 1992). The heave from pore water expansion is computed 

using Equation 23: 

Equation 23 

∆hp = 0.09 ∙ ∆z ∙ w ∙
ρd

ρw
⁄ = 0.09 ∙ ∆z ∙ Sr ∙ n 

 

where Sr and n are the degree of saturation and porosity respectively. The total amount of frost 

heave is computed as: 

Equation 24 

∆h = ∆hs + ∆hp 
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5. RESEARCH METHODOLOGY 
 

Research methodology includes three sections that describe the laboratory work, the fieldwork and the 

modelling work executed during this research. 

 

5.1 Laboratory 
 

Frost heave tests were performed to measure the frost susceptibility of crushed rock aggregates. In 

parallel, the crushed rock aggregates were characterized to determine the relevant index parameters. 

 

5.1.1 Frost heave test 
 

A multi-ring frost heave cell was constructed at Laval University, Canada, and shipped to NTNU. The whole 

experimental setup had to use this kind of cell to determine the frost heave susceptibility of the different 

crushed rock aggregates tested, as described in section 5.1.3. The frost cell setup is presented in Figure 

19. The frost heave tests were used for Paper I and Paper III results and analysis.  

 

Figure 19: Multi-rings frost heave cell 



RESEARCH METHODOLOGY 

 

 

30 

 

The frost cell consists of 18 rings made of high-density polyethylene and with a 150 mm diameter, and 

accommodates sample heights of up to 200 mm (225 mm with rubber spacers between rings). Eighteen 

thermistors with a 0.1°C accuracy were inserted into each ring with the tip of each one secured with epoxy 

glue flush with the outside diameter side of the sample, to measure the temperature every 11.1 mm. The 

cell was insulated during the test to minimize radial heat transfer. The cell’s 50 mm thick wall was rigid 

enough to resist radial pressure during ice formation. The sample was placed between two cooling plates 

from which the temperature was imposed using two cryostat units. 

A rubber membrane was placed on the sample after being placed on the base plate. A split ring at the base 

was tightened with a steel collar to seal the membrane. Rings were inserted on the sample one by one and 

another split ring sealed the sample at the top. The multi-ring cell included an air piston, allowing pressure 

control during the test. No vertical pressure was imposed in this study. A potentiometer was used to 

measure heave with 0.01 mm precision. The water was free to flow inside the sample for the 24-hour 

conditioning phase, with water level placed 3-4 cm higher than the sample top. The water level was 

lowered at ca 0.5-1 cm upper than the base of the sample prior to the freezing phase. A glass recipient 

with a cork in which a glass tube had been inserted (a Marriotte’s bottle) was used to create a constant 

pressure head at a chosen height, therefore allowing water to flow only via cryosuction. 

The cell was placed in a fridge to further limit temperature variation during test, conditioning the sample 

at 2°C before starting the freezing. The freezing was applied from the top with a target temperature of -

4°C. Samples were submitted to freezing for a 96-hour period. All the data were recorded at 5-minute 

intervals using a data acquisition system (18 temperature, heaving and water mass). The positions of the 

rings during the tests were measured using graduations on the frame, allowing thermistor height 

correction versus time for the segregation potential calculation. 

The methodology for determining segregation potential is a graphical interpretation, as described in the 

Quebec Transport Administration (MTQ) LC-22.331 standard, based on the procedure described by Konrad 

(1987). It was adapted from the original version, which was developed for fine grained-soils (silt and clay), 

without a compaction phase (samples are placed in cells with relatively high water content followed by a 

consolidation phase) and uses a split-mold freezing cell type (with no height variation among the 

thermistors). 

The principle of the method is to use both frost depth vs. time, and temperature profile graphs in order to 

discover the moment at which the temperature regime changes from a transient to a steady state. This 

moment defines the time at which the rate of heave and the temperature gradient in the frozen fringe can 

be considered for calculation, and indicates when the last ice lens in the sample begins to grow. 

 

 

5.1.2 Soil index parameter 
 

Different soil index parameters were measured for all crushed rock aggregates. The first reason was to 

estimate the fine particle size distribution in order to, first compare the Norwegian grain-size criterion and 
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second, assess the soil index parameters necessary to estimate the normalized segregation potential 

proposed by Konrad (2005). European/Norwegian (Handbook R210, 2015) and American (ASTM) standard 

were used for testing. The following characterization tests were performed on the different crushed rock 

aggregates:  

i) particles size distribution by washing and coarse fraction sieving, i.e. >63 or 75 μm (Handbook 

R210 (131); ASTM C136)  

ii) particles size distribution of the fine fraction using hydrometer analysis (Handbook R210 (214); 

ASTM D7928).  

iii) particle density ρs (Handbook R210 (213); ASTM D854) 

iv) liquid limit wL (Handbook R210 (216)) 

v) Specific surface area of different fraction (<250, <125 and <75 μm) using Santamarina et al. 

(2002) which is a modified version of the ASTM C837 

vi) Mineralogical composition using X-ray diffraction (Geology department, NTNU)  

 

5.1.3 Materials 
 

The crushed rock aggregate samples came from the Aplitt, Hadeland, Hellvik, Legruvbakken, Vassfjell, 

Lørenskog and Velde quarries in Norway and the PEB and Drapeau quarries in Canada. All crushed rock 

aggregates were tested using a multi-ring frost heave cell. The 0-4 mm fraction was primarily tested. The 

required fraction was obtained directly from the quarry or sieved down from a larger fraction, generally 

0-16, 0-20 or 0-31.5 mm. Two series of Lørenskog and one of Vassfjell crushed rock aggregates were tested 

at different steps of the crushing process. For the Lørenskog sample this included two series of tests on 

the 0-4 mm fraction obtained from the first step of crushing, the cone crushing (3rd step) and the VSI 

crushing phase (4th step). The Vassfjell tests included a 0-4 mm fraction from blasted materials, subbus (a 

mixture from the 1st,2nd and 3rd crushing phases) and the 3rd crushing phase (from a cone crusher). Three 

fillers from the Velde quarry, coarse, intermediate and fine, from an air classifier, including the VSI 

Lørenskog aggregates for the coarser fraction (0.125-4 mm) and Velde for the finer fraction (0-0.125 mm), 

were used in a series of tests. A sample that used VSI Lørenskog with the same proportion of coarser and 

finer fractions as the Velde fillers was also produced.  

 

5.2 Field test 
 

5.2.1 Description of site 
 

A full-scale test site was built in fall 2016 at 62o33’29.13’’N/ 11o19’31.26’’E, south-west of Røros, in the 

southernmost part of the Trøndelag region in central Norway (Figure 20). The field test was built 

contractors (crushed rock handling) and NTNU personnel (instrumentation installation and positioning). 
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Figure 20: Røros location, Central Norway 

The test site, built to measure the thermal response of different construction materials, is composed of six 

road sections and four railway sections, each 8 meters long by 6 meters wide (Figure 21). The site is beside 

the Rv30 road and experiences no vehicle traffic apart from snow removal maintenance in winter. This site 

was an important part of this investigation for comparing with our laboratory results and theoretical 

calculations on the different materials.  

Our primary objective for all sections was to investigate frost penetration and consequent frost heave, if 

any. Road sections 1-3 were used to investigate different grading of the same rock type in the frost 

protection layer. The gradation were based on limits proposed in Handbook N200 (2014), therefore the 

grading were ranged from the finest grading allowed to an open-coarse grading, and subsequent frost 

penetration behaviour were analysed according to winter temperature using the freezing index. Road 

sections 4-6 were used to investigate different grading and types of lightweight aggregate used as an 

insulation layer. Railway sections 1-4 were used to investigate both grading and different rock types in the-

sub ballast or reinforcement layer and to analyse their effect on frost penetration. All sections are fully 

described bellow.  

Røros was chosen as the location of the test site for its rigorous winters. The freezing index period of return 

over 2, 10 and 100 years (F2, F10 and F100) are 21000, 39000 and 61000 °C∙h respectively. Many populated 

regions in Norway have a F100 of around 20000°C∙h (Table 3). The Røros test site allowed to test what is 

considered as a F100 period of return winter in populated areas as Trondheim and Oslo, therefore being of 

great interest in design performance analysis. The site was designed using Handbook N200 (2014) with a 

10-year freezing index return period.  
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Figure 21: Røros test site road section (top left) and railway section (top right) after construction (2016). Bottom picture shows 

section’s dimension and positions on site  

Table 3: Mean annual temperature (MAT) and freezing index for 2-, 5- and 10-year periods of return (F2, F10 and F100) in different 
areas in Norway 

  
 

The test section was instrumented to measure the following parameters: 

Locality MAT FI2 FI10 FI100

Røros 0.2 21000 39000 61000

Oslo 6.4 5000 12000 21000

Bergen 7.6 1000 2000 4000

Trondheim 5.3 4000 11000 19000

Tromsø 2.8 8000 15000 24000

FIx: Return period in x years of a freezing index magnitude event

FI in °C∙h
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a) temperature (oC): 95 T24 duplex insulated thermocouples were embedded on the site: 57 in the road 

sections, 36 in the railway sections and 2 at different heights beside the construction site office for air 

temperature; 

b) irradiance (W/m2): a long-wave Kipp & Zonen CGR-3 pyranometer was placed at a height of about 1.5 

m. above the top of the construction site office; 

c) humidity (%): twelve Eijkelkamp Theta Probe ML3 soil moisture sensors were placed on site: ten in the 

road test sections and two in the railway sections; 

d) frost heave (mm): linear variable differential transformers (LVDT) were placed in all sections, but some 

failed shortly after installation. Three survey nails were then inserted into the top of every road section 

for manual vertical deformation measurement using a level meter; 

e) heat flux (W/m2): two Hukseflux HFP01 heat flux plates were placed under two asphalt layer sections. 

The positions of all of these instruments are presented in Figure 22, 24 and 26 below, in cross section. 

 

5.2.2 Road test sections 
 

All crushed rock aggregate materials for the road test sections were sourced from the Legruvbakken quarry 

near Røros municipality. The Geological Survey of Norway (NGU) defines the rock type as fine grain 

metamorphic hornblende-schist dominated by phyllite. Rock analysis by the Geological Survey of Norway 

(NGU) found an average mineralogical composition of about 45-50% quartz, 15-20% hornblende, 15% 

plagioclase or chlorite, and 15-25% of other minerals, mostly silicates, micas and garnet. 

The road test section was divided into two distinct parts; the first to analyse the effect of varying particle 

size distribution in three different frost protection layers (all other layers being the same), and the second 

to analyse the thermal performance of three lightweight aggregates (two particle size distribution of 

expanded clay and one of foamglass) used as insulation layers between the sub-base and frost protection 

layers. 

5.2.2.1 Road sections Ro-1, Ro-2 and Ro-3 

A cross sections of road sections 1, 2 and 3 (Ro-1, Ro-2, Ro-3) are presented in Figure 22, showing layer 

thickness, design and type, and the location of the instruments used. Figure 23 presents the different 

grading curves of the crushed rock aggregates of which the pavement is composed.  

An open, coarse-graded material (20-120 mm) was used as the frost protection layer in Ro-1. This material 

is characterized by a low percentage of fines and an open pore structure. A fine, well-graded material (0-

32 mm) was used in Ro-2 with a fines content (< 63μm) of ≈11-12%. Ro-3 was built using a coarse, well-

graded aggregate layer (0-120 mm) qualified as ‘typical’; this was used as the reference section. The 

fraction of fines in this material is believed to be approximately 5-8 %. The exact amount of fines wasn’t 

tested due to loss of material. The road structure lay on 50 cm of silt. 
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Figure 22: Cross sections of Ro-1, Ro-2 and Ro-3 showing the different particle size distribution of crushed rock aggregates in the 
different layers (in mm). Here the frost protection layers are investigated 

 

Figure 23: Grading curves of base, sub-base and the three different frost protection layers in Ro-1 (open graded), Ro-2 (fine 

graded) and Ro-3 (typical grading) 

 

5.2.2.2 Road sections Ro-4, Ro-5 and Ro-6 

Cross sections of Ro-4, Ro-5 and Ro-6 are presented in Figure 24, showing layer thickness, design and 

type, and instrument location. The different grading curves of the lightweight aggregates in the 

insulation layers are presented in Figure 25.  
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Figure 24: Cross sections of Ro-4, Ro-5 and Ro-6 investigating different grading and type of lightweight aggregates used as 
insulation layer 

 

Figure 25: Grading curves of the three different lightweight aggregates used as insulation layer in Ro-4 (expanded clay 10-20 
mm), Ro-5 (expanded clay 0-32 mm) and Ro-6 (foamglass 10-60 mm) 

The expanded clay aggregates are round whereas the foamglass aggregate particles are cubical, and their 

installation therefore differed. Insulation is frequently used in Norway’s transport infrastructure to limit 

frost penetration. Two different gradations of expanded clay (10-20 and 0-32 mm) were installed in Ro-4 

and Ro-5 respectively and 1 gradation of foam glass (10-60 mm) in the Ro-6 section. All insulation layers 

were placed at a depth of 45 about cm and were 60 cm thick. Expanded clay is produced by sintering clay 
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in a special rotary furnace and for use as lightweight fill or frost protection (Øiseth et al. 2005c). Foamglass 

is produced from recycled glass crushed to powder and heated in a furnace. The insulation capacity of such 

materials is investigated in Frost I Jord (1976) and further research since (e.g. Bakløkk et al. 2001, Hoff et 

al. 2000a, 2000b, Øiseth et al. 2005a, 2005b, 2005c, 2006, all cited in Øiseth et al., 2006). Investigation of 

the thermal properties of lightweight aggregates was mainly carried out by Rieksts (2018) as the other part 

of the FROST project. 

 

5.2.3 Railway sections 
 

The railway sections were built using different rock types. Slate from the Legruvbakken quarry was used 

for all frost protection layers and was of the same grading as that used in Ro-3 (typical grading). The 

behaviour of sub-ballast crushed rock aggregates were investigated in the railway sections. Four different 

gradations were used: 0-120 and 20-120 in Rw-1 and Rw-2, and 0-250 mm and 20-250 mm in Rw-3 and 

Rw-4. Two different rock types were also used: a quartzite from the Hanestad quarry (Rw-1 and Rw-2) and 

a gabbro from the Vassfjell quarry (Rw-3 and Rw-4). Figure 26 presents the details of the railway section 

design and the instruments used.  

 

Figure 26: Cross section of sections Rw-1 to Rw-4 where different grading and rock type were investigated. 

The different grading curves of the lightweight aggregates in the insulation layer are presented in Figure 

27.  
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Figure 27: Grading curves of the different sub-ballast and ballast in railway sections.    
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5.3 Modelling SSR USING I3C-ME  

 

5.3.1 I3C-ME Software 
 

The I3C-ME software was developed for mechanistic-empirical road design by a research chair at Laval 

University in Quebec City, Canada. 'I3C' stands for the interaction between pavement, load and climate, 

and 'ME' for mechanical-empirical. The I3C-ME user manual (Doré et al., 2019) thoroughly describes the 

design process and the software’s estimation and analysis methods. This freeware supports complete 

mechanical and frost design and is relatively easy to adapt and implement for local use. The software 

includes eight modules, one of which considers frost design (Figure 28). 

The I3C-ME frost module was based from the MTQ software CHAUSSEE2. The CHAUSSEE2 software is only 

available in French and was therefore not presented here. However, CHAUSSEE2 allows to unlock any 

parameters from any materials, therefore being a bit more practical as there is no need to update the 

Microsoft Access tables for modifying the different parameters limits. All the calculation for the SSR model 

evaluation for the I3C-ME comes from the CHAUSSEE2. The analysis from the I3C-ME software for this 

study were verified using the CHAUSSEE2 software.  

The software follows a step-by-step procedure: each module must be completed before moving on to the 

next. Module 1 requires a general name and information about the project to be inputted. Module 2 

concerns the type of road involved, the design objectives and the equivalent single-axle load (ESAL) values. 

Module 3 characterizes the load, and here default values can be selected. Module 4 offers a choice 

between using a Quebec climate databank and importing a different one. In Module 5 the materials and 

layer thicknesses of roads and their resilient modulus are defined. Input from module 4 and 5 are needed 

for module 7 analysis. Module 6 offers a choice of damage models for the ME analysis. We used Module 

7, described below, in this study. Module 8 calculates the ME design results. 

 

Figure 28: I3C-ME software modules, including frost module in red (no. 7) 
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5.3.1.1 I3C-ME Module 7: Frost analysis 

Module 7 has two sub-sections: the input and calculated parameters, and the climatic data analysis 

coupled with the model results (Figure 29). Each sub-section is explained below. 

