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Domestic hot water heat use prediction modelling is an important instrument for increasing energy effi-
ciency in many buildings. This article addressed hourly domestic hot water heat use prediction, using a
Norwegian hotel as a case study. Since the information available for buildings may vary, two widespread
situations with different input variables were studied. For the first situation, the prediction is based only
on data obtained from historical measured domestic hot water heat use. For the second situation, addi-
tional variables that affect domestic hot water heat use were applied. These variables were determined
using the Wrapper approach. The Wrapper approach showed that factors related to the guests presence
have the most significant influence on the domestic hot water heat use in the hotel. Nevertheless, daily
data about the number of guests booked at the hotel did not appear to be informative enough for precise
hourly modelling. Therefore, to improve the accuracy of the prediction, it was proposed to use an artificial
variable. This artificial variable explained the hourly intensity of the guests domestic hot water use. In
order to select the best model for the domestic hot water heat use prediction, ten advanced time series
and machine learning techniques were tested based on the criteria of models adequacy. For both consid-
ered situations, the Prophet model showed the best results with R2 equal to 0.76 for the first situation,
and 0.83 the second situation.
� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Buildings are one of the largest categories of energy consumers
in the European Union (EU) [1]. Buildings are currently responsible
for approximately 36% of global energy use [2]. Therefore, increas-
ing energy efficiency in buildings is an essential step for reducing
fossil fuel use and improving the environmental situation.

Nowadays, most building constructions have complex technical
systems, to realize a comfortable living condition for people.
Among these systems, the domestic hot water (DHW) system is
an integrated component of every building. DHW systems are sig-
nificant consumers of energy. According to [3], 15% of the total
heat demand in the EU is associated with DHW use. In regular
buildings, DHW systems typically consume 25–35% of the total
energy use [4]. However, in highly insulated constructions, the
share of DHW heat use is increasing and may exceed the space
heating [5]. Therefore, substantial opportunities for energy savings
in buildings can be achieved by improving the performance of
DHW systems [6]. The investigation [7] shows that DHW account
for almost 26% of total energy use in the hotel, and therefore it
should be prioritized in energy-saving measures.

Data-driven analysis and predictive modelling are powerful
instruments for increasing the efficiency of heat use in DHW sys-
tems. Improving the design and operation of DHW systems
requires both validated forecasting models, heat use profiles, effec-
tive utilization of monitoring and control systems. In order to solve
all these issues, accurate predictive models of DHW heat use
should be developed.

The introduction of modern technical energy solutions in DHW
systems is essential for energy efficiency in buildings [8]. The
proper implementation of these solutions requires the application
of data analysis for DHW heat use. For example, the conceptual
designs for DHW heating systems in a hotel with the application
of wastewater technologies are considered in [9]. The research
shows that the DHW system control is prioritized to operate with
the wastewater technologies and heat pumps. This control can be
performed based on DHW predictive models. Using a solar-
assisted DHW water heating systems in hotels becomes popular
all over the world [10]. The prediction of DHW heat use is neces-
sary for the optimal operation of these systems [11]. Different
types of DHW heating systems are investigated in [12]. This study
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Table 1
Investigations of variables that have a significant impact on DHW volumetric use and
heat use.

Influencing variables Authors

Number of occupants, day of the
week

Ferrantelli, Ahmed, Pylsy and
Kurnitski [14]

Day of the week de Santiago, Rodriguez-Villalón and
Sicre [15]

Number of rooms, area Chmielewska, Szulgowska-Zgrzywa
and Danielewicz [16]

The magnitude of the drains, the start
times of DHW use, the time
between two successive drains

Beeker, Malisani and Petit [17]]

Occupancy in the hotel and
regulation of the system

Todorovic, Tomic, Bojanic, Bajatovic
and Andelkovic [9]

Hotel star rating, DHW system type,
occupancy

Priyadarsini, Xuchao and Eang [18]

Activities, number of DHW tap starts,
time of tapping, the duration of
tapping

Fischer, Wolf, Scherer and Wille-
Haussmann [19]

Flow rates, cold and supply
temperatures

Verhaert, Bleys, Binnemans and
Janssen [20]

Type of the tap (conventional mixer
tap or low flow electronic tap)

Fidar, Memon and Butler [21]

Activities, appliances Good, Zhang, Navarro-Espinosa and
Mancarella [22]

Outdoor temperature, season,
number of tenants, type of
building (apartment or detached),
the location, the household area,
month, density of water, specific
heat of water, reference
temperatures, cold inlet
temperature

Gutierrez-Escolar, Castillo-Martinez,
Gomez-Pulido, Gutierrez-Martinez
and Stapic [23]

Socioeconomic characteristics,
activities, appliances, and type of
apparatuses that use water

Fan, Liu, Wang, Geissen, Ritsema and
Tong [24]

Occupant behaviour, appliances,
demographic conditions, and
occupancy rate

Swan, Ugursal and Beausoleil-
Morrison [25]

Draw-off temperatures Barteczko-Hibbert, Gillott and
Kendall [26]

Activities Widen, Lundh, Vassileva, Dahlquist,
Ellegard and Wackelgard [27]

Appliances, flow rates and times of
DHW use

Hendron and Burch [28]

The day of the week, time of the day,
season, appliances, age of
occupants (seniors or not), pay or
does not pay for hot water

Lutz, Liu, McMahon, Dunham, Shown
and McCure [29]

Family size, season, day of the week,
time of the day

Papakostas, Papageorgiou and
Sotiropoulos [30]
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summarises that DHW energy use can be reduced through using
combined systems based on traditional and renewable energy
solutions. However, due to unstable behaviour of renewable
energy sources, development of accurate profile and prediction of
DHW heat use becoming crucial for successful operation of com-
bined DHW heating systems.

