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Abstract—Recently, infrared small target detection problem
has attracted substantial attention. Many works based on lo-
cal low-rank model have been proven to be very successful
for enhancing the discriminability during detection. However,
these methods construct patches by traversing local images and
ignore the correlations among different patches. Although the
calculation is simplified, some texture information of the target
is ignored, and targets of arbitrary forms cannot be accurately
identified. In this paper, a novel target-aware method based on
a non-local low-rank model and saliency filter regularization is
proposed, with which the newly proposed detection framework
can be tailored as a non-convex optimization problem, therein
enabling joint target saliency learning in a lower dimensional
discriminative manifold. More specifically, non-local patch con-
struction is applied for the proposed target-aware low-rank
model. By combining similar patches, we reconstruct them
together to achieve a better generalization of non-local spatial
sparsity constraints. Furthermore, to encourage target saliency
learning, our proposed saliency filtering regularization term
based on entropy is restricted to lie between the background
and foreground. The regularization of the saliency filtering
locally preserves the contexts from the target and surrounding
areas and avoids the deviated approximation of the low-rank
matrix. Finally, a unified optimization framework is proposed and
solved with the alternative direction multiplier method (ADMM).
Experimental evaluations of real infrared images demonstrate
that the proposed method is more robust under different complex
scenes compared with some state-of-the-art methods.

Index Terms—Infrared Small Target Detection, Non-local Low-
rank Modeling, Saliency Filter Regularization, ADMM.

I. INTRODUCTION

INFRARED small target detection is a key technology for
many applications, including maritime surveillance systems

[1], missile tracking and interception systems [2], and forest
warning systems [3]. Generally, infrared small target detection
is still a challenging problem mainly due to 1): the target is
always small and does not have any other textures or shape
features, and 2): the complex background has a low signal-
to-clutter ratio caused by cluttered noise. Recently, many
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Fig. 1. The overall framework of TNLRS is presented. The first line shows
the original image, the separated background image and the target image, and
the second line presents a flow chart of the proposed method.

traditional detection methods have been proposed such as
three-dimensional matched filters [4] and multi-scale adaptive
matched filters [5]. These methods exploit the spatial-temporal
information of the target, which is tractable in the specific case
of static backgrounds. However, in the practical application of
infrared search and track (IRST) systems [6]–[8], the imaging
background changes rapidly due to the high speed of many
targets such as aircrafts and missiles. The performance of the
local low-rank model is rapidly degraded. Therefore, research
on infrared small target detection is of great significance and
has attracted widespread attention in recent years.

Small target detection methods are divided into two cat-
egories based on prior knowledge of the target awareness
domain: local background consistency prior [9], [10] and non-
local background self-correlation prior [11]. In the former, it
is noticeable that the local background is slowly transitioned,
and the neighboring pixels are highly correlated. Thus, the
targets would be highlighted in a smooth manner. Based on
this assumption, methods have been proposed by comparing
a pixel or a region with its neighbors such as the Top-
Hat filter [12], [13], the Max-mean/Max-median filter [14],
and the local entropy model (LEM) [15]. However, these
methods always enhance the edges of the sea surface and
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make it difficult to determine whether it is the target or the
edge of the cloud during the detection process. To solve this
problem, Deng et al. [16] proposed to differentiate the real
target by weighting the multi-scale local difference contrast
(WLDM). By weighting the local information entropy of the
image [17], local areas have different importances even if they
have similar pixel distributions. In addition, some methods
based on the human visual system (HVS) [18] have been
proposed regarding the saliency of the target such as the local
contrast measure (LCM) [11], multi-scale patch-based contrast
measure (MPCM) [19], novel weighted image entropy (NWIE)
[20], derivative entropy-based contrast measure (DECM) [21],
and entropy-based window selection model (EWSM) [22].
These methods generally assume that the background has
local stability and that the target moves slowly. However,
image backgrounds are not always spatially invariant and
these background patches would have the similar characteristic
across the local regions.

For the latter method, it is assumed that all background
patches commonly share a single subspace or a mixture of low-
rank subspace clusters [23]–[25]. Therefore, the segmentation
of the target from the background can be seen as a recovery
task from a noisy image under the perspective of saliency
guiding. This problem can be effectively solved via principal
component analysis (PCA) [26] for, e.g., the infrared patch-
image model (IPI) [27]. At the same time, the complex noise
in an actual scene may also be considered a sparse component
by the IPI model, which produces numerous false positives.
To solve this issue, Wang et al. [28] proposed a patch image
model with local and global analysis (PILGA) to constrain
the sparsity of noise patch images. However, the performance
of these methods degrades rapidly while considering more
heterogeneous backgrounds. Later, He et al. [29] proposed
a low-rank and sparse representation model under the multi-
subspace hypothesis. On the other hand, these methods select
the pixels of the entire image to form a new low-rank matrix,
which massively increases the computational complexity [30]–
[32].

