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• First LMW-DOM characterization of
recirculating aquaculture systems (RAS)
by HRMS

• Untargeted HRMS analysis showed mo-
lecular alterations of LMW-DOM in RAS.

• Standard feed contributed to CHO, CHOS
and lignin/CRAM-like chemical groups
in DOM.

• RAS feed contributed to CHNO, CHNOS
and unsaturated hydrocarbon chemical
groups in DOM.

• The Kendrick plot showed removal of
CHNO, CHNOS and halogenated homolo-
gous chemicals.
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Recirculating aquaculture systems (RAS) are a new alternative to traditional aquaculture approaches,
allowing full control over the fish production conditions, while reducing the water demand. The reduction
of water exchange leads to an accumulation of dissolved organic matter (DOM) that can have potential ef-
fects on water quality, fish welfare and system performance. Despite the growing awareness of DOM in
aquaculture, scarce scientific information exists for understanding the composition and transformation of
DOM in RAS. In this study, a non-targeted approach using ultra-performance liquid chromatography
coupled to a hybrid quadrupole-time of flight mass spectrometer (UPLC-QTOF-MS) was used to character-
ize compositional changes of lowmolecular weight (LMW)DOM in RAS, when operated under two different
feed types. A total of 1823 chemicals were identified and the majority of those contained a CHON chemical
group in their structure. Changes in the composition of LMW-DOM in RAS waters were observed when the
standard feed was switched to RAS feed. The DOMwith the use of standard feed, consisted mainly of lignin/
CRAM-like, CHO and CHOS chemical groups, while the DOM that used RAS feed, was mainly composed by
unsaturated hydrocarbon, CHNO and CHNOS chemical groups. The Bray-Curtis dissimilarity cluster demon-
strated differences in the composition of DOM from RAS and was associated to the type of feed used. When
the RAS feed was used, the Kendrick mass defect plots of –CH2- homologous units in the pump-sump (after
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the water treatment) showed a high removal capacity for CHNO, CHNOS and halogenated chemicals with
high Kendrick mass defect, KMD > 0.7. To our knowledge, this is the first report of LMW-DOM characteri-
zation of RAS by high-resolution mass spectrometry (HRMS).

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Fish is a primary source of animal proteins, micronutrients and es-
sential fatty acids whose demand is increasing due to the rapid human
population growth (Bogard et al., 2015; Thilsted et al., 2016). The
over-exploitation of capture fisheries and the effects of global climate
change on aquatic biodiversity, prompts the need for novel production
systems to sustain the rise of the global fish demand (Lem et al., 2014;
Lipper et al., 2014; Subasinghe, 2017). Recirculating aquaculture sys-
tems (RAS) with their innovative low water exchange rates are con-
stantly gaining approval over more traditional approaches in the
aquaculture industry (Tidwell and Allan, 2001; Bostock et al., 2010).
The RAS recycle the natural input of water through a multi-step water
treatment process that reduces the need for new additions of water,
while they minimize the concentration of contaminants in the system
effluents. Moreover, they increase the biosecurity by preventing the es-
cape of fish (Martins et al., 2010). The ability of RAS to control the water
quality as means of optimizing the fish growth, make them superior
over traditional aquaculture systems (Timmons and Ebeling, 2007).
However, one main drawback of RAS is the accumulation of organic
matter (OM), particularly the dissolved organic matter (DOM)
(Badiola et al., 2012; Van Rijn, 2013). Fecal waste and feed spill are
the two main sources of endogenous production of DOM in RAS
(Ackefors and Enell, 1994; Cripps and Bergheim, 2000). The significance
of exogenous DOM is dependent on the quality and quantity of makeup
water that is used for water exchange (Bilotta and Brazier, 2008). The
water exchange rate and the type of the treatment system (e.g. ozone,
UV, skimming) determines the extent in which the DOM can accumu-
late within a system. This accumulation of DOM can promote the
growth of opportunistic bacteria, affecting the biofiltering performance
(Summerfelt and Sharrer, 2004; García-Ruiz et al., 2018) and hindering
the oxidative disinfection processes of the systems (OIE, 2019). Other
challenges of DOM accumulation in RAS include the contamination
of the fish environment, which further risks the welfare of the fish
(Bregnballe, 2015), while the deterioration of water quality in-
creases the need for further water treatment processes, and conse-
quently, leads to higher production costs (Cai and Leung, 2017;
Subasinghe, 2017).

Current methods used in RAS for monitoring changes of DOM in-
clude biological oxygen demand (BOD), chemical oxygen demand
(COD) and total organic carbon (TOC) (Lin et al., 2003; Guerdat et al.,
2011; Spiliotopoulou et al., 2018). Nonetheless, the lack of data
concerning the DOM composition obtained by those methods, moved
research towards two more specialized analytical techniques in RAS
that prioritize the DOM fraction content: i) the UV absorbance at
254 nm, which is particularly sensitive to the presence of aromatic frac-
tions of DOM; and ii) the excitation-emission matrices (EEMs) of fluo-
rescence combined with parallel factor analysis (PARAFAC), which can
identify different classes of fluorescent DOM (FDOM). The ability of
the latter to characterize the fluorescence fraction of DOM, provides a
more descriptive approach tomonitor OMchanges in RAS. Fluorescence
EEMs with PARAFAC was used for the characterization of FDOM in
freshwater with rainbow trout (Oncorhynchus mykiss), and to indicate
the presence of humic substances-like (HS-like) chemical groups in
fresh and marine water with hybrid tilapia (Oreochromis aureus x
Oreochromis niloticus) and gilthead seabream (Sparus aurata), respec-
tively (Hambly et al., 2015; Yamin et al., 2017). Moreover, this tech-
nique was applied to detect discharged DOM from salmonid land-
based aquaculture systems (Nimptsch et al., 2015). However, despite
2

