
ENHANCED EXISTENCE TIME OF SOLUTIONS TO THE

FRACTIONAL KORTEWEG–DE VRIES EQUATION
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Abstract. We consider the fractional Korteweg–de Vries equation ut+
uux−|D|αux = 0 in the range of −1 < α < 1, α 6= 0. Using basic Fourier
techniques in combination with the modified energy method we extend
the existence time of classical solutions with initial data of size ε from
1
ε

to a time scale of 1
ε2

. This analysis, which is carried out in Sobolev

space HN (R), N ≥ 3, answers positively a question posed by Linares,
Pilod and Saut in [26].

1. Introduction

We consider the fractional Korteweg–de Vries (fKdV) equation

∂tu+ u∂xu− |D|α∂xu = 0, (1.1)

where the parameter α may in general take any real value. Here, u : [0, T ]×
R 7→ R and

|̂D|αf(ξ) = |ξ|αf̂(ξ).

More generally, under the Fourier transform

F(f)(ξ) =

∫

R
f(x) exp(−iξx) dx,

we let D = −i∂x and denote by σ(D) the Fourier multiplier operator defined
from its symbol σ(ξ) via the relation

F(σ(D)f)(ξ) = σ(ξ)f̂(ξ).

1.1. The fKdV family. When α = 2 and α = 1, the fKdV equation (1.1)
reduces to the classical Korteweg–de Vries (KdV) and Benjamin–Ono (BO)
equations, respectively. For α = 0 one obtains the inviscid Burgers equation,
being the only non-dispersive member in the fKdV family. When α = −1
one instead has the Burgers–Hilbert (BH) equation, and when α = −2 the
reduced Ostrovsky (RO) equation. All in all, the fKdV family has been
suggested as scale for investigating the balance of nonlinear and dispersive
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effects [26], especially when the dispersion is very weak, meaning α takes
small or negative values.1

To quantify this, note that both the KdV (α = 2) and BO (α = 1)
equations are globally well-posed in Sobolev space Hs(R). KdV is globally
well-posed in H−1(R) [21, 22], and BO in L2(R) [19, 27]. For the fractional
values α ∈ (1, 2) one has also global well-posedness in L2(R) [13] (but see
also [9] for a result in weighted Sobolev spaces). For α below unit order,
Molinet, Pilod and Vento [28] very recently established global well-posedness

in H
α
2 (R) with α > 6

7 . Numerical simulations from [24] however suggest

global well-posedness for all α > 1
2 . The value α = 1

2 is scaling critical
and believed to be critical also for the global well-posedness theory [26].
For values of α less than 1

2 there are only partial results or results under
constraints. This is due to the presence of smooth solutions that blow-up
in finite time (C1+ε-blowup for α ∈ [−1, 0) [5] and wave-breaking for α ∈
(−1,−1

3) [17]) and, connected thereto, non-uniqueness issues that appear
over longer times [4]. To remedy this, one may either as in [4] turn to more
feasible (weak) solution concepts, or restrict attention to a subclass of initial
data for which blow-up is excluded [11]. Note that, still, both these works
are for integer values of α, in which case the equation has a straightforward
interpretation on the physical side (local in the case of α = −2, and involving
the Hilbert transform in the case α = −1).

1.2. Long-time existence. Because of the above difficulties for low sub-
unit values of α, a question of interest is that of long-time existence. This
question was raised specifically in [26, Remark 4.5], and pointed out to one of
the authors by the authors of that paper2. At that time, there was already a
proof for the integer case α = −1 of the Burgers–Hilbert equation [14], and in
fact there are two [16], but no results for the fractional cases α ∈ (−1, 1), α 6=
0. Although both the KdV and the Benjamin–Ono equations model water
waves in specific regimes, the range α ∈ (−1, 1) in (1.1) is extra interesting
as it corresponds to full-dispersion models for capillary (α = 1

2) and gravity

(α = −1
2) waves on deep water [26]. In particular, the case α = −1

2 is the
homogeneous equivalent of the inhomogeneous Whitham equation (see [8]
for a fairly complete list of references for that equation), that has received
quite a bit of attention lately, and wherefrom our interest comes. In fact, the
method here developed is amenable to a generalisation covering a class of
nonlinear dispersive equations with inhomogeneous symbols which allows for
more singular interactions in low frequencies than in the homogeneous case,

1Note that the fKdV equation (1.1), which is dispersive, is inherently different from
the dissipative equation ut + uux + |D|βu = 0, investigated for example in [23].

2The main question raised in [26] concerns existence of solutions to ut + εuux −
ε|D|αux = 0 with initial data of unit size, which for long-time existence is rather dif-
ferent than ut + εuux − |D|αux = 0. The latter is the equation considered in Section 4
of [26] as well as in our paper.
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say, the Whitham equation, and we hope to pursue that in a forthcoming
investigation.

Coming back to [26] and [14], the question raised is whether classical
solutions in Hs(R) of initial size ε may be extended, in Hs(R), beyond the
hyperbolic existence time O(1/ε). The standard energy estimates [30] on
the equation (1.1) namely give

d

dt
‖∂kxu‖2L2 . ‖ux‖L∞‖u‖2Hk , (1.2)

which yields only the existence of classical solution on a time scale O(1ε ).
As developed in [16] for the case α = −1, an improvement of this may be
achieved using a modified energy based on the normal form, but without
switching to normal-form variables. In the context of the Burgers–Hilbert
equation, this leads to a short proof of the desired existence on a time
scale O(1/ε2) by working directly on the physical side in space and using
estimates for the Hilbert transform. We, too, use a normal-form transform
to construct a modified energy as in [16], but the fractional values of α makes
for substantial differences in the remaining part of the proof. In particular,
the normal transform we use involves a pseudo-product related directly to
the water-wave problem, and we work solely on the Fourier side to obtain
the desired energy estimates by using basic L2- and L∞-estimates in cubic
and quartic expressions. The details of this will be explained below. We
shall comment that our work uses only the normal form and the modified
energy, but not the decay in time of solutions, and the fKdV equation might
be globally well-posed for localised small data when 0 < α < 1/2. Such
a proof, however, probably would require a better understanding of the
cancellations of the nonlinearity in low frequencies, and call for some new
techniques.

1.3. Related works. Normal forms have a long history in mathematics,
often given the names of Poincaré or Birkhoff for their works [29] and [3]
on the topic. In modern PDEs normal forms are most often connected with
Shatah (see [31]), and appear naturally when working with water waves
and Hamiltonian formalism for such [6,7]. There are clever ways to modify
these transforms to deal with the loss of derivatives that may accompany
them [1], and a different way is to modify the energy as done in [16]. We
follow the latter idea, adopting the normal transform simply to our fractional
case by introducing a pseudo-product as ansatz. This pseudo-product then
influences the methods used in the estimates that form the bulk of the paper.
The method from [16] has been further developed in collaboration with
several different authors in a series of papers, where we mention [15], [12]
and [18] as they are most closely related to our results. It is difficult to
compare them directly: the water-wave problem is clearly more involved
in its original formulation and requires a lot of work just to deal with the
normal transform; on the other hand, the exact relation between the cases
α = ±1

2 for the fKdV equation (1.1) and the water-wave problem is, as
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far as we know, not formalised on these time scales. In working with the
water-wave problem the authors of [12, 15, 18] use holomorphic coordinates
to reduce the initial equation to a simpler form. It is not unthinkable that in
the deep-water case one could instead relate it to the fKdV, but this remains
open.

Concerning our method and the bulk of the paper it is, probably more
closely related to the work [16] on the Burgers–Hilbert equation, as well as
the paradifferential and L2/L∞-estimates appearing in long-term Sobolev
analyses of the water-wave problem such as [1], and dispersive problems such
as [20] (there the authors treat a cubic and complex-valued scalar equation
qualitatively similar to the capillary case). We prove equivalence of the
modified and classical energy, just as in [16], but a commutator that com-
pletely vanishes in the case α = −1 leaves high-order terms in the fractional
case. In contrast to the Burgers–Hilbert case, we also work completely on
the Fourier side, encountering symbols with singularities of the same form
as when using time-space frequency analysis for the water-wave problem [10]
(see also the introduction of [32], that shows the connection to (2.8) quite
well). Just as in these other works, Coifman–Meyer estimates cannot be
used because of the frequency interactions/singularities appearing in the
symbols. It is exactly these frequency interactions that arise from the dis-
persive nature of the problem. Instead, one relies on L2 × L2 × L∞ and
L2 × L2 × L∞ × L∞-estimates which regain the equivalence of Coifman-
Meyer theory for the problem at hand. In contrast to most other works,
which make use of paradifferential calculus in attacking frequency space, we
will simply divide frequency space in a rudimentary way. This is not entirely
enough, and finally we rely on a global transformation in frequency space to
obtain an order-reducing commutator. The main steps in our analysis and
the division of frequency space are outlined in Figure 1 and will be described
more exactly below.

To state our result, let Hs(R) = (1−∂2x)−s/2L2(R) be the standard Bessel-
potential (Sobolev) spaces and, for any Banach space Y, let Ck([0, T ];Y) be
the Banach space of all bounded continuous functions u : [0, T ] → Y with
bounded and continuous derivatives up to kth order. We write f . g when
f/g is uniformly bounded from above, and f h g when f . g . f .