Based on the above discussion, the non-local background
self-correlation prior-based methods have gained increasing
attention from researchers for practical applications. On the
one hand, the local algorithm analysis of the image can
reduce the amount of calculation in target detection, but
it greatly increases the false alarm rate. Current non-local
algorithms [33]–[35] apply convolutional neural networks for
target detection. Although this method is highly efficient, it
requires a large number of data sets for training. On the other
hand, local analysis can lead to the loss of the integrity of
the image, and the original link between patches cannot be
restored. For example, a typical local detection algorithm, such
as [36], relies on a fixed-size encoding method to encode
each image local patch. While there are similar background
patches in different areas, they cannot match and show the
connections among themselves. Non-local algorithms [37] do
not have such problems, and the only cost is an increase in the
amount of calculation. However, in practical use, this portion
of the calculation time can be neglected, and the detection
accuracy rate can be greatly improved. At the same time, by

combining the links between the patches (such as in low-rank
modeling), the amount of computation of the algorithm is also
greatly reduced.

Recently, the saliency prototype has become a new research
domain in the field of small target detection. The property
of saliency in an image is determined as the local contrast
of the region with respect to its neighborhood at various
scales [38], [39]. The global consideration of an image can
assign an approximate significance to unique regions like the
attention mechanism of the human visual system, which can
prominently highlight the target. The relational entropy-based
saliency detection in images, such as [40], takes the statistical
property of the Rayleigh quotient via a Pseudo-Wigner-Ville
distribution, and the saliency weight of the target is too low,
resulting in a thick cloud and target that cannot be distin-
guished on the resulting graph. Although the background is not
static and the prior information of the target is not available,
the saliency of the image can be achieved by enhancing the
target and predicting the background. For the above such
problems, we can consider increasing the saliency threshold of
the target and combining the advantages of regularization to
prevent model overfitting and transfer the detection of a target
into an optimization problem. Image saliency [41] is the best
way to distinguish between a target and the background. A
small target is considered to be the area that destroys the
visual continuity of the original background image. In the
target-aware algorithm, we use image saliency as an important
indicator for detecting the small targets. Thus, we design an
entropy-based saliency filtering for small target detection, and
the targets should have certain global and local characteristics.
In other words, the targets should be independent in color and
ultimately aggregate in spatial distribution [42], whereas the
background should be the opposite. However, the application
of local contrast methods is not very effective because the
segmentation results readily classify some foreground targets
into the background region, resulting in unsatisfactory final
results.

In this paper, a novel method for infrared small target
detection is proposed, and the overall framework is shown
in Fig. 1. We propose to generalize the traditional infrared
small target detection model [43] to the new infrared patch-
based small target detection model by non-local low-rank
modeling with saliency filtering regularization. In practice,
for each exemplary image patch, we look for a set of image
patches with similar conditions in the input image to form a
data matrix. Each similar patch has a similar structure. Thus,
the rank of the data matrix is low. Specifically, the size of the
infrared target is small compared to the whole image. In light
of the definition of local entropy in this paper, we can find that
the local entropy of the target satisfies the sparsity. Overall,
the detection task of an infrared small target is considered an
optimization problem for recovering the sparse and low-rank
matrices. We have listed the main contributions of this paper
as follows:

• We propose to use the target-aware non-local low-rank
model instead of the traditional target detection model,
which reduces the influence of random noise on the
real target and improves the performance of the target
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detection.
• Saliency is determined as the local contrast of an image

region with respect to its neighborhood at various scales.
Inspired by [44] to more efficiently exploit the non-
local sparsity of infrared images, we propose to take
the saliency filtering regularization in the non-local low-
rank model to enhance the anti-interference and the
generalization property.

• We conduct the traditional low-rank and sparse recovery
model for infrared target detection and introduce the de-
tailed solution process based on the alternating direction
multiplier method (ADMM) for optimization.

The organization of the remainder of this paper is presented
as follows: In the second chapter, we introduce in detail
the theoretical basis of our model. In the third chapter, we
introduce in detail the proposed model and the related opti-
mization solution process. In the fourth chapter, we perform
many experiments and verify the superiority of our model
from various aspects. In the fifth chapter, our conclusions and
opinions are given.

II. PRIOR WORK ON INFRARED SMALL TARGET
DETECTION

In this section, we introduced the theoretical basis of
non-local low-rank and saliency filtering regularization-based
TNLRS for infrared small target detection.

A. Classic low-rank matrix method

In the target detection algorithm, the detection time will
greatly affect the actual application effect. To solve this
problem, the low-rank matrix is applied to infrared small target
detection. If the rank of the matrix is much smaller than its
number of rows or columns, then such a matrix is called a
low-rank matrix(as shown in Fig. 2). If the input data matrix
is composed of two features(such as the background and the
target), where one of which has a sparse property and the
other has a low-rank characteristic, then one can recover the
low-rank component of the matrix by the convex optimization
method.

