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Abstract—Image segmentation is a key component of image
analysis, which refers to the process of partitioning the image
into multiple segments. Graph cut is widely used in image
segmentation by constructing a graph that the minimal cut of
this graph would lead to partition the corresponding pixels of
the different objects. In this paper, we reconstruct the graph cut
problem as a special non-convex optimization problem instead
of the traditional maximum flow problem. We extend this non-
convex problem to the hypergraph method and combine it with a
tensor field based on a directional bilateral filter bank to achieve
segmentation in grayscale images. Accordingly, an efficient mini-
mization algorithm is proposed to solve this non-convex problem
with global convergence. Furthermore, we have selected the data
of BSDS300 and BSDS500 as tests. Experimental results and
evaluation index tests further demonstrate the superiority of the
proposed method.

Index Terms—Image Segmentation, Tensor Field, Nonconvex
Optimization, Hypergraph Cut.

I. INTRODUCTION

R ecently, the graph cut based segmentation methods have
obtained lots of attention [1]-[5]. In brief, the graph
cut algorithm maps the image pixels onto a graph, whose
nodes represent the pixels and the edges represent similarity.
The result of segmentation can be acquired by grouping the
graph into two clusters through the knowledge of Graph
Theory [6]. The corresponding clusters are explicitly referred
to as background and foreground according to appearance and
adjacency properties of nodes.

Graph cut based segmentation fully considers the bound-
ary and region information to achieve the global optimal
result [7]-[9]. The mainstream solution of min-cut in graph cut
problem has a minimum cost, which is solving the equivalent
maxflow problem by using Push-relabel method or Ford-
Fulkerson method [10]. However, the traditional method may
not get ideal segmented object due to the occluded objects
and sometimes it costs large calculation to solve the equivalent
maxflow problem [11]. To improve the performance or solve
the problem in a more efficiently way, some works change the
structure of original energy function [2]. One classical method
is adding the regular term into energy function, which can in-
corporate the shape information of object into energy function
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and get ideal segmented object [3], [12]-[18], such as the star-
shape regularizer [12], [13], connectivity regularizer [14], [15],
or convexity-shape regularizer [3], [16] for energy function.
Moreover, in [19], feature-aligned segmentation method is
proposed, which is used for segmenting a mesh into patches
whose boundaries are aligned with prominent ridge and valley
lines of the shape. And in [20], they proposed a method that
utilizes contrast prior, which used to be a dominant cue in
none deep learning based SOD approaches, into CNNs-based
architecture to enhance the depth information. These shape-
based graph cut algorithms can work well with known prior in-
formation and descriptive shape. Some works also introduced
the norm regularization that can be solved effectively, espe-
cially /1 norm regularization. Sinop and Grady [21] proposed
a common framework that minimizes the energy in graph cut
with respect to ¢; norm. Their work shows the connection
between graph cut problem and ¢; norm. Then, for solving
the problem in a more efficiently way, Bhusnurmath et al. [22]
reformulated the graph cut problem as an unconstrained linear
problem and introduced the ¢; norm to measure it. Likewise,
in [23], an ¢;-regularizer is adopted to promote sparse solution
in a nonlinear embedding, which can be easily integrated
into existed segmentation framework. Not only could these
proposed algorithm be solved by many popular optimization
methods but also they expose connections between graph cut
and other related continuous optimization problems.

In this paper, we reformulate the graph cut problem as
a special non-convex problem, which is seen as a matrix
recovery problem of binary labeling and is also suitable
for the solutions in the case of hypergraph model. Then a
proximal minimization algorithm is proposed to tackle this
challenging problem efficiently with global convergence and
higher accuracy. Apart from that, we build a tensor field based
on the graph and employ direction bilateral bank, which is
able to capture edge information of the object. It makes our
cut algorithm utilize more information when calculating the
weight of the edge of graph in the boundary region and robust
under the noise, such as Gaussian noise.

Our motivation can be summarized in two terms.

