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Featured Application: This work illustrates that world-class architecture can be coupled with
building integrated (BIPV) or building applied (BAPV) photovoltaic (PV) technologies, which can
significantly contribute to improve both the architectural quality and the energy efficiency,
further promoting their diffusion in the built environment and as virtuous examples for a broader
impact to society and investors.

Abstract: This review study, framed in the Work group 4 “Photovoltaic in built environment”
within the COST Action PEARL PV, CA16235, aims to examine applications of integrated and
applied photovoltaic technologies on ten landmark buildings characterised by distinctive geometries,
highlighting the aesthetics of their architecture and quality of PV integration based on a proposed set
of seven criteria. The selected building samples cover a large design diversity related to the quality
of PV systems integration into building envelope that could serve as a basis for general guidelines
of best architectural and technological practice. After introducing the problem and defining the
research methodology, an analysis of ten landmark buildings is presented, as representative models of
aesthetics of their architecture, photovoltaic integration and implementation and energy performance.
The study concludes with the main characteristics of photovoltaic integration on landmark buildings.
The paper is intended to support both engineers and architects in comprehending the convergent
development of contemporary architecture and photovoltaic technology, as well as the need for a
closer collaboration, sometimes resulting in architectural masterworks that promote the diffusion of
photovoltaics to the public.

Keywords: architecture; landmark buildings; photovoltaic; BIPV; BAPV

1. Introduction

The use of photovoltaics (PV) has registered a significant increase in the last decades, because of
their higher efficiency and a rapid drop in their prices [1]. As most countries try to tackle their energy
security problems and reduce greenhouse gas emissions [2], new policies are implemented to increase
the distributed generation of energy in the built environment [3]. Towards that end, the use of PV
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systems in landmark buildings, either private or public, represent virtuous examples for a broader
impact to society and investors. “Buildings occupied by public authorities and buildings frequently
visited by the public should set an example by showing that environmental and energy considerations
are being taken into account” [3]. Furthermore, the use of PVs in these buildings can inspire architects
and PV practitioners to move past the aesthetically neutral, towards a visually attractive element in an
architectural context [4]. Landmark buildings are recognized easily in their built environment, by their
size, shape, social importance, funds invested, etc. [5]. They range from constructions with high
heritage and historical value (e.g., cathedrals, museums and government buildings) to contemporary
architectures, such as stadiums, concert halls, exhibition centres, educational centers, public buildings,
headoffices, etc. [6]. To that end, the exploitation of renewable energy sources in historical and
heritage buildings has been extensively studied [7]. Some researchers proposed methodologies for
retrofitting measures to improve the energy performance of historical buildings [8] and studied the
integration of solar façades in buildings in the eastern Mediterranean [9]. Other researchers focused on
the analysis of the energy saving potential in historical buildings in Europe as a source of national
energy savings and building reuse improvement [10], assessing the energy performance and the
costs of energy retrofitting and technological renovation of historical buildings without affecting
their historic and architectural qualities [11], or towards achieving net zero energy classification [12].
Besides technical performance that has been extensively examined [2,13,14], the architectural aesthetic
values, visibility and integration of PV are important aspects for the promotion and application of
solar energy conversion systems in buildings integrated elements [15]. Firstly, practitioners need to
consider the architectural value of integrated PV systems in buildings; secondly, architects should
exploit the adoption of PVs on exceptional architectural examples; thirdly, contemporary investors
of remarkable architectural buildings in terms of financial background of PV application, should
consider the environmental impact and on the society [16]. This aspect was only recently considered by
researchers on the dynamics of the transition of urban areas from traditional to sustainable and smart
neighbourhoods [17] by investigating the context of cities with well-known traditions of sustainable
urban development. This drive towards PV integration in landmark buildings is not limited to specific
geographical boundaries, but is shared worldwide, as attested in the literature [16,18,19]. In this paper,
ten landmark buildings are considered, based on a number of parameters like PV integration, geometry
and visibility, size and shape and architectural value. The motivation of the study is to bridge the
architectural design with the PV engineering, aiming at highlighting the architectural performance of
PV integration systems in landmark buildings, which have significant dimensions and importance in
the society.

2. Methodology and Sampling Process

This study examines ten landmark buildings based on their distinctive geometry and architectural
feature. All buildings are in operation and have PV systems applied on (BAPV) or integrated into
(BIPV) their building envelopes. Each case study has been analysed in terms of PV application impact
on the building architectural value, by considering the following criteria:

1. PV system as an architectural and environmental value;
2. PV contribution in defining the fifth façade (i.e., the roof);
3. PV emphasizing the geometry of architectural building;
4. PV contribution to specific geometry of the architectural building;
5. PV as architectural accent;
6. PV integration in architectural visibility, sensitivity and quality;
7. PV as a peculiar element.

