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Abstract—This paper presents an effective model-based
thruster failure detection and isolation method for dynamically
positioned (DP) offshore surface vessels. A DP vessel is supposed
to maintain its position and heading at a reference point
exclusively by means of thrusters. The occurrence of thruster
failure may cause significant performance losses. Therefore, it
is of great practical importance to timely detect and isolate
thruster failures. In our proposed method, according to the prior
knowledge of mathematical model of a DP ship, estimated model
states can be obtained as reference. Wind disturbances, due to
its great influence on the thruster diagnosis of the DP vessel, is
taken into account. A new attitude based residual generator is
designed. A failure can be identified once it exceeds a threshold.
To further isolate the failure, a slide window concept together
with a probability analysis is applied to the residual, until a
concrete thrust failure is found. Simulation experiments of DP
operation under different thruster failure cases are conducted in
a professional simulator. The results show the proposed method
is able to detect and isolate these thruster failures.

Index Terms—Thruster failure, failure detection and isolation,
dynamic positioning, offshore surface vessel.

I. INTRODUCTION

With the development and employment of advanced tech-
nologies such as digital twins [1] and cloud computing [2]
on modern vessels, marine operation steps in the era of
intelligence. In various maritime industrial sectors, digital
twins are being used for monitoring, diagnostics and prog-
nostics to optimize asset performance and utilization. During
operation, the digital twin becomes a system for integration,
processing, and analysis of the operational data. Ideally, the
digital twin will provide behaviour predictions and life cycle
service support for ship operators. Ship health management,
as an essential part of our ongoing project ”digital twins for
vessel life cycle service”, should be aware of the changing
operating regimes during maritime operations to optimize asset
performance. In the marine operation phase, the dynamic
positioning is an important maneuver that acts to maintain a
vessel’s position and heading at a reference point by means of
exclusively activating its thrusters [3] [4]. In practice, thrusters
inevitably undergo faults due to long-time operation in the
complex ocean environment, which will cause the DP control
system unstable, thereby reducing DP performance. Therefore,
it is of great significance to timely diagnose faults on board to
ensure the security and reliability of vessel. There are various
types of faults for ships in marine operation, including actuator

faults, sensor faults, and parametric faults. This paper mainly
focuses on actuator faults, i.e, to detect thruster failure in DP
operation.

Fault diagnosis commonly includes fault detection, fault
isolation, and fault estimation, among which, the first two
tasks are considered to be mostly important [5]. Methods for
fault detection and isolation (FDI) are generally classified into
model-based and data-based methods [6].

Model-based approaches that rely on the dynamic model
of a system have been widely researched and applied in the
past decades. Generally, the faults are modelled as param-
eter changes, and diagnosis can be performed by state or
parameter estimation of the considered system. In [7], thruster
fault detection is obtained by a combination of parity space
approach and Luenberger observer in an over-actuated offshore
supply vessel. In [8], a robust fault detection observer and
a time-varying detection criterion are presented to detect the
actuator faults distinguished from uncertainties in nonlinear
dynamics and external disturbances for underactuated surface
vessels. A Gaussian particle filter based diagnosis method was
proposed in [9] for autonomous underwater vehicles (AUV).
Lin et al. [10] constructed an iterative learning observer to
estimate the unknown thruster faults for dynamic positioning
of ships, which requires less on-line computing power than
adaptive observers. For the model-based detection techniques,
an accurate mathematical model of the system is a prerequisite.
However, it is not easy to obtain the model due to the varying
environmental conditions and the complexity of the system
itself.

Compared to data-based methods, the approaches based on
historical data do not need a mathematical model, neither
much prior knowledge about the system. These characteristics
promote an advantage for complex and nonlinear systems,
where an explicit model is hard to be obtained. The statistical
analysis methods such as principal component analysis [11]
[12] are successfully applied to diagnose actuator faults. In
addition, machine learning as well as deep learning are also
powerful tools to handle the data in fault diagnosing process
[13]. A novel convolutional neural network was applied on the
fault diagnosis, which demonstrates a significant improvement
of prediction accuracy compared with traditional methods [14].
Li et al. [15] proposed a strategy based on a dynamically
driven recurrent neural network to detect and isolate thruster



failures in the satellite’s attitude control system. In [16], the
author presents an approach to fault diagnosis with online
detection of novel faults and automatic learning using fuzzy
clustering techniques. The method is proved feasible and effi-
cient for actuator fault diagnosis. Kemp et al. [17] developed
an unsupervised fault detector based on the performance data
of an AUV and verified the detector is efficient in reducing the
false alarm rate. The data-based methods work well in fault
diagnosis. However, they strongly rely on a large volume of
historical data to extract features and establish the fault mode,
which is always limited in reality.

