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Oscillasjoner i biologiske signaler 

Denne avhandlingen presenterer fire studier hvor EKG-, blodtrykks- og 

glukosesignaler analyseres med mål om å identifisere oscillatoriske fysiologiske 

prosesser som er viktig for organismens motstandsdyktighet og utvikling av 

sykdom. 

En oscillasjon er definert som en gjentakende svingning rundt en sentralverdi. 

Menneskets fysiologi inneholder oscillatoriske prosesser med stor variasjon i 

varighet og virkeområde – fra raske variasjoner i proteiner og elektrolytter inne i 

den enkelte celle, til kvinnens hormonsyklus som går over flere uker og påvirker 

hele organismen. De oscillatoriske prosessene henger tett sammen med 

reguleringsmekanismer, og mange oscillasjoner som er avdekket i biologiske 

signaler er vist å være direkte resultater av autonom regulering. Tap av biologiske 

oscillasjoner reduserer kompleksiteten i biologiske systemer, noe som ses ved 

aldring og sykdom. Det er postulert at biologiske oscillasjoner inneholder klinisk 

relevant informasjon som kan implementeres i intelligente alarmsystemer og 

verktøy for diagnostikk og prognostikk. For at denne informasjonen skal kunne 

implementeres i slike verktøy, må den være spesifikk for ulike tilstander og 

generaliserbar mellom individer med samme tilstand. Vi har utforsket biologiske 

signaler i jakt på slik informasjon.  

I første artikkel undersøker vi tre ulike analysers evne til å avdekke oscillasjoner 

i et blodtrykkssignal. Vi fokuserer på tidsfrekvensanalyser som fremstiller 

oscillasjonenes variasjon over tid og illustrerer hvordan de ulike analysene har 

ulik tidsoppløsning ved lave frekvenser. I andre artikkel analyserer vi 

glukosesignaler fra gris. Vi finner en oscillasjon med frekvens rundt 0,01 til 0,02 

Hz, som ikke tidligere er beskrevet. I dette arbeidet ser vi at oscillasjonene ikke er 

konstant tilstede, men kommer og går. I tredje og fjerde artikkel analyserer vi 

tidsserier av hjertefrekvens, systolisk blodtrykk og amplituden av EKG-ets R-



bølge fra henholdsvis friske og hjertekirurgiske pasienter. Vi finner oscillasjoner 

i alle tidsserier, men ser store variasjoner mellom ulike individer. I artikkel tre 

finner vi at R-bølgens amplitude inneholder langsomme oscillasjoner, og viser 

eksempler hvor de er synkronisert med oscillasjoner i systolisk blodtrykk og 

hjertefrekvens. I fjerde artikkel viser vi at sammensetningen av oscillasjoner i de 

analyserte tidsseriene ikke viser noen systematisk endring etter hjertekirurgi.   

Den overordnede konklusjonen av avhandlingen er at oscillasjoner i EKG- og 

blodtrykkssignaler fra ulike individer viser store variasjoner. Vi har ikke funnet 

klare gruppespesifikke fellestrekk, og har dermed ikke klart å avdekke 

informasjon som egner seg for implementering i verktøy for klinisk 

beslutningsstøtte. Store metodologiske utfordringer må løses før slik teknologi 

kan tas i bruk i klinikken.  
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SUMMARY 

This thesis is a study of electrocardiography, blood pressure and glucose signals in the 

search for oscillatory physiological processes that are of importance for resilience and 

the development of disease.  

An oscillation is defined as a repetitive variation about a central value. Physiology shows 

oscillating behaviour over large spatial and temporal scales – from rapid variations of 

proteins and electrolytes on a cellular level to the female hormone cycle ranging over 

weeks and affecting the whole organism. The oscillatory processes are tightly linked to 

regulatory mechanisms, and several oscillations identified in biological signals are 

shown to be direct results of autonomic regulation. The loss of biological oscillations 

reduces the complexity of biological systems, which is seen with ageing and disease. It 

is believed that information about biological oscillations, if correctly extracted from 

biological signals, can be used in patient monitoring, diagnostics and prognostics.  

In the first paper, we explore three different analyses’ capabilities for identifying 

oscillatory components in a blood pressure signal. We focus on time-frequency analyses, 

which capture the time-variability of the oscillations, and we illustrate how such analyses 

have different temporal resolution among low frequencies. In the second paper, we 

analyse glucose recordings from pigs, identifying a previously not reported oscillation 

with frequency 0.01-0.02 Hz. Further, we observe that the oscillations are not constantly 

present, but rather come and go. In the third and fourth papers, we analyse time series of 

heart rate, systolic blood pressure and R-wave amplitude in healthy and cardiac surgery 

patients, respectively. We identify oscillatory components in all variables and subjects, 

showing large interindividual variations. In paper three, we identify slow oscillations in 

R-wave amplitude and illustrate cases where they are synchronized with oscillations in 

systolic blood pressure and heart rate. In paper four, we do not see distinct changes in 

the oscillatory distributions after cardiac surgery. 

The overall conclusion of this thesis is that the oscillatory distributions of 

electrocardiography and blood pressure signals of healthy and cardiac surgery patients 

are highly heterogenous and do not hold features that are either group-specific or 
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common for both groups. Hence, we have not been able to identify information suitable 

for implementation in clinical decision tools. We are doubtful regarding biological 

oscillations’ capability of solely providing such valuable information. Consequently, 

there are major technological challenges that need to be overcome before automated 

tools are ready for clinical use. 
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1 INTRODUCTION 

Every day, at hospitals worldwide, doctors perform day-to-day evaluations of their 

patients’ clinical state by using anamnesis, clinical examination, blood tests, medical 

imaging and other technical equipment. The sickest patients are continuously monitored 

with equipment such as electrocardiography (ECG), invasive blood pressure (BP) and 

pulse oximetry so that a deterioration can be discovered at an early stage. The 

information that is extracted from these signals often consists of absolute values, such 

as heart rate (HR), respiratory rate, systolic and diastolic BP and oxygen saturation. 

Together, these measurements are called vital parameters, and their values at different 

time points are used to evaluate the patients’ development over time.  

There is a current opinion that the mentioned signals contain information that can be 

linked to physiological processes and used for clinical purposes. This information is not 

visible to the naked eye but should be possible to identify by using the correct analyses. 

One prominent characteristic of these signals is that they oscillate. An oscillation is 

defined as a repetitive variation about a central value. The signals’ oscillating behaviour 

seems quite organized, as all mentioned signals are dominated by the heart’s pulsation 

and the respiration. However, when delving deeper into the material, several slower 

oscillatory components are discovered, revealing irregular and complex signals.  

Heart rate variability (HRV) analyses, the study of the naturally occurring variation in 

the time interval between heart beats, have shown reduced variability with disease and 

ageing. Conventional frequency analyses have identified several characteristic 

frequency peaks in ECG and BP signals, and they have been associated with autonomic 

regulation. Thus, the identified frequency components are linked to the system’s overall 

ability to compensate for internal and external perturbations, and the integrity of 

biological oscillations may serve as a hallmark of healthy systems.  

Nevertheless, several questions remain unanswered. Researchers have tried to link 

complexity to prognosis and to identify underlying physiological mechanisms of the 

observed oscillations. However, studies show contradictory findings. For a long time, 
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researchers looked at different oscillating systems separately. Current efforts have been 

focused on the interaction of coupled oscillating systems and the external environment.  

This thesis is a study of oscillations in ECG, BP and blood glucose recordings, with the 

overall aim to assess whether healthy and diseased individuals hold specific or common 

features that help us distinguish between them. The postulated benefit is that such 

information can be implemented in future clinical decision tools. 
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2 BACKGROUND 

2.1 Biological oscillations 

2.1.1 Oscillations in normal physiology 

Biological oscillations are found in all living creatures, from simple cells to complex 

multicellular organisms. Examples of biological oscillations are circadian rhythm, 

menstrual cycle, pulsatile release of hormones, neurone activity, heart beats and 

respiration. The origin of these oscillations can be traced back to intracellular pulsatile 

processes, such as cyclic variations of electrolytes and regulatory proteins (1,2). 

The physiology of advanced organisms exhibits a complex regulation over large spatial 

and temporal scales. The spatial scale is constituted by anatomical and physiological 

structures, ranging from cell-to-cell interactions in micrometres, to heart-to-main vessels 

interactions in metres. The temporal scale ranges from nerve potentials in microseconds 

to the female hormone cycle over several weeks. Altogether, internal oscillatory 

processes interact with each other and with the external environment under the control 

of feedback systems (3). The observed result is a complex oscillatory profile exhibiting 

irregular nonlinear dynamics. It is not known if the complex dynamics are an essential 

feature of biological systems and regulatory mechanisms, or if they are secondary to 

internal and external perturbations (3). 

Homeostasis is known to describe biological systems in physical and chemical balance. 

This term implies that the system is static. Some authors have suggested that 

homeokinesis is a better term, which is defined by Que et al as “the ability of an 

organism functioning in a variable external environment to maintain a highly organized 

internal environment fluctuating within acceptable limits by dissipating energy in a far-

from-equilibrium state” (4). This way, homeokinesis reflects the situation where 

variables are moving within an interval and can always be returned to their imagined set 

point. This set point is termed an attractor, and the interval an attractor basin (5). 

Whenever dominant physiological variables are within the limits of the attractor basin, 

they will be dragged back towards the attractor. When the variables cross out of the 
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basin’s limits, they move towards a new attractor or a random fluctuation, depending on 

the system’s underlying dynamics. Healthy systems with large attractor basins have 

greater ability for dealing with external exposure, and thus greater ability for 

compensation. This resilience is connected to the underlying regulatory mechanisms of 

the system and is therefore linked to biological oscillations.   

Circulatory oscillations 

Circulatory signals have been extensively investigated with traditional frequency 

analyses, extracting frequency components from the signals. Most prominent are the 

oscillations constituted by the heart and the respiration, giving frequency components at 

approximately 1 Hz and 0.2-0.3 Hz. Slower frequency components have been identified 

and attributed to different parts of autonomic regulation. HRV analyses of interbeat time 

series extracted from ECG signals have traditionally defined four main frequency 

components: high frequencies at 0.15-0.4 Hz; low frequencies at 0.04-0.15 Hz; very low 

frequencies at 0.003-0.04 Hz; and ultralow frequencies below 0.003 Hz (6). It has been 

suggested that the frequency components are linked to the following regulatory 

mechanisms: high frequencies representing respiration-dependent parasympathetic 

activity, giving HR variations termed respiratory sinus arrhythmia (7); low frequencies 

representing baroreflex activity, probably being mediated by both the sympathetic and 

parasympathetic systems (8); very low frequencies and ultralow frequencies requiring 

further elucidation, but suggested as being generated by thermoregulation and the renin-

angiotensin system, and the circadian oscillation in HR, respectively (6,9). 

Corresponding frequency peaks have been identified by analysing human blood flow 

signals with the continuous wavelet transform (CWT) (10). The low frequency:high 

frequency ratio is suggested to represent sympathovagal balance (11). In BP signals, a 

10-sec oscillation termed Mayer waves is identified and said to result from an oscillatory 

sympathetic vasomotor tone (12). Mayer waves have been seen to occur in synchrony 

with HRV low frequency components (13). However, we cannot avoid mentioning that 

findings are ambiguous, possibly being caused by factors such as study population, 

pharmacological profile, experimental protocol and others (14).  
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Blood glucose oscillations 

The pulsatile release of insulin from the beta-cells of the pancreas has been known for 

several decades and has been examined in both in vitro and in vivo studies. Periodicity 

was early discovered in Langerhans -cells in rats (15). Insulin is released in 

synchronized bursts with a periodicity of approximately five minutes. The amount of 

insulin released with each burst is constantly changing depending on the current blood 

glucose level. A study of plasma glucose and insulin levels in humans discovered 

oscillations with a mean period of 13 minutes, the plasma glucose cycle being 2 minutes 

in advance of the plasma insulin (16). 

2.1.2 Oscillations with ageing and disease 

Ageing and disease are associated with change of the oscillatory profile and loss of 

complexity of biological signals. Lipsitz and Goldberger first proposed that ageing is 

characterized by a progressive loss of physiologic complexity (17), which is supported 

by several other studies of cardiovascular dynamics (18–20). In 1995, Lipsitz suggested 

that the complexity of biological signals is a potential marker of vulnerability to disease 

(21), as it represents a reduction of the system’s overall resilience. In addition to making 

the subject vulnerable to disease, reduced complexity is simply a feature of the diseased 

(22). As far back as the 1960s, it was found that foetal distress resulted in alterations in 

HRV before any change in HR occurred (23). A general decomplexification of ECG 

power spectra has been found in paediatric intensive care unit patients (24). In patients 

with spinal cord injury, cardiovascular autonomic dysfunction leads to reduced power in 

the high- and low-frequency range of HR and BP time series (25). In trauma patients, 

reduced complexity of HR, measured by multiscale entropy, is associated with higher 

mortality (26). This association is found over a diversity of injuries and is suggested to 

represent some common underlying pathophysiological mechanism. Analyses of blood 

glucose oscillations in intensive care patients find the same association between reduced 

complexity and increased mortality (27,28). HRV indices have also shown to have 

prognostic relevance in heart failure patients (29). 
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Looking closer at patients with coronary heart disease, we see that reduced HRV and 

increased postinfarction mortality were described by Wolf et al. in 1978 (30). This was 

supported by a work by Kleiger et al., which stated that HRV could be used to identify 

patients with a history of myocardial infarction and increased risk of sudden death (31). 

Further, HRV is known to decrease after cardiac surgery and to remain reduced for up 

to six months (32–34). Contrary to findings in patients with myocardial infarction, such 

a reduction’s relevance in predicting mortality is debated, as explained in more detail by 

Lakusic et al. (35).  

2.2 Measuring biological oscillations 

Biological signals are continuous recordings of measurable biological variables. In this 

thesis, focus is directed towards ECG, BP and glucose signals. In Paper II, we measure 

blood glucose with a continuous intravascular glucose sensor, which detects relative 

glucose changes through volume changes in a hydrogel matrix. BP can be measured both 

invasively and noninvasively. Continuous BP measurements are traditionally obtained 

through an intraarterial cannula. From the cannula, the BP is directly transmitted through 

a fluid-filled system and measured by a bedside manometer. Papers I and IV include 

invasive BP signals. Researchers have made large efforts on providing a reliable method 

for noninvasive continuous BP measurements. Through advanced mathematical 

algorithms, we are now able to estimate the BP from noninvasive signals, such as the 

photoplethysmogram (PPG). Paper III includes noninvasive BP (NIBP) signals recorded 

with the volume clamp method. Volume clamp involves wearing a small finger-cuff that 

is cyclically inflated and deflated to keep the blood volume in the finger constant, 

measured with PPG. The PPG signal is normally pulsatile, but when blood flow is kept 

constant, the signal is flat. The counter pressure generated by the finger cuff directly 

corresponds to the arterial pressure and is measured with a manometer (36). 

2.2.1 Characteristics of biological signals 

A signal is a representation of how one variable varies with another variable. Biological 

signals often describe how parameters such as electrical voltage and BP vary with time. 

A system is something that produces an output signal in response to an input signal. The 
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circulatory system produces the output signal BP, bp(t), in response to the heart 

pulsation. A time series is a series of data points and is, unlike a signal, always indexed 

by time. Heart depolarisation and BP variations are continuous processes. When 

collecting ECG and BP recordings, we are not able to record continuously. Instead, we 

reduce the time interval between two successive data points by collecting a high number 

of data points per time. Thus, you have a time series with a sampling rate so high that 

the output looks similar to a continuous signal. Therefore, in this thesis, the terms signal 

and time series overlap. However, I will use the term signal when talking about raw data, 

such as ECG and BP recordings, and restrict the use of time series to HR, systolic BP 

(SBP), and other variables that are extracted from the examined signals.  

Many signal processing methods are based on mathematically or electronically 

generated signals, which are linear and stationary. When applying these analyses to 

biological signals, which neither are linear nor stationary, and often contain considerable 

amounts of noise, you meet challenges.  

Linearity 

In linear systems, the output of the system varies directly with respect to the input to the 

system. In signal processing, linear signals have the advantage that the method of 

superposition can be used. Superposition is the process where the signal is broken into 

simple components for analysis before the results are reunited. This way one complicated 

problem is split into several easy problems.   

Most biological signals are not linear, and signal processing algorithms that require 

linearity may give poor results.  

Stationarity 

A signal is stationary when the underlying statistical properties of the system producing 

it do not change over time. This does not mean that the output signal is static, just that 

the way it changes does not itself change. Hence, the mean, variance and autocorrelation 

structure remain unchanged over time.   
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Biological signals are mostly nonstationary. Sometimes an observed trend (change in 

mean) can be caused by a short observation time, as the mean would have returned to 

the baseline value if the recording were maintained. Nevertheless, biological signals 

seldom fulfil the requirements of stationarity.  

Noise 

Noise is unwanted disturbance in a signal. The signal is produced by the system being 

explored, whereas noise is produced by various other factors. Electrical systems produce 

noise that is linked to the underlying physics of the system, such as thermal motion and 

fluctuations of the electric current. This noise is termed internal noise. Additionally, 

noise can occur from external factors, such as movements, temperature fluctuations and 

body posture. The signal-to-noise ratio describes the amount of noise in the signal, 

relative to the signal itself.  

