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Abstract: Convolutional neural networks (CNNs) have been shown to be excellent at performing
image analysis tasks in recent years. Even so, ice object classification using close-range optical
images is an area where their use has barely been touched upon, and how well CNNs perform
this classification task is still an open question, especially in the challenging visual conditions
often found in the High Arctic. The present study explores the use of CNNs for such ice object
classification, including analysis of how visual distortion of optical images impacts their performance
and comparisons to human experts and novices. To account for the model’s tendency to predict the
presence of very few classes for any given image, the use of a loss-weighting scheme pushing a model
towards predicting a higher number of classes is proposed. The results of this study show that on
clean images, given the class definitions and labeling scheme used, the networks perform better than
some humans. At least for some classes of ice objects, the results indicate that the network learned
meaningful features. However, the results also indicate that humans are much better at adapting to
new visual conditions than neural networks.
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1. Introduction

Computer vision using convolutional neural networks (CNNs) has revolutionized automated
image recognition and object detection in recent years. It is by far the most successful technique for
image classification and segmentation to date and is used in applications ranging from autonomous
vehicles [1–3] to the detection of cancer cells [4,5]. With increasing traffic in the Arctic due to the
melting of the polar ice, it would be desirable to exploit this powerful technique for navigational
assistance to captains, potentially reducing the risk of collisions and damage.

However, the Arctic poses different challenges for a machine learning system than other common
use cases, such as autonomous driving or recognizing objects in well-lit rooms. First, labeled data are
still relatively scarce. Although more and more near-field image data are becoming available from the
region, the labeling of such data is extremely costly. The WMO [6] defines 220 different classes of ice
objects, many of which are overlapping or difficult to distinguish. For example, the difference between
a floeberg and a floebit is size, which is difficult to identify with accuracy in an image. Even if one uses
a very small subset of these classes (such as the nine used in this work), the labeling needs to be done by
experts, simply because most people are unable to distinguish between classes. Furthermore, the labels
have a degree of subjectivity to them, as the viewer’s interpretation of the image (relating to, e.g., the
scale and color balance of the ice objects) impacts the labels. This is in contrast to the labeling of images
used, for example, in autonomous driving or more general object detection, wherein most people are
familiar with the domain, the task of labeling can easily be crowdsourced, and the labels are largely
objective.
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Another important difficulty with computer vision in the Arctic is that visual conditions vary
greatly. This has two main implications: First, the assumption that training and testing data are
independent, identically distributed (i.i.d.), which is typically made for supervised machine learning,
does not hold unless one can get enough samples of all the variations of weather and visibility
conditions. This is an unrealistic demand, as there is no way to control the weather, meaning data
collection would be extremely time-consuming. Second, it has been shown that neural networks do
not handle distorted images well [7,8]. The poor visual conditions in the Arctic can be seen as a form
of noise, so it is unlikely that CNNs trained in the normal manner will be robust to such conditions.
Finally, the fact that snow and ice are highly reflective, meaning some features can be reflected in each
other, is also likely to make the classification of such images more difficult.

In the present work, an analysis of how CNNs fare when used for classifying ice objects on
close-range optical images of ice cover is presented. It includes the use of several forms of semi-realistic
image distortions to simulate the difficult visual conditions of the Arctic, caused by natural phenomena
such as fog, low light, and snow, as well as a comparison of the performance of a computer model
with the performances of human experts and novices. Furthermore, to counteract the tendency of
the model to be biased towards predicting the absence of ice objects even when they are present in
the image, a loss weighting scheme is proposed and analyzed. We argue that avoiding such biases is
important for the use of automatic ice recognition, to avoid missing potentially dangerous objects.

1.1. Related Work

1.1.1. Training CNNs With Imbalanced Data

It is well-known that a neural network is dependent on a good training set to learn a meaningful
function. However, when the training set is imbalanced, meaning some classes are much more common
than others, the network will typically tend to predict the majority classes too often, and never or very
seldom predict the minority classes. This behavior is undesired, as it could be very important for the
network to detect rare classes (for example, even though brash ice is more common than icebergs,
it is much more important to avoid icebergs when navigating). For this reason, multiple methods of
dealing with such class imbalances have been proposed, an overview of which can be found in [9].

In general, one can differentiate between two classes of methods for handling class imbalance.
The first is data resampling, which works by adding or removing samples from the dataset to balance
it. In its simplest form, one can oversample [10–12] or undersample [10] the dataset by copying
or removing images from it. A more sophisticated method for data resampling is the SMOTE
algorithm [13], which synthesizes new samples of minority classes automatically. In the other class,
the methods involve modifying the network or loss function. A common way to achieve this is
through some sort of weighted loss [14–16], where the importance of different classes can be weighted
against each other. This weight can be based only on the class of the sample [14], or on the class and
prediction [16].