 

Figure 29: I3C-ME frost module interface 

5.3.1.2 Input and calculated parameters 

The I3C-ME software input parameters for the frost module are in four blocs: pavement structure, 

geotechnical input parameters, thermal input parameters, and calculated input parameters (Figure 30 and 

Figure 31). 

 

Figure 30: Left part of the input and calculated parameters section  

The names of the pre-determined materials follow MTQ appellation, but as all the other parameters can 

be changed it is possible to bypass the assigned material names. The only limit is the range of values 

accepted for each material. New material appellation, default values and parameter ranges can be added 

using a Microsoft Access table. The layer materials and thicknesses are inputted from module 5. The 
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geotechnical input parameters include dry density (ρd), grain density (ρs), water content (w) and specific 

surface area (Ss). 

 

Figure 31: Right side of the input and calculated parameters section 

The thermal input parameters include the thermal conductivity of the solid (λs, called Ks in the software), 

the 'a' parameter (sensitivity to overburden pressure parameter) and SP0 (SP without overburden 

pressure). The four other parameters, χ, η, Кu and Кf, are used to compute the thermal conductivity of the 

different layers using the Côté-Konrad model (2005). χ and η are two parameters that take into account 

the effect of particle shape on thermal conductivity. Кu and Кf are granular factors of unfrozen and frozen 

thermal conductivity respectively. It is possible to choose to compute the thermal conductivities using the 

Kernsten model (1949), with which Saarelainen obtained good results in his SSR model analysis of natural 

subgrade soils (pers. comm., 2020). The calculated input parameters are the degree of saturation (Sr), 

latent heat of fusion (Lf), and unfrozen and frozen computed thermal conductivities. It is possible to bypass 

the automatic thermal conductivity calculation and enter thermal conductivity values computed using 

another model or from laboratory experiments. 

5.3.1.3 Climatic data and results 

The climatic data set is imported from Module 4 by default, but can be changed completely in Module 7. 

The average annual air temperature and air transfer coefficient (n-factor) must be entered if not using the 

data from Module 4. There are three calculation methods for compiling the freezing index (in °C·d) to be 

put into the SSR model: sinus simulation, monthly calculation, and daily entry. Sinus simulation uses a sinus 

function compiled from average temperature data, the normal air freezing index and the duration of the 

freezing period. A probabilistic approach or an estimation computes the function, using the standard 

deviation and recurrence period. The results show the sinus temperature imposition (red curve) along with 

the evolution of frost depth and heave (Figure 32). 

The second option for the climatic data input is to directly enter the monthly FI with the corresponding 

number of days. This method imposes a constant FI for each month. The data must be entered manually. 

Figure 33 presents an example of such an approach. 

The last option considers all the mean daily average temperature. Any temperature data set can be 

imported in .txt file format. Climate file formats, described in section 8.2.2 of the CHAUSSEE2 user manual 

(St-Laurent, 2006) are easy to build. Figure 34 presents an example using the Røros temperature set for 

winter 2017-18. 
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Figure 32: I3C-ME climatic data and SSR results, sinus simulation method 

 

Figure 33: I3C-ME climatic data and SSR results, monthly calculation method 

 

Figure 34: I3C-ME climatic data and SSR results, daily entry method 

Modelling the SSR model in the I3C software therefore permits a quick overview of expected frost depth 

and heave using default parameters, with deeper analysis possible following an extensive study of the 

material properties, as in the Røros test site analysis. Seeing the results permits the adjustment of 

uncertain parameters such as water content and segregation potential to fit the values measured on site. 
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6. RESULTS AND DISCUSSION 
 

This section summarises the main results of this study presented in the papers completed for this thesis. 

The first part (6.1) describes and discusses the laboratory work studying the segregation potential of 

crushed rock material (Paper I) and normalized segregation potential, including index parameters (Paper 

III). The second part (6.2) describes and discusses the field work including the investigation of frost 

penetration in Ro-1, Ro-2 and Ro-3 (Paper II). The third part (6.3) analyses frost penetration and frost 

heave in the same three road sections based on modelling and design optimization (Paper IV).  

 

6.1 Laboratory 
 

The laboratory experiments were the cornerstone of this research. An important series of tests was carried 

out to characterize the index parameters of the different aggregates and to study their behavior when 

subjected to freezing. This part has two subsections: the first describes the first phase of freezing tests, as 

presented in Paper I, and the second describes the tests carried out to characterise the different 

aggregates, and the second phase of the freezing tests for validation purposes, as presented in Paper III. 

 

The first task was to set up the laboratory. A frost heave cell was constructed at Laval University, based on 

cells used in its pavement laboratory, and shipped to NTNU. The setup involved construction of the 

compaction mold and installation of the different instrumentation (thermistors, cooling fluids for top and 

bottom plates, and LVDT). The Marriotte’s bottle was prepared using a 3-liter container. The data 

acquisition was set using LAbView and a full calibration of thermistors, cryostat temperature and LVDT 

was completed. Administrative complications delayed the arrival of the frost heave cell. The calibration 

and setup phase were completed at the beginning of 2018, and the first test on crushed rock was carried 

out in February 2018. I had learnt the methodology and setup requirements for frost heave tests at Laval 

University Laboratory in 2016 and 2017.  

 

Figure 35 presents the conditioning, freezing and end stages of a frost heave test using the NTNU cell. The 

third picture shows that the rings in the freezing cell moved apart from one another as lifting due to 

freezing penetrated downwards, eliminating friction between the sample and the wall of the cell, as is the 

case for solid, or split cells. 
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Figure 35: Frost heave test using the multi-ring cell during conditioning phase (left), freezing process (middle) and after the test 
(right) 

6.1.1 Frost heave tests 
 

This part of the study was done in order to extend frost heave susceptibility knowledge of different type 

of crushed rock aggregates. Crushed rocks from various Norwegian quarries were investigated: Aplitt, 

Hadeland, Legruvbakken, Vassfjell, Lørenskog and Velde. Those quarry were chosen because they was 

judged to reflect good quality aggregates of typical rock type in Norway, the exception being 

Legruvbakken, a slate, which was coming from a small, local quarry, used for the test site construction in 

Røros.  

In total seven different crushed rock aggregates were tested. All samples were tested using the 0-4 mm 

fraction except for two: one was prepared using a constituted sample (CS) of Lørenskog (>125 μm - 4 mm) 

and Velde (0 - <125 μm) fractions, and the other was a 0-500 μm grading (Velde). Particular attention was 

paid to particle size distribution, as the NPRA uses grain size as a criterion for determining frost 

susceptibility of unbound granular material. The particle size distribution of the different aggregates is 

presented in Figure 36. Table 4 presents rock type and passing percentage of <63, <20 and <2 μm for each 

crushed rock aggregates. Mineralogical composition details can be found in Paper I. 
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Figure 36: Crushed rock aggregates particle size distribution 

 

Table 4: Different quarries rock type and passing percentage of different fine fractions 

 

 

The frost heave and frost penetration results from tests omitted from Paper I due to space restriction are 

presented Figure 37. The frost heave results were run for a 96-hour duration. Figure 38 presents the results 

of the frost heave tests on Aplitt (granodiorite), Hadeland (porphyr) and Vassfjell (gabbro). All of the 

aggregates except the slate from Legruvbakken showed 20-35 mm of heave after 96 hours. The atypical 

heave curve of the Legruvbakken aggregate led to the hypothesis that heaving had been compromised in 

some way and that these results should be used with care. According to Konrad (1994), the coarser pore 

fraction is filled when fines % < 75 μm are >15%, leading to maximum frost susceptibility potential. The 

percentage of fines in the Legruvbakken aggregate was ≈25%, leading to the hypothesis that there was 

issues with water supply during the test. 
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Figure 37: Heave and frost penetration according to time for the 8 tests presented in Paper I 

 

 

Figure 38: Samples after freezing test for a granodiorite (Aplitt, left), a porphyr (Hadeland, middle) and a Gabbro (Vassfjell, right) 
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For a better analysis of frost susceptibility, i.e. a material’s capacity to generate ice lenses, the segregation 

potential of all the aggregates was measured. The segregation potential calculation method uses both 

frost depth vs. time and temperature profile graphs to find the moment at which the temperature regime 

changes from a transient to a steady state. This moment defines the time at which the rate of heaving and 

the temperature gradient in the frozen fringe can be considered for calculation, at which the last ice lens 

in the sample begin to grow. Figure 39 shows an example of a frost heave test on the Hadeland quarry 

aggregate segregation potential calculation. All the tests were processed in the same way. 

 

Figure 39: Graphical solution method for SP calculation using the Hadeland frost heave test data 

The top right corner of Figure 39 presents the temperature evolution of each thermistor over the 96 hours 

of the test. Note that three of the thermistors were found to be faulty (T8, T13 and T14) and therefore 

have not been plotted. The cyclic variation of ± 0.05 °C is caused by the fridge temperature varying during 

the test due to its evaporator defrost cycle. The left sections of Figure 39 present heaving and frost 

penetration vs. time respectively. The bottom right section shows temperature profiles at different times 

in the sample. 

The steady state was reached after 42 hours based on a) frost penetration becoming linear and b) the 

temperature gradient in the fringe becoming constant in the frozen fringe, i.e. between 0.1 and 0°C. At 

this time the rate of heaving (dh/dt) was 0.25 mm/h and the thermal gradient in the frozen fringe (Grad 

Tf) was 0.0313 °C/mm. SP is calculated by dividing the rate of heaving by 1.09 time the temperature 

gradient to accommodate the difference in volume between ice and water. The SP for this 0-4 mm crushed 



RESULTS AND DISCUSSION 

 

 

48 

 

rock aggregate was 192 mm2/°C-d. Note that the SP here is an SP0 as the experiment was done without 

overburden pressure.  

Table 5 presents the quarry and rock types again for convenience of reference, with the temperature of 

the top cold plate (Tc), the bottom warm plate (Tw), the rate of heaving (dh/dt), and the temperature 

gradient in the frozen fringe (Grad Tf) all at steady state regime, and the SP0 in both mm2/°C∙d and 

mm2/°C∙h. Note that since SP0 is calculated from the water velocity intake, the heaving rate has to be 

divided by 1.09 to accommodate the change in volume between ice and water.  

 

Table 5: Segregation potential of different crushed rock aggregates 

 
 

The Quebec Ministry of Transport (MTQ) uses a qualification chart from SP values presented in Table 6. 

This same table is interesting because it links SP values to the CRELL (1981) frost heave classification and 

to the frost heave ratio, in use by diverse authors as Saarelainen (1992, 2015).  

 

Table 6: Frost susceptibility classification according to segregation potential (SP), frost heave rate (CRREL 1981) and frost heave 
ratio, in use by MTQ, Quebec, Canada (St-Laurent, 2006). 

 
 

Discarding the Legruvbakken sample result, which was considered compromised, the SP0 of the remaining 

crushed rock aggregates ranged from 105 to 197 mm2/°C∙d. All of them were therefore found to be highly 

frost susceptible according to MTQ’s frost susceptibility classification. These results are within the range 

of those proposed by Konrad 2005 for six different rock types (basalt, dolostone, granite, limestone, 

quartzite and greywacke). The investigation then focused on plutonic, and metamorphic from plutonic 

orogenesis rock types, widening knowledge of their susceptibility to frost heave. According to Neeb of the 

Norwegian Geological Survey (cited in GEO365, 2015), the commonest crushed rocks produced in Norway 

are gneiss and gabbro, which contribute 40% of total production, with other crushed plutonic rock such as 

Quarry rock type
Tc 

(°C)

Tw 

(°C)

d h/d t 
(mm/d)

Grad  Tf 

(°C/mm)

SP0 

(mm
2
/°C-d)

SP0 

(mm
2
/°C-h)

Aplitt Granodiorite -3.5 2.0 5.40 0.0333 149 6.2

Hadeland Porphyr -3.4 1.6 6.00 0.0313 176 7.3

Hellvik Anortosite -3.3 2.2 6.97 0.0324 197 8.2

Legruvbakken Slate -3.5 1.9 2.18 0.0333 60 2.5

Vassfjell Gabbro -3.2 2.1 7.27 0.0379 111 7.3

Lørenskog Gneiss -3.7 1.9 4.00 0.0350 105 4.4

C.S. Lør.+ Velde Gneiss/Granite -3.7 1.8 5.33 0.0376 130 5.4

Velde Gneiss -4.2 1.1 5.42 0.0253 197 8.2

frost- Frost heave rate Frost heave ratio

susceptibility mm2/oC∙h mm2/oC∙d mm/d Δh/hfrozen (%)

Negligible < 0.5 < 12 < 0.5 < 1

Low 0.5 - 1.5 12 - 35 0.5 - 2 1 - 4

Medium 1.5 - 3 35 -75 2 - 4 4 - 8

High 3 - 8 75 -200 4 - 8 8 - 20

Very high > 8 > 200 > 8 > 20

SP
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syenite and granite also widely produced. This tends to validate the choice of crushed rock aggregates for 

this study.  

 

Table 1 presented previously in section 3 classifies the frost susceptibility of all granular material, natural 

soils and crushed rock aggregates from T1 to T4, T1 being non/negligibly frost susceptible as used by NPRA. 

None of the tested aggregates contained less than 3% of fines < 20 μm, so it was not possible to evaluate 

the boundary between T1 and T2. T2 material (low frost susceptibility) is characterized by 3-12% of fines 

< 20 μm content in the mass. The Aplitt, Hadeland, Legruvbakken, Lørenskog and the mixed Lørenskog and 

Velde samples fell within this range. All of these showed high frost susceptibility except for that from 

Legruvbakken, which showed moderate susceptibility although the validity of the test on this was in doubt. 

Four of the quarry samples contained 7.1-9.7% of fines < 20 μm. This leaves no doubt that the criterion of 

grain size must be used with caution. Nurmikolu (2005) reports a good correlation between the <20 μm 

fraction and the SP of crushed rock aggregates. This trend was not observed in this study. The <2 μm 

calculated from the < 80 μm fraction was the one that showed an acceptable trend, with a R2 = 0.835), as 

shown in Figure 40. 

 

 

Figure 40: Segregation potential of the <2 and <20 um fraction calculated from the < 80 um fraction 

 

This study was not able to link the magnitude of frost heave susceptibility to particular minerals, as 

proposed in Brandl’s (2008) mineral criterion. Indeed, no relationship was found between different 

minerals and composition percentage, and their segregation potential. The rock is subject to mineralogy 

variation when extracted from quarry. One hypothesis is that the XRD analysis were not directly performed 

on the same exact samples that were tested for frost heave, and therefore may not reflect the ‘true’ 

mineralogical composition of the samples. Uthus (2007) discusses how XRD results must be taken as 

relative values and mineralogical investigation should be approached using XRD, a scanning electron 

microscope (SEM) and thin layer analysis.  
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Table 7: Mineralogical content of crushed rock aggregates using XRD 

 
 

In summary, the frost heave laboratory setup is believed to be well adapted for performing freezing tests 

on crushed rock aggregates. The SP0 values for the studied rocks are within the range found in literature 

for granite, and can be used as reference values for the granodiorite, porphyr, anortosite, slate, gabbro 

and gneiss. The high frost susceptibility of the 0-4 mm crushed rock aggregates with a relative large 

percentage of fines was expected, but their evaluation from a grain-size criterion developed firstly for 

natural soils have to be considered with care.  

 

 

6.1.2 Determining frost heave susceptibility from the materials’ index parameters 
 

The design of linear transport infrastructure is based on predicted performance during its planned service 

life. A high-class road project requires highly reliable input data, while estimated input values could satisfy 

the requirements for a secondary road. The budget allowed for a project therefore governs the effort that 

can be put into evaluating the frost susceptibility of the subgrade and the quality of the aggregates used 

for the different pavement layers.  

 

The determination of frost heave susceptibility can be classified into four levels, level 1 being the least 

reliable and level 4, the most reliable.  

 

Level 4, the most reliable form of frost heave determination that can be achieved, measures in situ 

heaving. However it involves the instrumentation of a site and the mobilization of competent personnel, 

and therefore while it is the most reliable it is also the most expensive, and is reserved for projects 

requiring precise input and for study sites. 