The aim of such a process is to examine diverse examples that could yield general conclusions
to a wide range of landmark buildings with BAPV or BIPV systems. The sampling process started
from the buildings designed by the architects awarded the Pritzker prize [20]. The sampling was
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extended to five other landmark buildings representative of the countries taking part in the work group
4 “Photovoltaic in built environment” within the COST Action PEARL PV, CA16235 that frames this
study. These aspects highlighted five buildings, two headquarters, one concert hall, one courthouse and
one stadium. They are, namely, the Apple Headquarters, designed by UK architect Sir Norman Foster,
the Novartis Campus Basel, designed by American architect Frank O’Gehry, the concert hall La Seine
Musicale, by Japanese architect Shigeru Ban and French architect Jean de Gastine, the Paris Courthouse
in Paris, designed by Italian architect Renzo Piano, and the Solar Powered Stadium in Taiwan, designed
by Japanese architect Toyo Ito. Sport stadiums and arenas are architectural objects with high potential
to PV installation systems and many experts consider them as the power plants of tomorrow because
of their extensive building surface [21]. Numerous are the examples of BAPV on existing stadiums.
One of them is the Maracanã stadium in Rio de Janeiro, Brazil, the iconic football arena, where a
PV system was implemented as a part of the roof reconstruction for the FIFA World Cup 2014 [22].
Among the exhibition centres, which are characterized by large extended roofs surface suitable for PV
installations, the Theme Pavilion, built for the international Shanghai Expo in 2010, represents one
of the largest exhibition spaces in the world equipped with a PV system. Powerhouse Brattørkaia in
Trondheim, Norway, is an office building designed by the renowned Snøhetta architectural and design
firm. It is considered the northernmost BIPV building in the world. Educational buildings (e.g., schools,
libraries), are often equipped with PVs and are buildings landmark due to their considerable volume
and geometry and their pedagogic role in the society. In that regard, The Copenhagen International
School has the largest BIPV façades in the world [23]. The selected landmark buildings are the following
(Figure 1):

1. Maracanã Stadium, Rio de Janeiro, Brasil (BR)
2. Apple Headquarters, Cupertino, CA, United States (USA)
3. Shanghai Expo 2010 Theme pavilion, China (CN)
4. Powerhouse Brattørkaia, Trondheim, Norway (NO)
5. Paris Courthouse, Paris, France (FR)
6. La Seine Musicale, Paris, France (FR)
7. Umwelt Arena, Switzerland (CH)
8. Kaohsiung National Stadium, Taiwan (TW)
9. Novartis Campus, Basel, Switzerland (CH)
10. International School Copenhagen, Denmark (DK)
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The assessment of architectural visibility, sensitivity and quality has been conducted through
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the EPFL-LES (École polytechnique fédérale de Lausanne (EPFL), Le Laboratoire d’Energie Solaire).
The LESO-QSV method evaluates:

• Architectural integration quality allows assessing the quality of solar systems integration.
The system is defined as fully integrated (i.e., designed as an integral part of the building
architecture where all the formal characteristics of the solar system such as field size/position,
visible materials, surface textures, colours, module shape/size and joints) when it is coherent with
the global design logic of the building. The coherency of system geometry, system materiality
and system modular pattern is evaluated using a three-level scale (fully; partly; not coherent).
A circle made of three separated coloured sectors (green, yellow or red) according to the level of
coherency of each aspect (Figure 2) expresses the quality of the system.

• Urban context criticity to assess the quality requirements for architectural integration depends to
the local context, specifically to the sensitivity of the urban area and the visibility of the building
surface (Figure 3).

• The context sensitivity takes into account the socio-cultural value of the urban zone where the
analysed buildings are or will be located, and the architectural values of the context (e.g., historical
centre is a high-sensitive context, an industrial area is low-sensitive, and a post-war residential
development in most cases as medium sensitive).

• The system visibility evaluates the perception of solar systems from public spaces: close visibility
from an urban perspective, remote visibility from a far observation point (Figure 4).
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3. Presentation of the Samples

The review of the selected samples consists of the ten selected buildings and contains a brief
description of the building function and the architects/architectural office that designed the building,
information about the BAPV/BIPV system and its main implication on architectural performance.
The location and solar radiation data for each site is provided in Table 1. The data are compiled with
Meteonorm using the Perez model and available data for the 1991–2010 period [25].

Table 1. Location and solar radiation data for the examined cases.

Landmark Object

Location Solar Irradiation

Latitude
(◦)

Longitude
(◦)

Altitude
(m)

Global
Horizontal
(kWh/m2)

Diffuse
Horizontal
(kWh/m2)

Direct
Radiation
(kWh/m2)

Maracanã Stadium (BR) −22.91 −43.23 105 1692 818 1358
Apple Headquarters (USA) 37.33 −122.01 48 1735 644 1841

Theme pavilion (CN) 31.18 121.48 11 1274 826 714
Powerhouse Brattørkaia (NO) 63.43 10.40 0 885 441 1084

Paris Courthouse (FR) 48.89 2.31 32 1068 597 881
La Seine Musicale (FR) 48.82 2.23 35 1089 619 885

Umwelt Arena (CH) 47.42 8.37 400 1121 590 998
Kaohsiung Stadium (TW) 22.70 120.29 120 1525 866 1018

Novartis Campus (CH) 47.57 7.58 259 1131 598 1007
International School (DK) 55.71 12.60 0 1019 528 1015

3.1. Maracanã Stadium

The Maracanã stadium (Figure 5) is one of the biggest in the world and the most popular among
the Brazilian stadiums refurbished for the FIFA World Cup 2014 [26]. The idea behind the integration of
PV systems on the roof of the stadium was to make the World Cup event environmentally responsible.
The Maracanã stadium was originally built in 1950, while its $500 million modernization started in
2009 and was completed in 2013 [27].