Biological signals often contain high amounts of noise, as they are recorded from 

humans. Naturally, the movement-induced noise will be higher in awake patients, and 

especially patients walking around in wards, compared to bedbound intensive care 

patients. Signals such as the ECG and laser Doppler flowmetry (LDF) often contain large 

amounts of noise, as they are recorded through sensors that are attached to the skin. The 

LDF will also contain noise if there are movements in the fibre optic cable. Invasive BP 

recordings are often more robust to noise, as they are obtained intravascularly. However, 

the fluid-filled systems through which the pressure is transmitted are susceptible to 

movements and other disturbances.  

2.2.2 Analysing biological signals 

Spectral analyses 

Scientists distinguish between time-domain analyses and frequency-domain analyses 

based on whether the signal is analysed with respect to time or frequency. Time-domain 

analyses explore how the signal changes over time, and frequency-domain analyses 

show how the signal consists of different frequencies. As the frequency-domain 

methods’ results are illustrated through frequency spectra, they are often termed spectral 
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analyses. Traditional HRV analyses are performed in the time-domain, evaluating the 

variation of the HR time series in total or over shorter segments (6). The most widely 

used frequency-domain method is the Fourier transform, introduced by Joseph Fourier 

in the 19th century (37). It decomposes the original signal to a sum of simple harmonics, 

illustrating the averaged frequency distribution of the total signal length in a power 

spectrum. Sometimes one wishes to combine time and frequency analyses, illustrating 

the time-variability of the frequency content of a signal. Such analyses are called time-

frequency analyses and are an extension of the original frequency analyses. Many of 

these analyses are based on the original Fourier transform, including the short-time 

Fourier transform and the CWT, to mention some. The results of time-frequency 

analyses are presented in time-frequency-power distributions: three-dimensional plots 

with time on the x-axis, frequency on the y-axis and power illustrated by colour (Figure 

1). Sometimes frequency is substituted by period, representing the duration of one cycle 

of the oscillation. Increasing period corresponds to decreasing frequency. 

 

Figure 1. CWT spectrum 

A time-frequency-power distribution illustrated by Figure 2 of Paper I. This CWT spectrum shows 
a 5-second extraction of the CWT applied to a 5-minute continuous BP signal. Reprinted from 
Adv. Data Sci. Adapt. Anal., 2017, Vol 9, Knai et al, Instantaneous Frequencies of Continuous 
Blood Pressure. A Comparison of the Power Spectrum, the Continuous Wavelet Transform and 
the Hilbert-Huang Transform (38), page 1750009-4, Figure 2. Paper distributed under a Creative 
Commons license, and can be shared without obtaining additional permissions from World 
Scientific. 
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The Hilbert-Huang transform (HHT) was introduced in 1998 by Norden Huang (39). It 

was originally developed for analysing nonstationary ocean waves for NASA and is 

unlike Fourier-based spectral analyses not based on the use of predefined simple 

harmonics. Thus, it is a data-driven approach adaptive to the data being analysed. It 

decomposes the original signal to the fewest monocomponents possible to describe the 

signal, and the results are illustrated in time-frequency-power distributions, called 

Hilbert spectra (Figure 2).  

 

 

Figure 2. Hilbert spectrum 

A time-frequency-power distribution illustrated by Figure 5 of Paper I. This is the same 5-second 
extraction as in Figure 1, illustrated with a Hilbert spectrum. Reprinted from Adv. Data Sci. 
Adapt. Anal., 2017, Vol 9, Knai et al, Instantaneous Frequencies of Continuous Blood Pressure. 
A Comparison of the Power Spectrum, the Continuous Wavelet Transform and the Hilbert-
Huang Transform (38), page 1750009-6, Figure 5. Paper distributed under a Creative Commons 
license, and can be shared without obtaining additional permissions from World Scientific. 
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Curve fitting 

Curve fitting is the process of creating a curve that fits a series of data points. It involves 

both interpolation, where you get an exact fit to the data, and smoothing, where a smooth 

line that approximately fits the data is created. In this thesis, we use a spline interpolation 

in the preprocessing algorithm and local regression to fit a smoothed curve to the data. 

The latter was originally developed for scatterplot smoothing and is therefore called 

locally estimated scatterplot smoothing (Loess).  

Correlation analyses 

Correlation is any association between two variables – to which degree two variables 

move in relation to each other. Causal variables always correlate, but not all correlated 

variables are causally dependent. In signal processing, correlation analysis is used to 

look for correlation between different signals or to look for serial dependence within one 

signal. Cross-correlation measures the correlation of two signals as a function of the 

displacement of one relative to the other. Thus, features that are present for shorter 

segments of the signal or that are present in both signals but shifted in time are identified. 

Autocorrelation is the correlation of a signal with a copy of itself that is shifted in time. 

The induced delay makes it possible to look for repeating patterns within the signal, such 

as oscillations.  

Quantification of complexity 

There is no clear definition of complexity. However, complex systems are built up by 

components that interact in multiple ways and with the external environment, resulting 

in organized and disorganized behaviour that cannot be predicted from the components 

alone (40). Hence, the complexity of the system is greater than the sum of its parts. 

Linking this to biological signals, complexity is related to the degree of information in 
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the signal, the predictability of the signal and the ability to describe the signal in a simple 

manner (Figure 3) (41).  

 

Figure 3. Complexity of biological signals 

Illustrated by ECGs showing sinus rhythm (left) and atrial fibrillation (right). From the definition of 
complexity, atrial fibrillation is more complex, as it is less predictable and more challenging to 
describe. Reprinted by permission from Assoc. Prof. Jan Pål Loennechen’s lectures for medical 
students at NTNU. 

The definition of complexity is too diffuse to provide a quantitative measure that applies 

universally. Several complexity analyses are based on entropy, which classifies disorder 

in physical systems and information content of signals. Fractal analyses, such as 

detrended fluctuation analysis, illustrate the fractal behaviour of signals (42).  
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2.2.3 Why study biological oscillations? Motivation for the thesis 

There are two statements forming the base of this thesis:  

1) Specific oscillations of biological signals are linked to known physiological 

mechanisms, and they tend to disappear with disease.  

2) The overall complexity of biological systems is linked to the systems’ resilience and 

is reduced with age and disease. 

Since the early development of the field, researchers have postulated that the discovery 

of biological oscillations would lead to medical advances (22). As oscillatory processes 

are linked to the subject’s resilience and might show specific changes with disease, this 

information could be used in monitoring, diagnostics and prognostics. For this purpose, 

one needs to identify features of the signals that are specific for given diseases, but 

generalizable across patients. Considering the technological development during the past 

decades, we are surprised that such tools are not yet implemented in the clinic. When 

developed, the technology would be easy to implement, as it is based on signals that are 

already widely obtained.  

Biological signals are nonlinear, nonstationary and contain considerable amounts of 

noise. Thus, the methodology is equally important as the specific research question being 

asked. We need to establish robust methods for both preprocessing and analysis of 

biological signals. If meant for clinical use, the methods should be quick, robust and 

easily adaptive to different biological signals.  

Altogether, we want to make contributions to both the knowledge base of the field and 

its technological development.  
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3 AIMS 

The overall aim of this thesis is to study the oscillatory distributions of biological signals 

in both healthy and cardiac surgery patients and to assess whether they hold specific or 

common features that can be implemented to clinical decision tools.  

The specific aims of each paper are as follows: 

Aim I: Investigate the performance of three different spectral analyses – the Fourier 

transform, the CWT and the HHT – on an invasive BP signal. How well do they identify 

the signal’s oscillatory components and their time-variability? 

 

Aim II: Investigate oscillatory components of 24-hour blood glucose recordings of pigs 

with the aim of deciphering slow blood glucose oscillations in an intact porcine model 

with the CWT. Is the CWT able to identify slow oscillations in blood glucose signals? 

 

Aim III: Investigate the information content in ECG and BP recordings of healthy 

subjects by extracting three time series: SBP, HR and the amplitude of the ECG’s R-

wave. Does R-wave amplitude exhibit slow oscillations, and do these correspond with 

known slow oscillations in SBP and HR? 

 

Aim IV: Investigate the development of the frequency distributions of SBP, HR and the 

amplitude of the ECG’s R-wave of patients undergoing coronary artery bypass grafting 

(CABG). Do circulatory frequency distributions show loss of oscillatory components 

with cardiac surgery, and does this loss represent a reduction in complexity? 
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4 MATERIALS AND METHODS 

4.1 Data 

The work presented in this thesis is based on three study populations. Papers I and IV 

are based on data collected from patients scheduled for CABG. Paper I includes a 

continuous BP recording of one patient, whereas Paper IV includes continuous BP and 

ECG recordings of the total population of eight patients. Paper II is based on 24-hour 

continuous blood glucose recordings collected from four pigs. Paper III is based on the 

Fantasia database (43,44), which includes continuous NIBP, ECG and respiration 

recordings from 20 healthy individuals.  

4.1.1 Cardiac surgery patients 

From March to May 2016, patients scheduled for standard CABG at Trondheim 

University Hospital, Norway, was invited to participate in the study, recruiting a total of 

10 patients. Two patients (patient 6 and patient 9) were excluded due to nonsinus rhythm 

at one or several time points of the recording. Other exclusion criteria were left 

ventricular ejection fraction below 0.5, severe valve disease, right ventricular failure, 

pulmonary hypertension and severe postoperative haemorrhage. Written consent was 

collected prior to data collection. The study protocol was approved by the Regional 

Committee for Medical and Health Research Ethics (reference: 2015/2019/REK midt). 

Confidentiality was strictly maintained throughout the study.  

Data collection was performed in two sessions: before and after surgery. The data were 

collected with hardware and software provided by ADInstruments (Oxford, UK): 

PowerLab 16/35 and LabChart 8.1.3. The study equipment included a 3-electrode ECG, 

an LDF sensor and an arterial cannula inserted into the left radial artery. Additionally, 

subjects 1, 2 and 3 had an infrared PPG finger sensor attached. The preoperative 

recordings were collected with the patients resting in bed in a quiet room without 

disturbances in the thoracic surgery ward. The patients did not receive premedication 

prior to surgery, and surgery was performed under general balanced anaesthesia 

(thiopental, fentanyl, isoflurane and propofol). During surgery, the study equipment was 
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removed before it was reattached using new ECG patches and a new arterial cannula 

inserted into the right radial artery. The postoperative recording was collected from the 

patients arrived in the thoracic intensive care unit until the next morning.  

For Paper I, a 5-min extraction of the preoperative BP recording of patient 1 was selected 

and exported to the software s2s (Signal Analysis Lab, Grimstad, Norway) for analysis. 

For Paper IV, 30-min selections of the BP and ECG recordings of all eight subjects were 

exported as mat.files and analysed in R, version 3.5.1 (45). The PPG and LDF recordings 

of subject 1 were included for subanalysis. We subdivided the data into four situations: 

preoperatively (A); postoperatively, on respirator (B); postoperatively, after extubation 

(C); and postoperatively, the next morning (D). 

Figure 4 shows an extraction of the raw PPG, ECG, BP and LDF signals of patient 1. 

 

Figure 4. Raw signals of the cardiac surgery patients 
Raw signals of the cardiac surgery patients, illustrated by the PPG (red), ECG (blue), BP (pink) 
and LDF (purple) signals of patient 1.  
 
4.1.2 Pig blood glucose data 

The experiments were originally performed in 2014 to validate intravascular glucose 

sensors over 24 hours. Four outbred pigs (25% Duroc, 25% Yorkshire, 50% Norwegian 

Landrace, 22–28 kg) were included in the study after approval from the Norwegian State 

Commission for Animal Experimentation. All the animals received humane care in 

accordance with the European Convention for the Protection of Vertebrate Animals used 
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for Experimental and Other Scientific Purposes. Details regarding premedication, 

anaesthesia, respirator adjustments and fluid therapy are explained in Paper II, and 

details regarding glucose sensor specifications and calibration procedures in (46). Two 

glucose sensors (GlucoSet, Trondheim, Norway) were inserted in each superficial 

femoral artery and connected to the in-house glucose monitor. The animals were kept 

sedated on a respirator for 24 hours before they were euthanized. The recordings were 

exported as csv.files (Figure 5) and analysed in R, version 3.1.1 (45).  

 

Figure 5. Raw blood glucose signals 

Raw blood glucose signals of pigs 1-4. The durations of the recordings vary between 
approximately 50 000 and 70 000 seconds. Reprinted from PLOS One, Vol 13, Skjaervold et al, 
Some oscillatory phenomena of blood glucose regulation: An exploratory pilot study in pigs (47), 
page 3, Figure 1. Paper distributed under a Creative Commons license, and can be shared 
without obtaining additional permissions from PLOS. 

4.1.3 The Fantasia database 

We used prerecorded data from the Fantasia Database (43). ECG, respiration and NIBP 

recordings from twenty healthy subjects, ten young and ten elderly, were exported from 

PhysioNet (44) as mat.files and analysed in R, version 3.5.1 (45).  

Figure 6 shows the raw ECG, NIBP and respiration signals of subject f2y01. 
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Figure 6. Raw signals from the Fantasia database 
Raw signals from the Fantasia database (43) illustrated for subject f2y01. ECG in the first row, 
NIBP in the second row and respiration in the third row. 
 

4.2 Preprocessing 

In Papers III and IV, the BP and ECG signals are preprocessed to three time series: SBP, 

HR and R-wave amplitude. Baseline wander is removed from the ECG signals by 

applying a Savitzky-Golay smoothing filter before further analysis (48). We define the 

SBP and R-wave amplitude as the maxima of the BP and ECG, respectively. The HR is 

defined as: 𝐻𝑅 = 60/𝑅𝑅' , where RRi is the time interval in seconds between R-peak i 

and i+1 of the ECG. Some episodes of noise are misclassified as heartbeats; thus, we 

remove values outside the interquartile range from the SBP, RR-intervals and R-wave 

amplitude before further calculation. To provide evenly sampled time series, we perform 

a cubic spline interpolation to a sampling frequency of 10 Hz. The final variables are 

called interpolated SBP (iSBP), interpolated R-wave amplitude (iAmp) and interpolated 

HR (iHR). An overview of the preprocessing is shown in Figure 7.  
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Figure 7. The preprocessing of BP and ECG signals 

Preprocessing of BP and ECG signals generated the variables iSBP, iAmp and iHR. The SBP 
and amplitude of the R-peak are defined as the maxima of the BP and ECG, respectively. The 
HR is calculated from the time interval between two subsequent R-peaks of the ECG (RRi [s]). 
The time series are interpolated to a sampling rate of 10 Hz. Illustration: T. Aasnes. Reprinted 
from Physiol. Rep., Vol 8, Knai et al, Cardiac surgery does not lead to loss of oscillatory 
components in circulatory signals (49), page 3, Figure 1. Paper distributed under a Creative 
Commons license, and can be shared without obtaining additional permissions from John Wiley 
& Sons, Inc. 

4.3 Analyses 

The computation for Paper I is performed in cooperation with a third-party technical 

consultant firm named Signal Analysis Lab AS, using the software s2s (Signal Analysis 

Lab, Grimstad, Norway). Paper I involves comparing the performance of the power 

spectrum, the CWT and the HHT on a 5-min continuous BP signal.  

In Paper II, 24-hour recordings of blood glucose in pigs are analysed with the CWT to 

examine the oscillatory profile of the pigs’ glucose levels. The first 200 minutes of all 

glucose recordings are discarded prior to analysis due to extensive instability and sensor 

calibration.  

In Paper III, we analyse NIBP- and ECG-signals from young and elderly healthy 

subjects. In Paper IV, we analyse selections, representing key events of the perioperative 

course, of the BP- and ECG-signals recorded on cardiac surgery patients. We use the 

CWT to identify oscillatory components present in iSBP, iAmp and iHR. In a subset of 
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cases, we examine the oscillations’ phase differences by using the CWT for bivariate 

time series and Loess. Further, we perform a cross-correlation analysis on the Loess-

extracted oscillatory components, identifying at which time lag the correlation is highest, 

and thus at which relative displacement the studied variables oscillate. 

4.3.1 Fourier analyses 

Fourier analyses encompass a vast spectrum of analyses decomposing signals to a sum 

of simple harmonics (Fourier transformation) and rebuilding the signals from the 

identified components (Fourier synthesis) (37,50). Fourier analyses include both simple 

frequency analyses, illustrating the frequency distribution of the complete signal, and 

time-frequency analyses, illustrating the frequency distribution as a function of time. As 

there are a variety of different Fourier analyses, none will be explained in detail. 

4.3.2 Continuous wavelet transform 

The CWT is a convolution of a signal with functions generated by the mother wavelet 

(51). The mother wavelet is a waveform of limited duration and an average value of zero. 