Theorem 1.1. Let −1 < α < 13, α 6= 0 and N ≥ 3. There exists ε∗ > 0,
such that for any initial data satisfying

‖u0‖HN (R) ≤ ε,

with ε ≤ ε∗, there exist a positive number T & 1
ε2

and a unique solution u in

C([0, T ];HN (R)) ∩ C1([0, T ];HN−2(R)) of (1.1) with u(0, x) = u0(x) such

3In the subcritical case α > 1
2

a scaling argument is enough to conclude that solutions

exist on the time scale O(1/ε2) [25]. We state our results in terms of α ∈ (−1, 1), α 6= 0,
as this is natural and simple.
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that

‖u‖C([0,T ];HN (R)) . ε.

1.4. Outline. As described above, we start in Section 2 by finding a
normal-form transformation to remove the quadratic term uux from the
equation (1.1), which leads to a resulting equation with a cubic nonlinear-
ity. As this transformation involves a not-so-straightforward and singular
Fourier symbol m : R2 → R, in Proposition 2.1 we give a global growth char-
acterisation of it for α ∈ (0, 1) and α ∈ (−1, 0), respectively. This growth
characterisation is not completely sufficient, as we need to use symmetries
and the exact form of m later, but it simplifies a lot of estimates. It is
worth noting that the behaviour of m is qualitatively different for positive
and negative values of α.

In Section 3 we follow [16] to define a modified energy based on the
normal-form variables (here, one can neglect quartic terms as these are neg-
ligible in relation to the cubic for small data), and then show that the modi-
fied energy is equivalent to the standard Hs-energy if the latter is small. To
prove this we use the skew-symmetry property (2.9) of the symbol m, cor-
responding to a generalised integration by parts in two variables, combined
with L2/L∞-estimates using Proposition 2.1. These estimates are cubic,
and not very difficult.

In Section 4 we perform the quartic energy estimates on the modified
energy from Section 3. It is here that the main differences to [16] and the
other work cited above appear, and an attempt to illustrate our approach has
been made in Figure 1. The general strategy is to (i) estimate lower-order
terms using pointwise Fourier-estimates based on the growth of the symbol
m, (ii) try to eliminate the highest-order terms by (a) the use of generalised
integration by parts (skew-symmetries), (b) dividing up frequency space, and
(c) by global transformations (changes of variables on the Fourier-side). The
precise steps are as follows. We first make away with the very highest-order
terms by the use of cancellation in a commutator in Lemma 4.2. Note that
this cancellation appears also for the the case α = −1, but in our case
high-order terms still remain. We then treat the first partial energy Ek|k=1

separately in Lemma 4.3, and estimate the lower-order terms in Lemma 4.4
using the global bounds on the symbol m; this leaves us with four higher-
order terms, two of which can later be controlled by the others. At this point
we split frequency space: in a low-frequency part A1 concentrated around
the axes of (ξ, η, σ)-space (Lemma 4.5), and in a large part A2 where we
are free to move derivatives from the high-order to the low-order terms
(Lemma 4.6). After some minor adjustment to the terms in Proposition 4.8,
and noticing a symmetry, we finally need to deal with the terms in a narrow
and positive cone Ac2,+. In this set ξ h η h σ ≥ 1 and pointwise Fourier

estimates cannot be used to estimate the terms directly (negative values of
α near zero appear hardest). We therefore make a change of variables in
Fourier space to one of the two terms, which does not leave the set Ac2,+
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d

dt
E(k)(t) = F0 +G0 + 2

k∑

j=1

ck,j(Fj +Gj)
Lemma 4.2!

k∑

j=1

(Fj +Gj)

k = 1:
1

2

d

dt
E(k)(t)

Lemma 4.3

! ‖u‖2H1‖u‖2H2

k ≥ 2:
k∑

j=1

(Fj +Gj)
Lemma 4.4! F1,0 +G1,0 + Fk,0 +Gk +O(‖u‖4Hk≥2)

R3 = A1 ∪Ac
1 : |A1F1,0|+ |A1G1,0|

Lemma 4.5

! ‖u‖4Hk≥2

Ac
1 = A2 ∪Ac

2 : |A2F1,0|+ |A2G1,0|
Prop. 4.6

! ‖u‖4Hk≥2

|Ac
2(G1,0 + F1,0)−Ac

2(G̃1,0 + F̃1,0)|
Prop. 4.8

! ‖u‖4Hk≥2

Ac
2 = Ac

2,+ +Ac
2,− : Ac

2(G̃1,0 + F̃1,0) = 2Ac
2,+(G̃1,0 + F̃1,0)

Ac
2,+

η "→ξ−η+σ−→ B : Lemma 4.9 : Ac
2,+ \ B and B \ Ac

2,+ are ’narrow’ sets.

|(Ac
2,+ ∩ B)(G̃1,0 + F̃1,0)|

Prop. 4.11

! ‖u‖4Hk≥3

Ac
2Fk,0 = Ac

2F1,0
Lemma 4.7

= 1
2Ac

2(F1,0 +G1,0) +O(‖u‖4Hk≥3)
Prop 4.8–4.11

= O(‖u‖4Hk≥3).

|Gk|
Lemma 4.13

! ‖u‖4Hk≥3 .

Figure 1. An schematic outline of the main steps in the energy estimates car-

ried out in Section 4. The frequency sets A have been qualitatively sketched

in the plane as to enhance their visibility (in reality they are subsets of three-
dimensional space). The most subtle part of the energy estimates is high-

lighted: the main commutator is handled in Proposition 4.11, based on the

change of variables η − σ → ξ − η, which maps the set Ac2,+ to the set B and

leaves the measure dQ(û) from (4.16) invariant.

invariant. The set difference, however, is shown to be negligible in the
estimates in Lemma 4.9, and the resulting commutator is a good one: by
Taylor expanding the symbol in the two small variables ξ−η

η and σ−η
η in a

subset of the positive cone we get two orders of cancellation and can close
our estimates in Proposition 4.11. The remaining two terms (of the total
four from the beginning) can then be controlled using Lemma 4.7.

The short proof of the main result is given in Section 5.

2. The normal-form transformation

In the spirit of [31], we introduce the normal-form transformation u 7→ w
as follows

w = u+ P (u, u), (2.1)

but where we now seek a bilinear form P defined as a pseudo-product

F(P (f1, f2))(ξ) =

∫

R
m(ξ − η, η)f̂1(ξ − η)f̂2(η) dη. (2.2)

One may of course similarly write m(ξ, η), but we prefer to use the variables
ξ − η and η for reasons that shall hopefully soon be clear. The normal-
form transformation (2.1) will be uniquely determined by the multiplier
m(ξ − η, η). Note that P (f1, f2) is symmetric in f1 and f2 if and only if
the multiplier m(ξ− η, η) is symmetric in ξ− η and η. It will be convenient
for later use to write P (f1, f2) as a symmetric form. For this, we write
F(u∂xu)(ξ) as

F(u∂xu)(ξ) =
1

2

∫

R
(iξ)û(ξ − η)û(η) dη. (2.3)
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Direct calculations show

∂tw − |D|α∂xw = ∂tu− |D|α∂xu+ P (∂tu, u) + P (u, ∂tu)

− |D|α∂xP (u, u)

= −u∂xu+ P (|D|α∂xu− u∂xu, u) + P (u, |D|α∂xu− u∂xu)

− |D|α∂xP (u, u)

= −u∂xu+ P (|D|α∂xu, u) + P (u, |D|α∂xu)

− |D|α∂xP (u, u) +R(u),
(2.4)

where R(u) is a cubic nonlinearity. In light of (2.2), one has

F
(
P (|D|α∂xu, u)

)
(ξ) = i

∫

R
(ξ − η)|ξ − η|αm(ξ − η, η)û(ξ − η)û(η) dη,

F
(
P (u, |D|α∂xu)

)
(ξ) = i

∫

R
η|η|αm(ξ − η, η)û(ξ − η)û(η) dη,

F
(
|D|α∂xP (u, u)

)
(ξ) = i

∫

R
ξ|ξ|αm(ξ − η, η)û(ξ − η)û(η) dη.

(2.5)
It follows from (2.3), (2.4) and (2.5) that

F(∂tw − |D|α∂xw)(ξ)

= i

∫

R

(
−ξ

2
+m(ξ − η, η)

[
(ξ − η)|ξ − η|α + η|η|α − ξ|ξ|α

])

× û(ξ − η)û(η) dη + F(R(u))(ξ).

(2.6)

In order to remove the quadratic nonlinearity in the equation of (2.6), we
should set

−ξ
2

+m(ξ − η, η)
[
(ξ − η)|ξ − η|α + η|η|α − ξ|ξ|α

]
= 0, (2.7)

meaning

m(ξ − η, η) =
ξ

2
[
|ξ − η|α(ξ − η) + |η|αη − |ξ|αξ

] . (2.8)

Thus m is symmetric in ξ − η and η, and

m(ξ − η, η)η +m(η − ξ, ξ)ξ = 0. (2.9)

Note that for general variables m(a, b),

m(a, b) =
a+ b

2
[
|a|αa+ |b|αb− |a+ b|α(a+ b)

] . (2.10)

With the above choise of m the equation (2.6) reduces to

∂tw − |D|α∂xw = R(u). (2.11)
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We can now use (2.8) to recover the formula (2.1) in the case of α = −1
which was first obtained by Biello and Hunter [2] by a symplectic near-
identity transformation based on a Lie-series expansion of the corresponding
Hamiltonian. Indeed, (2.8) yields

m(ξ − η, η) = 1
2ξ sgn(ξ) sgn

(
(ξ − η)η

)
,

meaning

P (u, u) = 1
2 |D|(Hu)2.

