
A Flexible Network Interface for a Real-
time Simulation Framework

Lars Ivar Hatledal

Simulation and Visualization

Supervisor: Arne Styve, IIR
Co-supervisor: Houxiang Zhang, IHB

Department of ICT and Natural Sciences

Submission date: June 2017

Norwegian University of Science and Technology

Summary

This thesis presents a flexible network interface for the real-time simulation framework,
Vico. In particular, the interface allows remote clients to connect to simulations over the
network using a variety of transport mechanisms. Furthermore, new transports can be
added to the system due to the extensible software design. Additionally, individual clients
can choose how data payloads are sent/received over the wire. Both the textual JSON
format and the binary Google Protocol Buffers format are supported for static message
types. Again, this mechanism is extensible such that additional formats can be supported
in the future. Allowing multiple transports and encoding schemes ensures that the system
is accessible, allowing a wide variety of clients to interact with the simulations. Messages
from clients are handled by so called Message Handlers. The system comes bundled with
a set of default handlers, some of which allows clients to implement real-time 3D visual-
ization and plotting through pre-defined message types. The content and structure of these
messages has been developed as part of the thesis. In order to facilitate special require-
ments, a special handler allows annotated Java methods to be exposed dynamically over
the network using JSON RPC 2.0 compliant messages. Additionally, simulation designers
are free to add new handlers to fit their needs.

The details of the implementation will be presented, as well as performance metrics
for the utilized network transports and serialization formats. To show the usefulness of the
system, both a web client and Unity3d client was implemented an tested. In order to test
the system as an enabler for multi-display solutions, the Unity3d client was used to project
a simulation onto the cylindrical dome in the Visualization lab located at NTNU Aalesund.

i

Preface

This is my master’s thesis in Simulation and Visualization titled ”A Flexible Network
Interface for a Real-time Simulation Framework” as part of the study program Simulation
and Visualization at NTNU, carried out during the spring semester of 2017.

I would like to thank my supervisors, Arne Styve and Houxiang Zhang, for their ex-
cellent guidance and support during this process.

Ålesund, 13 June 2017, Lars Ivar Hatledal

ii

Table of Contents

Summary i

Preface ii

Table of Contents v

List of Tables vii

List of Figures x

List of Code Listings xi

Abbreviations xii

1 Introduction 1
1.1 Motivation . 2
1.2 Research questions . 2
1.3 Structure of this work . 3

2 Basic Theory 5
2.1 Computer networking . 5

2.1.1 Protocols . 5
2.1.2 Middleware . 6
2.1.3 Brokers . 8

2.2 Data serialization formats . 9
2.2.1 JSON . 9
2.2.2 Google Protocol Buffers . 9

2.3 WebGL . 10
2.4 CIGI . 10
2.5 Multi-display systems . 11

iii

3 Literature Review 13
3.1 Web-based simulation . 13
3.2 Networking in games . 15

3.2.1 Peer-to-peer . 16
3.2.2 Client/server . 16
3.2.3 Client-side predication . 16

3.3 Multi-display solutions . 17
3.4 Online Virtual Worlds . 17

3.4.1 Second Life . 17
3.5 Comparisons of middleware solutions 18
3.6 Comparisons of serialization formats . 18
3.7 Synchronized wave visualization . 19

4 Materials and Method 21
4.1 Gradle . 21
4.2 Three.js . 21
4.3 Unity3d . 22
4.4 Other 3rd party dependencies . 22
4.5 Workflow . 22
4.6 Benchmark setup . 23
4.7 Visualization lab . 24

5 Results 27
5.1 Server-side Implementation . 27

5.1.1 Framing . 27
5.1.2 End-points . 28
5.1.3 Message handling . 30
5.1.4 Messages for 3D visualization 34
5.1.5 Water . 38
5.1.6 Directory service . 39

5.2 Client-side implementation . 39
5.2.1 Web application . 40
5.2.2 Unity3d . 41

5.3 Benchmarks . 43
5.3.1 Request-reply . 44
5.3.2 Publication . 45

5.4 Synchronized Wave Visualization . 46
5.5 Multi-projector rendering . 46

6 Discussion 53
6.1 Wave visualization . 53
6.2 Industry standards . 53

6.2.1 DDS . 53
6.2.2 CIGI . 54

6.3 Performance . 54
6.3.1 Networking . 54

iv

6.3.2 Serialization . 55
6.4 Multi-display rendering . 55
6.5 Miscellaneous . 55

6.5.1 Broker architecture . 55
6.5.2 UDP support . 56
6.5.3 Loading 3D models . 57
6.5.4 Simulation playback . 57

7 Conclusion 59

Bibliography 61

Appendix 65

v

vi

List of Tables

4.1 Third party software libraries used in this project 22
4.2 Specification of the computers used for the benchmark 24

5.1 UPD header . 29
5.2 Implemented message handlers . 31
5.3 Message requesting a simulation update. The payload is encoded using

JSON . 32
5.4 Simulation setup response from the Requesthandler 33
5.5 Measured throughput . 45
5.6 Mean time to parse 1000 messages . 45

vii

viii

List of Figures

1.1 Vico core architecture . 1
1.2 Overview of this work . 3

2.1 Example ZeroMQ framing . 7
2.2 Broker as Directory Service (ZeroMQ, 2012) 8
2.3 CIGI (SISO, 2012) . 10
2.4 Multi-projector System . 11

3.1 Local WBS (Byrne et al., 2010) . 14
3.2 Remote WBS (Byrne et al., 2010) . 14
3.3 Hybrid WBS (Byrne et al., 2010) . 15
3.4 Screenshot from the 2013 title Battefield 4 showing a player driving a Jet

Ski on a dynamic water surface. 19

4.1 Typical Git workflow . 23
4.2 Benchmark physical configuration. Connectivity is restricted to the local

area network . 24
4.3 View of the visualization lab, which features 12 projectors that projects

onto a large cylindrical wall . 25

5.1 Message framing . 28
5.2 Message routing. Adapted from (Buschmann et al., 1999) 30
5.3 Message Translator. Adapted from (Buschmann et al., 1999) 32
5.4 Example of rendering geometry for visual and collision 36
5.5 A collection of supported geometries: Mesh, Line, Height-field, Plane,

Cylinder, Capusle, Sphere and Box . 36
5.6 Point cloud rendering . 37
5.7 Example of a height-field as textured terrain, rendered in the browser client 37
5.8 Drum simulation featuring the curve type for representing a wire 38
5.9 Wave synchronization . 38
5.10 Directory Service GUI . 39

ix

5.11 Selection page for simulations in the browser 40
5.12 Render settings in the browser . 41
5.13 Plotting in the browser . 41
5.14 New Unity3d menu items. Vico fetch will initiate a query for available

simulations, which will populate the Load Vico Simulation menu 42
5.15 Curve implementation in Unity3D . 43
5.16 Simulation scene rendered in different implementations 44
5.20 Waves synchronized between different render implementations 46
5.21 The test setup. Two clients were used, each powering a projector. One of

the clients was assigned the master role, publishing it’s camera transform
to the second client acting as a slave. The simulation was running on a
remote computer . 47

5.22 Scene rendered using two projectors in the Visualization lab. Warping
and blending effects were achieved using master student Rolf-Magnus
Hjørungdal’s Unity3d asset. 48

5.17 100 request-reply using binary encoding 49
5.18 100 request-reply using textual encoding 50
5.19 Time used to complete 100 request-reply for the various transport - both

using GPB and JSON encoding of the payload data 51

6.1 Design alternatives . 56
6.2 Example of simulation scene with multiple 3D models 57

x

Listings

2.1 Example .json file . 9
2.2 Example JSON RPC call . 9
2.3 Example .proto file . 10
5.1 VicoServer.java . 28
5.2 WritableConnection.java . 28
5.3 UDP send implementation . 29
5.4 MessageHandler.java . 31
5.5 VicoService.java . 33
5.6 SimulationMsg.proto . 34
5.7 EntityMsg.proto . 35
5.8 CurveMsg.proto . 37
5.9 ConnectMsg.proto . 39
7.1 CommonProto.proto . 65
7.2 RequestProto.proto . 68
7.3 SubscriptionProto.proto . 68
7.4 PlotProto.proto . 68
7.5 SpawnProto.proto . 69
7.6 Master.cs . 70
7.7 Slave.cs . 71
7.8 STLLoader.cs . 72
7.9 RemoteOBJLoader.cs . 74
7.10 AbstractClient.cs . 74
7.11 Socket.js . 77
7.12 VicoFrame.java . 81
7.13 VicoMsg.java . 81
7.14 RemoteManager.java . 84

xi

Abbreviations

WBS = Web Based Simulation
CIGI = Common Image Generator Interface
DDS = Data Distribution Service
HTTP = Hypertext Transfer Protocol
IP = Internet Protocol
TCP = Transmission Control Protocol
UDP = Universal Datagram Protocol
JSON = JavaScript Object Notation
GPB = Google Protocol Buffers
XML = eXtensible Markup Language
FMI = Functional Mock-up Interface
API = Application Programming Interface
MB = Megabyte
NTNU = Norwegian University of Science and Technology
GUI = Graphical User Interface
OBJ = Wavefront Object File
STL = STereoLithography
GLTF = GL Transmission Format
VR = Virtual Reality
HMD = Head Mounted Display
FOV = Field of View
IG = Image Generator
RPC = Remote Procedure Call
GUID/UUID = Globally/Universally Unique Identifier
VCS = Version Control System
IDE = Integrated Development Environment
DSL = Domain Specific Language
IDL = Interface Definition Language
HTML = Hypertext Markup Language
P2P = Peer-to-peer
IoT = Internet of Things

xii

Chapter 1
Introduction

Vico is an in-house simulation framework written in Java targeting real-time simulations
of cyber-mechanical systems in the time-domain. Vico started out as a virtual prototyping
tool for cranes, but evolved into a general purpose simulation system. Simulations are
written in Java, but can make use of models written in other tools/languages using the FMI
(Blochwitz et al., 2012) standard. Vico’s core software architecture is based around the
Entity-Component model. A simulation is built up of Entities, which are merely place-
holders for Components. A view of the architecture is given in Figure. 1.1. An Entity
cannot be extended, thus logic and data can only be introduced through creating and as-
signing Components to them. This approach favours composition over inheritance, and is
very powerful as the the characteristics of an Entity can be transformed during simulation
by adding and/or removing components.

Figure 1.1: Vico core architecture

1

Chapter 1. Introduction

1.1 Motivation
Traditional software applications are installed on a local computer, and in order for it to
work as expected, the computer must meet the requirements of the software in terms of
operating system, dependencies and hardware. However, if the application provided a
network interface, the application could run on a centralized server. This would allow
clients implemented in any languages, running on any platform to take advantages of the
services provided. Using this approach, several benefits can be identified:

• For web clients, any software updates are automatically available.

• For desktop clients, server side updates which do not alter the communication stream
are automatically available.

• Simulation and visualization can be completely de-coupled (running on different
computers). Allowing simulations to run on dedicated server software, while still
allowing them to be visualized (on another platform).

• With the server responsible for running the simulation code, the computing hard-
ware requirements for the clients are decreased. Allowing even mobile devices to
view/interact with complex simulations.

• With the clients responsible for running front-end code such as 3D visualization, the
graphical hardware requirement for the server is decreased.

• Virtual collaboration can be facilitated (multiple users can interact with the same
simulation simultaneously).

• Allows for distributed rendering.

• Open interface allows for others to implement their own presentation solution.

• Services can be accessed from any language/tool with socket capabilities.

The main idea for this work is to improve the current networking capabilities of the
simulation framework Vico. The results of the work should allow other applications, both
locally and remotely, to efficiently interface against running simulations. The interface
could be used to control the simulations or visualize data both in 3D and 2D. An important
motivation is to make the solution flexible, in terms of using technologies that enables a
variety of 3rd party tools to use it. An overview of the system and how this works fits into
the picture is given in Figure. 1.2.

The Vico framework has several prerequisites that must be met by the local computer
in order for it to run. Among other things it must run on Windows, have a powerful CPU
and requires several applications to be present on the system. However, by accessing Vico
through a server, none of these requirements applies to the client, allowing even mobile
devices to interact with complex real-time simulations.

1.2 Research questions
Research questions to be raised and answered in this thesis are:

2

1.3 Structure of this work

Figure 1.2: Overview of this work

• Performance of transport protocols. How do they compare?

• Textual vs. binary data encoding, what are the implications?

• Performance of web vs. networked desktop apps. How much has web applications
matured?

• How to solve issues related to synchronization and visualization of dynamic water
surfaces?

• What standards are beneficial? Have they been commonly adopted?

1.3 Structure of this work
This thesis presents a flexible network interface for the simulation framework Vico. The
interface can be used to interact with (e.g. modify certain aspects of a simulation) and
visualize data (e.g. 2D plots and 3D scenes). The implemented system is flexible, allowing
multiple protocols to communicate with the host. Furthermore, both textual and binary
representation of message payloads can be used. The usefulness is demonstrated through
the implementation of two different clients.

3

Chapter 1. Introduction

The thesis is organized as follows. Firstly, some basic theory is given, allowing the
reader to better understand some underlying concepts. Subsequently, a review of the re-
lated research work is given, followed by a description of the material and methods used.
What follows are the results, which will contain implementation details as well as a set of
case studies and is followed by a chapter designated for discussions. Finally, a conclusion
is given.

The appendix contains a few highlighted snippets of source-code. Most notably, the GBP
schemas, but also some Java, C# and JavaScript code. Attached in the provided zip file is
all the client-side code for the Web and Unity3d projects, all the GPB schemas and relevant
server-side Java code. All of Vico is not included. As such, the code is not executable, but
should provide an understanding of the implemented system regardless.

4

Chapter 2
Basic Theory

This chapter introduces the reader to some basic concepts and technologies required to
better understand the concepts used and discussed later.

2.1 Computer networking

2.1.1 Protocols
A network protocol defines rules and conventions for communication between network
devices. Below is an introduction to the protocols relevant for this project.

TCP/IP

TCP/IP (Forouzan, 2002) is a two layer program. The higher level layer, Transmis-
sion Control Protocol (TCP), manages transmission of data by assembling messages into
smaller packets, which is reassembled on the receiving end after beeing sent over the Inter-
net. The lower layer, Internet Protocol (IP) handles the address part of each packet so that
it get to the right destination. TCP is the most commonly used protocol on the Internet.
A reason for that is that it is reliable. Packets sent over the Internet may get lost due to a
number of reasons, and when that occours the TCP client will re-request the package from
the server until the whole packet is complete.

UDP

The User Datagram Protocol (UDP) is a protocol for sending messages to other hosts on an
Internet Protocol (IP) network. It is formally defined in RFC 768 (Postel, 1980). UDP uses
a simple connection-less transmission model, thus no handshaking is involved. UDP is
faster than TCP because there is no form of flow control or error correction, thus messages
are not guaranteed to be delivered and no assumptions of the ordering of the packets can be
made. A single message sent through UDP can be no larger than 65,507 bytes (Forouzan,

5

Chapter 2. Basic Theory

2002). Larger messages must be divided into smaller packets and re-assembled in the
receiving application. UDP is suitable when speed is preferred over reliability. In some
real-time systems, given that the messages are non-critical, it may be preferable to drop
packages rather than waiting for them.

HTTP

The Hypertext Transfer Protocol (HTTP) is the foundation of data communication for the
World Wide Web. Communication between a client and server using HTTP is always
initiated by the client in a request-response pattern. HTTP utilizes TCP/IP internally. Un-
like ”raw” TCP/IP connections, which are session oriented, HTTP connections are always
terminated once a request (initiated by the client) has been completed. This trait makes it
impossible for the server to push messages to clients. Before the introduction of WebSock-
ets along with HTML5, HTTP was the only means a web page had for communication.

WebSocket

A WebSocket is, as the name suggests, designed to be implemented in web browsers and
web servers. However, it can be used by any client or server application. WebSockets
were designed to bring real-time bi-directional streams to web browsers. Before the in-
troduction of WebSockets in HTML5, full-duplex transmissions between client and server
was not straightforward. However, some methods for real-time data exchange based on
HTTP has been available using polling, long-polling and streaming mechanisms. But
these methods involve unnecessary HTTP request and response headers, which introduce
latency, and the server itself cannot initiate a connection using the standard HTTP model
(Loreto et al., 2011). The initial handshake of a WebSocket connection resembles HTTP,
allowing servers to handle HTTP and WebSocket connections on the same port.

2.1.2 Middleware
A middleware is a distribution infrastructure software that shields applications from many
inherent and accidental complexities of operating system and networks (Buschmann et al.,
1999).

DDS

The Data Distribution Service for real-time systems (DDS) is a standard managed by the
Object Management Group (OMG), that aims to enable scalable, real-time, dependable
and interoperable data exchanges using a publish-subscribe pattern. The request-reply
pattern was not originally apart of the standard, but was recently proposed to be included
as an extension (OMG, 2016). DDS interfaces are defined using OMG Interface Definition
Language (IDL). Some of the features of DDS are automatic discovery of publishers and
subscribers, Quality of Service (QoS) and delay tolerant networking. IoT (Internet of
Things) applications are the main consumers of the DDS middleware. Both commercial
and open-source implementations of DDS are available. Implementations exists in Ada,
C, C++, Java, Scala, Lua, Pharo and Ruby.

6

2.1 Computer networking

ZeroMQ

ZeroMQ (Hintjens, 2013) is a asynchronous messaging library, aimed at use in distributed
or concurrent applications and comes with several built-in messaging patters, with the two
most relevant beeing:

• Request-Reply which connects a set of clients to a set of services. This is a remote
procedure call and task distribution pattern.

• Pub-sub which connects a set of publishers to a set of subscribers. This is a data
distribution pattern.

The following transport protocols can be used to send messages between ZeroMQ
sockets:

• inproc local in-process (inter-thread) communication transport.

• IPC local inter-process communication transport (UNIX only).

• TCP unicast transport using TCP.

• PGM, EPGM reliable multi-cast transport using PGM.

The inproc and IPC protocols can only be used for internal messaging between threads,
useful for building concurrent applications.

ZeroMQ is not a neutral carrier: it imposes a framing on the transport protocols it
uses. This framing is not compatible with existing protocols, which tend to use their own
framing. An example is shown in Figure.2.1, where the leading 5 is the size of bytes in the
remainder of the frame. A message can have multiple such frames, and each message will
begin with the total number of bytes in the remainder of the message.

Figure 2.1: Example ZeroMQ framing

ZeroMQ comes with the low-level C API. High-level bindings exist in 40+ languages
including Python, Java, PHP, Ruby, C, C++, C#, Erlang, Perl, and more. Also native
implementations written in Java (JeroMQ) and C# (NetMQ) are available.

RakNet

RakNet (Oculus, 2014) is a networking middleware designed for games. Originally au-
thored as a commercial product by Jenkins Software LLC. Then bought by Oculus, which
again was acquired by Facebook. In 2014 the source code was released to the public.

RakNet is a C++ library that provides UDP and TCP transport. Also RakNet offers
built-in re-transmission and reordering of packets, turning UDP into a reliable and faster
solution than TCP in networks where there is little loss of packets (Reis et al., 2011).

7

Chapter 2. Basic Theory

2.1.3 Brokers

Software architectures of most messaging systems is distinctive by the messaging server,
broker, in the middle (ZeroMQ, 2012), to which applications are connected. No applica-
tion is speaking directly to the other application, rather all communication passes through
it. A broker is responsible for coordinating communication, such as forwarding requests,
as well as transmitting results and expectations (Buschmann et al., 1999).

The functionality of the broker can be split into two separate parts:

1. Broker has a repository of applications running on the network. It knows that appli-
cation X runs on host Y and that messages intended for X should be sent to Y. It acts
like a directory service.

2. Broker does the message transfer itself.

The main benefit of the broker model is that applications don’t have to have any idea
about location of other applications. The only address they need is the network address of
the broker, which then routes the messages to the right applications based on some criteria,
like a simulation id.