being a non-destructive and sensitive techniquewith the ability to char-
acterize FDOM, it lacks in identifying the presence of different chemical
groups in other DOM fractions. Thus, it is deemed necessary to apply
even better analytical approaches to obtain amore detailed understand-
ing of the overall quality of DOM in RAS and its potential effects on the
systems.

Non-targeted screening approaches by high resolution mass spec-
trometry (HRMS) can identify trace concentrations of organic chemicals
from the complex DOM mixture and reveal useful information about
changes, transformations, and reaction pathways in the DOM composi-
tion. Non-targeted screening is a post-measurement processing approach
applied to HRMS, which is employedwhen there is no previous informa-
tion about the underlying chemicals (Hernández et al., 2005; Krauss et al.,
2010; Hernández et al., 2012). The HRMS formula assignment and data
treatment emerged from the research domains of natural organic matter
(NOM) (Hertkorn et al., 2008; Sleighter and Hatcher, 2008; Remucal
et al., 2012; Sleighter et al., 2012), petroleum (Hughey et al., 2001),meta-
bolomics and lipidomics (Cajka and Fiehn, 2016). The characterization of
DOMby non-targeted approaches using HRMS, contributed to the evolu-
tion of different fields within marine science (Rathgeb et al., 2017) and
environmental chemistry, e.g., wastewater (Verkh et al., 2018a) and soil
(Brock et al., 2019) characterization. Moreover, non-targeted approaches
are used to elucidate the chemical structure of small molecules of emerg-
ing contaminants and their transformation products in the broader con-
text of environmental chemistry (Schymanski et al., 2014a), including
limnology (Minor et al., 2012) and drinking water treatment technolo-
gies (Farré et al., 2019).

The molecular composition of DOM from salmonid aquaculture
effluents were previously analysed using ultra high-resolution
Fourier transform ion cyclotron resonance mass spectrometry
(FTICR-MS) (Kamjunke et al., 2017). In addition to that, HRMS
based on orbitrap and quadrupole time-of-flight (QTOF) instru-
ments were also used for non-targeted analysis of complex mix-
tures of DOM (Schymanski et al., 2014b; Hawkes et al., 2016;
Rathgeb et al., 2017; Simon et al., 2018; Pan et al., 2020). Despite
the lower resolution power of those than that of FTICR-MS, they
can unravel a significant fraction of DOM and identify low molecu-
lar weight (LMW) compounds (Remucal et al., 2012). Furthermore,
coupling ultra-performance liquid chromatography (UPLC) to
HRMS, can overcome challenges encountered by direct injection
(DI), facilitating the fractionation of chemicals and improving the
characterization of aquatic DOM (Patriarca et al., 2018). However,
still little is known about DOM composition and its transformation
within RAS.

With this as background, non-targeted approaches by UPLC-
QTOF-MS were employed in this study to elucidate for the first
time the composition of LMW compounds in DOM during the pro-
duction of Atlantic salmon post-smolt in RAS. Two different type of
feeds were used, commercial standard and RAS feed for Atlantic
salmon, to evaluate the organic loadings in RAS. Samples were also
collected after the water treatment (pump-sump) and from the fish
rearing tanks, where the feeds were added to the system (Fig. 1), to
gain further insights on the effects of the water treatment processes
on the composition of LMW in RAS. The composition of LMW-DOM
and its fate within the systemwas assessed by profiling and compar-
ing the number of identified chemicals and their abundances. The al-
terations in the composition of DOM were further used to assess the
water quality and the effectiveness of the water treatment processes
in RAS.

http://creativecommons.org/licenses/by/4.0/


Fig. 1. Experimental set-up of the recirculating aquaculture system (RAS) at the Nofima Centre for Recirculation in Aquaculture (NCRA).
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2. Materials and methods

2.1. Experimental system

The experiment was performed at the Nofima Centre for Recircula-
tion in Aquaculture (Terjesen et al., 2013). Atlantic salmon post-smolt
was reared in dual drain octagonal tanks (3.3 m3), where the bottom
outlet was connected to a swirl separator to collect fecal waste and
feed spill. In the system (Fig. 1), the tank effluents passed through ame-
chanical filter (belt filter, 131 μmscreen size), followed by amoving bed
bioreactor (MBBR) and a CO2 degasser. After the pump-sump, thewater
was re‑oxygenated and returned to the tank. Make-up water derived
from freshwater and seawater sources to maintain a stable salinity of
12 ng/L. The total volume of the system was approximately 75 m3. To
keep the accumulation of OMconstantwith an increasing feed load dur-
ing the experiment, the water was exchanged at an average rate of
555 L/kg of feed, corresponding to initially 17% exchange of system vol-
ume per day and 30% exchange at the completion of the experiment.
Feed and make-up water were adjusted weekly. Hydraulic retention
time in the tanks was 30 min, and the tank volume was exchanged
twice per hour.

