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Background





1 Introduction

The objective of this thesis is inference of subsurface rock properties from
seismic reflection data. This constitutes an inverse problem where the un-
known medium, the properties of the subsurface, are to be inferred from
the observed seismic response of the system.

The motivation for this work is to provide a notion of uncertainty re-
lated to estimation of the subsurface properties from seismic data. Seis-
mic data continues to be of uttermost importance for reliable petroleum
reservoir characterization, being used in various stages of reservoir explo-
ration and development. It serves as data for subsurface imaging and inter-
pretation of geological features. The additional information of uncertainty
can be utilized in the geological interpretation or in a decision-making pro-
cess. Therefore the inverse problem is here considered in a Bayesian setting
where the solution is a probability distribution and uncertainty an inherent
part of the solution.

The field of full waveform inversion (FWI) was and is an increasing ap-
pliedmethodology in reservoir characterization, and the practice could ben-
efit from having some uncertainty quantification associated with it. This
was the initial research question of this thesis work; how to get estimation
uncertainty into the full waveform application.

Within the geosciences, data assimilation describes state estimation us-
ing the Bayesian paradigm (Wikle et al. 2007; Carrassi et al. 2018). Data as-
similation has received considerable attention in various communities and
its use is becoming widespread. The aim of data assimilation is to integrate
sources of information and to combine these in an optimal manner. Such
sources of information are themathematical/numericalmodel of a phenom-
ena and the actual observations of this phenomena.

Envisioning full waveform application in 2- or 3D where the parameter
dimension becomes very large, the method of choice must scale well. A
data assimilation method that have shown robust in use for high-dimensio-
nal problems is the ensembleKalmanfilter (EnKF). The decision to focus on
the application of EnKF methodology was influenced by its successful ap-
plication to the history matching (HM) problem. The HM problem shares
features with the FWI problem, but also deviates fundamentally in the un-
derlying physical system, as HM concerns a flow problem whereas FWI is



6 Background

a wave problem.
The main ensemble methods used within HM applications are now it-

erative of nature. The nonlinear nature of the problem and the cost of nu-
merical prediction has favored the iterative approach. Primary methods
are the ensemble smoother-multiple data assimilation (ES-MDA, Emerick
and Reynolds 2013) and the iterative ensemble smoother (IES, Chen et
al. 2011), the method formerly known as ensemble randomized maximum
likelihood (EnRML). Evensen (2018) provided a detailed comparison be-
tween the two. A third option might be the iterative ensemble Kalman
smoother (IEnKS) used in this thesis.

Associating uncertainty to FWI is an ongoing effort. Thurin et al. (2019)
used the ensemble Kalman framework and a frequency solver to get un-
certainty estimation in a 2D, acoustic application. Others are seeking alter-
native paths to assess the uncertainty; Eikrem et al. (2019) used an itera-
tive extended Kalman filter to seismic time-lapse data, whereas Zhang et al.
(2020) considered a variational inference approach to assess the estimation
uncertainty, the so-called Variational FWI, for a 2D case of elastic inversion.
So quantifying uncertainty in large-scale seismic inversion is a hot topic.

Sampling based inversion requires repeated evaluations of a model for
the observed phenomena and is inherently computationally demanding.
This implies and demands parallel computations, and the work in this the-
sis has relied heavily on access to resources provided by the NTNU IDUN/-
EPIC cluster facility (Själander et al. 2019).
The computational cost/time of evaluating the wave model is the primary
reason for not considering anMarkov-chainMonteCarlo (McMC) approach
to the Bayesian inverse problem. The McMC approach would principally
result in a correct Bayesian solution, but for high-dimensional problems the
required time to evaluate (in non-parallel) the chainmakes it unfeasible for
this kind of seismic application. Another correct approach to the Bayesian
inverse problem would be the application of a particle filter, but this ap-
proach has its issues with filter degeneracy/collapse for large-dimensional
systems.

Finally, a note on terminology. The distinction between a filter and a
smoother is more distinct when the state is dynamically evolving, and the
state and observations shares a common time reference. For a static pa-
rameter state, this distinction is less clear. In the ensemble-based frame-
work, the convention is that a smoother refers to assimilation of observa-
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tions that spans several observation times. It is also known as 4D data as-
similation (Hunt, Kalnay, et al. 2004) or asynchroneous data assimilation
(Sakov, Evensen, et al. 2010). In this thesis, an assimilation step always cov-
ers several observation times and therefore always considers a smoother.

The remaining parts of this backgroundwill be brief walk-though, from
the Kalman filter to an iterative ensemble smoother. This is to build up an
introduction to the concepts and components used by the IEnKS. Section 2
will introduce the seismic forward problem, the general inverse problem,
and the inverse problem from a Bayesian perspective is introduced in Sec-
tion 3. Section 4 discusses the recursive estimation process of sequential
filtering, and in Section 5 the Kalman filter and its extensions for nonlin-
ear observations are presented. This leads to Section 6 that introduces the
ensemble approximation to Kalman filters and square root filters, and fi-
nally the iterative ensemble Kalman smoother which is presented in Sec-
tion 7. Section 8 discusses some aspects of elastic parameter estimation
with ensemble-based methods. Some possible future work is discussed in
Section 9, after which follows short summaries of presentations held and
contributed papers in Section 10.

2 Seismic waveform inversion

Tomography refers to the technique of obtaining an image of a body or
object’s internal structure and doing so in a noninvasive manner. In gen-
eral terms, tomography is done by passing some signal through the ob-
ject, where the signal is modified in the interaction with medium changes
(the internal structure), and observing the signal after the passage. Many
examples of practical tomography uses a wave as signal that propagates
through the medium. Examples of medical tomography are CT and ultra-
sound scanning. The former technique usesX-rays to pass through the body
with observations made on the other side of the body. The latter uses high-
frequency sound waves and reflections back towards source emitter. Seis-
mic tomography deals with imaging properties of the Earth’s subsurface,
which is most often done with observations at the surface, thus in essence
resembles ultrasound tomography.