 

Level 3 measures frost heave susceptibility using a freezing test in laboratory conditions. It can be divided 

into sub-levels depending on whether the tests are run on disturbed or undisturbed soils, although this is 

not relevant in the case of crushed rock materials, which are by nature disturbed. When the tests 

reproduce site conditions the results have a high level of reliability. It is considered expensive, however, 

and requires specialized equipment and personnel, and again is suitable for projects requiring highly 

reliable input data and for material characterization. Most frost susceptibility classifications are based on 

frost heave tests. Note that levels 3 and 4 are sometimes considered as the same confidence level (Konrad, 

2014).  
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Level 2 relies on the empirical relationship between frost susceptibility and common material index 

properties measured in the laboratory, such as capillary rise, hydraulic conductivity, Atterberg limits, 

specific surface area etc. Many such relationships been developed over the years (Chamberlain, 1981) with 

varying precision. Furthermore, most such relationships are qualitative and are do not allow estimation of 

the magnitude of frost heave.   

 

Level 1 determination of frost susceptibility involves a qualitative criterion such as grain size. This criterion 

leads to a pass/fail decision that can have unfortunate consequences. For example while a crushed rock 

aggregate with 11% of fines <20 μm would be categorized as a T2, the frost heave tests presented in the 

previous section proved otherwise. This level is however judged sufficient when designing local roads with 

low average annual daily traffic (AADT).  

 

More than 70% of roads in Norway are secondary roads with AADT of less than 1500 vehicles (pers. comm., 

Skoglund 2019). The design of these roads must therefore be optimized to fit their limited budgets. A low-

cost reliable estimation is needed for the assessment of the frost susceptibility of soils and geo-materials 

for calculation of the magnitude of frost heave. The estimation should use simple and readily available 

index properties to keep the costs associated with sample preparation, transport and laboratory testing 

low. 

 

Paper III investigates the use of Konrad’s (2005) normalized SP concept and its validation for crushed rock 

aggregates. The main results and discussion are presented in the following pages.  

The investigation described in Paper III estimated the soil index parameters of 8 different rock types of 23 

different crushed rock aggregates. The crushed rock aggregates came from the Aplitt, Hadeland, Hellvik, 

Legruvbakken, Vassfjell, Lørenskog and Velde quarries in Norway and the PEB and Drapeau quarries in 

Canada. All crushed rock aggregates tested were processed in the laboratory to calculate the soil indexes 

needed to estimate their SP from normalized SP (SP0.n in this text). The laboratory results and SP0.n were 

compared to validate the applicability of the normalized SP method to the various crushed rock 

aggregates.  

All crushed rock aggregates were tested using a multi-ring frost heave cell. The 0-4 mm fraction was 

primarily tested. The required fraction was obtained directly from the quarry or sieved down from a larger 

fraction, generally 0-16, 0-20 or 0-31.5 mm. Two series of Lørenskog and one of Vassfjell crushed rock 

aggregates were tested at different steps in the crushing process. For the Lørenskog aggregate this 

included two series of tests using the 0-4 mm fraction obtained from the first step of crushing, the cone 

crushing (3rd step) and the VSI crushing phase (4th step). The Vassfjell tests included a 0-4 mm fraction from 

blasted materials, subbus (a mixture of rock from the 1st, 2nd and 3rd crushing phase), and the 3rd crushing 

phase (from a cone crusher). Three fillers from the Velde quarry (coarse, intermediate and fine), from an 

air classifier, were used in a series of tests including the coarser VSI Lørenskog fraction (0.125-4 mm) 

aggregate and finer Velde fraction (0-0.125 mm). A sample from VSI Lørenskog with the same proportion 

of coarser and finer fractions as the Velde fillers was also tested.  

 

The material index parameters or soil index parameters required to estimate the SP of a material are the 

d50ff, the initial water content (w), the liquid limit (wL) and the specific surface area (Ss) of the fines. The 
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d50ff is the average diameter of the <75 μm fraction, which was measured using hydrometer tests. The 

initial water content was measured from the water content when molding the sample and from the 

saturation phase before freezing. The water content in the unfrozen sample section rose substantially 

during the test, as also observed by Konrad (2008). The liquid limit were estimated using the cone 

penetration method. The specific surface area of the fines fraction (<75 μm) was determined by a modified 

methylene blue tests using Santamarina’s (2002) calculation method. The complete step-by-step 

procedure for calculating the SP0.n is summarized in section 4.1.2 of this thesis. Figure 41 compares SP 

estimated from index parameters (SP0.n) with those measured in laboratory frost heave tests (SP0 lab).   

 

 

Figure 41: Estimated SP from index parameters (SP0.n) compared to measured SP from laboratory experiments (SP0 lab). Dotted 
lines represents 1:1 relation and ±15% envelope 

The methodology for estimating the SP from the index properties as proposed by Konrad (2005) is judged 

applicable for estimating crushed rock aggregate SP within a ± 15% degree of confidence. The relation can 

be plotted as a normalized SP relation as presented in Konrad 2005. The SP0 lab/SPref is plotted with Ss/Ssref 

in Figure 42. 
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Figure 42: Normalized SP in relation to normalized specific surface area of all studied tests 

The normalized SP results are following the same trends that was proposed by Konrad (2005), reinforcing 

the validity of the method for crushed rock aggregates. It is possible to see that the trend followed the 

w/wL > 0.8 for almost all data point. It seems to demonstrate, even if the samples were not saturated 

before the freezing phase in frost heave test, that a significant quantity of water is drawn and held into 

the unfrozen portion of the sample during the test. The high hydraulic conductivity of such materials is 

favoring such water movement, as described also by Konrad (2008). This water availability can have a 

considerable impact on ice segregation. Furthermore, the water content augmentation in the aggregate 

matrix will result in serious mechanical behaviour issues if undrained, but this was not investigated in this 

study.   

The specific surface area can be an index correlating grain shape and unfrozen water content (Rieke, 1983). 

Further investigation found that the relationship between the specific surface area and SP0 lab gave a R2 = 

0.78 for all crushed rock aggregates data in this study, which was judged unsatisfactory. Konrad’s (2005) 

results with crushed rock aggregates showed specific surface areas of mostly < 8 m2/g, and up to 12 m2/g 

for one rock type (basalt). Konrad and Valencia (2008) show that the methylene blue test could 

overestimate specific surface determination due to asperities on fine particles. The test is based on the 

principle of a monolayer of molecules on the surface of a grain. This is altered by the methylene blue 

molecule filling small cracks and asperities, leading to overestimation of the amount of methylene blue 

solution adsorbed and the specific surface area value (Figure 43).  

 

Figure 43: a) Grain surface alteration. b) Methylene blue molecules in asperities. c) Methylene blue molecules possible 
arrangement (Konrad and Valencia, 2008, modified from Tokunaga et al., 2003). 
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It was observed that the specific surface area results in this study were showing large variation from the 

trend when > 8 m2/g. In fact, early stage of crushing (i.e. Lørenskog 1st stage, Vassfjell subbus and blast 

crushing) crushed rock aggregates presented specific surface area values of ≈ 12.5 m2/g. The following 

hypothesis was that specific surface area variability was due either to the mineralogical content or grain-

surface condition, or to a combination of both. It is possible that finer grain sizes are produced at an earlier 

crushing stage containing softer minerals (e.g. mica and chlorite), lead to soft mineral enrichment in the 

fine fraction. In subsequent crushing phases harder minerals turn to finer fractions, reducing this effect 

(Figure 44). The same logic applies to damaged/altered grain surfaces. Blasting rock is known to produce 

micro-cracking. As rock goes through subsequent crushing phases, the percentage of damaged particles 

decreases as processing several crushing stages (Figure 45). Two Lørenskog series were tested at 1st stage 

crushing, 3rd stage cone crushing, and 4th stage VSI crushing. The specific surface area estimates for the 1st 

stage, cone and VSI crushing were 12.6, 6.7 and 3.7 m2/g for the first series, and 12.6, 5.4 and 4.5 m2/g for 

the second. A Vassfjell blast subbus and 3rd crushing stage were analyzed, the results being 12.4, 12.7 and 

7.3 m2/g. It was, however, impossible to determine which of the hypotheses was applicable at this point. 

However the results clearly show a reduction of specific surface area as the crushing stages proceed. The 

blast and subbus aggregates showed similar results, as subbus consists of a mix from the 1st, 2nd and to a 

lesser extent 3rd crushing stages, resulting in the production of a highly variable material. Further research 

should be undertaken to validate both hypotheses for different rock types, mineralogical content and 

crushing methods. 

The hypotheses are in agreement with the observations of Uthus (2006), who compared thin sections of 

three different rocks using X-ray diffraction (XRD) on < 20 μm fractions of a cubical gneiss (fine grain) and 

a flaky gneiss (foliation, very fine to fine grain) from Norway, and a gneiss from Sweden (fine to medium 

grain). XRD analysis found the mica content to be much higher in the two Norwegian gneiss and lower in 

the Swedish gneiss. The study was extended using the same aggregates (Uthus, 2007) to compare the < 

63 μm and < 20 μm fractions using XRD analysis. It found that relative mica enrichment was higher in the 

20 μm - 63 μm grain-size fraction, with relative quartz impoverishment observed in the same fraction. 

Table 8 summarizes these results. Micas are, according to Prestvik (1992, cited by Uthus, 2007), softer 

minerals with weaker chemical bonds. This causes their relative accumulation in the fines when crushed. 
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Figure 44: Mineral enrichment concept according to crushing phase 

 

Figure 45: Overestimation of methylene blue on poorly crushed and well crushed fine particles 

Table 8: Partial mineralogy variation of 3 gneiss according to different analyses (data from Uthus (2007)) 

 

It was therefore thought that mineral variability in the fine fraction and grain surface irregularities/micro-

cracking were responsible for the specific surface area variation. This idea is supported by Konrad and 

Valencia (2008) with regard to weathered till fines. Crushed rock aggregates with a specific surface area of 

< 8 m2/g were therefore used in this study to eliminate the effects of mineral enrichment and methylene 

blue variation. Note that Konrad 2005 also analyzed basalt with a specific surface area of 12.6 m2/g 

Mineralogy %Q %P %F %M %Q %P %F %M %Q %P %F %M

Thin section 47 0 40 8 19 33

XRD < 63 um 12 46 24 14 16 23 18 36 8 34 18 35

XRD < 20 um 27 31 31 6 21 37 16 17 21 53 11 11

Q: quartz; P: plagioclase; F: Alkali fldspar; M: mica 

*: thin section measured felspar content (plagioclase and alkali fledspar) together

Cubical gneiss Flaky gneiss Swedish gneiss

44* 50* 37*
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differently from the other crushed rock aggregates used in his study which had a specific surface area of 

2.6 to 7.5 m2/g (Figure 13). The crushed rock aggregates in this study with Ss values < 8 m2/g showed a 

good correlation to the segregation potential, with a coefficient of determination of R2 = 0.936, as shown 

in Figure 46. 

 

Figure 46: Relation between SP0 lab and specific surface area, Ss, for Norwegian crushed rock aggregates  

The power function linking SP0 lab to the specific surface area is presented in Equation 25. SP0 lab and SP0.n 

were in accordance, and was judged adequate to generalize equation 14 as SP0 lab = SP0.n = SP0 CRA, or SP0 

for crushed rock aggregates with Ss < 8 m2/g.  

    𝑆𝑃0 𝐶𝑅𝐴 =  39.674 𝑆𝑠
0.7795    Equation 25 

Konrad and Valencia (2008) proposed a methodology for correcting overestimation of methylene on 

weathered till particles which could be a good starting point for evaluating specific surface area values 

more reliably in early-stage aggregate crushing.  

In summary, 23 different crushed rocks from different origins and at different crushing stages were 

analysed to find the index parameters necessary to estimate the SP using Konrad’s (2005) relationship 

(SP0.n). These are the d50ff, the initial water content (w), the liquid limit (wL) and the specific surface area 

(Ss) of the fines. All of the crushed rocks were tested in frost heave tests and their SP determined (SPlab). 

It was found that the normalized SP relationship is applicable to crushed rock aggregates, with a variability 

of approximately ±15%. It was found that the specific surface area of fines (< 75 μm) is affected by the 

crushing stage. Early-stage crushing tends to result in overestimation of specific surface area, which can 

be explained by grain surface irregularities or mineral enrichment. It was found that crushed rock 

aggregates from last-stage crushing presented a specific surface area of approximately < 8 m2/g. A relation 

was developed to estimate SP directly from the specific surface area of fines only, showing a coefficient of 

determination R2 = 0.936. This suggests that SP is mainly related to the specific surface area, which reflects 

the grain shape, and indirectly to the mineralogy of the crushed rock aggregates.  
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6.2 Field test 
 

It is typical to estimate the expected maximum frost depth in road structure in order to choose an 

adequate design for frost protection purposes. In Norway, the use of a frost protection layer is mandatory 

on main roads in order to hold the frost front back from a frost susceptible subgrade. The frost protection 

layer may be used in secondary roads design in order to limit the time length where the frost front is into 

a frost susceptible subgrade but at the moment, without calculating heaving magnitude.   

We investigated frost insulation performance on the three road sections Ro-1, Ro-2 and Ro-3 at the 

Røros field test site in the winters of 2016-17 and 2017-18. The N200 handbook includes a chart for 

estimating frost penetration in function of the freezing index, but it presents frost penetration beyond 

the thicknesses allowed in the regulations and does not take into account the cooling of the underlying 

subgrade (specific heat effect). However, it is presented as a simple decisional tool that can give a quick 

idea of the frost protection capacity of different soils and aggregates with different moisture content. 

Another, more precise calculation method is described in Equation 1 and Equation 2 in section 3 of this 

thesis.  

Figure 47 presents the air and surface temperatures measured from October 2016 to May 2018. The 

surface freezing indexes were compiled directly from the upper thermocouple in the asphalt layer. The 

measured n factor relating FIair to FIs was 0.96 and 1.0 in winter 2016-17 and winter 2017-18, with an FIs 

of 22630 °C·h and 36683 °C·h respectively. The Road Construction Handbook N200 gives a FIair of 21000 

°C·h for a 2-year period of return and a FIair of 32000 °C·h for a 5-year period of return. The mean air 

temperature was calculated for both years and was equal to 1.3 °C, diverging from the design mean annual 

temperature of 0.2 °C proposed in the N200 Handbook for the Røros municipality.  

 

Figure 47: Road surface and air temperature from October 2016 to May 2018 at Røros test site 

Table 9 lists the material properties of each soil layer. Material properties were measured under laboratory 

conditions. Moisture content was obtained from field measurements. Thermal conductivity was calculated 

based on the model proposed by Côté and Konrad (2005). Asphalt, silt and clay properties values were 

taken from standard values proposed by Heiersted in frost i jord (1976). 
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Table 9: Material properties of road section Ro-1, Ro-2 and Ro-3 at Røros test site 

 

Frost penetration was compiled from site measurements, using linear interpolation from the 

thermocouples’ temperature and depth. The frost depth evolution in both winters is presented in Figure 

48, which shows that the frost front remained inside the frost protection layer during the first winter, and 

penetrated the subgrade in section Ro-1 and to a lesser extent in Ro-3 during the second winter. As many 

Norwegian regions have a freezing period of return of 20000 to 25000 °C∙h, a road structure such as that 

of Ro-1, which is the least resistant to frost penetration, was considered sufficient to meet the 

requirements of the Norwegian standards.  

 

Figure 48: Frost depth evolution of Ro-1 (20-120 mm, open graded), Ro-2 (0-32 mm fine graded) and Ro-3 (0-120, well graded) 
for winters 2016-17 and 2017-18  

Equation 2 (modified Stefan’s solution) which calculates contributive freezing index to reach a certain 

depth in the infrastructure that includes the heat capacity of the underlying unfrozen ground, was used to 
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estimate frost depth. The spreadsheet developed at the NPRA required the depth of cooling influence and 

the mean annual temperature to include the heat capacity to the calculations. Required input parameters 

for the estimation are the layer thicknesses, dry densities, water contents, frozen and unfrozen thermal 

conductivities, and the material’s latent heat and heat capacities. Frost depth was also calculated using 

Aldrich and Paynter (1953) modified Berggren equation and the same results were achieved. The results 

are presented in Table 10. 

Table 10: Field and calculated frost depth (cm) for winters 2016-17 and 2017-18 at Røros field test site 

 2016-2017 2017-2018 

 Field Calculated Field Calculated 

Ro-1 194 208 233 216 

Ro-2 136 170 171 209 

Ro-3 175 208 209 218 

 

The modified Stefan’s solution is over-evaluating the frost depth of all sections for 2016-17 winter, with 

wider variation as the aggregates get finer. For winter 2017-18, the frost depth in section Ro-1 was 

underestimated, and overestimated in sections Ro-2 and Ro-3. Even if some centimetres of difference can 

be considered acceptable for design purposes, one should be careful when using this solution. In fact, the 

necessary FIs to penetrate the high-water content silt below the frost protection layer implies large FIs bias. 