(1) In the graph model, it is popular for traditional methods
that achieve the weight of edge by calculating the ’similarity’
between two corresponded pixels. However, it is inevitable
that the high-level semantic graph clues are discarded under
only considering piece-wise pixel information and spatial
information for graph representation [1], [24], [25]. It is
evident that the boundaries of objects can be considered as
the discontinuation between pixel values. Here, we highly
resort this discontinuation under high-level geometrical ob-
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Fig. 1. The flowchart of the proposed method. First part is the classical graph model. Second part is the tensor field combined with hypergraph model. Third
part is using our proposed algorithm to solve nonconvex problem in tensor filed.

servations of the hypergraph. Besides, there are other much
more information that can be utilized, such as anisotropy,
orientation, and gradient information. To provide the compre-
hensive representation for an image, some works construct
the vector field [26], local structure tensor [27] or tensor
field [28] for a image. Inspired by these works that the tensor
is regarded as a multi-dimensional data set for larger capacity.
Here we employ the directional bilateral filter to construct
a tensor field for graph representation. There are mainly two
reasons to introduce a directional bilateral bank for tensor field
construction: First, it can extract the orientation and anisotropy
at the edge of the object. Second, it keeps the original poverty
of bilateral kernel function, which will increase the robustness
of the algorithm under noise.

(2) Some works show that there is a connection between
graph cut problem the #; norm optimization problem [22]. But
it is known that /; norm sometimes yields biased estimators
and the solution is suboptimal [29]. It should be noted that
some nonconvex functions are utilized to replace the linear
regularization in statistic learning and image restoration for
sparse estimation recently [30]-[32]. For example, in [30], a
nonconvex penalty method is used for statistic estimation and
showed a better solution compared to ¢; penalty. And a family
of nonconvex data fitting models are proposed in [33] and
showed that the nonconvex methods could restore the image
with neat edges compared with convex methods. Moreover,
using the nonconvex functions onto the singular values of
the square deal matrix of the tensor and matrix can achieve
the better approximation in low-rank tensor [34] and matrix
recovery [35], [36] respectively. To the best of our knowl-
edge, this is the first work that shows how to optimize a
nonconvex function for the graph cut problem. Consequently,
motivated by these works, to solve the graph cut problem
more effectively and obtain the optimal solution, we propose
a nonconvex optimization approach for graph cut problem
and extend it hypergraph model that overcomes the limitation
of the graph.The contributions of this paper are presented as

follows:

o Aiming at the calculation of edge weight in the graph
and high similarity between the foreground object and
background in some image, we construct a tensor field
with a directional bilateral bank for capturing more edge
information of the object. It makes better use of edge
information of objects and segmentation algorithm more
robust under various noise.

o In the basic of the tensor field, a special nonconvex
optimization problem is proposed for solving graph cut
problem, which is also suitable for the solution in the
case of the hypergraph.

e we propose a proximal minimization algorithm to tackle
this problem effectively with global convergence.

The organization of the rest of this paper is as follows:
In section 2, we review the related basic work about our
method. Section 3 shows the details of the proposed algorithm.
Extensive experimental result and corresponded analysis are
given in section 4. And conclusion is given in section 6.

II. BACKGROUND

In this section, we show the formulation from the graph cut
problem to a linear optimization problem.

Suppose that the G = (N, E) is consisting of the node
set N = {ny,na,...,ny,} and edge set £ = {e1,ea,...,em }.
A min-cut of Graph G is dividing the N into two different
set U and V. Then the sum of the weights of the edges
connecting these two sets are minimized.The min-cut problem
in a graph is typically equivalent to the associated max-flow
problem [2]. Thus, starting with the max-flow problem, the
edges and associated weight can be viewed as pipes and
capacities respectively. The associated problem can be shown
as follows:

max f(v) =h'v
st. Bv=0 (1)

—w<v<w



This inner product represents h”v the total flow out of the U
and constraint Bv = 0 represents that flow in each interior
node is zero. Here the v € R™ is the vector that is undirected
and representing the flow of each edge in the graph. And the
h € R™ is a binary vector, the +1 value represents the edges
adapted from the node set U and 0 value elsewhere. The B €
R™ ™ is a matrix whose rows and columns correspond to the
nodes and edges respectively in graph. In each column, an +1
value denotes the starting point of an arrow and an -1 value
for the ending point. Attentively, for the reason that matrix
does not contain rows of nodes U and V, the columns of
edges starting from source node U or ending at sink node V'
only contain a single value. And the inequality —w < v < w
denotes the capacity constraints of each edge.