The Maracanã stadium PV system consists of two rings (Figure 5, left) and has been integrated in
the new roof’s structure (Figure 5, right). The stadium was the venue for the final of the FIFA World Cup
2014, and for the opening and closing ceremonies of the 2016 Olympic Games [22]. The reconstruction
of the roof, including the photovoltaic design, was done by the Schlaich Bergermann Partner architect
office. The double metal ring encircling the top of the stadium consists of 1556 PV panels, with an
installed capacity of 390 kWp producing about 500 MWh per year [28]. It prevents emission of 350 tons
of carbon dioxide (CO2) into the atmosphere annually. Not visible from the ground, the PV system is an
architectural integrated element that emphasizes the elliptical shape of the stadium and contributes to
the geometry of the stadium’s fifth façade. Socially, the system influences the public awareness on green
energy on a global level because of the importance of the building and the hosted events (e.g., 2016
Olympic Games opening and closing ceremonies, FIFA World Cup 2014 final). Dubbed as Maracanã
Solar, the project was approved by Brazilian Instituto do Patrimônio Histórico e Artístico Nacional for
its historical and artistic heritage value [29]. Conceptualization and organization of world scale events,
like sport events, sometimes include the idea of sustainability and green energy in the background.
Introduction of PV green energy was a strong environmental message for both the soccer fans and
local/international society. Choosing one of the most iconic stadiums worldwide for integration of PV
systems, particularly Maracanã Stadium, has shown how buildings geometry can be coupled efficiently
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with PV integration. It also shows how the PV installation can contribute to emphasize the building
architecture and its shape. This aspect was applied to other existing stadiums and arenas, which are
equipped with PVs, among others, the Amsterdam Arena (Amsterdam, The Netherlands), St. Jakob
Park (Basel, Switzerland), Bentegodi Stadium (Verona, Italy) and Lincoln Financial Field (Philadelphia,
PA, USA).
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3.2. Apple Headquarters—Apple Park

The Apple Headquarters is a large circular building within the Apple Park in Cupertino (CA,
USA) and a representative example of a landmark object in its neighbourhood (Figure 6).

Because of its peculiar geometry, the building is called “The Ring”, its opening being announced
by architecture periodicals in 2017 as a “spaceship landing“. Designed by the Pritzker prize awarded
UK architect Sir Norman Foster, it is the largest LEED (Leadership in Energy and Environmental
Design) platinum certified building in the United States [30]. It is also considered one of the biggest
on-site rooftop solar arrays (17 MWp) in the world [31]. The building hosts 12,000 employees and in
the peak working time the solar system produces 75% of the power demand, while the remaining
25% comes from other renewable sources (4 MWp of biogas fuel cells) [32,33]. The building of the
new headquarters is one of numerous Apple buildings powered with green energy and is part of the
corporations’ worldwide initiative to obtain 100% green energy for its entire business [33]. The fifth
façade of the building (the aerial view, Figure 6) is the dominant one and the PV system is its integral
part, although mounted on the building roof. The PV modules, arrayed along the circular roof, makes a
fine texture rather than a collection of elements.
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3.3. Shanghai Expo 2010 Theme Pavilion

Expo 2010 in Shanghai, China (CN), under the title “Better City-Better Life”, was one in a series
of universal exhibitions, with 192 participating countries, and over 73 million visitors. The use of
solar energy was an important aspect of the Expo [34]. The Theme Pavilion (Figure 7) is one of the
four permanent buildings of Shanghai Expo 2010, and one of the three equipped with photovoltaic
systems [35]. When it was built, this building integrated the biggest BIPV installation (2.8 MWp) in
Asia. The designers decided to apply the integrated technology, despite the fact that the lifetime of
photovoltaics is smaller than the expected lifetime of buildings in China (at least 50 years) [36]. The PV
modules cover half of the Theme Pavilion’s total roof area, more precisely 30,000 m2 [37]. The geometry
of solar panelling consists of 18 rhomboids and 12 triangles, for a total of 16,250 polycrystalline silicon
modules, visible from the aerial view and forming the building’s fifth façade. The BIPV contributes to
the expressiveness of the building within the numerous unique national pavilions. It is recognizable
from the top view, not only by its huge size and proximity to the Expo main axis, but also by its roof
pattern, integrating the PV modules into the building’s roof surface.