We use the Morlet wavelet, which by mathematical definition is a Gaussian enveloped 

cosine wave. It has been widely used for investigations of biological signals, especially 

the ECG (52). In the convolution process, it is shifted in time and stretched and shrunk, 

quantifying different frequency components’ presence in the signal at different time 

points. The results are presented in time-frequency-power distributions, called CWT 

spectra. The results can also be displayed in average wavelet power spectra, illustrating 

the averaged frequency distribution of the total signal length. The CWT for bivariate 

time series identifies frequency components that are present in two time series with a 

significance level of 0.05. The results are presented in cross-wavelet spectra where 

oscillations that are significantly present in both time series are marked by white lines 

and their phase difference by arrows.  

4.3.3 Hilbert-Huang transform 

The HHT is a data-driven approach adaptive to the data being analysed (39). It 

decomposes the signal with the empirical mode decomposition, which defines the upper 



 33 

and lower envelopes of the signal by identifying and drawing a line through the extrema. 

Further, the mean envelope is defined and subtracted from the original signal. When the 

mean envelope fills the requirements for an intrinsic mode function (IMF), it is defined 

as the first IMF. The process of defining envelopes and subtracting them from the signal 

is repeated until one has a monotonic line, which is considered the residual. Therefore, 

the empirical mode decomposition defines the fewest monocomponents possible to 

describe the signal, illustrated by IMFs with decreasing frequency. From the IMFs, the 

instantaneous frequency is defined as the time-derivative of the phase (53). The results 

are presented in time-frequency-power distributions called Hilbert spectra. To avoid 

blockage of the frequency components of interest, IMFs with high time-variations are 

excluded from the final plots. 

4.3.4 Loess regression 

Loess is a nonparametric regression that combines different regression models with a k-

nearest-neighbour-based model (54). It applies classical regression models, such as least 

squares regression, to short segments of the signal. Further, it uses a weight function so 

that data points close to the point of estimation are weighted higher than data points 

further away. When performing the analysis, one specifies how long the segments of 

estimation should be, and thus how much of the signal that should be used to fit each 

local polynomial. Further, one specifies the degree of the local polynomials being fitted 

to the data. 

In Papers III and IV, we decompose the time series with Loess to visually examine the 

individual time-series’ oscillations and their phase differences. We apply the regression 

several times, each time subtracting the smoothed curve from the signal, providing a set 

of frequency components of increasing frequency. We name the extracted components 

Loess #1, Loess #2 and Loess #3. By generating plots of the components of the different 

variables, we examine their phase differences, illustrated in Figure 8. 
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Figure 8. Decomposing the time series with Loess 

Loess regression illustrated by Figure 5 from Paper III. The first row shows the time series of 
iSBP, iHR and iAmp. Loess #1-3 are plotted in rows two to four, and the residuals are shown in 
row five.  

4.3.5 Cross-correlation analysis 

The cross-correlation analysis calculates the correlation of two time series as a function 

of the displacement of one relative to the other – the cross-correlation function. The 

cross-correlation function illustrates the correlation of two time series at different time 

lags, the time lag representing the relative displacement. By defining the maximum, we 

identify at which time lag the correlation is highest, and thus at which relative 

displacement the studied variables oscillate.  
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5 RESULTS 

5.1 Paper I 

The Fourier-based power spectrum, the CWT and the HHT were applied to a 5-min 

continuous BP signal. The power spectrum illustrates the frequency distribution of the 

signal without capturing its time-varying nonstationary properties. It identifies the HR 

at 0.8 Hz. Considering slow frequencies, it shows increasing power below 0.1 Hz, 

without unambiguously identifying any specific frequency peaks. The CWT and the 

HHT identify corresponding slow frequency components and their time-variability. 

More specifically, they identify oscillations at approximately 0.04 Hz and just below 

0.01 Hz. It is arguable if the CWT also identifies the 0.02 Hz oscillation, which is seen 

in the Hilbert spectrum. The CWT has considerably lower temporal resolution at low 

frequencies than the HHT.   

5.2 Paper II 

The CWT was applied to 24-hour continuous blood glucose recordings of four pigs in 

general anaesthesia. We illustrate the presence of a previously not reported oscillation 

with frequency 0.01-0.02 Hz. Further, we illustrate several frequency components, most 

prominent the known 0.001-0.002 Hz oscillation. We observe that the oscillations are 

not constantly present, but rather phenomena that come and go.  

5.3 Paper III 

NIBP and ECG recordings from twenty healthy subjects were decomposed to time series 

of SBP, HR and R-wave amplitude and analysed with the CWT. We illustrate the 

presence of slow oscillations in R-wave amplitude and some cases with corresponding 

slow oscillations in SBP and HR. Slow oscillations in R-wave amplitude are mainly 

found in the old subgroup, as the young subgroup shows a domination of the respiration. 

The R-wave amplitude is the single variable with the best identification of the 

respiration. The variables oscillate with time lags of a few seconds for both respiratory 

and slow oscillations.  
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5.4 Paper IV 

BP and ECG recordings of eight cardiac surgery patients were decomposed to time series 

of SBP, HR and R-wave amplitude and analysed with the CWT. Four situations were 

used to illustrate the development through the perioperative course. We identify 

oscillatory components in all variables, patients and situations. We illustrate frequency 

distributions that change through the perioperative course, but the observed changes do 

not display any trend or system. We present one case with loss of a distinct 25-second 

oscillation after surgery and another where noise is misclassified as an oscillation.  
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6 DISCUSSION 

6.1 Methodological considerations 

6.1.1 Data 

Cardiac surgery patients 

Our study population is small, consisting of only eight patients. We recruited patients 

scheduled for CABG over a period of three months in 2016. The recruited patients are 

heterogeneous individuals featuring different medical backgrounds, pharmacological 

profiles and general health. However, altogether, the group holds common features such 

as high age and coronary heart disease, which, to some extent, correspond with the 

overall population of CABG patients. One could raise the question of selection bias, as 

we recruited patients over a short time period and excluded patients with serious 

illnesses, such as heart failure, valve disease and perioperative complications. However, 

we investigate universal physiological features without performing statistical hypothesis 

testing or other comparisons on the group level. The comparisons we performed are only 

between situations of the perioperative course, and in such cases, the patients serve as 

their own controls. Interpretation of the results must be done with these aspects in mind, 

and the results’ generalizability should be investigated in larger study groups. 

To minimize autonomic activation and artefacts caused by postural changes, the patients 

remained lying down during data collection. For Paper I, we used the last 5 minutes of 

the preoperative recording of patient 1 to maximize the time for stabilization. The data 

were collected with research hardware and software to secure complete control of 

filtering and preprocessing algorithms applied to the data. To avoid putting the patients 

through unnecessary stress by inserting two arterial cannulas prior to surgery, we used 

different arterial cannulas pre- and postoperatively. A consequence of this could be 

different absolute values of the BP recordings before and after surgery. However, we 

believe that the frequency distributions of the signals are unchanged. Vasoactive and 

analgesic medications and fluids were administered postoperatively according to the 
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individual patients’ clinical state. Thus, the patients may have received different amounts 

of medications, with varying contributions to their oscillatory distributions.  

One could ask if the studied population already has compromised circulatory frequency 

distributions prior to surgery. This could be a result of coronary heart disease, 

comorbidities that are not included to the exclusion criteria, medications and other 

factors. We know that reduced HRV after myocardial infarction increases the risk of 

death (30,31). We explore a group with stable coronary heart disease, and we do not 

know if reduced HRV or loss of oscillatory components are features of their baseline 

oscillatory distributions. If so, it could explain why further loss of oscillations is not seen 

after cardiac surgery. For future studies, one could consider looking at valve surgery 

patients without coronary heart disease.  

Pig blood glucose data 

In large animal studies, the number of animals is kept low due to ethics considerations, 

high cost and complex methodology. In Paper II, data from already performed 

experiments were used to describe general qualitative phenomena of blood glucose 

regulation. To study the generalizability of the findings, one must perform new 

experiments with a larger study group. For exploration of any underlying physiological 

cause of the observed oscillations, future experiments should include some kind of 

intervention. 

The animals were kept under general anaesthesia for 24 hours, where the primary aim 

was to validate the glucose sensors. The pigs received a bolus of insulin at the beginning 

of the experiments. When performing analyses for Paper II, this period was not included. 

General anaesthesia, prone position and artificial ventilation may have affected the 

glucose regulation. However, this is difficult to quantify, and must, as with all large 

animal experiments, be taken into consideration when interpreting the results.  

In all animal experiments, “the three R’s” must be considered (55,56):  
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Replacement: This study requires recordings from intact animals, as we are studying 

complex physiological mechanisms originating from an interplay of regulatory 

mechanisms. 

Reduction: We use glucose recordings from four animals that were already collected. 

As such, the animal sacrifices were already made, and our study contributed to increasing 

the amount of information provided by the experiments. 

Refinement: Our group has extensive experience in planning and performing 

experiments involving large animals. The project manager has long experience with 

human anaesthesia and was present during all experiments. The animals were euthanized 

while still sedated, referred to as so-called “acute experiments”. Altogether, the suffering 

of the animals was kept to an absolute minimum.  

The Fantasia database 

The database consists of 40 subjects, 20 of them including all three recordings of interest: 

continuous NIBP, ECG and respiration signals. The NIBP signals are uncalibrated and 

noninvasive, recorded with the volume clamp method. Working with uncalibrated 

signals is advantageous, as you do not have to deal with short, flat segments caused by 

the calibration (Figure 9). However, the absolute values of the signals are not necessarily 

correct. We believe the oscillatory content, and thus, the frequency distributions of the 

signals are unchanged. To avoid problems when comparing signals with different 

absolute values, we perform analyses that are independent of scale. 

 

Figure 9. Calibrated NIBP signal 

A calibrated NIBP signal showing the characteristic flat segments. This is a test recording 
performed with our research equipment, PowerLab 16/35 (ADInstruments, Oxford, UK). 



 40 

When working with the uncalibrated NIBP signals, we discovered that the absolute 

values had a tendency of increasing over short segments and stabilizing on a new level 

(Figure 10). According to the volume clamp method (described in Background: 

Biological signals), the finger cuff is cyclically inflated and deflated to keep the PPG-

signal flat. It is assumed that with a flat PPG-signal, the pressure inside the cuff equals 

the pressure inside the artery (36). We can only speculate on the underlying cause of the 

abrupt increase of pressure values. It is likely to assume that it is caused by some 

methodological factor, such as movement or changed placement of the cuff, and not a 

true increase in BP. The challenge with such steps is that they might mimic an oscillation, 

affecting the results. When choosing 10-min periods for analysis, we tried to avoid these 

segments. As many of the ECG signals also contain some segments of noise, and we had 

to select the same period for both signals, we had to accept some noise in the final 

periods. By removing outliers in the preprocessing, we removed short events of noise 

yielding extreme absolute values. However, the stepwise increases of the NIBP signals’ 

absolute values were not considered as outliers, as the signals stabilized at the new level.  

 

Figure 10. Variations in absolute values of uncalibrated NIBP signals 

A steep increase in absolute values of the NIBP signal is seen just after the 100-second mark.  

6.1.2 Noise handling and preprocessing 

There are several things that can be done to reduce noise, both in the experimental setting 

and through preprocessing. All electrodes should be tightly attached, cords should be left 

untouched and the subject should be resting. In clinical settings or if the study protocol 

involves some kind of activity, these requirements can only partly be met.  
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Preprocessing involves all actions or changes that are made to the data prior to analyses. 

It might involve screening data for out-of-range values, missing values and impossible 

data combinations (Sex: Female, Prostatic cancer: Yes). In the field of signal processing, 

preprocessing involves data preparation through selection of time period, filtering and 

others. 

In this thesis, we determined that it is impossible to provide noise-free recordings, even 

under controlled, experimental settings. After having selected nearly noise-free time 

periods, we saw that the remaining noise mainly included high-frequency irregularities 

in the baseline of the raw signals. As our main interest is slow oscillations, we are not 

interested in frequencies above the HR. Therefore, we developed a preprocessing 

algorithm, generating new time series based on the maxima of the raw signals. The 

variables SBP, HR and R-wave amplitude were established, as we wanted to look at the 

same aspects of the two signals: the maxima of the BP signal (SBP), the maxima of the 

ECG signal (R-wave amplitude) and the HR, which could have been extracted from 

either signal. We chose to extract the HR from the ECG, as this is in accordance with 

HRV analyses. With these variables, we have the opportunity to distinguish between 

oscillations in the oscillatory frequency from oscillations in the amplitude (Figure 11).  

 

Figure 11. Amplitude vs frequency modulations of biological signals 

An illustration of how an ECG signal can show oscillatory behaviour through both amplitude and 
frequency variations. The R-wave amplitude shows cyclic variations, even after baseline 
removal. Oscillations in HR time series have been extensively investigated with HRV and 
spectral analyses.  
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To check if our algorithms were applied correctly to circulatory signals, we used the 

Fantasia database (43,44). The recordings in the Fantasia database contain less noise 

than the ones we collected from cardiac surgery patients and are therefore easier to work 

with. The main aim of this work was to explore the oscillatory phenomena of the 

different variables and how they interact. Having worked with ECG signals for years, 

we had a suspicion that the R-wave amplitude contains oscillations slower than the 

respiration. We started exploring the literature and discovered the work of Brody from 

1956, describing the theoretical model of ventricular preload’s influence on R-wave 

amplitude (57). We found several works corroborating this theory through animal 

experiments (58–61). In humans, we found studies exploring R-wave amplitude changes 

in relation to coronary heart disease, intravascular volume status and mechanical 

ventilation (62–65). We found only one study plotting and inspecting the oscillatory 

behaviour of R-wave amplitude and relating this to the HR (66). One common feature 

of the cited articles is that they quantify amplitude variations by some measure of 

dispersion (e.g., variance) or only look at short-time variations, with emphasis on the 

respiration. We did not manage to find any publications describing slow oscillations in 

R-wave amplitude. We wanted to explore if R-wave amplitude also contains slow 

oscillations and their relation to slow oscillations in SBP and HR.  

Amplitude variations can result in the whole signal drifting, called baseline wander. For 

BP recordings, one does not specifically talk about baseline wander, as amplitude 

variations are actual variations of systolic and diastolic BP. In regard to the ECG, 

baseline wander is considered to originate from various and to some extent 

uncontrollable causes, such as respiration, body movements and variations in electrode 

impedance (67–69). Therefore, baseline wander of ECG signals is commonly removed 

during preprocessing. One of the investigated subjects in Paper III showed a clearly 

sinusoidal baseline variation with phase approximately 20 seconds. Figure 12 shows a 

10 min-selection of the ECG, without prior baseline-removal, and corresponding CWT 

of the iAmp.  
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Figure 12. Removal of baseline wander in ECG recordings 

The ECG and CWT of iAmp of subject f2o04, without prior baseline-removal. We see a clear 
sinusoidal oscillation with phase approximately 20 seconds in the ECG baseline, confirmed in 
the CWT of the iAmp. The CWT also illustrates the respiration with period just above 4 seconds. 

From our point of view, it is unlikely that this oscillation is caused by noise, as noise is 

characterized by high-frequency and/or irregular fluctuations. Similar baseline 

variations are not observed in any of the other subjects in the study, reducing the 

probability of a methodological cause. We were not able to conclude an underlying 

cause, having observed the phenomenon in only one subject. Nevertheless, we believe 

this raises questions to the current view of baseline variations not providing valuable 

information and the widespread practice of removing them prior to analyses.  

One can raise the question of bias in the process of selecting noise-free segments for 

analysis. When we first started our work with the cardiac surgery patients, we wanted to 

analyse the complete recordings using time-frequency analyses. Thus, the development 

through the perioperative course could be directly illustrated with time-frequency 
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spectra. As the preoperative recordings are much shorter, this would have made our 

results noncomparable, as the lowest possible identifiable frequency is related to signal 

length. Therefore, we decided to illustrate the time dimension through defining four 

situations and extracting 30-min sections representing each situation. The time points of 

important events were written down during data collection and used when selecting 

periods. The ECG and LDF signals showed large amounts of noise, especially during 

extubation and after waking up. This noise was most likely caused by movements and 

could not be avoided without impairing the quality of the patient care. Therefore, when 

choosing periods for analysis, we had to compromise between the quality of the signals 

and the time point of the perioperative course. Regarding the LDF signals, noise-free 

segments could only be provided in a subset of the patients, and they were therefore 

excluded from the main analyses. In one patient, the LDF signal was included in a sub-

analysis to examine one specific identified oscillation.   

6.1.3 Analyses 

Quantification of complexity 

As described in Background, the complexity of a system is caused by multiple 

interacting components, which further contributes to the information content of signals 

obtained from the system, the predictability of the signals and the ability to describe the 

signals in a simple manner (40,41). Oscillatory components of biological systems 

represent underlying components that interact and produce the behaviour of the system 

as a whole. They increase the information content and may reduce the predictability of 

biological signals. We used this as a basis for relating the number and distribution of 

oscillatory components to the overall complexity of the system. Altogether, we believed 

that frequency and time-frequency analyses could be used as surrogates for complexity 

analyses, as they decompose the signal and depict the number of components that are 

needed to describe the original signal. By this, we postulated that highly complex 

systems contain many oscillating components showing time-varying properties, possible 

to decipher with frequency- and time-frequency analyses. Having completed the work, 

we see that this approach involves challenges. The generated spectra showed a high 

number of oscillatory components and large interindividual variations. Altogether, a 
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quantitative comparison of complexity was difficult to provide. Instead, we looked for 

situations with loss of distinct oscillatory components, representing a reduction in the 

overall complexity (Paper IV). This is an insufficient approach if the aim is to develop a 

tool for defining different subjects’ resilience through the quantification of complexity.  

