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Recovery of files can be a challenging task in file system investigations, and most carving techniques are
based on file signatures or semantics within the file. However, these carving techniques often only
recover the files, but not the metadata associated with the file. In this paper, we propose a novel, generic
approach for carving metadata by searching for equal and co-located timestamps. The rationale is that
there are some common metadata for files and directories within each file system. Our generic time
carver provides potential timestamp locations for repeated timestamps in each metadata structure,
identifying potential metadata for files. A semantic parser then filters the results with respect to the
specific file system type. In our experiments, extraction of MFT entries in NTFS and inodes in Ext4 had
near perfect precision for metadata entries with multiple equivalent timestamps, and for such metadata
structures we obtained perfect recall for NTFS. For known file systems, we use the information found
within identified metadata to recover files, and by recovering files and their associated metadata we
increase the evidential value of recovered files.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. All rights reserved. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

File carving is a technique which identifies and extracts files
from unallocated areas based on signatures found within the file
content, and not by using file system metadata (Garfinkel, 2007).
While extremely useful, file carving has a few challenges. First,
investigators need to decide which file type to carve. To decrease
the file carving time, investigators often select the file types they
assume could be pertinent for the criminal case. For instance, by
carving for typical image files in cases related to sexual abuse of
children, the investigator limits the ability to identify other file
types. Furthermore, not all files have a signature, and will not be
found by using file carving. Some carving techniques will carve
based on the assumption that files have contiguous blocks, which
will fail when trying to carve a fragmented file (Garfinkel, 2007).

Our novel approach does not use file carving, but rather meta-
data carving. We search for repeated co-located timestamps, based
on equality, in a small window to obtain locations of potential
timestamps. In this way, timestamps are used as a kind of dynamic
signature. Once verifying the timestamp as likely to be legitimate
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for a particular file system, we use the metadata surrounding it to
fully or partially recover the file. Our approach handles both
contiguous and fragmented files.

We only recover file or directory metadata from NTFS and Ext4

to demonstrate the usability of the novel approach, but the
approach can be extended to recover metadata from other file
systems. In order to achieve a realistic scenario we reformat the
volume with another file system, effectively ‘‘damaging’’ the pre-
vious file system. The tools developed in this paper are prototypes,
and the main target group are file system experts with the
competence tomanually assess file system structures. The tools and
the disk images can be downloaded for review at (Nordvik et al.,
2020).

To our knowledge, no one has used equality between closely co-
located timestamps to identify metadata before as a carving tech-
nique. Previous attempts suffer frommany shortcomings including
the inability to find static signatures for all pertinent metadata
structures.

Our approach focuses on metadata structures found in MFT

entries or inodes carved from unallocated space. There will always
be a risk that the blocks (clusters) pointed to by the discovered
metadata structures may be overwritten by new or existing allo-
cated files, but this may be identified by examining the allocated
file system bitmap for allocated blocks, and by comparing metadata
hts reserved. This is an open access article under the CC BY-NC-ND license (http://
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Table 1
File Systems with timestamps co-located within metadata structures.

File System Co-located timestamps Granularity

NTFS (Carrier, 2005) 4 64 bit - ns intervals since 1.1.1601
ReFS (Nordvik et al., 2019) 4 64 bit - ns intervals since 1.1.1601
APFS (Hansen and Toolan, 2017) 4 (5) 64 bits - ns since 1970
HFS þ (Apple, 2004) 4 32 bits - s since 1904
BTRFS (Bhat and Wani, 2018) 3 (4) 64 bits - s since 1970 þ 32 bits (ns)
ExFAT (Hamm, 2009) 3 32 bits þ UTC offset
FAT (Carrier, 2005) 3 16 bits for time (except accessed), 16 bits for day
UFS1 (Carrier, 2005) 3 32 bits - s since 1970 þ 32 bits (ns)
UFS2 (Carrier, 2005) 4 64 bits (ns) since 1970
Ext2/3 (Carrier, 2005) 4 32 bits - s since 1970
Ext4 (Dewald and Seufert, 2017) 4 34 bits - s since 1970 þ 30 bits (ns) (G€obel and Baier, 2018)
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information with the content of the recovered file. Most file sys-
tems have some sort of bitmap systemwhich has bits representing
each block (cluster), and allocated blocks have their corresponding
bit set [3, p.311].

Our new approach is suited for recovery of metadata and file
content from storage devices that have been reformatted with
another file system, with the same kind of file system when not
assessing the allocated inode/file table, or from generally damaged
file systems. The approach is also useful for finding historical
metadata structures located on disk that are not contained in MFT

or inode tables.
Detailed file system structures are described by Carrier (2005).

Even though his book does not include details about Ext4, it
contains most of the basic information from Ext2 and Ext3.
Dewald and Seufert (2017) include more details about Ext4.

Assumptions

Currently, most file systems will include at least 3 contiguous
timestamps. Linux file systems normally use the MAC (Modified,
Accessed and Changed) timestamps [3, p.297], for instance Ext2

and Ext3 use the contiguous atime (accessed), ctime (inode
changed), mtime (data modified) and dtime (deleted) [3, p.298].
Ext4 also contains the same contiguous timestamps, but adds the
crtime (creation) in the end of the inode (Ext4 development team
and 20, 2019). NTFS and ReFS use 4 contiguous timestamps (Cre-
ation, Modified, MFTmodified, and Accessed) in multiple attributes
(Carrier, 2005; Nordvik et al., 2019). Table 1 shows a few file sys-
tems with closely co-located timestamps.

Objectives

� Can we reliably use time as a generic identifier to carve for file
and directory metadata structures in different file systems?

� What is the reliability of recovery of files using the discovered
metadata in Ext4 and NTFS?