Thus one has

w = u+ 1
2 |D|(Hu)2. (2.12)

Similarly, one can also deduce the normal-form transformation when α = 2
(cf. [14]), as

w = u− 1
6(∂−1x u)2. (2.13)

Proposition 2.1. The following relations hold globally in (ξ, η)-space.

|m(ξ − η, η)| h |ξ − η|
1−α

|η| +
|η|1−α
|ξ − η| , (2.14)

for 0 < α < 1. When 0 < β = −α < 1, one instead has

|m(ξ − η, η)| h |ξ|β
( |ξ − η|1−β
|η|1−β +

|η|1−β
|ξ − η|1−β

)
. (2.15)

Remark 2.2. The formulas (2.14) and (2.15) are valid also outside of our
range of interest α ∈ (−1, 1), α 6= 0. Note that they imply that the operator
P is not invertible at low frequencies, and possesses extra derivatives at
high frequencies. Sections 3 and 4 will mainly be devoted to treating the
difficulties this brings in the energy estimates.

Proof. For r ≥ 0, 0 ≤ θ < 2π, let

ξ − η = r cos θ, η = r sin θ,

µ(θ) = | cos θ|α cos θ + | sin θ|α sin θ − | cos θ + sin θ|α(cos θ + sin θ)

and

λ(θ) =
cos θ + sin θ

µ(θ)
.

Then it follows from (2.8) that

m(ξ − η, η) = m(r cos θ, r sin θ) =
λ(θ)

2rα
.

For all α ∈ (−1, 1), α 6= 0, we then have µ(θ) = 0 if and only if either
of the three terms cos θ, sin θ or sin θ + cos θ vanishes. Thus the six zeros
0, 12π,

3π
4 , π,

3
2π,

7π
4 are the only zeros of µ, and by Taylor’s formula and
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L’Hospital’s law one easily calculates that they are single (of order exactly
1) when α ∈ (0, 1). Since µ is continuous, one therefore has

µ = (cos + sin)(cos)(sin)h,

where h is a bounded function that is also bounded away from zero (but not
necessarily continuous). We conclude that

m(ξ − η, η) =
cos θ + sin θ

2rα(cos θ + sin θ) cos θ sin θ h(θ)

=
r2−α

2(r cos θ)(r sin θ)h(θ)
,

which finishes the proof since h is bounded away from both zero and infinity.
If −1 < α < 0 then, by Taylor’s formula and L’Hospital law, one instead

calculates that the order of the above zeros of µ is 1 + α, meaning

lim
θ→θ∗

|µ(θ)|
| sin θ|1+α ∈ (0,∞), θ∗ ∈ {0, π},

and similarly with sin θ replaced by either cos θ or cos θ + sin θ for their
respective zeros. By the same argument as above,

µ = | cos + sin |1+α| cos |1+α| sin |1+αh̃,

where h̃ is bounded as well as bounded away from zero (but not continuous).
Hence,

|m(ξ − η, η)| = | cos θ + sin θ|
2rα| cos θ + sin θ|1+α| cos θ|1+α| sin θ|1+α|h̃(θ)|

=
r2+2α

|r(cos θ + sin θ)|α|r cos θ|1+α|r sin θ|1+α|h̃(θ)|
,

which completes the proof. �

3. The modified energy

Standard theory [30] can be used to show that there exists a positive num-
ber T & 1

ε and a unique solution u ∈ C([0, T ];HN (R)) of (1.1). Therefore,

to prove Theorem 1.1, we need only to prove an a priori HN (R)-bound for
classical solution u ∈ C([0, T ];HN (R)). It follows from (2.11) that w obeys

∂tw − |D|α∂xw = R(u), (3.1)

with R(u) a cubic nonlinearity. There is a loss of derivatives if the standard
energy estimates are applied directly to (3.1). To get around this difficulty,
one possible way is to work on the original equation (1.1) with a modified
energy that can captures the interplay between dispersive and nonlinear
effects. This is the technique from [16]. In light of (2.1) one calculates that

‖∂kxw‖2L2 = ‖∂kxu‖2L2 + 2
(
∂kxu, ∂

k
xP (u, u)

)
2

+ ‖∂kxP (u, u)‖2L2 , (3.2)
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where we use (f, g)2 =
∫
R fg dx to denote the inner product in L2(R). As

observed in [16], the last term on the right hand side of (3.2) is irrelevant
to the cubically nonlinear energy estimates since it is quartic. This suggests
removing that term from (3.2), while keeping the other two as part of a
modified energy

E(k)(t) = ‖∂kxu‖2L2 + 2
(
∂kxu, ∂

k
xP (u, u)

)
2
. (3.3)

For data that is small in HN (R) the modified energy is almost equivalent to
the Sobolev energy. To handle the low-frequency singularities in the symbol
m, however, we shall use only E(k) starting from k = 1, adding a simple
L2-term to our total energy to capture the inhomogeneous (zeroth order)
part of a solution.

Lemma 3.1. Let α ∈ (−1, 1), α 6= 0. There then exists ε > 0 such that

N∑

k=1

E(k)(t) + ‖u‖2L2 h ‖u‖2HN , (3.4)

uniformly for ‖u‖HN < ε.

Proof. Let k ≥ 1. We will be done if we can show that
(
∂kxu, ∂

k
xP (u, u)

)
2
. ε‖u‖2Hk , (3.5)

whenever ‖u‖HN < ε. We first use the symmetry of P to write
(
∂kxu, ∂

k
xP (u, u)

)
2

= 2
(
∂kxu, P (u, ∂kxu)

)
2

+
k−1∑

j=1

ck,j
(
∂kxu, P (∂jxu, ∂

k−j
x u)

)
2

=: 2A0 +
k−1∑

j=1

Aj ,

where A0 is the worst term in view of Proposition 2.1. The precise structure
of m, however, allows us to treat it using integration by parts as follows.
Note that on the Fourier side, integration by parts corresponds to formula
−iξ = −(i(ξ − η) + iη), where the minus signs in front of iξ comes from the
complex conjugate in the inner product. Hence,

A0 =

∫∫

R2

m(ξ − η, η)û(ξ − η)(iη)kû(η)(iξ)kû(ξ) dη dξ

= −
∫∫

R2

m(ξ − η, η)i(ξ − η)û(ξ − η)(iη)kû(η)(iξ)k−1û(ξ) dη dξ

−
∫∫

R2

m(ξ − η, η)û(ξ − η)(iη)k+1û(η)(iξ)k−1û(ξ) dη dξ

=: A1
0 +A2

0.

(3.6)
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We first calculate the term A2
0. Since u is real, one has û(ξ) = û(−ξ). Note

also that m is invariant under the map (ξ, η) 7→ −(ξ, η). This, together with
the additional change of variables ξ ↔ η, shows that

A2
0 = −

∫∫

R2

m(η − ξ, ξ)û(ξ − η)(iη)k−1û(η)(iξ)k+1û(ξ) dη dξ.

In light of (2.9) this yields

A0 +A2
0 =

∫∫

R2

η−1
[
m(ξ − η, η)η +m(η − ξ, ξ)ξ

]

× û(ξ − η)(iη)kû(η)(iξ)kû(ξ) dη dξ = 0.

(3.7)

Hence, it is sufficient to estimate the terms A1
0 and Aj , j = 1, · · · , k − 1.

Because of the different singularities at different ranges of α the rest of the
proof is divided into two cases.

The case of α ∈ (0, 1). Note that the factor i(ξ − η)(iη)k appearing in A1
0

eliminates the low-frequency singularities of m(ξ − η, η) because k ≥ 1. We
are thus left only with estimating the high frequencies. To that aim, we first
use the triangle inequality to estimate (from (2.14)),

|m(ξ − η, η)| . |ξ − η|
1−α

|η| +
|ξ − η|1−α + |ξ|1−α

|ξ − η|

=
|ξ − η|1−α
|η| +

1

|ξ − η|α +
|ξ|1−α
|ξ − η| .

It follows that the double integral A1
0 may be L2 × L2 × H1-estimated in

modulus by (here, we have used subindices to indicate from which factors
in the integral the different factors in the Hölder estimates come from)
∥∥|D|1−α∂xu

∥∥
L2
ξ−η

∥∥|D|−1∂kxu
∥∥
H1
η

∥∥∂k−1x u
∥∥
L2
ξ

+
∥∥|D|−α∂xu

∥∥
L2
ξ−η

∥∥∂kxu
∥∥
L2
η

∥∥∂k−1x u
∥∥
H1
ξ

+
∥∥|D|−1∂xu

∥∥
H1
ξ−η

∥∥∂kxu
∥∥
L2
η

∥∥|D|1−α∂k−1x u
∥∥
L2
ξ

. ‖u‖H2−α‖u‖Hk‖u‖Hk + ‖u‖H1−α‖u‖2Hk + ‖u‖H1‖u‖Hk‖u‖Hk−α

. ‖u‖H2−α‖u‖2Hk .