The global low-rank saliency detection algorithm first recon-
structs the image foreground significant target according to the
natural image foreground target and the background brightness
and color difference; then, the low-rank decomposition is
used to suppress the non-significant region in the image. The
algorithm is divided into three steps: contrast extraction, initial
saliency map generation and global low-rank decomposition.
This method performs global low-rank decomposition on the
initial saliency map of the image to obtain the low-rank part
and the sparse part of the initial saliency map. The calculation
method is as follows:

min rank(fB) + ||fT ||0 (1)

where fB and fT correspond to the low-rank and sparse
parts respectively. The global saliency map is obtained by
subtracting the low-rank portion after decomposition from the
initial saliency map (as shown in Fig. 3).

Fig. 2. The illustration of the non-local low-rank property. The first row
shows five representative background images. The second row includes the
singular values of the corresponding background patch images.

Fig. 3. Constructing similar patch images for any exemplar patch. The green
boxes on the left are the samples of the original image, and on the right are
the previously converted patches

However, there is a problem with this approach. If there
are too many clouds in the background, some background
information will be treated as foreground targets, resulting in
false alarms. This is also one aspect of the improvement in our
proposed algorithm, and the details are described in section 3.

B. Detection Based on Entropy Method

The main challenge of infrared small target detection is
lacking sufficient information about targets. However, due
to the long imaging distance, the size of the infrared target
that we observe is small and without any shape or texture
features. Because the small infrared targets continue moving,
their size(in pixels) may vary from 2× 2 to 8× 8 (in Fig. 4).
However, compared to the whole image, the infrared target
image (fT ) can be regarded as a sparse matrix. Therefore,
the detection of infrared small targets can be considered as a
recovery task of a sparse matrix. The l0−norm represents the
number of non-zero entries and thus can represent the sparsity
of the matrix. Specifically,

‖fT ‖0 < T (2)

where ‖∗‖0 denotes the l0−norm, and T is a positive number
and satisfies T � m × n (m × n is the size of the target
image). However, the solution of l0 − norm is a NP-hard
problem. Fortunately, this problem has been effectively solved
via convex relaxation optimization, using the l1−norm instead
of the l0 − norm. Specifically,

‖fT ‖1 < T (3)

where ‖∗‖1 denotes the l1−norm. In practice, due to camera
and weather restrictions, pictures taken contain noise, which
affects the final detection performance. In the absence of the
spatial-temporal information and shape of the target, the char-
acteristics between the target and the surrounding area of the
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Fig. 4. The seven representative real infrared images. The background
includes the sky, sea level and desert, also possessing interference by heavy
fog, rain and clouds.

Fig. 5. The target local window consists of the target area and adjacent
background areas.

target are important priors of infrared small target detection.
After observing a large number of infrared image(Fig. 4), we
observe that the small infrared targets are mostly located in
homogeneous and bright areas. How to use these priors to
design a model that can segment noise and targets is our next
problem to be solved.

Information entropy reflects how much information is con-
tained in the information source, which can represent the
global characteristics of the information source. The most
famous image entropy is based on image histograms, which
is a method used to effectively illustrate the complexity of
gray value distributions in whole images. For an image (I),
its image entropy formulation can be written as

H(I) =

s−1∑
i=0

q (xi) [− log (q (xi))] (4)

q (xi) = mi/M (5)

where s is the gray level of the image, xi is the ith gray
value, mi is the number of pixels of the ith gray value, and
M is the total number of image pixels.

III. THE PROPOSED METHOD FOR INFRARED TARGET
DETECTION

In this section, we first introduce the non-local low-rank
matrix recovery and saliency filtering regularization. Then, we
discuss the infrared small target detection model by optimizing
the recovery task of the low-rank and sparse matrices. Based
on this, we propose a new model via non-local low-rank and
local entropy regularization for target detection. The proposed

model consists of two components: patch recombination for
the self-similarity of low-rank background images and the
sparse constraint of the target image local entropy. We consider
the infrared small target detection task as the optimization
problem of recovering the sparse and low-rank matrix. Fur-
thermore, the corresponding algorithm is explained in detail.

A. The Non-local Low-Rank Matrix Recovery

In general, the background is slowly transitional; thus, we
suspect that there is a large correlation between different
local patches in the infrared image regardless of the distance
between the pixels, as illustrated in the first line of Fig. 2.
Although patches P1, P2, and P3 are located in different
areas of the infrared image, their structures are extremely
similar. Such an assumption implies that a sufficient number
of similar patches can be found for any example patch of
size
√
m ×

√
m at position i denoted by xi ∈ Cm. For each

exemplar patch xi, we only look for all similar patches that
satisfy Eq. (6) in the K neighborhood of its local window, i.e.,

Si =
{
ij | ‖xi − xij‖2 ≤ Q

}
(6)

where Si denotes the set of those similar patches and Q is a
threshold that determines the size of the set. We arrange these
similar patches into column vectors and reconstitute a new
matrix Xi =