Broker as directory service

In this setup, the broker is lightweight and is only responsible of keeping a record of
which end-points are available. When a new end-point is created it will notify the broker
about it’s existence. If the end-point terminates it will consequently disappear from the
broker’s record. Clients can query the broker for available end-points, in which the broker
will respond with the necessary information for client to connect directly to the desired
end-point. The concept is shown in Figure. 2.2.

Figure 2.2: Broker as Directory Service (ZeroMQ, 2012)

8

2.2 Data serialization formats

2.2 Data serialization formats
Serialization (also known as marshalling) is the process of translating data structures into
a format that can be stored or transmitted and reconstructed later. When the resulting
series of bits is re-read according to the serialization format (known as deserialization
or unmarshalling), it can be used to create a semantically identical clone of the original
object. A huge number of such formats exists today, with a varying degree of adaptation.
Below is an description of formats relevant to this project.

2.2.1 JSON
JavaScript Object Notation (JSON) is a simple text based standard for data transmission.
As the name suggests, it was originally derived from JavaScript. However, it is indepen-
dent of any programming languages. Today, most programming languages has built-in
support for parsing/generating JSON. Because of the close relationship with JavaScript,
JSON is often the go-to format to use when serializing data in a web application. An
example JSON string is given in Listing 2.1.

Listing 2.1: Example .json file

{
uu id : ”9 d a a 3 f f 8−22f9−46fb−9095−302749af0797 ” ,
name = ” r o o t ” ,
p o s i t i o n : {x : 0 , y : 0 , z : 0} ,
q u a t e r n i o n = {x : 0 , y : 0 , z : 0 , w: 0} ,
c h i l d r e n : []

}

JSON RPC

JSON-RPC is a stateless, light-weight remote procedure call (RPC) protocol (Group et al.,
2012). JSON-RPC uses JSON as the data format and is designed to be simple. The newest
version of the protocol is 2.0. An example of a JSON-RPC call is given in Listing. 2.2.
Here, a method called subtract is given two parameters 23, and 42. The result sent back to
the invoker is 19.

Listing 2.2: Example JSON RPC call
−−> {” j s o n r p c ” : ” 2 . 0 ” , ” method ” : ” s u b t r a c t ” , ” params ” : {” s u b t r a h e n d ” : 23 , ” minuend ” : 42} , ” i d ” : 3}
<−− {” j s o n r p c ” : ” 2 . 0 ” , ” r e s u l t ” : 19 , ” i d ” : 3}

2.2.2 Google Protocol Buffers
Protocol Buffers are Google’s mechanism for serializing structured data. Official imple-
mentations exists in C++, C#, GO, Java and Python, however unofficial ones exist also for
other languages such as JavaScript. Compared to common alternatives for data serializa-
tion over the wire, such as XML and JSON, protocol buffers generate much smaller data
packages because it uses a binary format. Protocol Buffer messages are compiled using
a predefined schema. This helps developers to avoid creating erroneous messages as the
compilation will fail in the presence of syntax errors. The schema is specified in a file with
a .proto extension. An example of such a file is given in Listing. 2.3.

9

Chapter 2. Basic Theory

Listing 2.3: Example .proto file

s y n t a x = ” p r o t o 3 ” ; / / s p e c i f y which v e r s i o n we a r e u s i n g

i n c l u d e ” math . p r o t o ” ; / / d e f i n i t i o n s from o t h e r . p r o t o f i l e s can be i n c l u d e d

message Trans fo rm {
s t r i n g uu id = 1 ;
s t r i n g name = 2 ;
Vec to r3 p o s i t i o n = 3 ;
Q u a t e r n i o n q u a t e r n i o n = 4
r e p e a t e d Trans fo rm c h i l d r e n = 5 ;

}

2.3 WebGL

WebGL (Web Graphics Library) (Marrin, 2011) is a JavaScript API for rendering interac-
tive 3D and 2D graphics within any compatible web browser without the use of plug-ins.
WebGL does so by introducing an API that closely conforms to OpenGL ES 2.0 that can
be used in HTML5 canvas elements (Mozilla, 2017). Before WebGL, developers had to
rely on plug-ins or native applications and ask their users to download and install software
in order to deliver a true 3D experience (Parisi, 2012).

2.4 CIGI

The Common Image Generator Interface (CIGI) is an interface designed to promote a stan-
dard way for a host device to communicate with an image generator (IG) in the simulation
industry (Phelps, 2002). CIGI wishes to promote interoperability among image generators,
in order to reduce integration costs. The basic idea is shown in Fig. 2.3, where CIGI is
shown to be present both on the host (server-side) and IG (client-side). Normally, the CIGI
protocol interfaces one host (transmitter) and one IG (receiver), but UDP multi-cast could
be used to support multiple receivers. The Host would select one IG as a ”master” and
would ignore all IG-to-Host packets except those originating from the master. Both syn-
chronous and asynchronous operation is supported by CIGI. As CIGI is a data packaging
protocol it is independent of the transport medium. Any suitable medium such as TCP/IP,
UDP or shared memory could be used. Multiple vendors has chosen to support CIGI, with
the official web page listing roughly 20 of them. In 2014, CIGI became an international
standard through the Simulation Interoperability Standards Organization (SISO).

Figure 2.3: CIGI (SISO, 2012)

10

2.5 Multi-display systems

2.5 Multi-display systems
Multi-display setups are common in training simulators, where they are used in order to
project the simulation onto a larger surface, i.e. a dome. Simple configurations requires
only one computer, which must be powerful enough to render to multiple outputs. How-
ever, such a solution scales badly and cannot cover large areas. In order to overcome
this challenge without sacrificing image resolution, the rendering needs to be distributed
among several computers. An example of a multi-projector layout for a dome is shown in
Figure. 2.4.

Figure 2.4: Multi-projector System

11

Chapter 2. Basic Theory

12

Chapter 3
Literature Review

This chapter gives an overview of literature related to this work.

3.1 Web-based simulation

Web-based simulation (WBS) refers to the use of web technologies to develop, execute,
and analyze simulation models where the primary interface is accessed through a web
browser (Byrne et al., 2010). Web-based technologies are especially beneficial to non-
experts as they can significantly reduce the costs required for a new user to experiment
with and learn about a simulation and modeling tool. Increasing capabilities of the latest
web browsers have facilitated the accessibility, interoperability and mobility of the web.
By developing web-based simulation and modeling tools, the accessibility of these tools
can be increased. A layperson considering using a tool developed as a native application
may be reluctant to download and install the software on his personal computer (due to
fear of viruses and other concerns). On the other hand, the same person may be more
willing to open a simple web page that provides an interface for that same tool.

A review of WBS and supporting tools is given in (Byrne et al., 2010). They identify
a number of advantages and disadvantages of this model. Some of the advantages are
identified as:

• Collaboration. Accessing a centralized simulation over the Web allows for collabo-
ration between connected clients.

• Cross platform capability. Web applications runs on any operating systems without
compiling. This capability relieves the application developer from having to worry
about a clients configuration.

• Controlled access. Access can be controlled to a Web-based simulation application
through the use of passwords, and limited time-span access can be allocated.

13

Chapter 3. Literature Review

• Versioning, customization and maintenance. All modifications to the application
can be made through the server, allowing for frequent modifications, customization’s
and updates to be made without having to request user to update their system locally.

A number of disadvantages are also noted, some of which include:

• Loss in speed. The user can experience loss in speed when interacting with the tool
due to download time and network traffic.

• Graphical user interface limitation. The interface provided by the Web are more
limited than the desktop counter-part, although improvements are continuous. How-
ever, (Wiedemann, 2001) notes that the effort in replicating a complex interface
provided by traditional desktop-based simulation tools on the Web is very high and
might not be possible.

Different architectures for WBS applications are often characterized by how the com-
ponents of the application are divided between these two systems. (Byrne et al., 2010)
define three primary WBS architectures local, remote and hybrid according to the role
taken by the web browser.

A local architecture (Fig. 3.1) is primarily client-based, thus the simulations and vi-
sualization are executed within the users web browser. The server is only responsible of
providing the application code, manage user sessions and store persistent data.

Figure 3.1: Local WBS (Byrne et al., 2010)

A remote architecture (Fig. 3.2) on the other hand is primarily server-based with the
simulation and visualization renderer both executed on the server. The client is merely
showing the generated data from the server, such as text and static charts.

Figure 3.2: Remote WBS (Byrne et al., 2010)

A hybrid architecture (Fig. 3.3) lies in-between these two extremes, with the server
responsible for simulation, while the client handles visualization rendering.

Earlier, local solutions was mainly facilitated using plug-ins. However, today’s browsers
will typically block plug-ins from running on the client machine due to the security risks
involved. This can be circumvented by the user, but requires some technical expertise.
Due to this, developers are moving away from these solutions. Luckily, the capabilities

14

3.2 Networking in games

Figure 3.3: Hybrid WBS (Byrne et al., 2010)

of the web are evolving, allowing more complex code to run directly in the browser. I.e.
HTML5 introduced WebGL in 2011, enabling GPU accelerated rendering in the browser
without the need of plug-ins (Marrin, 2011). Several authors have applied WebGL to
provide full 3D rendering in web-based simulations. A client-side approach is taken by
McMullen et al. (McMullen et al., 2012), who implemented simulation of abstract models
in JavaScript, with visualization in WebGL for simulation. A client-side web application
of an environmental simulation model is presented in (Walker and Chapra, 2014), which
also offers a discussion of the benefits, limitations and potential uses of client-side web ap-
plications. The tool Insight Maker (Fortmann-Roe, 2014) is a general-purpose web-based
simulation and modeling tool. The environment provides a graphical model construction
interface that is implemented purely in client-side code that runs on users machines. In
InsightMaker, the client is responsible for model construction, simulation and displaying
the results. The server’s responsibility is model storing, user management and collabo-
rate editing. A framework for 3D interactive applications on the web was implemented in
(Halic et al., 2011). Because the solution required access to custom peripherals, a plug-in
was required to be installed on the client machine.

The remote and hybrid architectures are commonly used when migrating existing sim-
ulation models to the web as these models are often computationally demanding and
their legacy code is not easily translated to JavaScript - the standard client-side script-
ing language. (Pang et al., 2013) took a hybrid approach in a system for interactive e-
learning environment for high performance buildings (HPB). They used using a single
Functional Mock-up Unit (FMU) as the simulation back-end running on the server. A
generic approach to combine cloud computing and system simulation is given by Bittner
et.al. in (Bittner et al., 2015). They present a web interface for uploading, managing and
analyzing simulation models. The simulations are based on FMI and runs on the server.
Although not a WBS in sense of simulation, a framework for browser-based multiplayer
online games was presented in (Chen and Xu, 2011). Which shows that the capabilities
of the web are improving, allowing high performance 3D rendering as well as real-time
bi-directional communication through WebSockets.

In one of my previous works (Hatledal et al., 2015), a hybrid architecture based on
WebSockets and WebGL were implemented, as part of a virtual crane prototyping system.

3.2 Networking in games

In the following sections a brief introduction to game networking and how it has evolved
with the years, solving some of the problems that comes with it is given.

15

Chapter 3. Literature Review

3.2.1 Peer-to-peer
Peer-to-peer (P2P) was the first means of establishing a networked connection between
two players in a game. The idea behind the basic P2P model is to have all players start
from a common initial state. In order for the game to progress, at each game tick the clients
will transmit a set of commands. These will in turn be executed on all connected player
machines. The amount of data transmitted is relatively low, allowing games to include
a large number of entities. However, this approaches has several limitations. It is very
difficult to ensure that the game plays out identically on each players machine. A slight
difference in execution of commands, will result in a completely de-synchronized state
over time. Another limitation is that in order to ensure that the game plays out identically
on all machines, it is necessary to wait until all players command’s for that turn has been
received before it can be simulated. This means that each player in the game has latency
equal to the most lagged player. Finally, because the game must start from a common
initial state, it is very hard to facilitate players joining a game once it has started.

A definition of P2P networking and how it differs from a client/server architecture is
given in (Schollmeier, 2001), while (Neumann et al., 2007) highlights some of the chal-
lenges connected to the peer-to-peer networking model.

3.2.2 Client/server
In a pure client/server design, contrary to the P2P scheme, no game code is executed on the
client machine. In stead user input is sent to a centralized server, which in turn computes
and returns the updated state of the world. The frequency of updates from the server
might be lower than than the rendering, which could lead to stuttering motions. In order
to counter this, interpolation of values client side are usually performed. With this model,
the quality of game experience now depended on the connection between the client and
server, and not on the most lagged player. It also made it possible to let players come and
go during the game, and the number of players in a game could increase as the required
bandwidth on average per-player was reduced. Some background on how client / server
architectures work in many on-line action games are presented in (Bernier, 2001).

3.2.3 Client-side predication
In earlier networked games like Quake, the players could notice the latency between the
computer and the server when issuing commands that would alter the game world. This
was due to the fact the client was merely doing what the server said it should do. I.e. when
moving the character forward, the command would have to be sent to the server, then the
server did some calculations and returned the updated state of the character. The slower the
connection, the more noticeable this delay would be. In today’s first person shooters there
are no such delays. This is thanks to client-side prediction developed by John Carmack for
the game QuakeWorld in 1998. Client-side prediction works by putting more logic into
the client software. That is, in stead of waiting for the server to compute the next state,
the client will make computations on it’s own. Then, when the server finally responds, the
state is corrected to match the server’s. This is a simplified explanation, (Fiedler, 2010)
and also (Bernier, 2001) provides a more in-depth description of the process.

16

3.3 Multi-display solutions

3.3 Multi-display solutions

Unity3d offers a clustered rendering solution as a separate license 1. This solutions allows
multiple computers to simulate the same scene in-sync with each other and display the
result on a cluster of displays. As a result, a scene can be rendered in a dome, CAVE or
other layouts using multiple displays. This works by having the same project installed
on all machines, running in lock-step synchronization, using the P2P network topology
mention in Section 3.2.1. Each machine runs the same simulation, but differs only in the
rendering output, rendering only its portion of the entire multi-display setup.

(Obidowski and Jha, 2010) utilized CIGI as part of the software stack used for The
Advanced Deployable Day/Night Simulation Technology Demonstration Project, with a
requirement for at least 16 synchronized Image Generators to render scenes at 60 Hz for a
greater than 20 million pixel Ultra-High Resolution laser projection system. Their solution
uses a CIGI relay to multicast packet data to all IGs, each with a unique render number.
Although all IGs receive the full CIGI packets, each one renders data only in its pre-set
FOV, established during the initialization.

3.4 Online Virtual Worlds

An online virtual world is an electronic environment where people can work and interact
with the digital environment in a somewhat realistic manner (Bainbridge, 2007).

3.4.1 Second Life

Second Life (Rymaszewski, 2007) is an online virtual world, developed by Linden Labs.
It is similar in many ways to massively multi-player online role-playing games, but unlike
games, does not promote a specific goal for the users to pursue. Users of Second Life
create visual representations of themselves, called avatars, and are able to interact with
places, objects and other avatars. The world is accessed through a client, and multiple
client implementations exists.

OpenSimulator

In 2007, when Linden Labs made the Second Life client software open-source, an alter-
native server solution named OpenSimulator which was compliant with existing Second
Life clients was developed. OpenSimulator (Fishwick, 2009) is is an open source multi-
platform, multi-user 3D application server. It can be used to create a virtual environment
(or world) which can be accessed through a variety of clients, on multiple protocols. The
default physics engine used by OpenSimulator is the Open Dynamics Engine (ODE), but
others can used as well.

1https://docs.unity3d.com/Manual/ClusterRendering.html

17

https://docs.unity3d.com/Manual/ClusterRendering.html

Chapter 3. Literature Review

3.5 Comparisons of middleware solutions
Several authors has performed comparisons of different middleware solution in terms of
speed, ease-of-use and functionality (Dworak et al., 2011; Rizano et al., 2013). (Dworak
et al., 2011) makes a comparison of a set of middlewares that supports the requst-reply
pattern, for the purpose of replacing the use of CORBA for operation of the CERN ac-
celerators. These include ICE, Thrift, ZeroMQ, YAMT4, RTI (DDS implementation) and
QPID. A couple of DDS implementations, CoreDX and OpenSplice, were discarded for
further evaluation due to complexity or licensing issues. Their findings suggests that the
DDS API, though well documented, is not easy to use nor compact. Additionally, they
found the amount of settings and concepts provided by the standard overwhelming, ren-
dering the products to be cumbersome and difficult to use. Three libraries were qualified
for further prototyping; Ice, ZeroMQ and YAMI4, with ZeroMQ receiving the best score
based on their requirements. After further evaluation, ZeroMQ was chosen as the new
middleware (Dworak et al., 2012).

(Rizano et al., 2013) presents the performance evaluation of three publish-subscriber
middlewares; ZeroMQ, OpenDDS and ORTE (Open Real-Time Ethernet). The evaluation
focused on real-time performance in the context of embedded systems. For their use-case,
ZeroMQ was found to be the more performant solution with the lowest average latencies
and the lowest worst case latency.

3.6 Comparisons of serialization formats
Choosing an appropriate serialization format for a networked software application is im-
portant, thus several authors has made comparisons of various formats in order to find a
good fit for their application.

In (Nurseitov et al., 2009), JSON is compared against XML (Extensible Markup Lan-
guage). The authors found JSON to be significantly faster than XML when comparing
resource utilization and relative performance of applications that use the interchangeable
formats.

(Müller et al., 2010) found that Google Protocol Buffers, with their use case, reduced
their message sizes with 75%, and processing time by at least 11 and 59% compared to
XML and SOAP (Simple Object Access Protocol) respectively. Furthermore, they note the
importance of choosing an appropriate choice of communication protocols with regards to
the Internet of Things.

In (Dworak et al., 2012) some 20+ alternatives were reviewed for serialization in con-
junction with their ZeroMQ middleware, with MessagePack being chosen over other can-
didates such as Apache Avro, CORBA serialization module and Google Protocol Buffers
because of direct support for dynamic typing, compact binary serialization, support for all
needed data types, operating systems and programming languages, good documentation,
product maturity and the active community behind it.

(Maeda, 2012) compares twelve object serialization libraries in XML, JSON and bi-
nary formats from qualitative and quantitative aspects. A common example is chosen and
it is serialized to a file using each library in a supported format. The size of the serialized
file and the processing time are measured during the execution to compare all object seri-

18

3.7 Synchronized wave visualization

alization libraries. The authors found Google Protocol Buffers to be the fastest to serialize,
while Thrift using JSON was faster to de-serialize.

It should be noted that there will be no single best solution with regards to serialization
formats, as requirements will be different from application to application.

3.7 Synchronized wave visualization
No literature was found on how synchronized wave visualization are handled in clien-
t/server architectures. However, games like Battlefield 4 (2013) and Battlefield 1 (2016)
do employ such a mechanism. An example of such waves from Battlefield 4 are given in
Figure. 3.4. In these multi-player games, players can drive boats in rough weather with
significant wave heights. Therefore, the different clients needs to synchronize the waves.
As the games are closed-source, it can only be assumed that they employ a strategy where
waves are generated by a heuristic wave generator and time and/or a seed is shared.

Figure 3.4: Screenshot from the 2013 title Battefield 4 showing a player driving a Jet Ski on a
dynamic water surface.

19

Chapter 3. Literature Review

20

Chapter 4
Materials and Method

This chapter describes the materials and methods used to complete this project.

4.1 Gradle

Gradle is the build system used by Vico. Similarly to Maven, Gradle keeps the project
independent of a particular IDE and manages artifact management. What makes Gradle
so powerful is the fact that the build process is managed using a Groovy based DSL.
Actually, full fledged Groovy programs and even Java code, can run within the build files.
Alternative build systems like Ant and Maven is based on XML, making them much less
flexible.

The Vico source code itself is split into several Gradle sub-projects. This is to help
clarifying what is what, and not mix dependencies. Some sub-projects include core, maths,
geometry, rendering and machine-learning. Some of these projects can be considered as
plugins to Vico.. The Java code developed for this project is managed as Vico sub-projects,
logically separated from the core and functions as a plugin.