(3.8)

In light of (3.6)-(3.7) one therefore has

|A0| . ‖u‖H2−α‖u‖2Hk . (3.9)

The terms Aj , j = 1, . . . , k − 1, are dealt with in a similar fashion. Since

1 ≤ j ≤ k − 1 with k ≥ 1, the derivatives in P (∂jxu, ∂
k−j
x u) will cancel the

unit order low-frequencies singularities in m. The high frequencies may in
this case be handled directly with (2.14), and one finds that |Aj | can be
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bounded by
∥∥|D|1−α∂jxu

∥∥
L2
ξ−η

∥∥|D|−1∂k−jx u
∥∥
H1
η

∥∥∂kxu
∥∥
L2
ξ

+
∥∥|D|−1∂jxu

∥∥
H1
ξ−η

∥∥|D|1−α∂k−jx u
∥∥
L2
η

∥∥∂kxu
∥∥
L2
ξ

. ‖u‖Hj+1−α‖u‖Hk−j‖u‖Hk + ‖u‖Hj‖u‖Hk+1−j−α‖u‖Hk

. ‖u‖3Hk .

(3.10)

We conclude from (3.9) and (3.10) that

|
(
∂kxu, ∂

k
xP (u, u)

)
2
| . (‖u‖H2−α + ‖u‖Hk)‖u‖2Hk ,

which in view of 1 ≤ k ≤ N yields (3.5) for ‖u‖HN < ε. This proves the
result for α ∈ (0, 1).

The case of β = −α ∈ (0, 1). The triangle inequality applied to (2.15) now
yields

|m(ξ − η, η)| . |ξ − η|
1−β|ξ|β

|η|1−β +
(|ξ|1−β + |ξ − η|1−β)|ξ|β

|ξ − η|1−β

. |ξ|
|η|1−β +

|ξ|
|ξ − η|1−β + |ξ|β.

(3.11)

Thus

|A1
0| . ‖u‖H2‖u‖Hk−1+β‖u‖Hk + ‖u‖H1+β‖u‖2Hk

. ‖u‖H2‖u‖2Hk ,
(3.12)

which combined with (3.6)–(3.7) shows that |A0| . ‖u‖H2‖u‖2
Hk . For the

terms Aj , j = 1, . . . , k−1, we now estimate m symmetrically in η and ξ−η.

|m(ξ − η, η)| .
( |ξ − η|1−β
|η|1−β +

|η|1−β
|ξ − η|1−β

)(
|ξ − η|β + |η|β

)

=
|ξ − η|
|η|1−β +

|ξ − η|1−β
|η|1−2β︸ ︷︷ ︸

m1(ξ−η,η)

+
|η|

|ξ − η|1−β +
|η|1−β

|ξ − η|1−2β︸ ︷︷ ︸
m1(η,ξ−η)

.
(3.13)

By the symmetry in ξ − η and η, and the same symmetry in the terms
Aj , terms expressed as m1(η, ξ − η) can be estimated exactly as the terms
m1(ξ − η, η). Note that

|ξ − η|1−β
|η|1−2β =

|η|β
|ξ − η|β

|ξ − η|
|η|1−β ≤

|ξ − η|
|η|1−β , (3.14)

when |η| ≤ |ξ − η|, while

|ξ − η|1−β
|η|1−2β =

|ξ − η|1−β
|η|1−β |η|β ≤ |η|β, (3.15)
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when |ξ−η| ≤ |η|. Hence, m1(ξ−η, η) . |ξ−η|
|η|1−β + |η|β. The monomial arising

from the derivatives on u in the integrand of Aj is (ξ−η)jηk−jξk. Excluding

the ξk factor for a moment, we thus estimate

m1(ξ − η, η)|ξ − η|j |η|k−j . |ξ − η|j+1|η|k−j+β−1 + |ξ − η|j |η|k−j+β

. |ξ − η|k|η|k−1 + |ξ − η|k−1|η|k.

It is a direct consequence of this estimate that |Aj | has a ‖u‖3
Hk bound, as

∣∣
∫∫

R2

m1(ξ − η, η)F(∂jxu)(ξ − η)F(∂k−jx u)(η)F(∂kxu)(ξ) dη dξ
∣∣

.
(∥∥|D|∂jxu

∥∥
L2
ξ−η

∥∥|D|β−1∂k−jx u
∥∥
H1
η
+
∥∥∂jxu

∥∥
H1
ξ−η

∥∥|D|β∂k−jx u
∥∥
L2
η

)∥∥∂kxu
∥∥
L2
ξ

. ‖u‖3Hk ,
(3.16)

and similarly for m1(η, ξ− η). By combining these estimates with (3.12) we
obtain

|
(
∂kxu, ∂

k
xP (u, u)

)
2
| . (‖u‖H2 + ‖u‖Hk)‖u‖2Hk , k ≥ 1,

which finishes the proof. �

4. The Energy Estimates

We now develop commutator estimates to bound the modified energy. If
one deals with the operator P and its symbol m directly, pointwise mono-
mial estimates like the ones in Section 3 are not possible (in fact, they are
untrue if one wants a bound in Hk(R)). One therefore has to perform global
transformations. On the physical side, a global transformation is integration
by parts; as mentioned, this however corresponds to a local equality on the
Fourier side. A different global transformation is change of variables, and it
is what we will use to tackle the problem. More precisely, we shall at each
step break out the terms of our commutator that we can handle with some
pointwise estimates on the Fourier side; whatever remains will be trans-
formed via global transformations, whereafter the resulting integrals will be
attacked pointwisely again. A caveat is that the symbol m displays differ-
ent behaviours at different frequencies, and must be dealt with accordingly.
Simultaneously, changes of variables will in general both change the domain
of integration and affect the symmetries of the Fourier variables, so we will
utilise the exact form of m as much as possible to divide R3 into symmetric
domains. In the end we will end up with a final commutator which, via
differences, has two orders of gain in the required Fourier variables.

We shall work our way via a series of smaller results, ultimately proving
the following result.
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Proposition 4.1. Let α ∈ (−1, 1), α 6= 0. Then

d

dt
E(k)(t) . ‖u‖H2‖u‖H3‖u‖2Hk + ‖u‖4Hk , k ≥ 1. (4.1)

4.1. Reduction of d
dtE

(k)(t). We start from the modified (partial) energy
(3.3), eliminating its highest-order term.

Lemma 4.2. Let Fj =
(
Q(∂jxu, ∂

k+1−j
x u), ∂kx(−u∂xu)

)
2
, and similarly let

Gj =
(
Q(∂jxu, ∂

k−j
x (u∂xu)), ∂k+1

x u
)
2
. Then

d

dt
E(k)(t) h

k∑

j=1

ck,j(Fj +Gj),

where ck,j are binomial coefficients.

Proof. From the definition of the modified energy (3.3), and the equation
(1.1), one calculates

1

2

d

dt
E(k)(t)

=
(
∂kx∂tu, ∂

k
xu)2 + (∂kx∂tu, ∂

k
xP (u, u)

)
2

+
(
∂kxu, ∂

k
x∂tP (u, u)

)
2

=
(
∂kx(|D|α∂xu− u∂xu), ∂kxu

)
2

+
(
∂kx(|D|α∂xu− u∂xu), ∂kxP (u, u)

)
2

+ 2
(
∂kxu, ∂

k
xP (|D|α∂xu− u∂xu, u)

)
2

= −
(
∂kxu, ∂

k
x(u∂xu)

)
2
−
(
∂kxu, ∂

k
x(|D|α∂xP (u, u))

)
2

+
(
∂kx(−u∂xu), ∂kxP (u, u)

)
2

+ 2
(
∂kxu, ∂

k
xP (|D|α∂xu− u∂xu, u)

)
2
,

(4.2)

where in the second step we have used the symmetry of P , and in the last
integration by parts. Now, the bilinear form P is constructed exactly to
satisfy

−u∂xu− |D|α∂xP (u, u) + P (|D|α∂xu, u) + P (u, |D|α∂xu) = 0, (4.3)

see (2.4). Thus, insertion of (4.3) into (4.2) yields

1

2

d

dt
E(k)(t) =

(
∂kx(−u∂xu), ∂kxP (u, u)

)
2

+ 2
(
∂kxu, ∂

k
xP (−u∂xu, u)

)
2
.

(4.4)
Note here that all the cubic terms in (4.2) have been transferred to quartic
ones. In the following we will estimate the separate terms on the right-hand
side of (4.4). For notational convenience, let P = ∂xQ so that

n(ξ − η, η) =
−i

2
[
|ξ − η|α(ξ − η) + |η|αη − |ξ|αξ

] , (4.5)
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is the symbol of Q, symmetric in its two arguments (just as P and m are).
We now decompose (4.4) into its highest-order and remainder terms, as

(
∂kxP (u, u), ∂kx(−u∂xu)

)
2

=
(
∂k+1
x Q(u, u), ∂kx(−u∂xu)

)
2

= 2
(
∂kxQ(u, ∂xu), ∂kx(−u∂xu)

)
2

= 2
(
Q(u, ∂k+1

x u), ∂kx(−u∂xu)
)
2︸ ︷︷ ︸

F0

+2

k∑

j=1

ck,j
(
Q(∂jxu, ∂

k+1−j
x u), ∂kx(−u∂xu)

)
2︸ ︷︷ ︸

Fj

,

(4.6)
and, using integration by parts,

2
(
∂kxP (u,−u∂xu), ∂kxu

)
2

= 2
(
∂kxQ(u, u∂xu), ∂k+1

x u
)
2

= 2
(
Q(u, ∂kx(u∂xu)), ∂k+1

x u
)
2︸ ︷︷ ︸

G0

+2

k∑

j=1

ck,j
(
Q(∂jxu, ∂

k−j
x (u∂xu)), ∂k+1

x u
)
2︸ ︷︷ ︸

Gj

.