Spectral analyses 

All Fourier-based spectral analyses are hampered with deficiencies in regard to analysing 

biological signals, as the signals are seldom linear or stationary. Nonlinearity and 

nonstationarity can lead to low precision in the final spectra, as high numbers of waves 

or wavelets are required to describe the original signal. Another limitation considering 

Fourier and wavelet analyses is that they are bound by a time-frequency resolution based 

on the Heisenberg-Gabor limit. This is the origin of windows in such spectra, and a trade-

off between spectral and temporal resolution is unavoidable (70). The mathematical 

basis of this is known as the uncertainty principle of signal processing, which is given 

by Δ𝑡 ∙ Δ𝑓 ≤ -
./

, where 𝑡 represents the time and 𝑓 the frequency. With decreasing 

frequency, 𝑓, the time-resolution decreases, as the time-interval, ∆𝑡, increases. As slowly 

oscillating processes are of high interest in biological research, this represents a 

challenge when using such analyses.   

Originally, we planned to analyse all signals with the CWT. We planned to perform the 

analysis on the total signal length and were therefore interested in illustrating the time-

variability. We discovered the HHT, which promises higher time-resolution. As the HHT 

is computationally challenging we engaged Signal Analysis Lab to help us with the 

analyses. We decided to start our work with a methodology article, both to check that it 

was possible to use the HHT on biological signals and to compare the performance of 

different spectral analyses (Paper I). In the work of Paper I, we experienced that the high 

time-resolution provided by the HHT made it difficult to quantify and separate the 

different oscillatory components, both within and between subjects. The oscillatory 

components tended to overlap, making it difficult to quantify their frequency. The most 

prominent high-frequency components showed extremely large time-variations, 
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blocking the view of slower oscillatory components (Figure 13). To be able to see the 

oscillations of interest, these oscillations had to be removed from the final spectra.  

 

Figure 13. Oscillations with large time-variations 

A Hilbert spectrum with an oscillatory component showing large time-variations. In this case, it is 
both difficult to quantify the frequency of the oscillation, and the oscillation blocks the view of 
other, slower, oscillations.  

With this knowledge, we hesitated to continuate the use of the HHT, as we were planning 

to analyse larger datasets and perform comparisons on the group level. Additionally, we 

had become aware of the extent of the computational skills required to perform the HHT 

correctly. To avoid being dependent on help from others, we directed our focus back 

towards the CWT. To investigate its performance on slow oscillations, we used glucose 

signals obtained from pigs in 2014. As the signals were 24 hours long, they were ideal 

for the identification of slow oscillatory phenomena. In this work, we experienced that 

the CWT identified, with acceptable time-resolution, oscillations as slow as 0.0002-

0.0001 Hz. However, we discovered that it was challenging to identify localized, slow 

oscillations in long signals by subjecting the complete signal to the CWT. In those cases, 

we had to identify the oscillations by visual inspection and confirm their presence by 

applying the CWT to shorter segments of the signal.  

Analysis of phase differences 

In the literature, when describing phase differences, it is said that two signals are in phase 

when there is no time lag between the two. Thus, in all situations where there is a time 
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lag between two signals, they are said to be off phase. Two signals oscillate in antiphase 

when the time lag is close to half a period. Phase shift is presented in angles, calculated 

as a fraction of one whole turn.  

In this thesis, we do not compare an oscillation with a shifted version of itself, but rather 

compare oscillations that are identified in different time series. We do not calculate phase 

shift in angles but specify the time lag in seconds. Therefore, we restrict the use of the 

term off phase to examples where the oscillations do not follow each other. More 

specifically, if an oscillation has a period of 100 seconds, and the lag between the 

different time series is 2-3 seconds (Figure 5, Paper III), we say that the variables 

oscillate in phase. Additionally, we specify which time series or variable is leading. If 

an oscillation with a period of 4-5 seconds shows a similar displacement between 

variables (Figure 3, Paper III), we would say that the variables oscillate off phase, as the 

time lag is approximately half a period. This is in accordance with Figure 14. 

 

 

Figure 14. Phase differences and their interpretation 

An illustration of phase angles at different phase differences of signals x and y. Reprinted from 
Wavelet Comp 1.1, A guided tour through the R package (71) with permission from the authors. 
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6.2 Discussion of the main results 

The main motivation for this thesis was to establish robust methods for analysing 

biological signals and to use these to extract information from biological signals suitable 

for implementation to clinical decision tools. Through Papers I, II and III, we have 

developed a method for preprocessing and analysing biological signals. Summarized, we 

preprocess the raw signals by defining the maxima and creating new time series based 

on their absolute values (SBP and R-wave amplitude) or the oscillatory rate (HR). We 

found that the CWT identifies the same frequency components as the HHT and that high 

temporal resolution can be challenging in situations where you are comparing subjects 

and time points. We have explored the frequency distributions of glucose in pigs and 

circulatory signals in healthy and cardiac surgery patients. Looking at our findings 

altogether, there are some aspects we want to highlight: 

Oscillations in amplitude and frequency. We find oscillations in different aspects of 

biological signals – both frequency and amplitude. This might be explained by a direct 

link between the two – frequency ↔ amplitude. However, it could reflect different, 

synchronized physiological processes that leave different traces in biological signals.  

Heterogeneity. In Papers III and IV, we have explored frequency distributions of 

circulatory signals from cardiac surgery patients and healthy individuals. The healthy 

study population of Paper III was further subdivided into a young and an old group. We 

have performed comparisons between individuals, groups and over time. Altogether, our 

findings display huge intra- and interindividual variations, making it impossible to define 

features specific for healthy, diseased, ageing or cardiac surgery. Further, our findings 

do not directly translate to the specific frequency bands (high, low, very low and ultra-

low frequencies) that are described in the literature (6). One could speculate how the 

power would distribute between the different bands if we operated with frequency 

intervals instead of presenting the original frequency spectra. However, these bands have 

been established as researchers have identified peaks at the given frequencies 

(7,8,10,11), to which our findings do not correspond. We see the use of frequency bands 

as a simplification of a highly complex field.  
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Come and go. In Paper II, we describe oscillations that are not present all the time, but 

rather come and go. This might contribute to the described large intra- and 

interindividual variations. It also represents a risk of overseeing localized oscillations 

when analysing long signals, as described in Methodological considerations. 

Complexity. There are some studies stating that they quantify complexity from frequency 

spectra (24,72). However, they present spectra that are much less variable than our 

results, and simply quantify the degree of power among different frequency bands. Our 

idea was to do this with a much higher precision. As described in Methodological 

considerations, the large heterogeneity made quantifying this complexity challenging, 

not to mention comparing subjects and/or situations.  

We have sketched three factors that might explain the mentioned features of our findings 

and the discrepancies with earlier findings in the field: 

1) Reality is not as simple as earlier described. Reality is actually as heterogenous and 

time-varying as described in this thesis. Thus, earlier findings are either erroneous or 

representing only small aspects of reality. If so, the development of clinical decision 

tools would meet large challenges regarding generalizability.   

2) The measured signals only partly reflect the underlying physiology. Science is largely 

based on a reductionistic approach, where complex problems are divided into smaller 

and simpler units that are investigated separately (73). Some problems are solvable this 

way, but sometimes you lose the perspective of the system as a whole. We explore BP, 

ECG and glucose recordings with the aim of gaining knowledge about physiology. The 

signals are believed to represent a sum of all physiological mechanisms that affect the 

variable being measured. As a consequence, we cannot know to which extent the signals 

hold features that are important to physiology and if important features are not visible in 

the signals. To increase the possibility of identifying oscillatory processes, we chose to 

extract three variables representing different aspects of the signals and analysed them 

separately. Of the extracted variables, the R-wave amplitude is probably the least robust, 

as skin contact, electrode placement and body movements might disturb the findings. In 

addition, the physiological correlate of variations in R-wave amplitude is less explored.  
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3) There are methodological issues. The deviation from earlier findings might be caused 

by methodological issues, such as sample size, noise and/or choice of analysis. Sample 

size is the major limitation of this work. Heterogeneous results are the main reason for 

us not being able to conclude in accordance with the motivation and aims sketched when 

starting the project. We do not know if heterogeneity is a feature of the general 

population, or only of the explored samples. However, heterogeneity is seen in all papers 

of this thesis, giving us reason to believe that this is also the case for larger samples. 

Regarding the analyses, we know that all Fourier-based analyses are hampered with 

limitations in regard to biological signals. We have illustrated low temporal resolution 

among low frequencies, but still the CWT identified the same frequencies as the HHT 

(Paper I). Thus, we can expect our results to be correct when the analyses are applied to 

noise-free signals and when the frequency range is reasonable in relation to signal length. 

In Paper IV, we present a case where noise is misclassified as a true oscillation 

(Supplementary Figure 2, Paper IV). To avoid misinterpreting our results, we have 

inspected all raw signals and time series and related them to the frequency spectra. 

Nevertheless, we are left wondering if some of the identified oscillations represent noise 

and not true physiological oscillators. As we have collected data in controlled, 

experimental settings, this emphasizes the challenges one will meet when developing 

tools that are meant to be automated and used in everyday clinical practice. 

Altogether, our findings imply that biological oscillations cannot be used in clinical 

decision tools. The major reason for this, we believe, is caused by human physiology 

being much more heterogenous and complex than earlier believed. However, we cannot 

be completely sure that methodological challenges are not the actual problem. If so, 

technology is the limiting factor for future achievements. 
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6.2.1 Future perspectives 

Going back to the motivation for this thesis, we used two statements as the basis: 1) 

Specific oscillations of biological signals are linked to known physiological mechanisms, 

and they tend to disappear with disease, and 2) the overall complexity of biological 

systems is linked to the systems’ resilience and is reduced with age and disease. For this 

to be possible to implement in clinical decision tools, we need to identify features of 

biological signals that are specific for given diseases, but generalizable across patients. 

A complex physiology with large interindividual variations makes the statements 

invalid, and the following requirement impossible. This is supported by an early work 

by Ary Goldberger (22) that is pioneering in the field of complexity and one of the first 

studies describing loss of complexity with disease. The fact that the technology is still 

not implemented to clinical practice can indicate that we have met the same problems as 

many before us. In 2001, Leon Glass stated that “the field of biological rhythms have 

not yet led to medical advances, although several directions are under active 

consideration” (3). This statement came 20 years after the first description of oscillatory 

components of interbeat time series (7). Today, after another period of 20 years, 

increasing numbers of advanced mathematical algorithms are being developed (74,75), 

but the technology is still not seen in everyday clinical practice. Large efforts are made 

to develop wireless and more precise sensors, alongside with implementing a vast 

number of variables for automatic monitoring systems (76). However, the focus on 

systems based on biological oscillations alone seems to have slowed down. The observed 

failure to show definite progress makes us highly hesitant to expect future breakthroughs 

in the field. If possible, we believe further development is dependent on less focus on 

specific oscillations and their underlying physiological mechanisms. Only with a broader 

perspective, perhaps with use of systems biology, can the whole system be taken into 

consideration, and the observed heterogeneity might be explained (77). For 

implementation in clinical practice, the methods must be based on equipment that is 

affordable and widely available, in addition to involving analyses that are applicable 

across subjects and not dependent on manual validation. Among challenges that need to 

be overcome, we will highlight noise-handling and the development of an algorithm for 

quantification of complexity.  
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The field of biological oscillations is built upon the view that oscillations are a vital 

feature of all living organisms, and thus important in themselves. According to Cheong 

and Levchenko, this might not always be true: “the ease with which oscillations can 

emerge also should increase our caution about the natural tendency to ascribe 

functional significance to all observed oscillatory processes” (78). 
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7 CONCLUSIONS 

Compared to conventional frequency analyses, time-frequency analyses provide higher 

precision when analysing nonstationary signals and have the advantage of illustrating 

the signals’ time-variability. The CWT and the HHT, both time-frequency analyses, have 

similar capabilities for identifying oscillatory components of biological signals, although 

the CWT has considerably lower temporal resolution at low frequencies than the HHT.  

Biological oscillations show time-variability through period, amplitude and presence. 

We illustrate synchronization of respiratory oscillations in SBP, HR and R-wave 

amplitude. R-wave amplitude contains slow oscillations, and some cases show 

synchronized slow oscillations in SBP and HR. Slow oscillations in R-wave amplitude 

might be a result of preload variations in accordance with the Brody effect, but we cannot 

conclude on their underlying physiological mechanisms based on this work.  

The frequency distributions of SBP, HR and R-wave amplitude of cardiac surgery 

patients show only one case with loss of a distinct oscillatory component after surgery. 

At the group level, the surgery does not induce systematic changes in the frequency 

distributions, and the observed high variety seems to represent interindividual variations 

more than factors of the performed surgery.  

The overall conclusion of this thesis is that the oscillatory distributions of ECG and BP 

signals of healthy and cardiac surgery patients are highly heterogenous and do not hold 

features that are either group-specific or common to both groups. Hence, they do not 

hold information suitable for implementation in clinical decision tools. 
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8 ERRATA 

In Discussion, Methodological considerations, (page 46, line 10) the following sentence 

was corrected with the correct analysis (the HHT, not the CWT): Additionally, we had 

become aware of the extent of the computational skills required to perform the HHT 

correctly. 

Location was included for Signal Analysis Lab (Grimstad, Norway) on page 28 and 31, 

and for ADInstruments (Oxford, England) on page 39.  

References for Figure 1 (page 19), Figure 2 (page 20), Figure 5 (page 29), Figure 7 (page 

31) and Figure 14 (page 47) is included in the figure legends and in the reference list. 

Additionally, reference for Figure 1, paper III, is included.  

In the legend of Figure 6 (page 30), the correct reference (Iyengar et al, 1996) for the 

Fantasia database is included.  



 56 

 



 57 

9 REFERENCES 

1.  Hess B, Boiteux A. Oscillatory Phenomena in Biochemistry. Annu Rev 
Biochem. 1971;40(1):237–58.  

2.  Dupont G, Combettes L, Bird GS, Putney JW. Calcium Oscillations. Cold 
Spring Harb Perspect Biol. 2011 Mar;3(3).  

3.  Glass L. Synchronization and rhythmic processes in physiology. Nature. 2001 
Mar 8;410(6825):277–84.  

4.  Que C-L, Kenyon CM, Olivenstein R, Macklem PT, Maksym GN. 
Homeokinesis and short-term variability of human airway caliber. J Appl Physiol. 2001 
Sep 1;91(3):1131–41.  

5.  Hunt BR, Kennedy JA, Li T-Y, Nusse HE. The Theory of Chaotic Attractors. 
Springer Science & Business Media; 2013. 522 p.  

6.  Task Force of the European Society of Cardiology and the North American 
Society of Pacing and Electrophysiology. Heart Rate Variability Standards of 
Measurement, Physiological Interpretation, and Clinical Use. Circulation. 1996 Jan 
3;93(5):1043–65.  

7.  Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power 
spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat 
cardiovascular control. Science. 1981 Jul 10;213(4504):220–2.  

8.  Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, et al. 
Assessment of autonomic function in humans by heart rate spectral analysis. Am J 
Physiol-Heart Circ Physiol. 1985 Jan 1;248(1):H151–3.  

9.  Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an 
integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014 
Sep 30;5(1040).  

10.  Bracic M, Stefanovska A. Wavelet-based analysis of human blood-flow 
dynamics. Bull Math Biol. 1998 Sep;60(5):919–35.  

11.  Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, et al. 
Power spectral analysis of heart rate and arterial pressure variabilities as a marker of 
sympatho-vagal interaction in man and conscious dog. Circ Res. 1986 Aug;59(2):178–
93.  

12.  Julien C. The enigma of Mayer waves: Facts and models. Cardiovasc Res. 2006 
Jan 4;70(1):12–21.  

13.  Madwed JB, Albrecht P, Mark RG, Cohen RJ. Low-frequency oscillations in 



 58 

arterial pressure and heart rate: a simple computer model. Am J Physiol-Heart Circ 
Physiol. 1989 Jun 1;256(6):H1573–9.  

14.  Pagani M, Lucini D, Porta A. Sympathovagal balance from heart rate variability: 
time for a second round? Exp Physiol. 2012;97(10):1141–2.  

15.  Chou HF, Berman N, Ipp E. Oscillations of lactate released from islets of 
Langerhans: evidence for oscillatory glycolysis in beta-cells. Am J Physiol-Endocrinol 
Metab. 1992 Jun 1;262(6):E800–5.  

16.  Lang DA, Matthews DR, Peto J, Turner RC. Cyclic Oscillations of Basal Plasma 
Glucose and Insulin Concentrations in Human Beings. N Engl J Med. 1979 Nov 
8;301(19):1023–7.  