4.2 Three.js

HTML5 brought along the WebGL standard, which paved way for a whole new set of
browser-based content. No longer was it necessary to download miscellaneous plug-ins in
order to run GPU enabled 3D content in the browser. Three.js is one of many new libraries
that emerged after this introduction. Among these libraries, three.js is perhaps the most
successful and widely adopted. Compared to 3D game engines on desktop, three.js and
many other similar libraries for WebGL, lacks an IDE and other visual tools, however it
makes up for this with an easy to use API and flexibility.

21

Chapter 4. Materials and Method

4.3 Unity3d

Unity3d is a professional cross-platform game engine developed by Unity Technologies.
The engine itself is written in C/C++, whereas user code (scripts) are written in C#, Uni-
tyScript or Boo. Code can be edited using Visual Studio or MonoDevelop. Mono is used in
order for C# to work on platforms other than Windows. Creating scenes, managing assets
etc. are done through an editor. As the production version of Unity3d only support .NET
3.5 and lower, this work relies on a beta version of Unity3d (build Unity 2017.1.0b5).
This version can run modern C# code, which is a requirement from some of the 3rd party
dependencies used.

4.4 Other 3rd party dependencies

Table. 4.1 lists the third party software libraries used in this project. The project could not
have been carried out without them.

Table 4.1: Third party software libraries used in this project

Name Language Purpose
Canvas.js JavaScript Plotting data in the browser

Runtime OBJ import C#
Import .OBJ 3D models in
Unity during runtme

Google Protocol Buffers C# / Java
Encoding/decoding protocol buffers
in Java / C# (Unity3d)

Protobuf.js JavaScript
Encoding/decoding protocol buffers
in the browser

Java-WebSockets Java WebSocket support in Java
JSON.NET C# JSON support in C# (Unity3d)
WebSocket-sharp C# WebSocket support in C# (Unity3d)
ZeroMQ C# ZeroMQ support in C# (Unity3d)
JeroMQ Java ZeroMQ support in Java
GSON Java JSON support in Java
Three.js JavaScript WebGL rendering in the browser

4.5 Workflow

In this section the workflow used during the development is described.

JIRA JIRA is a web-based issue tracking system, developed by Atlassian. In this project
it has been utilized to plan and monitor code development. Development has been driven
forward by so called sprints, which is a key part of the Scrum methodology (Schwaber
and Beedle, 2002). Each sprints starts by identifying the work that should be completed

22

4.6 Benchmark setup

during the next iteration. The sprint ends with a sprint review and sprint retrospective. In
this project, the duration of a sprint was defined as two weeks.

Confluence Confluence is a web-based team collaboration software developed by Atlas-
sian. In this project it has been used to create meeting notes, Gliffy diagrams and to store
project related texts and wiki creation.

Git Using a version control system (VCS) is absolutely crucial for any kind of large
scale software project. A VCS allows you to track changes throughout the lifetime of
the project, allows teams to collaborate, makes it easy to test new features, deliver and
maintain customer deliveries etc. Vico uses Git as it’s VCS. Actually Vico is the the
sum of multiple git repositories. For instance, the clients developed in this project are
independent git repositories.

The workflow used for this project looks similar to that shown in Fig. 4.1. Master
is the stable branch, with develop being the spearhead in terms of new functionality and
features. New ideas etc, may occasionally branch out from develop and merged back in if
deemed worthy of keeping. Once new features has been completed and tested on develop
they are merged back into master.

Figure 4.1: Typical Git workflow

4.6 Benchmark setup

In order to objectively assess the performance of the implemented transports, some bench-
marks has been carried out. Here, two computers are used. One acts as a server and runs
the simulation code, while the other acts as a client. To ensure a stable test scenario, the
two computers are connected by Ethernet through a network switch. This ensures that un-
predictable behaviour that may arise when connected through the Internet are eliminated.
The switch used is an 5-port Netgear GS605 Gigabit Ethernet switch. Specifications for
the computers used are given in Table. 4.2, and the physical configuration is shown in
Figure. 4.2.

23

Chapter 4. Materials and Method

Table 4.2: Specification of the computers used for the benchmark

Role Type CPU RAM Network
Server Desktop i7-4770 @ 3.40 GHz 16 GB Gigabit Ethernet
Client Laptop i7-6600U @ 2.40 GHz 16 GB Gigabit Ethernet

Figure 4.2: Benchmark physical configuration. Connectivity is restricted to the local area network

4.7 Visualization lab
The visualization lab located at NTNU Aalesund is used to test the system as an enabler
for multi-display solutions. The lab features 12 projectors and a cylindrical shaped wall as
seen in Figure. 4.3.

24

4.7 Visualization lab

Figure 4.3: View of the visualization lab, which features 12 projectors that projects onto a large
cylindrical wall

25

Chapter 4. Materials and Method

26

Chapter 5
Results

This chapter presents the results of this thesis, which includes implementation details for
the server-side code as well as the clients developed. Additionally, benchmarks are pre-
sented and it is shown how the system can be used to achieve clustered rendering.

5.1 Server-side Implementation

This section presents the reader with details regarding the server-side implementation of
the system. That is, the software layer that handles the link between Vico simulations and
remote clients. In order for a Vico simulation to be made accessible over the network a
RemoteManager must be added. The content of this class is shown in Listing.7.14. In
short, this class is responsible for managing end-points and message handlers.

5.1.1 Framing

In order to simplify messaging, messages are wrapped in a set of frames. In this context,
a frame is simply a chunk of bytes led by a four byte header indicating the length of the
data. An arbitrary number of frames can be included in a message. Also, an additional
four byte header is present at the beginning of the message indicating the total length of
the remaining message.

Imposing such a message structure is useful for several reasons:

1. It adds consistency. Data arriving from different sources has the same format.

2. Frames can be implemented as a deque, allowing frames to be popped of the stack
as they are consumed.

3. Makes it possible for protocols without a built-in mechanism for indicating the end
of a message, such as TCP and UDP, to easily receive messages.

27

Chapter 5. Results

An example is given in Figure. 5.1, where a message with two frames is defined. When
decoded, the message prints ”Hello World!”. However, do note that a frame is not self-
describing. The type of content a frame holds, be it a string or a binary blob, depends on
the context.

Figure 5.1: Message framing

The Java implementation of is given in Listing. 7.12 (a frame) and Listing. 7.13 (the
message).

5.1.2 End-points
In order to ensure that a wide variety of clients can connect, multiple end-points has been
implemented. These are: TCP/IP, UDP, WebSockets and ZeroMQ. New end-points can be
added to the system, as long as they comply with the interface shown in Listing. 5.1.

Listing 5.1: VicoServer.java

p u b l i c i n t e r f a c e V i c o S e r v e r {

p u b l i c i n t g e t P o r t () ;

p u b l i c vo id s t a r t () ;

p u b l i c vo id s t o p () ;

p u b l i c S t r i n g getName () ;

}

Clients that connects to one of the end-points are wrapped in a generalized interface
shown in Listing. 5.2, allowing other parts of the software to write data to it without know-
ing how it eventually will be delivered. The write method is expected to return immedi-
ately. As such, implementations are expected to save the data to a buffer and write it as
soon as possible on another thread.

Listing 5.2: WritableConnection.java
p u b l i c i n t e r f a c e W r i t a b l e C o n n e c t i o n {

p u b l i c vo id c l o s e () ; / / c l o s e t h e c o n n e c t i o n

p u b l i c boolean i sOpen () ; / / i s t h e c o n n e c t i o n open ?

p u b l i c vo id w r i t e (byte [] d a t a) ; / / w r i t e da ta

}

TCP/IP

The implemented TCP/IP server uses the built in java.net.ServerSocket class. The imple-
mentation spawns a new thread for each connected client. Furthermore, each client spawns

28

5.1 Server-side Implementation

two additional threads. One for reading and one for writing. The implementations keeps
an outgoing message buffer, such that send invocations can return immediately.

UDP

Java comes bundled with UDP support through the java.net.DatagramSocket, and is used
to implement the server side UDP support.

Because UDP datagrams can be no larger than 65 kilobyte, larger messages needs to
be split into smaller messages and sent separately. Logic for handling this was added, and
the implementation is given in Listing. 5.3. Here, the data is split into as many smaller
messages as necessary. Each chunk is then sent separately. Each message consist of an
24 byte header given in Table. 5.1, containing the necessary information to reassemble the
message on the receiver end.

Table 5.1: UPD header

Frame Description Datatype
0 Time stamp int64
1 Full-size message length int32
2 Number of sub-messages int32
3 Current message number int32
4 Sub-message length int32

Listing 5.3: UDP send implementation
@Override
p u b l i c vo id send (byte [] d a t a) {

long t imes t amp = System . c u r r e n t T i m e M i l l i s () ;
L i s t<byte []> chunks = getChunks (d a t a) ; / / s p l i t da ta
f o r (i n t i = 0 ; i < chunks . s i z e () ; i ++) {

byte [] chunk = chunks . g e t (i) ;
B y t e B u f f e r buf = B y t e B u f f e r . a l l o c a t e (chunk . l e n g t h + 24) ;
/ / UDP HEADER
buf . putLong (t imes t amp) ; / / t i m e stamp
buf . p u t I n t (d a t a . l e n g t h) ; / / o r i g i n a l message l e n g t h
buf . p u t I n t (chunks . s i z e ()) ; / / number o f sub−messages
buf . p u t I n t (i) ; / / message number
buf . p u t I n t (chunk . l e n g t h) ; / / sub−message l e n g t h
/ /
buf . p u t (chunk) ;
buf . f l i p () ;

byte [] send = buf . a r r a y () ;
t r y {

s e r v e r S o c k e t . send (new DatagramPacke t (send , send . l e n g t h , remoteAddress , r e m o t e P o r t)) ;
} ca tch (IOExcep t ion ex) {

Logger . g e t L o g g e r (UDPConnection . c l a s s . getName ()) . l o g (Leve l . SEVERE , nul l , ex) ;
}

}

}

ZeroMQ

The ZeroMQ end-point uses the pure java implementation of ZeroMQ, JeroMQ (JeroMQ,
2017). While it would be natural to implement the ZeroMQ end-point using the commonly
used PUB-SUB and REQ-REP patterns, this would require clients to establish two separate

29

Chapter 5. Results

connections. One for each pattern. Furthermore, ZeroMQ handles subscriptions internally,
making subscribing to a PUB socket different than one of the other types of implemented
transports. Also, the REQ-REP pattern does not allow asynchronous messaging.

To overcome this, the implementation uses a DEALER-ROUTER pattern. This allows
asynchronous messaging, and both request-reply and publish type messages are handled
on a single port. Using this pattern, it is necessary for clients to unwrap the first frame in
an incoming message as it contains the sender identification and can be safely ignored in
this use case.

WebSocket

As Java SE does not contain a WebSocket implementation, the 3rd part library Java-
WebSockets (Rajlich, 2017) was used to implement the WebSocket server. WebSockets
allows for messages to be sent/received either as a string or as binary data. As we are
encoding messages using frames as described in 5.1.1, only binary data is sent/received.

5.1.3 Message handling

In order for the system to properly respond to a received message, all messages sent/re-
ceived starts with a key frame. This frame holds a single byte, indicating the message
type. Each valid key maps to a message handler, which are responsible for decoding the
remainder of the message and act upon it. This mechanism is extensible, allowing sim-
ulation creators to add new message handlers, and is an implementation of the Message
Router pattern (Buschmann et al., 1999) shown in Figure. 5.2. The system contains several
default handlers as seen in Table. 5.2.

Figure 5.2: Message routing. Adapted from (Buschmann et al., 1999)

Message handlers must implement the MessageHandler interface shown in Listing. 5.4.
The first parameter is the remote connection, while the second is the message to handle.
The system can be extended by adding new message handlers. A message handler is
mapped to a unique key, and will be triggered when a incoming message contains that key
in the first frame. Keys 0x000 - 0x015 are reserved for internal use. The different handlers
and their keys are shown in Table. 5.2.

30

5.1 Server-side Implementation

Listing 5.4: MessageHandler.java

p u b l i c i n t e r f a c e MessageHandler {

p u b l i c vo id h a n d l e (W r i t a b l e C o n n e c t i o n con , VicoMsg msg) ;

}

Table 5.2: Implemented message handlers

Key Handler
0x000 RequestHandler
0x001 SubscriptionHandler
0x002 KeyHandler
0x003 PlotHandler
0x004 ServiceHandler
0x005 SpawnHandler
0x006-0x015 Reserved

A key element to the implemented system is that clients can choose to use and im-
plement responses for individual handlers (with the exception of the SubscriptionHandler
which depends on the RequestHandler for the initial setup). A client that is only inter-
ested in plotting can for instance choose to only implement support for the PlotHandler
messages.

Asynchronous messaging

All implemented handlers that responds with a message supports asynchronous messag-
ing, and expects an unique id as the first1 frame in the message. Clients that are not asyn-
chronous are expected to use an empty frame. This id is then wrapped into the response
message, allowing a client to invoke a callback mapped to that particular id.

Multiple format support

To increase the flexibility of the system, the system support payloads to be encoded in
multiple formats. In this work, JSON and GBP was implemented. However, the design is
extensible, allowing further formats to be added.

As mentioned previously, a frame is not self describing. So, in order for a handler to
know what format a frame contains, the frame preceding the formatted frame is used to
identify the format used.

The idea is shown in Figure. 5.3, and follows the Message Translator pattern (Buschmann
et al., 1999).

1While the key frame is always the first frame in a message, it is popped of the stack before redirected to the
appropriate handler

31

Chapter 5. Results

Figure 5.3: Message Translator. Adapted from (Buschmann et al., 1999)

Thread safety

In many cases, handlers are tasked with collecting data from the simulation which is run-
ning in a separate thread. In order for the handler thread not to interfere with the running
simulation, the Vico core was modified to allow inserting two types of tasks that are in-
voked as part of the simulation loop. These are the blocking invokeAndWait, and the
non-blocking invokeLater methods which both takes a Runnable as a parameter, mimick-
ing the Java swing API. This Runnable is then invoked by the simulation thread, ensuring
thread safety. Whenever a handler is to retrieve simulation data or modify the simulation in
some way, one of these functions should be used. Alternatively, the handler could register
a listener (which is invoked regularly by the simulation at certain state events such as init,
step, post-step and terminate).

RequestHandler

The RequestHandler is used for retrieving simulation setup and updates in a request-reply
fashion. Payloads uses the schema defined in Listing 7.1. The client sends a Request and
receives a Response.

A complete message sent from the client to the server, requesting a simulation setup
could look as described in Table 5.3. In this case, JSON is used to encode the payload. If
GPB were to be used, frame nr. 3 would read 0x000 and the content in frame nr. 4 would
not translate to a JSON string, but a GPB message.

Table 5.3: Message requesting a simulation update. The payload is encoded using JSON

Frame Description Value Notes

1
Handler

key 0x000
0x000 redirects to the

RequestHandler

2 ID xxxx-xxxx Some unique string used to
support asynchronous messages

3
Payload
Format 0x001

0x001 signals that the following
payload is encoded as a JSON string

4 Payload {type: 0} Request simulation setup

Similarly, the message sent back to the client would look as in Table 5.4

32

5.1 Server-side Implementation

Table 5.4: Simulation setup response from the Requesthandler

Frame Description Value Notes

1
Handler

key 0x000
Message originates from the

RequestHandler
2 ID xxxx-xxxx Same ID as in Request

3
Payload
Format 0x001

0x001 signals that the following
payload is encoded as a JSON string

4 Payload {simulationSetup: ...} Simulation setup

SubscriptionHandler

As the name suggests, the SubscriptionHandler is responsible for managing subscriptions.
Once a client has subscribed, it will continuously push updates to it. These updates include
general simulation updates which are sent at regular intervals, as well as non-regular events
such as added or removed entities.

ServiceHandler

The ServiceHandler is an interface to a JSON-RPC API. Simulation designers can register
custom classes to this handler in order to easily expose the desired parts of their simula-
tions. An example of such a service is given in Listing. 5.5. A method in this service can
then be accessed remotely by sending the string {”jsonrpc”: ”2.0”, ”method”: ”VicoSer-
vice.setAttemptRealTime”, ”params”: [true]} as payload to the handler. This interface is
incredible powerful, but comes at the expense of performance as it depends on reflection.
Because reflection involves types that are dynamically resolved, certain Java virtual ma-
chine optimization’s cannot be performed. Consequently, reflective operations have slower
performance than their non-reflective counterparts, and should be avoided in sections of
code which are called frequently in performance-sensitive applications (Oracle, 2015).

Listing 5.5: VicoService.java

p u b l i c c l a s s V i c o S e r v i c e ex tends R p c S e r v i c e {

p r i v a t e f i n a l V i c o S i m u l a t i o n sim ;

p u b l i c V i c o S e r v i c e (V i c o S i m u l a t i o n sim) {
super (” V i c o S e r v i c e ”) ;
t h i s . sim = sim ;

}

@RpcMethod
p u b l i c vo id s e t A t t e m p t R e a l T i m e (boolean f l a g) {

sim . s e t A t t e m p t R e a l t i m e (f l a g) ;
}

@RpcMethod
p u b l i c vo id s e t T i m e S t e p (double t i m e S t e p) {

sim . getTime () . s e t T i m e S t e p (t i m e S t e p) ;
}

}

33

Chapter 5. Results

KeyHandler

The KeyHandler allows key presses captured in the client application to be registered with
a Vico simulation. This allows clients to trigger simulation code that reacts to key input.

PlotHandler

The PlotHandler enables clients to plot data from a running simulation. A client can ask
for available plots, and subsequently ask for the necessary data to initialize the plot. After
initialization, the client can regularly ask for updates at custom intervals. The schema used
for messages designated to this handler is given in Listing. 7.4.

SpawnHandler

This handler makes it possible for remote clients to spawn objects within a simulation.
The client can define the type of shape as well as position, rotation and initial velocity of
the spawned object. The schema used for messages designated to this handler is given in
Listing. 7.5.

5.1.4 Messages for 3D visualization
This section is used to identify and describe key message types used by the system, which
allows remote clients to render a Vico simulation.

Simulation message

The simulation message consists of the simulation’s UUID, name, time and additionally
an entity, which is the root of the scene-graph. Because an entity is a tree, all entities
contained in the simulation are accessible given the root. Both a setup message and a
lighter update message is defined. The schema is given in Listing. 5.6. These two messages
contains all the information necessary to setup and continuously render a simulation.

Listing 5.6: SimulationMsg.proto
message P B S i m u l a t i o n S e t u p {

s t r i n g name = 1 ;
s t r i n g uu id = 2 ;
PBTime t ime = 3 ;
P B En t i t y r o o t = 4 ;

}

message PBSimula t ionUpda te {

PBTime t ime = 1 ;
PBEnt i t yUpda te r o o t = 2 ;

}

Entity message

An entity is a node in a scene-graph, and contains the entity’s UUID, name, children and a
list of attached components. The transform, geometries, and curves are components, and
could reside inside the general list of components, but because they are so common, they

34

5.1 Server-side Implementation

have been given their own message types for performance reasons and ease of parsing. As
with the simulation message, both a setup and a update message is defined. The complete
schema is given in Listing. 5.7. The transform contains the position and rotation of the
entity, and is given in local coordinates. As such, an implementation is required to build
a scene-graph. Local coordinates was chosen because, as compared to world coordinates,
they are more effective as they do not change when the parent changes. Allowing for
optimization’s to be made.

Listing 5.7: EntityMsg.proto
message P B E n t i t y {

s t r i n g uu id = 1 ;
s t r i n g name = 2 ;
PBTransform t r a n s f o r m = 3 ;
r e p e a t e d PBGeometry g e o m e t r i e s = 4 ;
r e p e a t e d PBCurve c u r v e s = 5 ;
r e p e a t e d P BE n t i t y c h i l d r e n = 6 ;
r e p e a t e d PBComponent components = 7 ;

}

message PBEnt i t yUpda te {

s t r i n g uu id = 1 ;
PBTransform t r a n s f o r m = 2 ;
r e p e a t e d PBCurveUpdate c u r v e s = 3 ;
r e p e a t e d PBEnt i t yUpda te c h i l d r e n = 4 ;
r e p e a t e d PBComponent components = 5 ;

}

Geometry message

A geometry message consists of:

• Either a color or a texture

• An offset position relative to it’s entity

• An offset rotation relative to it’s entity

• A bounding-box

• A flag indicating that it is a visual geometry.