Field observations found that FIs of roughly 1000 to 1500 oC·h was necessary to penetrate each cm of silt 

below the frost protection layers. There is therefore an important difference between calculated and 

observed depth in terms of the necessary freezing index. Determination of the depth of cooling influence 

it is not obvious to evaluate. This depth was set at 2 m for our analysis, but was difficult to assess due to 

the temperature variation on site.  

An important observation concerned the use of the mean annual temperature in the equation. The mean 

annual temperature reference in the N200 Handbook for sites such as Røros is close to 0°C, meaning that 

frost depth is more or less evaluated without the heat capacity effect, as in the basic Stefan solution. The 

following short analysis is complementary to Paper II. It was not presented at the conference due to the 

restricted number of pages allowed, but is judged an interesting contribution. 

Mean annual temperature should reflect the temperature of the soil state. Nordal (1989) evaluates a 

different frost penetration methodology from which equations 1 and 2 in this thesis have been taken. He 

also presents the Watzinger solution, which proposes to take into account the mean ground temperature 

before the freezing season begins rather than mean annual temperature, as it reflects the thermal state 

of the ground better. A small comparison of calculated frost depth was performed using the freezing 

indexes from winters 2016-17 and 2017-18 with mean annual temperature (Tma) at Røros as stated in the 

N200 Handbook (=0.2°C) and mean temperature before the freezing season (Tbf). The mean annual 

temperature from the standard was chosen as this would be legitimate to use for the frost design of a new 

road. The depth of cooling influence was two meters. The temperatures before the freezing season (at the 

beginning of November) in both winters were set to 4.5, 5.4 and 4.9 °C for Ro-1, Ro-2 and Ro-3 respectively. 

The results are presented in Table 11. 
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Table 11: Frost depth (FD) calculated using  mean annual temperature (0.2°C) and mean temperature before the freezing season 
(4.5, 5.4 and 4.9°C), compared to those observed on site in Ro-1, Ro-2 and Ro-3 

 2016-2017 2017-2018 

 Tma Tbf Observed Tma Tbf Observed 

 FD (cm) FD (cm) (cm) FD (cm) FD (cm) (cm) 

Ro-1 214 180 194 222 209 233 

Ro-2 195 151 136 216 190 171 

Ro-3 215 179 175 225 210 209 

 

According to the results, it can be observed that the use of the mean annual temperature before freezing 

gave better estimations. The use of the mean annual temperature before the freezing season began 

seemed therefore promising, at least for a test site such as Røros with a low mean annual temperature. 

Further studies are needed to assess the validity of this method. 

The last part of Paper II presents the frost protection capacity of Ro-1, Ro-2 and Ro-3’s different frost 

protection layers. Frost protection capacity is proposed as a performance index defined by the surface 

freezing index necessary for the frost front to penetrate 1 cm in the frost protection layer. The necessary 

FIs from the top of each of the three different frost protection layers to a depth of 50 cm was used to 

calculate βs as the frost penetration was mainly linear and therefore judged not to be significantly affected 

by the cooling of the sub-grade silt. Frost protection capacity can provide a quick overview of the three 

different frost protection layers and roughly estimate the frost depth. The results are presented in Table 

12. 

Table 12: Frost protection capacity, β (FIs/cm), for winters 2016-17 and 2017-18, and average values for 2016-18 

 

2016-17 
β (FIs/cm) 

2017-18 
β (FIs/cm) 

2016-2018 
β (FIs/cm) 

Ro-1 (20-120 mm, coarse, open graded) 95 75 85 

Ro-2 (0-32 mm, fine, well graded) 395 485 443 

Ro-3 (0-120 mm, coarse, well graded) 265 240 253 

 
It takes a surface freezing index contribution as low as 950 °C∙h to penetrate 10 cm in a coarse, open 
graded frost protection layer; 2530 °C∙h in a coarse, well graded frost protection layer; and as much as 
4430 °C∙h in a fine, well graded frost protection layer.  
 
Frost depth estimation with the modified Stefan’s solution and with frost protection capacity have the 
same limitations for analytic purposes as they do not include the wind factor or solar radiation. These 
climatic factors can be taken into account when correcting the freezing index using the methodology 
proposed by Dysli (1991).  
 
In summary, the thermal performance of three differently graded frost protection layers at the Røros test 

site was investigated for winters 2016-17 and 2017-18. All the road structures prevented frost penetrating 

the subgrade in winter 2016-17, when a surface freezing index of 22630 °C∙h was observed. In the winter 
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of 2017-18, only Ro-2 (fine, well graded 0-32 mm) prevented frost front to penetrate the sub-grade soil 

when a surface freezing index of 36683 °C∙h was observed. Most of Norway’s coastal and populated areas 

have an F100 of ≈3000 - 4000 oC∙h (i.e. Bergen, Ålesund, Stavanger) to ≈19000 - 24000 oC·h (i.e. Trondheim, 

Oslo, Narvik, Tromsø). Therefore the frost protection layers with the best cost-benefit ratios would seem 

to be those composed of coarser, open graded crushed rock material, although the potential for 

convective effects must be included in the design.  

Frost depth estimation using the contributive freezing index tended to over-estimate maximal frost depth, 

even with a fully characterized site. Fortunately, over-estimation of frost depth is on the safe side from a 

frost protection point of view, but over-design can have serious budgetary repercussions for a project. It 

was shown that over-estimation of frost depth can result in a significant bias when considering the 

contributive freezing index. For example, in Ro-3, overestimating the frost depth by 9 cm in the   calculation 

represents ≈ 9000 oC·h of error in contributive freezing index, so almost 25% more of the 36683 oC·h for 

the whole 2017-18 winter.  

Part of the overestimation in calculation comes from the initial thermal state of the soil under 

consideration. It was found that most realistic frost depth results were achieved when using mean road 

temperature before the freezing season, season which began November 1st at Røros.  

Finally, the concept of frost protection capacity was proposed for the quick evaluation of frost penetration 

into a frost protection layer. This concept allows the rough estimation of frost penetration of the frost 

protection layer and comparison of the relative performances of different crushed rock aggregates and 

other materials.  

 

Paper B: In situ thermal performance of lightweight aggregates expanded clay and foam glass in road 

structures.  

Ro-4, Ro-5 and Ro-6 were also analyzed and the results presented in 2019 at the 18th International 

Conference on Cold Region Engineering and the 8th Canadian Permafrost Conference. The paper is 

presented in the annex to this thesis as Paper B. The main conclusion was that the frost front was 

prevented from reaching the frost protection layer below the insulation layer of all three sections, raising 

the question of the necessity for a lower frost protection layer when using lightweight aggregates and the 

N200’s decisional chart.  

 

6.3 MODELLING: SSR model assessment for thick-layered road structures 
 

The modelling works is the last study carried out in this research. It wrap up the use of the segregation 

potential and the analysis of the Røros test site for design optimisation purposes. The SSR model analysis 

of Saarelainen (1992) and Saarelainen et al. (2015) gave good concordance between modelled and in situ 

observations. The Quebec Ministry of Transportation incorporated the SSR in its CHAUSSEE 2 software 

following extensive model validation (St-Laurent, 2006). CHAUSSEE 2’s SSR model calculations are the 

same as those in the I3C-ME software.  
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6.3.1 Climatic  
 

The winter of 2017-18 was modelled using the I3C-ME software for road sections 1 to 3, testing different 

grading in frost protection layers. Climatic data for winter 2017-18 was used as it was the coldest winter 

recorded over the three-year monitoring period. Temperatures were calibrated from thermocouples using 

moisture content sensors when freezing occurred, as they had not been calibrated prior to installation. 

The calibrated temperatures produced FIs values slightly lower than those presented in Paper II, but still 

of the same magnitude (e.g. 35064 vs 36683 °C·h). The freezing index correction was validated with the 

data set of temperatures at Røros airport, situated nearby, and with a second temperature sensor 

(thermistor) situated on site. FIs were calculated using the mean daily surface temperature (MDST). The 

mean daily air and surface temperature during the winter season were almost identical, with an n-factor 

of 0.9955, as Figure 49 shows.  

 

Figure 49: Mean daily air and surface temperatures, April 2017 to May 2018, Røros test site 

Samples from the different layers were taken from the test site for further analysis. The rock’s mineralogy, 

dry density (ρd), particle density (ρs) and thermal conductivity of solid particles (λs) were measured under 

laboratory conditions, mostly by Rieksts (2018). The water content of the different materials was 

computed from the moisture content sensors on site. In Ro-3’s frost protection layer the sensors were 

installed in a finer matrix and the relative water content was interpolated for a coarser matrix and 

therefore subject to greater uncertainties. A default water content value was used for sub-base in all 

sections and for Ro-1’s frost protection layer. The frozen and unfrozen thermal conductivities of crushed 

rock and silt were estimated using laboratory experimentation and the Côté-Konrad (2006) generalized 

model included in the I3C-ME software. Level measurements taken during the construction of the test site 

allowed accurate determination of the layer thicknesses in each road section. As the frost did not 

penetrate the silt layer, no subgrade properties were taken into account in the model. Table 13 lists the 

porosity, dry density, water content, solid particle thermal conductivity and layer thickness of each 
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material. The densities of solid particles (ρs) were 2788 kg/m3 and 2750 kg/m3 for the crushed rock 

aggregates and silt respectively. The asphalt concrete thickness was revised at 8 cm of thickness, following 

observation on site. 

Table 13: Material properties, road section Ro-1, Ro-2 and Ro-3, Røros test site 

 Porosity 

(n) 

ρd  

(kg/m3) 

w 

(%) 

λs 

(W/m·°C) 

Ro-1 

(cm) 

Ro-2 

(cm) 

Ro-3 

(cm) 

Asphalt 0.07 2400 0.5 2.5 8 8 8 

Base 0.29 1980 4 3.3 23 19 17 

Sub-base 0.42 1623 1 3.3 81 84 87 

FPL – open graded 0.45 1535 1 3.3 100 --- --- 

FPL – fine graded 0.24 2116 5.5 3.3 --- 90 --- 

FPL – typical grading 0.36 1780 2 3.3 --- --- 93 

Silt 0.41 1600 25.0 2.6 50 50 50 

 

 

6.3.2 Frost depth 
 

The daily temperature entry in the I3C-ME software was used to estimate frost depth, as it showed a better 

fit with field than methods using sinusoidal simulation and mean monthly temperatures. The first attempt 

to model frost penetration as a function of time gave good results for total frost depth penetration. 

However, the rates of frost penetration in crushed rock aggregates were slightly different from those 

observed in the field and therefore frost penetration rates were compiled for each road section using i) 

estimated parameters (see Error! Reference source not found.) and ii) parameters back calculated to fit 

the values observed on site. The back calculation of the parameters of the different frost protection layers 

(FPL) were applied to the water content (Ro-1 and Ro-3) and dry density (Ro-3) to fit the observed frost 

depths at the test site. The FPLs of Ro-1 and Ro-3 were divided into two distinct layers, allowing for 

adjustment of the water content in the upper and lower parts, as suggested by Gustavsson and Saarelainen 

(pers. comm., 2018) when using the SSR. The lower part of the FPL was set to 0.4 m for Ro-1 and 0.3 m for 

Ro-3. No variation of water content was imposed for Ro-2. The back calculated parameters and initial 

estimations are presented in Table 14. Where two numbers are separated by a slash, the left-hand number 

is for the upper part and the right-hand number for the lower part of the frost protection layer.  

Table 14: Estimated and adjusted water content and dry density of frost protection layer in each road section 

Section 

(FPL) Water content (%) Dry density (kg/m3) 

 est. adj. est. adj. 

Ro-1 1 1.5/2.5 1535 1535 

Ro-2 5.5 5.5 2116 2116 
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Ro-3 2 4/4.5 1780 1850 

 

The back calculated parameters for the different FPLs were considered within realistic limits compared to 

references in the literature (Frost I Jord, 1976). The back calculated water content in Ro-1 seemed a little 

high but was acceptable, showing that water content in open, coarse graded crushed rock aggregates may 

sometimes be underestimated. The back calculated water content for Ro-3 was as expected, as the 

crushed rock material used in that section was more or less the same as the base layer, which was 

measured as 4% on site. The slight variation in the dry density of Ro-3 was to accommodate the frost 

penetration rate to the field observation.  

Figures 50, 51 and 52 present the measured and modelled frost depths over time for Ro-1, Ro-2 and Ro-3. 

Each figure presents different frost depth curves: observed on site, with first estimation values, and with 

back calculated values (except for Ro-2). Ro-1 also presents frost depth including the convective effect, as 

discussed below.   

 

Figure 50: Measured and estimated frost penetration in function of time in road section Ro-1, Røros 

 

Figure 51: Measured and estimated frost penetration in function of time in road section Ro-2, Røros 
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Figure 52: Measured and esyimated frost penetration in function of time in road section Ro-3, Røros 

Table 15 presents the maximum frost depth i) observed in situ, ii) calculated with the SSR model using 

the first parameter estimation presented in Table 13, and iii) calculated using the SSR model with the 

back calculated parameters to fit in-situ observation.  

Table 15: Maximum frost depth from on-site measurement, and from SSR model using estimated and back-calculated water 

content (Ro-1 and Ro-3) and dry density (Ro-3) 

 Maximum frost depth (m) 

 Test site SSRestim. SSRback calculated 

Ro-1 2.35 2.12 2.19/2.32* 

Ro-2 1.74 1.73 n/a 

Ro-3 2.12 2.10 2.09 

*: with convection 

The maximum frost depth penetration in Ro-1, whose frost protection layer consists of an open and coarse 

gradation, was difficult to model. Rieksts (2018) has shown that convective heat transfer probably 

occurred in Ro-1, making it difficult to emulate a homogeneous frost penetration. As convection appears 

only in strong temperature gradient conditions in open-coarse aggregates, the frost penetration rate was 

probably influenced by both conductive and convective heat transfer to an unknown extent. The winter 

of 2017-18 was extremely cold from mid-January onwards. The hypothesis is that the frost penetration 

rate was not affected by convection before mid-January, and then the effect became significant, leading 

to a high frost rate and maximum frost penetration during the second half of the winter. Convective heat 

transfer is not considered in the SSR model. It can be approximated by estimating an equivalent thermal 

conductivity that integrates the contribution of convective heat transfer with conductive thermal 

conductivity. It was possible to fit the modelled maximum frost depth with the depth observed using an 

equivalent frozen thermal conductivity of 0.8, 0.85 and 1.3 W/m∙°C for the sub-base, the upper and the 

lower parts of the frost protection layers, respectively. The proposed equivalent thermal conductivity 
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values are within the range used by Rieksts (2018) for modelling the convective effect in Ro-1. The 

calculated frost depth using the equivalent frozen thermal conductivity is 2.32 m.  

No back calculation was needed to model Ro-2, whose frost protection layer is composed of a crushed 

rock similar to the material used in the base layer, i.e. a well graded granular material. The first estimation 

of parameters gave good results since the frost penetration rate and maximum frost depth modelled by 

the SSR match the observations.  

The results of the Ro-3 SSR model were good for calculating maximum frost depth when using the initial 

estimated values of the input parameters. However, the frost penetration rate was not considered 

realistic, as it was much more rapid than observed on site. Back calculation of water content suggested 4 

and 4.5% for the upper and lower frost protection layers, and a slight increase of 70 kg/m3 in the dry 

density of the frost protection layer allowed for a better fit between the modeled and the observed frost 

penetration rates. These back calculated values appear to be realistic and in agreement with the frost 

penetration rate observed on site.  

It was observed that the most sensitive parameters were water content and porosity, and indirectly, dry 

density. A slight change in the amount of water content has a significant impact on the overall frost 

penetration rate and final maximum penetration. One significant finding when varying the water content 

in the model was that higher water content in material with low water content such as crushed rock did 

not always have the direct effect of reducing the maximal frost depth. The latent heat effect was observed 

to slow the frost penetration rate to a certain degree, but the consequent rise in the thermal conductivity 

of the frozen layers directly enhanced heat extraction, leading to deeper frost penetration. This proved 

even more critical in layers with very low water content such as the sub-base. The frost front quickly 

penetrates an unbound crushed rock layer with low water content, which somehow acts as an insulation 

layer afterwards. For example, an increase from 1% to 2% in water content in the Ro-2 sub-base layer led 

to a maximum change in the depth of the frost from 1.76 to 2.03 m for winter 2017-18, which is significant. 