[
xi0 , xi1 , xi2, . . . , xin−1

]
, where n denotes the

number of similar patches, as illustrated in Fig. 3. To verify
our guess, we performed an experiment. In the second line
of Fig. 2, the singular values of the background patch image
(fB) quickly drop to zero, which implies that the background
patch image is an intrinsically low-rank matrix. Specifically,

rank (fB) < k (7)

where k is a constant determined by background, k constrains
the complexity of the background image, and the value of
k is larger for a complex background than for an uniform
background. Actually, Xi may contain noise, which could
break the low-rank of Xi. One possible solution is to divide
the matrix Xi into Xi = Wi+Li, where Wi and Li represent
a Gaussian noise matrix and a low-rank matrix, respectively.
However, classic nuclear norm minimization (NNM) tends
to over-shrink the rank components and treats all singular
values equally, limiting its applicability for real applications
[30], [45]. Therefore, we consider a smooth but non-convex
surrogate of the rank [43], [46] rather than the nuclear norm.
Specifically,

M(Y, µ) = log det(Y + µI) (8)

where µ is a small constant value. Fig. 6 shows a comparison
of a non-convex substitution function, rank and nuclear norm
in the scalar case, which confirms that the function M(Y, µ)
can be closer to the rank minimization optimization than
the nuclear norm. For a general matrix Li, that is neither
square nor positive semi-definite, we slightly modify Eq. (8)
as follows:

L (Li, µ) = log det

((
LiL

T
i

)1/2
+ µI

)
(9)
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Then, the low-rank approximation problem can be solved
as follows:

Li = arg minL (Li, µ) s.t. ‖Xi − Li‖2F ≤ ζ
2 (10)

where ζ2 denotes the variance of additive Gaussian noise. Eq.
(11) can be solved in its Lagrangian form, e.g., as follows:

Li = arg min ‖Xi − Li‖2F + λL (Li, µ) (11)

B. Saliency Filtering based on Image Entropy

Image entropy is a global statistic that does not characterize
the spatial texture or frequency information of an image. The
local entropy operator can measure the amount of information
contained in the local window, which can represent the texture
and frequency information of the image to some extent (Fig.
4). In this paper, the local entropy operator is defined as

H(I) =

M−1∑
i=0

N−1∑
j=0

f(i, j) log(f(i, j)) (12)

where M×N is the local window size, and f(i, j) is the gray
value at the point (i, j). Therefore, the local entropy value
obtained by substituting Eq. (12) is consistent with sparsity
(Fig. 7). Its sparse constraint operator is as follows:

‖fT � log fT ‖1 (13)

where � denotes the point-wise product (Hadamard product)
of the two matrices and fT denotes the infrared target image.

In this paper, we assume that image noise is Gaussian noise
that is disorderly distributed. Thus, we have

‖fD − fB − fT ‖2F < ζ2 (14)

where ‖∗‖F denotes the Frobenius norm.
Under this assumption, from the definition of local entropy,

the entropy value is greater in bright regions than in dark
regions. Compared with the noise distribution, the pixel value
distribution of multi-pixel targets located in uniform and
bright areas is relatively close, and a larger entropy value is
obtained (Fig. 7). To some extent, local entropy operators can
be employed to enhance infrared small targets for complex
backgrounds.

C. The Formulation of Small Target Detection

Generally, the low-rank and sparse matrix recovery model
for target detection can be written as

min
fB ,fT

rank (fB) + γ ‖fT ‖0 , s.t.fB + fT = fD (15)

where fD, fB , fT and γ are the original input infrared image,
the infrared background image, the infrared target image, and
a positive weight constant, respectively. The model in Eq.
(15) can be transformed as the following convex optimization
problem by PCA:

min
fB ,fT

‖fB‖∗ + γ ‖fT ‖1 , s.t. fB + fT = fD (16)

Fig. 6. Comparison of L(Y, u), rank(Y ) and the nuclear norm in the case
of a scalar, where red represents log det(u+ |Y |), green represents ‖Y ‖0 =
rank(Y ) and yellow represents ‖Y ‖1 = Y .

Fig. 7. The first column represents the target image (upper) and entropy map
(under), while the 3D gray distributions are shown in the second column. The
third column represents the target image with Gaussian noise (upper) and
entropy map (under), while the 3D gray distributions are shown in the fourth
column.

where ‖∗‖∗ denotes the nuclear norm of the matrix.
Based on the above model, to more effectively approximate

the non-local low-rank component of the background and re-
duce the impact of random noise on the detection performance,
we propose a novel model:

min
fT ,fB ,Li

η
∑
i

{∥∥∥R̃ifB − Li∥∥∥2
F

+ λL (Li, µ)

}
+ α ‖fT � log fT ‖1 + β ‖fD − fB − fT ‖2F

(17)

where R̃ifB denotes the matrix formed by the set of similar
patches for every exemplar patch xi. The proposed non-local
low-rank regularization can utilize the non-convexity of the
similar patch image minimization; the local entropy regularity
utilizes the difference between the noise and the target. The
experimental results for different original infrared images
show that the proposed method achieves a better detection
performance than some baseline methods.