In recent years, increasing attention is paid to the investigation
for the modelling of space heating heat use and the development of
Energy Signature Diagrams [13]. On the contrary, the DHW heat
use predictive modelling has not been studied sufficiently [6]. It
is important to stress that the majority of existing publications
are focused mainly on the modelling of DHW volumetric use rather
than heat use. These two parameters have a strong positive corre-
lation. Besides, the factors that affect the DHW volumetric use have
a similar effect on the DHW heat use. Since not so many publica-
tions are dedicated to DHW heat use prediction, both previous
experience of the predictive modelling for DHW volumetric and
heat use are considered in this introduction.

Traditionally, predictive modelling includes the following main
steps: identifying influencing variables, selecting the method for
prediction, and determining the parameters of the model.

1.1. Identifying influencing variables

Identifying influencing variables with significant impact on the
DHW heat use in the building is an initial step for prediction. There
is a number of scientific papers analyzing the influence of different
factors on DHW volumetric and heat use, as shown in Table 1.

Most of the articles represented in Table 1 assume that the
number of occupants, seasons, day of the week and time of the
day have a significant influence on the DHW heat use. The informa-
tion about activities, such as occupant’s presence, sleeping, hygiene
and cooking, as well as a time when appliances are in use (sinks,
showers, baths, clothes washer, and dishwasher) gives a better
understanding of the DHW heat use [19]. It should be noticed that
the factors influencing DHW heat use can vary from one building
type to another, and also depending on the location of the building.
For example, in the investigation [15], it is concluded that the
influence of seasons, outdoor temperature, and rainy days on
DHW in the dwellings is negligible. However, in the articles [23],
the seasons and outdoor temperature are considered as essential
variables and taken into account. Therefore, it is necessary to eval-
uate the influence of variables on the DHW heat use for each build-
ing type in Norway based on reliable statistical methods.

1.2. Selecting the method for prediction and determining parameters

In accordance with selected influencing factors, the model of
DHW energy use should be built. Machine learning and deep learn-
ing techniques show high accuracy for solving prediction and data
analysis problems in DHW systems [27]. The review of prediction
techniques that different researchers use for solving this issue is
represented below.

The application of artificial neural networks (ANNs) for DHW
modelling in Canadian households is considered in [31]. The
DHW heat use as ANNs model of draw-off temperatures is pre-
sented in [26]. The model is tested in three residential DHW sys-
tems. The archived ANNs model accuracy is more than 89% for
the trained data. However, the use of the ANN model for new data
obtained from other systems shows significant inaccuracy.

Creation of easy to use forecasting model of DHW use is consid-
ered in [32]. Autoregressive moving average (ARMA) model as a
solution to this problem is proposed. The ARMA model takes into
consideration the periodicity of the week, the water use of the days
before and random fluctuations of DHW use. The model based on
data from eight apartments in France is examined [32].
The linear regression models were used for DHW energy use
identification in apartment blocks in Norway [33].

A bottom-up model that estimates the day ahead DHW use for
end-users is investigated in [34]. The type of facilities and timing of
DHW use is applied as an input in the model. The prediction for the
next day of the total DHW use in the system is calculated as a sum
of end-users DHW use.

The survey of DHW use in 626 apartments in Poland is carried
out in [16]. The authors create a database of DHW use for residen-
tial buildings with different parameters. The configuration of
apartments in these buildings is randomly selected by using the
bootstrap method. Based on the database, the regression model
is constructed. This model considers DHW use as a function of
the number of rooms and the floor area.

The stochastic analysis of DHW use for 65 apartments is per-
formed in Hungary [35]. As an input for the stochastic model, the
authors use the number of apartments in the building, the duration
curve, daily average, minimum and maximum values of DHW use.

The issue of DHW use forecasting for demand-side management
in residential buildings in the UK is reviewed in [36]. Various time
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series forecasting techniques, such as exponential smoothing, sea-
sonal autoregressive integrated moving average, seasonal decom-
position by Loess model and a combination of them, were tested
on data from 120 dwellings.

A model for DHW use prediction that consists of 16 equations is
proposed in [29]. These equations take in account season, day of
the week, and hours with similar DHW use. To improve the model,
the authors propose to consider additional factors to adjust the
predicted hot water use. These factors include the availability of
dishwashers, cloth washers, age of occupants, and if the residents
should pay for hot water or not.

The Long-Short Term Memory (LSTM) neural networks were
used for DHW heat use prediction in [11]. The performance of sim-
ple LSTM neural network, Attention-based LSTM neural network
(ALSTM) and Attention-based LSTM using decomposed data
(ALSTM-D) are compared. The authors claims that the Long-Short
Term Memory (LSTM) neural network shows the best results for
DHW heat use prediction in the case of solar-assisted DHW
systems.