3.4. Powerhouse Brattørkaia

Second in a series of the so-called powerhouse buildings, Powerhouse Brattørkaia (Figure 8) was
designed by the internationally renowned Snøhetta architecture firm [38]. It is an office building,
completed in 2019, in Trondheim, Norway (NO) and it is considered the northernmost energy
positive building in the world [39]. It is one of the pilot buildings of the Research Centre on Zero
Emission Buildings (ZEB) in Trondheim [40]. The gross area of the building is 17,800 m2 and the
area covered with PV modules is around 2860 m2 installed on the roof and the upper parts of the
façades, producing 458 MWh per year. The Powerhouse Brattørkaia reaches the ambitious level of
ZEB-COM: the building’s renewable energy production compensates for greenhouse gas emissions
from construction, operation and production of building materials. “The building has been designed
based on environmental requirements. When environmental considerations come first, a new type of
architecture emerges. For Powerhouse Brattørkaia, form follows environment, while optimal use of
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solar energy has determined the building’s exciting and iconic architecture” [41]. It is estimated that in
its lifetime, the building will produce twice the energy than was needed for its construction, operation
and demolition [41]. Its geometry is based on an extruded irregular four-sided polygon cut with a
sloped surface facing the south side of the building and representing the building roof. The so sloped
mass was voided with an elliptical cylinder volume, forming the building atrium.
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3.5. Paris Courthouse

Signed by Renzo Piano Building Workshop (Pritzker awarded architect in 1998), Paris Courthouse
is a 160 m tall building, consisting of four different cuboids. It is built beside the Port de Clichy, and
adjacent to the Martin Luther King Park on the east side (Figure 9) of Paris, France (FR). The idea
of the architect was to reunite all the courthouse functions into one building. The project started in
2010 and the building was completed in 2017. Through its size and status, the building is regarded as
a starting point for the rehabilitation of its neighbourhood [42]. Apart from its size, robustness and
orthogonal geometry, the building is distinguished by its glazed, dematerializing façades and the
horizontal and vertical arrays of photovoltaic sunshades. According to ISSOL, the company in charge
for the photovoltaic aspect of the building, the installation consists of more than 1590 sun shades
(1930 m2) on façade and 152 PV modules (360 m2) on the roof, with an installed capacity of 325 kWp.
The expected annual power production is 312 MWh [43]. By exposing the PV modules on the east and
west façades, the architect wanted to underline the environmental responsibility of the public building.
Furthermore, apart from their main roles of producing energy and protecting from the sun, the PV
modules are expressive architectural element, emphasizing the horizontal lines of the cuboids, and the
vertical spines connecting the floating building parts.
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3.6. La Seine Musicale

Another building in Paris, signed by another Pritzker winner (2014), the Japanese architect Shigeru
Ban, in collaboration with local architect Jean de Gastines, is the concert hall named “La Seine musicale”
(Figure 10) built from 2015 to 2016, after an international competition in 2013.

The building has an ellipsoidal shape on the Île Seguin (Sequin Island) and comprises of a 6000-seat
music hall and a smaller auditorium of 1150 people [44]. One of the main characteristics of the building
is its egg shaped corpus and a moving PV wall, which is mounted on rails that follow the path of the
sun, every 15 min, from east to west, in order to harvest as much sunlight as possible throughout the
day, shading the building and creating a changing display of shadows. According to the PV installer,
454 PV modules with a total area of 1000 m2 and an installed capacity of 115 kWp were used. It is
expected to yield more than 125 MWh of electricity annually [43]. Dynamizing the sail-like PV wall, the
architects expose the idea of exploiting the solar energy by emphasizing the buildings’ sustainability.
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The PV curved wall is a strong architectural accent and represents a specific case of BIPV, where the
modules are integrated parts of the giant buildings’ sunshade.
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3.7. Umwelt Arena

Umwelt Arena, “Environment Arena” or “Arena for Sustainability” is an exhibition centre and the
first Swiss competence centre in ecology, commissioned in August 2012 in the town of Spreitenbach,
near Zurich (Switzerland, CH). It is designed by the René Schmid Architekten office [45]. The building
is erected on a 100 × 60 m oval plan with a size of a stadium. It aims to help visitors in experiencing
and understanding sustainability (Figure 11).
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Figure 11. Umwelt Arena (a top and elevation views. Source: Google Earth, Google 2020,
GeoBasis-DE/BKG 2020) (on the top); Integration and characteristics of PV systems (on the bottom).

The main geometric element of the Umwelt Arena is its giant roof consisting of 33 differently
oriented flat trapezoidal surfaces, with a slope ranging from 6◦ to 62◦, giving appearance of a crystal.
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The entire 5333 m2 roof is made of 5239 monocrystalline PV modules, with a total installed power of
736.62 kWp. The building produces 540 MWh per year, twice of its energy demand. It is the largest
BIPV and one of the most famous energy plus buildings in Switzerland [46]. The Umwelt Arena
received the “2012 Norman Foster Solar Award” [47]. Architecturally, the dominant external element
is the BIPV roof visible to the visitors from all sides. The architects treat the fifth façade as equally
important as all other façades. Choosing the BIPV principle for the roof materialization, they emphasize
the institutional orientation towards environment protection and sustainability. This unique landmark
building is a good example for other local, smaller and less exposed public and private buildings.