Despite the numerous researches on fault detection and
isolation, there are still some challenges in DP thruster failure
diagnosis. The main challenge is the difficulty of obtaining
a realistic model representing ship behavior when interacting
with the environment. The environmental disturbances caused
by ocean currents, winds and waves have a significant but
unpredictable effect on system performance. From research
point, the wind interference on DP operation will be firstly
taken into consideration in this paper. Based on the DP ship
model under wind disturbance, an effective thruster failure
detection and isolation scheme is proposed and verified.

The rest of the paper is organized as follows. The following
section II presents the proposed model-based fault detection
and isolation method framework. DP operation simulation
is conducted in Section III to validate the efficiency of the
proposed method. Conclusion and future work are shown in
Section IV.

II. FRAMEWORK OF MODEL-BASED FAILURE DETECTION
AND ISOLATION METHOD

In this section, an effective failure detection and isolation
scheme is proposed for detecting thruster failure in dynami-
cally positioning offshore surface vessels. When one thruster
fails to work normally, the ship DP performance will diverge
from the fault-free status, thus ship position and orientation
in the earth-fixed frame are selected as monitoring state.
Failure detection and failure isolation are both included in the
proposed framework.

A. Framework

Fig. 1 gives an overall architecture of the thruster failure
detection and isolation scheme. It can be divided into three
sections: ship measurements, mathematical modeling, and
failure diagnosis. In the real ship experiment or simulator,
the DP operation is performed through a DP controller. For a
fully actuated offshore surface vessel, the horizontal motions—
surge, sway and yaw are of great interest. The control force
generated from the controller will be further allocated by an
allocation algorithm to corresponding thrusters. And then the
vessel can be maneuvered towards the reference point by these
thrusters. The simulation process is marked with a red dash
line in Fig. 1.

The mathematical model for ship maneuvering in the frame-
work can be derived from through Newton-Euler or Lagrange
methods. The interaction between ship hull, propulsion force
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Fig. 1: Thruster failure detection and isolation architecture

and hydrodynamic effect is represented by a set of complex
differential equations. At present, there are several variants
for ship maneuvering, such as Nomoto model and nonlinear
maneuvering model [18].

The residual signal which reflects the variation between
model-predicted state and sensor data flows into the fault di-
agnosis module in the framework. The fault diagnosis module
includes two components. The first one is used for detecting
the existence of failures; the other one is to isolate the sources
of failures. In a predefined detection time window, by applying
the thruster command from the controller to the established
mathematical model, an estimated ship state will be obtained.
A ship behavior-based residual generator in the detection time
window is introduced. It is designed to keep low level in
fault-free phase, and increase to exceed a threshold when a
thruster failure occurs. In the isolation phase, residuals are
further analyzed to configure the location of the failure by
means of probability analysis. It ends up with a probabilistic
model, from which better knowledge about the confidence of
failure location, as well as more meaningful information to the
end-user, can be gained.

B. Modeling

For horizontal motion of a fully actuated offshore surface
vessel under the wind disturbance, considering the surge,
sway and yaw motion components, the linearized motion
mathematical model of ship in DP maneuvering is expressed
as [19]:

η̇ = J(η)ν

Mν̇ +D(ν)ν = τ + τw
(1)

where, η = (x, y, ψ)T is the ship position vector in the earth-
fixed frame. ν = (u, v, r)T is the ship velocity vector in the
body-fixed frame. The rotation matrix is given by

J(η) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1





M and D are mass and linear damping matrices. τ is the
generalized control forces which are distributed among the
thrusters in terms of control inputs u:

τ = Tu (2)

where u is the thrust force vector. The thruster configuration
matrix T depends on the location and orientation of thrusters.

The wind force acting on the vessel moving at a forward
speed are estimated as [19]:

τw =
1

2
ρaV

2
rw

 CX(γrw)AFW
CY (γrw)ALW

CN (γrw)ALWLoa

 (3)

The relative wind speed and attack angle are defined as

Vrw =
√
u2rw + v2rw

γrw = −atan2(vrw, urw)
(4)

The relative wind velocities components are urw = u −
Vw cos (βw − ψ) and vrw = v − Vw sin (βw − ψ), where Vw
and βw are the wind speed and its direction respectively. The
wind coefficients CX ,CY ,CN needs to be identified through
ship operation data.