We aim to identify file or directory metadata structures from
different file systems based on a common identifier. In our case,
equal and closely co-located timestamps, which will allow for a
generic approach for metadata carving. We identify the potential
timestamps by using a simple string matching algorithm, and then
we interpret the semantics1 of the expected file systemmetadata in
order to significantly reduce the number of false positives.

Identifying the metadata is not enough in order to connect file
content and the metadata, because the content may be overwritten
1 Previous authors used “semantic filtering” to describe this, we have chosen to
adopt that terminology.
by allocated files. We discuss why it is important to perform a
manual assessment of both metadata, content, and context in order
to decide if the metadata and the file content can be connected.

Novelty of the new approach

Existing techniques for metadata carving do not use timestamps
as a common identifier (dynamic signature) for different file sys-
tems. Even Dewald and Seufert (2017) describe that there is no
magic signature for inodes in the Ext4 file system, and they depend
on semantics from Ext4 in order to identify the locations of the
inode metadata structures. However, metadata structures can
easily be found by using string pattern matching based on equality,
but unfortunatelywith a large number of false positives which have
similar properties. Thus, obtaining high recall and low precision for
finding file system metadata entries. We also do not depend on a
start date or an end date to identify the timestamps. This datetime
agnostic nature of our approach allows the support of any file
system that has closely co-located timestamps. While we do not
depend on other semantics in order to identify the locations of
these potential timestamps, we do utilize semantic parsers to
validate and reduce the number of false positive hits of file system
metadata structures significantly.

Importance for digital forensics

By using the novel generic metadata time carving approach, we
do not need to specify which specific file types to carve for. The
approach does not consider file types or file signatures; it only
carves for metadata structures that potentially can be used for re-
covery of files. By accurately connecting the metadata to the cor-
responding file content, we also increase the evidential value of the
files recovered, which most existing carving techniques do not
accomplish.

Organization of this paper

We have introduced the objectives and the novel generic met-
adata time carving approach in the introduction section. In the
literature review and contributions section we discuss the current
state of the art related to file and metadata carving. In the method
section we describe the carving algorithms and the methods we
used for the experiments, and in the results sectionwe describe our
results using precision and recall. Thenwe discuss our results in the
discussion section, and we conclude in the conclusion and further
work section.

Related work and contributions

There has been a significant amount of literature published on
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file carving, both using signature based contiguous carving, specific
file type semantic carving or other statistical approaches in order to
identify and carve for fragmented files. We address literature more
specifically related tometadata carving, therefore, a complete list of
all file carving literature will be out of scope.

Mueller (2008) introduced the idea of searching for NTFS

timestamps as a string in unallocated space, since each timestamp
is 64 bits and represents the number of nanosecond intervals since
1.1.1601. He also describes that the timestamps are in groups of 4
contiguous timestamps for each group. He created an EnScript

(plugin for EnCase) that searched for the NTFS timestamps and
bookmarked them. The EnScript uses a grep search for a
particular date range, and it has an option for checking the next 8
bytes in order to only include hits that are followed by another valid
timestamp. Use of the consecutive timestamps search ideally re-
duces the number of false positives, but based on the comments on
this blog post it appears as though the consecutive timestamps
search does not work correctly.

In order to decrease the number of false positives, our idea is to
search for a set of identical timestamps within a small window in
order to detect metadata structures that describes files. Only met-
adata structures with a specific number of equal timestamps will be
found. Our approach is more generic since we do not need to know
how the timestamp is formatted (other than that they are closely
co-located).

McCash (2010) based his work on the EnScript from Muller
(Mueller, 2008), and adds the idea of using this information to
detect MFT records and their attributes to extract the data content.
He also describes that the script can be used to identify directory
indexes and Registry key nodes.

Metadata carving

Dewald and Seufert (2017) consider the case in which the Ext4

superblock or group descriptor table is corrupted or overwritten,
and they use either metadatamode or contentmode for parsing file
systems or metadata carving respectively. In content mode their
solution is to carve for inodes, which potentially provides the
metadata necessary to extract the file content. However, the fil-
ename and inode number is not recovered in content mode. Since
inodes have no magic bytes (except for extent headers in Ext4),
they describe that they carve for them using pattern matching and
analysis of the metadata. They conclude that their approach can
reconstruct files from Ext4 despite not knowing about the specific
structure of the file system. They do, however, describe that they
need multiple Ext4 parameters in metadata mode for file system
parsing. They describe that these can either be given by the user, or
estimated based on the file system size.

Their work shows that carving formetadata structures is already
suggested for file recovery. Their metadata mode approach
explicitly depends on semantics specific for Ext4 in order to
include both metadata and file content, which enables parsing of
the file system (not carving). Their carving approach, content mode,
is not able to recover filename or inode numbers.

Plum and Dewald (2018) describe carving for APFS container
superblocks, volume superblocks, or inode carving. APFS uses
multiple container superblocks, and each of them may contain a
reference to the previous container superblock. Within each
container superblock they find volume superblocks, which describe
specific volumes. These can be used to parse a specific volume and
recover files from previous states of the file system. They further
describe that inodes do not have a specific signature, but they can
be carved using a combinations of the object type and subtype
inode fields. These inodes can be used to potentially recover files
with the connected metadata.
Their approach is similar to the work of Dewald and Seufert
(2017), but it differs by depending on specific semantics from
APFS. Our generic approach will also work for the APFS inodes,
since each inode has a set of contiguous timestamps. However, we
have not implemented a semantic parser for APFS.