The field of seismic tomography encompasses many techniques among
which FWI is one. If the range of these techniques were ranked in terms of
complexity and imaging resolution (generally complementary), FWIwould
be in the high-end of the spectrum.

The motivation for full waveform inversion is to use the best possible/-
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Forward

Inverse

Figure 1: Depicting the forward and inverse relationship for seismic wave-
form. Left; acoustic velocity parameter throughout the domain. Middle; a
source located at top of domain excites a propagating wavefield. Right; ob-
servedwavefield at receivers located at top of domain. Only a small fraction
of the total wavefield is observed.

available physical model representation of the physics, and to use the ob-
servations with a minimum of processing as this tends to distort/alter the
information content in measurements. Full waveform inversion operates
directly on shot gather data and uses the residual between simulated and
measured data, to iteratively update the subsurface model. The simulation
setup used for FWI, is supposed to reflect the actual acquisition situation.
Along with using a physical model that includes most of wave propagation
phenomena, the expectation is that a simulated observation is quite close to
the actual measurement. This was the vision in the first examples of what
might be considered as FWI, as presented in Tarantola (1984). The field has
evolved a lot since then, for introductory texts on FWI, see e.g. Virieux and
Operto (2009), Fichtner (2010), and Virieux, Asnaashari, et al. (2017).

The prediction of an expected observation is dubbed the forward prob-
lem; given these causes, what is the effect? The inverse problem flips the
question; given these effects, what are the causes? These arrows of causality
are depicted in Figure 1.

Seismic waveform

Seismic data is in its raw form a recording of a wavefield, excited by a con-
trolled source in the considered context. The recording might be pressure
fluctuations in water, using hydrophones or it might be (particle) displace-
ment using geophones. In either way it is a very complex signal resulting
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from the propagating wave field.
When the source initiates its forcing, a wave front starts propagating

from the source. Whenever this front meets a material inhomogeneity, the
wave is scattered and the resulting wavefield is even more complex. The
end result of all this interaction, observed near the surface relatively far
from the medium area of interest, is what we have of measurement data
and from which the medium properties must be inferred. That is to say,
this inference is not a straight forward task.

Many processing techniques exist to reduce the amount of information
in these recordings and keep only the essential information, tailored to a
specific processing/analysis technique (Sheriff et al. 1995).

Full waveform often refers to the synthetic seismograms being simu-
lated as realistically as possible in terms of physics. This involves numer-
ical simulation of the wave equation in either time- or frequency domain.
Either domain has its advantages, but here the focus is on time-domain.

The seismic wave propagation is described by the elastic wave equation
(Fichtner 2010), in a displacement-stress formulation

ρ(s)∂2
t u(s, t)−∇ · σ(s, t) = f(s, t) , (1)

where u(s, t) is the particle displacement, σ(s, t) the stress tensor and ρ(s)
the density over the spatial domain s ∈ D ⊂ R3 and time t ∈ [0, T ]. The
wave field is excited by the force f(s, t) and the system is considered at rest
for t < 0. The latter is the initial condition and the system must also be
supplied with appropriate boundary conditions. In the form (1), the sub-
surface properties of interest enters via the stress tensor through e.g. spatial
fields of shear and bulk moduli, and the density field. The wave equation
formulation can take other forms, but the details are irrelevant here.

The dynamic wavefield is to be integrated over the spatial domain of in-
terest. The vertical extent, the subsurface depth, can be several kilometers
and the lateral extent, supposed to reflect the acquisition situationwith long
receiver arrays, can extend many kilometers laterally. Hence the spatial do-
main is of considerable size, whichmust be discretized into a computational
grid of fairly fine resolution in order to model the targeted spatial details
and resolution of wavenumbers. The spatial derivatives can be approxi-
mates by finite-differences or using more flexible grid methods, such as fi-
nite element methods or even spectral finite element methods (Komatitsch
et al. 1999).

The numerical simulation of seismic wave propagation is a large subject
and different approaches and approximations can be taken. As such this is
not a focus point of this thesis. Part of the purpose of applying ensemble-
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based inversion is to have the details of the forward model out of the way,
considering this as a black box.

Time-domain simulation of the elastic wave equation is computation-
ally demanding as the wave field is the displacement vector field. An often
applied practice is to consider only acoustic waves in the modeling. The
measured waveform still contains recordings of shear waves, but as acous-
tic waves are dominating in the response, the absence of shear waves in
predicting the observation can be considered an acceptable approximation.
The simulation of an acoustic (scalar) wave field progation is considerably
faster than its elastic counterpart (Fichtner 2010).

Another way of reducing computation time can be obtained by placing
limitations on input, instead of output. By limiting the subsurface represen-
tation to horizontal layers wherein elastic attributes are constant, the elastic
wave equation can be treated analytically and a synthetic seismogram com-
puted significantly faster. This leads to the reflectivity method.

Reflectivity method

The reflectivitymethodhas a longhistory andhas been aworkhorsemethod
in reflection seismology. Kennett (2011) was among the key persons to de-
velop the technique (Kennett and Kerry 1979) and is also the developer of
the Erzsol3 (Kennett 2005) solver that has been used in this work.

The assumption of a stratified medium, where a 2D domain has varia-
tion only in the vertical direction whereas properties along the horizontal
are constant, are of course a physical simplification but brings about com-
putational efficiency. The elastic wave equation can in this case be trans-
formed via cylindrical coordinates to the frequency-slowness domain and
therein a solution can be derived analytically. This involves integration over
wavenumbers and slowness, and the reflectivity method is also called a
wavenumber integration method. The response of the stacked layers are
calculated recursively and thus scales with the number of layers, but it nev-
ertheless offers a significant speed-up compared to time-wise simulation
of wave propagation. For computational aspects of the reflectivity method,
see e.g. Müller (1985) and Mallick et al. (1987).

Forward model

Let the unknown state of interest be x ∈ Rm, representing a parameteriza-
tion of the spatial field of elastic attributes in the subsurface. In case of a
layered medium, the state dimensionmwould be number of layers, which
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might be of order 101–103, times 3, the three elastic attributes. Whereas in
a 2- or 3D wave simulation of Equation 1, the state dimension would reflect
the computational grid in the region of interest and can be several orders
of magnitude larger.