In many cases, these two approaches are interchangeable. Indeed, in the absence of random
augmentation of images, oversampling and weighting samples with a given class can yield the same
result. However, there are some intricacies connected to both. First, when using random augmentations
of images before using them for training, oversampling introduces new images to the network (as the
image is sampled more often), possibly enlarging the known input domain by a small margin. Loss
weights, on the other hand, can be more flexible than resampling, as they can be dependent not only
on information known a priori but also on the results of the training up to that point. Finally, the use
of SMOTE or similar techniques actually introduces completely new samples to the training. However,
the generation of such samples is not trivial when the input domain is large (e.g., when using images);
therefore, these techniques are often not applicable.
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1.1.2. Comparisons of Humans and CNNs

Several studies have looked at how well CNNs compare to humans on the task of image
classification with distorted images. In [7], the authors found that neural networks are unable to
generalize to kinds of distortions not seen during training, while humans are relatively robust to such
changes. Indeed, even when including some kinds of distortions in the training set, it did not make
the models robust to any other noise than the type included.

Similarly to reference [7], Dodge and Karam [8] found that humans are much more robust to
distortions in images than computers. Their results show that even when including some examples of
a given distortion in the training set, the CNN performed worse than the human participants.

The two previously mentioned works used relatively similar testing procedures, with images of
well-known objects and settings that made the conditions for the human participants as similar to
those of the computers as possible (e.g., by limiting the time the participants saw the images), thereby
making them fair comparisons.

1.1.3. CNNs for Close-Range Ice Object Detection

In [17], a novel CNN architecture for semantic segmentation of river ice in images from an
unmanned aerial vehicle (UAV) was developed. The network consists of two channels, one deep for
extracting multi-scale semantic features, and one shallow for capturing small-scale targets. Their results
show that the model successfully outperforms the state-of-the-art on their task. For a similar
task, [18] trained several state-of-the-art networks using very limited data. They showed that even
with very little data available, the CNN models outperformed a support vector machine (SVM) trained
on the same data. Both of these works are relevant to the present work, but not directly applicable,
as ice floating in the ocean looks different to and has other properties than that floating in rivers.
Furthermore, an image captured from a UAV will often look different than one taken from onboard a
vessel, especially with regard to shadows, and a UAV might not always be available in the High Arctic
due to the harsh environment.

Kim et al. [12] present the initial results of using CNNs to recognize ice objects floating in the
sea from near-field imaging, showing that a neural network can learn to recognize some forms of ice.
They present an analysis of the effect of network architecture, and some initial results of the effects of
simple distortions of images. Kim et al. [19] also performed image segmentation on ice images. Their
results were promising, but not perfect, which they attributed to the small amount of available training
data.

Although there is relatively little published work for this specific task, a lot of work has gone
into the analysis of ice objects in synthetic aperture radar (SAR) images or using other techniques.
For example, [20] identified ice floes in satellite images using mathematical morphology and clustering,
and [21,22] used pulse coupled neural networks. Other researchers [23–25] used a gradient vector field
snake algorithm to analyze ice floe distributions or parameters. Finally, [26] used a combination of
image processing and analysis methods to find several parameters of the ice cover, including partial
ice type concentration and floe size.

The present work investigates the use of CNNs for floating ice object classification in close range
images, similarly to [12]. However, a more in-depth analysis of how the networks perform, especially in
the presence of visual distortions, is given, to provide insights for further development of the technique.
Furthermore, a comparison to human experts and novices is given, providing a benchmark for how
well the networks perform. The experiments with the human participants differentiate themselves
from the previous works [7,8] in that the experiments reported here measured how humans performed
given their best chances. Specifically, the study did not utilize a time limit, allowing the participants to
inspect the images for as long as they wanted. The results of the work are an important step towards
creating systems for automatic data collection, along with navigational aid, for the increasing traffic in
the Arctic.
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2. Materials and Methods

2.1. Dataset

The dataset used in this work consists of 738 images containing ice objects. Most are taken in
the Arctic zone, although there are some examples from Antarctica as well. Of the images, 689 were
used for training and validation, while 49 were used for testing. The training data were further split
into training and validation sets: 85 % for training. All splits were done randomly; however, to be
able to compare the effect of different parameters, the splits were only calculated once, and reused
for all experiments. Most images were taken from onboard vessels, either from mounted cameras,
or manually, typically (but not exclusively) from the bridge. There is a variety of image qualities
and kinds of ice objects. Most images were taken in good weather conditions with good visibility,
although there are exceptions to this. The images have been acquired from various sources, including
Google and Yandex images, publicly available image streams from vessels, and private pictures. The
choice of having a large variance in the images, e.g., regarding camera placement and image quality,
was made both to make the model able to analyze a larger variety of images, and due to relatively little
available data.

Before training, each image was classified as containing any number of the nine ice object classes
defined in Table 1. However, as can be seen in Figure 1, there is a huge class imbalance, in that a very
large portion of images belong to one of the classes brash ice, broken ice, or deformed ice. This is
likely due to several factors: First, some types of ice objects are simply more common than others.
For example, pancake ice is relatively rare, while brash ice and broken ice are common, especially
in the marginal ice zone and areas where ships travel. Second, some forms of ice objects, such as
deformed ice and icebergs, can be more interesting subjects in a photograph than, e.g., level ice, so
tourists in the Arctic or Antarctic are more likely to capture images of them. Regarding tourists, it is
also important to remember that very young ice, such as pancake ice, is typically formed during early
winter, when there is little light and there are few tourists, further increasing the data imbalance.