2.1.1. Experimental design
Atlantic salmon (Salmo salar L., 1758) with an average weight of

766 g was stocked in 15 octagonal tanks supplied with RAS water. The
starting stocking density in the tanks was 30 kg/m3, and the fish were
kept at 24 h of light and were fed continuously [~1.4% Body Weight
(B.W.)/day (d)]. During the experiment, the oxygen saturation was
maintained at > 85% in the tanks. The average temperature in the
tanks was set at 15.5 °C and the pH level was adjusted at 7.3 ± 0.1 by
addition of sodium bicarbonate.

Two types of commercially available feed for salmon were used:
1) standard aquaculture feed typically used for the grow-out of salmon;
and 2) feed optimized for production of salmon in RAS. Although both
standard and RAS feed have similar proximate composition and raw
materials (Table S1), the RAS feed contains a binder that enlarges the
fecal particles, and therefore, prevents the leaching of nutrients and im-
proves the fecal waste removal in the water treatment processes. Thus,
the production of suspended solids and organic matter decreases in the
system, optimizing waste removal processes and considerably improv-
ing water quality (Brinker et al., 2005; Brinker, 2007).

2.2. Chemicals and materials

HPLC grade acetonitrile,methanol, hydrochloric acid (HCl) andwater
were purchased from VWR Chemicals (Trondheim, Norway). Formic
acid was purchased from Sigma-Aldrich (Steinheim, Germany). Sterile
metal free polypropylene (PP) tubes (VWR Chemicals, Trondheim,
Norway) were used for sampling aquaculture waters to analyze dis-
solved organic carbon (DOC) and turbidity. High-density polyethylene
3

(HDPE) bottles (VWR Chemicals, Trondheim, Norway) were used for
sampling aquaculture waters (to analyze DOM). Polyethersulfone
syringe filters (0.45 μm; Whatman™, VWR Chemicals, Trondheim,
Norway) were used to filter aquaculture waters and remove the partic-
ulate matter from the samples for DOC analysis. Glass microfiber filters
(0.7-μm pore size, nominal pore size, GF/F, Whatman™, Sigma-Aldrich,
Germany) were applied for the removal of particulate organic matter
(POM) before extracting DOM from aquaculture waters. Borosilicate
vials (40 mL; EPA screw neck vials with PTFE/Silicone septa) for DOC
analysis and DOM sample extracts were obtained from VWR Chemicals
(Trondheim, Norway). For DOM extraction, Agilent Bond Elut™ PPL
(500 mg, 6 mL; Matriks, Oslo, Norway) SPE cartridges and a peristaltic
pump (IPC, Ismatec, Germany) were used. DOM extracts were concen-
trated with a TurboVap™ LV Automated Evaporation System (Biotage
AB, Sweden).

2.3. Water quality measurements

Water quality parameters, including pH, temperature, salinity, oxy-
gen, turbidity and dissolved organic carbon (DOC) were measured in
the pump-sump and the three tanks during: a) the standard feed expo-
sure period: days 5, 7 and 10; b) the transition period: day 14; and c) the
RAS feed exposure period: days 18, 20 and 25. Temperature, pH and sa-
linityweremeasured placing the extractedwaterwith a silicon tube in a
plastic container with a multi-parametric measuring instrument, WTW
Multi 3430 (WTW, Weilheim, Germany). Oxygen was measured inside
the pump-sump and the tanks with a Handy Polaris TGP (OxyGuard,
Farum, Denmark) portable electrode. Water samples collected in tripli-
cates with 50 mL PP tubes were analysed for turbidity in the laboratory
of the facility using a Turbiquant 1500 IR (Merck, Darmstadt, Germany)
(APHA, 1999).

Dissolved organic carbon (DOC) was quantified with a Lotix com-
bustion total organic carbon analyzer (Teledyne Tekmar, Mason, USA)
(Farmer and Hansell, 2007). Water samples collected in triplicates
using PP tubes were filtered with the 0.45 μm polyethersulfone syringe
filters. 20 mL-filtered samples were placed in pre-cleaned and pre-
combusted borosilicate vials and diluted with deionized water to
40 mL for DOC analysis (Mopper and Qian, 2000).

2.4. Sampling and extraction of DOM

Water samples were collected in triplicates during the three experi-
mental steps (a–c), as described in Section 2.3, using 1 L pre-cleaned
HDPE bottles (Tupas et al., 1994). Subsequently, 240 mL of water sam-
ples were filtrated using pre-combusted (4 h at 450 °C) GF/F filters.
The combustion step contributed towards cleaning and reducing the av-
erage pore size of the filters, which increased their efficiency and POM
retention capacity (Nayar and Chou, 2003; Gogou and Repeta, 2010).

DOM was isolated by solid-phase extraction (SPE) as described by
Dittmar et al. (2008). Briefly, 240 mL of sample were acidified with
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HCl to pH ≤ 2 for protonating the organic acids, and hence maximizing
their retention on the cartridge sorbents. The Agilent Bond Elut PPL™
SPE cartridges were activated with 6 mL of methanol prior the loading
step. Thereafter, 12 mL of 0.01 M HCl were added for the washing step
and the cartridges were dried under vacuum for 5 min prior to the
DOM elution with 6 mL of methanol. The extracts were stored at
−20 °C into the previously cleaned and combusted 40 mL borosilicate
vials. Two extraction blanks using 240 mL of Milli-Q water were also
prepared for SPE extraction.