The Fig. 1 shows the entire method of small target detection
proposed in this paper. First, the patch image is constructed
from the input original infrared image. Second, for the recov-
ery of the background image, we enforce the regularization of
the low-rank property on the non-local low-rank patch sets for
each exemplar patch along with the constraint of being linear.
Third, for the recovery of the target image, we enforce the
regularization of the sparse property on the local entropy along
with the constraint of linear measurements. In this paper, our
model can be solved effectively via ADMM. The algorithm is
detailed in Algorithm 1.
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Fig. 8. The experimental results for target enhancement. The first line is the original image sequence, the second line is the gray histogram of the original
image, the third line is the image when the background is removed, and the fourth line is the corresponding histogram.

D. The Solution of Low-Rank Matrix Li
For the input infrared image, we first extract exemplar

patches xi every l pixels along each direction. Then, we can
obtain a matrix Xi for every xi by grouping a set of similar
patches, as described in Section II. The solution of step 4 in
Algorithm 1 is described below:

Li = arg min
Li

η
∥∥∥R̃ifB − Li∥∥∥2

F
+ λL (Li, µ) (18)

Because L (Li, µ) is approximately the sum of the logarithm
of singular values, Eq. (18) can be rewritten as

Li = arg min
Li

‖Xi − Li‖2F +
λ

η

l∑
j=1

log (σj (Li) + µ) (19)

where R̃iB = Xi, l = min(m,n) and σj (Li) denote the
jth singular value of Lj . Eq. (19) can be solved by iteratively
solving

Lk+1
i = arg min

Li

‖Xi − Li‖2F +
λ

η

l∑
j=1

σj
σkj + ε

(20)

For convenience, we can rewrite Eq. (20) as follows:

Lk+1
i = arg min

Li

1

2
‖Xi − Li‖2F + τϕ

(
Li, w

(k)
)

(21)

where τ = λ
2η and ϕ

(
Li, w

(k)
)

=
∑l
j=1 w

(k)
j σj denote

the weighted nuclear norm with weights w(k)
j = 1

σk
j +ε

. Note
that because the singular values σj are ordered in descending

order, the weights are ascending. Then, the solution of the
reconstructed matrix in the (k + 1)th iteration is obtained by

Lk+1
i = U

(
Σ̃− τ diag

(
w(k)

))
+
V T (22)

where Σ̃V T is the SVD of Xi, and (a)+ = max(a, 0). The
detailed proof is given in the next section.

TABLE I
ALGORITHM 1: TARGET DETECTION VIA LOW-RANK REGULARIZATION

AND LOCAL ENTROPY

Step 1: Input an infrared image fD .
Step 2: Initialization

a) Setting parameters η = 0.35, λ = 0.3.
b) Grouping a set of similar patches Si for each exemplar patch xi.

Step 3: While not converged do

Step 4: For Li: argmin
Li

η
∥∥∥R̃ifB − Li∥∥∥2

F
+ λL (Li, µ).

Step 5: For fB : fB = argmin
fB

η
∑
i

∥∥∥R̃ifB − Li∥∥∥2
F

+ β ‖fD − fB − fT ‖2F .

Step 6: For fT : fT = argmin
fT

α ‖fT � log fT ‖1 + β ‖fD − fB − fT ‖2F .

Step 7: Setting N = fT � log fT .
Step 8: For N : N = argmin

N
α‖N‖1 + γ

2
‖fN − fT � log fT ‖2F .

Step 9: End While.
Step 10: Output target image fT and background image fB .

E. The Solution of Background Image fB

After solving for each Li, we can reconstruct the back-
ground image by solving the following minimization problem:
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Fig. 9. Comparison of model logarithmic specification and nuclear spec-
ification. (a1)-(a4) are the original image sequences, (b1)-(b4) are the test
conducted by the nuclear specification, and (c1)-(c4) are the logarithmic test.

arg min
fB

η
∑
i

∥∥∥R̃ifB − Li∥∥∥2
F

+ β ‖fD − fB − fT ‖2F (23)

For fixed Li and fT , fB admits a closed-form solution:

fB =

(
η
∑
i

R̃Ti R̃i + βI

)−1(
η
∑
i

R̃Ti Li + β (fD − fT )

)
(24)

where R̃Ti R̃i =
∑n
r=0R

T
r Rr, and R̃Ti Li =

∑n−1
r=0 R

T
r xir.

Note that the term R̃Ti R̃i is a diagonal matrix. Each of the
entries in the diagonal matrix corresponds to an image pixel
location, and its value is the number of overlapping patches
that cover the pixel location. The term R̃Ti L̃i denotes the patch
average result, averaging over all collected similar patches for
each exemplar patch. Therefore, Eq. (24) can easily computed
in one step.