Table 1. The definition of ice classes used in this work.

Class Description

Brash Ice Accumulations of floating ice made up of fragments not more than 2 m across, the
wreckage of other forms of ice.

Broken Ice Predominantly flat ice cover broken by gravity waves or due to melting decay.

Deformed Ice A general term for ice that has been squeezed together and, in places, forced upwards
(and downwards). Subdivisions are rafted ice, ridged ice and hummocked ice.

Floeberg A large piece of sea ice composed of a hummock, or a group of hummocks frozen
together, and separated from any ice surroundings. It typically protrudes up to 5 m
above sea level.

Floebit A relatively small piece of sea ice, normally not more than 10 m across, composed of
a hummock (or more than one hummock) or part of a ridge (or more than one ridge)
frozen together and separated from any surroundings. It typically protrudes up to 2 m
above sea level.

Iceberg A piece of glacier origin, floating at sea.

Ice Floe Any contiguous piece of sea ice.

Level Ice Sea ice that has not been affected by deformation.

Pancake Ice Predominantly circular pieces of ice from 30 cm–3 m in diameter, and up to
approximately 10 cm in thickness, with raised rims due to the pieces striking against
one another.
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Figure 1. Class balance before the data has been resampled. The plot shows the percentage of the
images in each dataset that contains the given class.
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known to the network and means the effect of oversampling is not simply showing the exact same164

image to the network multiple times, but instead introducing new, somewhat different, images. Note165
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rest of the paper. Those distortions are applied during testing to measure the robustness of the network,167
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Figure 2. Class balance after the data has been resampled. The plot shows the percentage of the images
in each dataset that contains the given class.

2.2. Image Distortions169

The visual conditions in the Arctic are often of variable quality, with snow, fog, darkness, and170

other elements of the area impacting it. To test the robustness of neural networks to such conditions,171

we employ four semi-realistic image distortions:172

• Image blur, which can happen due to snow, rain, or water on the camera lens.173

• Brightness decrease, which imitates the visual conditions at night.174

• Synthetic fog.175

• Gaussian noise, which is similar to the effect of using a high ISO on the camera.176

Figure 1. Class balance before the data were resampled. The plot shows the percentages of images in
each dataset that contained the given class.

Training a neural network with imbalanced data will make it biased towards the majority classes.
When the imbalance is as bad as here, the network could be expected to never or very seldom
predict, e.g., pancake ice for a new image. This is undesirable, as the imbalance could as well be an
artifact of the dataset as of the natural world, and we would like for the network to base its prediction
on the image content rather than a (possibly incorrect) statistical distribution of the existence of ice
objects. For this reason, oversampling was performed, meaning images with minority classes were
duplicated in the datasets. Note that oversampling was done after the data splits, to avoid duplicate
images in different sets. This led to the class distributions shown in Figure 2. Although still not
perfectly balanced, it was much closer than before, which should help the network avoid making
predictions solely based on a statistical distribution.

Version 2020-09-25 submitted to J. Mar. Sci. Eng. 5 of 19

Bra
sh

Ice

Bro
ken

Ice

Defo
rm

ed
Ice

Floeb
erg

Floeb
it

Ice
berg

Ice
Floe

Lev
el

Ice

Pan
ca

ke Ice
0

20

40

60

15

47

3 4

54

4

41

23

3
11

42

5 5

48

9

44
29

4

2024
12 18

32

16
26 24

6

Class

%
of

im
ag

es Train Valid Test

Figure 1. Class balance before the data has been resampled. The plot shows the percentage of the
images in each dataset that contains the given class.

For this reason, oversampling was performed, meaning images with minority classes were duplicated156

in the datasets. Note that oversampling was done after the data splits, to avoid duplicate images157

in different sets. This led to the class distributions shown in Figure 2. Although still not perfectly158

balanced, it is much closer than previously, which should avoid the network making predictions solely159

based on a statistical distribution.160

During training, random image augmentations were performed on the images. Specifically,161

random flipping along the x-axis, rotation, zoom, as well as brightness, contrast, hue, and saturation162

adjustment were performed every time an image was used for training. This enlarges the input domain163

known to the network and means the effect of oversampling is not simply showing the exact same164

image to the network multiple times, but instead introducing new, somewhat different, images. Note165

that this data augmentation is not the same as the distortions mentioned later in this section and the166

rest of the paper. Those distortions are applied during testing to measure the robustness of the network,167

as opposed to during training.168

Bra
sh

Ice

Bro
ken

Ice

Defo
rm

ed
Ice

Floeb
erg

Floeb
it

Ice
berg

Ice
Floe

Lev
el

Ice

Pan
ca

ke Ice
0

20

40

13

31

10 10

36

10

28

16 1212

30

14 12

31

12

28
22

141620
12

17
26

13

24 21
15

Class

%
of

im
ag

es Train Valid Test

Figure 2. Class balance after the data has been resampled. The plot shows the percentage of the images
in each dataset that contains the given class.