By adding the Lagrangians z and [ corresponding to
the flow constraint and capacity constraint respectively, the
associated Lagrangian dual function is obtained, which is
formulated as follow:

: T
,min B+ +B-) .
st. BTe —h=(B_ — B4)
Because the minimum value of (31+/3_) attains to | BTz — h|

when x is fixed, which is also described in [22]. Then the
above problem can be reformulated as:

m
min E OJJ
xr
j=1

Since the w is a constant, the structure of this problem is
always used as data fitting term in image restoration or matrix
recovery. In [22], this problem is formulated as unconstrained
¢1 norm minimization:

min ||diag(w) (BTz —h) Hl 4)

(BT~ h),| 3)

And it is solved by using interior point methods and show that
variable x will converge to binary values.

III. THE PROPOSED NONCONVEX MODEL

In this section, we establish a tensor field based on the
directional bilateral bank to extract more feature information
in an image for segmentation. Then a nonconvex optimization
problem is proposed for graph cut model, and we extend it to
the hypergraph cut model. Finally, a proximal minimization
(PM) is proposed for solving this challenging problem.

A. Tensor Field based on Directional Bilateral Filter

In (3), the w is weight of the edge in graph. The assignment
of the weight is very important, which will influence segmen-
tation result. Normally, the weight of the edge connected two
neighboring pixels (a, b) is calculated like in Boykov and Jolly
method [1], [37]:

(I, — Ib)2) 1
2u? dist(a,b)
The parameter I, and I, can be the intensity of these two

neighboring pixels. The parameter ;o can be seen as ’camera
noise’. And the dist() represents the Euclidean distance. If

®)

w = exp(—

w

Fig. 2. Directional bilateral function with different scales and orientations.

the intensity of two neighboring pixel is very close, the value
of the weight w will be very large. It means that these two
pixels are likely to have the same label after cut. However,
this measurement only considers pixel intensity information
and spatial information. In order to utilize more information
at the edge of the object, we apply a directional bilateral bank
to construct a tensor field for each pixel. In this way, this
tensor representation will contain more information, such as
edge, orientation, and anisotropy information.

The directional bilateral kernel incorporates both the orien-
tation and the anisotropy information [38], which is defined
as follows:

2m2 + 2n2
GPBF (2, a) (5 ) = exp(~ 1T 17

)

202
2 (6)
. exp(f |I(xa, ya) - I(xba yb)| )
202
where the
m = (o — xp) cos b + (Yo — yp)sin b (7
n=—(xq—xp)sind + (yo — yp) cos b (8)

For an image I, the (x4, ), (xp,ys) are the coordinates of
pixels a and b respectively. And other parameters ¢, ¢ and
0 determine the scales and orientations of the filter function.
They also can obtain the orientation and anisotropy informa-
tion when the filter smoothing along a certain direction. As
shown in Figure 2, our model set the kernel function with
four scales and eight directions.

According to the scale factor in [38], we have the
¢1 = 1/po, then we choose ¢o € {1,2,3,4} and 6 €
{o,%,2x 3z 7 5t 6n TZ} The construction for tensor field
includes two steps:

Step 1) We use the directional bilateral filter with the four
scales and eight orientations to convolve with the input image.
Then we will get a tensor in RM*NX4x8 and the gray value

of each pixel is embeded into the matrix representation:

Gll(yx,y) GlD(yI,y)
Tlp=l ¢ i 1 ®
GS’l(ym,y) GSD(yw,y)

The ch’,‘z, represents the corresponding element in the matrix
T. And we have S=4, D=8, G (-) is the output generated by
convolving the directional bilateral functions with the input
image.