F. The Solution of Target Image fT
The solution of step 6 in algorithm 1 is described below:

arg min
fT

α ‖fT � log fT ‖1 + β ‖fD − fB − fT ‖2F (25)

To facilitate the calculation of the optimal solution of Eq.
(25), we introduce a variable N and make N = fT � log fT .
Thus, Eq. (25) can be written as

arg min
fr

α‖N‖1 + β ‖fD − fB − fT ‖2F +
γ

2

s.t.N = fT � log fT
(26)

Eq. (26) can be transformed into an unconstrained optimiza-
tion problem:

arg min
fT

α‖N‖1 + β ‖fD − fB − fT ‖2F +
γ

2
‖N − f � log f‖2F

(27)
Then, the problem of solving fT is transformed into solving

two sub-problems.
• For N sub-problem,

arg min
N

α‖N‖1 +
γ

2
‖N − fT � log fT ‖2F (28)

The minimizer is as follows:

N = shrinkage

(
fT � log fT ,

α

γ

)
(29)

where shrinkage(a, b) = sign(a)�max{abs(a)− b, 0}.
• For fT sub-problem,
arg min

fT
β ‖fD − fB − fT ‖2F +

γ

2
‖N − fT � log fT ‖2F (30)

To obtain the optimal solution of Eq. (30), the corresponding
gradient can be obtained as follows:

β
∂

∂fT

(
‖fD − fB − fT ‖2F

)
+
γ

2

∂

∂fT

(
‖N − fT � log fT ‖2F

)
= 0

(31)
The problem of solving the Frobenius norm of the matrix can

be transformed into determining the trace of the matrix. The
general form is as follows:

F (X) = α‖X − Y ‖2F = α(
√

tr {(X − Y )H(X − Y )})2

= α tr
(
XHX

)
− tr

(
Y HX

)
− tr

(
XHY

)
+ tr

(
Y HY

)
(32)

and

∂F (X)

∂X
=
∂ tr

(
XHX

)
− tr

(
Y HX

)
− tr

(
XHY

)
+ tr

(
Y HY

)
∂X

= α(X +X − Y − Y ) = 2α(X − Y )
(33)

The corresponding iteration can be written as follows:

f
(n+1)
T = − γ

2β

(
f
(n)
T � log f

(n)
T −N (n+1)

)
�
(

1 + log f
(n)
T

)
+ f

(n+1)
D − f (n+1)

B
(34)

First, in Algorithm 1, after obtaining an improved estimate
of the background image, the low-rank matrices Li can be
updated by solving Eq. (20). Second, the combination of the
updated Li and target image is then used to improve the
estimate of the background image by solving Eq. (22). Third,
the estimate of the target image can be obtained by using an
updated background image to solve Eq. (32). Such a process is
iterated until convergence. The overall procedure is described
below as Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we use seven real infrared images to illustrate
the performance of the proposed method. First, we introduce
the evaluation metrics, the baseline methods and information
of the datasets in this paper. Next, we discuss the target
enhancement performance and the effects of the parameters by
performing real experiments. Finally, we perform experiments
on the infrared images with different basic methods and
confirm the superiority of the proposed method.

A. Evaluation Metrics, Baseline Methods and Datasets
Evaluation Metrics. The signal-to-clutter ratio gain and the

background suppression factor are commonly used indicators
to measure the performance of small target detection methods.
The formulation can be defined as follows:

SCRG =
(S/C)out
(S/C)in

(35)

BSF =
Cin
Cout

(36)

where S is the signal amplitude, C is the clutter standard
deviation, and Cin and Cout are the clutter standard deviation
of the input image and the output image, respectively. From the
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Fig. 10. The target enhancement experimental results with Gaussian noise. The first line is the enhanced image, and the second line is the corresponding
gray histogram.

Fig. 11. The result of the separation of the background images and the target images from the real infrared images. The first line is the original image, the
second line is the predicted background image, and the third line is the target image.

above definition, we can see that the larger SCRG and BSF
values indicate better small target enhancement and back-
ground suppression, respectively. The probability of detection
(Pd) and false alarm rate (Fa) are important indicators for
evaluating the performance of infrared small target detection
methods. Pd indicates the probability that the real target
detected in the infrared image exists, while Fa indicates the
probability that the target is detected in an infrared image
in which the target is not present. These can be defined as
follows:

Pd =
number of true infrared targets

number of actual infrared targets
(37)

Fa =
number of pixels in false infrared targets

number of pixels in all test infrared images
(38)

The above two indicators range between 0 and 1. From the
above definition, we find that the greater the value of Pd is,
the more complete the targets, whereas a smaller value of Fa
indicates more target detection.

Baseline Methods. To prove the superiority and robustness
of the proposed method, we use different baseline methods for
comparison.

• Local adaptive contrast operation based on regularized
feature reconstruction(LACRFR) [44]: This method uses
the regularization of reconstructed features to construct
adaptive operators.

• Infrared patch-image model(IPI) [27]: IPI exploits the
low-rank of non-local backgrounds and the sparseness of
targets to translate target detection problems into low-
rank and sparse recovery problems.

• Local contrast measure(LCM) [11]: LCM is a method of
using the local entropy around the target.

• Multi-scale patch-based contrast measure(MPCM) [19]:
MPCM highlights the target by comparing different sizes
of image blocks.