2.2. Image Distortions169

The visual conditions in the Arctic are often of variable quality, with snow, fog, darkness, and170

other elements of the area impacting it. To test the robustness of neural networks to such conditions,171

we employ four semi-realistic image distortions:172

• Image blur, which can happen due to snow, rain, or water on the camera lens.173

• Brightness decrease, which imitates the visual conditions at night.174

• Synthetic fog.175

• Gaussian noise, which is similar to the effect of using a high ISO on the camera.176

Figure 2. Class balance after the data were resampled. The plot shows the percentages of images in
each dataset that contained the given class.

During training, random image augmentations were performed on the images.
Specifically, random flipping along the x-axis, rotation, zoom, brightness, contrast, hue, and saturation
adjustment were performed every time an image was used for training. This enlarged the input
domain known to the network and meant the effect of oversampling was not simply showing the
exact same image to the network multiple times, but instead introducing new, somewhat different,
images. Note that this data augmentation is not the same as the distortions mentioned later in this
section and the rest of the paper. Those distortions were applied during testing to measure the
robustness of the network, as opposed to during training.
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2.2. Image Distortions

The visual conditions in the Arctic are often of variable quality, with snow, fog, darkness, and other
elements of the area impacting them. To test the robustness of neural networks to such conditions,
we employed four semi-realistic image distortions:

• Image blur, which can happen due to snow, rain, or water on the camera lens.
• Brightness decrease, which imitates the visual conditions at night.
• Synthetic fog.
• Gaussian noise, which is similar to the effect of using a high ISO on the camera.

Each distortion was applied at three different levels, and an example of their effect is shown in
Figure 3. These distortions were only used during testing, so the networks were not subjected to them
during training (as opposed to the random augmentations mentioned in the previous section, which
were used to diversify the training set).
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2.3. True Negative Weighted Loss

The data in this work are sparse, meaning most images only contain one or a few of the nine
possible classes. During initial trials, it was observed that this led the network to be biased towards
predicting very few classes in an image, even after the data oversampling. To discourage this behavior,
we propose an adaption of the loss function used for training.

The goal of this modified loss is to avoid a model that predicts the absence of all or almost all
classes for many images. This is achieved by introducing a loss weighting scheme, as discussed in
Section 1.1.1, weighting the loss values for samples and classes where both the label and predicted
label is 0 (meaning not present in the image) by a weight λtn, 0 < λtn ≤ 1. Such a prediction is called
a true negative prediction, and we call the modified loss the true negative Weighted Loss, Ltn. Its
definition is shown in Equation (1).
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Ltn(x, yc; θ) =

{
λtnLo(x, yc; θ), fpred,c(x; θ) = yc = 0

Lo(x, yc; θ), otherwise.
(1)

In the definition, Ltn is the modified loss, x—the model input, yc—the class label for input x
and class c, Lo—the original loss function, λtn—the true negative weight, θ—the network parameters,
and fpred—a function to get the prediction from a network (where fpred,c is the prediction for class c).
Note that it is not necessary that fpred = f , where f is the neural network. Indeed, this is rarely the
case, and a typical definition of fpred, which is used in this work, is shown in Equation (2),

fpred(x; θ) =

{
1, σ ( f (x; θ)) > 0.5

0, otherwise,
(2)

where σ is the sigmoid function. By varying λtn, it is possible to control the balance between making
correct true negative predictions more certain at the cost of more likely predicting the absence of classes
actually in the image (called a false negative prediction), and avoiding a bias towards only making
negative predictions.

It is important to note that even in the extreme case where λtn = 0, this loss does not remove all
encouragement for the network to correctly predict the absence of any class in an image. The reason
for this is that the weights are still modified for the image as long as it is misclassified, thereby pushing
the model towards predicting the absence of the class in the image. However, this method simply
avoids the model continuing to make such predictions more and more certain, which would typically
happen at the cost of failing to recognize the class when it is present in an image.

2.4. Training Procedure

For all experiments in this work, a pre-trained ResNet34 [27] was used. It was pre-trained
on ImageNet [28] and is freely available from the torchvision model zoo [29]. For retraining the
networks, the 1-cycle training scheme from [30] was utilized. We used the Adam optimizer [31] with
decoupled weight regularization [32]. Images were randomly augmented as described in Section 2.1
and normalized to the mean µ and standard deviation σ in Equation (3), as per the torchvision
documentation.

µ =




0.485
0.456
0.406


 , σ =




0.229
0.224
0.225


 (3)

Before training began, the last fully connected layer in the network was exchanged for the block
shown in Figure 4. Training then consisted of two phases: For the majority of the training, the original
network was frozen and only the new layers were updated. Following that, all layers were unfrozen
and training continued. During this last stage, the learning rate varied per layer, with the learning rate
αi for layer i from the beginning of the network given by Equation (4). Here, layer 0 is the first and
layer N is the final layer. Table 2 shows the training parameters used in this work. All networks used
those parameters. Two models were trained for each value of the true negative weight, with all other
hyperparameters being the same. The average metrics of the two are reported in the results, to avoid
overly positive or negative results due to a good or bad initialization of the network parameters.