This can be explained by the fact that the frozen thermal conductivity of the sub-base layer increased from 

≈0.5 to 0.7 W/°C∙m, helping to extract heat faster. This highlights the importance of assessing water 

content and porosity precisely to increase the reliability of modelling results. More work is needed to 

assess the soil water characteristic curves (SWCC) of crushed rock aggregates, and more specifically open-

coarse aggregates, which to my knowledge are relatively poorly documented. Ongoing work at the E6 test 

site near Trondheim, where seven different pavement structures are being monitored, is a step towards 

better assessment and validation of pavement parameters relevant to thermal modelling. 

 

6.3.3 Frost heave 
 

Frost heave tests to determine the segregation potential of the 0-4 mm fraction of the silt and of the 

Legruvbakken quarry slate were performed using the NTNU frost heave cell. The segregation potential of 

the silt and the slate were determined as 8.1 and 2.7 mm2/°C·h respectively. The result for the silt was 

within expected values for a soil with a high frost susceptibility. The segregation potential for the slate was 

lower than that of other 0-4 mm crushed rock aggregates studied in Paper I. The segregation potential 
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value obtained is around half of the average value obtained for rocks with similar mineralogy in the 

investigation of the segregation potential of crushed rock. The results of frost heave as a function of time 

during the test showed atypical behaviour, as if it were being restrained. Therefore the segregation 

potential of the different crushed rock aggregates layers was back calculated from the test site 

observations.  

The magnitude of frost heave on the site was intended to be measured continuously by LVDTs installed at 

different locations in the soil and frost protection layers, with one in each silt layer and one in the frost 

protection layer of Ro-2. The sensors stopped emitting signals only a few months after their installation. 

Heave was therefore computed using a surveyor’s level during test-site visits in January, March and April 

2018. Figure 53 presents the SSR model with back calculated SP values and in situ frost heave evolution 

on site.  

 

Figure 53: Frost heave measured at the Røros site and estimated using the SSR model at different times during winter 2017-18  

Table 16 presents the maximum frost heave observed in situ, calculated with the SSR model using the 

first parameter estimation presented in Table 13, and calculated using the SSR model with back 

calculated segregation potentials to fit in-situ frost heave observation. 

Table 16: Frost heave measured in situ and with the SSR model, using estimated and back calculated water content (Ro-1 and Ro-

3), dry density (Ro-3) and SPs 

    Total heave (mm) 

  In situ  SSRestim. SSRback calculated 

Ro-1 16 14 14 

Ro-2 24 0 23 

Ro-3 14 11 16 
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The silt SP0 modelled is similar to that measured in laboratory conditions, i.e. 8.1 mm2/°C∙h. The different 

FPL SP0s were back calculated from field observations using the SSR model. Table 17 presents the 

estimated and adjusted SP0 values for each FPL.  

Table 17: Estimated and adjusted segregation potential of the different frost protection layers without overburden pressure (SP0) 

  SP0 (mm2/°C∙h) 

FPL est. adj. 

Ro-1 0 0 

Ro-2 0 4.1/4.1 

Ro-3 0 1.3/1.3 

 

As expected, the SP0 of the crushed rock aggregates measured in the laboratory did not allow to fit in situ 

frost heave observations to the predicted values. On the other hand, the back calculated SP for Ro-2 was 

on the high side for a 0-32 mm grading material. However, as the portion of the material smaller than 4 

mm was lost during sieving there was no possibility of assessing the estimated SP0 from the model using 

the fine content. The validation of the modelled SP0 was done using SP0 results from one frost heave test 

on 0-20 mm crushed granite aggregates with similar fine content.  The SP0 magnitude showed value of 3.4 

mm2/°C·h for fine content (<63 μm) of 6.4%. The SP as a function of time for this crushed rock aggregate 

is presented in Figure 54.  

 

Figure 54: Evolution of segregation potential in 0-20 mm grading of crushed granite aggregate 

The SP parameter is applicable when the frost front is in a steady state. As it can be observed in Figure 54, 

the SP as defined by Konrad (1980) is constant (orange line). However, Konrad (1980) demonstrates that 

the SP will not be constant in the transient state due to the cryosuction profile and the thickness of the 

frozen fringe (indirectly, the permeability of the fringe). The SP in function of time was plotted in to observe 

the SP’s evolution as the frost front penetrated the sample (blue line), using the Finnish method. The 

Finnish method for determining SP uses the SP vs time plot and considers the SP when it become constant, 

which happens when reaching the steady state. It determines the SP using the thermal gradient of the 
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total frozen length of the sample rather than the gradient in the frozen fringe. This leads to higher overall 

SP values (Figure 54), which typically start from 0 with a rapid progression to maximum values and then 

decline at different rates, depending on the nature of the material, to finally stabilize when reaching a 

steady state. This means that when the frost front progresses, i.e. in a transient state, the SP can be higher 

than that obtained in the steady state. This means that the SP in function, measured either in a frost heave 

test or in situ, could be used to evaluate SP in the transient state. 

It was observed that the SP changed significantly as a function of time and temperature regime and a mean 

value of 4.1 mm2/°C·h for the Ro-2’s frost protection layer seemed realistic. The fact that the SP of crushed 

rock aggregates varies considerably, as also observed by Zhang et al. (2019), makes it a challenge for the 

designer to adopt a representative SP when there is no possibility of back calculating from field 

measurements. Future investigations should include the application of typical transient SP values to thick 

pavement structures as used in Norway, and in natural soils in thinner structures.  

 

6.3.4 Ground thermal heat flow 
 

The ground thermal gradient (∇𝑇+) at the frost front was computed for all the freezing seasons. The values 

were used to assess the Scandinavian ∇𝑇+ as a function of the mean annual temperature and to back-

calculate heat flow q+. The early February 2018 results were added to Côté and Konrad (2009) graph for 

comparison. The gradients were calculated using an average value for ±3 days from February 1, giving 1.91, 

1.72 and 1.68 °C/m for Ro-1, Ro-2 and Ro-3 respectively (Figure 55). The calculated gradients were 

observed to be within the range of the Scandinavian ∇𝑇+ proposed by Skaven-Haug (1971). 

 

Figure 55: Calculated temperature gradient at the Røros test site, early February, 2018 (modified from Côté and Konrad, 2009) 
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As the I3C-ME software does not allow modification of the modelled thermal gradient, CHAUSSEE2 was 

used to find the modelled ∇𝑇+. An initial gradient of 1.71 °C/m was automatically calculated and corrected 

using the ground heating coefficient S. The ground heating coefficient in the I3C-ME SSR model is linearly 

derived from intensities proposed by Saarelainen (1992), and was equal to 1 for November to 0.7 for 

March. Calculated S for December, January, February and March was 0.66, 0.54, 0.48 and 0.41 

respectively. It was observed that the modelled ∇𝑇+ was lower than the field values at the frost front. The 

∇𝑇+ from the silt layer is added in Figure 56, which shows that the default ∇𝑇+ in CHAUSSEE2 and therefore 

in I3C-ME uses the ∇𝑇+ in the subgrade layer. Then the ∇𝑇+ measured at the frost front for all sections 

were significantly higher at the beginning of the season than what is proposed in the CHAUSSEE2 model, 

which will affects the frost penetration rate, and should be integrated into the q+ calculation. 

 

Figure 56: Thermal gradient according to time at Røros test site for winter 2017-18 

Côté and Konrad (2009) developed the Canadian (Quebec) model by directly calculating heat flow at the 

freezing front (q+), which is physically more close to field observations. They demonstrated that soil type 

and stratigraphy had a negligible effect on the geothermal heat flux at the freezing front, therefore 

reducing the necessary input to time of year and mean annual temperature. However, most research in 

Finland and Canada has been on structures with relatively thin layers. The direct uses of the q+ therefore 

had to be tested and assessed for use in the SSR model for future research on Norwegian conditions.  
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6.3.5 Design optimization 
 

The SSR model was found to be a good model for assessing frost penetration and heave on the different 

FPL grading sections at the Røros test site. The thick layers of Norway’s road structure have proven efficient 

at preventing high frost heave in high freezing index conditions. However, due to economic and 

environmental considerations, thick pavement structures may not be acceptable in the future, in which 

case the SSR model is likely to prove a powerful tool for optimizing layer thickness based on the material’s 

properties. The concept of allowable frost heave been developed by Quebec, Finnish and Swedish roads 

Administration. They are presented in Table 18. 

 

Table 18: Allowable frost heave (mm) according to road class (Quebec, Finland), and speed limit in km/h (Sweden). (Doré and 

Zubeck, 2009; Swedish Road Administration (2004) 

Road class Freeways National Regional Local  
Finland <30 <50 --- <100  
Canada <50 <55 <60 <70  

      
Speed limit 110 100 90 70 <50 

Sweden <20 <50 <80 <120 <160 

 

Finland and Quebec proposed allowable frost heave according to experience and observations. Analytical 

methods that relates the allowable frost heave to International Roughness Index (IRI) and pavement 

service are relatively new but with promising outcomes, as presented by Bilodeau and Doré (2013) and 

Sylvestre (2017).  

An analysis of heaving in function of the surface freezing index (FIs) was modelled for Ro-3 section, as 

presented in Figure 57. 

 

Figure 57: Modelled heaving in function of surface freezing index for Ro-3 

This means that a road built like the Ro-3 test section would withstand a winter with 71000 °C·h, which 

represents more than the 100-year return period design of 62000 °C·h, when allowing 50 mm of frost 

heave. Ro-3 would withstand a freezing index of 48000 °C·h when allowing 30 mm of frost heave. It is 
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therefore possible to optimize the structure, significantly reducing both the cost and the environmental 

impact of road building. Therefore a second analysis of heaving in function the frost protection layer 

thickness was modelled for the using the 2017-18 surface freezing index (35000 °C·h), as presented in 

Figure 58. 

 

Figure 58: Modelled heaving in function of the frost protection layer thickness for Ro-3 

Here it was observed that for a surface freezing index ≈ 35000 °C·h and an allowable frost heave of 50 mm, 

the thickness of frost protection layer could be reduced from 1 to 0.1 meters, therefore almost removing 

it completely. For 30 mm of allowable frost heave, the frost protection layer could be reduced from 1 to 

0.4 m. This would considerably reduce the cost of such a project and provide confidence in a tolerable 

amount of heave that would not significantly affect the integrity of the pavement. For sensitive projects 

with no tolerance for frost heave such as high speed train lines, the NPRA procedure for preventing the 

frost front penetrating the subgrade and tight control of the frost susceptibility of the materials used is 

suggested. For other projects, standardizing the allowed frost heave is suggested and then using the SSR 

model to assess maximum frost depth and heave using sensitivity analysis, mainly of water content, dry 

densities and ground heat flow variation.  

In summary, the SSR model was run using the I3C-ME software with data from three road sections at the 

Røros test site. The model was run with data parameters measured in the laboratory from crushed rock 

aggregates and silt, i.e. reliable and precise data. The SSR model was found to be applicable for the 

evaluation of frost depth and frost heave in thick-layered road structures. It was possible to back calculate 

key parameters such as water content, dry density (porosity), thermal conductivity and segregation 

potential from a site. The segregation potential estimated in laboratory tests using a multi-ring apparatus 

was found to be accurate for the determination of frost susceptibility and estimation of frost heave at 

steady state, i.e. when the frost front stabilizes in depth. Use of a laboratory segregation potential function 

was found necessary in transient regimes to evaluate a realistic segregation potential value for the model, 

as it proved to be higher than the segregation potential at steady state in this case. This study has found 

that the thermal gradient ∇𝑇+ in CHAUSSEE2 (and I3C-ME) is evaluated for the underlying subgrade. This 

is helpful for pavement structures with thin layers but could lead to bias in the evaluation of frost heave 

in the upper layers of thick-layered pavement structures. Direct evaluation of the ground heat flux q+ is 

therefore recommended, as applied in Quebec. Finally, the SSR model showed its capacity for optimizing 

design. The potential economic and environmental gains from such optimization will help to meet future 

challenges in road design. 

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600

H
ea

vi
n

g 
(m

m
)

Frost protection layer thickness (mm)



CONCLUSION 

 

 

73 

 

7. CONCLUSION 
 

Several conclusions can be drawn from this study. The conclusions for frost heave susceptibility of crushed 

rock aggregates, for the estimation of the segregation potential of crushed rock aggregates using index 

parameters, the investigation  

The frost susceptibility of crushed rock aggregates using the segregation potential theory was expanded 

for different, mostly good quality rock type typically encountered in Norway. Their segregation potential 

proven to be medium to high, from 60 to 197 mm2/°C·h for 0-4 mm crushed rocks containing between 

12.5 to 30.7 % of fine <63 μm. The % of fines < 63 μm and <20 μm found to not accurately relates to the 

segregation potential magnitudes. The % of fine <2 μm measured from the fraction < 75 μm gave the 

better correlation between % fine and the frost heave susceptibility of a material. I was than proven that 

the grain-sized base criterion have to be used with care. No conclusions were achieved from the mineral 

content of the first frost heave tests, but the ones run for the assessment of the use of the normalized SP 

concept showed that mineral enrichment in the fine fraction affected the segregation potential of crushed 

rocks. The segregation potential showed to be 17.6% higher for crushed gabbro between the blasted 

material and the one processed in three crushing phases. Also, the segregation potential showed to be 

between 59.3 to 135% higher for crushed gneiss from when comparing first stage crushing to fourth stage 

crushing phase. 

The estimation of the segregation potential of 0-4 mm crushed rock aggregates using the normalized SP 

was investigated on 23 different samples of 7 different minerals. The method uses the following index 

parameters: the average particle size of the fine <75 μm (d50ff), the specific surface area of the fine <75 μm 

(Ss), the liquid limit (wL) and the water content of the samples. All index were measured in laboratory 

conditions. In parallel, frost heave tests were performed on the same materials and their segregation 

potential determined from a graphical solution. The investigation shown that the normalized SP concept 

gave a good estimation of the segregation potential when compared to those determined from the frost 

heave tests, in ca ± 15 % margin. The analysis of the specific surface area shown that there is a possibility 

to directly estimate the segregation from the specific surface area only, and an equation was presented. 

It was shown that the crushed rock aggregates with specific surface >8 m2/g in this study were from early 

stage crushing, therefore potentially having weak mineral enrichment of the fine <75 μm at early crushing 

stage and/ or asperities and micro-cracking of crushed particles again, at an early crushing stage, leading 

to overestimation by the methylene blue test. The estimation of the segregation potential of crushed rock 

aggregates using parameters index would save time and money in road and railway construction projects.  

The estimation of frost heave for transport infrastructure is tightly link to a good estimation of the frost 

depth in function of time, as the different layers will have different frost heave susceptibility. The thermal 

performance of three different grading of frost protection layers were investigated at the test site for both 

winters 2016-17 and 2017-18. All the road structures prevented the frost to penetrate the subgrade for 

winter 2016-17, where a surface freezing index of 22630 °C∙h was observed. For 2017-18 winter, only the 

Ro-2 section (fine, well graded 0-32 mm) prevented the frost to penetrate in the sub-grade soil for a 

surface freezing index of 36683 °C∙h, but Ro-3 was judged to perform satisfactorily. The design of the three 

sections would therefore resist a 100 years period of return freezing index for most populated area as 

Trondheim, Oslo, Narvik and Tromsø. Therefore, best cost-benefit frost protection layers would seem to 

be on the coarser, open graded crushed rock material, but convective effects might happen and have to 
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be taken into the design. The frost depth estimation using the contributive freezing index tended to over 

estimate the maximal depth, even with a fully characterized site. It was shown that the over estimation in 

depth can result in a significant bias when analyzing the overestimation by the contributive freezing index, 

leading to 25% overestimation for Ro-3 in winter 2017-18. A part of the overestimation in calculation 

comes from the initial thermal state of the soil that is considered. It was shown that most realistic frost 

depth results were achieved when using the mean road temperature before the freezing season, which 

was set to November 1 at Røros.  