17.  Lipsitz LA, Goldberger AL. Loss of “Complexity” and Aging: Potential 
Applications of Fractals and Chaos Theory to Senescence. JAMA. 1992 Apr 
1;267(13):1806–9.  

18.  Kaplan DT, Furman MI, Pincus SM, Ryan SM, Lipsitz LA, Goldberger AL. 
Aging and the complexity of cardiovascular dynamics. Biophys J. 1991 Apr 
1;59(4):945–9.  

19.  Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-Four Hour Time 
Domain Heart Rate Variability and Heart Rate: Relations to Age and Gender Over Nine 
Decades. J Am Coll Cardiol. 1998 Mar 1;31(3):593–601.  

20.  Takahashi ACM, Porta A, Melo RC, Quitério RJ, da Silva E, Borghi-Silva A, et 
al. Aging reduces complexity of heart rate variability assessed by conditional entropy 
and symbolic analysis. Intern Emerg Med. 2012 Jun 1;7(3):229–35.  

21.  Lipsitz LA. Age‐related changes in the ‘“complexity”’ of cardiovascular 
dynamics: A potential marker of vulnerability to disease. Chaos Interdiscip J Nonlinear 
Sci. 1995 Mar 1;5(1):102–9.  

22.  Goldberger AL. Non-linear dynamics for clinicians: chaos theory, fractals, and 
complexity at the bedside. The Lancet. 1996 May 11;347(9011):1312–4.  

23.  Hon EH, Lee ST. Electronic evaluation of the fetal heart rate. VIII. Patterns 
preceding fetal death, further observations. Am J Obstet Gynecol. 1963 Nov 15;87:814–
26.  

24.  Goldstein B, Fiser DH, Kelly MM, Mickelsen D, Ruttimann U, Pollack MM. 
Decomplexification in critical illness and injury: relationship between heart rate 
variability, severity of illness, and outcome. Crit Care Med. 1998 Feb;26(2):352–7.  

25.  Claydon VE, Krassioukov AV. Clinical correlates of frequency analyses of 
cardiovascular control after spinal cord injury. Am J Physiol-Heart Circ Physiol. 2008 
Feb 1;294(2):H668–78.  



 59 

26.  Riordan WP, Norris PR, Jenkins JM, Morris JA. Early Loss of Heart Rate 
Complexity Predicts Mortality Regardless of Mechanism, Anatomic Location, or 
Severity of Injury in 2178 Trauma Patients1. J Surg Res. 2009 Oct 1;156(2):283–9.  

27.  Brunner R, Adelsmayr G, Herkner H, Madl C, Holzinger U. Glycemic 
variability and glucose complexity in critically ill patients: a retrospective analysis of 
continuous glucose monitoring data. Crit Care. 2012 Oct 2;16(5):R175.  

28.  Lundelin K, Vigil L, Bua S, Gomez-Mestre I, Honrubia T, Varela M. 
Differences in complexity of glycemic profile in survivors and nonsurvivors in an 
intensive care unit: A pilot study. Crit Care Med. 2010 Mar;38(3):849–54.  

29.  Ho KKL, Moody GB, Peng C-K, Mietus JE, Larson MG, Levy D, et al. 
Predicting Survival in Heart Failure Case and Control Subjects by Use of Fully 
Automated Methods for Deriving Nonlinear and Conventional Indices of Heart Rate 
Dynamics. Circulation. 1997 Aug 5;96(3):842–8.  

30.  Wolf MM, Varigos GA, Hunt D, Sloman JG. Sinus arrhythmia in acute 
myocardial infarction. Med J Aust. 1978 Jul 15;2(2):52–3.  

31.  Kleiger RE, Miller JP, Bigger JT, Moss AJ. Decreased heart rate variability and 
its association with increased mortality after acute myocardial infarction. Am J Cardiol. 
1987 Feb 1;59(4):256–62.  

32.  Kuo C-D, Chen G-Y, Lai S-T, Wang Y-Y, Shih C-C, Wang J-H. Sequential 
changes in heart rate variability after coronary artery bypass grafting. Am J Cardiol. 
1999 Mar 1;83(5):776–9.  

33.  Demirel Ş, Akkaya V, Oflaz H, Tükek T, Erk O. Heart Rate Variability After 
Coronary Artery Bypass Graft Surgery: A Prospective 3-Year Follow-Up Study. Ann 
Noninvasive Electrocardiol. 2002;7(3):247–50.  

34.  Lakusic N, Mahovic D, Sonicki Z, Slivnjak V, Baborski F. Outcome of patients 
with normal and decreased heart rate variability after coronary artery bypass grafting 
surgery. Int J Cardiol. 2013 Jun 20;166(2):516–8.  

35.  Lakusic N, Mahovic D, Kruzliak P, Cerkez Habek J, Novak M, Cerovec D. 
Changes in Heart Rate Variability after Coronary Artery Bypass Grafting and Clinical 
Importance of These Findings. BioMed Res Int. 2015;2015.  

36.  Penáz J. Criteria for set point estimation in the volume clamp method of blood 
pressure measurement. Physiol Res. 1992;41(1):5–10.  

37.  Kreyszig E. Advanced Engineering Mathematics. 9th ed. Wiley; 2006. 1245 p.  

38.  Knai K, Kulia G, Molinas M, Skjaervold NK. Instantaneous Frequencies of 
Continuous Blood Pressure a Comparison of the Power Spectrum, the Continuous 
Wavelet Transform and the Hilbert–Huang Transform. Adv Data Sci Adapt Anal. 2017 



 60 

Oct 1;09(04):1750009.  

39.  Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical 
mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time 
series analysis. Proc R Soc Lond Math Phys Eng Sci. 1998 Mar 8;454(1971):903–95.  

40.  Johnson N. Simply Complexity: A Clear Guide to Complexity Theory. Oxford, 
England: Oneworld Publications; 2009. 202 p.  

41.  Goldberger AL, Moody GB, Costa MD. Variability vs. Complexity. 
Physionet.org. 2012. Available from: https://archive.physionet.org/tutorials/cv/ 

42.  Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PCh, Peng C-K, Stanley 
HE. Fractal dynamics in physiology: Alterations with disease and aging. Proc Natl Acad 
Sci U S A. 2002 Feb 19;99(Suppl 1):2466–72.  

43.  Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA. Age-related 
alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol-
Regul Integr Comp Physiol. 1996 Oct 1;271(4):R1078–84.  

44.  Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et 
al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource 
for complex physiologic signals. Circulation. 2000 Jun 13;101(23):E215-220.  

45.  R: A Language and Environment for Statistical Computing. Vienna, Austria: R 
Foundation for Statistical Computing; 2018. Available from: https://www.R-project.org 

46.  Skjaervold NK, Solligård E, Hjelme DR, Aadahl P. Continuous Measurement of 
Blood Glucose: Validation of a New Intravascular Sensor. Anesthesiology. 2011 
Jan;114(1):120–5.  

47.  Skjaervold NK, Knai K, Elvemo N. Some oscillatory phenomena of blood 
glucose regulation: An exploratory pilot study in pigs. PLOS ONE. 2018 Apr 
2;13(4):e0194826.  

48.  Nahiyan KMT, Amin AA. Removal of ECG Baseline Wander using Savitzky-
Golay Filter Based Method. Bangladesh J Med Phys. 2017 Mar 9;8(0). 

49.  Knai K, Aadahl P, Skjaervold NK. Cardiac surgery does not lead to loss of 
oscillatory components in circulatory signals. Physiol Rep. 2020;8(9):e14423.  

50.  Proakis JG, Manolakis DG. Digital Signal Processing. Fourth. New Jersey: 
Pearson; 2003.  

51.  Fugal DL. Conceptual Wavelets in Digital Signal Processing: An In-depth, 
Practical Approach for the Non-mathematician. United States: Space & Signals 
Technical Pub.; 2009. 382 p.  



 61 

52.  Addison PS. Wavelet transforms and the ECG: a review. Physiol Meas. 2005 
Oct 1;26(5):R155–99.  

53.  Boashash B. Estimating and interpreting the instantaneous frequency of a signal. 
I. Fundamentals. Proc IEEE. 1992 Apr;80(4):520–38.  

54.  Cleveland WS, Devlin SJ. Locally Weighted Regression: An Approach to 
Regression Analysis by Local Fitting. J Am Stat Assoc. 1988;83(403):596–610.  

55.  Russell W, Burch R. The Principles of Humane Experimental Technique. 
Wheathampstead: Universities Federation for Animal Welfare; 1959.  

56.  Tannenbaum J, Bennett BT. Russell and Burch’s 3Rs Then and Now: The Need 
for Clarity in Definition and Purpose. J Am Assoc Lab Anim Sci. 2015 Mar 1;54(2):120–
32.  

57.  Brody DA. A Theoretical Analysis of Intracavitary Blood Mass Influence on the 
Heart-Lead Relationship. Circ Res. 1956 Nov;4(6):731–8.  

58.  Nelson CV, Chatterjee M, Angelakos ET, Hecht HH. Model studies on the effect 
of the intracardiac blood on the electrocardiogram. Am Heart J. 1961 Jul 1;62(1):83–92.  

59.  Horan LG, Andreae RL, Yoffee HF. The effect of intracavitary carbon dioxide 
on surface potentials in the intact canine chest. Am Heart J. 1961 Apr 1;61(4):504–14.  

60.  Angelakos ET, Gokhan N. Influence of venous inflow volume on the magnitude 
of the QRS Potentials in vivo. Cardiologia. 1963;42:337–48.  

61.  Nelson Clifford V., Rand Peter W., Angelakos Evangelakos T., Hugenholtz Paul 
G. Effect of Intracardiac Blood on the Spatial Vectorcardiogram. Circ Res. 1972 Jul 
1;31(1):95–104.  

62.  David D, Naito M, Chen CC, Michelson EL, Morganroth J, Schaffenburg M. R-
wave amplitude variations during acute experimental myocardial ischemia: an 
inadequate index for changes in intracardiac volume. Circulation. 1981 Jun;63(6):1364–
71.  

63.  Degre S, Longo B, Thirion M, Stoupel E, Sobolski J, Berkenboom G, et al. 
Analysis of exercise-induced R-wave-amplitude changes in detection of coronary artery 
disease in patients with typical or atypical chest pain under digitalis treatment. 
Cardiology. 1981;68 Suppl 2:178–85.  

64.  Cannesson M, Keller G, Desebbe O, Lehot J-J. Relations Between Respiratory 
Changes in R-Wave Amplitude and Arterial Pulse Pressure in Mechanically Ventilated 
Patients. J Clin Monit Comput. 2010 Jun 1;24(3):203–7.  

65.  Lee CK, Rinehart J, Canales C, Cannesson M. Comparison of automated vs. 
manual determination of the respiratory variations in the EKG R wave amplitude for the 



 62 

prediction of fluid responsiveness during surgery. J Comput Surg. 2014 Jan 10;1(1):5.  

66.  Amoore JN. Amplitude variations in electrocardiographic S and R waves during 
sleep. South Afr Med J Suid-Afr Tydskr Vir Geneeskd. 1981 Aug 8;60(6):232–6.  

67.  Sörnmo L. Time-varying digital filtering of ECG baseline wander. Med Biol 
Eng Comput. 1993 Sep 1;31(5):503.  

68.  Blanco-Velasco M, Weng B, Barner KE. ECG signal denoising and baseline 
wander correction based on the empirical mode decomposition. Comput Biol Med. 2008 
Jan 1;38(1):1–13.  

69.  Luo Y, Hargraves RH, Belle A, Bai O, Qi X, Ward KR, et al. A Hierarchical 
Method for Removal of Baseline Drift from Biomedical Signals: Application in ECG 
Analysis. Sci World J. 2013. 

70.  Burrus CS, Gopinath RA, Haitao G. Introduction to Wavelets and Wavelet 
Transforms. New Jersey: Prentice Hall; 1998.  

71.  Roesch A, Schmidbauer H. WaveletComp: Computational Wavelet Analysis. 
2018. Available from: https://CRAN.R-project.org/package=WaveletComp 

72.  Lipsitz L A, Mietus J, Moody G B, Goldberger A L. Spectral characteristics of 
heart rate variability before and during postural tilt. Relations to aging and risk of 
syncope. Circulation. 1990 Jun 1;81(6):1803–10.  

73.  Ahn AC, Tewari M, Poon C-S, Phillips RS. The Limits of Reductionism in 
Medicine: Could Systems Biology Offer an Alternative? PLOS Med. 2006 May 
23;3(6):e208.  

74.  Kralemann B, Frühwirth M, Pikovsky A, Rosenblum M, Kenner T, Schaefer J, 
et al. In vivo cardiac phase response curve elucidates human respiratory heart rate 
variability. Nat Commun. 2013;4:2418.  

75.  Shekatkar SM, Kotriwar Y, Harikrishnan KP, Ambika G. Detecting abnormality 
in heart dynamics from multifractal analysis of ECG signals. Sci Rep. 2017 Nov 
9;7(1):15127.  

76.  Davoudi A, Malhotra KR, Shickel B, Siegel S, Williams S, Ruppert M, et al. 
Intelligent ICU for Autonomous Patient Monitoring Using Pervasive Sensing and Deep 
Learning. Sci Rep. 2019 May 29;9(1):1–13.  

77.  Ahn AC, Tewari M, Poon C-S, Phillips RS. The Clinical Applications of a 
Systems Approach. PLOS Med. 2006 May 23;3(7):e209.  

78.  Cheong R, Levchenko A. Oscillatory signaling processes: the how, the why and 
the where. Curr Opin Genet Dev. 2010 Dec 1;20(6):665–9.  



 63 

 

10 APPENDIX – PAPERS I TO IV 

 





Paper I 
 



 



November 6, 2017 9:15 WSPC/2424-922X 244-ADSAA 1750009

Advances in Data Science and Adaptive Analysis
Vol. 9, No. 4 (2017) 1750009 (9 pages)
c© The Author(s)
DOI: 10.1142/S2424922X17500097

Instantaneous Frequencies of Continuous Blood Pressure
a Comparison of the Power Spectrum, the Continuous
Wavelet Transform and the Hilbert–Huang Transform

Kathrine Knai

Department of Circulation and Medical Imaging
Norwegian University of Science and Technology

Trondheim, Norway
kathrikn@ntnu.no

Geir Kulia

Department of Electronics and Telecommunications
Norwegian University of Science and Technology

Trondheim, Norway

Marta Molinas

Department of Engineering Cybernetics
Norwegian University of Science and Technology

Trondheim, Norway

Nils Kristian Skjaervold

Department of Circulation and Medical Imaging
Norwegian University of Science and Technology

Trondheim, Norway

Received 7 July 2017
Accepted 15 September 2017
Published 3 November 2017

Continuous biological signals, like blood pressure recordings, exhibit nonlinear and non-
stationary properties which must be considered during their analysis. Heart rate variabil-
ity analyses have identified several frequency components and their autonomic origin.
There is need for more knowledge on the time-changing properties of these frequencies.
The power spectrum, continuous wavelet transform and Hilbert–Huang transform are
applied on a continuous blood pressure signal to investigate how the different methods
compare to each other. The Hilbert–Huang transform shows high ability to analyze such
data, and can, by identifying instantaneous frequency shifts, provide new insights into
the nature of these kinds of data.

Keywords: Instantaneous frequency; biological signals; power spectrum; continuous
wavelet transform; Hilbert–Huang transform.

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.

1750009-1

A
dv

. D
at

a 
Sc

i. 
A

da
pt

. D
at

a 
A

na
l. 

20
17

.0
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
O

R
W

E
G

IA
N

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 &

 T
E

C
H

N
O

L
O

G
Y

 (
N

T
N

U
) 

on
 0

9/
11

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 6, 2017 9:15 WSPC/2424-922X 244-ADSAA 1750009

K. Knai et al.

1. Background

Continuous biological signals, like blood pressure recordings, exhibit both nonlinear
and nonstationary properties which must be considered during their analysis [Usui
and Toda (1991)]. The fractal nature of biological signals is already thoroughly stud-
ied by methods as detrended fluctuation, multiscale entropy and Poincaré analyses,
where the complexity of the overall signal is indexed [Seely and Macklem (2004)].
In order to decipher the oscillatory components of the signal, frequency analyses
are required. The Fourier transform was introduced in the 19th century by Joseph
Fourier, a method for decomposing a signal to a sum of simple harmonics [Kreyszig
(2006)]. The Discrete Fourier transform is the foundation for several spectral anal-
ysis methods, such as the power spectrum [Proakis and Manolakis (2003)] and the
continuous wavelet transform (CWT) [Burrus et al. (1998)]. The CWT is a time-
frequency analysis method for identifying the nonstationary behavior of the signal
and has been used to identify several dominant frequency bands in physiological
time series [Bracic and Stefanovska (1998)]. The Hilbert–Huang Transform (HHT)
was introduced in 1998 by Norden Huang [Huang et al. (1998)]. It was originally
developed for analyzing nonstationary ocean waves and is, unlike the aforemen-
tioned methods, not based on the Fourier Transform. When studying oscillations
in the circulatory system, one will easily discover the frequencies constituted by
the heart beats and the respiration (1Hz and 0,2–0,3Hz, respectively). In heart
rate variability (HRV) analyses of human ECG-signals, one has defined three main
frequency components: high frequencies (HF) at 0.15–0.4Hz; low frequencies (LF)
at 0.04–0.15Hz; very low frequencies (VLF) at 0.003–0.04Hz; ultralow frequencies
(ULF) below 0.003Hz [Task Force (1996)]. The regulatory origin of these compo-
nents have been studied to a great extent [Shaffer et al. (2014); Li et al. (2011)],
but there is a need for more knowledge on the time-changing properties of these fre-
quencies and the transferability to other biological signals, such as blood pressure.
Motivated by the interest in exploring these frequency components, three different
techniques are investigated in this paper to evaluate their capabilities in detecting
instantaneous frequencies. The power spectrum, CWT, and HHT are applied on a
real-life continuous blood pressure signal to investigate how the different methods
compare to each other in terms of instantaneous frequency capture, focusing on the
LF and VLF-range. The ULF are only identifiable in recordings longer than 5 min
and thus beyond the scope of this paper.