(4.7)
The solution u being real, we have û = û(−·), so the change of variables
ξ ↔ η in combination with basic manipulations shows that

F0 = −
∫∫

R2

n(η − ξ, ξ)û(ξ − η)F(∂kx(u∂xu))(η)F(∂k+1
x u)(ξ) dηdξ.

Because n(ξ − η, η) = n(η − ξ, ξ), we therefore have

F0 +G0 =

∫∫

R2

[
n(ξ − η, η)− n(η − ξ, ξ)

]
û(ξ − η)

×F(∂kx(u∂xu))(η)F(∂k+1
x u)(ξ) dηdξ

= 0,

and the result follows. �

Although the highest-order terms F0 and G0 in d
dtE

(k)(t) completely can-
cel each other out, there are still the high-order terms Fj , Gj for j ∈ {1, k},
which in three cases are too high to be estimated separately. The subse-
quent subsections are devoted to the terms Fj and Gj , j = 1, 2, . . . , k − 1,
where we will have to divide the proof into two cases because of the different
behaviour of m and n for positive and negative values of α. But we first
make away with the case k = 1, and separate further low-order terms out of
F1, G1 in the case k ≥ 2.

Lemma 4.3. When k = 1,

d

dt
E(k)(t) . ‖u‖2H1‖u‖2H2 .
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Proof. When k = 1 there are only F1 in (4.6) and G1 in (4.7) to deal with.
From the definition of n and the estimate (2.14) one has for α ∈ (0, 1) that

|n(ξ − η, η)| . 1

|ξ|

( |ξ − η|1−α
|η| +

|ξ − η|1−α + |ξ|1−α
|ξ − η|

)

=
|ξ − η|1−α
|ξ||η| +

1

|ξ||ξ − η|α +
1

|ξ|α|ξ − η| ,

and for β = −α ∈ (0, 1) that

|n(ξ − η, η)| . 1

|ξ|1−β
( |ξ − η|1−β
|η|1−β +

|ξ − η|1−β + |ξ|1−β
|ξ − η|1−β

)

=
|ξ − η|1−β
|ξ|1−β|η|1−β +

1

|ξ|1−β +
1

|ξ − η|1−β

. 1

|ξ|1−β +
1

|η|1−β +
1

|ξ − η|1−β .

Since F1 =
(
Q(∂xu, ∂xu), ∂x(−u∂xu)

)
2

we have for α ∈ (0, 1) that

|F1| .
∥∥|D|1−α∂xu

∥∥
L2
ξ−η

∥∥|D|−1∂xu
∥∥
H1
η

∥∥|D|−1∂x(u∂xu)
∥∥
L2
ξ

+
∥∥|D|−α∂xu

∥∥
L2
ξ−η

∥∥∂xu
∥∥
H1
η

∥∥|D|−1∂x(u∂xu)
∥∥
L2
ξ

+
∥∥|D|−1∂xu

∥∥
L2
ξ−η

∥∥∂xu
∥∥
H1
η

∥∥|D|−α∂x(u∂xu)
∥∥
L2
ξ

. ‖u‖2H1‖u‖2H2 ,

and likewise for β = −α ∈ (0, 1):

|F1| .
∥∥∂xu

∥∥
H1
ξ−η

∥∥∂xu
∥∥
L2
η

∥∥|D|β−1∂x(u∂xu)
∥∥
L2
ξ

+
∥∥∂xu

∥∥
H1
ξ−η

∥∥|D|β−1∂xu
∥∥
L2
η

∥∥∂x(u∂xu)
∥∥
L2
ξ

+
∥∥|D|β−1∂xu

∥∥
L2
ξ−η

∥∥∂xu
∥∥
H1
η

∥∥∂x(u∂xu)
∥∥
L2
ξ

. ‖u‖2H1‖u‖2H2 .

For G1 =
(
Q(∂xu, (u∂xu)), ∂2xu

)
2

= 1
2

(
Q(∂xu, ∂xu

2), ∂2xu
)
2
, the correspond-

ing calculations give

|G1| .
∥∥|D|1−α∂xu

∥∥
L2
ξ−η

∥∥|D|−1∂xu2
∥∥
H1
η

∥∥|D|−1∂2xu
∥∥
L2
ξ

+
∥∥|D|−α∂xu

∥∥
L2
ξ−η

∥∥∂xu2
∥∥
H1
η

∥∥|D|−1∂2xu
∥∥
L2
ξ

+
∥∥|D|−1∂xu

∥∥
L2
ξ−η

∥∥∂xu2
∥∥
H1
η

∥∥|D|−α∂2xu
∥∥
L2
ξ

. ‖u‖2H1‖u‖2H2 ,

and

|G1| .
∥∥∂xu

∥∥
L2
ξ−η

∥∥∂xu2
∥∥
H1
η

∥∥|D|β−1∂2xu
∥∥
L2
ξ

+
∥∥∂xu

∥∥
L2
ξ−η

∥∥|D|β−1∂xu2
∥∥
H1
η

∥∥∂2xu
∥∥
L2
ξ
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+
∥∥|D|β−1∂xu

∥∥
L2
ξ−η

∥∥∂xu2
∥∥
H1
η

∥∥∂2xu
∥∥
L2
ξ

. ‖u‖2H1‖u‖2H2 .

All taken together,

|F1|+ |G1| . ‖u‖2H1‖u‖2H2 .

Since 1
2

d
dtE

(1)(t) = 2(F0+G0)+2(F1+G1), with F0+G0 = 0, the proposition
follows. �

When k ≥ 2, we employ commutator estimates to handle the terms F1,
G1, Fk and Gk. We first extract the lower-order parts of these terms. Using
integration by parts we decompose F1 as

F1 = −
(
Q(∂xu, ∂

k
xu), ∂kx(u∂xu)

)
2

=
(
P (∂xu, ∂

k
xu), ∂k−1x (u∂xu)

)
2

=
(
uP (∂xu, ∂

k
xu), ∂kxu

)
2︸ ︷︷ ︸

F1,0

+
k−1∑

l=1

ck−1,l
(
P (∂xu, ∂

k
xu), ∂lxu∂

k−l
x u

)
2︸ ︷︷ ︸

F1,l

.
(4.8)

To eliminate the low-frequency singularities, we decompose G1 instead in
the following manner:

G1 =
(
Q(∂xu, ∂

k−1
x (u∂xu)), ∂k+1

x u
)
2

=
(
P (∂xu, ∂

k−1
x (u∂xu)),−∂kxu

)
2

=
(
P (∂xu, ∂x(u∂k−1x u)),−∂kxu

)
2︸ ︷︷ ︸

G1,0

+

k−2∑

l=1

ck−2,l
(
P (∂xu, ∂x(∂lxu∂

k−l−1
x u)),−∂kxu

)
2︸ ︷︷ ︸

G1,l

.

(4.9)
By the symmetry of P and Q, we also have

F1 = Fk,

whence it is natural to define Fk,l := F1,l. Note, however, that

G1 6= Gk =
(
Q(u∂xu, ∂

k
xu), ∂k+1

x u
)
2
. (4.10)

It follows from the following lemma that the difficult terms left to treat are
F1,0, G1,0 and Gk.

Lemma 4.4. Let k ≥ 2. Then, in the language of (4.8)–(4.10),

d

dt
E(k)(t) h (F1,0 +G1,0) + (Fk,0 +Gk) +R,

with R . ‖u‖4
Hk .

Proof. We estimate the terms Fj , Gj for j = 2, . . . , k − 1, F1,l = Fk,l for
l = 1, . . . , k− 1, and G1,l for l = 1, . . . , k− 2. The estimates follow the lines
of those in the proof of Lemma 4.3, so we give the details only for Fj and
Gj .
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Integrating by parts, one has Fj = (P (∂jxu, ∂
k+1−j
x u), ∂k−1x (u∂xu))2 and

Gj = −(P (∂jxu, ∂
k−j
x (u∂xu)), ∂kxu)2. In view of (2.14), we can estimate

|Fj | .
∥∥|D|1−α∂jxu

∥∥
L2
ξ−η

∥∥|D|−1∂k+1−j
x u

∥∥
H1
η

∥∥∂kxu2
∥∥
L2
ξ

+
∥∥|D|−1∂jxu

∥∥
H1
ξ−η

∥∥|D|1−α∂k+1−j
x u

∥∥
L2
η

∥∥∂kxu2
∥∥
L2
ξ

. ‖u‖Hj+1−α‖u‖Hk+1−j‖u‖2Hk + ‖u‖Hj‖u‖Hk+2−j−α‖u‖2Hk ,

(4.11)

when 2 ≤ j ≤ k − 1 and α ∈ (0, 1). Similarly,

|Gj | .
∥∥|D|1−α∂jxu

∥∥
L2
ξ−η

∥∥|D|−1∂k−j+1
x u2

∥∥
H1
η

∥∥∂kxu
∥∥
L2
ξ

+
∥∥|D|−1∂jxu

∥∥
H1
ξ−η

∥∥|D|1−α∂k−j+1
x u2

∥∥
L2
η

∥∥∂kxu
∥∥
L2
ξ

. ‖u‖Hj+1−α‖u‖2Hk+1−j‖u‖Hk + ‖u‖Hj‖u‖2Hk+2−j−α‖u‖Hk ,

(4.12)

for the same range of parameters. When β = −α ∈ (0, 1), it instead follows
from (3.13)–(3.15), that