• A flag indicating that it is a collision geometry

• The actual shape

Note that both the visual and collision flag can be set to true, in which case the client
should load the geometry twice, but with different materials. Collision geometries should
be rendered as a wire-frame, while visual models should use the color/texture/material set.
An example is given in Figure. 5.4.

Supported shapes consists of:

• Line - A simple line between two points

• Box - A box is defined by three floats describing it’s half-extents.

• Sphere - A sphere is defined only by it’s radius.

35

Chapter 5. Results

(a) Collision mesh

(b) Visual mesh

Figure 5.4: Example of rendering geometry for visual and collision

Figure 5.5: A collection of supported geometries: Mesh, Line, Height-field, Plane, Cylinder, Ca-
pusle, Sphere and Box

• Cylinder - A cylinder is defined by it’s height and radius.

• Capsule - A capsule is defined by it’s height and radius.

• Point Cloud - A point cloud is defined by a list of points and a color, or optionally
vertex colors

• Plane - A plane is defined by a height and a width.

• Height-field A height-field is defined by a height and a width, as well as the number
of width- and height segments. Optionally, a list of height values can be defined. In
which case the height-field functions as a terrain.

• Mesh - This message merely contains a link to the location of 3D model, which
could be either a file stored on the simulation host or a URL pointing to a location
on the Internet. It is up to the client to do a separate query for the required data over
HTTP, which could then be loaded asynchronously. The format of the model will
be one that Vico supports, which currently is .OBJ and .STL.

The different types of supported geometries (except the point cloud) are shown in
Figure. 5.5. Additionally a height-field used as terrain with texture is shown in Figure. 5.7,
and a point cloud is shown in Figure.5.6.

36

5.1 Server-side Implementation

(a) Bunny renderered in the browser
(b) Bunny rendered in Unity3d

Figure 5.6: Point cloud rendering

Figure 5.7: Example of a height-field as textured terrain, rendered in the browser client

Curve message

Curves are used to represent any type of curve, such as wires, cables etc. It is defined by a
radius, color and a set of points as seen in Listing 5.8. Curves can be dynamic, so a update
message that contains a new set of points is also defined. The number of updated points
does not need to be equal to the initial.

Listing 5.8: CurveMsg.proto
message PBCurve {

s t r i n g uu id = 1 ;
f l o a t r a d i u s = 2 ;
PBColor c o l o r = 3 ;
r e p e a t e d PBVec3 p o i n t s = 4 ;

}

message PBCurveUpdate {

s t r i n g uu id = 1 ;
r e p e a t e d PBVec3 p o i n t s = 2 ;

}

37

Chapter 5. Results

Usage of the curve type is demonstrated in Figure. 5.8

(a) Scene rendered in the browser
(b) Scene rendered in Unity3d

Figure 5.8: Drum simulation featuring the curve type for representing a wire

5.1.5 Water

Water is represented by a dynamic height-field. In order for clients to visualize the water
with waves, the server could send the current height information for each point in the grid,
but this would equal to roughly 30MB of data per second for a grid with resolution of
512x512 (single-precision floating-point at 30hz). Instead, waves are visualized by letting
the server and any connected clients implement the same wave model. In this way, time
is the only continuous variable that needs to be shared, and is controlled by the server as
seen in Figure. 5.9. Additionally, model specific variables must be synced.

Figure 5.9: Wave synchronization

38

5.2 Client-side implementation

5.1.6 Directory service
The directory service is a standalone application server that is responsible for keeping
track of active simulations. When a new simulation is created, it will notify to the directory
service about it’s existence along with the necessary data needed for clients to reach it.

When clients wants to access a simulation, it will query the service for available sim-
ulations. The information received will contain the necessary information for the client to
access the selected simulation directly, as seen in Listing. 5.9.

A view of the application GUI is given in Figure. 5.10, where an administrator can
monitor which simulations are active, and view basic information about them such as the
network address and ports.

Figure 5.10: Directory Service GUI

ZeroMQ is used for communication with the simulations. The service uses a Dealer
socket, while the simulation uses a Router socket. Heartbeats, which are small messages
signifying ”I’m alive”, are sent between them so that disconnects can be detected. With
ZeroMQ, the order of which to start clients and servers does not matter, allowing the
directory service to start after a simulation has started. If the directory service should
crash, it can be restarted and clients will automatically resend their connection info.

A complete description of the information sent is given in Listing. 5.9.

Listing 5.9: ConnectMsg.proto
message ConnectMsg {

s t r i n g uu id = 1 ;
s t r i n g s imula t ionName = 2 ;
s t r i n g d e s c r i p t i o n = 3 ;
s t r i n g h o s t A d d r e s s = 4 ;

map<s t r i n g , u i n t 3 2> p o r t s = 5 ;

}

Clients will query the directory service for available simulation through a HTTP re-
quest, which will return a list of all available simulations as a JSON formatted string.

5.2 Client-side implementation
This chapter describes details of the implementation of two client applications that has
been implemented to make use of the server side solution described previously. These are:

39

Chapter 5. Results

• a web application written in HTML5/JavaScript

• a desktop application written in C# under the game engine Unity3d

5.2.1 Web application
The browser client consists of three web pages. One for selecting a simulation, another for
3D rendering/interaction and a last one for displaying plots.

For communication with the simulation back-end, the WebSocket API is used. Both
JSON and GPB is supported message formats. JSON is built into the JavaScript API,
while the open-source JavaScript protobuf.js (Wirtz, 2016) is used to encode/decode GPB
data. Once decoded, the structure of a GPB message is identical to that of an equivalent
JSON message. Thus allowing the same code to handle parsing for both message types.
Listing. 7.11 shows the code handling networking for the web client.

Simulation Select The selection page as seen in Figure. 5.11, lets the user define the
address of the directory service server. Once this has been done, a HTTP request will be
sent to the server and a list of available simulations will be presented to the user through a
drop-down menu. The user can then choose to either render the simulation in 3D or view
2D plots.

Figure 5.11: Selection page for simulations in the browser

Rendering/Interaction 3D rendering in the browser is facilitated using WebGL. In or-
der to simplify content creation, the open source WebGL framework three.js (Cabello,
2010) is used.

A settings panel, shown in Figure.5.12, allows the user to toggle the visibility of colli-
sions models (wireframe models) and axes of the transforms.

Plotting Using this page, the user can select among the available plots from the simu-
lation and visualize them as the simulation is progressing, as seen in Figure. 5.13. The
3rd JavaScript library Canvas.js (fenopix, 2013) is used to facilitate dynamic plotting in

40

5.2 Client-side implementation

Figure 5.12: Render settings in the browser

the browser. Each plot is wrapped in an collapsible accordion, and is only rendered when
visible.

Figure 5.13: Plotting in the browser

5.2.2 Unity3d
The Unity3d client is implemented using the C# programming language. Because the
C# version used by Unity3D is quite old, some third party libraries such as ZeroMQ and
Google Protocol Buffers will not work with the current regular release of Unity3d (Unity
5.6). Fortunately enough, the Unity team has been releasing experimental builds that can
run newer C# code. Such an experimental build (Unity 2017.1.0b5) was used to implement
the Unity3d client, allowing ZeroMQ sockets and Google Protocol Buffer to be utilized.

All available transport protocols has been implemented for this client. That is, TCP/IP,
UDP, ZeroMQ and WebSockets. However, the implemented UDP client can only handle
messages smaller than 65 kilobyte, limiting its usage to simulation scenes with a small
number of objects. Listing. 7.10 shows the code doing the heavy lifting w.r.t networking.
Both JSON and GBP can be used for encoding/decoding of the message payloads. Parsing
for both is equal, as JSON messages are converted to equivalent Protocol Buffer generated

41

Chapter 5. Results

classes before any parsing is performed.
In order for users of the Unity3d client to easily select among the available remote

simulations, a GUI element was added to the editor’s menu bar. When clicking the menu
element, a script will query the directory service for simulations over HTTP. For each sim-
ulation, a GUI element is dynamically created and will appear in the menu bar. The new
menu items is shown in Figure. 5.14. On selection, the remote simulation will load. Mul-
tiple simulations can run in the same scene at once. Also multiple instances of the same
simulation can run within same scene, where each instance can choose which transport
and serialization method to use.

Figure 5.14: New Unity3d menu items. Vico fetch will initiate a query for available simulations,
which will populate the Load Vico Simulation menu

Missing assets Unity3d lacks built in support for lines, point clouds, curves, height-
fields and run-time import of 3D models. These had to implemented in order to properly
visualize the remote simulations.

• Line - Lines are implemented using the built in LineRenderer component, which
allows lines to be rendered in-game (in contrast to Debug.DrawLine which is only
visible in the scene view).

• Point cloud - Point clouds are implemented as a Mesh, which is rendered using
GL.POINTS.

• Curve - Curves were implemented by porting the code used by Three.js to create the

42

5.3 Benchmarks

TubeBufferGeometry 2 to C#. The result can be viewed in Fig. 5.15. This geometry
is used to render curved 3D objects such as wires etc.

• OBJ support - Support for runtime loading of OBJ (Wavefront Object File) 3D
models, including material support, was achieved using the free Runtime OBJ Im-
porter from the Unity3d asset store. However, this importer only works with files
located on the file system. In order to load .OBJ, .MTL and texture files from an
URL source, the code in Listing. 7.9 was added. Using this code, data can be read
from the remote resource over HTTP and is subsequently saved to the local file-
system, allowing the standard loader to read the files. Once completed, the files are
deleted.

• STL support - Unity3d does not include a loader for the .STL (STereoLithography)
3D format. This support was implemented, and can be used to load models both
from the editor and during run-time. Additionally, the loader can load data from an
URL. The code is shown in Listing. 7.8.

Figure 5.15: Curve implementation in Unity3D

Multi-display support In order to support visualization of the simulations in multi-
display environments such as domes, the Unity3d client was fitted with client side code that
makes it possible to project the simulation onto multiple displays. This solution works by
running multiple instances of Unity3d, each controlling a projector. One of the instances
is assigned the master role, while the others connect to the master as slaves. ZeroMQ is
used for networking and the PUB-SUB pattern is used.

• Master The master script (see Listing. 7.6) is attached to the main camera, and will
continuously publish the position and rotation of it’s transform.

• Slaves The slave script (see Listing. 7.7) is attached to the main camera. Subse-
quently, the transform will be updated according to the transform received from the
publisher. The slave is responsible for configuring the view offset between itself and
the master.

5.3 Benchmarks
In order to see the performance of the implemented networking options, a simulation scene
with a large number of objects were created. That is, 1001 entities - each with an attached

2https://threejs.org/docs/#api/geometries/TubeBufferGeometry

43

https://threejs.org/docs/#api/geometries/TubeBufferGeometry

Chapter 5. Results

geometry. The scene is shown in Figure. 5.16, and features a sphere moving in a prescribed
motion around the objects. Attached to the other objects is a script that makes them face
the sphere at all times. The simulation is not advanced, and isn’t really a simulation per
se, but functions well for a benchmark because of the shear number of interactive objects.

As a result the messages generated in this benchmark are larger than a single UDP
datagram, generating results for this option requires a client that can handle multi-part
datagrams. The current implementation was able to reconstruct messages with GPB pay-
loads, as these requires fewer partial messages, but not those using JSON. This is why
such results are not present in the presented figures.

(a) Internal (b) Browser (c) Unity

Figure 5.16: Simulation scene rendered in different implementations

5.3.1 Request-reply

In this benchmark, the client requests the simulation for 100 simulation updates. Each
request is sent as soon as the previous has been received. No parsing of the message
payload is performed.

Figure. 5.17 shows the performance of the various transport when using GPB to encode
the payload data. Figure. 5.18 shows the same data when using JSON encoding.

Finally, a comparison of the total time required by each transport and encoding scheme
is given in Figure. 5.19. Here we clearly see that overall GPB is much faster than JSON,
which is natural due to the smaller size of the messages sent.

From the figures, we clearly notice that using GPB is more efficient w.r.t time. Over-
all, we notice that UDP is, not surprisingly, the fastest method of delivery. However, it
is considerable harder to implement a client for it. We also notice that the WebSocket
option in Unity3d is the slowest, while interestingly, the same protocol in the browsers
are considerable more efficient, even though they are implemented in a dynamic language.
Actually, when considering GPB payloads, Firefox is faster than the TCP/IP transport in
Unity3d and performs similar to the ZeroMQ option. Here ZeroMQ shows the advantage
of using a middleware. While ZeroMQ uses TCP/IP under the hood, it beats the ”raw”
TCP/IP implementation. Probably due to a number of optimization’s in the library.

44

5.3 Benchmarks

5.3.2 Publication
In this benchmark the server sends 1000 simulation updates to the client as quickly as
possible. Compared to the first benchmark, the client does not send data back to the server
between updates. The objective of the benchmark is to measure the throughput, which is
the amount of data that can be transferred per unit time (Comer, 2008). In particular, we
are measuring the goodput, which is the effective data rate achieved by the application. It
is worth nothing that throughput is a measure of capacity, not speed (Comer, 2008).

As we are interested in benchmarking the network performance, the message payload
is not parsed once received. Table. 5.5 shows the collected results.

Table 5.5: Measured throughput

Platform Browser Unity
Transport ws-firefox ws-chrome ws-unity tcp-unity zmq-unity
Encoding GPB JSON GPB JSON GPB JSON GPB JSON GPB JSON

Bytes
transferred
(MB)

81.23 196.4 81.23 196.4 81.23 196.4 81.23 196.4 81.23 196.4

Time
elapsed (s) 0.721 4.06 4.28 4.85 3.39 9.619 0.738 4.633 1.424 3.969

Through-
output
(mbps)

900 387 152 324 191 164 880 339 456 395

From this table we see that the message size is 41.3% smaller when using GPB to
encode the payload compared to JSON. Also, we notice that the time required to receive
1000 messages are lower using GPB for all transports.

Interestingly, the highest throughput is achieved in the browser, using Firefox. UDP is
not listed, because it failed the benchmark. Basically it was not able to receive all of the
sub-messages necessary to build complete messages due to unknown reasons.

Using the same setup, another run was performed with the purpose of measuring the
parsing performance. The results can be viewed in Table. 5.6, which shows the mean time
it takes to parse the message payloads in the Chrome, Firefox and Unity .

Table 5.6: Mean time to parse 1000 messages

Firefox Chrome Unity3d
GPB 2.82ms 1.54ms 2.3ms
JSON 2.92ms 6.14ms 53ms

From the table, we see that all platforms require less time to parse messages with GPB
encoded payloads compared to JSON. GPB under Chrome proves to be the fastest format
to parse, while JSON in Chrome is almost four times as slow. Firefox parses JSON faster
than Chrome, but GPB is almost twice as slow. As Unity3d uses a compiled language, it
would be expected that it would be the faster option, however, GPB parsing under Unity3d
lies in between Chrome and Firefox. This shows that, performance wise, code execution
in the browsers can be very good.

The underwhelming performance of JSON parsing under Unity3d can be explained by
the fact that the parsing is done by the GPB API, which converts the JSON message to an

45

Chapter 5. Results

equal GPB representation. This process utilizes reflection, which is considerably slower
than normal method invocations.

5.4 Synchronized Wave Visualization
In this case study, a simulation scene featuring a dynamic ocean surface was created.
Floating on top of the surface is multiple rigid-bodies with box shapes. A sinusoidal
wave generator is used to generate the surface heights client-side, following the approach
described in Section 5.1.5. The scene can be viewed in Figure. 5.20, rendered by different
implementations at the same point in time.

(a) Internal

(b) Browser

(c) Unity3d

Figure 5.20: Waves synchronized between different render implementations

5.5 Multi-projector rendering
In this case study, the Unity3d client is used to render a simulation scene onto the cylin-
drical wall of the Visualization lab introduced in Section. 4.7. Normally, three computers
- powering four projectors each, are used to fully cover the canvas area, but for this study
only 2 projectors were used. Each powered by it’s own computer. The system setup can
be seen in Figure. 5.21. One of the clients are assigned the master role, publishing it’s

46

5.5 Multi-projector rendering

transform to connected clients. The second client then subscribe to the master and updates
it’s own transform accordingly.

Figure 5.21: The test setup. Two clients were used, each powering a projector. One of the clients
was assigned the master role, publishing it’s camera transform to the second client acting as a slave.
The simulation was running on a remote computer

Rolf-Magnus Hjørungdal, another master student, has developed a Unity3d asset that
applies warping and blending effects to the camera, such that images from the different
projectors does not overlap. This asset was imported to the implemented Unity3d client,
and the result can be seen in Figure. 5.22. Some visual artifacts can be seen, due to the
fact that the asset was not completely finished at the time of the test.

47

Chapter 5. Results

Figure 5.22: Scene rendered using two projectors in the Visualization lab. Warping and blending
effects were achieved using master student Rolf-Magnus Hjørungdal’s Unity3d asset.

The solution runs within the Unity3d editor. As this implies unwanted GUI elements
being visible, a script was added that makes it possible to produce full-screen rendering
output from within the editor. The script was written by reddit user digitalsalmon 3. As
we are not always interested in full-screen mode, logic was added so that the desired mode
is read from a configuration file on play.

3https://www.reddit.com/r/Unity3D/comments/2lymim/full_full_screen_on_
play_script_freebie_for/

48

https://www.reddit.com/r/Unity3D/comments/2lymim/full_full_screen_on_play_script_freebie_for/
https://www.reddit.com/r/Unity3D/comments/2lymim/full_full_screen_on_play_script_freebie_for/

5.5 Multi-projector rendering

(a
)T

im
e

ta
ke

n
fr

om
re

qu
es

tt
o

re
pl

y
(b

)A
cc

um
ul

at
ed

tim
e

Fi
gu

re
5.

17
:1

00
re

qu
es

t-
re

pl
y

us
in

g
bi

na
ry

en
co

di
ng

49

Chapter 5. Results

(a)Tim
e

taken
from

requestto
reply

(b)A
ccum

ulated
tim

e

Figure
5.18:

100
request-reply

using
textualencoding

50

5.5 Multi-projector rendering

Fi
gu

re
5.

19
:T

im
e

us
ed

to
co

m
pl

et
e

10
0

re
qu

es
t-

re
pl

y
fo

rt
he

va
ri

ou
s

tr
an

sp
or

t-
bo

th
us

in
g

G
PB

an
d

JS
O

N
en

co
di

ng
of

th
e

pa
yl

oa
d

da
ta

51

Chapter 5. Results

52

Chapter 6
Discussion

In this chapter key elements such as design choices and performance of the implemented
solution is discussed. Also some ideas for future works are touched upon.

6.1 Wave visualization
The current approach used for implementation of wave visualization on remote clients,
while better than sending raw height data, is not optimal. The reason is that the approach
requires the client to know in advance the type of waves a simulation can produce, and
implement those accordingly. GLTF (GL Transmission Format) (Khronos, 2017) is a new
specification for efficient transmission and loading of 3D scenes and models for GL API’s,
developed by the Khronos Group. What sets GLTF apart from other similar formats, is
that the shader is included in the model. This way, the model would only need to be
implemented once. Also, since the model would be implemented in a shader, this solution
would be very efficient rendering wise.

6.2 Industry standards

6.2.1 DDS
As DDS (see Section. 2.1.2 has become an industrial standard for data exchange, it was
important to investigate whether or not it could be used in this project. Some of the findings
are listed below:

1. Large API that requires a lot of configuration makes it difficult to use.

2. Only one open-source implementation. Others are commercial.

3. Coupled with it’s own IDL. This is what makes DDS interoperable, as all nodes
speak the same language out of the box.

53

Chapter 6. Discussion

4. Focuses on publish-subscribe. While request-reply has been added as an extension
in the standard, it may not be supported by all implementations.

The conclusion was that DDS would not be considered to be used as a middleware
connecting clients with the server. More than anything, DDS seems to identify its intended
use in the realm of IoT devices. Furthermore, DDS seems difficult to use alongside other
transports, as it’s coupled with its own IDL. However, a possibility still exists for it to be
used in the future to connect hardware devices with a simulation on the component side of
things.