• Novel weighted image entropy(NWIE) [16]: NWIE rep-
resents a new way to measure the operator weights.

Datasets. To more efficiently reflect the robustness of our
proposed method, we use seven real infrared images with a
complex background to compare the proposed method with
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Fig. 12. The filtered results by different methods. (a1)-(a7), (b1)-(b7), (c1)-(d7), (e1)-(e7) and (f1)-(f7) are the enhanced results obtained through the
LACRFR, IPI, LCM, MPCM, NWIE and TNLRS.

the baseline methods. Fig. 4 shows representative images of
seven infrared images.

B. Quantitative Analysis of Target Enhancement

The purpose of infrared target detection is to efficiently
enhance the infrared targets and suppress the background
and noise. If TNLRS can better separate the background and
noise from the input image, it will be easier to detect small
targets and achieve higher accuracy. To more effectively prove
the performance of the proposed detection method for target
enhancement, we conducted experiments on seven infrared
images with complex backgrounds. The experimental results
are shown in Fig. 8.

The first row of Fig. 8 denotes seven representative infrared
images randomly derived from different complex scenes. The
second row of Fig. 8 indicates the corresponding 3D gray
distributions of infrared images. We found it difficult to
determine the position and shape of the targets due to cluttered

background and noise. The third row of Fig. 8 shows the
position and shape of the targets after applying the proposed
method, and the corresponding 3D gray distributions of the
targets are shown in the fourth row of Fig. 8. From Fig.
8, we can clearly see that TNLRS effectively suppresses the
background and noise while effectively enhancing the target.

Some small target detection methods based on image en-
tropy operations are sensitive to noise. To more effectively
prove the robustness to the target enhancement performance,
we add Gaussian white noise based on the original input
image, as shown in the first row of Fig. 10. However, from the
description of Table I, we found that most of the input images
contain heavy noise. Therefore, we have made appropriate
adjustments to the noise variance of special images. The
corresponding 3D gray distributions of targets after TNLRS
are shown in the second row of Fig. 10. After preprocessing
the input images, it is no longer possible to observe whether
there are small targets with the naked eye, and then we start to



10

(f1) (f2) (f3) (f4) (f6) (f7)(f5)

(e1) (e2) (e3) (e4) (e5) (e6) (e7)

(d1) (d2) (d3) (d4) (d5) (d6) (d7)

(c1) (c2) (c3) (c4) (c5) (c6) (c7)

(b1) (b2) (b4)(b3) (b5) (b6) (b7)

(a1) (a2) (a3) (a4) (a5) (a6) (a7)

Fig. 13. The 3D gray distributions by some baseline methods and our proposed method, where (a1)-(a7), (b1)-(b7), (c1)-(d7), (e1)-(e7) and (f1)-(f7)
are the results obtained through the LACRFR, IPI, LCM, MPCM, NWIE and TNLRS methods.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 14. The characteristic (Roc) curves of six methods for the seven real images, where (a)-(g) correspond to the seven sets of actual image sequences.
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TABLE II
THE VALUES OF SCRG AND BSF OBTAINED THROUGH DIFFERENT METHODS

LACRFR IPI LCM NWIE MPCM TNLRS
SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF

1 90.914 22.649 104.9 33.736 1.160 0.975 80.87 403.9 105.5 80.86 174.69 568.5
2 28.314 20.029 24.52 22.509 1.211 0.601 22.48 208.8 27.70 21.97 26.393 130.1
3 12.955 9.640 18.61 9.346 0.556 0.508 5.428 445.0 12.98 62.38 31.861 529.3
4 38.914 30.701 43.62 24.461 0.849 0.844 11.08 281.5 19.77 444.75 54.349 12.50
5 10.033 1.588 7.060 5.094 0.997 0.335 1.440 7.460 8.591 443.6 24.153 636.8
6 3.073 2.683 8.978 7.957 0.653 0.359 3.581 9.579 5.338 482.7 34.337 198.6
7 4.882 3.067 7.721 4.420 0.347 0.197 1.722 16.14 8.103 520.2 14.966 125.7

TABLE III
THE VALUES OF SCRG AND BSF OBTAINED FOR DIFFERENT VALUES OF λ

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6
SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF

1 150.23 500.71 171.57 512.23 174.69 568.5 169.43 532.6 155.5 550.86 166.34 548.83
2 23.231 118.96 25.673 129.33 26.393 130.1 24.32 128.53 23.26 126.27 22.13 124.1
3 29.32 498.51 29.88 511.61 31.861 529.3 30.11 509.51 29.05 510.35 26.74 511.89
4 49.53 11.12 51.25 11.89 54.349 12.50 53.79 12.22 52.48 11.28 43.18 11.59
5 22.174 22.814 23.834 629.32 24.153 636.8 23.171 612.17 22.96 604.83 22.99 611.67
6 31.62 189.23 35.75 199.73 34.337 198.6 34.521 199.51 33.56 190.65 33.16 188.84
7 13.64 123.13 15.16 125.5 14.966 125.7 14.72 124.73 14.68 124.89 14.21 121.67

experiment with our proposed method and various comparison
methods.