3.8. Kaohsiung National Stadium

The National Stadium (Figure 12) built from 2006 to 2009 in Kaohsiung, Taiwan (TW) was the
largest commission of another Japanese Pritzker prise winner (2013), architect Toyo Ito [48].
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Figure 12. Kaohsiung National Stadium with the dragon shaped roof all covered by PV modules (top
view of the stadium: Source illustration Google Earth, Google 2020, Maxar Technologies 2020 (on top
left:); view of the stadium: photo credits: CECI Engineering Consultant Inc., Taiwan) (on the top right);
Integration and characteristic of PV systems (on the bottom).

The capacity of the stadium is 55,000 spectators and it is the largest sports facility in the country,
as well as the largest solar powered stadium in the world, available to produce most of the electricity
demand for its operation. The stadium was built for the 2009 World Games. It is a semi-open stadium
creating a passage for the summer wind. This “dragon” shaped building is called a solar stadium [49]
because of its 14,155 m2 roof covered by 9720 semi-transparent PV modules [50]. The solar system
power output is 1 MWp and it is a characteristic example of BIPV, allowing 30% of sunlight to pass
into the stadium. The average generation of electricity is 3 MWh per day and 1.14 GWh annually.
This unique solar plant is connected to the local grid and produces energy for its neighbourhood.
It saves almost 660 tons of CO2 emissions annually [51]. In the Kaohsiung National Stadium, the PV
installation acts as a roof, a pleasant semi-transparent sunshade, and a fine texture of the giant roof,
covering the “dragon” shaped geometry of the building.

3.9. Novartis Campus

Completed in 2008, the Novartis Campus building in Basel (Switzerland, CH) designed by the
American architect Frank O’Gehry, and a Pritzker laureate (1989), is an unusual administrative building,
consisting of five irregular bodies characteristic to O’Gehry’s architecture (Figure 13). The architecture
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critics call the object “the O’Gehry building” because of its futuristic appearance, one of a couple
of similar buildings designed by O’Gehry around the world. Apart from its distinctive geometry,
this project is an outstanding example of PV integration on landmark buildings. The building is
equipped with 92.7 kWp of PVs coming from semi-transparent roof glazing with integrated PV cells [52].
The energy produced by the PV installation is used for the building’s artificial lighting [53]. Distinctive
by its size, position within the campus and proximity of the green open space on the south side,
the building has excellent prerequisites for integration of solar systems. The materialization of the
building, as well as the BIPV installation on the roof, demonstrates the orientation of the Novartis
Campus towards the environmental issues. It demonstrates the architect’s capability to acquire new
technologies and integrate them in its authentic architectural language.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22 

demonstrates the orientation of the Novartis Campus towards the environmental issues. It 
demonstrates the architect’s capability to acquire new technologies and integrate them in its 
authentic architectural language. 

 
Figure 13. Novartis Campus (top view of the building. Source of illustration Google Earth, Google 
2020) (on the top left). Integration and characteristic of PV systems (on the bottom). 

3.10. Copenhagen International School 

The Copenhagen International School, opened in 2017, is designed by the Danish office of C.F. 
Møller Architects and is located in Copenhagen outer harbour (Figure 14), Denmark (DK). 

Some architectural critics regard this awarded building (2017 Iconic Award) as unprecedented 
architecture of willingness and foresight [54]. It is famous by its tiled sea green solar façade, 
distinguishing this large structure from its neighbour buildings and connecting it with the 
surrounding ocean. The façade exposes the building as a leader in sustainable design. In general, the 
building is a result of the synergic activity of a motivated client, well technically equipped 
architectural office and an international community of researchers and manufacturers. 
Geometrically the building of the Copenhagen International School is cubical, with a BIPV façade 
consisting of approximately 12,000 PV tiles of 700 × 700 mm each, completely covering the object. 
With its more than 6000 m2 solar tiles, and an installed capacity of 720 kWp [55], it is considered one 
of the largest BIPV plants in Denmark. It is expected to produce 300 MWh of electricity per year, 
more than half of the School’s energy demand. The technology of the glass panels, developed at 
Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland [23], allows it to take one single 
colour with no need to apply pigments, thus decreasing panel efficiency. Having a possibility to 
choose between brick red, royal blue, golden yellow and sea green, the architects chose the sea green 
solution for the Copenhagen International School. The façade appearance is characterised by a 
stunning sequent-like effect, thanks to the 5° tilt angle of PV modules on four different orientations. 
This makes an effect of various colour hues, while in fact, all the PV modules are of the exact same 
colour. With introducing the described solar façade, the aim of the architects was not only to 
contribute to the production of green energy, but also to offer a facility in which students could learn 
about the environment as well as global research and production activity. Equipped with LCD 
screens showing the energy production to the students, the building has a strong pedagogical 
impact. Details regarding the total number and type of PV modules, their installed capacity and 

Figure 13. Novartis Campus (top view of the building. Source of illustration Google Earth, Google
2020) (on the top left). Integration and characteristic of PV systems (on the bottom).

3.10. Copenhagen International School

The Copenhagen International School, opened in 2017, is designed by the Danish office of C.F.
Møller Architects and is located in Copenhagen outer harbour (Figure 14), Denmark (DK).