Step 2) We unfold the tensor 7' following the mode 1 and
mode 2. Specifically, the every element of unfolding tensor
field F is in the form of a matrix in R**8,

If the & = 0, the directional bilateral kernel will be equiv-
alent to the bilateral filter. Thus, directional bilateral kernel
can be used sufficiently and the filter result will contain edge
information. In this way, every pixel of an image corresponds
to a matrix which includes the edge, anisotropy and orientation
information.

Then we calculate the weight in our tensor field by follow
formulation:

dist(T8 Ts:d

%,] * T m,n )

22

w = exp(— (10)

" dist((i, ), (m,n))

B. Nonconvex Optimization Problem

In (4), it is well known that /;-norm may yield biased
estimators and can not be used to obtain best solution. And
some works show that nonconvex penalty can achieve the
better solution than [;-norm or convex penalty. Here we
reformualte it as a nonconvex optimization problem for graph
cut:

Y (z) :minZP(wj ‘(BTx—h)j‘) (11)
j=1

where P(z) is a concave function.
Theorem 1. [33] For R, — R4, P(z) is convex and
twice continuously differentiable on R.. In addition, for
z € (0,+00), P'(z) >0, P(0) = P'(04) = lim,_,0, P (),
and P" (z) <0, P"(04) = lim, o, P (z).

There are many functions satisfy the above poverty, we
give two concave functions that are widely used. The first
is Exponential-Type function:

1 — exp(—pz)
Plg)= ——M—= (12)
()= 7= exp(—p)
The second is German function:
T
P(z) = 13
@)= (13

Here the 5 > 0, which is used to control the concavity of
above two functions. The above problem is solvable globally
and accurately via proposed proximal minimization algorithm
in section 3.

C. Hypergraph Cut Model

Since the hypergraph considers the relationship among
more than two nodes, we consider extending the model
to the case of hypergraph model. The difference between
the hypergraph and graph is that several nodes can share
one edge in hypergraph [39]. And the weight of hyperedge
is defined as the sum of all pairwise distance of nodes.
Suppose Ghyper = (M, K) as a hypergraph that contains
the node set M = {mq,mo,- - -,m,} and hyperedge set
K = {ki,k2, - -, km}, and the weight of each hyperedge
is w(k;). Similar to the cut in graph, we have
Definition 1. A cut of hypergraph Ghryper = (M, K) can
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Hypergraph Cut

.
_ o \
A\

£ Matrix
Representation

w(k) -ow(k) 0
‘ 0 o(k) -o(k)|/8k)

ok) 0  -—ok)

Fig. 3. Extend the model to hypergraph.

divide the M into two parts L¢ and L. The OL = {k €
VIkNL # @, kN L # &} is defined as the set of hyperedge
that is to be cut. In this way, a cut for the hypergraph could
be defined as:

kN L| kN L|

Cut(L,L°) = Z w(k) 508)

keoL

(14)

The L is a node subset after cut and L¢ is the compliment of
L. §(k) is the degree of a hyperedge.

As illustrated in [40], in above equation, each hyperedge can
be regarded as a subgraph that contains several subedges and
all subedges are assigned with the same weight w(k)/d(k).
Then one subedge is divided into two parts with the node set
|k N L| and |k N L°|, and there are |k N L| |k N L°| subedges
are cut.

Above all, we can regard the cut of a hyperedge as the
cut of a subgraph that also can apply our model. Here we
consider that a hyperedge is consist of a node with its at least
two nearest neighbors: for a certain hyperedge, each node is
connected with other nodes by a subedge. And the weight of
each subedge in a hyperedge has the same weight w(k)/d(k).
As shown in Figure 3, each subgraph represents as a matrix
that will have the same value of weight w. And there are also
two elements in each row of the matrix, and it represents that
these two nodes belong to the one hyperedge. And the value
of each element is the weight of one hypergraph. It also means
that the partition of two nodes in hypergraph takes more cost
than in graph .