6.2.2 CIGI
As described in Section. 2.4, CIGI is a standard for communication between a simulation
host and an IG. As such, CIGI was evaluated as a solution for realizing 3D rendering in
remote clients. However, because the standard is quite large and packages data in binary
form not backed by an schema, it was deemed somewhat unwieldy to implement. A goal
of this project was that it should be easy for clients to implement the interface, and CIGI
demands considerable effort on the part of the implementer. Both client side and host
side. Furthermore, it seems that there is no open-source community around it. The current
implementors are commercial, keeping their code closed-source.

Therefore, a more light-weight solution was built, based on GPB with the option to
use JSON. However, thanks to the extensible nature of the implemented system, a CIGI
implementation may be revisited in the future which could live side by side with the current
solution, simply by adding a new handler dedicated for CIGI.

6.3 Performance

6.3.1 Networking
From the benchmark results in Section. 5.3 we see that Firefox delivers the best perfor-
mance regardless of payload encoding. This is somewhat unexpected, as JavaScript is
dynamically typed and WebSockets comes with a larger overhead compared to the options
available under Unity3d and C#. It clearly shows that code executed in the browser can
compete with traditional desktop applications performance wise. However, under the same
circumstances, Chrome delivers the lowest throughout. While they both use JavaScript,
Firefox and Chrome employs competing implementations. In this case, Firefox is clearly
the fastest, and shows that users should test different browsers when interacting with re-
source demanding web pages.

Looking at Unity3d only, as seen in Table. 5.5 raw TCP is the more performant solu-
tion. This is not a huge surprise as both WebSockets and ZeroMQ uses TCP themselves,
with some additional overheads involved.

The WebSocket solution in Unity3d is overall the worst performing. The added over-
head does not explain this, as the browsers which also uses WebSockets perform better. As
such, the lower performance is probably due to how the 3rd party library, Websocket-sharp,
has been implemented.

54

6.4 Multi-display rendering

In the future, it would be beneficial to include results from even more platforms/lan-
guages in order to have a better foundation for comparisons.

6.3.2 Serialization
In both the implemented clients, GBP is the more efficient format as shown in Table. 5.6.
The difference is most notable in the Unity3d client, where the JSON messages will
quickly slow down the code execution, because the JSON messages are converted from
a JSON string to an equivalent GBP message. This process is slow because reflection is
involved. The JSON serialization mechanism is meant to be used by dynamic languages,
but was included in the Unity3d client for validation purposes. As noted, GPB is faster also
in the dynamic browser environment, even though JSON is considered the de-facto stan-
dard in this environment and one would assume that significant efforts from the browser
vendors has been put into optimizing it.

Even though messages using JSON encoding is proven to be slower and requires higher
bandwidth than equivalent GBP messages, from a user perspective, it is still a useful option
to have, as clients do not require a schema and JSON is objectively easier to implement
because it is so commonly used.

6.4 Multi-display rendering
As shown in Section. 5.5 the solution can be used to render a simulation scene onto mul-
tiple connected displays. Compared to Unity3d’s clustered rendering, this solution shows
multiple advantages.

1. It is not locked to Unity3d. Any rendering application can in theory be used.

2. When using Unity3d, the solution does not need to be built. It can run directly from
the editor.

3. No forced limitations to the number of clients.

4. Less complexity. Simulation runs on a single computer, no lock-stepping required.

5. The number of clients can vary while running.

6.5 Miscellaneous

6.5.1 Broker architecture
In the implemented system, clients communicate directly with the simulations after an ini-
tial query for available simulations to a broker acting as a directory service. Two alternate
solutions could easily be identified:

1. No broker: Performance wise, this approach is equal to the current solution, as
clients and simulations has a direct line of communications. However, clients cannot
discover simulations. The necessary information needed to connect to a simulation

55

Chapter 6. Discussion

(a) Directory service

(b) Route traffic
(c) No broker

Figure 6.1: Design alternatives

would have to be provided manually by the user, and the user itself would have
to get the IP address and ports manually from the simulation host machine. This
solution would be OK if the client and simulation machines where physically close
to each other, or in cases where the network address of a simulation would not
change and clients could be hard-coded with the appropriate addresses. In more
complex scenarios, however, this solution would prove a logistically nightmare.

2. Route all traffic through broker: In this case, automatic discovery of simulations
would be available, as the broker would act as a directory service, and additionally
it would handle traffic routing. All traffic would pass through the application. Only
a single transport mechanism between broker and simulation would be necessary
in this case. Support for other transports client side could be integrated into the
broker itself. Other properties of such a solution would be that clients, in addition
to the knowing the broker address, would only need some unique identifier to talk
to simulations. The big downside of this approach is that communications would
naturally be slower. Additionally, with enough data traffic the broker could run
out of bandwidth or slow down due to excessive CPU load, slowing down every
connected system.

The different architectures are shown in Figure. 6.1.

6.5.2 UDP support
Because UDP has a low overhead, supports multi-cast and dropped messages are dis-
carded, it is highly suitable for real-time communication. While a UDP support were
implemented for this system, the client side implementation for Unity3d is somewhat lack-
ing. Because the messages sent from the server, when serving medium to large simulation
scenes, will exceed the maximum message size for a single UDP datagram, the message
must be divided and sent as multi-part messages. This is done server side, but the client

56

6.5 Miscellaneous

(a) Internal (b) Browser

Figure 6.2: Example of simulation scene with multiple 3D models

side implementation is not able to rebuild multi-part messages properly. Thus, using the
implemented client, only simulations that generates messages smaller than 65 kilobyte are
handled. Rebuilding a UDP messages is an complex issue, especially when the data stream
is continuous, because the messages can appear in the wrong order or they may not appear
at all. As RakNet (see Section. 2.1.2) is able to deliver reliable UDP transport, a viable
strategy might be to add RakNet to the list of supported end-points in the future.

6.5.3 Loading 3D models
When the source of a 3D model is an actual file, either located on the Internet or on a
remote file system, the 3D model is, as described in 5.1.4, presented to the client as a
link. Allowing a client to load the 3D models at a later time, thus reducing load times.
Furthermore, models can be cached, which greatly improves load times in cases a model
is re-used by other objects, as it only need to be downloaded once. Both these features are
used by the web client, making it very effective at loading complex scenes that contains
multiple 3D models - as exemplified in Figure. 6.2. The Unity3d client, however, lacks
both and is therefore very ineffective at loading scenes with multiple 3D models. For each
3D model, the current implementation:

1. Downloads the model.

2. Writes the model + materials/textures to file.

3. Loads the model from file.

4. Deletes the file from the file system.

While this works, users might mistake the slowness for a system failure and should be
improved by adding a caching mechanism in the future.

6.5.4 Simulation playback
As the project progressed, it was made clear that the messages designed for 3D rendering
on remote clients could have a second use. By storing the same messages to a file, playback

57

Chapter 6. Discussion

functionality could be implemented. This allows Vico simulations to be played back in
an interactive viewer. This is a very useful feature, especially for slower than real-time
simulations which could otherwise prove unsuited for interactive 3D rendering.

58

Chapter 7
Conclusion

In this thesis a flexible network interface for a real-time simulation framework was pre-
sented. The solution is flexible in that it allows clients to choose among several different
transport protocols, increasing the chance that a client can be implemented in language X
or tool Y. In particular, the implemented transports are the TCP/IP, UDP and WebSocket
protocols as well as the ZeroMQ middleware. Additionally, HTTP is used to serve static
files.

Borrowing the terminology used by (Byrne et al., 2010) for Web-based simulation and
applying it to simulations made accessible over the network in general, what has been pre-
sented is a hybrid architecture as described in Section. 3.1. Simulations runs on a server,
while clients accessing the simulation using the developed interface handles visualiza-
tion/interaction.

Messages received server-side are handled by a modular interface. Unique keys lead-
ing a message are used to route messages to the appropriate handler. The implemented
system comes bundled with a number of handlers, such as handlers for 3D visualization,
plotting and keyboard input. Additionally, new handlers can be seamlessly integrated
by simulation designers thanks to the modular and extensible design. It was shown how
clients making use of the implemented handlers were able to render simulations scenes and
plot data in real-time. Even ocean waves, synchronized across clients, can be rendered.

Furthermore, clients can choose how data payloads are sent/received over the wire.
Both the textual JSON format and the binary GPB format are supported for static message
types, such as messages for 3D rendering and plotting. This mechanism is also extensible,
such that alternate formats can be added in the future. In order to facilitate special re-
quirements, a special handler makes it possible for annotated Java methods to be exposed
dynamically over the network using JSON RPC 2.0 compliant messages.

The usefulness of the system is shown through implementation of clients on two differ-
ent platforms, web and desktop. Using different transport mechanisms, clients are able to
interface against the same simulations simultaneously. This makes it possible for clients,
even on different platform, to engage in virtual collaboration. Once a client for the system
has been implemented, it was shown through a demonstration in the Visualization lab that

59

Chapter 7. Conclusion

clustered rendering can be facilitated.
As mentioned in the previous chapter, a number of future works should be considered

in order to further improve the system. Supporting RakNet would provide a way of de-
livering reliable UPD messages, which could increase network performance for desktop
applications. While the Unity3d client is working, it is very slow at loading scenes with
multiple 3D models, because it lacks a caching mechanism. This should be implemented.
It would also be nice to see a client implemented for Unreal Engine 4, which could provide
better performance and graphics than what Unity3d can deliver. In order to make it easier
to implement ocean waves across clients, the GLTF format should be looked into. Finally,
in order to support industrial IG’s, support for CIGI as an addition to the custom messages
for rendering introduced in this work should be considered.

60

Bibliography

Bainbridge, W. S., 2007. The scientific research potential of virtual worlds. science
317 (5837), 472–476.

Bernier, Y. W., 2001. Latency compensating methods in client/server in-game protocol
design and optimization. In: Game Developers Conference. Vol. 98033.

Bittner, S., Oelsner, O., Neidhold, T., 2015. Using fmi in a cloud-based web application
for system simulation. In: Proceedings of the 11th International Modelica Conference,
Versailles, France, September 21-23, 2015. No. 118. Linköping University Electronic
Press, pp. 845–848.

Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Friedrich,
M., Junghanns, A., Mauss, J., Neumerkel, D., et al., 2012. Functional mockup interface
2.0: The standard for tool independent exchange of simulation models. In: Proceed-
ings of the 9th International MODELICA Conference; September 3-5; 2012; Munich;
Germany. No. 076. Linköping University Electronic Press, pp. 173–184.

Buschmann, F., Henney, K., Schmidth, D., 1999. A pattern language for distributed com-
puting: Pattern-oriented software architecture.

Byrne, J., Heavey, C., Byrne, P. J., 2010. A review of web-based simulation and supporting
tools. Simulation modelling practice and theory 18 (3), 253–276.

Cabello, R., 2010. Three. js. https://github.com/mrdoob/three.js.

Chen, B., Xu, Z., 2011. A framework for browser-based multiplayer online games using
webgl and websocket. In: Multimedia Technology (ICMT), 2011 International Confer-
ence on. IEEE, pp. 471–474.

Comer, D. E., 2008. Computer networks and internets. Prentice Hall Press.

Dworak, A., Ehm, F., Charrue, P., Sliwinski, W., 2012. The new cern controls middleware.
In: Journal of Physics: Conference Series. Vol. 396. IOP Publishing, p. 012017.

61

https://github. com/mrdoob/three. js

Dworak, A., Sobczak, M., Ehm, F., Sliwinski, W., Charrue, P., 2011. Middleware trends
and market leaders 2011. In: Conf. Proc. Vol. 111010. p. FRBHMULT05.

fenopix, 2013. Canvas. js. http://canvasjs.com/.

Fiedler, G., 2010. What every programmer needs to know about game networking.
URL http://gafferongames.com/networking-for-game-programmers/
what-every-programmer-needs-to-know-about-game-networking/

Fishwick, P. A., 2009. An introduction to opensimulator and virtual environment agent-
based m&s applications. In: Simulation conference (WSC), proceedings of the 2009
winter. IEEE, pp. 177–183.

Forouzan, B. A., 2002. TCP/IP protocol suite. McGraw-Hill, Inc.

Fortmann-Roe, S., 2014. Insight maker: A general-purpose tool for web-based modeling
& simulation. Simulation Modelling Practice and Theory 47, 28–45.

Group, J.-R. W., et al., 2012. Json-rpc 2.0 specification.

Halic, T., Ahn, W., De, S., 2011. A framework for 3d interactive applications on the web.
In: SIGGRAPH Asia 2011 Posters. ACM, p. 58.

Hatledal, L. I., Schaathun, H. G., Zhang, H., 2015. A software architecture for simulation
and visualisation based on the functional mock-up interface and web technologies. In:
Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October,
7-9, 2015, Linköping University, Sweden. No. 119. Linköping University Electronic
Press, pp. 123–129.

Hintjens, P., 2013. ZeroMQ: Messaging for Many Applications. ” O’Reilly Media, Inc.”.

JeroMQ, 2017. Jeromq. https://github.com/zeromq/jeromq.

Khronos, 2017. Gltf. https://github.com/KhronosGroup/glTF.

Loreto, S., Saint-Andre, P., Salsano, S., Wilkins, G., 2011. Known issues and best practices
for the use of long polling and streaming in bidirectional http. Tech. rep.

Maeda, K., 2012. Performance evaluation of object serialization libraries in xml, json
and binary formats. In: Digital Information and Communication Technology and it’s
Applications (DICTAP), 2012 Second International Conference on. IEEE, pp. 177–182.

Marrin, C., 2011. Webgl specification. Khronos WebGL Working Group.

McMullen, T., Hawick, K., Du Preez, V., Pearce, B., 2012. Graphics on web platforms
for complex systems modelling and simulation. In: Proceedings of the International
Conference on Computer Graphics and Virtual Reality (CGVR). The Steering Commit-
tee of The World Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp), p. 1.

Mozilla, 2017. Webgl. https://developer.mozilla.org/en-US/docs/
Web/API/WebGL_API.

62

http://canvasjs.com/
http://gafferongames.com/networking-for-game-programmers/what-every-programmer-needs-to-know-about-game-networking/
http://gafferongames.com/networking-for-game-programmers/what-every-programmer-needs-to-know-about-game-networking/
https://github.com/zeromq/jeromq
https://github.com/KhronosGroup/glTF
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API

Müller, J., Lorenz, M., Geller, F., Zeier, A., Plattner, H., 2010. Assessment of communica-
tion protocols in the epc network-replacing textual soap and xml with binary google
protocol buffers encoding. In: Industrial Engineering and Engineering Management
(IE&EM), 2010 IEEE 17Th International Conference on. IEEE, pp. 404–409.

Neumann, C., Prigent, N., Varvello, M., Suh, K., 2007. Challenges in peer-to-peer gaming.
ACM SIGCOMM Computer Communication Review 37 (1), 79–82.

Nurseitov, N., Paulson, M., Reynolds, R., Izurieta, C., 2009. Comparison of json and xml
data interchange formats: A case study. Caine 2009, 157–162.

Obidowski, R. M., Jha, R., 2010. Advances in scalable generic image generator technology
for the advanced deployable day/night simulation project. In: Vision and Displays for
Military and Security Applications. Springer, pp. 75–85.

Oculus, 2014. Raknet. https://github.com/facebookarchive/RakNet.

OMG, march 2016. Remote procedure call over dds.
URL http://www.omg.org/spec/DDS-RPC/1.0/Beta2/PDF

Oracle, 2015. Trail: The reflection api. http://docs.oracle.com/javase/
tutorial/reflect/index.html.

Pang, X., Dye, R., Nouidui, T. S., Wetter, M., Deringer, J. J., 2013. Linking interactive
modelica simulations to html5 using the functional mockup interface for the learnhpb
platform. In: Proc. of the 13th IBPSA Conference, Chambery, France. pp. 2823–2829.

Parisi, T., 2012. WebGL: up and running. ” O’Reilly Media, Inc.”.

Phelps, W., 2002. Interface control document for the common image generator interface
(cigi) version 2.0. Boeing Corporation, St. Louis, MO. Report TST02I015, available
June 1009.

Postel, J., 1980. User datagram protocol. Tech. rep.

Rajlich, N., 2017. Java-websockets. http://tootallnate.github.io/
Java-WebSocket/.

Reis, B., Teixeira, J. M., Kelner, J., 2011. An open-source tool for distributed viewing
of kinect data on the web. In: VIII WORKSHOP DE REALIDADE VIRTUAL E
AUMENTADA–2011. Disponı́vel em:¡ https://www. gprt. ufpe. br/grvm/Publication/-
FullPapers/201. Vol. 1.

Rizano, T., Abeni, L., Palopoli, L., 2013. Experimental evaluation of the real-time perfor-
mance of publish-subscribe middlewares.

Rymaszewski, M., 2007. Second life: The official guide. Vol. 2. John Wiley & Sons.

Schollmeier, R., 2001. A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In: Peer-to-Peer Computing, 2001. Proceed-
ings. First International Conference on. IEEE, pp. 101–102.

63

https://github.com/facebookarchive/RakNet
http://www.omg.org/spec/DDS-RPC/1.0/Beta2/PDF
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://tootallnate.github.io/Java-WebSocket/
http://tootallnate.github.io/Java-WebSocket/

Schwaber, K., Beedle, M., 2002. Agile software development with Scrum. Vol. 1. Prentice
Hall Upper Saddle River.

SISO, 2012. Standard for common image generator interface (cigi).

Walker, J. D., Chapra, S. C., 2014. A client-side web application for interactive environ-
mental simulation modeling. Environmental Modelling & Software 55, 49–60.

Wiedemann, T., 2001. Simulation application service providing (sim-asp). In: Proceedings
of the 33nd conference on Winter simulation. IEEE Computer Society, pp. 623–628.

Wirtz, D., 2016. Protobuf. js. http://dcode.io/protobuf.js/.

ZeroMQ, 2012. Broker vs. brokerless. http://zeromq.org/whitepapers:
brokerless.