Finally, the SSR model was run with the I3C-ME software for the same three road sections were frost depth 

was investigated at the test site, Ro-1,2 and 3. The model was run with parameters measured in laboratory 

from crushed rock aggregates and silt. It was found that the SSR model proven to be applicable for the 

evaluation of frost depth and frost heave fro thick-layered road structures. It was found that key 

parameters as water content, dry density (porosity), thermal conductivity and segregation potential can 

be back calculated from a site, therefore being also useful to apply on the existent road network for 

rehabilitation purposes. Water content had to be adjusted to fit the model in Ro-1 and Ro-3 sections. No 

water content adjustment was necessary in Ro-2. It was found that the segregation potential estimated in 

laboratory tests using a multi-ring apparatus was accurate for the determination of frost susceptibility and 

estimation of frost heave at steady state, i.e. when the frost front stabilize in depth. Use of a segregation 

potential function from the laboratory was found necessary in transient regimes to evaluate a realistic 

segregation potential value for the model, since it proven to be higher than the segregation potential at 

steady state in this case. This study has found that the thermal gradient ∇𝑇+ is evaluated in the subgrade. 

This is helpful for pavement structures with thin layers but could lead to a bias in the evaluation of frost 

heave in the upper layers of thick-layered pavement structures. Finally, the SSR model showed its capacity 

for optimization design purposes. Economic and environmental gain from such optimization answers to 

future challenges in road design. 
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ABSTRACT: Crushed rock aggregates are widely used for transport infrastructure construction in 

Norway. During winters 2009/10 and 2010/11, differential frost heave severely affected the 

Norwegian transport network. Currently there is no system in the Norwegian road design to 

calculate expected frost heave from sub-grade and crushed rock aggregates. The segregation 

potential (SP) can be used to estimate heaving according to climatic data with the SSR Model 

(Saarelainen, 1992). Consequently, The Frost Protection of Roads and Railways project was 

created in part to improve knowledge about the frost susceptibility sensibility of crushed rock 

aggregates. The goals of this paper are to a) introduce the Norwegian University of Science and 

Technology (NTNU) freezing cell apparatus and laboratory methodology b) present soil 

characterization and SP results of 7 different rock types and c) discuss SP relationship with fine 

fraction content and mineralogy. A 150 mm diameter by 200 mm high multi-ring frost heave 

apparatus was used to perform the tests. Samples were frozen from top and hydraulic pressure other 

than cryosuction was avoided. Temperatures, heaving rate and magnitude, and water mass were 

recorded for the 96 hours duration of each test. A wide variety of rocks, including granitic gneiss, 

gneiss, anortosite, granodiorite, slate, gabbro, gneiss and porphyr, was chosen. Fine fraction <63, 

<20 and <2 μm varies from 12.5% to 25.6%, 7.1% to 14.8% and 0.53% to 2.45% respectively. The 

SPs varied from 60 to 197 mm2/°C·d. SP results are in accordance with value range showed by 

Konrad (2005), Konrad and Lemieux (2005), and Nurmikolu (2005) for granitic aggregates. SPs 

for the other rock type are proposed to be used as reference values. The SP as a function of fine 

content <2 μm calculated from the <80 μm fraction showed a trend of R2 = 0.84 for this study. 

 

KEY WORDS: Crushed rock, frost heave, multi-ring frost cell, segregation potential, frost 

susceptibility. 

 

 

1 INTRODUCTION 

 

One objective of The Frost Protection of Roads and Railways project (FROST) is to improve 

knowledge about frost susceptibility of crushed rock aggregates. Frost susceptibility refers to the 

propensity of natural or manufactured aggregates to induce significant ice segregation when 
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required moisture and freezing conditions are present (Chamberlain, 1981). Three conditions are 

necessary to experience frost heave: soil frost susceptibility, freezing temperature, and presence of 

water (Rieke, 1983). High frost susceptibility of fine-grained natural soils, as silt and clays, is 

established.  However, few studies focused on the frost susceptibility of crushed rock aggregates. 

Those aggregates are widely used in Norway for construction of linear transport infrastructure 

because of the abundance of resource (tunneling, cuts, and earthwork).  

The present study focused on three objectives. The first was to describe laboratory apparatus and 

methodology, the second was to present index values of tested samples, and finally, the third one 

was to present the results with a brief discussion using the segregation potential (SP) as a 

comparative tool. Particular attention was paid to granite/ gneiss of granitic origin as they were the 

most studied/documented rock type in references consulted. The SP was chosen as frost 

susceptibility criteria for its simplicity, comparison purposes, and the possibility to evaluate frost 

heave magnitude using methodology described by Konrad (1999) or Saarelainen (1992). 

 

 

2 BACKGROUND 

 

Few studies focused on crushed rock material mainly because their frost sensibility was considered 

low when used as a base layer material. In Norway, crushed rock aggregates are the main 

construction materials for all layers in transportation infrastructure.  A frost protection layer below 

the sub-base layer is commonly used to prevent frost front to reach the sub-grade. A wide range of 

particle size distribution can be used into this layer, with no restriction about the mineralogy. There 

is a knowledge gap concerning frost susceptibility of such materials. The actual criteria described 

in the Norwegian Road Construction Handbook (Håndbok N200, 2018) use a particles size-

distribution classification in four frost susceptibility group, T1 to T4. 

 

Konrad (2005) proposed SPs for six different crushed rock mineralogy: basalt, dolostone, granite, 

limestone, quartzite, and greywacke. The same year, Konrad and Lemieux (2005) presented SPs of 

well-graded, crushed rock granite base layer (0-20 mm) as a function of fine content fraction <80 

μm and clay fraction (kaolinite) variations. Nurmikolu (2005) presented a thesis on degradation 

and frost susceptibility of crushed rock aggregates for 0-32 mm railway ballast layers. His study 

included a considerable amount of frost heave tests that include crushed granite aggregates. Table 

1 presents detailed information on materials, particle size distribution (PSD), SP, and percentage 

of fine.  

 

2.1 Crushed Rock Aggregates 

 

Crushed rock aggregates come from various Norwegian quarries: Aplitt, Hadeland, Hellvik, 

Legruvbakken, Vassfjell, Lørenskog and Velde. Different laboratory characterizations were 

completed as particle density (ASTM D854), X-Ray Diffraction (XRD), full particle size 

distribution (ASTM C136 and ASTM D7928) and grain density (ASTM D854). Samples for frost 

heave tests were prepared using a steel split mold, where the different crushed rock were intensively 

compacted in 7 layers using an electrical hammer (Kango 900X) at a water content close to 7%, 

for reaching an estimated 95-98% of the maximum modified proctor value. 

 

Table 1. Segregation potential of different crushed rock aggregates. 
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The sample had to be cohesive enough to hold together when unmolded directly on the 

experimental setup and strong enough to avoid any deformation due to creep. All samples were 

built from the 0-4 mm sieved material but two: one was prepared using Lørenskog (>125 μm - 4 

mm) and Velde (0 - <125 μm) fractions (referred as C.S., for constructed sample, in different tables 

and figures), and the other one was already in a 0 - 0.500 mm grading (Velde). The samples were 

150 mm in diameter and close to 200 mm in height.   

 

2.2 The Multi-Ring Frost Cell 

 

The frost cell consists of 18 rings that can accommodate sample heights up to 200 mm (225 mm 

with rubber spacers between rings), and 150 mm diameter (Figure 1). The rings were made of high-

density polyethylene. Eighteen thermistors with a 0.1°C accuracy were inserted in each ring, with 

the tip of the thermistor secured with epoxy glue flush at the inner diameter side of the sample, 

taking temperature measurement at each 11.1 mm before heaving. The cell was insulated during 

test to minimize radial heat transfer. The cell is rigid enough to not deform under radial pressure 

during ice formation with 50 mm wall thickness.  

 

The NTNU frost cell was built at Laval University, Quebec, Canada, based on a design modified 

from the one developed by the U.S. Army Cold Region Research and Engineering Laboratory 

(CRREL), illustrated in ASTM D5918. The sample was placed between two plates (with filter 

paper and porous stone) where temperature was imposed using two cryostat units. 
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Figure 1. NTNU Multi-ring frost heave cell. 

 

A 0.635 mm thick rubber membrane was placed on the sample after being unmolded on the base 

plate. A split ring at the base was tightened with a steel collar to seal the membrane. Rings were 

placed one by one and another split ring sealed the sample at the top. The multi-ring cell included 

an air piston, allowing pressure control during test. No vertical pressure was imposed in this present 

study. A potentiometer was used to measure heaving with a 0.01 mm precision. The water was free 

to flow inside the sample for the 24 hours conditioning phase, with level placed 3-4 cm higher than 

the sample top. The water level was lowered at the base of the sample prior to the freezing phase. 

A glass recipient with a  cork, in which a glass tube  inserted, was used to have a constant pressure 

head at a chosen height (Mariotte’s bottle), therefore allowing water to flow only by the cryosuction 

process.  

 

The cell was placed into a fridge at 2°C to further limit temperature variation during test. The 

sample was conditioned at 2°C before starting the freezing. The freezing was applied from top with 

an aimed temperature of -4°C.  Samples were submitted to freezing for a 96 hours period. All the 

data were recorded at each 5 minutes using a data acquisition system (18 temperature, sample 

height and water mass). Rings’ position variation during tests were measured using graduations on 

the frame, allowing thermistors heights correction versus time for the SP calculation.  

 

 

2.3 Segregation Potential (SP) Calculation 

 

The SP is defined as a relationship between water velocity intake and thermal gradient when at 

steady state (Konrad and Morgenstern, 1981), (Equation 1).  

 

 𝑆𝑃 = 𝜈
∇𝑇⁄                 [1] 

 

Where ∇𝑇 is the temperature gradient (°C/mm),  𝜈 is the water intake velocity (mm/d) at thermal 

steady state. The SP is therefore expressed in mm2/degree-day. Some works also express SP in 

mm2/degree-hour. The notation mm2/°C-d will be used in this paper.  
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The methodology to find the SPs is a graphical interpretation, as described in the Quebec Transport 

Administration (MTQ) LC-22.331 standard. It was adapted from its original version since it was 

previously developed for fine grained-soils (silt and clay), without compaction phase (sample are 

put in place in cell at relatively high water content followed by a consolidation phase) and by using 

a split-mold freezing cell type (no thermistors height variation).  

 

The principle of the method is to use both frost depth vs. time and temperature profile graphs in 

order to find at which moment the temperature regime changes from transient to steady state. This 

moment defines the time at which the rate of heaving and the temperature gradient in the frozen 

fringe will be considered for calculation. This time indicates when the last ice lens in the sample 

begin to grow. Figure 2 shows an example from a laboratory test done on the Hadeland quarry 

aggregates for SP calculation methodology.  

 

 
 

Figure 2. Detailed graphical solution of the segregation potential. 

 

The top right corner portion of Figure 2 presents the temperature evolution of each thermistors for 

the 96 hours duration of the test. Note that three thermistors were faulty (T8, T13 and T14) and 

therefore have not been plotted. The cyclic variations of ± 0.05 °C are due to the fridge temperature 

variation during the test (due to evaporator coil defrost cycle). Left section of Figure 2 presents 

heaving, and frost penetration vs. time respectively. The bottom right portion shows different 

temperature profiles at different times in the sample. 

 

The steady state was reached around 42 hours based on a) frost penetration that became linear and 

b) the temperature gradient in the fringe became constant in the frozen fringe, i.e. [-0.1, 0]°C. At 

this time, the rate of heaving (dh/dt) was 0.25 mm/h and the thermal gradient in the frozen fringe 
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(GradTf) was 0.0313 °C/mm. The SP is calculated by dividing the rate of heaving by the 

temperature gradient, and by 1.09 to accommodate volume difference between ice and water. 

Consequently, the SP for this 0-4 mm crushed rock aggregates was 192 mm2/°C-d.  

 

 

3 RESULTS 

 

The particles size distribution, including fine fraction particle size distribution in mortise, of the 

different quarries are presented in Figure 3.  

 

 

 
 

Figure 3. 0-4 mm, and <80 μm, crushed rock aggregates particle size distribution. 

 

The XRD results are presented in Table 2 and were performed sporadically from 2011 to 2018. 

The different rocks had all igneous or metamorphic origin.  The table 3 presents rock type, density 

of grain ρs , dry density ρd, porosity n (after compaction), initial water wi content before testing 

(after compaction), and % fine fraction for <63, <20 and <2 μm. The dry densities ranged from 

1.983 to 2.170 g/ cm3 for 0-4 mm material.  Percentages of fine material < 63 μm varied from 12.5 

to 30.7. Table 4 presents temperature boundaries at top and bottom of the sample during test, rate 

of heaving and temperature gradient at steady state, and SPs. Despite a relatively low amount of 

<2 μm, the observed SPs were relatively high, from 60 to 197 mm2/°C·d. 
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Table 2. Mineralogical content (%) using XRD analysis. 

 
 

Table 3. Characterization of crushed rock aggregates. 

 
 

Table 4. Segregation potential of crushed rock material. 

 
 

4 DISCUSSION 

 

All tests were performed with NTNU multi-ring cell test. The multi-rings cell has proven to be a 

reliable and precise tool to perform frost heave tests. Frost heave tests are time-consuming, require 

specialized, costly equipment, and are therefore suggested i) for building a database of reference 

values for different materials, or for ii) particularly sensitive projects (e.g. high-speed railway) 

requiring high degree of data accuracy. No particular difficulties were encountered for during the 

tests, but it was necessary to find a way to automatize the rings position during heaving phase in 

order to get more precise positioning of the thermistors as they heaved along with the rings. The 

graphical solution to find SP is suspected to be user variable, but to an unknown degree. 

 

 

All crushed rock aggregates in this study are classified as highly frost-susceptible but for the slate 

rock type. No reliable trend has been observed regarding SPs according to fine content percentages 
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of <63, <20 μm from the 0-4 mm fraction regarding this study tests. An acceptable trend was 

observed for <2 μm from the 0-4 mm fraction, presenting a R2 = 0.68.  

 

The different percentages of <20 and <2 μm fraction were evaluated from the <80 μm fraction in 

order to compare the different results. Figure 4 presents the SP values as function of percentages 

of the <20 and <2 μm from the <80 μm fraction for this study. 

 

 
Figure 4. Segregation potential of the <2 and <20 μm fraction from the <80 μm. 

 

According to <80 μm fraction, a significant relationship was observed between SP and the %<2 

μm, but a poor one for the <20 μm fraction. SP results from Konrad (2005), and Konrad and 

Lemieux (2005) did not present correlation for both grading fractions. SP results from Nurmikolu 

(2005) did not present a good relationship for the %<20 μm but a better one for the %<2 μm. 

 

According to Nurmikolu (2005), a strong correlation exists between percentages of the <20 μm 

fraction from the total fraction of a same crushed rock type vs. SP. The granite and granitic gneiss 

of this study (0-4 mm), Konrad and Lemieux 2005 (0-20 mm) and Nurmikolu 2005 (0-31.5 mm) 

were compared together and are presented in Figure 5.  

 

Nurmikolu and this study SPs for granite and granitic gneiss followed a similar trend with a R2 = 

0.8023. Same mineralogy seems to follow a similar trend, independently of the fraction. By using 

mixes of granitic materials and kaolinite, Konrad and Lemieux showed the effect of mineral content 

on SP. For similar grain sizes, clay minerals have higher SPs than non clay minerals as shown in 

Figure 5, and observed by Rieke (1983). 

 
 
5 CONCLUSION 

 

 

The multi-ring frost cell apparatus at NTNU has been used to investigate the segregation potential 

(SP) of commonly found crushed rock aggregates. The frost cell has been proven to be a reliable 

and precise tool for frost heave testing. Different index values and SPs are proposed following the 

investigation.  
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Figure 5. Segregation potential of granitic crushed rock aggregates. 

 
The graphical methodology is established to be an adequate method for SP determination, but the 

processing time is long and there is always possibility of having interpretation variability. 

Moreover, the displacement of the rings (and thermistors) leads to few available data when 

assessing the thermal gradient at different time as the heave has to be manually measured.  There 

is ongoing work in order to produce a mathematical tool that will shorten the processing time and 

eliminate any interpreter variability.  

 

The same SP magnitude values were measured as in other studies for granite/granitic gneiss rock. 

SP values for granodiorite, porphyr, anortosite, slate and gabbro were not found in the literature; 

the values therefore can be used as a reference.  

 

The amount of the different <63, <20 and <2 μm fraction for all types of rock did not reveal 

satisfactory correlation with SP. When normalizing the <2 μm fraction to the <80 μm one, the 

correlation for this study was of R2≈0.84, but no satisfactory correlation was obtained in other 

consulted studies. 