Work by Garfinkel (2013) describes the Bulk_Extractor tool
which parses a large stream of data, using multiple threads, for
feature extractions (URLs, e-mail addresses, Google search terms,
Exif data, etc), which utilizes optimistic decompression before
extracting the features. The features are detected based on rules
which consider local context, which improve precision and recall.
The features extracted do not need to be found within file entries.
As part of the result, histograms of extracted features are created.

Evaluating recovered files

Casey et al. (2019) describe forensic processes such as authen-
tication, classification and evaluation of recovered files. The prob-
lem is that different recovery tools do not use the same names for
the same thing. They suggest to use Potentially Recovered before
the authentication is performed. The authentication process is
necessary in order to decide if the file is Fully Recovered, Partly
Recovered, only Name and Metadata recovered, or Name Recov-
ered. The decision should be based on confidence level after testing
or trying to falsify different scenarios or claims.

Method

We use a generic automated approach to identify a potential set
of timestamps within a specified threshold. We then record the
byte positions in the image file where the set of timestamps were
found. The approach is generic because it will identify the metadata
structures in any file system that uses two or more timestamps of a
user defined size to describe the temporal information of a file or
directory. Since our approach is based on identifying equality be-
tween sequences of bytes, we do not require a start or end time for
the timestamps. This approach will increase the false positive rate,
but our semantic parsers attempt to exclude false positives by
verifying if each timestamp location has a valid metadata structure
for a specific file system.

As a proof of concept, we have added support for the recovery of
metadata based on the identified timestamps in the Ext4 and NTFS

file systems.

General potential timestamp algorithm description

We first describe the general potential timestamp algorithm at a
high-level overview. A motivating factor for this algorithm is that
often one or more MAC timestamps are identical. Furthermore, for
file system entries in NTFS, ReFS, and ExtX the timestamps are
closely co-located together in the metadata structure. Let m be the
length in bytes of the potential timestamp, let T be an array of bytes
of the data being searched. The user will define the length m (ExtX
requiresm ¼ 4 and NTFS requiresm ¼ 8), as well as the length k of
bytes to be searched after the potential timestamp, which we refer
to as the search threshold. The crux of this search approach is that
every non-overlapping m bytes in our binary data T is considered a
search keyword, and we look for repetitions of this size m byte
sequence within the subsequent k byte threshold window
following the keyword. If the given byte pattern occurs one or more
times within this threshold window, then we have identified a
potential timestamp.

The mechanics of the search algorithm are based on the sliding
window approach as is often found in malware analysis. The search
begins at T ½0�, in which the first m bytes are taken to be a potential



Fig. 1. Visual representation of the search procedure where three matching time
stamps are searched for. The underlined byte sequence represents the current byte
sequence being tested as a possible timestamp. The subsequent bytes in brackets
represent the search threshold for checking matches. The bytes in grey boxes represent
checks for matching byte sequences. In the second row, after a second match is found,
we advance the search procedure ahead by k bytes, where the process is repeated.
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timestamp, which contains the values T½0 : mÞ. We then check if
this m byte keyword is equivalent to every non-overlapping m
bytes in T ½m : ðmþkÞÞ, and keep count of how many exact matches
have occurred. Given that we are searching for timestamps where
at least two of them per metadata structure are equivalent, if no
matches are found, we would then advance our search position by
m bytes to position T½0þm�. The advancement of m bytes assumes
that timestamps will always fall on a multiple ofm, and we do plan
in implementing an exhaustive search functionality which checks
for timestamps on every one or two bytes. Such skip sizes were
chosen to enhance the speed of search substantially, as the current
solution for 8 byte timestamps will process a disk image 8 times
faster than an exhaustive search alternative that checks for po-
tential timestamps on every single byte. If one or more matches are
foundwe advance our search position by k bytes to position T ½0þk�.
In either, case the entire search procedure is repeated from our new
search position. This process is repeated for the entirety of the data
T, except last k threshold of bytes. The skip size of kwas chosen as it
is the minimum size to avoid multiple hits for the same metadata
structure. Note, for our current implementation k must be a mul-
tiple of m, otherwise the bytes being searched will be misaligned
with the actual disk image timestamps. Algorithm 1 provides the
pseudocode of the basic potential timestamp carving algorithm.

Algorithm 1. Basic Potential Timestamp Carving Algorithm.
We provide an illustration for further explanation. In Fig. 1, the
underlined bytes represent the potential timestamp keyword with
m ¼ 8, and the brackets represent the threshold of bytes, k ¼ 24,
being searched for matches.

This general search by itself likely produces a large number of
false positives, thus we placed an additional condition to improve
the algorithm's precision. We determine if the potential timestamp
to be searched for consists of a single repeated byte value, and if so,
we skip the search procedure and move forward m bytes. This is to
avoid fruitless searches on blocks of repetitive bytes. Examples of
such timestamps we wish to avoid are 0x0000000000000000 and
0xFFFFFFFFFFFFFFFF.

Here we approximate the time complexity of the worst case
search scenario. We assume that the entire disk image could be
read into memory at once to simplify our approximation. In this
scenario, we are searching a disk image with no sets of co-located
bytes that are repeated two or more times (we get no hits). In
this fashion, we cannot perform any byte window skips after
searching through our search window threshold. We also perform
the most generic type of potential timestamp carving, where we do
not consider repetitive byte sequences. In this way, we cannot skip
any particular keyword byte sequence, since all byte sequences will
be considered to be potentially valid timestamps. Thus, every m
sequence of non-overlapping bytes on the array of disk image bytes
T will have a search procedure performed on it, in which the entire
threshold window of size k is searched.