64

http://dcode.io/protobuf.js/
http://zeromq.org/whitepapers:brokerless
http://zeromq.org/whitepapers:brokerless

Appendix

Code fragments

Protocol Buffer Schemas

Listing 7.1: CommonProto.proto

s y n t a x = ” p r o t o 3 ” ;

o p t i o n c s h a r p n a m e s p a c e = ” Vico . Un i ty ” ;
o p t i o n j a v a p a c k a g e = ” no . n tnu . v i c o . p r o t o ” ;

message P B S i m u l a t i o n S e t u p {

s t r i n g name = 1 ;
s t r i n g uu id = 2 ;
PBTime t ime = 3 ;
P B En t i t y r o o t = 4 ;

}

message PBSimula t ionUpda te {

PBTime t ime = 1 ;
PBEnt i t yUpda te r o o t = 2 ;

}

message PBTime {

u i n t 6 4 i t e r a t i o n s = 1 ;
f l o a t s i m u l a t i o n T i m e = 2 ;
f l o a t runTime = 3 ;
f l o a t t i m e S t e p = 4 ;

}

message P B E n t i t y {

s t r i n g uu id = 1 ;
s t r i n g name = 2 ;
PBTransform t r a n s f o r m = 3 ;
r e p e a t e d PBGeometry g e o m e t r i e s = 4 ;
r e p e a t e d PBCurve c u r v e s = 5 ;
r e p e a t e d P BE n t i t y c h i l d r e n = 6 ;
r e p e a t e d PBComponent components = 7 ;

}

message PBEnt i t yUpda te {

s t r i n g uu id = 1 ;
PBTransform t r a n s f o r m = 2 ;
r e p e a t e d PBCurveUpdate c u r v e s = 3 ;
r e p e a t e d PBEnt i t yUpda te c h i l d r e n = 4 ;
r e p e a t e d PBComponent components = 5 ;

}

message PBTransform {

PBVec3 l o c a l P o s i t i o n = 1 ;
PBQuat l o c a l Q u a t e r n i o n = 2 ;

}

65

message PBCurve {

s t r i n g uu id = 1 ;
f l o a t r a d i u s = 2 ;
PBColor c o l o r = 3 ;
r e p e a t e d PBVec3 p o i n t s = 4 ;

}

message PBCurveUpdate {

s t r i n g uu id = 1 ;
r e p e a t e d PBVec3 p o i n t s = 2 ;

}

message PBEnt i tyAdded {

P B En t i t y e n t i t y = 1 ;

}

message PBEntityRemoved {

s t r i n g uu id = 1 ;

}

message PBComponent {

s t r i n g t y p e = 1 ;
s t r i n g d a t a = 2 ;

}

/ / / / / / / / / / / / / / / / / / / MATH /

message PBVec3 {

f l o a t x = 1 ;
f l o a t y = 2 ;
f l o a t z = 3 ;

}

message PBQuat {

f l o a t x = 1 ;
f l o a t y = 2 ;
f l o a t z = 3 ;
f l o a t w = 4 ;

}

message PBColor {

u i n t 3 2 r = 1 ;
u i n t 3 2 g = 2 ;
u i n t 3 2 b = 3 ;
u i n t 3 2 a = 4 ;

}

message PBColors {

r e p e a t e d PBColor v a l u e = 1 ;

}

/ GEOMETRY / / / / / / / / / / / / / / / / / /

message PBGeometry {

oneof t h e s e {
PBColor c o l o r = 1 ;
P B E x t e r n a l S o u r c e t e x t u r e = 2 ;

}

PBVec3 o f f s e t P o s i t i o n = 3 ;
PBQuat o f f s e t Q u a t e r n i o n = 4 ;

PBBoundingBox boundingBox = 5 ;
boo l i s C o l l i s i o n = 6 ;
boo l i s V i s u a l = 7 ;

oneof shape {
PBBox box = 2 1 ;
PBPlane p l a n e = 2 2 ;
P B H e i g h t F i e l d h e i g h t F i e l d = 2 3 ;

66

PBSphere s p h e r e = 2 4 ;
PBCyl inder c y l i n d e r = 2 5 ;
PBCapsule c a p s u l e = 2 6 ;
PBMesh mesh = 2 7 ;

}
}

message PBBoundingBox {

PBVec3 c e n t e r = 1 ;
PBVec3 h a l f E x t e n t s = 2 ;

}

message PBLine {

PBVec3 s t a r t = 1 ;
PBVec3 end = 2 ;

}

message PBBox {

f l o a t x = 1 ;
f l o a t y = 2 ;
f l o a t z = 3 ;

}

message PBPlane {

f l o a t wid th = 1 ;
f l o a t h e i g h t = 2 ;

}

message P B H e i g h t F i e l d {

f l o a t wid th = 1 ;
f l o a t h e i g h t = 2 ;
u i n t 3 2 wid thSegments = 3 ;
u i n t 3 2 h e i g h t S e g m e n t s = 4 ;
r e p e a t e d f l o a t h e i g h t s = 5 ;

}

message PBSphere {

f l o a t r a d i u s = 1 ;

}

message PBCyl inder {

f l o a t r a d i u s = 1 ;
f l o a t h e i g h t = 2 ;

}

message PBCapsule {

f l o a t r a d i u s = 1 ;
f l o a t h e i g h t = 2 ;

}

message PBPointCloud {

r e p e a t e d PBVec3 p o i n t s = 1 ;

oneof t h e s e {
PBColor c o l o r = 2 ;
PBColors c o l o r s = 3 ;

}

}

message PBMesh {

f l o a t s c a l e = 1 ;

oneof t h e s e {
PBRawMeshData raw = 1 1 ;
P B E x t e r n a l S o u r c e s o u r c e = 1 2 ;

}

}

message PBRawMeshData {

67

r e p e a t e d u i n t 3 2 i n d i c e s = 1 ;
r e p e a t e d f l o a t v e r t i c e s = 2 ;
r e p e a t e d f l o a t no rma l s = 3 ;

}

message P B E x t e r n a l S o u r c e {

s t r i n g e x t e n s i o n = 1 ;
s t r i n g l o c a t i o n = 2 ;
s t r i n g baseName = 3 ;
s t r i n g f u l l P a t h = 4 ;

}

Listing 7.2: RequestProto.proto

s y n t a x = ” p r o t o 3 ” ;

o p t i o n c s h a r p n a m e s p a c e = ” Vico . Un i ty ” ;
o p t i o n j a v a p a c k a g e = ” no . n tnu . v i c o . p r o t o ” ;

i m p o r t ” CommonProto . p r o t o ” ;

message Reques t {
Reques tType t y p e = 1 ;

}

enum Reques tType {

SIMULATION SETUP = 0 ;
SIMULATION UPDATE = 1 ;

}

message Response {

oneof t h e s e {
P B S i m u l a t i o n S e t u p s i m u l a t i o n S e t u p = 1 ;
PBSimula t ionUpda te s i m u l a t i o n U p d a t e = 2 ;

}

}

Listing 7.3: SubscriptionProto.proto

s y n t a x = ” p r o t o 3 ” ;

o p t i o n c s h a r p n a m e s p a c e = ” Vico . Un i ty ” ;
o p t i o n j a v a p a c k a g e = ” no . n tnu . v i c o . p r o t o ” ;

i m p o r t ” CommonProto . p r o t o ” ;

message P u b l i c a t i o n {

oneof t h e s e {

PBSimula t ionUpda te s i m u l a t i o n U p d a t e = 1 ;
PBEnt i tyAdded e n t i t y A d d e d = 2 ;
PBEntityRemoved en t i tyRemoved = 3 ;

}

}

Listing 7.4: PlotProto.proto

s y n t a x = ” p r o t o 3 ” ;

o p t i o n c s h a r p n a m e s p a c e = ” Vico . Un i ty ” ;
o p t i o n j a v a p a c k a g e = ” no . n tnu . v i c o . p r o t o ” ;

message P l o t R e q u e s t {

oneof t h e s e {
R e q u e s t A v a i l a b l e P l o t s a v a i l a b l e R e q u e s t = 1 ;
R e q u e s t P l o t S e t u p s e t u p R e q u e s t = 2 ;
R e q u e s t P l o t U p d a t e u p d a t e R e q u e s t = 3 ;

68

}

}

message P l o t R e s p o n s e {

oneof t h e s e {
A v a i l a b l e P l o t s a v a i l a b l e = 1 ;
P l o t S e t u p s e t u p = 2 ;
P l o t U p d a t e u p d a t e = 3 ;

}

}

message A v a i l a b l e P l o t s {
r e p e a t e d P l o t I n f o p l o t s = 1 ;

}

message P l o t I n f o {

s t r i n g uu id = 1 ;
s t r i n g name = 2 ;

}

message R e q u e s t A v a i l a b l e P l o t s {
/ / i n t e n t i o n a l l y l e f t empty

}

message P l o t S e t u p {
s t r i n g xLabe l = 1 ;
s t r i n g yLabe l = 2 ;
r e p e a t e d s t r i n g l e g e n d = 3 ;
Range r a n g e = 4 ;

}

message P l o t U p d a t e {
boo l hasDa ta = 1 ;
f l o a t x = 2 ;
r e p e a t e d f l o a t y = 3 ;

}

message R e q u e s t P l o t S e t u p {
s t r i n g uu id = 1 ;

}

message R e q u e s t P l o t U p d a t e {
s t r i n g uu id = 2 ;

}

message Range {
f l o a t min = 1 ;
f l o a t max = 2 ;

}

Listing 7.5: SpawnProto.proto

s y n t a x = ” p r o t o 3 ” ;

o p t i o n c s h a r p n a m e s p a c e = ” Vico . Un i ty ” ;
o p t i o n j a v a p a c k a g e = ” no . n tnu . v i c o . p r o t o ” ;

i m p o r t ” CommonProto . p r o t o ” ;

message PBSpawnObject {

s t r i n g p a r e n t U u i d = 1 ;
PBVec3 p o s i t i o n = 2 ;
PBVec3 v e l o c i t y = 3 ;
PBQuat q u a t e r n i o n = 4 ;
oneof shape {

PBBox box = 1 0 ;
PBSphere s p h e r e = 1 1 ;
PBCyl inder c y l i n d e r = 1 2 ;
PBCapsule c a p s u l e = 1 3 ;

}

}

69

Unity3d

Listing 7.6: Master.cs

u s i n g System . T h r e a d i n g ;
u s i n g ZeroMQ ;
u s i n g System ;
u s i n g System . Text ;
u s i n g Vico . Un i ty ;
u s i n g Newtonso f t . J son ;
u s i n g Google . P r o t o b u f ;

p u b l i c c l a s s Mas te r : MonoBehaviour
{

s t r u c t MasterMsg {
p u b l i c Vec to r3 p o s i t i o n ;
p u b l i c Q u a t e r n i o n q u a t e r n i o n ;

}

p r i v a t e Thread t h r e a d ;
p r i v a t e ZSocket p u b l i s h e r ;
p r i v a t e Queue<MasterMsg> queue = new Queue<MasterMsg>() ;

p u b l i c i n t p o r t = −1;
p r i v a t e boo l s t o p T h r e a d ;

vo id S t a r t ()
{

t h r e a d = new Thread (P u b l i c a t i o n T h r e a d) ;
t h r e a d . S t a r t () ;
Debug . Log (” Mas te r s t a r t e d ! ”) ;

}

/ / Update i s c a l l e d once p e r f rame
vo id Stop ()
{

s t o p T h r e a d = t r u e ;
t h r e a d . J o i n () ;
Debug . Log (” Mas te r s t o p p e d ! ”) ;

}

vo id F ixedUpda te ()
{

i f (queue . Count == 0)
{

MasterMsg msg = new MasterMsg () ;
msg . p o s i t i o n = t r a n s f o r m . p o s i t i o n ;
msg . q u a t e r n i o n = t r a n s f o r m . r o t a t i o n ;

queue . Enqueue (msg) ;
}

}

p r i v a t e vo id P u b l i c a t i o n T h r e a d ()
{

u s i n g (v a r c o n t e x t = new ZContex t ())
{

u s i n g (p u b l i s h e r = new ZSocket (c o n t e x t , ZSocketType . PUB))
{

i f (p o r t == −1)
{

p u b l i s h e r . Bind (” t c p : / /∗ :∗ ”) ;

b y t e [] a d d r e s s = new b y t e [1 0 2 4] ;

p u b l i s h e r . Ge tOpt ion (ZSocke tOp t ion . LAST ENDPOINT , o u t a d d r e s s) ;
c h a r [] c = { ’ : ’ };
v a r s p l i t = Encoding . UTF8 . G e t S t r i n g (a d d r e s s) . S p l i t (c) ;
Array . Reve r se (s p l i t) ;
p o r t = Conve r t . To In t32 (s p l i t [0]) ;

}
e l s e
{

p u b l i s h e r . Bind (” t c p : / /∗ : ” + p o r t) ;
}

p u b l i s h e r . S e t O p t i o n (ZSocke tOp t ion .SNDHWM, 1) ;

70

w h i l e (! s t o p T h r e a d)
{

i f (queue . Count > 0)
{

MasterMsg msg = queue . Dequeue () ;

Vec3Msg v = new Vec3Msg () ;
v .X = msg . p o s i t i o n . x ;
v .Y = msg . p o s i t i o n . y ;
v . Z = msg . p o s i t i o n . z ;

QuatMsg q = new QuatMsg () ;
q .X = msg . q u a t e r n i o n . x ;
q .Y = msg . q u a t e r n i o n . y ;
q . Z = msg . q u a t e r n i o n . z ;
q .W = msg . q u a t e r n i o n .w;

p u b l i s h e r . SendMore (new ZFrame (v . ToByteArray ())) ;
p u b l i s h e r . Send (new ZFrame (q . ToByteArray ())) ;

}

Thread . S l e e p (5) ;

}
}

}
}

vo id O n A p p l i c a t i o n Q u i t ()
{

Stop () ;

}
}

Listing 7.7: Slave.cs

u s i n g System . C o l l e c t i o n s ;
u s i n g System . C o l l e c t i o n s . G e n e r i c ;
u s i n g Un i tyEng ine ;
u s i n g System . T h r e a d i n g ;
u s i n g Vico . Un i ty ;
u s i n g ZeroMQ ;
u s i n g Google . P r o t o b u f ;
u s i n g System ;

p u b l i c c l a s s S l a v e : MonoBehaviour {

p u b l i c s t r i n g h o s t A d d r e s s = ” l o c a l h o s t ” ;
p u b l i c i n t p o r t = −1;

p r i v a t e Thread t h r e a d ;

p r i v a t e Vec to r3 m a s t e r P o s ;
p r i v a t e Q u a t e r n i o n m a s t e r Q u a t ;

p r i v a t e boo l s t o p T h r e a d ;

vo id S t a r t () {

i f (p o r t != −1)
{

t h r e a d = new Thread (S u b s c r i p t i o n T h r e a d) ;
t h r e a d . S t a r t () ;
Debug . Log (” S l a v e s t a r t e d ! ”) ;

}

}

vo id Stop ()
{

i f (t h r e a d != n u l l)
{

s t o p T h r e a d = t r u e ;
t h r e a d . J o i n () ;
Debug . Log (” S l a v e s t o p p e d ! ”) ;

}
}

/ / Update i s c a l l e d once p e r f rame
vo id Update () {

i f (m a s t e r P o s != n u l l)

71

{
t r a n s f o r m . p o s i t i o n = m a s t e r P o s ;

t r a n s f o r m . r o t a t i o n = m a s t e r Q u a t ;
}

}

vo id S u b s c r i p t i o n T h r e a d ()
{

u s i n g (v a r c o n t e x t = new ZContex t ())
{

u s i n g (v a r s u b s c r i b e r = new ZSocket (c o n t e x t , ZSocketType . SUB))
{

s u b s c r i b e r . S e t O p t i o n (ZSocke tOp t ion . RCVTIMEO, 100) ;
s u b s c r i b e r . Connect (” t c p : / / ” + h o s t A d d r e s s + ” : ” + p o r t) ;
s u b s c r i b e r . S u b s c r i b e A l l () ;

w h i l e (! s t o p T h r e a d)
{

t r y {
u s i n g (v a r msg = s u b s c r i b e r . Rece iveMessage ())
{

Vec3Msg v = Vec3Msg . P a r s e r . ParseFrom (msg . Pop () . Read ()) ;
m a s t e r P o s = new Vec to r3 (v . X, v . Y, v . Z) ;

QuatMsg q = QuatMsg . P a r s e r . ParseFrom (msg . Pop () . Read ()) ;
m a s t e r Q u a t = new Q u a t e r n i o n (q . X, q . Y, q . Z , q .W) ;

}
} c a t c h (E x c e p t i o n ex)
{

Debug . Log (”RCVTIMEO? ”) ;
}

}
}

}

}

vo id O n A p p l i c a t i o n Q u i t ()
{

Stop () ;
}

}

Listing 7.8: STLLoader.cs

p u b l i c c l a s s STLLoader {

i f UNITY EDITOR
[MenuItem (” GameObject / I mp or t From STL ”)]
s t a t i c vo id StlLoadMenu ()
{

s t r i n g p t h = U n i t y E d i t o r . E d i t o r U t i l i t y . O p e n F i l e P a n e l (” Im po r t STL ” , ” ” , ” s t l ”) ;
i f (! s t r i n g . I sNul lOrEmpty (p t h))
{

LoadSTLFile (p t h) ;
}

}
e n d i f

p u b l i c s t a t i c GameObject LoadSTLFile (s t r i n g fn)
{

s t r i n g meshName = Pa th . G e t F i l e N a m e W i t h o u t E x t e n s i o n (fn) ;
b y t e [] d a t a = F i l e . ReadAl lBy te s (fn) ;

r e t u r n LoadSTL (meshName , d a t a) ;

}

p u b l i c s t a t i c GameObject LoadSTL (s t r i n g name , b y t e [] d a t a)
{

i n t f a c e s ;
L i s t<Vector3> v e r t i c e s = new L i s t<Vector3 >() ;
L i s t<Vector3> norma l s = new L i s t<Vector3 >() ;

u s i n g (B i n a r y W r i t e r bw = new B i n a r y W r i t e r (new MemoryStream ()))
{

72

bw . Wr i t e (d a t a) ;

u s i n g (B i n a r y R e a d e r b r = new B i n a r y R e a d e r (bw . BaseSt ream))
{

br . BaseSt ream . P o s i t i o n = 8 0 ;
f a c e s = br . Read In t32 () ;

i n t d a t a O f f s e t = 8 4 ;
i n t f a c e L e n g t h = 12 ∗ 4 + 2 ;

f o r (i n t f a c e = 0 ; f a c e < f a c e s ; f a c e ++)
{

i n t s t a r t = d a t a O f f s e t + f a c e ∗ f a c e L e n g t h ;

b r . BaseSt ream . P o s i t i o n = s t a r t ;
f l o a t normalX = br . R e a d S i n g l e () ;
b r . BaseSt ream . P o s i t i o n = s t a r t + 4 ;
f l o a t normalY = br . R e a d S i n g l e () ;
b r . BaseSt ream . P o s i t i o n = s t a r t + 8 ;
f l o a t normalZ = br . R e a d S i n g l e () ;

f o r (i n t i = 1 ; i <= 3 ; i ++)
{

i n t v e r t e x s t a r t = s t a r t + i ∗ 1 2 ;
b r . BaseSt ream . P o s i t i o n = v e r t e x s t a r t ;
f l o a t x = br . R e a d S i n g l e () ;
b r . BaseSt ream . P o s i t i o n = v e r t e x s t a r t + 4 ;
f l o a t y = br . R e a d S i n g l e () ;
b r . BaseSt ream . P o s i t i o n = v e r t e x s t a r t + 8 ;
f l o a t z = br . R e a d S i n g l e () ;

v e r t i c e s . Add (new Vec to r3 (x , y , z)) ;
no rma l s . Add (new Vec to r3 (normalX , normalY , normalZ)) ;

}
}

}

}

i n t [] i n d i c e s = new i n t [f a c e s ∗ 3] ;
f o r (i n t i = 0 ; i < i n d i c e s . Length ; i ++)
{

i n d i c e s [i] = i ;
}

GameObject gameObject = new GameObject () ;
i f (name != n u l l)
{

gameObject . name = name ;
}

M e s h F i l t e r mf = gameObject . AddComponent<M e s h F i l t e r >() ;
MeshRenderer r e n d e r e r = gameObject . AddComponent<MeshRenderer >() ;
r e n d e r e r . m a t e r i a l s = new M a t e r i a l [] { new M a t e r i a l (Shader . F ind (” S t a n d a r d (S p e c u l a r s e t u p) ”)) };
Mesh mesh = new Mesh () ;
mf . mesh = mesh ;

mesh . v e r t i c e s = v e r t i c e s . ToArray () ;
mesh . no rma l s = norma l s . ToArray () ;
mesh . t r i a n g l e s = i n d i c e s ;

r e t u r n gameObject ;
}

p u b l i c s t a t i c GameObject LoadSTLFromRemote (s t r i n g hos t , i n t h t t p P o r t , Vico . Un i ty . P B E x t e r n a l S o u r c e s o u r c e) {

GameObject gameObject = n u l l ;
u s i n g (WebClient c l i e n t = new WebClient ()) {

t r y {
b y t e [] d a t a = c l i e n t . DownloadData (” h t t p : / / ” + h o s t + ” : ” + h t t p P o r t + ” / s e r v l e t ? s o u r c e =” + s o u r c e .

F u l l P a t h) ;
r e t u r n LoadSTL (s o u r c e . BaseName , d a t a) ;

} c a t c h (WebException ex) {
Debug . LogEr ro r (ex) ;

}

}

r e t u r n gameObject ;

}

}

73

Listing 7.9: RemoteOBJLoader.cs
p u b l i c c l a s s RemoteOBJLoader {

p u b l i c s t a t i c GameObject LoadFromRemote (s t r i n g hos t , i n t h t t p P o r t , Vico . Un i ty . Ex t e rna lS ou r ce Msg s o u r c e) {

D i r e c t o r y I n f o d i r = D i r e c t o r y . C r e a t e D i r e c t o r y (A p p l i c a t i o n . t e m p o r a r y C a c h e P a t h + ” / o b j ” + Guid . NewGuid () .
T o S t r i n g ()) ;

s t r i n g o b j F i l e = d i r . FullName + ” / ” + s o u r c e . BaseName + ” . ” + s o u r c e . E x t e n s i o n ;
s t r i n g m t l F i l e = d i r . FullName + ” / ” + s o u r c e . BaseName + ” . mt l ” ;

GameObject gameObject = n u l l ;
u s i n g (WebClient c l i e n t = new WebClient ()) {

t r y {
b y t e [] d a t a = c l i e n t . DownloadData (” h t t p : / / ” + h o s t + ” : ” + h t t p P o r t + ” / s e r v l e t ? s o u r c e =” + s o u r c e .