D. A proximal minimization algorithm

Here we propose a proximal minimization algorithm (PM)
to solve the problem (11) [35]. Since w > 0, we let H; = w; *
BT and bj = w;  h;. Then the problem in (11) is formulated
as follows:

Y(z) = minz P(|Hjx — bj|)

j=1

5)



Here we use the Taylor formulation to linearize the Y (z) at
x; with an added proximal term:

Y(xlw;) =Y {P(|H;z; — b;)
jeJ
+P'(|Hjz; — bj|)(|Hjx — bj| — |[Hjz; — b))

+ o —ail*)}

(16)

When z; is fixed, P'(|H;z; — b;|) |H;jz; — b;]| is regarded as
a constant. Because of the complexity of F'(x|z;), we consider
solving it inexactly. Then let:

Tit1 ~ argmin Y (z|z;)
= argmin { ) P'(|H;z; — bj|) [H;z — by
: jeJ

+ 3 lle =i}

a7)

The z; also represents the ith step of PM algorithm. Until we
find:

tivr € OY (zig1|2i), [tival < oel|zips — 24| (18)

Here ¢ is the subgradient of Y at x;4;, € is a constant that
satisfies the 0 < e < % The whole step of PM is displayed in
Algorithm 1.

Algorithm 1: PM algorithm for solving the (15)
Step 0: Set given parameter o > 0. Input x( and let
1=0.

Step 1: Calculate z; 4, by (17).
Step 2: If the termination criterion is not met, let
1 =1+ 1 and go back to step 1.

In (17), the sub-problem is solved by the alternating direc-
tion method of multiplier algorithm (ADMM) [41]. Introduc-
ing the Lagrangian multiplier A and penalty parameter «, and
we have z; = H;x — b;. The augmented Lagrangian function
is obtained:

’ (o
L(z,2, ) = Y P ([Hjzi = bj) 2] + 5 llo = ai
JjeJ (19)

(0%
= Nz = (Hyz = b)) + 5 llzy — (Hjz = by)||”

And the iteration scheme of the ADMM is shown as follows:

2 = argmin {L(z, 2!, )} (20)

gt = argzmin {L(Z*Y 2, A1)} (21

AL — )\l_;al[zl-i-l — (Hz b)) 22)
Finally, the z/*! is obtained by:

24 = sgn(Ha! — b+ A\ /a) 23)

«*max{|Haz' — b+ \'/a| — d/a,0}

and the 2!*! can be obtained by:

(EH_I = [HT(ale'l — )\ll) + OélHTb+ O'(Ei]

/(oI +a1H'H) oK

The ADMM for solving the subproblem (17) is described
in Algorithm 2.

Algorithm 2: ADMM algorithm for solving the (17)
Step 0: Set given parameter o > 0 and « > 0. Initialize
20,29 N0 and I = 0.

Step 1: Calculate z'T! by (23).

Step 2: Calculate z!*! by (24).

Step 3: Update A\'T! by (22).

Step 4: If the termination criterion is not met, let
Il =1+1 and go back to step 1.

IV. EXPERIMENTS

In this section, we do some experiments based on the
BSDS500 and BSD300 database [42] by comparing with
NACASHI [43], NACASTYV [43], One-Cut [4], SNC [44] and
TR-Convexity [3]. The detail of these methods are displayed
as follows:

Here, we use the hypergraph model that each hyperedge
includes three nodes. The experiments are conducted on a
computer with 8-GB random access memory and Intel(R)
Core(TM) i5-7440HQ cpu, 2.80GHz processor, and the im-
plementation is presented in Matlab 2016a.

A. Baseline Methods

Here in the experiments, we will start the comparisons
between the NACASHI1, NACASTYV, One-Cut, SNC, TR-
Convexity methods and our method.

e NACASH1: Normalized Cut based Segmentation Model
with Adaptive Similarity and Spatial Regularization, proposed
by Wang et al. in 2018. [43] on Normalized cut with adaptive
similarity and spatial regularization.

e NACASTYV: Normalized Cut based Segmentation Model
with Adaptive Similarity and TV Regularization, proposed by
Wang et al. in 2018. [43] on Normalized cut with adaptive
similarity and spatial regularization.

e One-Cut: One-Cut method, proposed by Tang et al. in
ICCV 2013. [4] on Grabcut in one cut.

e SNC: Scalable Normalized Cut, proposed by Chen et
al. in 2017. [44] on Scalable Normalized Cut with Improved
Spectral Rotation.

e TR-Convexity: shape convexity method for a new high-
order regularization constraint, proposed by Gorelick et al. in
2017. [3] on Convexity shape prior for binary segmentation.