Given this worst case scenario, the computational time

complexity is O
��

jT j
m

�
� k

m

�
. The integer of the cardinality of T

divided by m is the number of byte sequences that have a search
procedure performed on it, and it is multiplied by the maximum
number of byte matching checks, the threshold of bytes k divided
by m where m is a factor of k.
Practical potential timestamp program details

The general timestamp carving algorithm was implemented in
Cþþ, which we refer to as cPTS, and is supported by a number of
libraries. Since disk images under analysis are likely greater than
memory, we use the cross-platformmio memory mapping library.2

This allows us to read in 1 GB of memory at a time, and read the
image as a series of arrays. However, once the potential time stamp
2 https://github.com/mandreyel/mio.

https://github.com/mandreyel/mio


Fig. 2. Diagram for system deployment, used in our experiments.
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carver arrives within the last 4096 bytes of the gigabyte in memory,
we load a new gigabyte into memory from the search point relative
to the disk, as to handle directory entries that are spread across
segments. For converting datetime formats into decimal form, we
used the Date library.3 The program outputs a text file list of all the
potential timestamp locations (in byte offset) that were found.

Semantic parsers

Identifying closely co-located potential timestamps based on
equality will provide generic results, but will contain many false
positives due to its genericity. Therefore, parsers which utilize the
semantics of the expected metadata structures of specific file sys-
tems were developed for more accurate automation. Our Python 3
parsers accept the timestamp locations from the generic timestamp
carver and the disk image as input, as seen in Fig. 2. Our experi-
ments utilize this process.

NTFS semantic parser

The NTFS script assesses if the potential timestamp is within a
Standard Information Attribute (SIA), or a Filename Attribute (FNA).
To reduce the number of false positives, we exclude any potential
timestamps from before the year 1970 and years beyond 2100. The
script outputs metadata information contained in the SIA, FNA, and
Data Attribute if possible. When attempting to parse out a full MFT
entry, we start with the identification of the SIA. Once we identify
the location of the SIA header, we use the length of the SIA to see
what the header of the next attribute is, ultimately searching for the
Data Attribute. If the next attribute header is not the Data attribute,
and the first byte of the attribute type is less than 0x80, we read the
length of the attribute and perform another skip down to the next
attribute. Though, if the next attribute is an FNA, we will output its
metadata information, and add the byte location of its first time-
stamp to a list of future timestamps to avoid. This is done so we do
not get redundant FNA outputs. Encountering at least one FNA is
required to read out a potential Data Attribute we encounter. This is
repeated until we find the Data attribute, or abandoned if we
identify an attribute typewhere its first byte is greater than 0x80 or
if we have searched more than the length of the potential MFT
entry. A limitation of this work is that we do not currently perform
MFT entry searching starting from identified File Name Attributes,
where their timestamps are more likely to be reliably4 found due to
their relatively unchanging nature compared to Standard Infor-
mation Attributes (Cho, 2013). Another limitation is that we
currently do not support Alternate Data Streams. Relevant MFT
entry information is output into the file NTFSResults.txt, and if
the file is resident, we also include the resident file encoded in
ASCII.

Ext4 semantic parser

The Ext4 Python 3 script uses the text file produced by the cPTS
tool containing the potential timestamp locations, the disk image,
the byte position to where the partition starts, and the assumed
block size. For conducting a similar search as was done in the NTFS

parser, these parameters and a default static inode size of 256 bytes
are the only assumptions we make.

Like the NTFS parser, we use the potential timestamps as anchor
points and test for various semantics at local offsets. But now, we
3 https://github.com/HowardHinnant/date.
4 FNA timestamps are updated mainly on MFT entry creation and on file name

change.
also verify information found in likely directory entries. For Ext4,
we test all possible offsets backwards for file flags of interest: 0x04
for directories, 0x08 for regular files, and 0x0A for symbolic links.
For Ext4 inodes not using extents, we ensure the relative position
of bytes 36e39 of the inode are unused. For inodes using extents,
we check that the relative position of its extent header magic
number is equal to 0xF30A. We then conduct additional tests to
increase the likelihood of having discovered an inode, such as using
some of Dewald and Seufert's (Dewald and Seufert, 2017) time-
stamp consistency tests, that the size of the file appropriately fits
the sector count, and that the size of the file cannot exceed the size
of the disk image. All inodes found to be sufficiently valid have their
likely starting points added to a list.

The great difficulty in performing full file extraction in Ext4 is
connecting inodes and their directory entries when not relying on
superblocks, block group descriptor tables, or inode bitmaps. Such
connections will need to be made if these metadata structures are
irrecoverable. The inode contains the majority of the metadata for
the file, but its associated directory entry contains the filename and
the inode number. The task was then to connect inodes based on
their physical position to their actual inode number. We pursued
solving this problem solely relying on information we can find
locally within or around a validated inode.

Our solution revolves around using the verified inodes of di-
rectories that have not been deleted, as this gives us ground truth
information about inode numbers and filenames, including the
inode number of the directory itself. Verification is performed by
following the directory's extent or direct block pointer to its first
directory entry and checking if bytes 4e6 are 0x0C0001 (the length
of the entry and the first byte of the length of the name). For Ext4,
we perform two passes over the disk image. The first pass collects
information on valid inodes, creating a dictionary of inode numbers
and filenames found in all validated directories, as well as a so-
called synchronization list. This synchronization list is a recording
of the first validated inode of a directory found per block group,
wherein we record the inode's location and inode number. The
second pass uses the inode dictionary and the synchronization list
to make inode number estimations of validated inodes, outputting
the inode number alongside its likely filename.