Some architectural critics regard this awarded building (2017 Iconic Award) as unprecedented
architecture of willingness and foresight [54]. It is famous by its tiled sea green solar façade,
distinguishing this large structure from its neighbour buildings and connecting it with the surrounding
ocean. The façade exposes the building as a leader in sustainable design. In general, the building is
a result of the synergic activity of a motivated client, well technically equipped architectural office
and an international community of researchers and manufacturers. Geometrically the building of the
Copenhagen International School is cubical, with a BIPV façade consisting of approximately 12,000
PV tiles of 700 × 700 mm each, completely covering the object. With its more than 6000 m2 solar tiles,
and an installed capacity of 720 kWp [55], it is considered one of the largest BIPV plants in Denmark. It
is expected to produce 300 MWh of electricity per year, more than half of the School’s energy demand.
The technology of the glass panels, developed at Ecole Polytechnique Fédérale de Lausanne (EPFL) in
Switzerland [23], allows it to take one single colour with no need to apply pigments, thus decreasing
panel efficiency. Having a possibility to choose between brick red, royal blue, golden yellow and sea
green, the architects chose the sea green solution for the Copenhagen International School. The façade
appearance is characterised by a stunning sequent-like effect, thanks to the 5◦ tilt angle of PV modules
on four different orientations. This makes an effect of various colour hues, while in fact, all the PV
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modules are of the exact same colour. With introducing the described solar façade, the aim of the
architects was not only to contribute to the production of green energy, but also to offer a facility in
which students could learn about the environment as well as global research and production activity.
Equipped with LCD screens showing the energy production to the students, the building has a strong
pedagogical impact. Details regarding the total number and type of PV modules, their installed
capacity and annual electricity production, where available, related to the aforementioned presented
landmark buildings, are summarized in Table 2.
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Table 2. Total number and type of PV modules, installed capacity and annual electricity production for
the ten landmark buildings.

Landmark Buildings with PV Number and Type of
PV Modules

Surface Area
(m2)

Rated System Power
(kWp)

Annual Electricity
Production (MWh) Year

Maracanã Stadium (BR) 1552
2400 390 500 2012Polycrystalline

Apple Headquarter (USA) na na 1700 17 2017

Shanghai Expo 2010 Theme Pavilion (CN) 16,250 30,000 2800 na 2010Polycrystalline

Powerhouse Brattørkaia (NO) 1157
2867 415 458 2019Crystalline

Paris Courthouse (FR)
1596 sunshades
152 solar panels 1931 325 312 2016

na

La Seine Musicale (FR) 470
800 115 125 2016na

Umwelt Arena (CH) 5239
5333 737 540 2012Monocrystalline

Kaohsiung National Stadium (TW) 9720 14,155 1000 1140 2009Transparent

Novartis Campus Building (CH) na
1300 93 65 2008Monocrystalline

Copenhagen International School (DK) 12,000
Semi-transparent 6000 720 300 2017

4. Results and Discussions

Nowadays, the integration of photovoltaics into new and retrofitted buildings is a challenge for
architects. Even the most renowned, awarded architectural names and offices are not an exception.
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There are numerous examples of BIPV, in which the architects directed building designs, geometries at
the first instance, to the technical and aesthetical needs of PV integration.

The fact that a designed architectural object, apart from its main function, could generate electricity
by application of PV systems is a relatively new experience for many architects. A common belief that
the PV technology might negatively influence the architectural appearance of buildings is still present.
However, the fact that some surfaces of architectural objects could be activated in energy production
influences contemporary architecture.

Examining the selected sample of landmark architectural buildings and considering the
architectural performance parameters stated in Section 2, the architectural performances of the
analysed object are presented in Table 3.

Table 3. Architectural performance of the examined sample buildings.

Landmark Buildings with PV

PV System as
Architectural

and
Environmental

Value

PV
Contributing
in Defining

the Fifth
Façade

PV
Emphasizing
the Geometry

of the Arch.
Building

PV
Contributing

to Specific
Geometry of
Architectural

Building

PV as
Architectural

Accent

PV
Integration in
Architectural

Visibility,
Sensitivity

and Quality

PV as
Peculiar
Element

Maracanã Stadium [BR] 3 3 3 3

Apple Headquarters [USA] 3 3 3 3 3

Shanghai Expo—Theme
Pavilion [CN] 3 3 3 3

Powerhouse Brattørkaia [NO] 3 3 3 3 3

Paris Courthouse [FR] 3 3 3 3

La Seine Musicale [FR] 3 3 3 3 3

Umwelt Arena [CH] 3 3 3 3 3

Kaohsiung National
Stadium [TW] 3 3 3 3 3

Novartis Campus [CH] 3 3 3

Copenhagen International
School [DK] 3 3 3 3

4.1. PV System as Architectural and Environmental Value

The clients are very often keen to use architectural elements that have an impact on
society. This could demonstrate power, richness, social status, professional orientation, aesthetical
understanding, etc. By applying PV systems, the impact on the society is manifold, but always oriented
towards environmental responsibility and sustainability. For example, the PV systems on the roof
of Maracanã Stadium, the Theme Pavilion and the Kaohsiung National Stadium reflect the green
energy orientation of the events for which the buildings were reconstructed or built. The Copenhagen
International School and the Umwelt Arena bring a pedagogic message related to environmental
responsibility. The PV installations of the Apple Headquarters, the Powerhouse Brattørkaia and the
Novartis Campus demonstrate the technical leadership of the companies in terms of sustainability.
The PV visibility at the Paris Courthouse and La Seine Musicale guide the green regeneration of their
neighbourhoods. It has to be noted that, although photovoltaic systems can currently be considered as
“clean” and have a relative low environmental impact, depending on their installation location and
local electricity mix, this might not always be the case, as many researchers have pointed out [2,14,56]
and the same applies for their economic viability.