αi = α0
N

√
αN
α0

i
, i = 1, . . . , N (4)
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0.485
0.456
0.406


 , σ =




0.229
0.224
0.225


 (3)
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Figure 4. Network head used in all experiments. This is inserted in place of the original fully connected
layer to adapt the network to the data. The fully connected layers include a ReLU activation. In the
figure, BN is a batch normalization layer [33], FC is a fully connected layer, and Dropout is a dropout
layer [34].
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Figure 4. Network head used in all experiments. This was inserted in place of the original fully
connected layer to adapt the network to the data. The fully connected layers included a ReLU
activation. In the figure, BN is a batch normalization layer [33], FC is a fully connected layer, and
Dropout is a dropout layer [34].

Table 2. Hyperparameters used for training the network.

Parameter Description Value

α Maximum learning rate for initial training phase 2 × 10−2

α0 Maximum learning rate for first layer during final phase 1 × 10−8

αN Maximum learning rate for last layer during final phase 5 × 10−3

λwd Weight decay rate 1 × 10−3

β1,min Minimum β1 value for use with Adam, cycled inversely to
the learning rate

0.8

β1,max Maximum β1 value for use with Adam, cycled inversely
to the learning rate

0.95

β2 Parameter for Adam 0.99
ni Training steps of initial phase 20 000
n f Training steps of final phase 6000

2.5. Human Experiments

The results of the network classifications are compared with the results of the human classification
experiment described in [35]. A recap of the methodology used is given here. In the experiment,
two participant groups were used, one consisting of eight novices with no prior experience with ice
object identification, and one consisting of six experts in the field. Initially, the participants were shown
a set of images with their respective classes as a training phase, before starting the classification test.
During the test, the participants were first asked to classify a set of non-distorted images. The results of
this initial test form a baseline for the human results. After the clean test phase finished, the participant
was shown distorted images and asked to classify them. Each image was first shown at its maximum
level of distortion. If a participant successfully classified the image (meaning selecting all correct and
no incorrect classes) at a given level, that image was recorded as successfully classified at all lower
distortion levels as well (similar to the procedure in [8]). If the image was not successfully classified,
it was later shown at a lower distortion level. This continued until the participant either classified
the image correctly or failed to classify it with no distortion applied. The participants had no time
limit when classifying the images, and no cap on how many classes they could select. To keep the
task for the humans similar to that of the neural networks, the participants were not told about the
distortions beforehand. Once they had submitted their classification for a given image, they were not
able to change it.

3. Results

Multiple performance-metrics were used to evaluate the networks in this work. Specifically, we
employed the accuracy (acc), balanced accuracy (accb), geometric mean (µg), precision, recall, and
F1 score. The accuracy is the fraction of correct classifications (both of the presence and absence of
classes) divided by the total number of classifications. For problems with many classes compared to
the number of classes present in each image, the accuracy tends to be artificially high (as it becomes
easy to predict the absence of a class correctly), so the balanced accuracy and geometric mean are often
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used as better metrics of how well the network really performs. Precision denotes how large a fraction
of predicted classes is actually in an image, while recall denotes the fraction of classes in the images
the network manages to predict. The F1 score is a balance of precision and recall with the two given
equal weight. The definitions of the metrics are shown in Table 3.

Table 3. Definitions of all metrics used in this work. tp, f p, tn, and f n are short for true positive, false
positive, true negative, and false negative, respectively, defining the possible kinds of predictions in a
classification task.

Metric Definition

acc tp+tn
tp+tn+ f p+ f n

accb
1
2

(
tp

tp+ f n + tn
tn+ f p

)

µg

√
tp

tp+ f n ∗ tn
tn+ f p

Precision tp
tp+ f p

Recall tp
tp+ f n

F1
tp

tp+ 1
2 ( f p+ f n)

Figure 5 shows how the test metrics vary with the true negative weight, λtn. The metrics shown
are the averages of the metrics for the two models trained for each value of λtn and were calculated
on the oversampled test set. The error bars show the minima and maxima of the two models. As the
trends of all the metrics are relatively similar, the rest of this paper uses the F1 score unless otherwise
noted, to make the discussion easier to follow.
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Figure 5. Effects on test metrics of the value of the true negative weight λtn. The score for each value
of λtn is the average of two network trained with that value. The error bars show the minimum and
maximum values of the two models.

A more detailed view of how the networks perform for the different ice object classes is shown in
the heatmap in Figure 6. Again, the values are the averages of two networks and were calculated over
the oversampled test set. The figure shows that the network performance varies across the different
classes, with ice floes having an average F1 score of 0.22, while floebergs have an average score of 0.84.
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Figure 6. Heatmap of F1 score for different values of λtn and ice object classes. The score for each value
of λtn is the average of two models trained with that value.