As we can see, the largest part of the above-mentioned studies
performed investigations for residential buildings. Practice shows
that for residential buildings, information about the DHW heat
use is more opened and accessible [6]. Despite this fact, the share
of DHW heat use in non-residential buildings is also significant
and cannot be neglected [37]. Among non-residential buildings,
hotels [38] are those with the most energy-consuming categories
[39]. In hotels, the specific DHW heat use, the regimes of work,
and available information about factors affecting DHW heat use
are substantially different from the residential buildings [6].
Accordingly, the approaches proposed in the above-mentioned
studies cannot be directly applied for the DHW heat use modelling
in hotels. Therefore, more reliable prediction models of DHW heat
use for non-residential buildings, including hotels, should be
created.

1.3. Contribution and organization of the paper

The purpose of this article is to develop an accurate and reliable
hourly DHW heat use prediction model for hotels, using a hotel in
Norway as a case. In order to make the results of the investigations
applicable to other buildings, two alternative situations with avail-
able inputs for prediction were considered.

Situation 1 assumed that information about influencing vari-
ables for the DHW heat use was not available. Only historical data
about DHW heat use weres known. For these conditions, the article
investigated the various methods to handle the prediction based
on the time series of the DHW heat use only. In general, Situation
1 is less common for hotels. Usually, measurement systems in
hotels collect data about building energy performance. In addition,
useful information about guest presence can be obtained from the
hotel booking system. However, for certain non-residential build-
ings, these variables are unknown. The results of the investigation
and developed models for Situation 1 may be useful and applicable
to such buildings.

In Situation 2, the research focused on identifying factors affect-
ing DHW heat use and developing a prediction model based on
these variables. The influencing variables on DHW heat use is iden-
tified based on the wrapped approach. In order to improve the
accuracy of the prediction, the article proposes procedure for pre-
processing data of daily guests presence and extracting informa-
tion of their influence on DHW heat use on an hourly basis.
Finally, advanced time series and machine learning techniques
were tested, to find the best prediction model among them.

The paper is organized as the following. Section 2 describes the
main characteristics of the hotel for which the prediction of DHW
heat use was made. Section 3 introduces the methodology for
DHW heat use prediction in the following situations: for Situation
1, only retrospective Time Series of DHW heat use is known. For
Situation 2, also other parameters that could influence DHW heat
use were available. In Section 3, the methodology was applied for
the DHW heat use prediction in a hotel located in Oslo, Norway.
Among considered modelling techniques, the model that gives
the most accurate and robust prediction for Situation 1 and Situa-
tion 2 was identified.
2. Description of the hotel

The investigations in this article were performed based on data
obtained from an urban hotel, located on the west side of Oslo,
Norway. The characteristics of the hotel are typical for Scandina-
vian conditions. The building was built in 1938. There has been
several renovation projects, where the most recent was in 2007.
The total area of the building is 4 939 m2. The building has eight
floors with 164 guest rooms. All the guest rooms are equipped with
bathrooms that have toilet facilities, washbasin, and a shower. The
check-in time for the guests is between 15:00o’clock and midnight,
and check out before 12:00o’clock.

The considered hotel well represents the general tendency of
the DHW heat use in similar building types. According to hotel
management, employees use hot water for cleaning and guests
use hot water for personal hygiene. In the DHW system, the hot
water is circulated to ensure fast delivery at each tap. The hotel
uses electric water heaters for DHW production. Data on heat
use for DHW production was collected within several years from
a stationary energy meter in the hotel. The meter measures elec-
tricity delivered to the DHW tanks, which means that both DHW
needs and heat losses in the DHW system are included in the pre-
sented DHW heat use. The data about electrical use for other needs
in the hotel are also measured. The hotel booking system allows us
to obtain daily information about the number of arriving guests
and booked rooms in the hotel. The influence of weather condi-
tions on hourly DHW heat use was investigated, too. For this pur-
pose, data obtained from the nearest meteorological station
located in Oslo were used [40].
3. Methods

This chapter consists of two subsections that are dedicated to
modelling in Situation 1 and Situation 2. Subsection 3.1 investi-
gates the hourly prediction based on the historical time series of
DHW heat use. Subsection 3.2 considers the issue of identifying
variables that affect DHW heat use, followed by making prediction
when using these variables. For this purpose, time series and
machine learning techniques were used. In addition, in Subsection
3.2, a method which introduced the artificial variable reflecting the
hourly intensity of the guests DHW use and improved the accuracy
of the hourly DHW models was proposed.

3.1. Prediction based on the historical time series of DHW heat use

For certain types of buildings, information about users presence
and other explanatory variables are unknown. In these conditions,
only DHW heat use data from previous periods of time can be used
for prediction. Practice shows that the DHW heat use may vary at
different hours of the day, day of the week, and months. For this
reason, the preference was given to methods that allowed us to
make a prediction based on the historical time series of DHW heat
use and additionally take in account the day, week, and month
when the DHW heat use occurred. Among different methods such
as classical methods for time series analyses, Exponential Smooth-
ing (ES) and Autoregressive Integrated Moving Average (ARIMA),



4 D. Ivanko et al. / Energy & Buildings 228 (2020) 110441
and modern methods of machine learning, Neural Network (ANN),
Prophet and XGBoost, were considered.

The ES method uses recurrence relations between the current
and the previous values of the parameter. According to ES, predic-
tions are calculated by applying weighted averages where the
weights are exponentially decreasing as observations come further
from the past [41]. In detail, the ES method is presented in [41].
According to [41], exponential smoothing uses the following equa-
tion for prediction:

ÊTþ1jt ¼ a � ET þ 1� að Þ � ÊTjt�1 ð1Þ

where ÊTþ1jt is the predicted value and ÊTjt�1 is the prediction for
the previous moment of the time. ET is the most recent observa-
tion. a is the smoothing parameter, accepted from 0 to 1.