F u l l P a t h) ;
F i l e . W r i t e A l l B y t e s (o b j F i l e , d a t a) ;

d a t a = c l i e n t . DownloadData ((” h t t p : / / ” + h o s t + ” : ” + h t t p P o r t + ” / s e r v l e t ? s o u r c e =” + s o u r c e . F u l l P a t h) .
Rep lace (” . o b j ” , ” . mt l ”)) ;

i f (d a t a != n u l l) {
F i l e . W r i t e A l l B y t e s (m t l F i l e , d a t a) ;
L i s t<s t r i n g> t e x t u r e s = T e x t u r e L o c a t i o n s (m t l F i l e) ;
f o r e a c h (s t r i n g t e x i n t e x t u r e s) {

d a t a = c l i e n t . DownloadData ((” h t t p : / / ” + h o s t + ” : ” + h t t p P o r t + ” / s e r v l e t ? s o u r c e =” + s o u r c e .
L o c a t i o n) + t e x) ;

F i l e . W r i t e A l l B y t e s (d i r . FullName + ” / ” + t e x , d a t a) ;
}

}
} c a t c h (WebException ex) {

Debug . Log (ex) ;
}

i f (F i l e . E x i s t s (o b j F i l e)) {
gameObject = OBJLoader . LoadOBJFile (o b j F i l e) ;

}

}

D i r e c t o r y . D e l e t e (d i r . FullName , t r u e) ;

r e t u r n gameObject ;

}

p r i v a t e s t a t i c L i s t<s t r i n g> T e x t u r e L o c a t i o n s (s t r i n g mt l) {

L i s t<s t r i n g> l i s t = new L i s t<s t r i n g> () ;
i f (F i l e . E x i s t s (mt l)) {

f o r e a c h (v a r l i n e i n F i l e . R e a d A l l L i n e s (mt l)) {
i f (l i n e . C o n t a i n s (” map Kd ”)) {

s t r i n g [] s p l i t = l i n e . S p l i t (new c h a r []{ ’ ’}) ;
l i s t . Add (s p l i t [1]) ;

}
}

}
r e t u r n l i s t ;

}

}

Listing 7.10: AbstractClient.cs

u s i n g System . C o l l e c t i o n s ;
u s i n g System . C o l l e c t i o n s . G e n e r i c ;
u s i n g Un i tyEng ine ;
u s i n g System ;
u s i n g Vico . Un i ty ;
u s i n g Google . P r o t o b u f ;

p u b l i c a b s t r a c t c l a s s A b s t r a c t C l i e n t {

p r i v a t e Act ion<P u b l i c a t i o n> p u b C a l l b a c k ;
p r i v a t e D i c t i o n a r y<s t r i n g , Act ion<Response>> r e q C a l l b a c k s ;

p r o t e c t e d s t r i n g h o s t A d d r e s s ;
p r o t e c t e d i n t p o r t ;

p r i v a t e boo l i s S u b s c r i b i n g ;

i n t e r n a l boo l n o P a r s i n g ;

p u b l i c A b s t r a c t C l i e n t (s t r i n g h o s t A d d r e s s , i n t p o r t) {
t h i s . h o s t A d d r e s s = h o s t A d d r e s s ;

74

t h i s . p o r t = p o r t ;
t h i s . r e q C a l l b a c k s = new D i c t i o n a r y<s t r i n g , Act ion<Response>> () ;

}

p u b l i c vo id S t a r t () {
O n S t a r t () ;

}

p u b l i c vo id Stop () {
i f (i s S u b s c r i b i n g) {

U n s u b s c r i b e () ;
}
OnStop () ;

}

p r o t e c t e d a b s t r a c t vo id O n S t a r t () ;

p r o t e c t e d a b s t r a c t vo id OnStop () ;

p r o t e c t e d a b s t r a c t vo id Send (VicoMsg msg) ;

p r o t e c t e d vo id onMsg (VicoMsg msg) {

t r y {

u s i n g (msg) {

b y t e t y p e = msg . PopByte () ;
s w i t c h (t y p e) {

c a s e 0 x000 : {

s t r i n g gu id = msg . P o p S t r i n g () ;
Act ion<Response> c a l l b a c k ;
r e q C a l l b a c k s . TryGetValue (guid , o u t c a l l b a c k) ;

i f (c a l l b a c k != n u l l) {
r e q C a l l b a c k s . Remove (gu id) ;
i f (! n o P a r s i n g) {
b y t e f o r m a t = msg . PopByte () ;
Response r e s p o n s e = n u l l ;
i f (f o r m a t == 0 x000) {

r e s p o n s e = Response . P a r s e r . ParseFrom (msg . PopData ()) ;
} e l s e i f (f o r m a t == 0 x001) {

s t r i n g j s o n = msg . P o p S t r i n g () ;
r e s p o n s e = Response . P a r s e r . P a r s e J s o n (j s o n) ;

}

i f (r e s p o n s e != n u l l) {
c a l l b a c k (r e s p o n s e) ;

}
} e l s e {

c a l l b a c k (n u l l) ;
}

}
}
b r e a k ;

c a s e 0 x001 : {
i f (p u b C a l l b a c k != n u l l) {

b y t e f o r m a t = msg . PopByte () ;
P u b l i c a t i o n pub = n u l l ;
i f (f o r m a t == 0 x000) {

pub = (P u b l i c a t i o n . P a r s e r . ParseFrom (msg . PopData ())) ;
} e l s e i f (f o r m a t == 0 x001) {

pub = (P u b l i c a t i o n . P a r s e r . P a r s e J s o n (msg . P o p S t r i n g ())) ;
}

i f (pub != n u l l) {
p u b C a l l b a c k (pub) ;

}
}
}
b r e a k ;

}

}

} c a t c h (E x c e p t i o n ex) {
Debug . Log (ex) ;

}

}

p u b l i c vo id Reques t (Reques t r e q u e s t , Act ion<Response> c a l l b a c k , boo l b i n a r y = t r u e) {

s t r i n g gu id = Guid . NewGuid () . T o S t r i n g () ;
r e q C a l l b a c k s [gu id] = c a l l b a c k ;

VicoMsg msg = new VicoMsg () ;
msg . Add (0 x000) ;
msg . Add (gu id) ;

75

msg . Add ((b y t e) (b i n a r y ? 0 x000 : 0 x001)) ;
i f (b i n a r y) {

msg . Add (r e q u e s t . ToByteArray ()) ;
} e l s e {

msg . Add (J s o n F o r m a t t e r . D e f a u l t . Format (r e q u e s t)) ;
}
Send (msg) ;

}

p u b l i c vo id S u b s c r i b e (Act ion<P u b l i c a t i o n> c a l l b a c k , boo l b i n a r y = t r u e) {

p u b C a l l b a c k = c a l l b a c k ;
i s S u b s c r i b i n g = t r u e ;

VicoMsg msg = new VicoMsg () ;
msg . Add (0 x001) ;
msg . Add (” s u b s c r i b e ”) ;
msg . Add ((b y t e) (b i n a r y ? 0 x000 : 0 x001)) ;
Send (msg) ;

}

p u b l i c vo id U n s u b s c r i b e () {

i s S u b s c r i b i n g = f a l s e ;

VicoMsg msg = new VicoMsg () ;
msg . Add (0 x001) ;
msg . Add (” u n s u b s c r i b e ”) ;
Send (msg) ;

}

p u b l i c vo id KeyPressed (boo l b i n a r y = t r u e)
{

L i s t<Vico . Uni ty . PBKey> keys = UnityKeyToVicoKey . Get () ;
i f (keys != n u l l && keys . Count > 0)
{

VicoMsg msg = new VicoMsg () ;
msg . Add (0 x002) ;
msg . Add ((b y t e) (b i n a r y ? 0 x000 : 0 x001)) ;

PBKeyPressed k e y P r e s s e d = new PBKeyPressed () ;
k e y P r e s s e d . Keys . Add (keys) ;

i f (b i n a r y)
{

msg . Add (k e y P r e s s e d . ToByteArray ()) ;
} e l s e
{

msg . Add (J s o n F o r m a t t e r . D e f a u l t . Format (k e y P r e s s e d)) ;
}

Send (msg) ;

}
}

76

Web page

Listing 7.11: Socket.js

v a r So ck e t = f u n c t i o n (hos t , p o r t) {

v a r t h a t = t h i s ;

t h i s . h o s t = h o s t ;
t h i s . p o r t = p o r t ;
t h i s . n o P a r s i n g = f a l s e ;

t h i s . r e q C a l l b a c k s = {};
t h i s . s u b C a l l b a c k = u n d e f i n e d ;

v a r o p e n L i s t e n e r s = [] ;
v a r c l o s e L i s t e n e r s = [] ;

v a r ws = new WebSocket (” ws : / / ” + h o s t + ” : ” + p o r t) ;
ws . b i n a r y T y p e = ” a r r a y b u f f e r ” ;

t h i s . onopen = f u n c t i o n (func) {
o p e n L i s t e n e r s . push (func) ;

};

t h i s . onClose = f u n c t i o n (func) {
c l o s e L i s t e n e r s . push (func) ;

};

ws . onopen = f u n c t i o n () {
c o n s o l e . l o g (’ C o n n e c t i o n open ’) ;
f o r (v a r i = 0 ; i < o p e n L i s t e n e r s . l e n g t h ; i ++) {

o p e n L i s t e n e r s [i] () ;
}

};

ws . o n c l o s e = f u n c t i o n () {
c o n s o l e . l o g (’ C o n n e c t i o n c l o s e d ’) ;
f o r (v a r i = 0 ; i < c l o s e L i s t e n e r s . l e n g t h ; i ++) {

c l o s e L i s t e n e r s [i] () ;
}

};

ws . onmessage = f u n c t i o n (e v t) {

v a r msg = new VicoMsg () ;
msg . decode (e v t . d a t a) ;

v a r t y p e = msg . popByte () ;
i f (t y p e === 0 x000) {

t h a t . hand le0x000 (msg) ;
} e l s e i f (t y p e === 0 x001) {

t h a t . hand le0x001 (msg) ;
} e l s e i f (t y p e === 0 x003) {

t h a t . hand le0x003 (msg) ;
} e l s e i f (t y p e === 0 x004) {

t h a t . hand le0x004 (msg) ;
} e l s e i f (t y p e === 0 x009) {

t h a t . hand le0x009 (msg)
}
msg . d e s t r o y () ;

};

t h i s . i s C o n n e c t i n g = f u n c t i o n () {
r e t u r n ws . r e a d y S t a t e === 0 ;

};

t h i s . i sOpen = f u n c t i o n () {
r e t u r n ws . r e a d y S t a t e === 1 ;

};

t h i s . i s C l o s i n g = f u n c t i o n () {
r e t u r n ws . r e a d y S t a t e === 2 ;

};

t h i s . i s C l o s e d = f u n c t i o n () {
r e t u r n ws . r e a d y S t a t e === 3 ;

};

t h i s . c l o s e = f u n c t i o n () {
ws . c l o s e () ;

};

77

t h i s . send = f u n c t i o n (d a t a) {
ws . send (d a t a) ;

};

t h i s . s t a r t , t h i s . b y t e s = 0 , t h i s . pa r seTime = 0 ;
t h i s . p S t a r t ;

};

So ck e t . p r o t o t y p e . generateGUID = f u n c t i o n () {
f u n c t i o n s4 () {

r e t u r n Math . f l o o r ((1 + Math . random ()) ∗ 0 x10000)
. t o S t r i n g (1 6)
. s u b s t r i n g (1) ;

}
r e t u r n s4 () + s4 () + ’−’ + s4 () + ’−’ + s4 () + ’−’ +

s4 () + ’−’ + s4 () + s4 () + s4 () ;
};

So ck e t . p r o t o t y p e . r e q u e s t = f u n c t i o n (da t a , b i n a r y , c a l l b a c k) {
v a r gu id = t h i s . generateGUID () ;
t h i s . r e q C a l l b a c k s [gu id] = c a l l b a c k ;

v a r f o r m a t = b i n a r y === t r u e ? 0 x000 : 0 x001 ;

v a r msg = new VicoMsg () ;
msg . addByte (0 x000) ;
msg . a d d S t r i n g (gu id) ;
msg . addByte (f o r m a t) ;

i f (f o r m a t === 0 x000) {
msg . add (P r o t o . Reques t . encode (P r o t o . Reques t . c r e a t e (d a t a)) . f i n i s h ()) ;

} e l s e i f (f o r m a t === 0 x001) {
msg . a d d S t r i n g (JSON . s t r i n g i f y (d a t a)) ;

} e l s e {
msg . d e s t r o y () ;
r e t u r n ;

}

t h i s . send (msg . encode ()) ;
};

So ck e t . p r o t o t y p e . s u b s c r i b e = f u n c t i o n (b i n a r y , c a l l b a c k) {

t h i s . s u b C a l l b a c k = c a l l b a c k ;

v a r msg = new VicoMsg () ;
msg . addByte (0 x001) ;
msg . a d d S t r i n g (’ s u b s c r i b e ’) ;
msg . addByte (b i n a r y === t r u e ? 0 x000 : 0 x001) ;

t h i s . send (msg . encode ()) ;
};

So ck e t . p r o t o t y p e . u n s u b s c r i b e = f u n c t i o n () {
v a r msg = new VicoMsg () ;
msg . addByte (0 x001) ;
msg . a d d S t r i n g (’ u n s u b s c r i b e ’) ;

t h i s . send (msg . encode ()) ;
};

So ck e t . p r o t o t y p e . j s o n r p c r e q u e s t = f u n c t i o n (method , params , c a l l b a c k) {

v a r gu id = t h i s . generateGUID () ;

v a r p a y l o a d = {
j s o n r p c : ” 2 . 0 ” ,
method : method ,
params : params ,
i d : gu id

};

t h i s . r e q C a l l b a c k s [gu id] = {c a l l b a c k : c a l l b a c k , p a y l o a d : p a y l o a d};
v a r msg = new VicoMsg () ;
msg . addByte (0 x004) ;
msg . a d d S t r i n g (JSON . s t r i n g i f y (p a y l o a d)) ;
t h i s . send (msg . encode ()) ;

};

So ck e t . p r o t o t y p e . j s o n r p c n o t i f y = f u n c t i o n (method , params) {
v a r p a y l o a d = {

j s o n r p c : ” 2 . 0 ” ,
method : method ,
params : params

};
v a r msg = new VicoMsg () ;
msg . addByte (0 x004) ;

78

msg . a d d S t r i n g (JSON . s t r i n g i f y (p a y l o a d)) ;
t h i s . send (msg) ;

};

So ck e t . p r o t o t y p e . k e y P r e s s e d = f u n c t i o n (vicoKey , f o r m a t) {

v a r i = P r o t o . Key [vicoKey] ;
i f (i !== u n d e f i n e d) {

v a r d a t a = {keys : [i]} ;
v a r msg = new VicoMsg () ;
msg . addByte (0 x002) ;
msg . addByte (f o r m a t) ;
i f (f o r m a t === 0 x000) {

msg . add (P r o t o . KeyPressed . encode (P r o t o . KeyPressed . c r e a t e (d a t a)) . f i n i s h ()) ;
} e l s e i f (f o r m a t === 0 x001) {

msg . a d d S t r i n g (JSON . s t r i n g i f y (d a t a)) ;
} e l s e {

msg . d e s t r o y () ;
r e t u r n ;

}

t h i s . send (msg . encode ()) ;
}

};

So ck e t . p r o t o t y p e . p l o t R e q u e s t = f u n c t i o n (da t a , b i n a r y , c a l l b a c k) {

v a r gu id = t h i s . generateGUID () ;
t h i s . r e q C a l l b a c k s [gu id] = c a l l b a c k ;

v a r f o r m a t = b i n a r y === t r u e ? 0 x000 : 0 x001 ;

v a r msg = new VicoMsg () ;
msg . addByte (0 x003) ;
msg . a d d S t r i n g (gu id) ;
msg . addByte (f o r m a t) ;

i f (f o r m a t === 0 x000) {
msg . add (P r o t o . P l o t R e q u e s t . encode (P r o t o . P l o t R e q u e s t . c r e a t e (d a t a)) . f i n i s h ()) ;

} e l s e i f (f o r m a t === 0 x001) {
msg . a d d S t r i n g (JSON . s t r i n g i f y (d a t a)) ;

} e l s e {
msg . d e s t r o y () ;
r e t u r n ;

}
t h i s . send (msg . encode ()) ;

};

So ck e t . p r o t o t y p e . spawnObjec t = f u n c t i o n (cam , b i n a r y) {

v a r f o r m a t = b i n a r y === t r u e ? 0 x000 : 0 x001 ;

v a r msg = new VicoMsg () ;
msg . addByte (0 x005) ;
msg . addByte (f o r m a t) ;

v a r pos = cam . g e t W o r l d P o s i t i o n () ;
v a r v e l = cam . g e t W o r l d D i r e c t i o n () ;
v a r d a t a = {

p o s i t i o n : {x : pos . x , y : −pos . z , z : pos . y} ,
v e l o c i t y : {x : v e l . x ∗ 20 , y : −v e l . z ∗ 20 , z : v e l . y ∗ 20} ,
q u a t e r n i o n : {x : 0 , y : 0 , z : 0 , w: 1} ,
s p h e r e : {r a d i u s : 0.1}

};

i f (f o r m a t === 0 x000) {
msg . add (P r o t o . Spawn . encode (P r o t o . Spawn . c r e a t e (d a t a)) . f i n i s h ()) ;

} e l s e i f (f o r m a t === 0 x001) {
msg . a d d S t r i n g (JSON . s t r i n g i f y (d a t a)) ;

} e l s e {
msg . d e s t r o y () ;
r e t u r n ;

}
t h i s . send (msg . encode ()) ;

};

So ck e t . p r o t o t y p e . hand le0x000 = f u n c t i o n (msg) {
v a r gu id = msg . p o p S t r i n g () ;

v a r r e s p o n s e = u n d e f i n e d ;
v a r c a l l b a c k = t h i s . r e q C a l l b a c k s [gu id] ;
i f (c a l l b a c k !== u n d e f i n e d) {

i f (t h i s . n o P a r s i n g === f a l s e) {
v a r f o r m a t = msg . popByte () ;
i f (f o r m a t === 0 x000) {

79

r e s p o n s e = P r o t o . Response . decode (msg . popData ()) ;
} e l s e i f (f o r m a t === 0 x001) {

r e s p o n s e = JSON . p a r s e (msg . p o p S t r i n g ()) ;
}

}
}

msg . d e s t r o y () ;

c a l l b a c k (r e s p o n s e) ;
d e l e t e t h i s . r e q C a l l b a c k s [gu id] ;

};

So ck e t . p r o t o t y p e . hand le0x001 = f u n c t i o n (msg) {

i f (t h i s . s u b C a l l b a c k !== u n d e f i n e d) {

v a r d a t a = u n d e f i n e d ;
v a r f o r m a t = msg . popByte () ;
i f (f o r m a t === 0 x000) {

d a t a = P r o t o . P u b l i c a t i o n . decode (msg . popData ()) ;
} e l s e i f (f o r m a t === 0 x001) {

d a t a = JSON . p a r s e (msg . p o p S t r i n g ()) ;
}

i f (d a t a !== u n d e f i n e d) {
t h i s . s u b C a l l b a c k (d a t a) ;

}
}

};