|Fj | .
∥∥|D|∂jxu

∥∥
L2
ξ−η

∥∥|D|β−1∂k+1−j
x u

∥∥
H1
η

∥∥∂kxu2
∥∥
L2
ξ

+
∥∥|D|β∂jxu

∥∥
L2
ξ−η

∥∥∂k+1−j
x u

∥∥
H1
η

∥∥∂kxu2
∥∥
L2
ξ

+
∥∥∂jxu

∥∥
H1
ξ−η

∥∥|D|β∂k+1−j
x u

∥∥
L2
η

∥∥∂kxu2
∥∥
L2
ξ

+
∥∥|D|β−1∂jxu

∥∥
H1
ξ−η

∥∥|D|∂k+1−j
x u

∥∥
L2
η

∥∥∂kxu2
∥∥
L2
ξ

. ‖u‖Hj+1‖u‖Hk+1−j+β‖u‖2Hk + ‖u‖Hj+β‖u‖Hk+2−j‖u‖2Hk ,

(4.13)

and

|Gj | .
∥∥|D|∂jxu

∥∥
L2
ξ−η

∥∥|D|β−1∂k−j+1
x u2

∥∥
H1
η

∥∥∂kxu
∥∥
L2
ξ

+
∥∥|D|β∂jxu

∥∥
L2
ξ−η

∥∥∂k−j+1
x u2

∥∥
H1
η

∥∥∂kxu
∥∥
L2
ξ

+
∥∥∂jxu

∥∥
H1
ξ−η

∥∥|D|β∂k−j+1
x u2

∥∥
L2
η

∥∥∂kxu
∥∥
L2
ξ

+
∥∥|D|β−1∂jxu

∥∥
H1
ξ−η

∥∥|D|∂k−j+1
x u2

∥∥
L2
η

∥∥∂kxu
∥∥
L2
ξ

. ‖u‖Hj+1‖u‖2Hk+1−j+β‖u‖Hk + ‖u‖Hj+β‖u‖2Hk+2−j‖u‖Hk .

(4.14)

All of these terms may be estimated by ‖u‖4
Hk . In view of (2.14)–(2.15)

and (3.13)–(3.15) one can estimate, in the same fashion as (4.11)–(4.14),
the terms F1,l and G1,l to show that

|
k−1∑

l=1

F1,l|+ |
k−2∑

l=1

G1,l| . ‖u‖4Hk . (4.15)

Since Lemma 4.2 holds that d
dtE

(k)(t) h
∑k

j=1 ck,j(Fj +Gj), this completes
the proof. �



ENHANCED EXISTENCE TIME IN FKDV 19

4.2. Higher-order estimates: F1,0 +G1,0. In this subsection we will deal
with the term F1,0 +G1,0. Set

A1 := {(ξ, η, σ) ∈ R3 : min{|ξ|, |η|, |σ|} < 1}.
We first estimate the integrals F1,0 and G1,0 (separately) when restricted to
the domain of integration A1. With slight abuse of notation, we let A1G1,0

denote this restriction of the integral, and similarly for other integrals to
come.

Lemma 4.5. The low-frequency integrals A1F1,0 and A1G1,0 satisfy

|A1F1,0|+ |A1G1,0| . ‖u‖2H2‖u‖2Hk .

Proof. The projection A1G1,0 equals
∫

A1

m(ξ − η, η)η(ξ − η)(iσ)k−1(−iξ)kdQ(û),

where

dQ(û) := û(ξ − η)û(η − σ)û(σ)û(ξ) dξ dη dσ. (4.16)

is the quartic (signed) measure appearing in the integral. Note that the
variables here are ξ, σ, ξ− η and η− σ (but not, for example, η). In the set
A1, one however has

|ξ|+ |η|+ |σ| . 1 + |ξ − η|+ |η − σ|,
and

|ξη| . 1 + |ξ − η|+ |ξ − η||η − σ|+ |η − σ|2, (4.17)

as a consequence of the triangle inequality applied repeatedly to the different
cases. We can thus estimate the total symbol pointwise in the following way:
for α ∈ (0, 1),

|m(ξ − η, η)η(ξ − η)| h
(
|ξ − η|2−α + |η|2−α

)

.
(
1 + |ξ − η|2−α + |η − σ|2−α

)
,

and for β = −α ∈ (0, 1),

|m(ξ − η, η)η(ξ − η)| h |ξη|β
(
|ξ − η|2−2β + |η|2−2β

)
|ξ − η|β

.
(

1 + |ξ − η|β + |ξ − η|β|η − σ|β + |η − σ|2β
)

×
(

1 + |ξ − η|2−2β + |η − σ|2−2β
)
|ξ − η|β

. 1 + |ξ − η|2 + |η − σ|2 + |ξ − η|2|η − σ|2.

Multiplying with |σ|k−1|ξ|k, we may use one H1-estimate on the σ-terms,
and one on either the (η − σ)-terms or the (ξ − η)-terms, to obtain that

|A1G1,0| . ‖u‖2H2‖u‖2Hk .
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Similarly, A1F1,0 equals
∫

A1

m(η − σ, σ)i(η − σ)(iσ)k(−iξ)kdQ(û), (4.18)

so the estimate for α ∈ (0, 1) can be obtained exactly as for G1,0 if we borrow

a σ from σk, yielding

|m(η − σ, σ)(η − σ)σ| .
(
1 + |ξ − η|2−α + |η − σ|2−α

)
.

When β = −α ∈ (0, 1), the symbol is also the same as for G1,0 (with (ξ−η, η)
replaced by (η − σ, σ)) so we just need to replace (4.17) with its symmetric
equivalence

|ση| . 1 + |η − σ|+ |η − σ||ξ − η|+ |ξ − η|2,
to obtain that

|m(η − σ, σ)(η − σ)σ| . 1 + |ξ − η|2 + |η − σ|2 + |ξ − η|2|η − σ|2,
in the case β = −α ∈ (0, 1). Multiplying with |σ|k−1|ξ|k and performing the
estimates with one sup-norm on ‖|D|k−1u‖H1

σ
and one on either the (η−σ)-

factor or the (ξ − η)-factor, we obtain the desired bound on A1F1,0. �
As what concerns F1,0 + G1,0 we are thus left with estimating the high-

frequency part of the integrals. Let Ac1 denote the complement of A1, that
is

Ac1 = {(ξ, η, σ) ∈ R3 : |ξ|, |η|, |σ| ≥ 1},
and Ac1F1,0 and Ac1G1,0 the corresponding restrictions of the integrals F1,0

and G1,0 to the set Ac1. We divide Ac1 ⊂ R3 further using

A2 := {(ξ, η, σ) ∈ Ac1 : 1
10 |z2| < |z1 − z2|+ |z2 − z3|,

for some choice of zj = ξ, η, σ}, (4.19)

and its complement Ac2 in Ac1. The point of A2 is that, by the triangle
inequality, any powers of ξ, η and σ can be readily transferred to powers of
|ξ − η|+ |η − σ|, as we have

|z1|+ |z2|+ |z3| . |z1 − z2|+ |z2|+ |z2 − z3| . |z1 − z2|+ |z2 − z3|.
As before, we use the sets A2 and Ac2 also to denote restrictions of integrals
to the same sets. Using the possibility to move derivatives to ξ−η and η−σ
as just described, it is straightforward to verify the following proposition.

Proposition 4.6.

|A2F1,0|+ |A2G1,0| . ‖u‖2H2‖u‖2Hk .

Now, the integral left to treat is

Ac2(G1,0 + F1,0)

= −i

∫

Ac2
[m(ξ − η, η)(ξ − η)η −m(η − σ, σ)(η − σ)σ]σk−1ξkdQ(û).

(4.20)
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We note here that in Ac2 one has |ξ/η − 1|+ |1− σ/η| ≤ 1
10 , so that there

sgn(ξ) = sgn(σ) = sgn(η),

which will be of great help. In particular, it allows us to assume that ξ, η, σ
are all positive, as m, u and the energy are real: because m is jointly even
in its arguments, one gets after the shift of variables (ξ, η, σ) → −(ξ, η, σ)
that the integrals in (4.20) equal twice their value when taken only over

Ac2,+ := {(ξ, η, σ) ∈ Ac2 : ξ, η, σ ≥ 1} ,
in view of that Ac2 lies in the exterior of the unit cube. In Ac2,+ we may
furthermore write

ξ = (1 + µ)η and σ = (1 + ν)η, (4.21)

where |µ|, |ν| ≤ 1
10 are uniformly small quantities. Consequently,

ξ h σ h η h ξ − η + σ & 1. (4.22)

We shall use the small variables µ = ξ−η
η and ν = σ−η

η to move derivatives

from η h ξ h σ to ξ − η and η − σ.
Pointwise estimates in (4.20) are not sufficient for the desired bounds.

We will therefore apply changes of variables to take advantage of the com-
mutator structure of (4.20). Although we make us of the difference in this
integral, we emphasise that this difference is in fact (implicitly) inherent al-
ready in each of the terms F1,0 and G1,0. As the following proposition makes
precise, these two terms are namely equal in Ac2, modulo a good term, so
that Ac2F1,0 ∼ 1

2Ac2(F1,0 +G1,0).

Lemma 4.7. In (4.20) one has Ac2F1,0 = Ac2G1,0 +O(‖u‖H2‖u‖H3‖u‖2
Hk).