 

According to Nurmikolu (2005), a strong relationship exists between percentages of the <20 μm 

fraction from the total fraction of a same crushed rock type vs. SP. Correlation of R2≈0.80 was 

observed when putting in relation the <20 μm fraction from the total fraction for granite/ granitic 

gneiss in both this study and Nurmikolu (2005). The effect of clay (kaolinite) content when used 

along with granite fines was observed from Konrad and Lemieux (2005) for <20 μm fraction from 

the total fraction.  

 

It is known that mineralogy will play a substantial role when rocks are crushed, which affects the 

fine grain-shape, and indirectly, the unfrozen water content and hydraulic conductivity in the frozen 

fringe (Konrad 1999). Further investigation is necessary in order to determine the effect of 

mineralogy on SP for crushed rock aggregates. 
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ABSTRACT: A common road insulation practice in Norway is to use a layer of crushed rock 

material, which is called a frost protection layer (FPL). The current regulations allow a large 

variation of particle size distribution into this layer. This paper presents field investigations on frost 

insulation performance of crushed rock material with three distinct grading. A full-scale test site 

was built in Røros, Norway, with each FPLs composed of 1 meter of crushed rock aggregates and 

built as: Ro-3 section was a coarse dense-graded material (0/120 mm), Ro-1 section, a coarse open-

graded material (40/120 mm) and section Ro-2, a fine dense-graded material (0/32 mm). The 

sections were monitored for two winters (2016-17 and 2017-18). The results showed a significant 

difference in frost penetration and capacities between the sections. For winter 2016-17, the frost 

depth reached 194, 136 and 175 cm in Ro-1, Ro-2 and Ro-3 sections respectively, for a surface 

freezing index of 22630 oC·h. For winter 2017-18, the frost depth reached 232, 171 and 209 cm in 

Ro-1, Ro-2 and Ro-3 sections respectively, for a surface freezing index of 36683 oC·h. The 0/32 

mm material provided the best insulation capacity with a frost protection capacity of 443 °C·h/cm. 

The frost protection capacity for the 0/120 and 40/120 mm material were of 253 and 85 °C·h/cm 

respectively. The study showed that fine dense-graded material provided superior frost protection 

mostly due to the larger amount of water retained that increased latent heat. For similar road design 

and layer thicknesses, the coarse, well-graded material seemed to be the most  cost-effective 

material adapted to Norwegian regions with F100 < 28000 °C·h. Coarse, open-graded material 

should be used in low FI areas, and convection effect should be taken into account.  

 

KEY WORDS: Crushed rock aggregates, frost depth, frost protection capacity, frost protection 

layer. 

 

 

 
1 INTRODUCTION 

 

It is typical to estimate the maximum frost depth in order to choose adequate frost protection 

measures for transport infrastructure design (Andersland and Ladanyi, 2004; Doré and Zubeck, 
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2009). In Norway, the National Public Road Administration (NPRA) follows the principle of not 

allowing  frost to penetrate the underlying frost susceptible sub-grade for main roads, i.e.  with an 

average annual daily traffic above 8000. A frost protection layer (FPL), situated between the sub-

base and sub-grade, is used for frost protection design. This layer is composed of crushed rock 

aggregates and has no bearing capacity purposes requirements. A large variation of particle size 

distribution is accepted as frost protection material. As stated in The Road Construction Handbook 

N200, i) the material has to be crushed (not blasted), ii)  the maximum rock size shall not exceed 

half of the layer thickness, with a maximum of 500 mm, iii) the proportion of material less than 90 

mm must be at least 30% and iv) the proportion of fines <63 μm shall be between 1 and 7 percent, 

calculated from the less than 90 mm fraction. Note that a new revision of The Handbook was 

released in 2018, and the proportion of fines that was accepted in the 2014 version (i.e. when the 

test site was built) was 2 to 15 percent, calculated from the less than 22.4 mm fraction.  

 

This case study first presents the in-situ maximum frost depth with the ones calculated using 

modified Stefan’s equation that accounts for the cooling of the soil below the freezing front. 

Secondly, the frost protection capacity, in necessary freezing index per centimeter (°C·h/cm) are 

compared together. The objectives of this paper are to i) present grading and material properties of 

3 different FPL composed of crushed rock aggregates, ii) present maximum calculated and 

observed frost depth and iii) compare frost protection capacities between the sections. 

 

2 FIELD TEST SITE 

 

A field test site was constructed at the end of fall 2016 in Røros, Norway. The test site was 

composed of six road and four railway sections. However, this study focuses on the first three road 

sections (Ro-1 to Ro-3) due to the different particle gradations used in their FPLs. A more detailed 

description of the test site and instrumentation was presented by Loranger et al. (2017). 

 

Each test section had a width and length of 6 and 8 meters respectively and was constructed off-

road (no traffic load except for snow removal). Figure 1 shows the cross-section of the first three 

road sections investigated in this study. Each section is equipped with nine thermocouples located 

either at the interface or in the middle of each layer.  Some moisture sensors were installed in the 

silt layer, FPL and base layer. An artificial silt layer at 2 meters depth below the road surface was 

put in place to act as a highly frost susceptible material for frost heave demonstration purpose. 

 

The FPL gradations used between sections are within the accepted range described in the 2014 

national standard N200 for road construction. All gradations are shown in Figure 2. An open-

graded material (20/120 mm) was used for the frost protection layer for the first section (Ro-1). 

This material is characterized with minimal amount of fines and an open pore structure. A fine-

graded material (0/32 mm) was used for the Ro-2 section. This material was selected for water 

retention purposes. In addition, the increased fines fraction (11.2% < 63μm) could make this 

material  frost-susceptible . The third road section (Ro-3) had a typical frost protection grading 

(0/120 mm) and was acting as a reference section. This material is characterized with a coarse, 

well-graded particle distribution. The fines fraction for this material was approximately 5 percent.  
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Figure 1. Cross-section of road sections with thicknesses expressed in meter. 

 

 

 
Figure 2. Material gradation of base, subbase and frost protection layers (FP). 

 

 

3 MATERIAL PROPERTIES 

 

Table 1 lists the material properties for each soil layers. Material properties, such as porosity and 

mineralogy, were measured under laboratory conditions. Moisture contents were obtained from 

field measurements. Thermal conductivities were calculated based on the model proposed by Côté 

and Konrad (2005). The properties for asphalt, silt and clay standard values were taken from 

Heiersted (1976). 

 

Table 1. Material properties. 

 
Porosity 

(n) 
ρd, 

(kg/m3) 
C 

(kJ/(m3·°C)) 
w (%) 

λu 

(W/(m·°C)) 
λf 

(W/(m·°C)) 
 

Asphalt 0.07 2400 1840 0.5 1.45 1.25  
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Base 0.29 1980 1817 4 1.46 1.46  

Subbase 0.42 1623 1218 1 0.51 0.46  

FPL – open graded 

(Ro-1) 
0.45 1535 1152 1 0.44 0.41  

FPL – fine graded 

(Ro-2) 
0.24 2116 1986 5.5 1.80 1.87  

FPL – typical 

grading (Ro-3) 
0.36 1780 1542 2 0.85 0.77  

Silt 0.41 1600 2959 26.3 1.50 2.14  

Clay 0.50 1400 2725 28.6 1.19 1.70  

 

 

4 METHODOLOGY 

 

The compilation of freezing indexes was done using the ISO 13793 standard. The surface freezing 

indexes were compiled directly from the upper thermocouple in the asphalt layer. The measured n 

factor relating FIair to FIs were of 0.96 and 1.0 for winter 2016-17 and 2017-18 respectively. The 

winter 2016-17 showed a FIs of 22630 °C·h, and winter 2017-18, a FIs of 36683 °C·h. The Road 

Construction Handbook N200 is giving a FIair of 21000 °C·h for a 2-years period of return winter 

and a FIair of 32000 °C·h for a 5-years period of return winter.  

 

Frost depth (FD) monitored at the site were given by thermocouples at variables depth. In parallel 

for comparison purposes, frost depths were calculated using the modified Stefan’s equation, a 

derived method with addition of heat capacity. Equation 1 shows the modified Stefan’s solution 

that adds the sensible heat to the latent heat factor (ISO-13793). The total amount of sensible heat 

of the frozen layer is obtained by the multiplication of the volumetric heat capacity and the mean 

annual air temperature (Tm). The depth at which sensible heat was considered reached 2 m below 

the freezing front, as estimated from the 2016-2018 temperature curves of road sections 1 to 3. The 

cooling effect linearly decreases from the freezing front downward to the depth of 2 m. 

 

𝐹𝐷 = √
7200·𝐹𝐼𝑠·𝜆𝑓

𝐿+𝐶·𝑇𝑚
         [1] 

 

where FIs is the surface freezing index (°C·h), λf is the thermal conductivity of the frozen ground 

(W/(m·°C)), L is the latent heat of water in the soil (Lw·wvol = J/m3), C is the specific heat capacity 

of unfrozen ground (J/(m3·°C)) and Tm is mean air annual temperature (°C). 

It is possible to calculate the necessary FI for the frost front to penetrate a depth h in layer i (FIi) in 

a multi-layered system from the integration of the modified Stefan’s solution for a multi-layered 

system (Nordal, 1989).  

   

𝐹𝐼𝑖 =  𝑓 ∙ 𝐿𝑖 ∙ ℎ𝑖 ∙ (
ℎ1

𝜆1
+

ℎ2

𝜆2
+ ⋯ +

ℎ𝑖−1

𝜆𝑖−1
+

ℎ𝑖

2𝜆𝑖
)      [2] 

 

where FIi is the freezing index that is necessary for the frost front to reach hi in the layer i, i is the 

number of layers considered, 𝑓 is a convertion factor from MJ to W·h (1 MJ = 277.78 W·h), Li is 
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the soil latent heat of layer i (MJ/m3), hi is the frozen thickness of layer i (m), and h/ λ is the thermal 

resistance of layers (°C/W). The estimation of the total frost penetration in that case is the sum of 

each contributive FIs for each layer. 

The frost protection capacity was used to express the relative insulation performance of each frost 

protection layers regarding its grading. The different frost protection capacities (𝛽) were calculated 

using equation 3.  

 

𝛽 = (𝐹𝐼𝑧2
− 𝐹𝐼𝑧1

)/(𝑧2 − 𝑧1)        [3] 

 

where 𝐹𝐼𝑧2
and 𝐹𝐼𝑧1

are the surface freezing indexes (°C·h) that are necessary for the frost front to 

reach depth z2 and z1 respectively. The depth 𝑧2 and 𝑧1 are expressed in cm and the frost 

protection capacity is therefore expressed in FIs/cm.   

 

 

5 RESULTS AND DISCUSSION 

 

Figure 3 shows the evolution of the frost depth measured in 2016-17 and 2017-18 winters. A total 

cumulative FIs of 22630 and 36683 oC·h were compiled for winter 2016-17 and winter 2017-18 

respectively. 

 

As expected, finer material grading had procured a better frost protection. The latent heat released 

during the freezing process, governed by the layer’s water content, was acting against the frost 

penetration.  

 

The maximal FD comparison between measured and calculated frost depths is presented in Table 

2 and 3. The site measurement FD were estimated using an intercept function between temperature 

and thermocouples depths. Calculated ones were done using parameters of Table 1 and designated 

FIs. The measured mean air annual temperature for both years was 1.3°C, warmer than the mean 

air annual temperature stated in N200 of 0.2 °C. The variation is presented between calculated and 

observed values, in percentage. 

 

The modified Stefan’s solution is over-evaluating the frost depth of all sections for 2016-17 winter, 

with bigger variation as the aggregates get finer. For winter 2017-18, the FD in section Ro-1 was 

underestimated, and overestimated in sections Ro-2 and Ro-3. 
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Figure 3. Frost depth according to time for winter 2016-17 and 2017-18. 

Table 2. Observed and calculated maximum frost depth (FD, cm) for winters 2016-17, with FIs = 

22630 oC·h. 

Road section 

Observed 

field FD 

(cm) 

Calculated 

FD (cm) 
% variation 

Ro-1 193.9     207.7 +6.6

Ro-2 136.0     170.0 +20.0

Ro-3 175.2     207.5 +15.6

Table 3. Observed and calculated partial frost depths (FD, cm) for winter 2017-18 with FIs = 

36683 oC·h. 

Road section 
Observed 

field FD (cm) 

Calculated 

FD (cm) 
% variation 

Ro-1 232.9     215.7 -8.0

Ro-2 171.4     208.9 +18.0

Ro-3 209.3     218.2 +4.1

If some centimetres of difference can be considered as correct for designing purpose, one should 

be careful when using this solution. In fact, the necessary FIs to penetrate the high water content 

silt below the FPL implies large values. Field observations showed that FIs of roughly 1000 to 1500 
oC·h were necessary to penetrate each cm of silt below the FPLs. The use of the mean annual 
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temperature in Equation 1 is suspected to be responsible for  the over-evaluation of the FD. The 

temperature data from the test site showed that the ground was approximately at 6.5°C at the end 

of October, just before the freezing period. This temperature is probably the one that should be 

used as in Watzinger’s solution (Nordal, 1989), when considering sensible heat for FD calculation. 

Further research is necessary to assess the considered depth and temperature if the Watzinger’s 

solution is preferred.  

 

The necessary FIs for the frost front to advance 1 cm is proposed as a performance index, and was 

named frost protection capacity (β). The necessary FIs from the top of the different FPL to a depth 

of 50 cm which was used to calculate βs as the frost penetration was mainly linear and therefore 

judged as not significantly affected by the cooling of the sub-grade silt. The β allows to compare 

the frost protection efficiency according to FPL grading. The β of the different FPLs are presented 

in Table 4.  

 

Table 4: Frost protection capacity, β (FIs/ cm) for winters 2016-17 and 2017-18. 

 

Road section 

β 

(FIs/cm) 

2016-17 

β 

(FIs/cm) 

2017-18 

Mean 

Ro-1 95 75     85 

Ro-2 395 485     443 

Ro-3 265 240     253 

 

Field results show that it took 4 to 5 times more FIs amount to penetrate 1 cm of FPL between the 

coarser and the finer grading (Ro-1 vs. Ro-3). For each winter day with -10°C of mean temperature 

(≈ average daily temperature for January and February in Røros (N200)), the frost front progressed 

of 3.2, 0.5 and 1.0 cm/day in road section Ro-1, Ro-2 and Ro-3 respectively. 

 

The β were calculated using the modified Stefan’s solution, and gave 89, 255 and 111 FIs/ cm for 

road section Ro-1, Ro-2 and Ro-3 respectively. The β comparison for Ro-1 between the field and 

calculated value was the same magnitude. Calculated βs for Ro-2 and Ro-3 underestimated the 

capacity by a factor of 1.74 and 2.28 respectively. Again, the use of the mean annual temperature 

instead of the ground temperature prior to the freezing is believed to be responsible for the under-

calculated frost protection capacity. 

 

The frost protection capacity has the same limitation for analysis purposes as the FI. It therefore 

didn’t include wind factor or winter severity (FI build up). Climatic factor such as wind can be 

calculated using methodology proposed by Dysli (1991). Currently there is no tool other than 

modelling to assess FI build up effect.  

 

According to frost design N200, finer, well-graded crushed rock aggregates (0-32 mm) as in section 

Ro-2, is the only section that prevents the frost to penetrate the sub-grade for both winters. The 

results also confirmed that this grading had the highest frost protection capacity. On the other hand, 
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Ro-2 is the only material which could have a substantial frost susceptibility. New revision of the 

Norwegian Road Construction Handbook N200 is lowering the accepted amount of fine <63 μm 

from 15 to 7%, calculated from the less than 90 mm fraction. Therefore, a 0-32 mm grading would 

need to have <7% fine to be in agreement with the legislation. This amount is considered to produce 

limited frost susceptibility risk when referring to particle size distribution criteria (N200). The use 

of a fine-graded frost protection layer could therefore be considered for extreme cold regions, or 

for particularly sensible projects.  

 

The use of coarse-graded crushed rock aggregates (20-120 mm) as in Ro-1 should be limited in 

warmer zones, with limited FI. This conclusion corroborates the Norwegian regulation N200 

(2018) regarding FD of open, coarse aggregates for FPL. Rieksts (2018) showed that open graded 

material in the frost protection could be subject to convection, lowering the anticipated frost 

protection capacity of such aggregates. An extremely rapid frost front progression in such materials 

can be expected.  

 

The coarse, well-graded crushed rock aggregate (0-120 mm), as in Ro-3, presents the most cost-

efficient grading according to Norwegian climatic realities.  Most of the coastal and populated 

areas generally have F100 (100 years period of return freezing index) from ≈3000 - 4000 oC·h (i.e. 