DOC recoveries were calculated by dividing the concentration of
DOC in the initial fitered water samples by the concentration of DOC
in the extract samples. In order to do this, 20 mL of the initial filtered
water sample was diluted with 20 mL of deionized water to a total vol-
ume of 40 mL followed by DOCmeasurement (Section 2.3). Sample ex-
tracts were dried at 30 °C (and 5 psi) and reconstituted to a volume of
40 mL with deionized water, from which an aliquot was taken for
DOC measurements.

2.5. UPLC-QTOF-MS analysis

The UPLC analysis was performed using an ACQUITY UPLC I Class®
system connected to a Synapt G2-SMass spectrometry detector (Waters
Corporation, Milford, USA) with negative and positive electrospray ioni-
zation sources (ESI+ and ESI-). 200 ng/mL of leucine enkephalin was
used as a Lockmass at a flow rate of 10 μL/min to allow correction of
exactmassmeasurements. AnAcquityUPLC BEHC18 (2.1mm×100mm,
1.7 μm, Waters, Oslo, Norway) chromatographic column was used for
reverse-phase separation. Quality control (QC) samples,which contained
an aliquotmixture of actual samples,were analysed randomly during the
sequence of injections tomonitor the stability of the system and the per-
formance of the method. Reagent blanks (RB) were run and subtracted
from each sample. Instrumental blanks were run before and after every
sample to check for carryover or cross-contamination. 0.1% (v/v) of
formic acid was used as additive in both solvents: (A) water and
(B) acetonitrile. The injection volume was 5 μL and the flow rate was
0.4 mL/min. The chromatographic gradient was: initial conditions 5% B;
0.02–10.02 min, 5–95% B; 10.02–15.02 min, 95% B; 15.02–15.10 min,
95–5% B; 15.10–18.00 min, 5% B. The capillary voltage was set at
−1.50 kV (ESI-) and + 2.50 kV (ESI+), the desolvation flow was fixed
at 900 L/hwith a desolvation temperature set at 500 °C and the cone volt-
age set at 40 V. The full scan spectra were acquired within a range of 100
to 1000 m/z.

The UPLC-QTOF-MS data was analysed using Masslynx V4.1 and
Progenesis QI V2.3 (Waters, Milford, USA). Masslynx V4.1 was used to
visually inspect each chromatogram and determine peaks present in
the analysed samples, while chemical identification was performed by
Progenesis QI V2.3. The data acquired under positive and negative
mode was treated in Progenesis QI V2.3 as described by Verkh et al.
(2018a). Briefly, positive [M+H]+ and negative [M-H]− adducts were
selected. Then, deconvolution features were grouped into chemicals
based on the match between the chromatographic profile and mass
spectra. An absolute ion intensity of 500 a.u. and retention time limits
from 0.05 min to 15 min under positive mode and from 0.05 to 7 min
under negative mode were applied. The molecular formula determina-
tion of separated compounds was performed using elemental composi-
tion and Chemspider MS/MS library search. Databases available within
Chemspider in this experimentwere namely, NIST chemistryWebBook,
PubChem and KEGG. Molecular formulas were calculated with the fol-
lowing elemental restrictions: 12C1–80

1H1–100
16O0–20

14N0–15
32S0–4

35Cl0–4 79Br0–4 using a fragment tolerance of 10ppmand a ≥ 60% isotopic
similarity for elemental composition search. A precursor tolerance of
±5 ppm and a retention time < 0.5 min were established to exclude
the detection of duplicate chemical features. The triplicate samples
were filtered out using a coefficient of variation (CV) of ≤ 30% to remove
the randomnoise. Chemicals with p-values ≥ 0.05 andm/z > 1000were
removed to avoid false predictions. The selection of the molecular
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formula for each identified m/z was performed with the R studio (ver-
sion 4.0.2). A R studio script was used to filter out the generated em-
pirical formulas matched to a single m/z based on the heuristic rules:
H/C < 3.2, O/C < 1.2, N/C < 1.3, and S/C < 0.8 (Kind and Fiehn, 2007);
and the smallest absolute mass error (ppm) from a 10% deviation of
the highest isotopic similarity (Zhang et al., 2008; Verkh et al.,
2018b; Yang et al., 2019).