We can estimate the inode number of potential inodes in two
different ways. The first way uses the positions found in the inode
synchronization list, where we can then make estimates of the
inode numbers of the validated inodes that are in the same block
group as the validated directory being used from the inode syn-
chronization list. Assuming that the Ext4 inodes are a static size of
256 bytes, the following is the equation of the estimated inode
number e, where dn represents the inode number of the validated
directory being used from the inode synchronization list, vl repre-
sents the validated inode location, and dl represents the location of
the inode of the same directory obtained from the inode synchro-
nization list:

e¼dnþ ððvl�dlÞ =256Þ (1)

https://github.com/HowardHinnant/date
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Using the inode synchronization list, we can estimate inode
numbers prior to encountering the directory its filename and inode
number are held in (in case of deletion). During the second pass
(while we are estimating inode numbers), when encountering a
validated inode of a directory, we update the entry in the inode
synchronization list for the current block group we are in. This al-
lows for rather local synchronization of the current inode number.

The second way of estimating inode numbers uses the previous
estimations, and the inode dictionary. The first time we make an
estimate for a particular inode number, we update its entry in the
inode dictionary by adding in the inode's file version number and
created time as parameters. If the inode number did not exist in the
dictionary prior to the inode estimation, we simply create an entry
with these parameters. Once the entry has been updated or created,
it cannot change. The file version number and the created time
should be relatively unique per inode, and so when parsing future
inodes we check if we have already recorded its file version number
and creation time in the inode dictionary, and write out the asso-
ciated recorded inode number and filename.

We output a text file and csv file, ExtResults, where we record
pertinent inode and directory entry information. We list both the
estimated inode number and filename (using the inode number as
a key in the inode dictionary), and the recorded inode number and
filename (using the file version number as the key in the inode
dictionary).

Experimental setup

We used an external USB thumb drive and wiped the partition5

using the tool dc3dd v. 7.2.646 (Department of Defence Cyber
Crime Center, 2012) in macOS Mojave v. 10.14 (Linux could
also be used).
Experiment - NTFS reformatted with exFAT

We formatted the device in Windows 10 using NTFS, where we
created 50 files, and for each file type we named them File1, File2,
File3,..., File10. Five different file types were used, and therewere 10
files for each of these file types, where the extensions were added
to the filename. Then we reformatted the file system using exFAT.
Fragments, or the complete MFT table should still be available.
Finally, 10 text files were added to the reformatted image.

The files created by the batch file give us a known basis in order
to test precision and recall. We know all the file names and content,
as the base forensic image (ntfsbase.dd) of the partition was
created before reformatting it with exFAT. After the reformatting
and the creation of 10 text files, we created a new forensic image of
the partition (nftsexfat.dd) using dc3dd.

We measured the false positive and false negative rates by
comparing the carved metadata results with the filenames we
found in ntfsbase.dd. A false positive is a hit location not found
withinmetadata describing a file or directory, while a false negative
is a set of timestamps not identified as a hit, but which is located
withinmetadata describing a file or directory. Finally, we calculated
5 We wiped only the partition, shown in Listing 1, because MacOS gave a resource
busy message when trying to wipe the complete raw disk.
the precision and recall (Perry et al., 1955) of the methods
implemented.
We used a timestamp size of 8 bytes, a search threshold of 24
bytes to search for equivalent timestamps, where at least 3 time-
stamps are equal. The output from Listing 2 was saved to the file
cPTS.txt.
Experiment - previous Ext4 reformatted with NTFS

The next step was to assess if each hit was part of a standard
information attribute (SIA) or a file name attribute (FNA). Then the
script in Listing 3 identifies the Data attribute and shows the resi-
dent data or the non-resident data runs.

Additionally, we tested if X-Ways, EnCase, and EaseUS Data

Recovery Wizard (previously named Recuva) were able to
recover the previous NTFS partition or to find unallocated MFT

entries using the same forensic image.
For the Ext4 experiment we used Linux Mint 18.2 and

Windows 10. In Linux we wiped the storage device using the
command shred, overwriting using zeros. Then we formatted the
storage device with Ext4, and mounted it. We created 50 di-
rectories with 500 files in each directory. The files were numbered
from 1.txt to 25000.txt. The file names correspondwith the number
of bytes (a's) in each file. The text files were selected because they
are more difficult for carving tools to recover, as there is no
signature. Therefore, recovery of these text files relies solely on
metadata. The file system was unmounted, and a ground truth
forensic raw image named expExt4.dd was created using dd.
Then it was mounted to a Windows 10 OS, and reformatted with
NTFS using a 4096 byte cluster size. Then 10 files were created. A
raw image was created with the name Ext4NowNTFS.dd.
We used a timestamp size of 4 bytes, a search threshold of 12
bytes to search for equal timestamps, where at least 2 timestamps
are equal. The output from Listing 4 was saved to the file cPTS.txt.
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In Listing 5 we start at byte offset 0 in the image, the block size is
4096 bytes, blocks per group are estimated to block size*8 ¼
32768.

Limitations

Wedo not knowat the start of the investigation if there has been
a previous file system. We suggest to search for known signatures
of volume boot records/superblocks, whichmay document the start
of a previous partition. We also suggest to try to recover the
partition before attempting our metadata carving approach.

The output results of the prototype should be assessed by file
system experts (or expert systems) in order to assess if a file (name,
metadata and content) can be fully or potentially recovered. This is
called authentication, and it includes an evaluation of the classifier,
the results, and finally a confident decision (Casey et al., 2019).

Our prototype tool will not work properly on a manipulated file
systemwhere sectors or clusters are removed or added, because the
mapping between data runs (extents) and the cluster locations are
not in sync. Our approach depends on the existence of metadata
structures in the unallocated area of the partition, and we assume
that the start of a data run (extent block pointer) is relative to the
start of the partition. The prototype also does not consider fixup
values found in the last two bytes in each sector in a MFT entry.
Since both SIA and FNAs are among the first attributes in a MFT
entry, we assume they normally will not be found within a fixup
value. We do not consider files that use multiple MFT records if the
DATA attribute is not located in the first of these MFT records. The
currently implemented semantic parsers do not consider FNAs in
directory indexes, but the cPTS tool will locate them. Lastly, we do
not consider Ext4 inode record sizes other than the standard 256
bytes.