C. Fault diagnosis

In DP operation scenario, the vessel is supposed to keep
steady at one fixed position (x0, y0) with orientation ψ0 in
the earth-fixed frame. The control force is distributed into each
thruster and then the vessel will be propelled towards the fixed
point by the corresponding thrust.

In the failure detection module, a detection time window
is adopted to evaluate the residuals between model reference
sequences and measurement data. The states of the dynamic
model under the command thrust can be estimated by solving
the model differential equations (1). In the window [t0, tT ],
the residuals are defined as

r(t) =
√
e2x + e2y exp(eψ) (5)

where ex = x̂−x, ey = ŷ−y, eψ = ψ̂−ψ, (x̂, ŷ, ψ̂) are model
estimated ship position and heading, (x, y, ψ) represents real
ship position and heading.

After the residuals are generated, the detection of failure can
be performed through the following rules, where δ refers to
the threshold obtained through several simulation experiments.{

r(t) ≤ δ normal

r(t) > δ failure
(6)

Define the initial state of model Eq.(1) as X0 =
[η(t0), ν(t0)]T , with the residual signal r(t0) = 0. If there
is no residual in the period [t0, t0 +∆t] exceeds the threshold,
the detected period is judged normal. Then the window slides
to the next period [t0 + ∆t, t0 + 2∆t]. This process will
continue until abnormal alarm happens. The value of threshold
is determined on the basis of larger number of experiments.
In this paper, the threshold value is defined as:

δ = µ+ kσ (7)

Fig. 2: Simulation vessel and parameter tuning interface

where µ and σ are the mean and standard deviation of residuals
in faulty-free status. The selection of k value is critical, which
represents a trade-off between a low false-alarm rate and a
high sensitivity to failures.

Once a fault is detected, the next problem needs to be
solved is to distinguish the failure mode. According to the
mathematical expression of DP maneuvering, the ship model
reference sequences in healthy and different failure conditions
can be built respectively. At the time td when fault detection
residual surpasses a given threshold, failure isolation can
be accomplished by probability analysis between the actual
successor sequence and the predicted state sequences based on
analytical model. In the detected faulty period [td, te], for each
failure mode, a corresponding residual sequence is generated.
The mean integral of residual is considered to obtain a quanti-
tative comparison between the results of different failure mode
simulations. The mean integral of residual index, normalized
with respect to the time length of the faulty period, is expressed
as

si =
1

T

∫ te

td

r(t)dt, i = 1, 2, ...N (8)

where N represents the number of failure mode. The proba-
bility of each failure mode is calculated according to

Pi = 1− si∑6
i=1 si

(9)

The highest probability indicates that the relevant failure mode
has the most similar features with the detected abnormal.

III. EXPERIMENT

To validate the effectiveness of the proposed thruster failure
detection and isolation method, simulation experiments of DP
maneuvering under different failure scenarios is conducted.

A. Experimental setup

All experiments are conducted in a commercial professional
simulator developed by Offshore Simulator Centre (OSC) AS
in Norway. It features a simulated environment in which a
user may manipulate the wind, waves, and ocean current to
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Fig. 3: Thruster configuration for the offshore surface vessel.

TABLE I: Dimensions of simulation vessel

Description Value

Mass [kg] 1.0179× 107

Lpp [m] 82.7
Bredth [m] 23.058
Draught [m] 7.5

mimic real-life conditions. It offers a library of real vessel
models to choose from. Fig. 2 shows a view of the simulated
environment with the selected vessel engaged in DP operation.
Table I provides the vessel’s main dimensions.

The selected simulation vessel is equipped with two main
thrusters, two tunnel thrusters at the bow and two tunnel
thrusters at the stern, as shown in Fig. 3. The thruster con-
figuration matrix has the form

T =

 0 0 0 0 1 1
1 1 1 1 0 0
L1 L2 −L3 −L4 −L5 L6


where Li(i = 1, ..., 6) are the moment arms in yaw. The
allocation of the six thrusters is symmertrical with respect to
the longitudinal axis of the vessel. The two main thrusters,
two bow tunnel thrusters and two stern tunnel thrusters are
considered as three pairs of thrusters, and the same force
demand is applied to both thrusters in each pair when they
are running in fault-free status. It is worth noting that in
the selected vessel, the bow tunnel thrusters and stern tunnel
thrustes are located near, where the distances db = L1 − L2

and ds = L4 − L3 are quite small, almost 1/40 of the vessel
length.

B. Model validation

The mathematical model Eq. (1) is constructed with the
known mass and damping terms. In order to obtain a complete
mathematical expression, the wind coefficients CX , CY , CN in
Eq. (3) of the research vessel need to be identified firstly.