The state thus collects the elastic attributes x = [logvp, logvs, logρ]
T,

where vp is the depth profile of acoustic velocity in the layers and similarly
for the shear velocity vs and density ρ. The logarithmic transform is used
to ensure that the physical properties remain positive.

The observed quantity is denoted y ∈ Rp which holds the seismic wave-
forms over some measurement time for a series of receiver locations, i.e.
a gather record. The operator relating the hidden state to observations is
the forward model h. This operator implicitly holds all other parameters,
such as source and receiver information, algorithmic parameters and pos-
sibly also some data processing. The forward model is considered perfect
so that for the true state xt, one would predict the true wavefield. Regret-
tably, themeasurements are corrupted by errors and the observationmodel
becomes

y = h(x) + e . (2)

The distribution of themeasurement error e is assumedGaussianwith zero
mean and covariance matrix R.

For geophysical problems both model and observation space dimen-
sions can be large. In seismic waveform applications, the data dimension
p is on the order of: time sampling × length of recorded seismogram ×
number of receiver positions measuring seismograms× number of seismic
shots. This quickly builds up to large dimensions, and seismic experiments
generate vast amounts of data.

The number of data points, the sampled waveforms, is not the full pic-
ture. Figure 2 displays two synthetic seismograms at some arbitrary offset
and time interval. They have been simulated using the same configuration
in the reflectivity method, and the difference between the two is the fre-
quency bandwidth. The tracewith larger bandwidth obviously variesmore
than the other, which affects the possibility to represent variability though
a sample covariance matrix.

Inversion

The inverse problem might simply be stated as x = h−1(y) but contrary to
h(·)which is defined via differential equations, h−1(·) is unknown. Instead,
the problem is reformulated into one of minimizing a functional of the mis-
fit between prediction y = h(x) and observation yo , assuming that if y is



12 Background

Figure 2: Examples of waveformswith different information level. Blue has
larger frequency bandwidth (higher upper frequency limit) than red.

close to yo , then x is close to the true state xt. Such a data misfit functional
can take various forms and recently FWI research is increasingly focused
on this component. Still, the classical L2-norm functional is much used and
defines the optimization/variational problem as

argmin
x

∥∥yo − h(x)
∥∥2 .

If the error in observations are thought to have different uncertainty or are
correlated, the least squares functional can be changed into a weighted or
generalized least squares formulation:

argmin
x

∥∥yo − h(x)
∥∥2
R
,

where R is some weight matrix and the weighted norm squared means∥∥a∥∥2
B
= aTB−1a.

Inverse problems are characterized by being ill-posed. A problem being
well-posed means (i) a solution x exists, (ii) the solution is unique and (iii)
that the solution depends continously on the data.

Seismic inverse problems are ill-posed. Seismic tomography is inher-
ently non-unique in that different models for the subsurface can cause (al-
most) identical observations.

To address ill-posedness of a problem, one turns to regularizing it to
make it behave a little more well-posed. Regularization can be seen as
adding information to the problem in order to constrain it. Tikhonov regu-
larization (Vogel 2002) is one common type of applied regularization that
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adds a penalty term to the objective

argmin
x

∥∥yo − h(x)
∥∥2
R
+ α

∥∥L(x− xf )
∥∥2 ,

with α being a weight factor between the data misfit and the penalty and L
is a structural matrix. The weight parameter is often referred to as the reg-
ularization parameter and L the Tikhnonov matrix. The reference solution
xf is supposed to be a reasonable initial guess and constrains the solution x
to be in its vicinity, and the regularization thus penalizes solutions of larger
magnitude and deviations from this reference solution. If L = I, the reg-
ularization is called norm damping and the regularized solution remains
close to xf . If instead L is taken as a finite difference approximation to a
derivative (first- or second-order), the regularizing is denoted derivative
damping which will favorize smoother solutions.

Linearizing the observation operator

Let P−1
f = LTL and denote the variational problem argminx J(x)with the

cost function given as

J (x) = 1
2

∥∥yo − h(x)
∥∥2
R
+ 1

2

∥∥x− xf
∥∥2
Pf

.

The observational (first) part of the function J(x) can be linearized in
the vicinity of the state xf , using a first order Taylor expansion

h(x) = h(xf + (x− xf )) ≈ h(xf ) +H(x− xf ) , (3)

where the tangent linear (Jacobian) H = ∂h(x)
∂x

∣∣
x=xf

is introduced. Insert-
ing this expansion into J(x)

2J(x) =
∥∥x− xf

∥∥2
Pf

+
∥∥H(x− xf )

∥∥2
R
+
∥∥yo − h(xf )

∥∥2
R

−
[
yo − h(xf )

]T
R

−1
[
H(x− xf )

]
−
[
H(x− xf )

]T
R

−1
[
yo − h(xf )

]
and using the relation ∇(xTAx) = 2Ax and ∇(dTx) = ∇(xTd) = d (Pe-
tersen et al. 2012), the resulting Jacobian and Hessian of J(x) become

∇J(x) =
[
P

−1
f +H

T
R

−1
H
]
(x− xf )−H

T
R

−1
[
yo − h(xf )

]
∇2J(x) = P

−1
f +H

T
R

−1
H .
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Setting∇J(x) = 0 and rearranging, the solution canwritten (Asch et al.
2016) as

x = xf +
[
P

−1
f +H

T
R

−1
H
]−1

H
T
R

−1
[
yo − h(xf )

]
. (4)

This form of solution will come back when considering the stochastic filter-
ing.

3 Bayesian inversion

The Bayesian viewpoint is that the unknown state vector is a random vari-
able with an assigned prior probability distribution p(x). Likewise, the ob-
servation vector is considerd random and the measurement is a realisation
of this. The target of Bayesian inversion, or Bayesian inference, is the poste-
rior probability distribution p(x|y), the conditional distribution of the state
given an observation.