We are aware our experiments have a small sample size, and we
have not included testing on real forensic images from real criminal
cases in order to comply with legislation.We are also aware that we
have only tested using specific versions of Linux and Windows,
which opens for possible deviations if other OSes are selected. We
selected this small sample because it allows us to know the ground
truth of the content, which is difficult when using a system volume
where the OS is continuously creating and deleting files. Using an
unknown source makes it difficult to compute precision and recall,
and gives us no control of the different variables that may affect the
results.

Results

The cPTS command took 13 s to run on a 2 GiB byte dd image
file. The ntfsParser.py took less than 1 s, while the ext4par-

ser.py took 8 s. This is faster than the runtime performance of
Dewald and Seufert's (Dewald and Seufert, 2017) tools, however
they additionally exported the file content automatically.

NTFS metadata carving

For each discovered MFT entry, we know the SIA is associated
with the FNA because of the distance between them is less than
1024 bytes, which could visually be verified or falsified by inter-
preting the byte location for the SIA and FNA timestamp hits. The
Table 2
Precision and Recall for finding MFT records in ntfsexfat.dd

TP FP FN Precision Recall

SIA matches 162 1 0 0.9939 1
Data attribute belongs to the FNA because we skipped to the next
attribute until we found the unnamed Data attribute, which we
found within the next 1024 bytes. This means we have the name,
metadata and the content, and since we have the data runs, we
know this record is non-resident and potentially recoverable. In
order to test if the original content can be connected to the meta-
data, we need to extract the content and perform hypothesis
testing. Extraction of the content based on known data runs is
described by Carrier (2005).

In Table 2 we focus on files/directories and Standard Information
Attributes (SIAs). We know each base MFT entry has one SIA. Since
we have 79 files (50 files and the 29 system generated files and
directories) in our experiment, we know there must be 79 SIAs in
theMFT table. We also know there must be 79 SIAs in $LogFile6 and
4 SIAs in $MFTMirr [3, p.303]. This gives a total of 162 SIAs. We
found all 162 SIAs, and only one of the hits was a false positive. We
did not have any false negatives for SIAs. Our computation of pre-
cision and recall is shown below.

Precision¼ True Positives
True Positivesþ False Positives

¼ 162
163

¼ 0:9939

Recall¼ True Positives
True Positivesþ False Negatives

¼ 162
162

¼ 1

For our simple experiment, it was easy to verify the found MFT
records with the known base. However, with a forensic image from
a real criminal case hypothesis testing must be performed in order
to verify that the data runs found in the MFT entries still can be
connected to the file content, and that they are not completely or
partly overwritten by another file.

Hits from $LogFile

In addition to entries in the MFT Table and the MFTMirr, we
found MFT entries within the unallocated $LogFile, but in this case
they did not include data runs or resident data. It was interesting to
observe that our created files had a Data attribute within the
$LogFile with the size of only 0x18 bytes, which only contains the
attribute header. This means that we cannot fully recover files from
all MFT entries found in $LogFile.

Ext4 metadata carving

We were able to recover all inode metadata entries that were
not overwritten by NTFS, but reformatting Ext4 with NTFS in our
experiment wiped approximately 20257 inodes from the inode
table. When using flex groups, the inode tables are all located
continuously in the first block group (Dewald and Seufert, 2017),
instead of being divided into its corresponding block group. Our
current observations show that our approach supports both types,
and does not depend on information from the block group de-
scriptors. For each extent found in an inode, an extraction of the file
content is easily performed by extracting from the extent start
block as well as the number of blocks contained in this extent. A
deleted inode will normally have the extents zeroed out, making
the inode connection to the file content infeasible. However, since
we find hits for duplicate inodes in different physical locations, we
may be able to recover the file content by using extents found in
these duplicates. We did not extract the files from the overwritten
Ext4 image due to their quantity, and thus are only discovering
potentially recovered files.
6 The only file system transactions we performed were creating files.



Table 4
Precision of iNode classification for non-reformatted image.

TP FP Precision

77675 0 1

Table 5
Precision and Files Found for finding and attributing iNode numbers for known files
in Ext4AttrNowNTFS.dd

TP FP Precision Files Found

Recorded inode matches True inode 15544 41692 0.2716 4848
Estimated inode matches True inode 7091 50145 0.1239 5755
Est or Rec inode Matches True inode 16553 40683 0.2892 5755

Table 6
Precision of inode classification for reformatted image.

TP FP Precision

57427 0 1
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In order to measure precision and recall, we created the same
Ext4 dd images again following the same method as previously
described, but in addition we added the real inode number as an
attribute to each inode for the 25000 text files and 50 directories
we created in the experiment using the Linux attr command.
This way we could compare our estimated inode number and the
recorded inode number with the real inode number included in the
attribute.

For the original and reformatted images, we conducted two pre-
cision and recall experiments. The first calculates the precision of
attributing our recorded or estimated inode number to the true inode
number of the inode, and we also calculate the recall of finding our
known files with correct attribution. For calculating recall, if at least
one inodeper inodenumberwas foundandwe correctlyestimatedor
recorded its inode number, it counted as a true positive, where the
duplicate inodes (with respect to its true inode number) were
removed. For these precision and recall calculations, we only
considered inodes we extracted that contained their true inode
number as an attribute. Table 3 shows our results for the non-
reformatted version of the dd file. A similar process was done for
the reformatted dd file, as seen in Table 5, except rather than calcu-
lating the recall we simply record the number of discovered inodes
permethod of inode number estimation. Thiswas done aswe cannot
be certain how many false negatives were due to our methods or to
the file system reformatting (we cannot find something that is over-
written). Note that since at least 20257 of 25050 inodes were wiped
from the table, and we recover 5755 inodes, that we are potentially
recovering at least 963 previously overwritten inodes.