Bergen, Ålesund, Stavanger) to ≈19000 - 24000 oC·h (i.e Trondheim, Oslo, Narvik, Tromsø). The 

field data showed that a FIs of  ≈ 28000 oC·h was necessary to reach the sub-grade soil.  

 

 

CONCLUSION 

 

Different grading of frost protection layers, which are situated below the sub-base layers in the 

pavement structure, have been tested at the Røros experimental site, in Norway. Norwegian frost 

design methods use this layer to prevent frost front to penetrate the sub-grade. The results from 

both winters 2016/17 and 2017/18 showed a clear difference of the thermal response between each 

FPL toward frost penetration. 

 

For winter 2016-17, the frost depth reached 194, 136 and 175 cm in Ro-1, Ro-2 and Ro-3 section 

respectively, for a surface freezing index of 22630 oC·h. For winter 2016-18, the frost depth 

reached 232, 171 and 209 cm in Ro-1, Ro-2 and Ro-3 section respectively, for a surface freezing 

index of 36683 oC·h.  

 

The average observed frost protection capacities (β, necessary FIs per cm into the different frost 

protection layers) were 85, 443 and 253 oC·h/cm for Ro-1, Ro-2 and Ro-3 respectively. 

 

When using the Stefan’s modified solution, frost depth and frost protection capacities should be 

calculated using the field temperatures prior to the freezing season at the considered depth.  The 

low mean annual air temperature of the Røros region causes the magnitude of the cooling of the 

underlying soil to be underestimated, thus FD to be overestimated and frost protection capacity to 

be underestimated for all sections.  
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The best performance can be observed with the fine-graded frost protection layer. The performance 

is related to  high water retention compared to the two other materials (5.5% vs. 1.5% and 1%). 

According to N200 design guideline, Ro-2 is the only section which prevents the frost to penetrate 

the sub-grade in  both winters. However, it is the section with the highest frost susceptibility risk 

if fine content is relatively high. The typical, well-graded material of Ro-3 (0-120 mm) was judged 

as the more cost-efficient grading for most  Norwegian regions presenting a F100 of less than 28000 
oC·h for a similarly built road structure. Coarse, open-graded material should be used in low FI 

areas, and convection effect should be taken into account.  
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APPENDIX E – PAPER A 

Loranger, B., Kuznetsova, E., Hoff, I., Aksnes, L. and Skoglund, K.A. (2017). 

Evaluation of Norwegian gradation based regulation for frost susceptibility of crushed rock aggregates 

in roads and railways.  

10th International Conference of the bearing capacity of roads, railways and airfield. Athens, Greece. (June 

28th to 30th 2017). 

This paper was the first evaluation of the Norwegian road design from a foreigner point of view. 

Judged as too general to be integrated as scientific contribution to the thesis, it is however interesting 

to consult in order to get the work environment in which I was to work for the next years. 

Erratum: Railway ballast gradation is 0-62.5 mm, and not 20-120 mm as showed on figure 12. 

This paper is not included due to copyright
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APPENDIX E - PAPER B 

Rieksts, K., Loranger, B., Hoff, I. and Scibilia, E. (2019).  

In-situ thermal performance of lightweight aggregates (expanded clay and foam glass) in road structures.  

Québec 2019: 18th International Conference on Cold Regions Engineering and the 8th Canadian Permafrost 

Conference. Quebec City, Canada. (August 18th to 22nd 2019). 

This paper presents thermal performance of lightweight aggregates at the Røros test site. It was decided 

to be placed in this section because it was judged that no deep analysis were performed, and it is mostly 

showing results. However, it brought interesting observations on the role, or necessity, of an underlying 

frost protection layer below lightweight aggregates.  
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ABSTRACT: Transport infrastructures built on frost-susceptible soils may require insulation layer 

to minimize frost penetration. In Norway, one of the approaches is the use of lightweight aggregates 

(LWA) as an insulation layer, especially when there are specific restrictions for pavement thickness. 

Performance and design thicknesses of LWA are included into the Norwegian Road Design 

Handbook. The current regulations allow the use of LWA layers with or without an underlying 

lower frost protection layer (LFPL). The goals of this paper are to a) observe the frost insulation 

capacity of lightweight aggregates and b) investigate the necessity of lower frost protection layer 

below the lightweight aggregate layer. A full-scale road test site was built in Røros, Norway, with 

three sections using LWA for insulation purposes. For these sections, a 0.6 m thick insulation layer 

of expanded clay (Leca) with particle size of 10/20 and 0/32 mm and foam glass (Glasopor) with 

particle size of 10/60 mm was constructed. An underlying LFPL with a thickness of 0.7 m was 

made of crushed rock material with particle size of 0/120 mm. Temperature was monitored for two 

winters (2016/2017 and 2017/2018). The cumulative surface freezing index (FIs) for the two winters 

resulted in 22630 and 36683 °C·h respectively. Field observations show that the performance of all 

three insulations layers was generally the same. The results showed that for both winters the frost 

front remained in the LWA layer. The study shows that lightweight aggregates could be placed 

directly on frost-susceptible soils and the frost front will remain in the 60 cm insulation layer even 

at FIs of 36683 °C·h. 

 

KEY WORDS: Expanded clay, foam glass, lightweight aggregates, road insulation. 

 

 

1 INTRODUCTION 

 

Transport infrastructures built in seasonally freezing environments may require insulation layer to 

minimize the frost penetration if built on frost-susceptible soils (Andersland & Ladanyi, 2004; Doré 
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& Zubeck, 2009). In Norway, the National Public Road Administration (NPRA) defines in their 

guidelines that roads with an annual average daily traffic above 8000 should be built so that the 

frost does not penetrate the frost-susceptible soils (N200, 2018). One of the approaches to limit the 

frost depth is the use of lightweight aggregates (LWA) as an insulation layer, especially when there 

are specific restrictions for pavement thickness (Kestler, 2003; Øiseth et al., 2006). Two LWA are 

commonly used in Norway: expanded clay and foam glass.  

 

Performance and design thicknesses of LWA are included into the Norwegian Road Design 

Handbook (N200, 2018). The current guidelines, which were revised in 2018, allow the use of LWA 

with or without a lower frost protection layer (LFPL) which is typically made of crushed rock 

material. The main purpose of the lower frost protection layer is to provide a thermal barrier by 

retaining moisture and therefore increasing sensible and latent heat. Hence, this layering is based 

on the approach that the insulation layer provides a large resistance for the heat that must be 

extracted from the layer below. The thickness of the LFPL depends on the design thickness of the 

LWA layer. The current design of layer thicknesses is chart-based in which the charts are produced 

using a modified Stefan’s equation. The modification considers the heat capacity of the soil by 

adding it to the latent heat term. The test site was built when the previous guidelines (N200, 2014) 

were still active which required the LFPL layer as a mandatory layer. However, if the insulation 

layer can retain the frost front within the layer, the LFPL layer might not be necessary.  

 

The paper first describes the full-scale test site that was built to test three different LWA. The results 

of frost penetration of two consecutive winters are  then presented. Finally, the results are compared 

with the current guidelines and the recommendations of the thicknesses of insulation layers. The 

main objectives of this study are twofold: i) to observe the frost insulation capacity of lightweight 

aggregates, and ii) to investigate the necessity of lower frost protection layer below the lightweight 

aggregate layer. This study is a part of a larger research project on frost protection of roads and 

railways at Norwegian University of Science and Technology (Kuznetsova et al., 2017). 

 

 

2 TEST SITE 

 

The location of the test site is in the central part of Norway in Trøndelag region in the municipality 

of Røros. The location of the test site was chosen for the very low mean annual temperature of 0.2 

°C, which is based on 30-year observation data from 1981 to 2010. The corresponding air freezing 

index (FIa) for a 10-year and 100-year return period is 38681 and 60599 °C·hours respectively. The 

test site was constructed during the fall of 2016 and incorporated six road and four railway sections. 

Each section had a width and length of 6 and 8 m respectively. Figure 1 shows the test site after the 

construction. The test site was placed in an off-road location and was not subjected to any traffic 

loading. Winter maintenance was performed to limit the snow and ice buildup. 
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Figure 1. Test site: a) road section; b) railway sections. 

 

This study focused only on three road sections that were constructed with a layer of lightweight 

aggregates. Figure 2 shows the cross section of the three road sections. 

 

 

Figure 2. Cross section of road sections with lightweight aggregates. 

 

All three sections were constructed with an overlaying asphalt layer, 0/32 mm crushed rock base 

layer and 20/120 crushed rock subbase layer. The insulation layer was constructed with three 

different lightweight aggregates. Examples of lightweight aggregate particles are shown in Figure 

3. 
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Figure 3. Example of particles of foam glass and expanded clay. 

 

Expanded clay material with a particle size distribution of 10/20 mm was used for the Ro4, 0/32 

mm expanded clay material for the Ro5, and 10/60 mm foam glass material for the Ro6. Particle 

size distribution for the three insulation materials are shown in Figure 4. The thickness of the LFPL 

was 0.7 m and was made of 0/120 mm crushed rock material. All three sections were underlain with 

an artificial layer of silt with a thickness of 0.8 m. The natural subgrade soil was clay. For a more 

detailed description see Loranger et al. (2017). 

 

 

 

Figure 4. Grain size distribution of lightweight aggregates. 

 

Table 1 lists the final layer thicknesses which were accurately measured during the construction 

process. 
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Table 1. Thickness of structural layers. 

 

 Section 1, cm Section 2, cm Section 3, cm 

Asphalt layer 5 5 5 

Base layer 17 18 14 

Subbase layer 28 31 41 

Insulation layer 64 64 62 

Lower frost protection layer 62 59 53 

Silt layer 80 80 80 

 

Expanded clay is produced by heating clay up to around 1200 °C in a rotary kiln. The 0/32 mm 

expanded clay material is the particle gradation straight from the production line whereas the 10/20 

mm is a sieved material with removed fine and coarse fractions. The foam glass material is produced 

by sintering crushed glass powder. The material naturally breaks down to an approximate particle 

gradation of 10/60 mm during the cooling process. Both materials have very similar thermal 

properties with thermal conductivity of 0.1 W/m·°C at dry state and about 0.18 W/m·°C with a field 

moisture content (Øiseth et al., 2006; Øiseth & Refsdal, 2006). The method for determining the 

thermal conductivity of lightweight aggregates under laboratory conditions is based on ASTM-

C518-17 (2017) 

 

To monitor the temperature distribution, each section was instrumented with 10 thermocouples per 

section. Thermocouples were placed on the interfaces between two layers or in the midsection of 

each layer. The maximum depth of temperature sensor was 2.25 m. The approximate locations of 

temperature sensors are shown in Figure 2. 

 

 

3 RESULTS AND DISCUSSION 

 

Temperature distribution in the three sections was observed for two consecutive winters. Figure 5 

shows the air and surface temperature for the period from October 2016 to May 2018. The winter 

of 2016/2017 resulted in a FIa and FIs of 23527 °C·h and 22630 °C·h respectively. The consecutive 

winter was colder and resulted in FIa and FIs of 36536 °C·h and 36683 °C·h. 



APPENDIX E - PAPER B 

 

 

184 

 

 

 

Figure 5. Air and surface temperature measurements from October 2016 until May 2018. 

 

Figure 6 shows the frost penetration in each of the three sections during the winter of 2016/2017. 

The frost front penetrated down into the insulation layer in a very short period. However, it 

remained within the insulation layer relatively close to the bottom of the layer for the rest of the 

winter. The general performance of all three materials was very similar. 

 

 

 

Figure 6. Frost penetration during the winter 2016/2017: a) Ro4; b) Ro5; c) Ro6. 

 

Figure 7 shows the frost penetration for the second winter from October 2017 until May 2018. 

Given that the second winter was considerably colder than the first one, the frost front penetrated 

deeper and reached the interface between the insulation layer and LFPL. However, it remained 

within the insulation layer throughout the winter season and did not penetrate the LFPL. 
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Figure 7. Frost penetration during the winter 2017/2018: a) Ro4; b) Ro5; c) Ro6. 

 

The second winter had a frost index with an approximate return period of 8 years. The design of 

the sections was made with an FI10 which corresponds to 38681 °C·h based on the N200 (2014). 

This means that based on the design guidelines, the frost front should stay above the frost-

susceptible soils during winters with freezing index below FI10. The results show that the insulation 

layer alone could withstand a freezing index very close to the FI10, meaning that the lower frost 

protection layer might not be necessary. Possibly, if the structure would be subjected to a winter 

with FI10, the frost front might penetrate through the insulation layer. When comparing the two 

winters it can be seen that when the FIs increased from 22630 to 36683 °C·h, the frost front 

advanced only by about 0.1 m. This in turn means that slightly increasing the thickness of the 

insulation layer would keep the frost front within it even at FI10. 

 

The designed manual N200 (2018) calculates the necessary layer thicknesses (LWA layer and 

LFPL) with a modified Stefan’s equation. This approach considers the heat capacity of the unfrozen 

soil by assuming yearly mean temperature for it. Given that the long-term observations show a 

yearly mean temperature of 0.2 °C, this factor gives a negligible contribution to the heat extraction 

during the winter time. Considering only a 0.6 m of insulation layer without any LFPL and the soil 

temperature of 0.2 °C, the calculations indicate that the frost front would penetrate through the 

insulation layer at FIs of approximately 8000 °C·h. This result significantly underestimates the 

insulating capacity of the lightweight aggregate layers. 

 

During the two-year observation period from 2016 to 2018 a yearly mean temperature of 1.3 °C 

was measured which is considerably warmer than the long-term observations of 0.2 °C. Considering 

a soil temperature of 1.3 °C and no LFPL would result in maximum FIs of 12000 °C·h when frost 

front would penetrate through the insulation layer based on the N200 (2018) calculations. This 

result is still far from the insulating capacity that was observed for all three sections. During both 

winters it was observed that the actual soil temperature at the -beginning of the cooling season 
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varied between 5 and 6 °C, which is significantly higher than the mean annual temperature. 

Considering 5 and 6 °C temperature of soil and no LFPL would result in threshold FIs of 

approximately 28000 and 32000 °C·h based on the N200 (2018) calculations. This result is much 

closer to the FIs what was observed in the field conditions and indicates that using a yearly mean 

temperature of the soil results in underestimation of insulating capacity of the LWA materials. 

 

 

4 CONCLUSION 

 

A full-scale test sections were constructed to test the frost insulation performance of three 

lightweight aggregates: expanded clay with particle size distribution of 10/20 and 0/32 mm, and 

foam glass material with particle size distribution of 10/60 mm. 

 

The temperature distribution in all three sections were monitored throughout two consecutive 

winters from 2016 to 2018. The first winter had a FIs of 22630 and the second winter had a FIs of 

36683 °C·h. The results show that the relative performance of all three materials is very similar. 

During both winters the frost front remained within the insulation layer. However, during the 

second winter the frost front stopped at the bottom of the insulation layer.  

 

The results show that the lower frost protection layer is not required if the insulation layer is thick 

enough. For the given structure, the limit of frost insulation was reached during the second winter 

which corresponds to a FIs with approximately of 8-year return period. For a colder winter a thicker 

insulation might be required to withstand the design winter with FI10. This result confirms that the 

insulation layer could be placed directly on frost-susceptible soils without the lower frost protection 

layer. 

 

The design manual N200 (2018) considers a yearly mean temperature for the unfrozen soil. 

Considering a 0.2 °C temperature of the soil and no LFPL results in the threshold FIs of only 8000 

°C·h which significantly underestimates the insulating capacity of LWA. The field observations 

showed that yearly mean temperature was 1.3 °C and that the actual soil temperature at the 

beginning of the cooling season varied between 5 and 6 °C. Considering a temperature of 5 to 6 °C 

in the calculation based on the design manual results in a more realistic insulating capacity of LWA 

in terms of the necessary FIs to penetrate through the insulation layer. This indicates that the 

calculation gives better results when the actual soil temperature is used rather than the yearly mean 

temperature. 
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Kjelstrup, S., Ghoreishian Amiri, S.A., Loranger, B. and Grimstad, G. (2020).  

Transport coefficients and pressure conditions for growth of ice lens in frozen soil.  

Submitted to Acta Geotechnica journal (July 2nd 2020). 

This paper presents the coupled transport of heat and mass across the frozen fringe using the non-

equilibrium thermodynamics. It is presented here as extended work involving PoreLab at NTNU. 

This paper is awaiting publication and is not included in NTNU Open
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