The normal DP simulation data {(ti, Xi), i = 1, 2, ..., n}
from the OSC simulator is divided into two sets, the first
set is used to identify the unknown wind coefficients in the
mathematical model by applying the least square method
and the second set as a test sample is selected to test the
effectiveness and accuracy of the mathematical model.

(a) Identified wind coefficients of the vessel

(b) Validation of mathematical model reference with
identified parameters and simulator results

Fig. 4: Mathematical model validation results.

Fig. 5: The residual signal of bow thruster failure mode.

The results are displayed in Fig. 4. It can be seen that the
ship trajectory generated by mathematical model fits well with
the simulation data. This fact illustrates the applicability of the
proposed failure detection method which lies on the residuals
between model reference sequence and ship data.



Fig. 6: Residuals of each failure mode in detected faulty period. (a) first anomaly in bow thruster; (b) second anomaly in bow
thruster; (c) first anomaly in main thruster; (d) second anomaly in main thruster.

TABLE II: Thruster failure cases of simulation

Case th1 th2 th3 th4 th5 th6

011111 0 1 1 1 1 1
101111 1 0 1 1 1 1
110111 1 1 0 1 1 1
111011 1 1 1 0 1 1
111101 1 1 1 1 0 1
111110 1 1 1 1 1 0

C. Simulation results

In order to verify the effectiveness of the proposed method,
simulation experiments under different thruster failure modes
are carried out. Single thruster failure cases are designed as
Table II shows, where ’0’ refers to 100% thruster invalid and
’1’ represents normal status.

Fig. 5 shows the residual results of two bow tunnel thrusters
failure. This failure is characterized by an abrupt invalid of a
thruster, whose actual speed freezes at 0 while command speed
is as normal. From the residual graph (Fig. 5), it can be seen
that the fluctuations of the residual signal at t = 531.4s and
t = 1421.4s are obviously strong, implying failure happens. If
the residual value is greater than the threshold, then it can be

judged failure. For a low false alarm rate, the threshold (red
dash line) should be set no less than k = 1 for bow tunnel
thruster detection.

For the two detected faulty periods, to determine the loca-
tion of the failed thruster, the residual sequence of each failure
mode is generated, as shown in Fig. 6(a)-(b). It shows that
individual residual result, which indicates the variation from
the measurement data is increasing with time accumulation.
Lower residual represents higher consistency between the
estimated state and sensor state. From Fig. 6(a)-(b), we can
get that in the first abnormal period, the performance of the
ship is the most similar to 011111 failure mode, and the
second period 101111. The probability of each failure mode is
analyzed according to the rule (9) and the results are presented
in Fig. 7. It is worth mentioning that in these two faulty cases,
011111 and 101111 failure modes have a pretty high similarity,
manifested in little difference in diagnosis probability. The
reason is that these two bow thrusters are located quite close
to each other. The similar isolation results are also obtained
from the comparison of two stern tunnel thrusters, which are
also implied in Fig. 7. During tunnel thruster failure isolation,
it is not easy to separate one from the other near located,
while by using the proposed method, one can clearly isolate
the failed pair of thrusters. On the basis of the differentiated



Fig. 7: Probability analysis results of bow thruster failures.

Fig. 8: Residual signal of main thruster failure cases.

pair, the mode with a higher probability is diagnosed as a
failure.

Analysis of main thruster failure performance is followed.
The residuals caused by each main thruster failure characterize
different peak values in Fig. 8. This is caused by the position
difference of two main thrusters to the wind direction. Here
the threshold for failure detection is also set at k = 1.

The failure mode residual comparison results are presented
in Fig. 6(c)-(d). It can be seen that the main thruster failure has
rather different features compared with tunnel thruster failure
due to the fact that main thrusters and tunnel thrusters provide
disparate force to maintain the ship’s position under wind
disturbances. According to Fig. 9, one can get that the first
detected anomaly is caused by port main thruster failure and
the second starboard main thruster.

IV. CONCLUSION

In this paper, an effective model-based thruster failure
detection and isolation method for a dynamically positioned
offshore surface vessel has been proposed. A general thruster
failure detection and isolation scheme and a new attitude-
based residual generator for DP vessels have been given. By

Fig. 9: Probability analysis results of main thruster failures.

introducing the probability analysis, the failure isolation can be
completed through probability comparison. The effectiveness
of the proposed approach has been verified through the com-
parison simulation results on a typical offshore surface vessel.
In future work, a further investigation of failure separation
between two close thrusters will be conducted, as well as more
complex environmental disturbances.
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