The foundation is Bayes’ rule. Once the prior and likelihood function
p(y|x) are specified, the posterior is:

p(x|y) = p(y|x) p(x)
p(y)

∝ p(y|x) p(x) ,

where the expression to the right drops the marginal likelihood p(y) – the
probability of y prior to its observation – that acts as normalizing constant.
This quantity is cumbersome to compute and not necessary as such, so it is
conveniently dropped.

With an additive error structure in the observation model and an as-
sumption of Gaussian distributed observation errors p(e) = N(0, R), the
likelihood is Gaussian and

p(y|x) ∝ exp
(
−1

2

∥∥yo − h(xf )
∥∥2
R

)
.

Assuming in addition a Gaussian prior p(x) = N
(
xf , Pf

)
, the posterior

becomes

p(x|y) ∝ exp
(
−1

2

(∥∥yo − h(xf )
∥∥2
R
+
∥∥x− xf

∥∥2
Pf

))
.

The state that maximizes the posterior density equals the solution that min-
imizes the (negative) log-posterior −log p(x|y)which is equivalent to min-
imization of the previously introduced cost function

J (x) = 1
2

∥∥yo − h(x)
∥∥2
R
+ 1

2

∥∥x− xf
∥∥2
Pf

. (5)
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As the most likely estimate of the true state, the choice of the state with
maximum (posterior) probability,

xa = argmax
x

p(x|y) = argmin
x

J(x)

is expected to be adequate.
The Bayesian interpretation of the additional regularization term is an

imposed prior on the state. But framing the inverse problem in a Bayesian
setting provides amore consistent approach, than themore ad-hoc addition
of a regularization penalty term. With a prescribed prior the state is added
information and regularization follows. The approach is not necessarily
that much easier as the distributions need specification.

If the prior is Gaussian and the likelihood Gauss-linear, then closed
form expressions for the first two moments of the Gaussian posterior is
available. The second moment enables direct quantification of uncertainty
through the variance-covariance information. When the observationmodel
is nonlinear, uncertainty quantification is more difficult.

4 Sequential filtering

Stochastic filters most often deal with dynamic states, whereas in this pa-
rameter estimation context, the state is static. The subsurface properties
might change over longer time, but do not change during the seismic exper-
iment of some seconds recording time. Sequential here refers to the entire
data set y being conditioned upon, is partitioned into disjoint sets yk such
that y = ∪K

k=1yk, which are processed in turn. For each data partition a
prior distribution is used to predict observations, where the prior is the
advancement of the current knowledge to predict these next observations.
Taking into account the information provided by the actual observations,
this knowledge is improved and is represented by the posterior distribu-
tion. This prediction followed by a correction constitutes an assimilation
cycle. The updated knowledge then serves to predict the next set of ob-
servations. This is then a sequential process of estimation and uncertainty
reduction.

With x given, observations y are independent since the measurement
error sequence is assumed independent. Therefore

p(y1,y2, · · · ,yK |x) =
K∏
k=1

p(yk|x) ,
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x x x . . . x x

y1 y2 yK

p(x) p(x|y1) p(x|y1,y2) p(x|y1:K−1) p(x|y)

p(y1|x) p(y2|x) p(yK |x)

Figure 3: Diagram of the recursive structure. The unobserved variables x
are inferred from observed variables y. Each conditioning cycle provides
the forecast distribution for the next observation.

and Bayes’ rule can equivalently be written

p(x|y) ∝ p(x)
K∏
k=1

p(yk|x) .

From the product form of likelihood, the order of assimilating or condition-
ing can principally be arbitrary, but the physical relation between state and
observations does induce an order. Each data partition yk is denoted a data
assimilation window (DAW).

The sequential or recursive structure of conditioning is depicted in Fig-
ure 3, where the horizontal arrows entering a node indicates the prior, the
vertical arrow the likelihood and the horizontal leaving a node is the (se-
quential) posterior.

In what follows, the (sequential) prior distribution is also referred to as
the forecast distribution, as this forecasts or predicts the state distribution
that causes the next observation. The sub-/superscript ’f’ is used to denote
this. Similarly, the posterior distribution resulting from conditioning on
observation is dubbed the analysis state distribution, and is denoted with
sub-/superscript ’a’.

State space model

The state vector describes static parameters which does not evolve dynam-
ically between analysis and forecast state, and the persistence model (Boc-
quet and Sakov 2013) is a natural choice as forecast model for the state be-
tween assimilation cycles. Accordingly, the first two moments of the obser-
vation forecast distribution, using the observation model (2), are:

E [yk|y1:k−1] = yf
k = hk(x

f
k) , cov [yk|y1:k−1] = cov [hk(x|y1:k−1)] +Rk
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where the forecast state estimate xf
k = E [x|y1:k−1], the forward model hk

forecasts the kth observation set andRk is the observation error covariance
matrix associated with this subset.

In Section 5-7 the cycle index k is omitted as this part concerns a single
assimilation cycle.

5 Kalman filter, extended and iterative

In this section a quick description of the Kalman filter (KF), the extended
Kalman filter (EKF) and the iterative extended Kalman filter (iEKF) is pro-
vided. This gives a basic picture of the methods and its components, before
going into the ensemble-based approximation.

Kalman filter

Considering first the Gauss-linear case. With a Gaussian prior on x ∼
N
(
xf , Σf

)
, a linear observationmodely = Hx+e so thaty|x ∼ N

(
Hxf , R

)
.

Then, the joint (Gaussian) distribution of [x,y]T is[
x
y

]
∼ N

([
xf

Hxf

]
,

[
Σf Σf H

T

HΣf HΣf H
T +R

])
.

Given an observation yo , the conditional distribution of x|y = yo is also
Gaussian (Johnson et al. 2007) with mean and covariance

xa = xf +ΣH
T
(
HΣf H

T
+R

)−1 (
yo −Hxf

)
Σa = Σf −Σf H

T
(
HΣf H

T
+R

)−1

HΣf .