The ARIMA method predicts the next step in the sequence as a
linear function of the differenced observations and residual errors
at previous time steps [42]. This method combines autoregressive
(AR), Moving Average (MA) and the integrated (I) parts in one
model. An integrated part of the model performs a differentiation
pre-processing step of modelling that removes the non-
stationarity of the time series. AR and MA are the core of predic-
tion. The algorithm and theoretical bases of ARIMAmodelling tech-
nique are well explained in [42].

The Prophet is a package for time series prediction developed by
Facebook [43]. Prophet uses additive regression model EðtÞ that
includes the following components:

E tð Þ ¼ g tð Þ þ s tð Þ þ h tð Þ ð2Þ
where gðtÞ is a trend for non-periodic changes that may be

obtained by a simple Piecewise Linear Model. s tð Þ is a seasonal (pe-
riodical) component of the model obtained based on Fourier series.
h tð Þ is a component of the model that takes into account the effects
of holidays and other untypical days with irregular schedules of
DHW heat use.

XGBoost is a machine learning prediction technique based on
gradient boosting decision tree method [44]. XGBoost sequentially
sums the prediction of multiple weak learners, such as regression
trees models, in order to ensemble a robust prediction model
[45]. By adding additional regression trees models in such a way,
the errors made by the initial model are reduced. The regression
trees models are added until further improvements of the initial
model can no longer be obtained. The gradient boosting is related
to a gradient descent algorithm that is used in XGBoost to mini-
mize the loss when adding new models [46]. Mathematically, gra-
dient boosting can be represented by the following equation [46]:

bEi ¼
XK
k¼1

f kðXiÞ; f k 2 F ð3Þ

where bEi is predicted DHW heat use. Xi are influencing vari-
ables. K is the number of functions (regression trees) in the func-
tion spaceF.

In XGBoost the parameters of the functions can be found auto-
matically by solving the following optimization function [46]:

obj hð Þ ¼
Xn

i

lðbEi; EiÞ þ
XK
k¼1

Xðf kÞ ð4Þ

where l is a differentiable loss function. X is the regularizing
function that introduces penalties for the complexity of the model.
A more extensive introduction to XGBoost modelling technique
and its mathematical apparatus are given in [47].

Artificial Neural Network (ANN) is a powerful modelling tech-
nique that mimics the behaviour of the brain with its homoge-
neous elements - neurons. For prediction, classification and
solving of other tasks, ANN uses the number of simple nonlinear
functional blocks that are called neurons. Multiple neurons are
organized into layers [48], where the actual processing of data is
performed via a system of weighted connections [47]. The ANN
represents the group of mathematical models of high complexity.
This method demonstrates good results for nonlinear relationships
among between variables. In this article, the ANN model with the
two-layer feed-forward network [49] was used for DHW heat use
prediction.

In order to estimate the accuracy of DHW heat use models,
cross-validation was used. Hourly data of DHW heat use in 2015
were used in a training set, and data from 2016 were applied to
test the models. The prediction for all the above-mentioned meth-
ods, except ANN, was performed in Python, using Statsmodels,
XGBoost, and Prophet packages [50]. For Neural Networks mod-
elling, the Neural Network Toolbox in Matlab software was utilized
[49]. The comparison of the models was performed based on the
Coefficient of Determination (R2), Mean Absolute Error (MAE),
and Mean Squared Error (MSE) criteria of the model adequacy [50].

3.2. Prediction based on the variables that have a significant influence
on the DHW heat use

Compared to Subsection 3.1, Subsection 3.2 considers more
favourable conditions for DHW heat use prediction. In these condi-
tions, in addition to DHW heat use data from previous periods of
time, information about the guest’s presence and other explana-
tory variables are known. The procedure for DHW heat use predic-
tion in this subsection includes three main steps: data
preprocessing, identifying variables that affect DHW heat use,
and selection of the best model for hourly prediction of DHW
use. The preprocessing step included removing outliers and unreal-
istic data. Finally, as a part of preprocessing, a method for introduc-
ing an artificial variable, which reflects the influence of hourly
guest presence on DHW heat use, was proposed. This method, in
detail, is explained in Section 3.2.1. The set of variables that affect
the DHW heat use was selected according to the Wrapper
approach. This approach is explained in Section 3.2.2. After, the
selected set of influencing variables was used as an input for mod-
elling. The accuracy of various machine learning methods for the
DHW heat use prediction was carried out. The general information
about the considered methods is presented in Section 3.2.3.

3.2.1. Preprocessing the daily data of the guest presence
It is well known that occupancy has a significant effect on the

DHW heat use in buildings [6]. Among all influencing factors, the
number of guests being present in a hotel is typically the key factor
that affects DHW heat use the most.

Traditionally, a hotel booking system stores information about
the number of guests who were booked into the hotel for each par-
ticular day. For a given date, both the number of guests booked in
one day before (GstLag1) as well as on the date itself (Gst) are influ-
encing the DHW heat use. In general, Gst shows the number of
guests who are staying in the hotel after 15.00o’clock, and GstLag1
reflects information about people who are leaving before
12:00o’clock. Nevertheless, despite the official check-in/out time,
in practice, the actual time when guests are arriving and leaving
can vary. Sometimes guests arrive before the set time of check-
in, and it happens that some guests can stay longer in the building
after the check-out time.