2.6. Calculations and statistical analysis

For the selected formulas, the double bond equivalent (DBE), the
modified aromaticity index (AImod) values, the double bond equiva-
lency per carbon (DBE/C) and the double bond equivalent minus oxy-
gen (DBE-O) were calculated as described by Kim et al. (2006) and
Koch and Dittmar (2006). DBE, DBE/C, DBE-O and AImod are useful pa-
rameters for the characterization of aromaticity and unsaturation of
chemical formulas. DBE provides information concerning the number
of double bonds and/or rings in a molecule. Despite being used as a
rule of thumb, DBE/C and DBE-O parameters are better in providing ac-
tual carbon unsaturation values (Cortés-Francisco and Caixach, 2013).
AImod clearly defines condensed aromatic structures by considering
the 50% of the oxygen present in the molecule form of carbonyl groups
(C=O) (Wagner et al., 2015). These parameters, together with the ele-
mental ratios of H/C, O/C, S/C, N/C, Cl/C and Br/C, were expressed as
weight average (wa) values calculated from the intensity of each de-
tected peak (Schmidt et al., 2009). The calculated H/C and O/C ratios
of the identified chemicals were represented in Van Krevelen diagrams
(Kim et al., 2003), and were classified into seven biochemical classes:
unsaturated hydrocarbons (0.01 ≤ O/C ≤ 0.1; 0.75 ≤ H/C ≤ 1.5); lipids
(0.01 ≤ O/C ≤ 0.1; 1.5 ≤ H/C ≤ 2.0); proteins (0.1 ≤ O/C ≤ 0.65; 1.5 ≤ H/
C ≤ 2.3; N ≥ 1); condensed aromatic structures (0.01 ≤ O/C ≤ 0.65;
0.25 ≤ H/C ≤ 0.75); lignin/carboxyl-rich alicyclic molecules (CRAM)-
like (0.1 ≤ O/C ≤ 0.65; 0.75 ≤ H/C ≤ 1.5) with no heteroatoms (only
CHO group); carbohydrates (0.65 ≤ O/C ≤ 1.0; 1.5 ≤ H/C ≤ 2.5); and tan-
nins (0.65 ≤O/C ≤ 0.85; 0.75 ≤H/C ≤ 1.5) (Mangal et al., 2019). The iden-
tification of homologous -CH2- series using Kendrick mass defect was
used to map the removal of organic chemicals in aquaculture waters.
The calculation was based on the re-normalization of the exact –CH2-
IUPAC mass (14.01565) to 14.00000. KMD was calculated from the dif-
ference between the nominal Kendrick mass (Da) of the molecule and
the exact Kendrick mass (Hughey et al., 2001). Bray–Curtis statistical
analysis was calculated considering the presence and absence of the
identified formulas.

3. Results and discussion

3.1. Water quality

The water quality parameters measured in both the pump-sump
and the tanks between the two feed treatments are represented in
Table 1. The water quality parameters, including temperature, pH, oxy-
gen and salinity, reflected the commercially relevant conditions used
during the production of Atlantic salmon post-smolt (Kroglund et al.,
2008; Elliott and Elliott, 2010; Thorarensen and Farrell, 2011).

Significant differences (ANOVA, p<0.05)were observed in turbidity
and DOC when the standard feed was exchanged by the RAS feed
(Fig. S1), indicating changes of the physicochemical parameters with
the type of feed used. Furthermore, the turbidity and DOC parameters
were studied with principal component analysis (PCA) using the
water quality variables and the samples from the tanks and the pump-
sump during the experimental period days (Fig. S2). A negative correla-
tionwas observed for turbidity in relation to pH and oxygen. Suspended
solids causing turbidity in water absorb heat from the light source, in-
creasing the temperature, which further decreases the oxygen in the
aquaculture waters, and consequently, the pH. High loads of salinity
correlated negatively with DOC. This can be explained by the high



Table 1
Physico-chemical parameters measured in the pump-sump and the tanks during the experimental period: standard feed use; transition; and RAS feed use.

Water quality parameters System section Standard feed Transition RAS feed

Day 5 Day 7 Day 10 Day 14 Day 18 Day 20 Day 25

Temperature (°C) Tanks 14.1 ± 0.01 14.7 ± 0.05 15.8 ± 0.01 17.0 ± 0.01 17.3 ± 0.05 15.1 ± 0.01 14.6 ± 0.01
Pump 14.1 ± 0.01 14.7 ± 0.01 15.7 ± 0.01 16.9 ± 0.01 17.2 ± 0.01 15.1 ± 0.01 14.6 ± 0.01

pH Tanks 7.21 ± 0.01 7.22 ± 0.01 7.21 ± 0.02 7.11 ± 0.01 7.22 ± 0.02 7.32 ± 0.01 7.40 ± 0.20
Pump 7.62 ± 0.01 7.61 ± 0.01 7.62 ± 0.01 7.61 ± 0.01 7.73 ± 0.01 7.71 ± 0.01 7.60 ± 0.01

Oxygen (%) Tanks 90.4 ± 2.58 89.4 ± 3.22 87.0 ± 1.90 87.8 ± 1.00 89.1 ± 1.57 89.3 ± 4.60 94.0 ± 3.03
Pump 96.8 ± 0.20 97.1 ± 0.50 98.0 ± 0.02 97.6 ± 0.50 98.4 ± 0.10 97.2 ± 0.10 97.8 ± 0.10

Salinity (% SAT) Tanks 12.4 ± 0.01 12.4 ± 0.01 12.1 ± 0.01 11.5 ± 0.01 11.6 ± 0.01 14.0 ± 0.01 11.5 ± 0.01
Pump 12.4 ± 0.01 12.4 ± 0.01 12.1 ± 0.01 11.5 ± 0.01 11.2 ± 0.01 14.0 ± 0.01 11.5 ± 0.01