So ck e t . p r o t o t y p e . hand le0x003 = f u n c t i o n (msg) {
v a r gu id = msg . p o p S t r i n g () ;
v a r r e s p o n s e = u n d e f i n e d ;
v a r c a l l b a c k = t h i s . r e q C a l l b a c k s [gu id] ;
i f (c a l l b a c k !== u n d e f i n e d) {

v a r f o r m a t = msg . popByte () ;
i f (f o r m a t === 0 x000) {

r e s p o n s e = P r o t o . P l o t R e s p o n s e . decode (msg . popData ()) ;
} e l s e i f (f o r m a t === 0 x001) {

r e s p o n s e = JSON . p a r s e (msg . p o p S t r i n g ()) ;
}

}

msg . d e s t r o y () ;

i f (r e s p o n s e !== u n d e f i n e d) {
c a l l b a c k (r e s p o n s e) ;
d e l e t e t h i s . r e q C a l l b a c k s [gu id] ;

}
};

So ck e t . p r o t o t y p e . hand le0x004 = f u n c t i o n (msg) {
v a r msg = JSON . p a r s e (msg . p o p S t r i n g ()) ;
i f (msg . i d !== u n d e f i n e d) {

v a r i d = msg . i d ;

i f (t h i s . r e q C a l l b a c k s [i d] !== u n d e f i n e d) {

i f (msg . e r r o r !== u n d e f i n e d) {
v a r t r a c e = {e r r o r : msg , p a y l o a d : t h i s . r e q C a l l b a c k s [i d] . p a y l o a d};
c o n s o l e . e r r o r (t r a c e) ;

} e l s e {
t h i s . r e q C a l l b a c k s [i d] . c a l l b a c k (msg . r e s u l t === n u l l ? ’ void ’ : JSON . p a r s e (msg . r e s u l t)) ;

}
}

} e l s e {
c o n s o l e . l o g (msg) ;

}
};

80

Java

Listing 7.12: VicoFrame.java

i m p o r t j a v a . i o . B y t e A r ra y O u t pu t S t r ea m ;
i m p o r t j a v a . i o . IOExcep t i on ;
i m p o r t j a v a . n i o . c h a r s e t . C h a r s e t ;
i m p o r t j a v a . u t i l . A r r a ys ;

/∗∗
∗
∗ @author l a h t
∗/

p u b l i c c l a s s VicoFrame {

p r i v a t e f i n a l s t a t i c C h a r s e t CHARSET = C h a r s e t . forName (”UTF−8”) ;

p r i v a t e b y t e [] d a t a ;

p u b l i c VicoFrame (b y t e [] d a t a) {
t h i s . d a t a = d a t a ;

}

p u b l i c VicoFrame (S t r i n g d a t a) {
i f (d a t a != n u l l) {

t h i s . d a t a = d a t a . g e t B y t e s (CHARSET) ;
}

}

p u b l i c b y t e [] g e t D a t a () {
r e t u r n d a t a ;

}

p u b l i c b y t e g e t B y t e () {
r e t u r n d a t a [0] ;

}

p u b l i c S t r i n g g e t S t r i n g () {
i f (ha sDa ta ()) {

r e t u r n new S t r i n g (g e t D a t a () , CHARSET) ;
}
r e t u r n n u l l ;

}

p u b l i c b o o l e a n hasDa ta () {
r e t u r n d a t a != n u l l ;

}

p u b l i c i n t s i z e () {
i f (ha sDa ta ()) {

r e t u r n d a t a . l e n g t h ;
}
r e t u r n 0 ;

}

p u b l i c vo id d e s t r o y () {
i f (ha sDa ta ()) {

d a t a = n u l l ;
}

}

@Override
p u b l i c i n t hashCode () {

i n t hash = 7 ;
hash = 61 ∗ hash + A r r ay s . hashCode (t h i s . d a t a) ;
r e t u r n hash ;

}

@Override
p u b l i c b o o l e a n e q u a l s (O b j e c t o b j) {

i f (t h i s == o b j) {
r e t u r n t r u e ;

}
i f (o b j == n u l l) {

r e t u r n f a l s e ;
}
i f (g e t C l a s s () != o b j . g e t C l a s s ()) {

r e t u r n f a l s e ;
}
f i n a l VicoFrame o t h e r = (VicoFrame) o b j ;
r e t u r n Ar ra ys . e q u a l s (t h i s . da t a , o t h e r . d a t a) ;

}

}

81

Listing 7.13: VicoMsg.java

i m p o r t j a v a . i o . IOExcep t i on ;
i m p o r t j a v a . i o . I n p u t S t r e a m ;
i m p o r t j a v a . n i o . B y t e B u f f e r ;
i m p o r t j a v a . u t i l . ArrayDeque ;
i m p o r t j a v a . u t i l . Deque ;
i m p o r t j a v a . u t i l . I t e r a t o r ;

/∗∗
∗
∗ @author l a h t
∗/

p u b l i c c l a s s VicoMsg implemen t s I t e r a b l e<VicoFrame> {

p r i v a t e Deque<VicoFrame> f r a me s ;

p u b l i c VicoMsg () {
t h i s . f r am e s = new ArrayDeque<>();

}

p u b l i c s t a t i c VicoMsg decode (b y t e [] d a t a) {
r e t u r n VicoMsg . decode (B y t e B u f f e r . wrap (d a t a)) ;

}

p u b l i c s t a t i c VicoMsg decode (B y t e B u f f e r buf) {

VicoMsg msg = new VicoMsg () ;
i n t c o n t e n t S i z e = buf . g e t I n t () ;
f o r (i n t i = 0 ; i < c o n t e n t S i z e ;) {

i n t f r a m e S i z e = buf . g e t I n t () ;
b y t e [] d a t a = new b y t e [f r a m e S i z e] ;
buf . g e t (da t a , 0 , d a t a . l e n g t h) ;

VicoFrame frame = new VicoFrame (d a t a) ;
msg . add (f rame) ;

i += f r a m e S i z e + 4 ;
}
r e t u r n msg ;

}

p u b l i c s t a t i c VicoMsg decode (I n p u t S t r e a m s t r e a m) {
t r y {

b y t e [] s i z e B u f = new b y t e [4] ;
s t r e a m . r e a d (s i z e B u f) ;
VicoMsg msg = new VicoMsg () ;
i n t c o n t e n t S i z e = B y t e B u f f e r . wrap (s i z e B u f) . g e t I n t () ;
f o r (i n t i = 0 ; i < c o n t e n t S i z e ;) {

s t r e a m . r e a d (s i z e B u f) ;
i n t f r a m e S i z e = B y t e B u f f e r . wrap (s i z e B u f) . g e t I n t () ;
b y t e [] d a t a = new b y t e [f r a m e S i z e] ;
s t r e a m . r e a d (da t a , 0 , d a t a . l e n g t h) ;
VicoFrame frame = new VicoFrame (d a t a) ;
msg . add (f rame) ;
i += f r a m e S i z e + 4 ;

}
r e t u r n msg ;

} c a t c h (IOExcep t i on ex) {
r e t u r n n u l l ;

}
}

p u b l i c i n t messageS ize () {
r e t u r n c o n t e n t S i z e () + 4 ;

}

p u b l i c i n t c o n t e n t S i z e () {
i n t s i z e = 0 ;
f o r (VicoFrame f : f r a m es) {

s i z e += f . s i z e () + 4 ;
}
r e t u r n s i z e ;

}

p u b l i c b y t e [] encode () {

i n t c o n t e n t S i z e = c o n t e n t S i z e () ;
B y t e B u f f e r d a t a = B y t e B u f f e r . a l l o c a t e (c o n t e n t S i z e + 4) ;
d a t a . p u t I n t (c o n t e n t S i z e) ;
f o r (VicoFrame frame : f r a m es) {

i n t f r a m e S i z e = frame . s i z e () ;
d a t a . p u t I n t (f r a m e S i z e) ;
d a t a . p u t (f rame . g e t D a t a ()) ;

}
d a t a . f l i p () ;

r e t u r n d a t a . a r r a y () ;

82

}

p u b l i c vo id d e s t r o y () {
i f (f r a m es == n u l l) {

r e t u r n ;
}
f o r (VicoFrame f : f r a m es) {

f . d e s t r o y () ;
}
f r a me s . c l e a r () ;
f r a me s = n u l l ;

}

p u b l i c VicoMsg add (S t r i n g s t r i n g V a l u e) {
add (new VicoFrame (s t r i n g V a l u e)) ;
r e t u r n t h i s ;

}

p u b l i c VicoMsg addByte (b y t e d a t a) {
add (new b y t e []{ d a t a}) ;
r e t u r n t h i s ;

}

p u b l i c VicoMsg add (b y t e [] d a t a) {
add (new VicoFrame (d a t a)) ;
r e t u r n t h i s ;

}

p u b l i c VicoMsg add (b y t e [] da t a , b o o l e a n z i p) {
add (new VicoFrame (d a t a)) ;

i f (z i p) {

}
r e t u r n t h i s ;

}

p u b l i c VicoMsg a d d I n t (i n t i) {
B y t e B u f f e r buf = B y t e B u f f e r . a l l o c a t e (4) ;
buf . p u t I n t (i) ;
buf . f l i p () ;
r e t u r n add (buf . a r r a y ()) ;

}

p u b l i c VicoMsg add (VicoFrame e) {
i f (f r a m es == n u l l) {

f r a me s = new ArrayDeque<>();
}
f r a me s . add (e) ;
r e t u r n t h i s ;

}

p u b l i c VicoMsg a d d F i r s t (VicoFrame e) {
i f (f r a m es == n u l l) {

f r a me s = new ArrayDeque<>();
}
f r a me s . a d d F i r s t (e) ;
r e t u r n t h i s ;

}

@Override
p u b l i c I t e r a t o r<VicoFrame> i t e r a t o r () {

r e t u r n f r am es . i t e r a t o r () ;
}

p u b l i c VicoFrame pop () {
r e t u r n f r am es . p o l l () ;

}

p u b l i c S t r i n g p o p S t r i n g () {
r e t u r n pop () . g e t S t r i n g () ;

}

p u b l i c b y t e [] popData () {
r e t u r n pop () . g e t D a t a () ;

}

p u b l i c i n t p o p I n t () {
r e t u r n B y t e B u f f e r . wrap (popData ()) . g e t I n t () ;

}

p u b l i c b y t e popByte () {
r e t u r n pop () . g e t B y t e () ;

}

p u b l i c i n t s i z e () {
r e t u r n f r am es . s i z e () ;

}

83

}

Listing 7.14: RemoteManager.java

i m p o r t j a v a . i o . B u f f e r e d R e a d e r ;
i m p o r t j a v a . i o . IOExcep t i on ;
i m p o r t j a v a . i o . I n p u t S t r e a m R e a d e r ;
i m p o r t j a v a . n e t . I n e t A d d r e s s ;
i m p o r t j a v a . n e t .URL;
i m p o r t j a v a . n e t . UnknownHostExcept ion ;
i m p o r t j a v a . u t i l . A r r a y L i s t ;
i m p o r t j a v a . u t i l . A r r a ys ;
i m p o r t j a v a . u t i l . HashMap ;
i m p o r t j a v a . u t i l . L i s t ;
i m p o r t j a v a . u t i l . Map ;
i m p o r t j a v a . u t i l . l o g g i n g . Leve l ;
i m p o r t j a v a . u t i l . l o g g i n g . Logger ;
i m p o r t j a v a . u t i l . s t r e a m . C o l l e c t o r s ;
i m p o r t no . n tnu . mechlab . r p c . R p c S e r v i c e ;
i m p o r t no . n tnu . v i c o . c o r e . sim . V i c o S i m u l a t i o n ;
i m p o r t no . n tnu . v i c o . p r o t o . c o n n e c t . C o n n e c t P r o t o ;
i m p o r t no . n tnu . v i c o . r emote . h a n d l e r s . B a n d w i t h T e s t H a n d l e r ;
i m p o r t no . n tnu . v i c o . r emote . h a n d l e r s . KeyHandler ;
i m p o r t no . n tnu . v i c o . r emote . h a n d l e r s . P l o t H a n d l e r ;
i m p o r t no . n tnu . v i c o . r emote . h a n d l e r s . R e q u e s t H a n d l e r ;
i m p o r t no . n tnu . v i c o . r emote . h a n d l e r s . S e r v i c e H a n d l e r ;
i m p o r t no . n tnu . v i c o . r emote . h a n d l e r s . SpawnHandler ;
i m p o r t no . n tnu . v i c o . r emote . h a n d l e r s . S u b s c r i p t i o n H a n d l e r ;
i m p o r t no . n tnu . v i c o . r emote . h a n d l e r s . s e r v i c e . V i c o S e r v i c e ;
i m p o r t no . n tnu . v i c o . r emote . n e t . H e a r t b e a t ;
i m p o r t no . n tnu . v i c o . r emote . n e t . W r i t a b l e C o n n e c t i o n ;
i m p o r t no . n tnu . v i c o . r emote . n e t . h t t p . SimpleHTTPServer ;
i m p o r t no . n tnu . v i c o . r emote . n e t . h t t p . H t t p R e q u e s t S e r v e r ;
i m p o r t no . n tnu . v i c o . r emote . n e t . t c p . TCPServer ;
i m p o r t no . n tnu . v i c o . r emote . n e t . udp . UDPServer ;
i m p o r t no . n tnu . v i c o . r emote . n e t . ws . WSServer ;
i m p o r t no . n tnu . v i c o . r emote . n e t . zmq . ZmqServer ;
i m p o r t o rg . s l f 4 j . L o g g e r F a c t o r y ;
i m p o r t no . n tnu . v i c o . r emote . n e t . V i c o S e r v e r ;

/∗∗
∗
∗ @author l a h t
∗/

p u b l i c f i n a l c l a s s RemoteManager {

p r i v a t e f i n a l s t a t i c o rg . s l f 4 j . Logger LOG = L o g g e r F a c t o r y . g e t L o g g e r (RemoteManager . c l a s s) ;

p r i v a t e f i n a l H e a r t b e a t h e a r t b e a t ;
p r i v a t e f i n a l S e r v i c e H a n d l e r s e r v i c e H a n d l e r ;
p r i v a t e f i n a l L i s t<VicoServe r> s e r v e r s ;
p r i v a t e f i n a l Map<Byte , MessageHandler> h a n d l e r s ;

p r i v a t e b o o l e a n s t a r t e d ;

p u b l i c RemoteManager (V i c o S i m u l a t i o n sim) th row s IOExcep t ion {
t h i s . h a n d l e r s = new HashMap<>();
t h i s . s e r v e r s = new A r r a y L i s t<>(Ar r a ys . a s L i s t (new V i c o S e r v e r []{

new TCPServer (t h i s) ,
new ZmqServer (t h i s) ,
new WSServer (t h i s) ,
new UDPServer (t h i s) ,
new H t t p R e q u e s t S e r v e r ()

})) ;

t h i s . h e a r t b e a t = new H e a r t b e a t (c r ea t eConnec tMsg (sim)) ;

r e g i s t e r H a n d l e r (new R e q u e s t H a n d l e r (sim)) ;
r e g i s t e r H a n d l e r (new S u b s c r i p t i o n H a n d l e r (sim)) ;
r e g i s t e r H a n d l e r (new KeyHandler (sim)) ;
r e g i s t e r H a n d l e r (new P l o t H a n d l e r (sim)) ;
r e g i s t e r H a n d l e r (s e r v i c e H a n d l e r = new S e r v i c e H a n d l e r ()) ;
r e g i s t e r H a n d l e r (new SpawnHandler (sim)) ;
r e g i s t e r H a n d l e r (new B a n d w i t h T e s t H a n d l e r (sim)) ;

r e g i s t e r S e r v i c e (new V i c o S e r v i c e (sim)) ;

}

p u b l i c vo id a d d S e r v e r (V i c o S e r v e r s e r v e r) {
t h i s . s e r v e r s . add (s e r v e r) ;
i f (s t a r t e d) {

s e r v e r . s t a r t () ;
}

}

84

p u b l i c vo id r e g i s t e r H a n d l e r (MessageHandler h a n d l e r) {
b y t e key = h a n d l e r . getKey () ;

i f (h a n d l e r s . c o n t a i n s K e y (key)) {
th row new I l l e g a l S t a t e E x c e p t i o n (” Key c u r r e n t l y i n use by : ’” + h a n d l e r s . g e t (key) . g e t C l a s s () . getSimpleName ()

+ ” ’ ”) ;
}
h a n d l e r s . p u t (key , h a n d l e r) ;

}

p u b l i c vo id r e g i s t e r S e r v i c e (R p c S e r v i c e s e r v i c e) {
s e r v i c e H a n d l e r . r e g i s t e r S e r v i c e (s e r v i c e) ;

}

p u b l i c vo id h a n d l e (W r i t a b l e C o n n e c t i o n con , VicoMsg msg) {

b y t e key = msg . popByte () ;
MessageHandler h a n d l e r = h a n d l e r s . g e t (key) ;
i f (h a n d l e r != n u l l) {

h a n d l e r . h a n d l e (con , msg) ;
} e l s e {

msg . d e s t r o y () ;
LOG. warn (” No h a n d l e r r e g i s t e r e d f o r key : ’{} ’” , (i n t) key) ;

}

}

p u b l i c vo id s t a r t () {

s e r v e r s . f o r E a c h (s−> s . s t a r t ()) ;
h e a r t b e a t . s t a r t () ;
s t a r t e d = t r u e ;

LOG. i n f o (” RemoteManager s t a r t e d ! ”) ;

}

p u b l i c vo id s t o p () {

s e r v e r s . f o r E a c h (s−> s . s t o p ()) ;
h e a r t b e a t . s t o p () ;

LOG. i n f o (” RemoteManager s t o p p e d ! ”) ;

}

p r i v a t e C o n n e c t P r o t o . ConnectMsg c rea t eConnec tMsg (V i c o S i m u l a t i o n sim) {

S t r i n g h o s t A d d r e s s ;
t r y {

h o s t A d d r e s s = I n e t A d d r e s s . g e t L o c a l H o s t () . g e t H o s t A d d r e s s () ;
} c a t c h (UnknownHostExcept ion ex) {

h o s t A d d r e s s = ” 1 2 7 . 0 . 0 . 1 ” ;
Logger . g e t L o g g e r (RemoteManager . c l a s s . getName ()) . l o g (Leve l . SEVERE , n u l l , ex) ;

}

C o n n e c t P r o t o . ConnectMsg . B u i l d e r b u i l d e r = C o n n e c t P r o t o . ConnectMsg . newBui lde r () ;
b u i l d e r . s e t U u i d (sim . ge tUu id () . t o S t r i n g ())

. s e t S i m u l a t i o n N a m e (sim . getName ())

. s e t D e s c r i p t i o n (” No desc . . ”)

. s e t H o s t A d d r e s s (h o s t A d d r e s s)

. p u t A l l P o r t s (s e r v e r s . s t r e a m () . c o l l e c t (C o l l e c t o r s . toMap (V i c o S e r v e r : : getName , V i c o S e r v e r : : g e t P o r t))) ;

r e t u r n b u i l d e r . b u i l d () ;
}

85

	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Code Listings
	Abbreviations
	Introduction
	Motivation
	Research questions
	Structure of this work

	Basic Theory
	Computer networking
	Protocols
	Middleware
	Brokers

	Data serialization formats
	JSON
	Google Protocol Buffers

	WebGL
	CIGI
	Multi-display systems

	Literature Review
	Web-based simulation
	Networking in games
	Peer-to-peer
	Client/server
	Client-side predication

	Multi-display solutions
	Online Virtual Worlds
	Second Life

	Comparisons of middleware solutions
	Comparisons of serialization formats
	Synchronized wave visualization

	Materials and Method
	Gradle
	Three.js
	Unity3d
	Other 3rd party dependencies
	Workflow
	Benchmark setup
	Visualization lab

	Results
	Server-side Implementation
	Framing
	End-points
	Message handling
	Messages for 3D visualization
	Water
	Directory service

	Client-side implementation
	Web application
	Unity3d

	Benchmarks
	Request-reply
	Publication

	Synchronized Wave Visualization
	Multi-projector rendering

	Discussion
	Wave visualization
	Industry standards
	DDS
	CIGI

	Performance
	Networking
	Serialization

	Multi-display rendering
	Miscellaneous
	Broker architecture
	UDP support
	Loading 3D models
	Simulation playback

	Conclusion
	Bibliography
	Appendix