When looking at the effect of distortions, Figure 7 shows that all distortions negatively affect the
models, with blur and noise impacting the models the most. On average, blur and noise degrade the
F1 score by 0.33 and 0.29, respectively, from clean to most distorted images, while brightness and fog
degrade it by 0.04 and 0.10. The metrics are the means of two models trained with each value of λtn,
calculated on the oversampled test set.

From the results in Figure 5, it is clear that one of the models with true negative weight λtn = 0.4
performed the best when analyzing clean images, while for distorted images none of the models
performed notably better than the rest. For this reason, that model was used for comparison with the
human participants and the in-depth analysis in the discussion.

Figure 8 shows how the performances of human experts and novices compare to the model.
Table 4 shows how much each group is affected by the distortions. The data indicates that, given the
labeling scheme used in this work, the CNN performs better than both groups of humans on clean
images. However, this form of experiment can put the experts at a disadvantage, which is discussed
more in Section 4.4. Furthermore, it is clear from the table that humans are more robust to the
distortions, with their average degradation being at the same level or better than the minimum
degradation for the computer. As was expected, the data show that the experts perform better
than novices.
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Figure 7. Effect of distortions on the performance of the models. Each data series is the average of two
models trained with the given true negative weight λtn.

Table 4. Minimum, maximum, and average degradation of the fraction of images that were successfully
classified, from distortion level 0 to 3 for humans and computers.

Group Minimum degradation Maximum degradation Average degradation

Novices 0.089 0.172 0.126
Experts 0.000 0.167 0.116
Computers 0.125 0.308 0.230
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Figure 7. Effects of distortions on the performances of the models. Each data series is the average of
two models trained with the given true negative weight λtn.

Table 4. Minimum, maximum, and average degradation of the fraction of images that were successfully
classified, from distortion level 0 to 3 for humans and computers.

Group Minimum Degradation Maximum Degradation Average Degradation

Novices 0.089 0.172 0.126
Experts 0.000 0.167 0.116

Computers 0.125 0.308 0.230
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Figure 8. The F1 score, as well as the fraction of correctly classified images, for novices, experts, and
computers. Note that while the datasets used for this testing contains the same images as in the rest of
the results, they are split into one test set for each type of distortion. Furthermore, no oversampling
of the test set is performed, to keep the results from the computer comparable to the ones from the
humans.

Figure 8. The F1 score and the fraction of correctly classified images, for novices, experts, and computers.
Note that while the datasets used for this testing contained the same images as in the rest of the results,
they were split into one test set for each type of distortion. Furthermore, no oversampling of the test
set was performed, to keep the results from the computer comparable to the ones from the humans.

4. Discussion

Based on the results of the last section, a few relevant questions come to mind: What is the effect
of applying the true negative weighted loss to the model during training? What do the models see
in the images that creates such a gap between their performances on some classes, and how do the
distortions affect this? Finally, can we glean any insights into the differences between how humans
and computers classify ice images? The rest of this section will address those questions.
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4.1. Effect of the True Negative Weighted Loss

Varying λtn, the true negative weight, in the training loss, has little effect on the test-metrics of
the networks. This can be seen in Figure 5. The figure shows a slight increase for λtn = 0.4, but it is
uncertain if this is an indication of that value being superior or if it is an artifact of the specific training
run or random initialization of network weights. This hypothesis is further reinforced from the fact
that Figure 9 shows a very large variance for the models with λtn = 0.4 compared to the rest, indicating
that these two models, trained with the exact same hyperparameters, behave very different to each
other.

What varying λtn does change, however, is the distribution of false predictions. Figure 9 shows
the portion of false predictions being false positives for varying values of λtn, and it is clear from the
plot that lower values of λtn tend to lead to a higher fraction of false positives.

Therefore, based on the previous observations, it is possible to change the behavior of the network
when it fails, largely without affecting its ability to correctly recognize other elements of an image. This
gives some general insights into the flexibility of neural networks: Although one is unable to increase
the number of correct classifications (using this specific method), one can still make the network’s
behavior fit better to a use case. For ice object recognition, it is reasonable to assume one would prefer
a system warning about some dangerous ice object a bit too often over a system that allows you to
miss one. Of course, this is not necessarily true for all ice classes; e.g., it is likely unimportant if the
model misses some brash ice from time to time. However, it could be extremely important not to miss
icebergs, as colliding with them could be catastrophic.
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Figure 9. The portion of false predictions that are false positives, plotted against the true negative
weight λtn. The score for each value of λtn is the average of two models trained with that value. The
error bars show the minimum and maximum values of the two models.
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Figure 9. The portion of false predictions that are false positives, plotted against the true negative
weight λtn. The score for each value of λtn is the average of two models trained with that value.
The error bars show the minimum and maximum values of the two models.