2. Study Material

The signal examined in this paper is a 5min’ invasive blood pressure recording from
one patient scheduled for coronary heart surgery at Trondheim University Hospital,
Norway. Written consent was collected prior to data collection. The study protocol
is approved by the Regional Committee for Medical and Health Research Ethics
(REC). The signal is recorded with the patient resting in bed during a stable
coronary condition, the morning before surgery. An arterial cannula was placed
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in the patient’s left radial artery using the standard technique; the patient did
not receive any premedication prior to data collection. The data are sampled by
PowerLab (ADInstruments) with a sampling rate of 400Hz, and exported to s2s, a
software provided by Signal Analysis Lab, for analysis.

3. Results

3.1. Fourier-based spectral analysis

Figure 1 shows the Fourier-based power spectrum [Proakis and Manolakis (2003)]
of frequencies below 1Hz of the continuous blood pressure signal. From this, a
frequency peak around 0.8Hz is identified. We can also see increasing power in the
frequency components below 0.1Hz, but it is not possible to unambiguously identify
any specific frequency peaks in this range.

The power spectrum in Fig. 1 cannot capture the time-varying nonstationary
properties of the frequency. The time-varying blood pressure was therefore analyzed
using CWT as shown in Fig. 2.

A frequency centered just below 1 Hz, shown in red, corresponds to the heart
rate and the frequency peak at 0.8Hz in the power spectrum (Fig. 1). There also
seems to be high power in the LF- and VLF-range, better visualized in Fig. 3.

There seems to be higher power around 0.04Hz and just below 0.01Hz, but as
the CWT is limited by a physical time-frequency resolution, it is challenging to
determine any nonstationary properties of these lower bands. The CWT optimizes
the resolution by applying time-frequency scaling, giving high frequency resolution
and lower temporal resolution in the lower band and higher temporal resolution
with lower frequency resolution in the upper bands [Burrus et al. (1998)].

Fig. 1. Fourier-based power spectrum of the continuous blood pressure.
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Fig. 2. CWT of the continuous blood pressure. The spectrum shows a 5 s extraction of the 5min
analyzed and frequencies up to 10Hz.

Fig. 3. CWT of the invasive blood pressure signal, showing frequencies below 0.16 Hz.

3.2. Hilbert–Huang transform

The HHT is, unlike Fourier-based spectral analysis methods, not based on the use
of simple harmonics or predefined mother wavelets and is therefore not bound by
the time-frequency resolution [Burrus et al. (1998)]. Instead, it uses the Empirical
Mode Decomposition (EMD) to decompose the raw blood pressure signal BP(t)
into moncomponents with varying amplitudes and frequencies called Intrinsic Mode
Functions (IMFs) so that

x(t) = r(t) +
n∑

i=1

ci(t), (1)

1750009-4

A
dv

. D
at

a 
Sc

i. 
A

da
pt

. D
at

a 
A

na
l. 

20
17

.0
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
O

R
W

E
G

IA
N

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 &

 T
E

C
H

N
O

L
O

G
Y

 (
N

T
N

U
) 

on
 0

9/
11

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 6, 2017 9:15 WSPC/2424-922X 244-ADSAA 1750009

Instantaneous Frequencies of Continuous Blood Pressure

Fig. 4. The IMFs of x(t), visualized by the same 5 s period as in Fig. 2. The residual is shown
in orange.

where x(t) = BP(t) is the time-varying blood pressure, ci(t) is the intrinsic mode
function number i that x(t) consists of, and n is the total number of IMFs. The raw
signal x(t) were decomposed using EMD, and a 5 s sequence of the IMFs is shown
in Fig. 4.

Each of the IMFs ci(t) that x(t) consists of, can be written in the form

ci(t) = ai(t) cos θi(t), (2)

where ci(t) is bound to only have one local extrema for each zero-crossing, and ai(t)
and θi(t) are unambiguously defined [Huang et al. (1998); Hahn (2003)]. From this,
the instantaneous frequency is defined as the time-derivative [Boashash (1992)] of
the phase so that

f(t) =
1
2π

dθ(t)
dt

. (3)

We can then define a Hilbert spectrum as

H(f, t) =
n∑

i=1

{
ai, f = fi(t)

0, otherwise
. (4)

Figure 5 shows the Hilbert spectrum of x(t). The spectrum shows frequen-
cies corresponding to the frequencies in the CWT; the heart frequency just below
1Hz and several low frequencies. Frequencies lying above the heart rate are mainly
caused by reflections of the closing of the aortic valve and are beyond the scope
of this paper. However, they are useful for validating the CWT and HHT as both
specters should constitute approximately the same time-varying high frequency-
components. Figure 6 shows the CWT (Fig. 2) and the HHT (Fig. 5) overlapped,
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Fig. 5. Hilbert spectrum of x(t), showing frequencies up to 10Hz and the same 5 s period as in
Figs. 2 and 4.

Fig. 6. The continuous wavelet transform in Fig. 2 shown in grayscale, overlapped with the
Hilbert spectrum in Fig. 5.

with the CWT in grayscale, white illustrating high power and black illustrating low
power. We clearly see that the shape of the highest frequency components resembles
each other.

Figure 7 shows a Hilbert spectrum of frequencies below 0.16Hz. The high fre-
quency IMFs are discarded, and only the four lowest frequency components are
displayed. One IMF constitutes large time variations and is therefore difficult to
evaluate. The three other IMFs are varying around 0.04Hz, 0.02Hz and 0.01Hz.
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Fig. 7. Hilbert spectrum of the four lowest IMFs of x(t).

For better visualization of the performance of the CWT compared to the HHT,
Fig. 8 shows an overlapping of the specters in Figs. 3 and 7. The CWT is shown in
grayscale. We see that areas with high power in the CWT (white and light gray)
only partially correspond to areas with high power in the Hilbert spectrum. In
the discussion, we suggest that this is caused by poor resolution of the CWT and
removal of IMFs that would have blocked the view of the CWT. There is better
correspondence between the areas with low power, seen as black spots in the CWT.

Fig. 8. The continuous wavelet transform in Fig. 3 shown in grayscale, overlapped with the
Hilbert spectrum in Fig. 7.

1750009-7

A
dv

. D
at

a 
Sc

i. 
A

da
pt

. D
at

a 
A

na
l. 

20
17

.0
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
O

R
W

E
G

IA
N

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 &

 T
E

C
H

N
O

L
O

G
Y

 (
N

T
N

U
) 

on
 0

9/
11

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 6, 2017 9:15 WSPC/2424-922X 244-ADSAA 1750009

K. Knai et al.

4. Discussion

4.1. Comparison of the methods

The Power spectrum differs from CWT and HHT as it shows the frequency distribu-
tion in the signal under the assumption of time invariant amplitude and frequency
values. By this assumption, the power spectrum cannot show any variation over
time. The power spectrum identifies a frequency peak around 0.8Hz corresponding
to the heart rate, which is also seen in the CWT and HHT spectra. Consider-
ing frequencies below 0.1Hz, the power spectrum does not unambiguously identify
any specific frequency peaks, mainly caused by the spectral leakage in the Fourier
Transform.

Both the CWT and HHT identify time variations in the high frequency range,
but in the low frequency range, the CWT has considerable lower temporal res-
olution than the HHT. The CWT identifies two bands with high power around
0.04Hz and just below 0.01Hz. The HHT identifies the same frequencies and addi-
tionally a frequency around 0.02Hz. It also illustrates the time-varying properties,
especially seen in the 0.04Hz-component. When comparing CWT and HHT in the
low-frequency range in Fig. 8, one sees that the CWT has large areas with medium
to high power (light gray and white) and smaller areas with low power (black).
Thus, it could seem that the CWT performs better when it comes to identifying
where there are no frequencies. On the other hand, the explanation could be that
the areas with frequencies are smaller than illustrated and areas without frequen-
cies are bigger than illustrated. Thus, the areas without frequencies are hidden and
shown as small spots in the final specter. Some of the areas in Fig. 8 shows high
power in the CWT but no power in the Hilbert spectrum. This would probably
be avoided by showing more IMFs in the Hilbert spectrum, but we chose not to
include them as they blocked the view of the CWT.

As mentioned in the introduction, biological data often exhibit both nonlinear
and nonstationary properties which must be considered during their analysis. This
is arguably the major reason for spectral leakage and low accuracy when analyzing
such data with Fourier-based spectral analyses. HHT, being a data-driven approach
designed to capture instantaneous frequency, is well suited for analyzing such data,
and can, by identifying instantaneous frequency shifts, provide new insights into
the nature of these kinds of data.

4.2. Methodological considerations

When analyzing biological data, one must always consider what may have influenced
the data other than the physiological phenomenon one wants to investigate. To
minimize autonomic activation and artifacts caused by postural changes, the patient
was kept lying during data collection, and the data used for analysis was recorded
after 55min of rest. The patient did not receive any premedication prior to data
collection. For correct pressure recordings, the transducer was kept in the same
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height as the arterial cannula. The data were collected with research hardware and
software, not patient monitors used in the clinic. Such patient monitors filter the
raw signal in high extent and has several algorithms for identifying abnormalities
such as fall in blood pressure, arrhythmias, etc. Using research equipment gives the
researcher complete control of how the raw signal is processed before analysis. This
is an advantage as it can be difficult to know exactly which pre-processing is used
in clinical equipment. In later studies on these data, we are primarily interested
in looking at slow oscillations, and therefore the maximum frequency of interest
is the heart rate (∼1Hz). The blood pressure signal x(t) was oversampled with a
sampling rate of 400Hz to avoid aliasing [Proakis and Manolakis (2003)].
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Abstract

It is well-known that blood glucose oscillates with a period of approximately 15 min (900 s)

and exhibits an overall complex behaviour in intact organisms. This complexity is not thor-

oughly studied, and thus, we aimed to decipher the frequency bands entailed in blood glu-

cose regulation. We explored high-resolution blood glucose time-series sampled using a

novel continuous intravascular sensor in four pigs under general anaesthesia for almost 24

hours. In all time series, we found several interesting oscillatory components, especially in

the 5000–10000 s, 500–1000 s, and 50–100 s regions (0.0002–0.0001 Hz, 0.002–0.001 Hz,

and 0.02–0.01 Hz). The presence of these oscillations is not permanent, as they come and

go. This is the first report of glucose oscillations in the 50–100 s range. The origin of these

oscillations and their role in overall blood glucose regulation is unknown. Although the sam-

ple size is small, we believe this finding is important for our understanding of glucose regula-

tion and perhaps for our understanding of general homeostatic regulation in intact

organisms.

Introduction

A key feature of physiological regulation is the oscillations and pulsations that are apparent in
all advanced organisms. These are believed to be of importance for several regulatory pro-
cesses, and are seen in different organ systems such as the endocrine system, the respiratory
system, the circulatory system, the nervous system, and others. The underlying physiological
bases for the oscillatory patterns observed in global variables, is believed to be pulsatile and
synchronization mechanisms at lower spatial and temporal levels. [1–3]

The pulsatile release of insulin from the beta-cells of the pancreas has been known for sev-
eral decades and has been examined in both in vitro and in vivo studies [4,5]. Insulin is released
in synchronized bursts with a periodicity of approximately five minutes. The amount of insulin
released with each burst is constantly changing depending on the current blood glucose level
(BGL). Even in periods of stable BGL, the consecutive bursts are varying, possibly due to the
system perturbing itself to fine-tune its regulation. When studying the BGL in intact organisms
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with massive repetitive measurements, oscillations with a periodicity of approximately fifteen
minutes have been found [6]. However, studies of continuous BGL measurements from subcu-
taneous sensors indicate that a normal BGL entails a complex regulatory pattern [7][8]. Fur-
thermore, this pattern seems to “decomplexify” both as patients develop diabetes mellitus and
as a consequence of critical disease [9–12]. This indicates that there could be several distinct
oscillatory components in the native BGL regulation that are yet to be discovered.

We have the developed a method to study BGL changes over time in animals with a highly
accurate and quickly responding continuous intravascular sensor [13]. In previous studies, we
found that this sensor was able to detect these small oscillations in the BGL [14]. Therefore, in
this study, we aimed to decipher BGL oscillations in longer time series in intact pigs.

Materials andmethods

Animals, anaesthesia and study protocol

The study was approved by the Norwegian State Commission for Animal Experimentation
(Oslo, Norway). A total of four domestic pigs were used in the studies (22–28 kg), and they
were acclimatized and treated in accordance with the European Convention for the Protection
of Vertebrate Animals used for Experimental and Other Scientific Purposes. The animals were
premedicated with intramuscular diazepam 10 mg and azaperone 400 mg. Anaesthesia was
induced through an intravenous access on the external surface of theear with atropine 1.0 mg,
fentanyl 8.0 μg/kg, thiopenthal sodium 4.0 mg/kg and ketamine hydrochloride 8.0 mg/kg.
Before intubation, 5 ml of 40 mg/ml lidocaine was applied to the larynx. The animals were ven-
tilated in pressure control mode on a ventilator (Dameca, Copenhagen, Denmark) with initial
values of FiO2 at 0.30, a tidal volume of 10 ml/kg, PEEP at 6 cmH2O and respiratory frequency
of 18/min adjusted as needed in order to maintain PaCO2 at 4.5–5.5 kPa. Anaesthesia was
maintained by isoflurane 0.5–1.0%. Based on clinical response this was supplemented with
boluses of fentanyl 50 μg/ml as needed. Intravascular volume was maintained by a bolus of
acetated Ringer’s solution 10 ml/kg, followed by a continuous infusion of 10 ml/kg/h through-
out the experiment. 5000 IU heparin was administered i.v. to prevent clot formation. The
animals were kept on the ventilator for almost 24 hours before euthanasia with pentobarbital
100 mg/kg.

After surgical cut-down, the animals were fitted with a central venous line for fluid and
medicine administration in their right internal jugular vein and an arterial line in their left
carotid artery. Two intravascular glucose sensors (GlucoSet, Trondheim, Norway) were
inserted in each superficial femoral artery after surgical cut-down, and connected to the glu-
cose monitor. Details of the glucose sensor with pre-insertion two-point calibration as well as
repetitive post-insertion one-point calibrations are described in [13].

Data handling and analyses

The calibrated glucose signal was exported for analysis with the statistical software “R” version
3.3.0 with the “WaveletComp” package [15,16]. We removed the first 200 min of the sampled
data in each series since these were periods of large instability and calibration of the sensors.
The rest of the data from the entire study time until sacrifice of the animals are included in the
study and are presented in Fig 1. The rest of the data were imported into the statistical soft-
ware, and a combination of visual inspections and quantitative time-frequency analysis with
continuous wavelet analysis was applied, as described in the Results & Discussion section.

The continuous wavelet transform (CWT) is a convolution of the original signal with a
function generated from the so-called “mother wavelet” [17]. The mother wavelet is a wave-
form of limited duration with an average value of zero. In the convolution process, it is shifted
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in time and stretched and shrunk through the use of a scaling function. By stretching and shift-
ing the mother wavelet in time, the CWT identifies the correlation of different frequencies at
different time points. The final wavelet power spectrum is made by making a 3D-display of the
correlation values (degree of match = power) and indicates the power by colour.

The most frequently used mother wavelet and the one used in this paper, the Morlet wave,
is by mathematical definition a Gaussian enveloped cosine wave [17,18]. To illustrate the oscil-
latory phenomena, the presence of which varied, we performed the CWT on selections of the
time series. Instead of illustrating frequency in Hz (number of cycles per second), we use
period (the duration of time of one cycle), specified in seconds.

Results & discussion

All recordings were mainly performed with BGLs in the range of 4 to 6.5 mmol/l; however, as
seen from Fig 1, the BGLs of all animals slowly declined throughout the studies. Some of the
BGLs of the animals were very low at the end of the experiment, and the data for these periods
were discarded before analysis. When qualitatively studying the BGLs of the four animals (Fig
1) a few oscillatory periods can clearly be seen. In Pig 1 and to some extent in Pig 3, one can

Fig 1. Time series of the glucose values for the four animals. The length of the time series and thus the scaling on the x-axes different between individual animals
(BGL = Blood glucose level).

https://doi.org/10.1371/journal.pone.0194826.g001
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see a very slow wave with a period of somewhere between 5000 and 10000 sec (0.0001–0.0002
Hz⇡ 1½ h period). In particular, in some parts of Pigs 2, very distinct oscillations with a peri-
odicity of approximately 1000 sec (0.01 Hz⇡ 15 min) can be observed.