4.2. PV Contribution in Defining the Fifth Façade (i.e., the Roof)

PV systems, applied or integrated on the buildings, are sometimes visible only from the top view.
If the geometry of such systems is well articulated, the roof becomes “the fifth façade” and is treated
architecturally the same as the usual façades. In the examined sample the articulation of the fifth façade
are the Maracanã Stadium, the Apple Headquarter, the Theme Pavilion, the Powerhouse Brattørkaia,
Umwelt Arena, and the Kaohsiung National Stadium. A special case is represented by the Novartis
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Headquarter, in which the PV system has been entirely integrated into already specifically articulated
fifth façade.

4.3. PV Emphasizing Geometry of Architectural Building

Geometry of an existing architectural object sometimes allows efficient and smooth application of
PV systems. Examples of such objects are existing stadiums such as the Maracanã Stadium in Rio de
Janeiro, where the double elliptical PV ring perfectly fits in the shape of the object. Although visible
only from the top view, the PV system affirmatively complements architectural performance of the
stadium. Similar is the case of the Apple headquarter where the PV roof installation follows the circular
shape of the huge building. In the case of La Seine Musicale a giant moving veil follows an ellipsoidal
geometry of the building corpus. In this case, the moving PV installation adds to emphasizing the
specific geometry of the concert hall building.

4.4. PV Contributing to Specific Geometry of Architectural Buildings

In the presented samples, many of the PV systems contribute to the geometry of the buildings.
Such examples are the Theme Pavilion on Shanghai Expo, Powerhouse Brattørkaia, Paris Courthouse,
Umwelt Arena, Kaohsiung National Stadium and the Copenhagen International School. In the case
of the Theme Pavilion, the trapezoid PV system enriched the geometry of the building roof. Visible
only from the top view, it is a valuable part of the building’s fifth façade. In the case of Powerhouse
Brattørkaia, a sloped, south oriented surface cuts the volume of the building, acting as a roof and a
façade at the same time. The Paris Courthouse is a building of relatively simple geometry, consisting of
several cuboids. The PV sunshades emphasize the vertical and horizontal lines of the building façade.
Opposite to the Courthouse, the Umwelt Arena and the Kaohsiung National Stadium are buildings of
a complex geometry with a dominant huge PV roof. Finally, the Copenhagen International School is a
building with a BIPV façade and geometry which characterizes the entire building.

4.5. Architectural Accent of PV

The architectural accentuations are present in two cases of the examined sample: the Paris
Courthouse and La Seine Musicale.

In the case of the Paris Courthouse the accent is discrete, and the PV system of sunshades is used
to emphasize selected verticals and horizontals on the east and west façades. In the case of La Seine
Musicale, the architectural accent is strong and dominant. The moving PV veil is one of the main
elements of the building composition, and it complements the building ellipsoidal shape.

When applied as an accent, the PV installation is not aimed at producing significant amounts of
energy, and is certainly not sufficient for the building demand, but rather to complement other sources
of green energy and sending a clear message of sustainability.

4.6. PV Integration Using Architectural Visibility, Sensitivity and Quality

In Tables 4 and 5, the assessments of the architectural quality of the PV integration, the context
sensitivity and the system visibility of the selected landmark buildings are reported.
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Table 4. Architectural integration quality, context sensitivity and system visibility of the landmark buildings (first part).
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Table 5. Architectural integration quality, context sensitivity and system visibility of the landmark buildings (second part).
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In some cases of the presented sample, the PV installation is entirely integrated into the building
skin. The most representative examples of BIPV are the Shanghai Expo 2010 Theme Pavilion, the Umwelt
Arena, the Kaohsiung National Stadium, the Novartis Campus, the Powerhouse Brattørkaia and the
Copenhagen International School. In the analysis conducted through the LESO-QSV method, the
architectural quality of the PV systems’ integration on the building envelope is fully coherent in all
aspects, systems geometry, system materiality and modular pattern. In the case of the Umwelt Arena
the entire roof is a PV system, similar to the Kaohsiung National Stadium, while in the case of the
Copenhagen International School the entire façade is a PV system, and similarly in the Powerhouse
Brattørkaia, the entire roof and the upper parts of the façades. However, in this last case, the modular
pattern results to be partly coherent. For the Novartis headquarters, the architect decided also to
totally integrate the PV system into the complex curved geometry of the building, so it becomes almost
inseparable from the other building elements. In the rest of the analysed buildings, the architectural
integration quality of the PV systems was found partly coherent in the Maracanã Stadium, where the
PV elements have been installed following a refurbish intervention. In the Paris Courthouse and in the
La Seine Musicale, even if the PV systems are not integrated on the building envelope but they have a
peculiar function, such as shading control system and sun-tracking energy generation elements, the
quality of the architectural integration was found fully coherent for all the analysed aspects (i.e., system
geometry, system materiality and modular pattern).