The second experiment calculates the precision of our method
to correctly classify inodes, whether they were from known files or
not. False positives in this case are inode hits that contain junk
information. Table 4 shows the precision from the non-reformatted
experiment, and Table 6 shows the precision of the reformatted
experiment. In both experiments, we obtained 100% precision. We
cannot calculate the recall in this case, since we cannot know how
many inodes (from the inode tables and copies throughout the
disk) exist on the image.

Commercial tools

The results of the tool testing described in this section are
shown in Table 7.

NTFS reformatted with exFAT

We created a case in X-ways v 19.8 and imported the file
ntfsexfat.dd. Using the feature refine volume snapshot, we
selected the particularly thorough file system data structure search,
and checked search FILE records everywhere. The X-ways manual
describes that this search should be able to find MFT entries from
unallocated space. However, the tool did not find any of the MFT
entries from the previous NTFS file system.

X-Ways also has a function that should be able to scan for lost
partitions, but this feature was not able to detect the previous
partition. We searched for MFT entries, but X-Ways did not find the
MFT entries from the previous partition.
Table 3
Precision and Recall for finding and attributing iNode numbers for known files in
expExt4Attr.dd

TP FP Precision Recall

Recorded inode matches True inode 77481 0 1 1
Estimated inode matches True inode 27336 50145 0.3528 1
Est or Rec inode Matches True inode 77481 0 1 1
We also tried to carve for file content (except text files), and X-
Ways was able to carve the contiguous files, but not the tiff files that
had two fragments.

EnCase v8.08 was not able to find the MFT records from the
previous NTFS partition in ntfsexfat.dd. We selected the Full
Investigation pathway, which includes the relevant Recover Folders
(which should locate hidden files in FAT and NTFS volumes), and
the Windows Artifact Parser with MFT Transactions selected. Ac-
cording to the EnCasemanual, the Recover Folder option should be
able to recover NTFS files from unallocated clusters. Since EnCase

is a closed source tool, we do not know how this is implemented.
EnCase did find the Backup VBR (Volume Boot Record) when we
searched for it using the Partition Finder. However, it was not
possible to recover the partition in disk view.

We tried using EnCase to carve for picture files (bmp, jpg, png,
and tiff). The content of all 10 bmp files were found, but also 178
extra false positives. Each of the 10 jpg file contents were found,
and with no false positives. We missed one of the png files, but
found the others. EnCase did not find any of the tiff files. This is
because EnCase searched for the tiff signatures 49492A000A,
49492B00, 4D4D002A, 4D4D002B, while the tiff file created in
Windows 10 had a signature 49492A008E.

We tested the storage device we performed the experiment on
with EaseUS Data Recovery Wizard v11.15, and it was able to
identify all the 50 files and their content. Since this tool is closed
source, we assume they performed a partition recovery by using
the VBR backup. For partition recovery they only showed the size,
the date created and the path. It also carved for files, but the carved
files did not include the metadata. Lastly, we found the tool could
not correctly carve the fragmented files or the text files.

Ext4 reformatted with NTFS

Carving for ASCII text files is not supported by EnCase v8.08,
and therefore carving for the ASCII text files in the previous Ext4
Table 7
Tool testing - Carve for metadata from previous file system when reformatted with
another file system.

EnCase X-Ways EaseUS Bulk_Extr cPTS

NTFS metadata N N Y? Y Y
Ext4 inode N N N N Y
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file system is not possible. However, we tried to carve for 10
different supported file types and measured the run time to be 27 s
on a 2 GiB disk image. Next we tried 100 different supported file
types, which took about 1 min. Finally, we selected all 349 sup-
ported file types, but we canceled the progress after 6 h.

We performed a test using the tool EaseUS Data Recovery

Wizard v11.15, but it did not find any of the 25000 text files
within the experiment storage media. All the 16 files it listed were
allocated NTFS files, and it did not find any previous Ext4 partition.

Additional testing

In order to identify an expected number of false positives using
our tools, we performed additional testing on a real 16 GiB raw
image from a cell phone that did not have any MFT records and an
80 GiB Windows 10 machine with no Ext4 inodes. Searching for
inodes in the Windows image we found 3 false positives, and
searching for MFT entries on the cellphone image we found 8 false
positives.

Lastly, we tried running Bulk_Extractor on our reformatted
images, wherein it found all of the filenames of the MFT entries in
both images, but did not recover any of the metadata information
from Ext4.

Discussion

In our experiments, we reformatted one file system with a
different file system. If we know it has been reformatted, we can
first try to recover the previous file system by assessing the backup
VBR or superblocks. This may potentially recover the file system,
and we can accurately find files that the other file system did not
overwrite. However, if the other file system has overwritten parts of
the previous file system, then we may need to use our approach to
find the parts that are not overwritten.

Discussion related to NTFS

For the timestamp hits wherewe found NTFS MFT entries with a
resident data attribute, we can reliably connect the metadata and
the file content (Casey et al., 2019). This is because the resident data
is found within the MFT entry. Normal file carving will not find
small ASCII text files that are resident in MFT entries, because
these files have no signature within their content.

MFT entries could potentially be found in multiple sources;
memory dumps, unallocated space, in the allocated system files like
$MFT, $MFTMirr, $LogFile, hiberfil.sys, etc. The allocated $MFT
should normally be accurate if not manipulated.