The daily profiles in the hotel showed that the highest DHW
heat use occurs before 12:00o’clock. Consequently, the influence
of GstLag1 on daily DHW heat use can be more significant than
Gst. For this reason, it is crucial to take both factors Gst and GstLag1
into account in the model.

The investigation showed that using Gst and GstLag1 allows us to
perform a quite accurate daily prediction of DHW heat use. How-
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ever, if we consider hourly analysis of the DHW heat use, Gst and
GstLag1 do not give sufficient information about hourly occupancy
in the hotel. These parameters do not show whether the guests
are present in the hotel at certain hours or not. For this reason,
the considered factors cannot substantially enhance the accuracy
of the hourly model of the DHW heat use. To increase the accuracy
of the hourly model, we propose to introduce an additional artifi-
cial variable (Gstart) that reflects the hourly influence of the guests
presence on DHW heat use. The following equation proposed to
use to determine the numerical value of the Gstart for each separate
hour:

Gstart ¼ Gst � Cgpi þ GstLag1 � CgpLag1:i ð5Þ
where Cgpi and CgpLag1:i are the coefficients for the guest DHW

use intensity for ith-hour, which were identified based on the num-
ber of people booked into the hotel on the given day Gst and one
day before GstLag1.

In order to identify the coefficients of the guest DHW use inten-
sity for ith-hour the following optimization problem was solved:

maxðcorrð
Cgpi¼1 � Gst

�!� �
þ CgpLag1:i¼1 � GstLag1

����!� �
; � � � ;Cgpi¼24 � Gst

�!� �

þCgpLag1:i¼24 � GstLag1
����!� �

8><
>:

9>=
>;;

E
!

i¼1; � � � ; E!i¼24

n o
Þ ð6Þ

where Cgpi and CgpLag1:i are the target variables. E
!

i is the vector

of the DHW energy use data in the hotel in ith-hour, Gst
�!

, GstLag1
����!

are
vectors of the daily number of guests booked into the hotel on the
given day and one day before.

By solving the optimization problem in Equation (6), the values
of the coefficients of the guest DHW use intensity for each hour of
the day can be obtained. These Cgpi and CgpLag1:i coefficients are
maximizing the correlation between Gstart and the DHW heat
use. Application of the coefficients makes Gstart based predictions
more accurate. For the considered hotel, the values of Cgpi and
CgpLag1:i were calculated for several years. The obtained coefficients
for 2015 and 2016 years are shown in Fig. 6. and Fig. 7. in Sec-
tion 4.2. The investigation indicated that the changes in the values
of the Cgpi and CgpLag1:i, see Fig. 6. and Fig. 7., in different years,
were not substantial. Thus, their values from previous years may
be used for the identification of the variable Gstart and prediction
for the next year. In this article, the numerical values of the coeffi-
cients were calculated based on the year of 2015, and they were
used for predicting the DHW heat use in 2016. Besides, to conduct
a thorough investigation, both cases for modelling with application
of the artificial variable Gstart, and without it, were considered.

3.2.2. Wrapper approach for selecting the influencing variables on the
DHW heat use

Choosing the proper set of influencing variables is a crucial step
for the DHW heat use prediction. The use of irrelevant and redun-
dant input variables in the model leads to an increase in computa-
tional demand, an inadequate interpretation of the model, and
generally makes prediction more complicated and less accurate.
Traditionally, three different approaches may be used for feature
selection: Filtering, Wrapper, and Embedded method [51].

In this article, the Wrapper method was used for optimal vari-
ables selection. This method is one of the most precise methods,
because it detects possible interactions between variables and
takes into account the specific characteristics of the prediction
algorithm [51]. According to the Wrapper method, first, all the
variables were sorted by the absolute value of the correlation cri-
teria between a variable and the DHW energy use. Afterwards, an
iteration algorithm was applied. In each iteration step, one addi-
tional variable from the sorted list of variables was added to the
model. For each step, parameters and accuracy criteria of the
model were recalculated. The obtained criteria of model accuracy
on a current step were compared with criteria on a previous step.
Thus, parameters that do not improve the accuracy of the model
were determined and eliminated from the model, and a set of vari-
ables that makes predictions more precise was selected. Despite
the higher computational time compared to commonly used anal-
ysis based on the correlation matrix (Filtering method), the appli-
cation of the Wrapper method is a more potent instrument for
assessing the impact of different combinations of variables on
the DHW heat use and selecting their proper set for accurate pre-
diction [51].
3.2.3. Prediction techniques for modelling DHW heat use based on
influencing factors

The prediction techniques for the considered case are presented
in Table 3, see Section 4.2. The advanced time series techniques
have the ability to take into account explanatory variables. For this
reason, some models in Subsection 3.1 were also used for predic-
tion in current conditions. In addition to the models in Subsection
3.1, the availability of data on influencing factors allowed us to
apply more diverse prediction techniques.

Group Method of Data Handling (GMDH) is a computer-based
method for calculating complex multivariable models. GMDH
stands on self-organization theory of mathematical models. The
method recursively combines selective submodels (base function)
to obtain a more accurate predictive model. On each step of the
modelling, the number of submodels included in the main model
is gradually growing. In this way, the accuracy and complexity of
the model are increasing. The GMDH allows us to find a model
structure with optimal complexity based on the minimum value
of an external criterion [52]. As base functions in GMDH can be
used various models: linear, polynomials, exponential, etc.