4.2. What the Network Sees

From Figure 6, we see that the network performs very well for some classes, such as icebergs,
floebergs, and level ice, while failing spectacularly on others, e.g., ice floes, floebits, and to a certain
degree pancake ice. To understand this difference, it is useful to investigate which areas of the image
are of importance for the network to classify. A method for this is the Grad-CAM [36], which uses the
gradient of classification scores with respect to the activations of a layer to find areas of interest to the
network. In all Grad-CAM images in this work, the activations of the last residual block are used.

Figure 10 illustrates the difference between a class the network successfully manages to recognize
and one that it does not. Figure 10a–d shows the Grad-CAM images for iceberg activations, while
Figure 10e–h shows those for ice floe activations. It is clear that the network indeed looks at the
icebergs for classifying them, even though the mountains in Figure 10b fool the network into believing
they’re icebergs as well. It should be noted that since most of our dataset is from offshore areas in
the Arctic, mountains and other shore features are not common in the dataset. Therefore, it is not
surprising that the model has some problems with this image from Antarctica.
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Figure 10. GradCAM-images showing which part of the original image that pushes the network
towards classifying the image as icebergs ((a) – (d)) or ice floes ((e) – (h)). Orange areas have little
impact, while light blue areas are important. Images with pink borders were not correctly classified by
the network. Image rights: a: Natalie Lucier, b: SF Brit, c: Sergey Dolya, d: Roger Skjetne, e: Sveinung
Løset, f: Alex Cowan, g: SAMCoT Project, h: Sergey Dolya

Figure 10. GradCAM-images showing the parts of the original image that pushed the network towards
classifying the objects as icebergs (a–d) or ice floes (e–h). Orange areas have little impact, while light
blue areas are important. Images with pink borders were not correctly classified by the network. Image
rights: (a) Natalie Lucier, (b) SF Brit, (c) Sergey Dolya, (d) Roger Skjetne, (e) Sveinung Løset, (f) Alex
Cowan, (g) SAMCoT Project, (h) Sergey Dolya.
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Regarding ice floe images, it is immediately apparent from the images that instead of looking at
ice floes as a whole, the network only focuses on some few parts, typically around the edges of the
floes, or, in cases where there are few or no edges, seemingly random locations. Now, an ice floe is not
defined by its boundary, so there is a clear discrepancy between what the network has learned and the
real world.

Based on our study, it is currently challenging to understand what makes ice floes more difficult to
recognize than other ice objects. One guess is that the network has a problem recognizing ice features
that are not located around a small area of an image, as an ice floe has few defining characteristics on
a local scale. If this is true, it would be reasonable to assume the class level ice will exhibit similar
behavior. From Figure 6, it seems that the network is actually very successful at classifying level
ice. Even so, the Grad-CAM images for level ice activations in Figure 11 show a more nuanced view.
Indeed the images show the same trend towards looking at specific parts of the ice, instead of the ice as
a whole. The difference between the two classes seems to be that the network finds a useful descriptor
for level ice in local areas, which makes sense because the idea of "levelness" can be applied to patches
of varying sizes.

There are a few other plausible reasons for the difficulty with ice floes. One is that nothing in
the training set explicitly teaches the network about open water, which often surrounds ice floes in
the images. This could lead to models not understanding that the floe is not surrounded by ice, and
making the distinction between ice floes, and e.g., level ice less apparent. Furthermore, the leading
descriptor for an ice floe is its size, and since the dataset contains no scale information, this is likely
hard to determine for the models. Finally, ImageNet, which the models were pre-trained on, contains
some ice classes, with many misclassifications, especially for a few classes, including ice floes [12].
This can lead to the model being better suited to classify the classes with many correct samples in that
dataset (such as icebergs), compared to those not present or with many incorrect samples.
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Figure 11. Grad-CAM images for the class ‘level ice‘. All four images were classified correctly by the
network. Image rights: a: Lauren Farmer, b-c: SAMCoT Project, d: Knut Vilhelm Høyland
Figure 11. Grad-CAM images for the class "level ice." All four images were classified correctly by the
network. Image rights: (a) Lauren Farmer, (b,c) SAMCoT Project, (d) Knut Vilhelm Høyland.

4.3. The Effects of Distortions

Figure 7 shows the performances of networks with varying values of the true negative weight at
different levels of distortions. It is clear from the plots that a higher level of distortion leads to lower
performance, although the severity of the effect varies according to the distortion type. Brightness and
fog impact the F1 scores of the models by averages of 0.04 and 0.10, respectively, while blur and noise
degrade it by 0.33 and 0.29, respectively. The results do not indicate that a certain value of the true
negative weight consistently handles distortions better than the others.

Figure 12 shows Grad-CAM images of the floeberg activations of an image containing a floeberg
along with broken ice, with varying levels of distortions. The image was chosen for two reasons:
First, because it contains a floeberg, a class the network is largely successful in classifying. Second,
because the model failed to correctly classify some distorted versions of the image, so it yields a more
interesting analysis. Looking at the images, it is noteworthy that the network notices the floeberg as
the important part of the image in all instances, although it also starts looking at the sky in the case of
the blurred images. This means that if asked the question, "Where in the image is the floeberg?" as
opposed to, "Is there a floeberg in this image?" the network would be largely successful. However,
since the Grad-CAM images are normalized, they do not show how strong the signal is, which is the
problem here. Indeed, looking at the activations of the network, quite a few of the images would be
classified as a floeberg (along with broken ice) by lowering the point at which the model marks a
prediction as true. This indicates that neural networks have a theoretical ability to see even in distorted
conditions, although work is needed to exploit this ability.