Our approach does not need a complete MFT table, nor a com-
plete MFT entry. For instance, we do not use the MFT entry header
at all. However, we rely on that the SIA, FNA or Data attributes are
co-located within the size of a typical MFT entry. This allows re-
covery of partly overwritten metadata. Currently, we do not search
for a Data attribute if the SIA is not found, but we plan to change
this dependency in later releases of the tool. This change will allow
detection of FNAs in index entries.

We need to use the $Bitmap of the new file system to identify
which clusters/blocks are in use. If a data run found in a recovered
metadata structure uses one or more of the clusters allocated by a
file in the new file system, we must assume that the file content is
partly overwritten.

It is important that the investigator is knowledgeable about the
file systems found when using our approach. First of all, our
approach uses the data runs found within the NTFS metadata, and
the first data run for the MFT entry is relative to the start of the file
system, and we need to use the correct cluster size used by the
previous NTFS file system. Furthermore, subsequent data runs are
relative to the previous run (Carrier, 2005, p.258).

Since we are proposing a generic approach, we cannot automate
the extraction of files without considering the specific context,
which requires context based recovery tools or manual expert
assessment. For instance, the storage media could have first had an
NTFS file system, and then been reformatted with NTFS or another
file system. Then of course the context is different, and must be
taken into consideration.

We have shown that popular digital forensic tools, such as the
current versions of X-Ways or Encase, do not necessarily find the
MFT entries when the NTFS system is reformatted to exFAT. This
may incorrectly cause the investigator to utilize file carving, which
of course does not include the metadata, but only the file content.
Such actions would result in missing pertinent files, and partly
recovered fragmented files.

Discussion related to Ext4

If a user deleted files using the command line rm tool, or by
emptying the trash, some of the important fields in the deleted
inodes are set to 0, for instance the total size, the link count, the
number of extents, and the extents fields. The timestamps for
changed, modified and deleted are set to the deletion time, while
the accessed and created are not changed. However, since we may
find duplicate inodes in locations outside the inode tables, we may
find previous versions of a deleted inode, which can allow us to
recover the content and the metadata.

Addressing our statistics and current challenges

Statistics: Our high precision and recall does not indicate that
our tool will find nearly all metadata entries without error, but it
indicates that it will work well given that the metadata structures
include repeated timestamps. When creating the disk images, files
were guaranteed to have at least two or three identical timestamps.
If our current solution is applied on a realistic disk image, the
percentage of identified metadata entries should effectively be the
same as the percentage of metadata entries on the disk that have
the identical timestamps.

Metadata Remnants: Our approach does not differentiate be-
tween MFT records/inodes found in the MFT/inode table and the
instances found in the journal or elsewhere. This is not a limitation,
this is a feature since remnant frommetadata structures describing
files can be scattered across the file system.

Virtual Machines: We assume that not all virtual storage in a
Virtual Machine is wiped on creation. This means there could be
remnants frommetadata from previous host file systems if the area
assigned to the virtual storage has previously been allocated to the
MFT/inode table or to a previous journal. Our approach will also
find these timestamp locations.

Our approach can also be used to identify metadata currently
not linked to existing file content, which is important for event
reconstruction.

Conclusion and further work

The aim of this research was to answer the following research
questions.

� Can we reliably use time as a generic identifier to carve for file
and directory metadata structures in different file systems?

� What is the reliability of recovery of files using the discovered
metadata in Ext4 and NTFS?



R. Nordvik et al. / Forensic Science International: Digital Investigation 33 (2020) 301005S10
We have shown that a set of similar timestamps can be used as a
form of dynamic signature (magic identifier), and we carve for
these by using a simple byte matching algorithm. Then we use file
system semantics in order to interpret metadata structures, and
manually extract the resident or non-resident files. Finally, a file
system expert evaluates the classification, authentication and
makes a decision for final classification of the manually recovered
files.

We argue that a manual evaluation of the reliability of the
connection between themetadata and file content is necessary, and
that this assessment is context based and should be manual for
non-resident file content. The manual assessment could, however,
be supported by automated tools.

Connecting the inode number and the file name is challenging
in Ext4 when an inode table is partly wiped. However, connecting
the inode metadata with its corresponding file content is still
possible even without the correct inode number or file name. On
the non-reformatted Ext4 image, we were able to achieve perfect
precision and recall when attributing inode numbers to the
extracted inodes of the files and directories we placed on the image.
For the reformatted Ext4 image, it was possible to achieve greater
than 28% precision in correctly attributing inode numbers to the
extracted inodes of the files and directories we placed on this im-
age. Of the known 25050 known files and directories in the original
image, we were able to recover inodes for 5755 of them. Since at
least 20257 of the 25050 inodes were wiped from their inode ta-
bles, this means that we are potentially recovering at least 963
inodes.

When accurately connecting the metadata to the file content,
we increase the evidential value of the evidence. We should not
only use file carving when searching for files in unallocated space,
since there may be pertinent metadata structures within unallo-
cated space. As long as metadata structures exist in unallocated
space, our generic metadata time carving approach combined with
the semantic parsers can be used to connect metadata to file con-
tent. Knowledge of the file system context is necessary in order to
assess the accountability of the connection between the metadata
carved and the file content recovered.

When extracting inodes, our method had 100% precision for
both the original Ext4 image and the reformatted image. Even
though our tool outperforms commercial tools given our specific
experimental setup, our tool should still be considered a proof of
concept prototype.

Support for file systems other than Ext4 and NTFS is left for
further work. Automation of file recovery is possible, but requires
context aware features. Further research is needed in order to
improve the accuracy of connecting Ext4 inode number and file
name to the inode entry, especially in the context of partially wiped
inode tables.
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