Proof. First note that m(σ − η, η)η(σ − η) = m(η − σ, σ)σ(η − σ). We now
apply the changes of variables η ↔ ξ ↔ σ ↔ η, after which we use the above
equality and the fact that Ac2G1,0 and u are real. That yields

Ac2G1,0 = −i

∫

Ac2
m(ξ − η, η)η(ξ − η)σk−1ξkû(ξ − η)û(η − σ)û(σ)û(ξ) dξ dη dσ

= −i

∫

Ac2
m(σ − η, η)η(σ − η)ξk−1σkû(σ − η)û(η − ξ)û(ξ)û(σ) dξ dη dσ

= i

∫

Ac2
m(η − σ, σ)σ(η − σ)ξk−1σkû(η − σ)û(ξ − η)û(σ)û(ξ) dξ dη dσ.

By comparing with the symbol for F1,0 in (4.18), we see that

Ac2(F1,0 −G1,0) = i

∫

Ac2
m(η − σ, σ)(η − σ)(ξ − σ)ξk−1σkdQ(û).

When α is positive the total symbol may be estimated by
( |η − σ|1−α

|σ| +
|σ|1−α
|η − σ|

)
|η − σ| (|ξ − η|+ |η − σ|) |ξ|k−1|σ|k
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. |η − σ|2−α|ξ − η||ξ|k−1|σ|k−1 + |η − σ|3−α|ξ|k−1|σ|k−1

+ |ξ − η||ξ|k|σ|k−α + |η − σ||ξ|k|σ|k−α,
where we have used the equivalence σ h ξ in Ac2. Direct (L2)2 × (H1)2-
estimates then yields a H2 × H3 × (Hk)2-bound on u in this case. When
α = −β is negative, we again use the equivalence σ h ξ h η to obtain

|η|β
( |η − σ|1−β
|σ|1−β +

|σ|1−β
|η − σ|1−β

)
|η − σ| (|ξ − η|+ |η − σ|) |ξ|k−1|σ|k

. |η − σ|2−β|ξ − η||ξ|k−1+β|σ|k−1+β + |η − σ|3−β|ξ|k−1+β|σ|k−1+β

+ |η − σ|β|ξ − η||ξ|k|σ|k + |η − σ|1+β|ξ|k|σ|k.

(4.23)

By further estimating the second term in (4.23) by

|η − σ|3−β|ξ|k−1+β|σ|k−1+β

. |η − σ|2(|η|1−β + |σ|1−β)|ξ|k−1+β|σ|k−1+β

. |η − σ|2|ξ|k|σ|k−1+β,
we may obtain a H2 ×H3 × (Hk)2-bound by applying the H1-estimates to
the factors associated with (ξ − η) and (η − σ). �

Now, we separate two comparable parts of Ac2F1,0 and Ac2G1,0. By ex-
pressing Ac2F1,0 as

i

∫

Ac2
m(η − σ, σ)(η − σ)σkξk dQ(û)

= i

∫

Ac2

m(η − σ, σ)

η
(η − ξ)(η − σ)σkξk dQ(û)

+ i

∫

Ac2

m(η − σ, σ)

η
(η − σ)σkξk+1 dQ(û)

=: Ac2F (η−ξ)
1,0 +Ac2F̃1,0,

and Ac2G1,0 as

− i

∫

Ac2
m(ξ − η, η)η(ξ − η)σk−1ξkdQ(û)

= −i

∫

Ac2
m(ξ − η, η)(η − σ)(ξ − η)σk−1ξkdQ(û)

− i

∫

Ac2

m(ξ − η, η)

ξ
(ξ − η)σkξk+1dQ(û)

=: Ac2G(η−σ)
1,0 +Ac2G̃1,0,

we may namely neglect the terms Ac2F
(η−ξ)
1,0 and Ac2G

(η−σ)
1,0 in relation to the

others as these both contain a second-order difference product (η−ξ)(η−σ).
Using the same type of symbol estimates as in the proof of Lemma 4.7 one
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then easily obtains ‖u‖2H2‖u‖2Hk -bounds for these good terms. We sum-
marise the situation in the following proposition.

Proposition 4.8. We have Ac2(G1,0+F1,0) = Ac2(G̃1,0+F̃1,0)+O(‖u‖2H2‖u‖2Hk),
where

Ac2(G̃1,0 + F̃1,0)

= −i

∫

Ac2

[
m(ξ − η, η)

ξ
(ξ − η)− m(η − σ, σ)

η
(η − σ)

]
σkξk+1dQ(û).

(4.24)

Recall from the discussion after Proposition 4.6 that, by symmetry, it is
enough to consider positive values of ξ h σ h η h ξ − η + σ & 1 in Ac2;
that set is called Ac2,+. Although it is invariant under changes of variables
between the variables ξ, η and σ, it is not under the transformation

η 7→ ξ − η + σ,

that we shall now use. This change of variables substitutes ξ−η for η−σ and
leaves dQ(û) invariant. It furthermore maps η into a variable of comparable
size in Ac2,+. It however maps Ac2,+ to B = B1 ∩ B2, where

B1 := {(ξ, η, σ) ∈ R3 : ξ, ξ − η + σ, σ ≥ 1},
and

B2 :=
{

(ξ, η, σ) ∈ R3 : |σ − η|+ |ξ − σ| ≤ 1
10ξ,

|ξ − η|+ |σ − ξ| ≤ 1
10σ,

|η − σ|+ |ξ − η| ≤ 1
10(ξ − η + σ)

}
.

Performing the above change of variables on the second term in (4.24), we
obtain that we are left with estimating

i

∫

Ac2,+∩B

[
m(ξ − η, η)

ξ
− m(ξ − η, σ)

ξ − η + σ

]
(ξ − η)σkξk+1 dQ(û)

+ i

∫

Ac2,+\B

m(ξ − η, η)

ξ
(ξ − η)σkξk+1 dQ(û)

− i

∫

B\Ac2,+

m(ξ − η, σ)

ξ − η + σ
(ξ − η)σkξk+1dQ(û).

(4.25)

The two latter terms may be easily done away with using the following
lemma.

Lemma 4.9. The sets Ac2,+ \ B and B \ Ac2,+ are both contained in
{

(ξ, η, σ) ∈ R3 : 1
2 ≤ ξ, η, σ ≤ 3

2 + 30(|ξ − η|+ |η − σ|)
}
.

Proof. Start by assuming that (ξ, η, σ) ∈ Ac2,+ but do not belong to B1.
Then

ξ − η + σ < 1 and ξ ≥ 1.
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But | zizj − 1| ≤ 1
10 for any choice of zi, zj ∈ {ξ, η, σ}, so |η − σ| ≤ 1

5ξ. Hence

1 ≤ ξ ≤ 5
4 , and from that similar bounds for η and σ follow by their relative

closeness to ξ.
If instead (ξ, η, σ) ∈ Ac2,+ but do not belong to B2, one first shows by

relative closeness that 1
2η ≤ ξ − η + σ ≤ 3

2η, so that 1
10(ξ − η + σ) can be

replaced, up to a small factor, by η in the definition of B2. Since (ξ, η, σ)
now does not belong to this set, we are back in the situation of (4.19) but
with an adjustment of the factor 1

10 , that is

1
20z2 ≤ |z1 − z2|+ |z2 − z3|

holds for some choice of zj ∈ {ξ, η, σ}, zi 6= zj for i 6= j. The relative
closeness of ξ, σ, η then yield the stated inequality.

The proof for the case when (ξ, η, σ) ∈ B but do not belong to Ac2,+ is
carried out in almost exactly the same fashion, using the relative closeness
of variables, and that it is only η that differ in the inequalities (with respect
to ξ − η + σ). �

Corollary 4.10. The integrals over Ac2,+ \ B and B \Ac2,+ in (4.25) can be

estimated in modulus by a factor of ‖u‖H2‖u‖H3‖u‖2
Hk .

Proof. This is an almost immediate consequence of Lemma 4.9 and the es-
timates (2.14) and (2.15) for m as any powers of ξ and σ can be estimated
by the same powers of 1 + |ξ − η|+ |η − σ|. �

The main commutator. We are now at our final step of Section 4.2,
where we estimate the first integral in (4.25). This is a commutator that
will improve our estimates by two orders of cancellations, allowing us to
move derivatives in an advantageous way.

Proposition 4.11.

|F1,0 +G1,0| . ‖u‖H2‖u‖H3‖u‖2Hk .

Remark 4.12. It is an immediate corollary of Proposition 4.11 that with
Fk,0 and Gk as in (4.8)–(4.10) one has

∣∣∣14 d
dtE

(k)(t)− (Fk,0 +Gk)
∣∣∣ . ‖u‖H2‖u‖H3‖u‖2Hk + ‖u‖4Hk .

Proof. Denote

N(ξ, η, σ) : =
m(ξ − η, η)

ξ
− m(ξ − η, σ)

ξ − η + σ
.

In view of (4.22) one then calculates that

N(ξ, η, σ) =
1

2
[
|ξ − η|α(ξ − η) + η1+α − ξ1+α

]

− 1

2
[
|ξ − η|α(ξ − η) + σ1+α − (ξ − η + σ)1+α

]
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=
σ1+α − (ξ − η + σ)1+α − (η1+α − ξ1+α)

2
[
|ξ − η|α(ξ − η) + η1+α − ξ1+α

][
|ξ − η|α(ξ − η) + σ1+α − (ξ − η + σ)1+α

] .