All the images are collected from the BSDS500 database.
And we choose five salient images, the result of experiments
as shown in the Fig. 4 and Fig. 5. From the first column to
last column, it shows the result of NACASHI1, NACASTY,
One-Cut, SNC, TR-Convexity and our method respectively.



NACASHI NACASTV OneCutWithSeeds SNC TR_Convexity Our method

Fig. 4. The comparative experiment between the NACASH1, NACASTYV, One-Cut and TR-Convexity methods and our method.

Fig. 5. The comparative experiment between the NACASH1, NACASTYV, One-Cut and TR-Convexity methods and our method.



TABLE I
THE EVALUATION OF DIFFERENT METHODS FOR FIG.4

Image 1 Image 2 Image 3 Image 4 Image 5
VI/RI VI/RI VI/RI VI/RI VI/RI
NACASHI1 0.1045 7/ 0.9856  0.1610 / 0/9835  0.1942/0.9702  0.7701 / 0.7688  1.5718 / 0.5011
NACASTV 0.1385/0.9798  0.1869 / 0.9779  0.2135/0.9691 0.7519 / 0.7617  0.8435 / 0.8043
One-Cut 0.1668 / 0.9811  0.2078 / 0.9757  0.5652 / 0.8847  0.3479 / 0.9323  0.3912 / 0.9341
SNC 1.1398 / 0.6095  0.3266 / 0.9482  0.3097 / 0.9517  1.3062 / 0.6324  1.3920 / 0.5968
TR-Convexity ~ 0.2574 / 0.9600  0.2179 / 0.9747  0.5080 / 0.8204  0.5265 / 0.8923  0.4818 / 0.9179
Our Method 0.1355/70.9671  0.1190 / 0.9882  0.1903 / 0.9846  0.2294 / 0.9523  0.1956 / 0.9746
TABLE II
THE EVALUATION OF DIFFERENT METHODS FOR FIG.5

Image 1 Image 2 Image 3 Image 4 Image 5

GCE/LCE GCE/LCE GCE/LCE GCE/LCE GCE/LCE
NACASHI1 0.4589 / 0.4426  0.1899 / 0.1932  0.4615/0.4434  0.2291 / 0.2367 0.1618 / 0.1694
NACASTV 0.4335/0.4116  0.1869 /0.1779  0.4136 / 0.4389  0.1941 / 0.1629  0.1753 / 0.1811
One-Cut 0.1867 / 0.2018  0.1739/0.1839  0.1652/0.1836  0.1562 / 0.1489  0.1722 / 0.1822
SNC 0.2443 / 0.2551  0.4305/0.4249  0.4024 / 0.4296  0.2062 / 0.2345  0.3321 / 0.3490
TR-Convexity  0.2774 / 0.2614  0.2281 / 0.2069  0.1679 / 0.1743  0.1891 / 0.1902  0.2089 / 0.2379
Our Method 0.1749 / 0.1917  0.1513/ 0.1438  0.1321/ 0.1335  0.1331/ 0.1411  0.1561 / 0.1676

B. Evaluation Index

These results show apparently that our method can get
better performance compared to other methods. In order to
evaluate the results of different methods, we employ two
quantitative criteria to measure the similarity between the
segmentation results and ground truth. They are Variation of
information (VI) [45] and Rand Index (RI) [46]. The Variation
of information is the distance of shared information between
the two variables, which is used for clustering comparisons.
The definition of it is given as follow:

VI(Tg,Ta) = H(Tg) + H(Tg) — 21(TRr, 1) (25)

where H denotes the entropy and [ represents the mutual
information between the segmentation result 7z and ground
truth 7.

The Rand Index is used to calculate the similarity between
the two clustering results. The definition of RI is an index that
tracks the performance of segmentation that determined by the
true predicted labels compared with groundtruth.