Turbidity (NTU) Tanks 3.23 ± 0.23 4.91 ± 0.53 4.70 ± 0.63 4.61 ± 0.34 2.62 ± 0.18 3.62 ± 0.53 3.61 ± 0.24
Pump 3.52 ± 0.22 4.52 ± 0.52 4.51 ± 0.22 5.22 ± 0.37 2.41 ± 0.22 4.32 ± 0.49 3.90 ± 0.58

DOC (ppm) Tanks 18.8 ± 0.22 18.7 ± 0.22 28.9 ± 1.76 19.9 ± 0.36 24.1 ± 0.48 25.4 ± 0.38 33.7 ± 0.32
Pump 19.1 ± 0.53 19.2 ± 1.02 29.3 ± 0.19 19.7 ± 0.17 25.0 ± 0.59 25.0 ± 0.10 28.6 ± 1.58
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reactivity of nitrifying and heterotrophic bacteria, which remove effi-
ciently organic carbon and ammonium in the saline environment
(Yang et al., 2018).

3.2. Elemental composition of LMW-DOM in RAS waters

Water samples fromboth system locations (the pump-sumpand the
tanks) collected on the days with maximum DOC load (day 10 with
standard feed and day 25with RAS feed)were extracted to study the ef-
fect of feed type on DOM composition. Recovery of DOM from the ex-
tracted samples (30.3 ± 2.90%) was relatively low. This was attributed
to the structural and compositional variance of DOM from RAS waters
(Li et al., 2016). A total of 1823 elemental compositions (chemicals)
were detected in RAS waters (943 for ESI- and 880 for ESI+). From
those, 1153 and 1081 compositions were identified in day 10 (when
standard feed was used) in the pump-sump and the tanks, respectively,
while 825 and 1055 compositions were identified in day 25 (when RAS
feedwas used) in the pump-sump and the tanks, respectively (Table 2).

The large number of identified formulaswere displayedusing theVan
Krevelen diagrams (Fig. 2). These plotswith the atomic ratio of H/C in the
y-axis and O/C in the x-axis provided information concerning the type of
chemical groups and classes found in DOM based on their H/C and O/C
characteristic ratios (Kim et al., 2003). The Van Krevelen diagrams
showed a large diversity of chemicals in each sample with a wide range
of H/C and O/C ratios, which can indicate the presence of DOM pools
from different sources. Such diversity can be attributed to the fish pellets
of different characteristics and nutrient compositions. Thus, this can be
further related to different responses from the microbial communi-
ties, which can alter the actual DOM composition of the aquaculture
samples (Karle et al., 2007). Seasonal variations in the input water
also alters the DOM composition and concentration (Benner and
Opsahl, 2001; Kristensen et al., 2009; Seifert et al., 2016). Within
the system, the differences in the composition of the microbial com-
munities (Karle et al., 2007), the changes in the physico-chemical pa-
rameters (Benner and Opsahl, 2001; Roth et al., 2015) and the water
treatment processes can also lead to DOM transformation and in-
crease the diversity of DOM compounds. The nature of the inlet
water (Kristensen et al., 2009; Seifert et al., 2016), in addition to
the contribution of microbial and photodegradation processes for
Table 2
Characteristics of LMW-DOM based on the intensity weight average (wa) values in the water a
with RAS feed at day 25.

Identified formulas H/Cwa O/Cwa N/Cwa S/Cwa

Pump std 1153 1.14 0.25 0.27 0.08
Tanks std 1081 1.13 0.27 0.26 0.09
Pump RAS 825 1.24 0.22 0.31 0.05
Tanks RAS 1055 1.08 0.23 0.28 0.08
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the removal of the labile DOM, can be sources of ubiquitous compo-
sition (Wagner et al., 2015). Despite showing differences in their
DOM composition, the samples also showed a common set of mole-
cules that indicate concomitant sources of DOM. The molecular for-
mulas identified in DOM (from RAS waters) were represented in
the Van Krevelen diagrams and were classified into six chemical
groups according to their elemental composition (Fig. 2). For both
feed and sample locations, the CHON group of chemicals had the
highest number of assigned molecular formulas followed by the ha-
logenated and CHNOS group of chemicals. It is noteworthy that N-
containing chemicals in aquaculture waters are found in proteins,
dissolved primary amines (DPA) and urea. These compounds that
are released from fish feed and feces can increase themicrobial activ-
ity, while elevating the discharge of dissolved organic nitrogen into
the system (Burford and Williams, 2001; Hudson et al., 2008). For-
mation and degradation of proteins as well as the presence of ammo-
nia produced by fish excretions and food pellets can be another
source of CHON and CHONS chemical groups in RAS (Sayer and
Davenport, 1987; Schoonen and Xu, 2001; Fernandez-Jover et al.,
2007; Valle et al., 2018). The presence of the CHNOS group of chemicals
can also indicate anthropogenic origins (Kamjunke et al., 2017) and
incorporation of sulphur in the CHNO group during the reaction with
hydrogen sulphide (H2S) under anaerobic conditions (Vairavamurthy
and Mopper, 1987; Perlinger et al., 2002; Heitmann and Blodau, 2006;
Gonsior et al., 2011). Chlorinated and brominated chemicals can be
naturally occurring in nature, but they can also be released by an-
thropogenic activity as important environmental contaminants
(e.g., chlorinated and brominated flame retardants) (Gribble, 1994,
2000; Ballschmiter, 2003). The ingredients and additives of fish
feed, and their inappropriate handling and storage can be a potential
source of those contaminants in the system (Carro et al., 2005; Fink-
Gremmels, 2012). The lowest number of assigned formulas were for
CHO containing chemicals followed by those containing CHOS. Low
numbers of the CHO group of chemicals denote bacterial biomass
production (Jonsson et al., 2007) and their rapid chromatographic
elution as highly hydrophilic chemicals (due to the use of reversed-
phase chromatography in analysis). Incorporation of sulphur in the
CHO group can also take place under similar conditions as those for
the CHNO group of chemicals, forming CHOS group derivatives,
fter the water treatment (pump-sump) and in the tanks with standard feed at day 10 and