If we let

Q(ξ, η, σ) = σ1+α − (ξ − η + σ)1+α − (η1+α − ξ1+α)

be the numerator above, it follows from the definition of m that

|N(ξ, η, σ)| . |m(ξ − η, η)m(ξ − η, σ)|
ξ(ξ − η + σ)

|Q(ξ, η, σ)|.

The fractions in this expression may be estimated using Proposition 2.1 and
(4.22). For α ∈ (0, 1),

|m(ξ − η, η)m(ξ − η, σ)|
ξ(ξ − η + σ)

h
1

ξ(ξ − η + σ)

( |ξ − η|1−α
η

+
η1−α

|ξ − η|

)( |ξ − η|1−α
σ

+
σ1−α

|ξ − η|

)

. |ξ − η|2−2αξ−4︸ ︷︷ ︸
Rα1 (ξ,η)

+ |ξ − η|−αξ−2−α︸ ︷︷ ︸
Rα2 (ξ,η)

+ |ξ − η|−2ξ−2α︸ ︷︷ ︸
Rα3 (ξ,η)

,

(4.26)

and when β = −α ∈ (0, 1),

|m(ξ − η, η)m(ξ − η, σ)|
ξ(ξ − η + σ)

h
1

ξ1−β(ξ − η + σ)1−β

( |ξ − η|1−β
η1−β

+
η1−β

|ξ − η|1−β
)( |ξ − η|1−β

σ1−β
+

σ1−β

|ξ − η|1−β
)

. |ξ − η|2−2βξ−4+4β

︸ ︷︷ ︸
Rβ1 (ξ,η)

+ ξ−2+2β

︸ ︷︷ ︸
Rβ2 (ξ,η)

+ |ξ − η|−2+2β

︸ ︷︷ ︸
Rβ3 (ξ,η)

.

(4.27)
The symbol Q may be readily dealt with using the proximity expressed in
(4.21), as

Q(ξ, η, σ) = η1+α
{[

(1 + ν)1+α − (1 + ν + µ)1+α
]
−
[
1− (1 + µ)1+α

]}
.

A direct Taylor expansion yields

(1 + ν)1+α − (1 + ν + µ)1+α = −(1 + α)µ(1 + ν)α +O(µ2)

= −(1 + α)µ+O(µ2 + |µν|).
Since, similarly,

1− (1 + µ)1+α = −(1 + α)µ+O(µ2),

we have
∣∣(1 + ν)1+α − (1 + ν + µ)1+α − 1 + (1 + µ)1+α

∣∣ . |µ|(|µ|+ |ν|),
and thus

|Q(ξ, η, σ)| . |η|−1+α|ξ − η|(|ξ − η|+ |η − σ|). (4.28)
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In effect, we have moved two derivatives from ξ h σ to ξ − η and η − σ. It
then readily follows from (4.22)-(4.28) and the triangle inequality that

Rα1 (ξ, η)|Q(ξ, η, σ)| . |ξ − η|4−2αξ−5+α + |ξ − η|3−2α|η − σ|ξ−5+α

. |ξ − η|−αξ−1,

Rα2 (ξ, η)|Q(ξ, η, σ)| . |ξ − η|2−αξ−3 + |ξ − η|1−α|η − σ|ξ−3

. |ξ − η|−αξ−1,

Rα3 (ξ, η)|Q(ξ, η, σ)| . ξ−1−α + |ξ − η|−1|η − σ|ξ−1−α,

Rβ1 (ξ, η)|Q(ξ, η, σ)| . |ξ − η|4−2βξ−5+3β + |ξ − η|3−2β|η − σ|ξ−5+3β

. |ξ − η|βξ−1,

Rβ2 (ξ, η)|Q(ξ, η, σ)| . |ξ − η|2ξ−3+β + |ξ − η||η − σ|ξ−3+β

. |ξ − η|βξ−1,

and

Rβ3 (ξ, η)|Q(ξ, η, σ)| . |ξ − η|2βξ−1−β + |ξ − η|−1+2β|η − σ|ξ−1−β

. |ξ − η|βξ−1 + |ξ − η|−1+β|η − σ|ξ−1.

This is all to be multiplied with (ξ − η)σkξk+1 in (4.25), whence, finally, it
follows that

|Ac2(G̃1,0 + F̃1,0)| . ‖u‖H2‖u‖H3‖u‖2Hk . (4.29)

Now, tracing back, we have

F1,0 +G1,0 = A1(F1,0 +G1,0) +Ac1(F1,0 +G1,0),

where the first term is O(‖u‖4
Hk) in view of Lemma 4.5 (recall that k ≥ 2) ;

the second is divided into

Ac1(F1,0 +G1,0) = A2(F1,0 +G1,0) +Ac2(F1,0 +G1,0),

where again Proposition 4.6 shows that the first isO(‖u‖4
Hk). Finally, Propo-

sition 4.8 shows that

Ac2(F1,0 +G1,0) h Ac2(F̃1,0 + G̃1,0) +O(‖u‖4Hk).

In view of Corollary 4.10 this finalises the proof. �
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4.3. The remaining term: Gk. In this short subsection we will treat the
last term in our energy estimate from Lemma 4.4. Note that the single term
Fk,0 = F1,0 has already been effectively estimated: according to Lemma 4.5
its low frequencies may be estimated by the appropriate term in (H2)2 ×
(Hk)2, and Proposition 4.6 shows that the projection of the integral onto
the set A2 obeys the same bound; now, by Lemma 4.7, Fk,0 h Fk,0 + Gk,0
modulo terms in H2 ×H3 × (Hk)2 in Ac2, so Proposition 4.11 implies that

|Fk,0| . ‖u‖H2‖u‖H3‖u‖2Hk .

It remains only to bound Gk.

Lemma 4.13. The term Gk from (4.10) satisfies

|Gk| . ‖u‖H2‖u‖H3‖u‖2Hk .

Proof. We first move some derivatives in Gk using an integration-by-parts
type argument:

Gk =
1

2
(Q(∂xu

2, ∂kxu), ∂k+1
x u)2

=
1

2

∫
n(ξ − η, η)(ξ − η)ηkξk+1û2(ξ − η)û(η)û(ξ) dη dξ

=
1

2

∫
n(ξ − η, η)(ξ − η)2ηkξkû2(ξ − η)û(η)û(ξ) dη dξ

+
1

2

∫
n(ξ − η, η)(ξ − η)ηk+1ξkû2(ξ − η)û(η)û(ξ) dη dξ

=
1

2

∫
n(ξ − η, η)(ξ − η)2ηkξkû2(ξ − η)û(η)û(ξ) dη dξ

− 1

2
(Q(∂xu

2, ∂kxu), ∂k+1
x u)2,

where in the last equaility we have taken advantage of the anti-symmetry of
n in (ξ, η), and the fact that u is real whereas n is imaginary. Thus

Gk =
1

4

∫
n(ξ − η, η)(ξ − η)2ηkξkû2(ξ − η)û(η)û(ξ) dη dξ.

Now, combining (2.14) with (4.5) one has for 0 < α < 1,

|n(ξ − η, η)| . 1

|ξ|

( |ξ − η|1−α
|η| +

|ξ − η|1−α + |ξ|1−α
|ξ − η|

)

. 1

|ξ|α|η| +
1

|ξ||η|α +
1

|ξ||ξ − η|α +
1

|ξ|α|ξ − η| ,

and, using (2.15) for 0 < β = −α < 1, that

|n(ξ − η, η)| . 1

|ξ|1−β
( |ξ − η|1−β
|η|1−β +

|ξ − η|1−β + |ξ|1−β
|ξ − η|1−β

)

. 1

|η|1−β +
1

|ξ|1−β +
1

|ξ − η|1−β .
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This yields the desired estimate in the same way as in the rest of the paper.
�

5. Proof of the main result

We finally give the proof of our main theorem.

Proof of Theorem 1.1. In view of (4.1), summing over k from 1 to N , one
has

N∑

k=1

E(k)(t) .
N∑

k=1

E(k)(0) +

∫ t

0
‖u(s, ·)‖4HN ds,

which in turn yields

N∑

k=1

E(k)(t) + ‖u‖2L2 .
N∑

k=1

E(k)(0) + ‖u0‖2L2 +

∫ t

0
‖u(s, ·)‖4HN ds. (5.1)

Here, we have used the L2-conservation of solutions to (1.1). According to
Lemma 3.1, we on the other hand have

N∑

k=1

E(k)(t) + ‖u‖2L2 h
1

2
‖u‖2HN (5.2)

for all t ≥ 0 and all ‖u‖HN < ε sufficiently small. We conclude from (5.1)-
(5.2) that

‖u‖2HN . ‖u0‖2HN +

∫ t

0
‖u(s, ·)‖4HN ds,

which finishes the proof by a continuity argument. �
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[5] A. Castro, D. Córdoba, and F. Gancedo, Singularity formations for a surface
wave model, Nonlinearity, 23 (2010), pp. 2835–2847.

[6] W. Craig and C. Sulem, Normal form transformations for capillary-gravity water
waves, in Hamiltonian partial differential equations and applications, vol. 75 of Fields
Inst. Commun., Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 73–110.

[7] , Mapping properties of normal forms transformations for water waves, Boll.
Unione Mat. Ital., 9 (2016), pp. 289–318.

[8] M. Ehrnström and E. Wahlén, On Whitham’s conjecture of a highest cusped
wave for a nonlocal shallow water wave equation, Ann. Inst. H. Poincaré Anal. Non.
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