RI{TR? {TG}} = % Z [Smnpmn

+ (1 - smn)(l - pmn)]

Here, the p,,,, represents the probability of two pixels m and n
with the same label, and s,,,, represents the event that result
and groundtruth with same label. M is the amount of pair
of pixels. The value of the VI and RI are given in Table 1,
which indicates our method has better performance. In table
1, it is obvious that the result of our method has smaller VI
value and larger RI value. The overstrking number indicates
that our method get the best result.

Moreover, we also use Global Consistency Error(GCE) and
Local Consistency Error(LCE) to evaluate our method. For a
given pixel p; consider the segments in .S; and So that contain
that pixel. The segments are sets of pixels. If one segment is

(26)

a proper subset of the other, then the pixel lies in an area
of refinement, and the local error should be zero. If there
is no subset relationship, then the two regions overlap in an
inconsistent manner. In this case, the local error should be non-
zero. Let \ denote set difference, and |z| the cardinality of set
x. If R(S,p;) is the set of pixels corresponding to the region
in segmentation S that contains pixel p;, the local refinement
error is defined as:

|R(S1,pi) \R (S2,pi)|
|R(S1,pi)l

Given this local refinement error in each direction at each
pixel, there are two natural ways to combine the values into a
error measure for the entire image. Global Consistency Error
(GCE) forces all local refinements to be in the same direction.
Local Consistency Error (LCE) allows refinement in different
directions in different parts of the image. Let n be the numbers
of pixel:

27

E (Sla527pi) -

1 .
GCE(SMSQ):EHHH ZE(Sl,S%pi)aZE(S2,51,pi)
' 1 (28)

1 .
LCE (51, 82) = - me {E(S1,52,pi) , E(S2,51,pi) }
1 29)

C. Quantitative Analysis

The smaller value of GCE and LCE is, the result is more
closer to groundtruth. Fig.5 is the test image and Table. II.

From the figures, we can obverse clearly that some methods
fail to meet the requirements of distinguishing background
and object, while some methods do, but the contour is zigzag
and very rough. Our method not only accurately distinguishes



the background and object from a picture, but also makes the
contour as smooth as possible. At the same time, combined
with the table, our indexes is the lowest of all comparison
methods, so through these two indexes, we can also show the
superiority of our method.

NACASHI NACASTV One-Cut SNC Our Method
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Fig. 6. Different methods under the gaussian noise with the variance of
0,0.0003,0.003,0.03 respectively.
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Fig. 7. Different methods under the gaussian noise with the variance of
0,0.0003,0.003,0.03 respectively.

D. The Test on Different Noise Levels

In this part, we show the contribution of the tensor field
based on bilateral filter. We test the robustness of our algorithm
under the gaussian noise with different intensity. The test data
is also taken from the BSDS300 database. The original image
is corrupted by gaussian noise with level N(0,0), N(0,0.003),
N(0,0.003), N(0,0.03) respectively.

In Fig. 6(A), with the density of noise increasing, our
method classifies the less noise point as background than other
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Fig. 8. The true accuracy of experiment 1, experiment 2(first row), experiment
3 and experiment 4(second row).

methods. Because the bilateral function can smooth the noise
at the edge, even when the density increased to 0.03, our
method still can segment well at the boundary of the object.
In Fig. 6(B), the background of the input image is much more
complicated than other images. But our image can get higher
accuracy than other methods. In Fig. 7(C), when the density
of noise is 0, our method achieves the good performance at
detail part of the boat, such as boat pole. With the density
increasing, although some points of the object are classified as
background, our algorithm can keep the segmentation accuracy
at the boundary of the boat, which show the tensor field make
full use of orientation information at the boundary of objects
. Similarly, In Fig. 7(D), the edge of buffalo the object and
are weak, but our method also acquires the better result of
segmentation. Correspondingly, Fig. 8 shows the segmentation
accuracy of above experiments under different noise. It is clear
that our accuracy is higher than other methods and can keep
steady with the noise increasing, which shows the robustness
of our algorithm in another view.