Partial Least Squares Regression (PLSR) is a powerful instrument
for prediction in conditions when a large number of independent
variables is used in the model. PLSR works well with highly colli-
near variables, too. This method performs the decomposition of
the initial data into a subspace of latent variables (scores and load-
ings). Latent variables are representing the main features of co-
variance among the dependent and the independent variables
[53]. PLSR calculates the linear regression model via the projection
of the predicted variables and the observable variables to a sub-
space of the latent variables [53].

Support Vector Regression (SVR) is based on the computation of
a linear regression function in high dimensional feature space [54],
where the input data are mapped via a nonlinear function. SVR is
minimizing the generalized error bound [55]. The generalization
error bound includes the training error and a regularization term
that controls the complexity of the hypothesis space [55]. The com-
prehensive overview of this method is given in [56].

Ridge and LASSO methods are used to deal with overfitting and
variables that may be affected by multicollinearity [57]. Both these
methods are based on principals of regularization, i.e. introduction
penalties to the coefficients of features. Ridge Regression is penal-
izing the square of the magnitude of coefficients [58]. LASSO intro-
duces penalties to the absolute value of the magnitude of the
coefficients [58].

In Subsection 3.2, the general principles for the DHW heat use
modelling were applied in the same way as in Subsection 3.1.
The data about DHW heat use and influencing variables from
2015 were used in a training set and data from 2016 were used
for testing. The best model was selected based on R2, MAE, and
MSE criteria of the model adequacy. The prediction for the meth-
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ods mentioned above, was performed in Python, using Statsmodels
and GmdhPy packages.
Fig. 2. Box plot of the average hourly DHW heat use for different days of the week
in 2015.

Fig. 3. Box plot of hourly DHW heat use for the different month of the year in 2015.
4. Results

This section is divided into two subsections, which examines
two situations for modelling with different input data. The hourly
prediction based on information from the historical DHW heat use
is investigated in Section 4.1. A more favourable situation with
using additional influencing variables is shown in Section 4.2.

4.1. Results on hourly DHW heat use based on the historical time series

DHW heat use measurements are widely used for paying utility
bills in non-residential buildings in Norway. As a consequence, his-
torical data about hourly DHW heat use are available for building
owners for many types of non-residential buildings in Norway,
including hotels. Historical data about hourly DHW use provide
us with a valuable basis for DHW heat use modelling.

For more precise prediction, the variation of DHW heat use in
different periods of time should be taken into account. Certain fac-
tors, which explain appropriate variation, can be identified based
on the descriptive statistical analysis of the retrospective time ser-
ies. Box plot is a statistical method, that graphically depicts the
median, first quartile and third quartiles, minimum and maximum,
and outliers for the data. A visual study of the box plots showed
that hourly DHW heat use in the hotel varies depending on the
hour of the day, day of the week, and the month, as shown in
Fig. 1.-Fig. 3. Fig. 1. and Fig. 3 shows hourly heat use in kW, while
Fig. 2. shows average hourly DHW heat use for each day in kW.

It is generally known that changes in the DHW heat use during
the day normally is associated with personal hygiene activities.
The box plot of the hourly DHW heat use in Fig. 1. indicates that
the significant peak of the DHW use could be observed in the
morning from 7:00o’clock to 10:00o’clock. The heat use for DHW
in the evening looks pretty even, with the small spikes from
22:00o’clock to 23:00o’clock. The minimum of the DHW heat use
occurred at night time from 1:00o’clock to 5:00o’clock in the
morning.

Weekly variation of the DHW heat use, See Fig. 2., is usually
related to the preferences of visitors to make trips on different days
of the week. The days of the week in Fig. 2. are displayed from
Monday to Sunday. Fig. 2. shows that heat use for the DHW may
vary depending on the day of the week. For this specific hotel,
the highest average daily DHW heat use in 2015 was observed
on Saturdays and the smallest on Mondays.

The box plot of DHW heat use from January till December 2015
is shown Fig. 3. From Fig. 3. the seasonal changes in DHW heat use
Fig. 1. Box plot of hourly DHW heat use in 2015.
can be noted. The highest monthly heat use took place fromMay to
September. Such a pattern may arise due to an increase in the
number of tourists in the warm season. Another parameter that
affecting the monthly heat use is the variation in cold freshwater
inlet temperature in the DHW system.

The box plots gave us only rough information about the varia-
tion of heat use in different periods of time. However, this method
clearly shows that parameters such as hour, day of the week and
month should be included in the model. Accordingly, in Situation
1, the retrospective time series of DHW heat use and the hour,
day and month were used as inputs for different prediction
techniques.

The classical time series modelling techniques, ES and ARIMA
showed high values of MAE and MSE, and R2 less than 0.6. Due
to the low accuracy of ES and ARIMAmodels, they were not consid-
ered for DHW heat use modelling in further analysis. The NN, Pro-
phet, and XGBoost techniques showed better outcomes. The MAE,
MSE, and R2 criteria for these models are presented in Table. 2.

Among the models considered for Situation 1, see Table 2, the
Prophet had the best accuracy for hourly DHW heat use modelling.
In addition, this model stays robust. The R2 remained equals to
0.76 for both the training and the testing set. The results of hourly
prediction based on the Prophet model are shown in Fig. 4. The
analysis indicates that most of the actual values of DHW heat
use lie within the confidence intervals [59] of the model, as shown
in Fig. 4. The predicted versus actual values are distributed around
the ideal line, as shown in Fig. 5. This means that the Prophet
model developed for Situation 1, can be used for forecasting



Table 2
Prediction modelling based on historical time series of DHW heat use.