When examining the data in details, as we will below, there are oscillatory components to
be found with periodicity ranging from 50 to 5000 sec. These oscillations constitute time-
changing properties and should therefore be analysed by a time-frequency method such as the
CWT. However, since the oscillatory components are not present throughout the recording
and the power of the oscillations compared to the overall signal is so low, it is difficult to
merely analyse the signal in its entirety. We subjected the entire time series of Pig 1 to a CWT,
looking for periodicity from 30 to 10000 sec, but we had difficulty in deciphering any mean-
ingful information apart from very slow oscillations at a periodicity of approximately 8000 sec
(Fig 2A). When repeating the analysis only for the slowest period, we obtained a clearer visual-
ization of this 8000-sec oscillation (Fig 2B). We then repeated the procedure for the shortest
periods we studied, 50–100 sec. For these periods, the analysis did not perform well, only indi-
cating some interesting periods in the high frequency range, especially between 10000 and
20000 sec and at 40000 sec in the time series (Fig 2C).

Before going deeper into the faster frequencies, we created a complete time series CWT of
the slowest frequencies and performed these analyses for Pigs 2, 3, and 4. Pig 2 also had a low-
frequency component at 5000–10000 sec throughout the series, although with larger time-vari-
ations than Pig 1. Pig 3 had a very complex oscillatory pattern with an increasing decay in BGL

Fig 2. Wavelet power spectrum from the continuous wavelet transform (CWT) of the entire time series from Pig 1. The plot depicts the presence of distinct periods
throughout the time series, with the time in the experiment in seconds at the abscissa, the time of the respective periods on a logarithmic scale at the ordinate, and the
“power” of distinct periods as a function of the time-series shown in colours according to the scale next to the plots. The CWT covering the whole range of periods from
30–10000 sec only reveals the slow oscillation at approximately 8000 sec (A), which is highlighted when focusing in on the slow periods (B). The CWT of the whole time-
series focusing on the high-frequency oscillations at 30–300 sec does not yield any meaningful result (C).

https://doi.org/10.1371/journal.pone.0194826.g002
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throughout the time-series, that seems to disturb the analysis; however, the 5000–10000-sec
oscillatory component can to some extent be seen at the beginning and end of the series. In
Pig 4, this component is also present and is most visible in the first and last part of the CWT
analysis but less evident in the middle of the analysis period. The lack of such a component in
the middle could be caused by several large abrupt changes, artefacts, and the presence of
other, more powerful higher-frequency oscillations (Fig 3).

As seen from Fig 1, Pig 2 had very distinct oscillations with a periodicity of some 1000 sec
throughout the second quarter of the time series. We therefore specifically searched for this

Fig 3. Wavelet power spectrum of the continuous wavelet transform of slow oscillations (1000–10000 seconds) of
Pig 2, Pig 3 and Pig 4.

https://doi.org/10.1371/journal.pone.0194826.g003
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component in this one animal to quantify this component, looking in the range from 500 to
2000 sec. The CWT result is somewhat interesting as it shows both some of the strengths and
the weaknesses of the method. One can see the approximately 1000-sec oscillation between
1000 and 3000 sec in the time series, but it does not stand out as very powerful and clear (Fig
4). This is probably caused by a combination of edge effects, artefacts, and other oscillatory
components somewhat overshadowing the period we are examining.

When looking into the individual time series in more detail, especially searching for faster
oscillatory periods, some interesting features appear. Pig 1 has quite a few periods with distinct
oscillations in the 50–100 sec range, and Fig 5 depicts some of the most impressive periods. As
shown, the exact periodicity varies some, and sometimes it changes in a linear fashion within
small time periods; for example, in Fig 5 panel B, there is a quickly oscillating component that
seems to have a linear increase in periodicity. Fig 6 depicts a CWT of this individual time
period. Here, we have both an average power spectrum that does not consider the time dimen-
sion and therefore does not yield much information (left panel), and a time-frequency plot
where the oscillatory component is very visible. The latter plot clearly shows how the oscil-
latory component linearly increases its period from 50 to 300 sec.

Often, one oscillatory component precedes another, or different oscillatory components are
present at the same time in a fractal-like pattern. For example, in Pig 2, there is a distinct
period of 50–100-sec oscillations followed by the very characteristic 1000 sec oscillation (Fig 7)

Fig 4. Wavelet power spectrum of the continuous wavelet transform of Pig 2 with a periodicity set to 500–2000 sec to identify the 1000-sec oscillatory
component in the second quarter of the time series. This period is somewhat visualized in orange colour in the plot. The high power seen at 35000–40000 sec in
the time series is caused by the steep decay in BGL at this time period.

https://doi.org/10.1371/journal.pone.0194826.g004
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Fig 5. Some interesting periods from Pig 1 with oscillations in the 50–100 sec period range.

https://doi.org/10.1371/journal.pone.0194826.g005

Fig 6. Continuous wavelet transform of the time series from Fig 5B where the periodicity appears to be constantly changing. The average power plot to the left only
indicates that there are some periodicities in the 100–300 sec range while the wavelet power spectrum plot to the right clearly shows how the main oscillatory component
has a linear rising periodicity from 50 to 300 sec throughout the time series. The abrupt drop in the middle of the series, seen in Fig 5B, yields the large artefact in the
middle of the wavelet power spectrum plot.

https://doi.org/10.1371/journal.pone.0194826.g006
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However, the fractal nature is most clearly seen in Pig 3, where Fig 8 depicts two illustrative
situations in which both the 100-sec and the-1000 sec oscillations are present at the same time.

In Pig 4, we found several oscillatory components, especially in the 50–100-sec range and
the 1000-sec region, as shown in Fig 9.

The current study was exploratory in its nature, and should be interpreted as hypothesis
generating. We also kept in mind that we studied pigs, not humans, and the very limited num-
ber of animals observed. The results of this pilot animal study need to be confirmed in larger
future studies, preferably in humans, to draw clearer conclusions. Nevertheless, these examples

Fig 7. A period from Pig 2 in which two different oscillatory components follows each other. In Fig 7A, the 500–1000-sec slow oscillating component in the second
half of the time series is shown. A period (marked in red, enlarged in panel B) seems to have a fast oscillating component at 50–100 sec. The wavelet power spectrum
from the continuous wavelet transform of the time series in 7 B is displayed in 7 C, and this clearly shows the 50–100 sec oscillatory component.

https://doi.org/10.1371/journal.pone.0194826.g007
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show several oscillatory components in the time series of all four pigs. In our study, we find
clear oscillations in the 5000–10000-sec, 500–1000-sec, and 50–100-sec regions (0.0002–0.0001
Hz, 0.002–0.001 Hz, and 0.02–0.01 Hz). This could indicate that there are three distinct oscilla-
tors within the organism that regulate the BGL. It is beyond the scope of this exploratory study
to speculate regarding the physiological origin of these oscillations. However, based on our
previous studies on the effect of intravenous insulin boluses on BGL changes in pigs, where the
effect of each bolus has an approximately 15-min BGL-lowering effect [19], the fastest oscilla-
tions are unlikely to be caused by the pulsatile oscillation release by the beta-cells. The two
slowest effects, in contrast, could be caused by such pulsatility.

The current study confirms observations of previously described oscillations using a novel
sensing system, and describes a previously undescribed high-frequency oscillatiory phenome-
non. There have been some concerns that the observed differences in complexity in continu-
ous glucose measurements in different clinical situations could be caused by limitations in the

Fig 8. The fractal nature of blood glucose oscillations illustrated with two examples from Pig 3. Panels A and D depicts the time series from two situations in which
the 1000-sec oscillation is clearly seen. Panels B and E depicts the wavelet power spectrum from the continuous wavelet transform from A and D, respectively, clearly
showing the 1000-sec oscillatory component. However, the 50–100-sec component is poorly depicted in these figures due to the low power in the high-frequency
oscillations compared with the low-frequency oscillations. Thus, panels C and F depicts the 50–100-sec components from A and D, respectively. (BGL = blood glucose
level).

https://doi.org/10.1371/journal.pone.0194826.g008

Some oscillatory phenomena of blood glucose regulation

PLOSONE | https://doi.org/10.1371/journal.pone.0194826 April 2, 2018 9 / 13



sensors [20]. However, the novel sensing system used in this study has a very low signal-to-
noise ratio, as seen in the figures containing unprocessed raw data (Figs 1, 5, 7 and 8). The
high-frequency phenomenon is unlikely to have been picked up with slower glucose sensors.
Nevertheless, the sensors used in this study have a time constant to stepwise change of some
two minutes. The amplitudes of the measured oscillations are therefore likely larger than those
that we measure in these experiments due to damping caused by this time-delay.

A limitation of using a novel sensing system is that it is not as well-described as a more
mature system and that the results could be caused by an unknown interference or other phe-
nomenon in the sensing system. However, the non-stationarity and physiological appearance
of the oscillations make them unlikely to be caused from some unknown properties of the opti-
cal signal processing. Prior to this study, the sensors were tested in in vitro studies to examine
interference by other physiological and pharmacological chemical factorss, and they were
found to be sensitive to interferents, mainly temperature and pH. However, while these
measures can change quickly in experimental conditions [21], no changes in the experimen-
tal protocol varied with the same frequency as the oscillations. Alternatively, could the
observed BGL oscillations be caused by some other natural oscillatory phenomena or iatro-
genic interference from medications or other interventions? All medication given

Fig 9. Some interesting periods from Pig 4 with oscillations in the 50–100-sec range and the 1000-sec range.

https://doi.org/10.1371/journal.pone.0194826.g009
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throughout a study can theoretically have some unappreciated effect on the physiological
outcome studied [22], for example, isoflurane is known to interfere with the insulin/glucose
system, albeit not in an oscillatory manner [23]. It is also unlikely that the oscillatory nature
of the respirator with a periodicity of three to four seconds or occasional changes in anaes-
thesia could cause the rhythmicity observed in the BGL. Nevertheless, the current study
cannot rule out that the observed oscillations were in fact caused by some previously unde-
scribed non-glucose, high-frequency phenomenon.

Conclusion

In this exploratory study of continuous intraarterial BGL measurements in four domestic pigs
under general anaesthesia, we found several interesting oscillatory components, especially in
the 5000–10000-sec, 500–1000-sec, and 50–100-sec regions (0.0002–0.0001 Hz, 0.002–0.001
Hz, and 0.02–0.01 Hz). The origin of these oscillations is unknown. Further studies are needed
to confirm the novel findings described in this study and to elucidate any underlying physio-
logical mechanism of the phenomena.

Supporting information

S1 Text. A table of time (sec) in column 1 and blood glucose values (mmol/l) in column 2
from the entire recording in Pig 1.
(TXT)

S2 Text. A table of time (sec) in column 1 and blood glucose values (mmol/l) in column 2
from the entire recording in Pig 2.
(TXT)

S3 Text. A table of time (sec) in column 1 and blood glucose values (mmol/l) in column 2
from the entire recording in Pig 3.
(TXT)

S4 Text. A table of time (sec) in column 1 and blood glucose values (mmol/l) in column 2
from the entire recording in Pig 4.
(TXT)
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1 |  INTRODUCTION

The circulatory system is oscillatory in its nature. Oscillations 
can be traced back to physiological processes, such as heart 

contraction, respiration, and rhythmic contraction of the vas-
culature, and these oscillatory processes are controlled by 
regulatory mechanisms. The result is a highly irregular and 
complex oscillatory profile. Autonomic regulation is essential 
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Abstract
The circulatory system is oscillatory in its nature. Oscillatory components linked 
to physiological processes and underlying regulatory mechanisms are identifiable 
in circulatory signals. Autonomic regulation is essential for the system's ability to 
deal with external exposure, and the integrity of oscillations may be considered a 
hallmark of a healthy system. Loss of complexity is seen as a consequence of several 
diseases and aging. Heart rate variability is known to decrease after cardiac surgery 
and remain reduced for up to 6 months. Oscillatory components of circulatory sig-
nals are linked to the system's overall complexity. We therefore hypothesize that the 
frequency distributions of circulatory signals show loss of oscillatory components 
after cardiac surgery and that the observed changes persist. We investigated the de-
velopment of the circulatory frequency distributions of eight patients undergoing 
cardiac surgery by extracting three time series from conventional blood pressure and 
electrocardiography recordings: systolic blood pressure, heart rate, and amplitude 
of the electrocardiogram's R-wave. Four 30-min selections, representing key events 
of the perioperative course, were analyzed with the continuous wavelet transform, 
and average wavelet power spectra illustrated the circulatory frequency distributions. 
We identified oscillatory components in all patients and variables. Contrary to our 
hypothesis, they were randomly distributed through frequencies, patients, and situ-
ations, thus, not representing any reduction in the overall complexity. One patient 
showed loss of a 25-s oscillation after surgery. We present a case where noise is mis-
classified as an oscillation, raising questions about the robustness of such analyses.
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cardiac surgery patients, circulatory oscillations, continuous blood pressure, electrocardiogram, loss of 
complexity
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for the system's ability to deal with external exposure, and 
the integrity of circulatory oscillations can be considered a 
hallmark of a healthy system. Circulatory signals, such as 
continuous blood pressure (BP) and electrocardiography 
(ECG) signals, show traces of these underlying oscillations. 
Traditional heart rate variability and frequency analyses have 
identified specific oscillations and they have been attributed 
to different parts of autonomic regulation (Akselrod et al., 
1981; Bracic & Stefanovska, 1998; Pomeranz et al., 1985). 
Loss of complexity has been reported in several cardiac 
and non-cardiac diseases (Claydon & Krassioukov, 2008; 
Goldstein et al., 1998; Kleiger, Miller, Bigger, & Moss, 1987; 
Riordan, Norris, Jenkins, & Morris, 2009; Wolf, Varigos, 
Hunt, & Sloman, 1978) and simply as a feature of aging 
(Kaplan et al., 1991; Lipsitz & Goldberger, 1992; Umetani, 
Singer, McCraty, & Atkinson, 1998; Takahashi et al., 2012). 
Heart rate variability is known to decrease after cardiac sur-
gery, and remain reduced for up to 6 months (Hogue, Stein, 
Apostolidou, Lappas, & Kleiger, 1994; Kuo et al., 1999).

There is no clear definition of complexity. However, com-
plex systems are built up by components that interact in mul-
tiple ways and with the external environment, resulting in 
organized and disorganized behavior that cannot be predicted 
from the components alone (Johnson, 2009). Linking this to 
biological signals, complexity is related to the degree of infor-
mation in the signal, the predictability of the signal, and the 
ability to describe the signal in a simple manner (Goldberger, 
Moody, & Costa, 2012). The definition is too diffuse to pro-
vide a quantitative measure of complexity that applies univer-
sally. Oscillatory components of biological systems represent 
underlying components that interact and produce the behav-
ior of the system as a whole. Altogether, they both reflect 
the system's overall complexity (Goldberger, 1996) and are 
linked to underlying regulation. On this basis, the exploration 
of oscillatory distributions of biological signals provides in-
formation about the overall state of biological systems, which 
could be altered by disease or invasive procedures. If the ob-
served changes are generalizable between patients, such in-
formation can be implemented to future monitoring tools. 
This is beneficial as changes in patients’ clinical state could 
be identified and clinicians notified before overall variables 
such as heart rate (HR) or BP are changed.

We explore frequency and amplitude modulations of BP 
and ECG signals by extracting three time series: systolic BP 
(SBP), HR, and amplitude of the ECG’s R-wave. The Brody 
effect states that variations in R-wave amplitude are related 
to ventricular preload (Brody, 1956). R-wave amplitude can 
thus be seen in relation with SBP and HR. By combining 
the frequency distributions of the three mentioned variables, 
we illustrate unique circulatory frequency distributions. In 
this work, we investigated the development of the circulatory 
frequency distributions of eight patients undergoing cardiac 
surgery. Four 30-min selections, representing key events of 

the perioperative course, were analyzed with the continuous 
wavelet transform (CWT), and average wavelet power spec-
tra illustrated the circulatory frequency distributions. We hy-
pothesize that the circulatory frequency distributions show 
loss of oscillatory components with surgery and that the 
observed changes persist, measured until the morning after 
surgery.

2 |  MATERIAL AND METHODS

2.1 | Study population, ethics, and 
confidentiality

From March to May 2016, patients scheduled for coronary 
artery bypass grafting were invited to participate in the study, 
recruiting a total of 10 patients. Two patients were excluded 
due to non-sinus rhythm at one or several time points of the 
recording. Other exclusion criteria are left ventricular ejec-
tion fraction below 0.5, severe valve disease, right ventricular 
failure, pulmonary hypertension, and severe postoperative 
hemorrhage. Finally, we had a study group consisting of six 
men and two women, age ranging from 47 to 88. The patients 
were enumerated 1–10, with patient 6 and 9 excluded.