C. The Overall Performance Comparison of Target Detection

To more effectively prove the performance of our proposed
method, we selected five different basic methods for compar-
ison: LACRFR, IPI, LCM, MPCM, and NWIE.

First, the effects of matrix recovery are shown in Fig. 11.
The red squares in the first row of Fig. 11 indicate the edges
and location of the infrared target. The complex backgrounds
can be recovered completely, as shown in the second row of
Fig. 11. The corresponding target images are shown in the
third row of Fig. 11. These results indicate that the task of
low-rank and sparse matrix recovery can be solved efficiently
by our proposed method.

Second, the filtered target results and corresponding 3D
gray distributions of targets under various methods on complex
backgrounds are shown in Fig. 12 and Fig. 13. From Fig. 13
a1-f1 and a2-f2, we observe that some dim small targets are
well enhanced. However, there is still a heavy background and
noise in Fig. 13 a3-e3, a5-e5, a6-e6 and a7-e7. Comparing Fig.
13 f1-f7, we clearly observe that the results produced by our
proposed method contain very little clutter and noise residuals
and are suitable for various complex backgrounds, therein also
demonstrating stable robustness.

Third, SCRG and BSF are effective measures for the
performance of infrared small target detection. The value of
SCRG indicates the performance of enhancing dim targets,
while the value of BSF implies the ability to suppress
complex backgrounds. For Fig. 4, the details of SCRG
and BSF are shown in Table II obtained using LACRFR,
IPI, LCM, NWIE, MPCM and the proposed method. The
details in Table II show that our proposed method is superior
to some baseline methods. The experimental results suggest
that TNLRS can effectively enhance the dim target while
suppressing background clutter and noise.

Finally, for the seven infrared small target images, the Pd
obtained using TNLRS are 1.00, 0.96, 0.91, 0.94, 1.00, 1.00
and 1.00, and the Fa are 0.0040, 0.0039, 0.0098, 0.0044,
0.0024, 0.0045 and 0.0073, respectively. The characteristic
curve is a graphical plot of the probabilities of detection
versus the false alarm rates. We provide ROC curves obtained
using the baseline methods and proposed method for the
seven infrared images in Fig. 14. We can see that TNLRS
outperforms the baseline methods, which implies that TNLRS
is more robust to various clutter and noisy backgrounds.

D. The Analysis of Computational Complexity

Here, we discuss the computational complexity of our model
with a detailed specification of the running environment. As
shown in Algorithm I, the algorithm complexity is composed
of two main parts: saliency filtering regularization and low-
rank model reconstruction. Here, we define that the image size
is M × N , m and n are the rows and columns of the input
image.

For saliency filtering regularization, the computational com-
plexity is mainly determined by the saliency filtering. We need
to traverse the original image and find a pixel block similar
to the one in the operation window; thus, the operation can
be computed in O(m × n × R2). For the low-rank matrix
construction, we need to convert the original matrix into a list
of column vectors for low-rank transitions. The complexity is
O(m2 × n2 × p), where p is the number of patches.

Based on the analysis above, the complexity of our proposed
algorithm is O(m× n×R2 +m2 × n2 × p). We perform the
time consumption test using MATLAB R2016a on a laptop
with an Intel Core i5-4210 CPU and 4 GB of RAM.

E. Convergence and Parameter Analysis

In this section, we discuss the parameters that we selected
in the proposed method. As mentioned above, regularity mea-
sures the degree to which a function is smooth. The higher the
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Fig. 15. The convergence of our proposed TNLRS.

regularity is, the smoother the function. Using the regulariza-
tion method will automatically weaken the unimportant feature
variables, automatically extracting important feature variables
from many feature variables and reducing the magnitude of
the feature variables.

To obtain the best detection results, we use different pa-
rameter settings for different images. We have listed the set
of different η-values and conducted comparative tests with λ
= 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. The experimental results
are shown in Table III. Here, we visually see the λ value
corresponding to the highest value of the indicator for different
image data. For image 1, the best value for η is 0.35. For image
6 and 7, the highest value of the index corresponds to η equal
to 0.3. After weighting all the experimental results, we chose
η = 0.35 in this paper. To demonstrate the convergence of
our proposed TNLRS algorithm, we provide the convergency
result in Fig. 15. We can observe that our proposed method
TNLRS converges very quickly. In general, TNLRS only needs
to iterate 5 to 8 times in our test.

V. CONCLUSION

This paper proposes a novel model for infrared small
target detection based on the non-local low rank modeling
and saliency filtering regularization, which can be efficiently
solved via ADMM. Combining the non-local low-rank prop-
erty of the background and the sparsity of the target local
entropy image, the experiments have demonstrated that our
proposed method have a superior performance compared with
the other methods. From the quantitative analysis, we can
observe that our proposed algorithm not only significantly
increases the SCRG and BSF values of the image but also
achieves high accuracy and low false alarm rates.
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