These equations for the conditional moments are essentially the Kalman
analysis/update equation (Madsen 2007). Introducing the Kalman gain
matrix

K = cov [x,y] cov [y]
−1

= Σf H
T
(
HΣf H

T
+R

)−1

(6)

the analysis equations are written in a more common form

xa = xf +K
(
yo −Hxf

)
(7a)

Σa = (I−KH)Σf . (7b)
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These Kalman filter formulations are valid in its strictest sense only for
Gauss-linear systems. They describe how the information from an obser-
vation affects the state estimate through cross-covariances.

The gain matrix (6) can, using the Woodbury identity (Petersen et al.
2012);

A
−1
B
(
C

−1
+DA

−1
B
)−1

= (A+BCD)
−1

BC ,

equivalently be written as

K =
(
Σ

−1
f +H

T
R

−1
H
)
H

T
R

−1
.

Thus, the solution to the variational problem (4) corresponds for a Gauss-
linear system to the conditional mode, which for Gaussian distributions
equals the mean. This is the connection between the variational and the
statistical approach to the estimation problem.

When the system is Gauss-linear, the Kalman filter is optimal in the
sense that it fully describes the (Gaussian) conditional distribution by its
mean and covariance. In case the observation operator is nonlinear, the joint
distribution of [x,y]T is no longer Gaussian and neither is the distribution
of x|y. The Kalman filter is then suboptimal as the true conditional mean
and covariance will differ from the filter estimates. One way to circumvent
the effect of nonlinearity is by invoking the linearization (3) and assume
a Gaussian approximation (Särkkä 2013). This leads to the formulation of
the extended Kalman filter.

Extended Kalman filter

The extended Kalman filter relies on the linearization (3) of the nonlinear
forward model. In this filter formulation, the mean forecast uses the non-
linear forwardmodel directly, while the error covariance is predicted using
the gradientH. The linearization approximation is not always valid and can
make the filter performance behave badly, if the data is more than weakly
nonlinear.

The measurement prediction

E [y] = E [h(x)] + E [e] = E [h(x)]

≈ E
[
h(xf ) +H(x− xf )

]
= h(xf ) +HE

[
x− xf

]
= h(xf )

(8)
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is hence the propagation of the state estimate through the nonlinear for-
ward model. The predicted error covariance when inserting the lineariza-
tion becomes

cov [y] = E
[
(h(x)− E [h(x)]) (h(x)− E [h(x)])

T
]
+ cov [e]

≈ E
[(
h(xf ) +H(x− xf )− h(xf )

)(
h(xf ) +H(x− xf )− h(xf )

)T]
+ cov [e]

= E
[
H(x− xf )(x− xf )

T
H

T
]
+ cov [e]

= HE
[
(x− xf )(x− xf )

T
]
H

T
+ cov [e] = HΣf H

T
+R ,

(9)
as the measurement error e and the predicted observation are assumed in-
dependent. Similarly for the cross-covariance

cov [x,y] = E
[
(x− E [x]) (h(x) + e− E [y])

T
]

≈ E

[(
x− xf

)(
h(xf ) +H(x− xf ) + e− h(xf )

)T
]

= E
[
(x− xf )(x− xf )

T
H

T
]
= Σf H

T
,

(10)

with the assumption cov [x, e] = 0, that state and error also are indepen-
dent.

So the analysis equation for the state mean looks the same as for the
linear case, except for the expected observation using the nonlinear forward
model

xa = xf + cov [x,y] cov [y]
−1

(
yo − h(xf )

)
, (11)

whereas the analysis covariance is identifical to Equation 7b apart from it
using the gradient (or tangent linear model).

Iterative extended Kalman filter

When the forward model is more than weakly nonlinear, the linearization
(3) around the forecast state xf is questionable. The analysis state can then
benefit from being found iteratively. Jazwinski (1970) called this approach
the iterated extended Kalman filter.

The benefit of iterating comes from a re-linearization around an itera-
tively improved reference estimate xj ,

h(xf ) ≈ h(xj) +Hj(x
f − xj) ,
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with the gradientHj = H(xj) = ∂xh(x)|x=xj
. The update form follows the

EKF analysis, which is then iteratively repeated as

xj+1 = xf +K(xj)
(
yo − h(xj)−Hj(x

f − xj)
)
,

where the iterate state vector xj initializes as x0 = xf , and the converged
solution x∗ defines the analysis state xa = x∗. The first iteration x1 thus
equals the EKF analysis (11). The iterate Kalman gain equals

K(xj) = Σf H
T
j

(
HjΣf H

T
j +R

)−1

.

The forecast covariance Σf is fixed, and the analysis covariance uses the
final re-evaluation as Σa =

(
I−K(xa )H(xa )

)
Σf .

6 Ensemble Kalman filter

For problemswith a large state dimensionm, the storage of them×m covari-
ance matrix becomes impractical, even impossible. Instead of propagating
a state estimate and the state error covariance, the ensemble approach uses
a set of states to propagate this information.

Another issue of practical/realistic problems is that they often are non-
linear of nature and that linearizing them are cumbersome, if possible at all.
The forwardmodel is most often the numerical solution from a complex im-
plementation of a mathematical model, which is far from straightforward
to linearize.

The frameworks inherent inclination towards use of black box models
and the parallel evaluation of this, makes it very suitable to modern com-
putational resources.

Ensemble and Monte Carlo

The Monto Carlo principle is often expressed as an approximation to the
expectation operator:

E [f(x)] ≈ 1

n

n∑
i=1

f(x[i]) , (12)

where the approximation improves as the number of Monte Carlo samples
n → ∞. For a multivariate random variable x, the sample mean

E [x] ≈ 1

n

n∑
i=1

x[i] = x , (13)
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and the sample covariance

cov [xj , xk] = E [(xj − E [xj ]) (xk − E [xk])]

≈ 1

n− 1

n∑
i=1

(
x[i],j − xj

) (
x[i],k − xk

)
,

(14)

where x[i],j is the ith sample of the jth variable.