Cl/Cwa Br/Cwa m/zwa DBE/Cwa DBE-Owa AIwa

0.03 0.00 446.48 0.63 7.22 0.53
0.03 0.00 447.05 0.63 6.83 0.55
0.01 0.00 390.87 0.60 7.15 0.50
0.04 0.00 468.13 0.66 8.35 0.57



Fig. 2. Comparison of LMW-DOM in thewater after the water treatment processes (pump-sump) and in the tanks with standard feed at day 10 andwith RAS based feed at day 25: a) Van
Krevelen diagrams are depicted for the groups: CHNO, CHNOS, CHO, CHOS, others, and with halogens; and b) Number of identified elemental compositions are shown based on the
chemical groups.
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which can be also attributed to anthropogenic surfactants and com-
pounds associated with seafood deterioration (Grigorakis et al.,
2003; Kamjunke et al., 2019).
6

Further details provided by the Van Krevelen diagrams, which are re-
lated to the molecular characteristics of DOM from RAS water samples is
presented in Table 2. In the Van Krevelen diagrams, a shift to higher H/C
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ratios was observed in the pump-sump samples with RAS feed compared
to the other samples. This indicated a higher aliphatic character in their
chemical profile, which in turn was confirmed by the lowest values
(expressed aswa) of DBE/Cwa (0.60) and AImod (0.50). In contrast, the de-
crease of the H/C ratios in the remaining samples showed a higher aro-
matic character in their chemical profile having the higher values for
DBE/Cwa, DBE-Owa and AImod. The ratios of N/Cwa decreased from the
pump-sump to the tanks. It is noteworthy that nitrogen was found in
higher proportion in water samples with RAS feed (than those with stan-
dard feed), which can be further attributed to the type of feed used and its
effect on the nitrification capacity of the water treatment processes (Eva,
2017). The ratios of S/Cwa, Cl/Cwa and Br/Cwa were consistent among the
samples, except for the water samples from the pump-sump with RAS
feed. The uncommon composition of DOM found in the pump-sump
Fig. 3.Comparison of thenormalized abundances of LMW-DOM(in percentages) in thewater af
10 and with RAS feed at day 25: a) Groups: CHNO, CHNOS, CHO, CHOS, others, and with halog
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samples can be attributed to the transformation of DOM during the
water treatment processes in the presence of RAS feed.

3.3. Compositional changes of LMW-DOM in RAS samples with two types of
fish feed

To gain a better insight on the availability and transformation of DOM
between thewater samples in RASwith standard andRAS feed, the differ-
ences on the average normalized abundance of the six chemical groups
and major biochemical classes were represented in Fig. 3. In Fig. 3(a),
abundant peaks were ascribed to the CHOS (13.5 to 27.4%) and CHO
(11.9 to 25.6%) group of chemicals. The presence of electronegative
groups such as hydroxyls, carboxylic acids and thionyls in the compound
structure can make them more acidic increasing their ionization
ter thewater treatment processes (pump-sump) and in the tankswith standard feed at day
ens; and b) Major biochemical classes.
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efficiencies under ESI (−), and consequently, their abundances in the
samples (Schug and McNair, 2003). Although N-containing chemicals
are easily ionizable under positive ESI (+), they can be highly suppressed
under ESI (−) by mixtures of compounds with high ionization efficien-
cies, even more so when sulfonic acids are present in high abundance
(Thurman et al., 2001;Gonsior et al., 2011). Under ESI (−), high abundant
m/z peaks in the CHOS group were identified as O3S and O5S species in
the samples with standard feed (Fig. S3), which can be associated to sul-
fonic acids, while explaining the decrease in abundances of the CHNO
(10.4 to 19.1%) and CHNOS (12.3 to 19.7%) groups (Gonsior et al.,
2011). The abundance of each biochemical class, based on its H/C and
O/C ratios, differed between the water samples that contained a different
type of feed (Fig. 3(b)). Even though in the Van Krevelen diagrams, the
main portion of the identified groups of chemicals was found in the
proteinic region (0.1 ≤ O/C ≤ 0.65; 1.5 ≤ H/C ≤ 2.3; N ≥ 1), differences
were observed in their abundances (Fig. 3(a)). The transition from stan-
dard to RAS feed, resulted in an increase of lipids and unsaturated hydro-
carbons by 3.30 and 8.13%, respectively, and a decrease of lignin/CRAM-
like chemicals by 14%. Carbohydrates, condensed aromatic structures
and proteins displayed similar abundances for both two feeds and all
sample locations. Low percentages of carbohydrates can be associated
with the high proportion of hydrophilic saccharides in DOM, which are
not extractable by PPL columns (Dittmar et al., 2008), but also with the
low ionization efficiency of the minor recoverable fraction of carbohy-
drates under ESI (−) (Raeke et al., 2016). Lignin/CRAM-like chemicals
were the most abundant class found in the water with standard feed,
while unsaturated hydrocarbons were dominant in the water with RAS
feed. Despite the similar composition of nutrients in standard and RAS
feed pellets, the DOM composition in RAS waters was evidently different
depending on the type of feed used; thiswas visualized by the Bray-Curtis
dissimilarity diagram, which was based on the presence and absence of
m/z peaks in the samples (Fig. S4).