E. The Contribution of Tensorfield and Hypergraph

It can be seen clearly that the contour of the object after
only Graph cut is not complete, and some parts are still
inseparable from the background. By using Tensor field and
Graph cut, the results show that the physical outline has been
improved compared with the previous version, but the edge
is rough and the serration is strong. This is not the perfect
way. Our approach combines Tensor field, hypergraph and
nonconvex. It can be seen intuitively that the contour of the
object is not only separated from the background accurately,
but also the overall contour edge is very smooth. This ablation
analysis is demonstrated that the each component has greatly
improved based on the baseline compared with the previous
methods. Our method gets higher accuracy and achieves the
good performance in some detail parts.
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Fig. 9. The comparative experiment between the NACASHI, NACASTYV,
One-Cut and TR-Convexity methods and our method.

F. Parameter Analysis

Here, we give the test under different value of 5 and . The
result is shown in Fig. 12. It can be seen from the figure that
when the value of b is constant, y is too small and the red
circle is large. When the y value takes an appropriate value,
the b value is too small, and the red circle is also small. When
the red circle is too large, the red circle is in the background,
and the separation of the object from the background fails. By
analyzing the parameters, we can know that the convergence is
excessive. When the red circle is too small and the red circle is
in the object, the separation of the object from the background
is also a failure. By analyzing the parameters, we can know
that the convergence rate is too slow and the convergence state
is not reached at this time.

G. Convergence Analysis

In the test, we use the 8 € {1,3,5,7,11,13,15} and v €
{5,10,15,20,25} for ET function. And we set a; = 1, step
length 6 € {0.02,0.05,0.1,0.2,0.3,0.5} for inner ADMM
iteration for all experiments. For o, it can be seen in Fig.
10, our algorithm is not sensitivity to the value of o. Here,
we set 0 = 107°. The terminal condition for inner ADMM
iteration is:

i1 — @il / [l < 1072 (30)
where the relative error of iterations is set to be no more
than 1073, Moreover, the maximum outer iteration and inner
iteration is 13 and 350 respectively. And the proof of the
golbal convergence is listed in the appendix. After setting
parameters, we display the convergence curve and results
under different iteration segmentation. As shown in Fig. 10 and
Fig. 11, with the outer iterations steps increasing, the energy
function F(z) is gradually approaching to the convergence
value and curve of segmentation is also becoming closer to
the object.
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Fig. 10. The value of the F'(z) with different outer iteration steps under
different o.
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Fig. 11. The corresponded result of different outer iteration steps.



Fig. 12. The results under different values of 5 and -y parameters.

TABLE III
THE AVERAGE TIME CONSUMPTION THROUGH DIFFERENT METHODS

NACASHI NACASTV One-Cut SNC TRConvexity M(e)t‘}llro J

Time/s  4.13 3.35 232 0.50 1.67 10.74

H. The Computational Complexity

Here, we briefly discuss the complexity of our method. As
shown in Fig. 1, we can find that the computational of our al-
gorithm mainly consists of three parts: 1) The tensorfield con-
struction, 2) hypergraph model construction and 3)using pro-
posed proximal minimization algorithm to solve the model. We
define that the size of image is M x IN. For the tensorfield con-
struction, the computational complexity is O (M x N x K).
For the hypergraph construction, the computational complexity
is O(M x N). Finally, for using proposed proximal mini-
mization algorithm to solve the model, the computational com-
plexity is O (M? x N?). In this way, the total computational
complexity is O (M? x N2+ M x N x K + M x N).The
algorithm complexity and average computational time for
images in Fig. 5 with different methods are shown in Table.
I

V. CONCLUSION

We presented a tensor field graph-cut algorithm for image
segmentation. In contrast to traditional graph cut methods,
our algorithm utilizes more information in segmentation by
building a tensor field based on directional bilateral filter,
which also make the results robust under the noise. Moreover,
the graph cut problem is formulated as nonconvex problem and
we extended it to the case in hypergraph model that overcomes
the limitation of the graph. To achieve the solution with high
quality, a proximal minimization algorithm is proposed. Above

all, we have presented a powerful nonconvex optimization
algorithm for graph cut in image segmentation, which is
confirmed by extensive experiments.
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