The surgery was performed at Trondheim University 
Hospital, Norway. Written consent was collected prior to data 
collection. The study protocol was approved by the Regional 
Committee for Medical and Health Research Ethics (refer-
ence: 2015/2019/REK midt). Confidentiality was strictly 
maintained throughout the study.

2.2 | Equipment and study protocol

Data collection was performed in two sessions: before and 
after surgery. The patients were lying in bed during both peri-
ods. The study equipment includes a 3-electrode ECG, a laser 
Doppler flowmeter (LDF) attached to the calf, and an arterial 
cannula inserted to the left radial artery. Additionally, pa-
tients 1–3 had a photoplethysmograph (PPG) finger sensor at-
tached. The study equipment was provided by ADInstruments 
(Oxford, UK), as well as hardware and software (PowerLab 
16/35 and LabChart 8.1.3). The signals were recorded with a 
sampling rate of 400 Hz.

The preoperative recordings were collected with the patients 
resting in bed in a quiet room without disturbances at the tho-
racic surgery ward. The duration of the recordings ranged from 
47 to 86 min. The patients did not receive premedication prior to 
surgery, and surgery was performed under general balanced an-
esthesia (thiopental, fentanyl, isoflurane, and propofol). During 
surgery, the study equipment was removed. After surgery, the 
study equipment was reattached using new ECG patches and 
a new arterial cannula inserted to the right radial artery. The 
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postoperative recording was collected from the patients arrived 
at the thoracic intensive care unit, until the next morning. The 
duration of the recordings ranged from 14 to 18.5 hr.

2.3 | Data handling and preprocessing

The BP and ECG recordings were exported from LabChart as 
mat.files and analyzed in R, version 3.5.1, with the packages 
R.matlab, signal, robustHD, and WaveletComp (Alfons, 2016; 
Bengtsson, 2016; R Foundation for Statistical Computing, 
2018; Roesch & Schmidbauer, 2018; Signal developers, 2013). 
We subdivided the data into four situations: preoperatively (A); 
postoperatively, on respirator (B); postoperatively, after extu-
bation (C); and postoperatively, the next morning (D).

We extracted 30-min selections representing each situ-
ation and preprocessed the BP and ECG signals into three 
time series: SBP, HR, and R-wave amplitude (Figure  1). 
Baseline wander was removed from the ECG signals by ap-
plying a Savitzky–Golay smoothing filter before further anal-
yses (Nahiyan & Amin, 2017). We defined the SBP and the 
R-wave amplitude as the maxima of the BP and ECG, respec-
tively. The heart rate was defined as HR = 60/RRi, where RRi 
is the time interval in seconds between R-peak i and i + 1 of 
the ECG. Some episodes of noise were misclassified as heart-
beats; thus, we removed outliers from SBP, RR-intervals, and 
R-amplitude before further calculation. To provide evenly 
sampled time series, we performed a cubic spline interpo-
lation to a sampling frequency of 10 Hz. The final variables 
were called interpolated SBP (iSBP), interpolated HR (iHR), 
and interpolated R-wave amplitude (iAmp).

To examine one specific identified oscillation, the PPG 
and LDF signal of patient 1 were included in a subanalysis. 
To provide comparable results, the PPG was preprocessed 
with the same algorithm as iSBP and iAmp, creating a new 
time series of the amplitude of the signal, interpolated to a 
sampling rate of 10 Hz. The final variable was called PPG-
iAmp. The LDF was downsampled to 10 Hz.

2.4 | Analysis

We performed the CWT to identify frequency components 
present in iSBP, iHR, and iAmp. The CWT is a convolu-
tion of the signal with a function generated from the mother 
wavelet (Fugal, 2009). We used the Morlet wavelet, which 
by mathematical definition is a Gaussian enveloped cosine 
wave, and has been widely used for investigation of bio-
logical signals, especially the ECG (Addison, 2005). In the 
convolution process, it is shifted in time and stretched and 
shrunk, quantifying different frequency components’ pres-
ence in the signal at different time points. We presented the 
results in average wavelet power spectra, illustrating the av-
eraged frequency distributions of the signals. Furthermore, 
we performed the CWT for bivariate time series identifying 
frequency components that  are present in two time series 
with a significance level of 0.05. The results are presented 
in cross-wavelet spectra, with significant frequencies marked 
by white lines and phase differences by arrows. The CWT 
for bivariate time series was performed on the variable pairs, 
iAmp-iSBP and iSBP-iHR.

In order to visually examine the individual time-series’ 
oscillations, we decomposed the time series with locally 
weighted estimated scatterplot smoothing (Loess) (Cleveland 
& Devlin, 1988). We applied the regression three times, each 
time subtracting the smoothed curve from the signal, provid-
ing a set of oscillating components of increasing frequency. 
The extracted components were called Loess #1, Loess #2, 
and Loess #3. By plotting the components of all variables 
together, we visually inspected their oscillating behavior and 
phase differences. From the CWT and Loess, we identified 
the components that are highly present in all variables and 
performed a cross-correlation analysis, which calculates the 
correlation of two time series as a function of the displace-
ment of one relative to the other—the cross-correlation func-
tion (CCF). By defining CCFmax, we identified at which time 
lag the correlation is highest, and thus at which relative dis-
placement the studied variables oscillate.

F I G U R E  1  Preprocessing of the BP and ECG signals generating the variables iSBP, iHR, and iAmp. The SBP and the R-wave 
amplitude were defined as the maxima of the BP and ECG, respectively. The HR was calculated from the time interval between two subsequent 
R-peaks of the ECG (RRi [s]). The time series were interpolated to a sampling rate of 10 Hz
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3 |  RESULTS

By performing the CWT on iSBP, iHR, and iAmp, we identi-
fied each patient's circulatory frequency distribution through-
out the perioperative course, illustrated by situation A–D. We 
hypothesize that we will see loss of oscillatory components 
from situation A to B, and that the changes persist through 
situations C and D. Figure 2 shows the average wavelet power 
spectra of iSBP, iHR, and iAmp of all patients and situations. 
The spectra include periods between 10 and 1,000 s. Lower 
periods are not included, as the respiration is a powerful os-
cillatory component, overshadowing the presence of slower, 
less dominating oscillations.

We identified oscillatory components in all patients and 
situations. Patient 1 shows a distinct peak around 25  s in 
situation A. This oscillation is present in all three variables, 
and not visible in any of the situations B, C, or D. A less 
prominent oscillation around 800 s in 3A is observed, which 
arguably disappears after surgery. Patient 8 showed loss of 
oscillations in the range between 20 and 50  s in iHR, and 
in situation D, an oscillation just above 100 s is observed in 
all variables. We see other examples of loss of power in the 
mid-range after surgery, but no cases with loss of distinct 
oscillatory components. Altogether, we illustrate frequency 
distributions that change through the perioperative course, 
but the observed changes do not display any trend or sys-
tem. Overall, the number of oscillatory components and their 
power are more or less randomly distributed through patients 
and situations. Linking this to the signals’ overall complexity, 
we did not identify any clear reduction of such after surgery. 
iAmp does not show any distinct oscillatory peaks in any pa-
tients in situation B. This is due to a domination of the respi-
ration during mechanical ventilation.

The 25-s oscillation in 1A stands out as the only oscilla-
tion that is clearly present in all variables before surgery and 
gone after. To examine the specific variables’ oscillatory be-
havior, we performed a Loess regression, illustrated by Loess 
#2 in Figure 3.

Figure  3 shows that iSBP and iHR oscillate in phase, 
iHR leading. iAmp oscillates off phase with respect to the 
other two. By performing a cross-correlation analysis on 
the variable pairs, iAmp-iSBP and iSBP-iHR, we found that 
CCFmax of iAmp and iSBP is 0.75, with a lag of 8.2 s. The 
corresponding values for iSBP and iHR are 0.80 and 3.5 s. 
Altogether, this tells us that iHR is leading, with a time lag of 
3.5 s to iSBP and 11.7 s to iAmp. Maximum correlation val-
ues of 0.75 and 0.80 are high when it comes to biological time 
series. The preoperative recording of patient 1 included both 
a PPG and a LDF signal. The signals were preprocessed as 
described in Methods and analyzed with the CWT. Figure 4 
shows the average wavelet spectrum of all variables, and we 
see that the 25-s oscillation is present in the amplitude of the 
PPG signal but not in LDF.

Figure 2 shows an 800-s oscillation in patient 3, situa-
tion A. It is present in all three variables and is partly gone 
postoperatively. Looking at the raw signals and performing 
a Loess regression, we find that the extracted component is 
caused by short events of noise, thus not representing a true 
physiological oscillator.

Patient 8 showed loss of oscillations in the range between 
20 and 50  s in iHR, and an oscillation just above 100  s in 
situation D that is present in all variables. Figure 5 shows the 
cross-wavelet spectra of iAmp-iSBP and iSBP-iHR of situa-
tion D.

Both variable pairs show high power just above 128  s, 
confirming that the oscillation is present in all three time se-
ries. Both variable pairs show variations in phase differences 
through the time course, but mostly iAmp-iSBP show arrows 
pointing to the lower right, meaning that they oscillate in 
phase, iSBP leading. iSBP-iHR show arrows pointing to the 
lower left, meaning that they oscillate off phase, iSBP lead-
ing. Thus, iHR and iAmp oscillate in phase, and iSBP out of 
phase with respect to the other two.

4 |  DISCUSSION

We illustrate the frequency distributions of variables ex-
tracted from BP and ECG signals of eight patients under-
going coronary artery bypass grafting. The circulatory 
frequency distributions illustrate the presence of oscillatory 
components in all variables, patients and situations, and the 
oscillations are randomly distributed over the examined fre-
quency range. The high variety seems to represent interindi-
vidual variations, more than factors of the performed surgery. 
Considering the heterogeneity of our findings, we have not 
presented information that is suitable for use in any monitor-
ing device or other clinical decision tools.

The identified oscillations do not correspond to the dis-
tinct pattern of frequency bands that are described in the lit-
erature (Akselrod et al., 1981; Bracic & Stefanovska, 1998; 
Pomeranz et al., 1985). Linking the circulatory frequency 
distributions to the overall complexity of circulatory sig-
nals, no reduction of such is identified. Either the complex-
ity is not reduced with cardiac surgery, or our method is not 
able to identify it. One case showed a 25-s oscillation that 
is present preoperatively (1A) and not postoperatively (1B, 
1C, 1D). The oscillation is found in all three variables, and 
additionally in the amplitude of the PPG (PPG-iAmp). It has 
a frequency of 0.04 Hz, corresponding to the limit between 
low frequencies and very low frequencies (Task Force of 
the European Society of Cardiology & the North American 
Society of Pacing & Electrophysiology, 1996). According to 
the literature, low frequencies reflect baroreceptor activity, 
but findings are inconsistent regarding whether this activ-
ity is mediated by the sympathetic or the parasympathetic 
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F I G U R E  2  The average wavelet power spectra of iSBP, iHR, and iAmp of all patients through situation A to D. Each spectrum represents 
one patient in one situation, named with a number and a letter. Patients are separated by rows, and situations by columns. The situations represent 
key events of the perioperative course: preoperatively (A); postoperatively, on respirator (B); postoperatively, after extubation (C); postoperatively, 
the next morning (D). Average wavelet power is shown on the x-axis and period (in seconds) on a logarithmic scale on the y-axis. The variables are 
distinguished by color. Patient 1 shows loss of a 25-s oscillation between situation A and B. Patient 3 shows loss of an 800-s oscillation, and patient 
8 shows loss of oscillations in the range between 50 and 100 s in iHR
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nervous system (Shaffer, McCraty, & Zerr, 2014; Task 
Force of the European Society of Cardiology & the North 
American Society of Pacing & Electrophysiology, 1996). 
Patient 8 showed loss of oscillations in iHR with surgery and 
return of an oscillation in situation D that is present in all 
variables. The oscillation in 8D has a frequency of 0.007 Hz, 
corresponding to the ultra-low frequency band. The physi-
ological correlate to ultra-low frequencies is insecure. This 
study was not designed to explore underlying physiological 
mechanisms of identified oscillations.

We are developing methods for analyzing biological sig-
nals, both focusing on preprocessing and choice of analyses. 
We find that there are several challenges related to analyz-
ing biological signals, mainly related to noise-handling. We 
have identified a case where noise is misinterpreted as an 

oscillation. This leaves us wondering which of the identified 
oscillations are true physiological oscillators, and which rep-
resent methodological errors. As we are not able to provide 
completely noise-free recordings in controlled settings of 
bedbound patients, we believe that tools meant for clinical 
use must be robust for noise. Thus, the algorithms must either 
remove all noise, or the results not being affected by the pres-
ence of it. We did not identify the distinct frequency bands that 
are reported in the literature (Shaffer et al., 2014; Task Force 
of the European Society of Cardiology & the North American 
Society of Pacing & Electrophysiology, 1996). Noise could 
be the problem here as well. However, the signals are mostly 
noise-free, so we would expect to identify the oscillations if 
they were present. This raises the question if the use of strict 
frequency intervals is a simplification of a highly complex 
and variable field. Features that are incorporated in biologi-
cal signals, such as nonlinearity and nonstationarity, are chal-
lenging when analyzing them. We have earlier addressed the 
challenge by applying Fourier-based analyses to such signals, 
suggesting the data-driven Hilbert–Huang Transform as a 
better approach (Knai, Kulia, Molinas, & Skjaervold, 2017). 
However, the Hilbert–Huang transform is hampered by being 
computationally challenging and requiring thorough valida-
tion. If the developed methods at some time point are meant 
to be used real-time, for instance in intelligent alarm systems, 
the chosen analyses should be quick and easily adaptive to 
different biological signals. In this work, visual inspection 
was required to secure that the algorithms applied correctly 
and to validate the results, identifying the case where noise 
was misinterpreted as an oscillation.

4.1 | Methodological considerations

Our study population is small. We recruited 10 patients 
scheduled for coronary artery bypass grafting over a period 

F I G U R E  3  Loess regression of iSBP, iHR, and iAmp of 1A, illustrated by Loess #2 which is the second extracted component. We see that 
iSBP and iHR oscillates in phase, and iAmp off phase
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F I G U R E  4  Average wavelet power spectra of 1A including PPG 
and LDF signals. The PPG is preprocessed with the same algorithm as 
iSBP and iAmp, giving a time series of the maxima of the PPG signal, 
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of 3 months in 2016, whereof two patients were excluded due 
to non-sinus rhythm. The final data material includes three 
extracted variables from four situations of eight patients—96 
analyzed time series. Being derived from only eight patients, 
we cannot generalize our findings to the total population of 
cardiac surgery patients.

The recruited patients are heterogeneous individuals 
featuring different medical backgrounds, pharmacological 
profiles, and general health. However, the group altogether 
holds common features such as high age and coronary heart 
disease. One could raise the question of selection bias as we 
recruited patients over a short time period and excluded pa-
tients with serious illness such as heart failure, valve disease, 
and perioperative complications. However, we investigate 
universal physiological features without performing statisti-
cal hypothesis testing or other comparisons on group level. 
The comparisons we do are only between situations of the 

perioperative course, and in such cases, the patients serve as 
their own controls. Interpretation of the results must be done 
with these aspects in thought, and the results’ generalizability 
should be investigated in bigger study groups.

To minimize autonomic activation and artifacts caused 
by postural changes, the patients were kept lying during 
data collection. The data were collected with research 
hardware and software to secure complete control of fil-
tering and preprocessing algorithms applied to the data. 
To avoid putting the patients through unnecessary stress 
by inserting two arterial cannulas prior to surgery, we used 
different cannulas pre- and postoperatively. A consequence 
of this could be different absolute values of the BP record-
ings before and after surgery. However, we believe that 
the frequency distributions of the signals are unchanged. 
Vasoactive and analgesic medications, and fluids were 
administered postoperatively according to the individual 

F I G U R E  5  Cross-wavelet spectra of 
the variable pairs iAmp-iSBP and iSBP-
iHR of patient 8, situation D. Time (in 
seconds) is shown on the x-axes, and period 
(in seconds) on a logarithmic scale on the 
y-axes. Power is given by color, according 
to the scale next to the plots. Significant 
frequencies are marked by white lines and 
phase differences by arrows. Both spectra 
show high power just above 128 s
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patient's clinical state. Thus, the patients may have received 
different amounts of medications, with varying contribu-
tion to their oscillatory profile.

5 |  CONCLUSION

In this study, we decomposed BP and ECG recordings from 
eight cardiac surgery patients to time series of SBP, HR, 
and R-wave amplitude. Four 30-min selections, represent-
ing key events of the perioperative course, were analyzed 
with the CWT and average wavelet power spectra were used 
to illustrate the patients’ circulatory frequency distributions. 
We identified oscillatory components in all variables, pa-
tients, and situations, and they were more or less randomly 
distributed through the examined frequency range. The high 
variety in circulatory oscillations seems to represent inter-
individual variations, more than factors of the performed 
surgery. Linking the circulatory frequency distributions to 
the overall complexity of circulatory signals, no reduction of 
such is identified. Considering the heterogeneity of our find-
ings, we have not presented information that is suitable for 
use in any monitoring device or other clinical decision tools. 
The study is limited by challenges regarding noise-handling, 
and generalizability due to small sample size.
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