Prediction technique Training set Testing set

R2 MAE MSE R2 MAE MSE

Prophet 0.76 3.8 67.7 0.76 4.46 73.27
NN 0.73 4.4 78.6 0.73 4.7 79.13
XGBoost 0.73 3.56 59.67 0.68 4.11 71.14

Fig. 4. Hourly modelling of DHW heat use based on the Prophet method in
Situation 1.

Fig. 5. Predicted by the Prophet method vs. actual values of DHW heat use in
Situation 1.
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DHW heat use in the hotel. However, despite this fact, the model
can be improved. For this purpose, additional variables that affect
the DHW heat use should be taken into account. The results of the
prediction for corresponding conditions (Situation 2) are presented
in Section 4.2.
Fig. 6. Coefficients of the guest DHW use intensity based on the booking in the
given day in the hotel in 2015–2016.
4.2. Results of hourly DHW heat use based on influencing variables

As a part of the investigation for Situation 2, the feasibility of
using different variables for DHW heat use modelling was tested.
In order to identify the variables that may affect the DHW heat
use, data from the hotel’s measurement and booking systems were
collected, as well as climate data from a weather station located
nearby the building. The following variables were considered as
potential inputs for the DHW heat use prediction modelling: Gst
and GstLag1 � the number of guests on a given day and the day
before, Rm � number of booked rooms in the hotel. Eon � energy
use for other needs in the building, T � outdoor air temperature,
Rh � relative humidity, Ff � mean wind speed, Pa � atmospheric
pressure, H � hour of the week, DoW � day of the week, Mth –
month of the year.

The Gst and GstLag1 are representing only the daily values of the
guests presence. To take into account the daily variation of the
guests presence and improve the prediction, the artificial variable
Gstart was used. Gstart was identified based on Equation (1). The
coefficients of the guests DHW use intensity in Equation (5) were
calculated by solving the optimization problem in Equation (6).
These coefficients for a given day and the day before are shown
in Fig. 6. and Fig. 7. The patterns in Fig. 6. and Fig. 7. coincided with
a shape of the box plot of hourly DHW heat use in Fig. 1, which rep-
resents the hourly habits of DHW use in the hotel. The coefficients
calculated on the basis of the data for 2015 were used to determine
Gstart in 2016. Models with and without application of artificial
variable Gstart were tested to determine the most accurate.

The Wrapper algorithm was applied to categorise the best set of
influencing variables. It was found that the most influencing
parameters for all models are related to the guest presence in the
building. Gst and GstLag1 showed the best result for the models cre-
ated only based on measured data, and Gstart for models where this
artificial variable was applied. These three parameters allowed us
to receive quite reliable models of DHW heat use in the hotel.

Rm, number of booked rooms, is highly correlated with a num-
ber of guests. It does not give additional information and quality to
the models. For this reason, Rm was taken out of consideration.
Application of mean wind speed, Ff, and atmospheric pressure, Pa
in the models, did not increase their accuracy. In this regard, these
parameters also should be excluded frommodelling. When relative
humidity, Rh, was used, only a few models showed insignificant
improvement. Thus, application of Rh is usually not reasonable.T,
outdoor air temperature and Eon, energy use for other needs
improved the models, but not much. For example, when adding
these parameters to certain models, R2 coefficient was increased
by several percents. In some instances, the application of T and
Eon may be useful for modelling. However, it should be mentioned
that when choosing these parameters, we also must take into con-
sideration that some data, such as weather data, will not be readily
available when we are running the prediction. For analysis of the
historical data, knowledge about all the data is available, but for
forecasting, meteorological and energy data must be forecasted
as well, which brings additional uncertainty into the prediction.



Fig. 7. Coefficients of the guest DHW use intensity based on the booking one day
before in the hotel in 2015–2016.
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The parameters hour (H), day of the week (DoW), and month
(Mth) represented changes in the DHW heat use in different peri-
ods of time. In complex and accurate models such as Prophet, NN
and XGBoost, applying these parameters gave us good effects.
However, some models were unable to extract useful information
from H, DoW, and Mth for DHW heat use prediction.

Since the main target of modelling was to build a more accurate
model, all parameters that may improve the accuracy of modelling
were taken into account. Generally, two sets of influencing vari-
ables showed the best outcomes:

a) the set of variables without using the artificial variable Gstart:
Gst, GstLag1, T, Eon, H, DoW, and Mth;

b) the set of variables with using the artificial variable Gstart:
Gstart, T, Eon, H, DoW, and Mth.

In order to select the most accurate DHW heat use prediction
model, nine different prediction techniques, see Table 4, were
tested. For the set of variables that do not include Gstart, the
MAE, MSE and R2 criteria of models adequacy were specified in
Table 3. On the other hand, Table 3 contains the same criteria for
prediction based on Gstart.

It should be noted that unacceptably inaccurate models were
removed from consideration. Therefore, such models are not
included in Table 3. When the set of the variables without Gstart
was used, only Prophet, NN, XGBoost, and GMDH models showed
satisfactory results of prediction. On the contrary, the application
of artificial variable Gstart allowed us to improve the accuracy of
prediction. Therefore, more models met the minimum acceptable
criteria with R2 greater than 0.65. In general, the models in Table 4
showed better outcomes compared to the models in Table 3. How-
ever, for advanced and complex prediction techniques, the effect of
application of Gstart was less visible. These consequences can be
explained by the fact that Prophet, NN, XGBoost, and GMDH mod-
els can better reflect hidden relationships in explanatory variables
than the other models in Table 4. Accordingly, these models may
give us a quite reliable forecast based on both sets of variables,
both with and without the application of Gstart.
Table 3
Prediction modelling without using the artificial variable Gstart.