An ensemble is a set of state samples from its underlying distribution.
Whereas in the previous section, theGausiandistributionwas fully described
by its first two moments. Now the distribution is represented by this sam-
ple set and the first two moments estimated from these. These samples are
stored in an ensemble matrix Ef =

[
xf
[1]

xf
[2]

··· xf
[n]

]
where each sample

(column) is called an ensemble member.
The sample mean and covariance of the forecast distribution are

xf =
1

n

n∑
i=1

xf
[i] = Ef 1/n (15a)

Pf = Xf X
T
f , (15b)

where them× n forecast anomaly (or perturbation) matrixXf is

Xf =
(
Ef − xf 1

T
)
/(n− 1)

1/2
. (16)

Similarly, a p× n observation anomaly matrixYf is defined by

Yf =
(
h(Ef )− yf 1

T
)
/(n− 1)

1/2
,

using the expected observation yf . The expected observation can be taken
as the ensemble average yf = h(Ef )1/n or as the forward evaluation of the
(state) ensemble mean yf := h(xf ). Both have been used and they do not
show significant differences for the application considered.

By viewing this observation anomaly matrix as Yf ≡ HXf , with H
the forward model gradient at the forecast estimate H = ∂xh(x

f ), a major
obstacle is bypassed by the operator H not being explicitly necessary. In-
stead, this is approximated by an ensemble linearization. It relies on the
assumption that linearizing around the mean state is acceptable/passable,
thus h(xf

[i]) ≈ h(xf ) + H(xf
[i] − xf ) and h(xf ) ≈ yf , hence h(xf

[i]) − yf ≈
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H(xf
[i] − xf ) and therefore Yf = HXf . If the forward model is linear, this

replacement is of course exact.
Inserting the ensemble approximation (15b) into the cross-covariance

(10) and the covariance (9), the ensemble versions of these become

cov [x,y] = Xf Y
T
f

cov [y] = Yf Y
T
f +R ,

and the ensemble version of the Kalman gain (6) is written as

K = Xf Y
T
f

(
Yf Y

T
f +R

)−1
. (17)

Themethod referred to as EnKF (Evensen 2009) uses this ensemble gain
(17), along with perturbed observations yo

[i] = yo + e[i] , e[i] ∼ N(0, R), to
update each ensemble as

xa
[i] = xf

[i] +K(yo
[i] − yf

[i]) .

The addition of errors to the observations is to ensure the correct posterior
covariance, in the limit n → ∞. This perturbation of observations adds a
source of sampling error in addition to the inherent sampling error caused
by having a finite sized ensemble. As an alternative, square root filters have
been developed that seeks to update the ensemble, still to have correct pos-
terior covariance (in the linear case) but without adding sampling.

Ensemble covariances

A fundamental challenge common to ensemble Kalman filters in its various
forms, is the ensemble based estimation of error covariance matrices. The
finite size of the ensemble makes the sample estimators used in the Kalman
gain (17), prone to what is referred to as spurious correlations, an umbrella
term that covers the effect of sampling errors due to the limited sample size.

Spurious correlations between certain parameters and observations that
principally are uncorrelated, causes these parameters to be updated in the
analysis, along with a reduction in variance as well. Over sequential assim-
ilation cycles, this can cause significant underestimation of the ensemble
variance.

Two techniques to alleviate the impact of sampling errors are often ap-
plied in practical applications, namely localization and inflation.

Covariance inflation artificially increases the ensemble covariance with
an inflation factor larger than one. This can be applied to either forecast or



Ensemble Kalman filter 23

analysis ensemble and in a multiplicative or additive fashion. The inflation
factor can be constant or adaptive, global or local, and there is no general
rule on how to do ensemble inflation optimally.

The localization technique is divided in two classes; domain and covari-
ance localization, eachwith its strengths anddrawbacks. Sakov andBertino
(2011) showed that their effect are comparable when the analysis update is
relatively small. Domain localization, or local analysis, refers to local state
variables (single variable or spatially close group) are updated by assimilat-
ing only observations in its spatial vicinity. The Local Ensemble Transform
Kalman Filter is an example of a local analysis formulation. Covariance
localization on the other hand, seeks to modify/weight the forecast error
covariance matrix such that distant (in space and time) observations are
forced to have zero correlation. This is most often achieved through the
element-wise multiplication of a tapering matrix, but not all filter formula-
tions support this.

Square root filter

The concept of square root filters (SRFs) was introduced shortly after the
Kalman paper in the early 1960’s, as practitioners saw numerical issues (in
precision and stability) in the direct implementation of the Kalman filter.
Back then computers were more limited than today, and square root for-
mulations alleviated some of the problems. While with modern ensemble
methods, the concern that SRFs is supposed to address is the sampling er-
ror introduced when using the stochastic observation perturbation of the
standard/stochastic EnKF. Therefore, the ensemble SRFs are often refered
to as deterministic ensemble Kalman filters.

A (matrix) square root S of a covariance matrix P is a matrix such
that P = SST and SRFs concerns how to update the square root matrix.
The Potter method was introduced in early 1960s and its presentation here
closely follows its explanation in Bierman (1977) and Tippett et al. (2003).
The Kalman equation for the covariance update Pa = (I−KH)Pf =
Pf − KDKT with D = HPf H

T + R and K = Pf H
TD−1. Then intro-

ducing the square root form for both forecast and analysis covariances as
Sf and Sa respectively, the update can be written as

Pa = SaS
T
a = Sf S

T
f − Sf S

T
f H

T
D

−1
HSf S

T
f

= Sf

[
I− S

T
f H

T
D

−1
HSf

]
S
T
f

= Sf

[
I−VD

−1
V

T
]
S
T
f with V =

(
HSf

)T

andD = V
T
V +R ,

(18)
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from which the choice of Sa = Sf

(
I−VD−1VT

)1/2
is intuitive. In the

above, one sets D−1 =
(
D−1

)T asD−1 is symmetric since D is symmetric.
The square root matrix is not unique so a great deal of flexibility is

present in chosing a square root form, and various schemes use different
approaches to this. Also, other matrix factorizations are possible: when the
m×m covariance matrix P has at most rank r, there exists a m× r square
rootmatrixS that fulfills the factorization. Some of the earlier application of
the square-root approach to the (ensemble) analysis step was the ensemble
adjustment Kalman filter (EAKF, Anderson 2001) and the ensemble trans-
formKalman filter (ETKF, Bishop et al. 2001). Tippett et al. (2003) analysed
these in greater detail.