3.4. Removal of LMW-DOM after the water treatment processes

The transformation of LMW-DOM after the water treatment pro-
cesses was studied through the exploration of homologous –CH2- series
Fig. 4. Kendrick mass defect vs nominal Kendrick mass for the –CH2- homologous series in th
treatment processes (pump-sump) and in the tanks exposed to RAS feed at day 25.
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in chemical compounds using KMD. Although no differences were en-
countered in the transformation of LMW-DOM in water with standard
feed (Fig. S5), the removal of LMW-DOM was observed when RAS
feed was used (Fig. 4). From the tanks to the pump-sump water, a
high proportion of CHNO, CHNOS and halogenated chemicals with
m/z > 600 were removed (Figs. 2(b) and 4). This observation was
also noticed by a decrease in the m/zwa value from the tanks to the
pump-sump, when RAS based feed was used (Table 2). The removal
of compounds with KMD> 0.7 can indicate an increased reduction of
hydrogen-rich chemicals, which can further indicate less oxidation.
The DOM transformation during the water treatment processes is
shown in Fig. S6, where those chemicals that were removed, remain-
ing and produced in the tanks and pump-sump with RAS feed were
plotted in Van Krevelen H/C vs O/C and H/C vs m/z diagrams. Similar
trends were found for the groups of CHNO, CHNOS and halogenated
chemicals, where a high proportion of the removed chemicals were dis-
tributed in between the regions of 1.5–2.5H/C, O/C< 0.6 andm/z> 600.
By contrast, the produced chemicals were shifted to lower H/C ratios
(1.0–2.0) and to lower masses (m/z < 600). Themajority of the remain-
ing groups of CHNO and halogenated chemicals were found distributed
in between the ratios of 0.5 to 2.0 H/C and O/C < 0.5, while the CHNOS
group chemicals were distributed broadly between the ratios of H/C
and higher O/C (<0.8). These combined Van Krevelen and KMD results
suggested that the type of feed used, not only altered the LMW-DOM
composition, but also had an effect on its removal after the water treat-
ment processes (pump-sump).

3.5. Benefits of UPLC-QTOF-MS in RAS

This study showed the great potential of non-targeted approaches
using UPLC-QTOF-MS to qualitatively and semi-quantitatively deter-
mine a wide range of elemental compositions in LMW-DOM. Although
it is not a quantitative analysis, this approach detected important
changes in various LMW-DOM samples from different system locations
and treatments. Moreover, it can provide the possibility of tracking a
wide range of organic compounds using different libraries available in
the Progenesis QI V2.3 software. Thus, the applicability of this technique
e CHNO, CHNOS, CHO, CHOS and halogenated groups found in the water after the water
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in aquaculture, especially in RAS, can give insights about the chemical
composition of DOM, helping the operators to create the best conditions
for fish welfare and system performance.

4. Conclusions

The non-targeted approach using UPLC-QTOF-MS revealed changes
in the composition of LMW-DOM within RAS, but also between the
two types of feed. In total, 1823 elemental compositionswere identified
and classified into various chemical groups, including CHNO, CHNOS,
CHO, CHOS and halogens (Cl-, Br-containing chemicals). From those,
the CHNO group of chemicals was found to be the largest. The Van
Krevelen diagrams revealed that the chemicals found in water, demon-
strated different origins (due to the variation in the H/C and O/C ratios)
when investigated under two different types of feed. It was observed
that the LMW-DOM fraction of the water was dominated by unsatu-
rated hydrocarbons when the RAS feed was used, whereas lignin/
CRAM-like chemicals became dominant when the standard feed was
used. Although both experimental feedswere similar in their proximate
composition, different abundances of chemical groups indicated
changes in the LMW-DOM composition when the one feed type
was replaced by the other. The most abundant chemicals in the
water with standard feed were containing the groups of CHO and
CHOS, while those in the water with RAS feed were containing in
higher abundance the groups of CHNO and CHNOS. The molecular
compositional change of the LMW-DOM in the water from the
tanks compared to that in the water which was returned to the
tanks after the water treatment processes (pump-sump), clearly
reflected the removal of CHNO, CHNOS and halogenated chemical
groups through the water treatment processes (when the RAS feed
was used). This study shows that LC-QTOF-MS is a high-resolution
alternative that can be used for non-target screening of DOM in
RAS waters. The ability of this technique to track DOM changes at a
molecular level make it useful in the successful operation of RAS. Fu-
ture research on DOM transformation under different water treat-
ment processes, salinity, fish species and treatment types could be
performed with this technique, contributing to the improvement of
fish productivity and welfare at a profitable cost.
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