Prediction technique Training set

R2 MAE

Prophet 0.8 3.7
NN 0.88 3.18
XGBoost 0.89 2.5
GMDH 0.81 4.35
Table 3 and Table 4 indicate that Prophet and NN are the best
models for hourly prediction DHW heat use in the hotel. The NN
model showed better performance on the training set, while Pro-
phet on a testing set. For the NN model, R2 calculated on a training
set was 0.89. Nevertheless, for the testing set, this criterion was
reduced to 0.8. Such changes of R2 may indicate a tendency of
the given model to overfitting.

Compering to the NN model, the Prophet model allowed us to
obtain more robust results with minor changes in R2, MAE, and
MSE. For this reason, the Prophet method was selected as the best
model for the DHW heat use prediction in the considered hotel.
The result of the hourly modelling based on the testing data set
is shown in Fig. 8. Fig. 8. and Fig. 9. confirm the adequate perfor-
mance of the model. As shown in Fig. 8., the actual values of
DHW heat use were within the confidence intervals of the Prophet
model. The predicted versus actual values lies close to the ideal
line, as shown in Fig. 9.

The study confirmed that by means of easily accessible data, it
is possible to obtain a fairly accurate model for the DHW heat use
prediction for a hotel. Comparing the results in Situation 2 with a
model that uses only historical DHW heat use data (Situation 1),
the application of additional variables (Situation 2) allowed us to
improve the accuracy of prediction. For example, R2 was increased
from 0.76 to 0.83 in the testing set, if using an artificial variable.
For all considered cases, the Prophet model proved to be an accu-
rate and reliable model that can reflect periodical changes in DHW
heat use. The developed models are useful for the DHW heat use
modelling for other hotels under similar conditions.
5. Conclusions

Predictive modelling is a powerful instrument for increasing the
efficiency of the DHW heat use in buildings. The modelling
involves the following tasks: selecting input variables for predic-
tion, determining the prediction technique, and parameters for
the model. This article highlightes the issue of the DHW heat use
prediction for a hotel located in Norway.

For accurate prediction, it is crucial to select a proper set of
input variables. These variables should include the main factors
that affect the DHW heat use in the building. Yet, the data avail-
ability may vary from one building to another. Therefore, two com-
mon situations with data availability were considered. Situation 1
assumed that only information from the historical DHW heat use
might be used for prediction. Situation 2 demonstrated more
favourable conditions, where also additional variables that affect
DHW heat use were included in the model.

The Wrapper approach showed high efficiency in determining
the variables that should be included in the prediction model. This
approach indicated that the main factor that affected the DHW
heat use in the hotel were number of guests booked in the hotel
on the given day and the day before. Nevertheless, the number of
guests are collected on a daily basis, which makes them less effi-
cient for hourly modelling. Therefore, to improve the accuracy of
the hourly model, the introduction of an additional artificial vari-
able was proposed. This artificial variable reflects the hourly inten-
Testing set

MSE R2 MAE MSE

56 0.79 4.6 63
33.65 0.8 4 59
25 0.78 3.8 51
58.9 0.64 4.7 116.3



Table 4
Prediction modelling with using the artificial variable Gstart.

Prediction technique Training set Testing set

R2 MAE MSE R2 MAE MSE

Prophet 0.82 3.26 52.4 0.83 3.67 52.46
NN 0.89 2.85 31.04 0.8 3.48 59
XGBoost 0.88 2.64 28.7 0.81 3.12 45.04
GMDH 0.82 3.57 56 0.8 3.67 62
SVR 0.77 3.88 69.52 0.72 4.90 79.03
ARMAX 0.85 3.8 43.3 0.66 5.33 83.2
PLSR 0.77 4.13 69.25 0.73 4.91 77.21
Ridge 0.79 4.52 64.39 0.68 6.52 90.50
Lasso 0.79 4.47 64.64 0.70 6.19 84.97

Fig. 8. Hourly DHW heat use model based on the Prophet method in Situation 2.

Fig. 9. Predicted by the Prophet method vs. actual values of DHW heat use in
Situation 2.
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sity of the guests DHW use with a major peak of the heat use in the
morning and a small peak in the evening. The method for identify-
ing this variable was based on an optimization problem, presented
in the article. In addition, several other factors were identified, that
may increase the accuracy of the prediction to a certain extent.

Identifying the DHW heat use model requires a comparison of
various prediction methods. Selection of the best method among
those considered should be based on the criteria of model ade-
quacy. In order to obtain an accurate and reliable DHW heat use
model for a hotel, ten different time series and machine learning
prediction techniques were tested. Among considered methods,
the Prophet model showed the best accuracy and robustness for
the DHW heat use prediction in the case study. In Situation 1,
the R2 criterion for testing set obtained via the Prophet model
was 0.76. However, with the introduction of additional explanatory
variables in the model (Situation 2), the R2 criterion was increased
to 0.83. The outcomes of the hourly DHW heat use predictive mod-
elling for the hotel could also find application in similar building
types.
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