The square root of the forecast and analysis error covariance matrices
replaces the full covariance matrices in the Kalman covariance update (7b),
and becomes an update of the square root only. This is the common concept
of SRFs.

Of other ensemble SRF schemes can bementioned the singular evolutive
interpolated Kalman filter (SEIK, Pham 1996; Pham 2001), which Nerger
et al. (2012) showed that was indeed an ensemble SRF and that SEIK was
more or less equivalent in performance to ETKF. During the last decade
there has been a continued and ongoing effort to explore ensemble based
SRFs and to make these increasing robust, especially towards non-linearity.

Ensemble transform Kalman filter

The foundation update scheme for the IEnKS is the ETKF, originally in-
troduced by Bishop et al. (2001). Hunt, Kostelich, et al. (2007) revised
and further developed it into the Local ETKF (LETKF) which is widely
usedwithin the numerical weather prediction (NWP) community. Also, in
Hunt, Kostelich, et al. (2007) the ensemble subspace aspect is emphasized.

Ensemble subspace representation

Using the ensemble Kalman gain (17) in the analysis state equation (7a),
one can see that the correction to the forecast state will always be found as
a linear combination within the column space of Xf . This column space is
referred to as the ensemble subspace (Hunt, Kostelich, et al. 2007). Making
this parametrization of the analysis state explicit through a n × 1 control
variablew, a state x = x(w) is given as

x = xf +Xf w , (19)
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such that w acts as a coefficient vector within the ensemble subspace.
The analysis controlwa that gives the analysis state xa , can be found by

inserting the parameterization into the Kalman equation (7a) along with
the ensemble Kalman gain (17), resulting in

wa = Y
T
f

(
Yf Y

T
f +R

)−1

(yo − yf ) .

If the control variable is standard Gaussian w ∼ N(0, I), then the state
x = xf +Xf w is also Gaussian x ∼ N

(
xf , Xf X

T
f

)
.

The ETKF is a SRF, so its characteristic is the update of the covariance
square root, such that Xa = Xf T where T is the ensemble transform ma-
trix. The analysis ensemble is then obtained by shifting the center of the
analysis perturbations to the analysis mean

Ea =
(
xf +Xf w

a
)
1
T
+ (n− 1)

1/2
Xf T . (20)

Ensemble transform matrix

Inserting the covariance estimator (15b) into the Kalman covariance update
(7b), and using the matrix inversion lemma,

XaX
T
a = (I−KH)Xf X

T
f

=

(
I−Xf Y

T
f

(
Yf Y

T
f +R

)−1

H

)
Xf X

T
f

= Xf

(
I−Y

T
f

(
Yf Y

T
f +R

)−1

HXf

)
X

T
f

= Xf

(
I−Y

T
f

(
Yf Y

T
f +R

)−1

Yf

)
X

T
f

from which it is seen, compared to Equation 18, that if T is chosen such
TTT = I −YT

f

(
Yf Y

T
f +R

)−1
Yf , the covariance is updated according to

the Kalman equation. This can be reduced even further to avoid the p × p
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matrix inversion:

TT
T
= I−Y

T
f

(
Yf Y

T
f +R

)−1

Yf

= I−
(
I+Y

T
f R

−1
Yf

)−1

Y
T
f R

−1
Yf

=
(
I+Y

T
f R

−1
Yf

)−1 (
I+Y

T
f R

−1
Yf

)
−
(
I+Y

T
f R

−1
Yf

)−1

Y
T
f R

−1
Yf

=
(
I+Y

T
f R

−1
Yf

)−1 (
I+Y

T
f R

−1
Yf −Y

T
f R

−1
Yf

)
=

(
I+Y

T
f R

−1
Yf

)−1

where the Woodbury formula

Y
T
f

(
Yf Y

T
f +R

)−1

=
(
I+Y

T
f R

−1
Yf

)
Y

T
f R

−1
,

is used in second step. Ergo the choice

T =
(
I+Y

T
f R

−1
Yf

)−1/2

(21)

fulfills the Kalman covariance equation.
The square root matrix in (21) is taken as the symmetric square root.

The symmetric square root of a matrix A invokes the spectral decomposi-
tionA = VΛVT, whereV contains the normalized eigenvectors in columns
andΛ is a diagonal matrix of eigenvalues. Then the symmetric square root
isA1/2 = AΛ1/2VT = (A1/2)T (e.g. Johnson et al. 2007). This formof square
root preserves the mean of the anomalies (Wang et al. 2004; Sakov and Oke
2008), so that these remain centered around zero.

The transformused to update the ensemble anomalies is not unique and
right multiplying the transform matrix with a (random) orthonormal ma-
trixUwithUUT = I, will still satisfy the analysis error covariance equation.
The rotationmatrixUmust satisfyU1 = 1 in order to be unbiased (Livings
et al. 2008) but is otherwise free to choose. If its construction involves ran-
domness, the determinism of the filter is gone.

7 Iterative ensemble Kalman smoother

The iterative ensemble Kalman smoother is a hybrid approach, combining
a variational formulation to solve for the best guess, the ensemble mean,
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and the use of an ensemble to approximate the linearization and cost func-
tion sensitivities (partial derivatives with respect to control variable). The
method was initially derived as a filter (IEnKF) in (Sakov, Oliver, et al.
2012), aimed at NWP application. In this application, the main objective
is to obtain the initial condition for simulating atmospheric systems over a
time horizon. The idea is to use the information at the next observation time
to improve the filter state at the current time. Shortly afterwards themethod
was extended to a smoother (Bocquet and Sakov 2014) with the main dif-
ference being that the horizon of observations is extended, enlarging the
amount of information to estimate the current state. While the formulation
was with a dynamic state in mind, the method can easily be adapted to
static state estimation. It can be thought of as a deterministic version of the
iterative ensemble smoother which is clearly apparent in its recent reformu-
lation (Raanes et al. 2019).