Regarding the context sensitivity, it is important to underline that half of the analysed buildings
are in urban areas characterized by low socio-cultural value. This has a twofold consequence: on one
hand, it helps to increase their value as landmark buildings and, on the other hand, the buildings have
an important role as “design driving force” to improve the overall quality of the remote areas where
they are located. The rest of the buildings have medium context sensitivity. In that sense, for example,
the Powerhouse Brattørkaia, the Paris Courthouse and the Copenhagen International School are located
close to transport and commercial infrastructures, such as a railway station, a highway and a harbour,
respectively. Those buildings are part of wider redevelopment strategies where new residential blocks,
financial and commercial services are planned to be built. Their presence contributes to increase the
architectural interest and financial attractiveness of the areas where they are located. Differently, the La
Seine Musicale is the only building with high context sensitivity given its location within the cultural
area on the Île Seguin, an island on the Seine river between Boulogne-Billancourt and Sèvres in the
western suburbs of Paris.

Finally, regarding the PV systems visibility, the Powerhouse Brattørkaia, the Umwelt Arena, the
Copenhagen International School and the La Seine Musicale, have high levels for both, close and remote
visibility. All the buildings characterised by PV systems installed on the roof, such as the Maracanã
Stadium, the Apple Headquarters, the Shanghai Expo 2010 Theme Pavilion, the Kaohsiung National
Stadium and the Novartis Campus, have low close visibility and medium remote visibility. This aspect
is emphasized by the fact that those buildings have the roof as the largest surfaces exposed on the
sunlight and most of them are in remote areas characterised by very low urban density. Differently,
the Paris Courthouse results to a medium close visibility and high remote visibility, which underlines
the dominant presence of this building on both aspects, figuratively, for its legal function, and physically,
because it is inserted in an urban area characterized by low-medium rise building blocks. Furthermore,
the presence of a large urban park in front of the building emphasizes the visibility of the PV systems
on the south façade for both close and far from the building.

4.7. PV as Peculiar Element

The examples of the Kaohsiung National Stadium, the Umwelt Arena and the Copenhagen
International School represent the cases of total PV integration into the dominant building elements,
roofs and façades. In these cases, the object size plays an important role, because the integrated
PV modules give an impression of an outer material texture applied to entire objects. Considering
the current worldwide trend of Low Energy Buildings and the European Directives regarding the
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construction of nearly Zero Energy Buildings, the buildings constructed in the future will have to
contain systems for producing part of their own energy demand. Among these, PV systems will play a
major role in new or refurbished buildings. The seven architectural performance parameters should be
considered when designing buildings with integrated or applied photovoltaic systems.

The main solutions to be considered for installing the PV systems are:

• Installed on the roof/façades;
• Opaque/transparent PV modules;
• Different shapes and colours.

5. Conclusions

Landmark buildings are architecturally convenient for application of PV systems for many reasons.
Their size and shape are larger than of neighbour objects, and their architectural appearance does not
necessarily need to be in accordance with that of the surrounding buildings. Since landmark buildings
are built with larger budgets, they are often authored by renowned architectural offices and well-known
architects. Design of these objects allows participation of many disciplines and sometimes presumes
some technological developments and advancements. It is important to stress that the aim of landmark
objects equipped with PV system is mainly their impact on society. Such impact is sometimes related to
advanced aesthetics (Novartis Campus), environmental neutrality (Maracanã Stadium), technological
advantage (Apple Headquarter) and energy production (Copenhagen International School, Kaohsiung
National Stadium, Powerhouse Brattørkaia, Umwelt Arena).

Furthermore, the examined samples have shown several other parameters of architectural
performance: definition and articulation of the fifth façade, PV emphasizing distinctive geometry
of architectural buildings, PV contributing to specific geometry of architectural buildings, PV as
architectural accent, total integration of PV into the building skin and peculiar PV elements.

Since the examined samples were different, the general conclusions could be applied to many other
similar landmark buildings. The results of this study, i.e., the systematization of selected landmark
buildings according to the seven architectural performance parameters, might also be a starting point,
as emblematic examples, of the fruitful collaboration between architects and engineers when designing
a PV equipped building. The high architectural quality of the PV integration in the selected landmark
buildings has been confirmed by the analysis of the architectural integration quality, context sensitivity
and system visibility conducted with the LESO-QSV method [24].

Building a landmark object with an integrated PV system can be an affordable option as it obtains
the energy independence for the institution that owns the object and sometimes for its neighbourhood.
It also represents the idea of sustainability and environmental responsibility, sending a strong message
to its surroundings. Finally, it brings new aesthetics and contributes to the architectural performance
of the PV equipped object.
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