One problem with the given image was that the model had a tendency to label some of
the distorted versions (distorted by fog or noise) as brash ice in addition to the other classes.
We hypothesize that these modifications, which add elements to the image instead of making what
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is there already less clear, can introduce new textures and gradients in the image. This affects the
network negatively, as ImageNet-trained neural networks are biased towards texture [37]. For brash
ice, such misclassifications would typically not be of much importance; however, the problem points
to a serious flaw in this model, one that needs to be addressed in the future.Version 2020-09-25 submitted to J. Mar. Sci. Eng. 16 of 19
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4.4. Difference Between Novices, Experts, and Computers

As can be seen from the plots in Figure 8 and degradation values in Table 4, both humans and
computers are negatively affected by distortions in the images. Although humans are affected by
distortions in the images, they are much more robust to them than computers. Indeed, the distortion
causing the least difficulty for the computers still led to a degradation at about the same level as
the average distortion for the humans. This agrees with previous studies comparing humans and
computer vision [7,8], and shows the need for more robust computer vision models. However, the
distorted Grad-CAM images in Figure 12 indicate that such robustness might be possible.

It appears from the plots that computers outperform humans for clean images, especially when
looking at the fraction of images that were classified exactly correct, while the F1 score is slightly closer.
However, it must be mentioned that experts can be at a disadvantage here, as they might have some
pre-existing notion of what each ice class is that does not match the definitions used in this work
perfectly. Such a pre-learned bias, along with a possibility of them being used to being either more or
less detailed than the labeling used here, can lead to lower scores on paper, though they might perform
better in a real situation. Since there is a certain amount of subjectivity in ice object classification (e.g.,
should one label the small pieces of brash ice typically present in between broken ice?), these scores
can not be seen as an objective measure of how well the experts are recognizing the ice, but rather as
a measure of how much they agree with the labeling scheme used here. Such considerations do not
apply to the novices, as they have no pre-learned definitions of ice classes, so it is fair to say that the
network at least outperforms the novices.

A reason for the difference between the correctly classified fraction and F1 score can be seen
from the definition of the F1 score (see Table 3), namely, that humans classify more optimistically than
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the computer. In other words, humans have a larger tendency to select more classes, leading to a
higher score for both true and false positives, and a symmetric decrease in true and false negatives.
This hypothesis is confirmed when we see that novices on average classify each non-distorted image
with 2.12 labels, and experts with 2.15, while computers use on average 1.86 labels per image. Although
we can increase this number by lowering the true negative weight, this did not result in a higher F1

score in our experiments.
Finally, it is worth noting that there is a large difference between the performance on undistorted

images in the different partial test sets (i.e., the images with distortion level 0). This shows how some
images likely are inherently more difficult to classify for the different groups. This was expected,
especially because each subset was relatively small (to limit the time needed to perform the test for
humans). What is interesting is that the relative difficulty of each different set varied between the
groups. For humans, the fog-dataset was the most difficult by some margin, while the computer
seemed to struggle less with it.

5. Summary and Conclusions

In this work, we have presented an in-depth analysis of the use of CNNs for the classification of
ice objects in icy areas. The main contributions of the work can be summarized as:

• A loss-weighting scheme for making the trained model more likely to predict that classes are
present in an image was introduced. Results show that the scheme works as intended, by avoiding
an excess of false negative classifications and the possibility of missing important ice objects
in images.

• A demonstration of how CNNs can successfully recognize some ice objects in images using
meaningful filters was provided, along with a discussion of why they struggle with some classes.

• A thorough analysis of the effect of semi-realistic image distortions on the classification task was
provided. It was shown that even though the network fails to classify an image, it still recognizes
the area of importance in the image for the given class.

• Finally, a comparison of the performances of human novices, experts, and computers on the
classification task was given. The results indicate that for clean images, the model outperforms
human novices, although it is less clear how it compares to experts. Both human participant
groups handled distortions better than the network.

These results form a basis for continued work in the area of automatic ice object recognition from
near field imagery, and provide some insights into the workings of CNNs in general. They provide a
point to continue working from, towards automated navigational aids and data collection on Arctic
vessels. For the future, relevant areas of research to improve the results include making CNNs more
robust to visual distortions, improve the accuracy of the models for specific classes (e.g., ice floes),
and finding more efficient methods for large-scale data collection. Furthermore, it would be interesting
to compare the models in this work with ones trained on datasets that either include scale information
directly (e.g., through depth images) or have an identical camera setup for all images.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
i.i.d. Independent, Identically Distributed
ReLU Rectified Linear Unit
SAR Synthetic Aperture Radar
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
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