The IEnKS is based on the subspace parameterization (19), and a cost
function similar to Equation 5 is expressed in terms of the control variablew.
Considering first the log-prior term of (5). Inserting the parameterization
and the ensemble state error covariance, the log-prior term takes the form

(x− xf )P
−1
f (x− xf ) = (xf +Xf w − xf )

T
(
Xf X

T
f

)−1
(xf +Xf w − xf )

= w
T
X

T
f

(
X−T

f X
−1
f

)
Xf w

= w
T
w .

The inverses here must be understood in a pseudo-inverse fashion.
The corresponding cost function when the solution is found within the

ensemble subspace thus becomes

J (w) = 1
2

∥∥yo − h(xf +Xf w)
∥∥2
R
+ 1

2

∥∥w∥∥2 ,
whose minimization is the variational aspect of IEnKS and whose solution
provides the analysis state. This non-linear least squares problem is solved
iteratively via a Gauss-Newton (Baldick 2006) scheme

wj+1 = wj −H−1
j ∇Jj ,

where j is the iteration index. The Jacobian∇J and (approximative, ignor-
ing second order derivatives) Hessian H are evaluated at the iterate mean
xj = xf +Xwj as

∇Jj = wj +Y
T
j R

−1(
yo − yj

)
Hj = I+Y

T
j R

−1
Yj ,
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where the observation anomaliesYj replace the explicit use of the tangent
linear model and the sensitivities rely on the ensemble linearization.

With the solutionwa to the variational problem and a transformmatrix
T = H−1/2

∣∣
wa , the analysis ensemble is available as in Equation 20.

Ensemble linearization

The observation anomaliesYj are supposed to be the mapping of the prior
state anomalies Xf though the re-evaluation of the gradient around the it-
erate mean Hj = H(xj), as in the iterative EKF. This can be achieved in
two alternative approaches, called the transform and the bundle variants
(Sakov, Oliver, et al. 2012; Asch et al. 2016).

The chosen approach in thiswork has been the transformvariant. In this
approach, the observation anomalies are formed from the forward evalua-
tion of a preconditioned ensemble. This is an ensemble that is centered at
the iterate mean xj and whose anomalies have been transformed using the
current estimate of the transform matrix Tj = H−1/2

j , i.e.

Ej = xj1
T
+ (n− 1)

1/2
Xf Tj .

Evaluating the observation anomalies would relate these to the precondi-
tioned ensemble Y = HjXj where Xj = Xf Tj . Therefore the anoma-
lies are right multiplied by the inverse transform so that Yj = YT−1

j =

HjXjT
−1
j = HjXf (Asch et al. 2016; Evensen et al. 2019), hence

Yj =
(
h(Ej)− y1

T
)
T

−1
j /(n− 1)

1/2
.

A pseudocode description of the method is presented in Algorithm 1.
It is a quite compact algorithm that does not add significant complexity to
e.g. an ETKF method.

The alternative to the preconditioned iterative ensemble is the so-called
bundle variant of IEnKS. This uses a down-scaling of the iterative ensemble
by a constant factor ε ≪ 1 (that incorporates

√
n− 1) as

Ej = xj1
T
+ εXf ,

followed by an up-scaling of the observation anomalies

Yj =
(
h(Ej)− y1

T
)
/ε .
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Algorithm 1 Iterative Ensemble Kalman Smoother for kth DAW.
Require: Prior ensemble Ef = Ef

k

j = 0, wj = 0, Tj = In
xf = Ef 1/n
Xf =

(
Ef − xf 1T

)
/
√
n− 1

repeat
xj = xf +Xf wj

Ej = xj1
T +

√
n− 1Xf Tj

y = hk(Ej)1/n
Y =

[
hk(Ej)− y1T

]
T−1

j /
√
n− 1

∇J = wj −YTR−1
k (yo

k − y)
H = I+YTR−1

k Y
wj+1 = wj −H−1∇J
Tj+1 = H−1/2

j = j + 1
until termination criteria met
Ea

k = xf 1T +Xf

(
wj−11

T +
√
n− 1Tj

)

The reason for not using this variant, besides the question of which value
to choose for this scaling factor, was that this approach does not reduce the
variance of the parameters already estimated during iterations. So within
an observed region, the upper part would have its mean estimated but
the observation ensemble would include variability from parameter in this
upper part. This makes the cross-covariances between parameters further
down and the waveform data less distinct, and counterproductive for the
gradient estimation.

8 Elastic parameter estimation using seismic wave-
form data

Inverting for elastic properties using the ensembleKalman frameworkposes
some interesting challenges. It is the finite sample approximations of co-
variance cov [yk] and cross-covariance cov [x,yk] matrices that forms the
Kalman gain, and these must be fairly representative for the estimation to
succeed. Kalman filtering is known to be sensitive to the degree of subop-
timality, which can lead to filter divergence. Sources of suboptimality are
essentially any deviation from the full rank Gauss-linear case, it be nonlin-
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x1 ⊂ x2 ⊂ x3 ⊂ . . . ⊂ x

y1 y2 y3 yK

Depth/distance to source

Arrival time

Figure 4: Schematic of relation between depth of parameters and arrival
time of reflected seismic wave. Earlier reflections only relates to shallower
parameters while later reflections have traveled longer.

earity, non-Gaussianity, sampling approximations, misspecification of error
statistics or a biased forward model.

A central strategy in this thesis work has been the data partitioning,
where gather data is blocked in time windows as yk, and sequentially pro-
cessed in order of increasing arrival time. Figure 4 sketches the relationship
between the depths of elements in the parameter state vector and arrival
times of observations. The x1,x2 etc are depth subsets of x from the top
and downwards and x2 spans deeper and x1. Observations in a time win-
dow, e.g. y1 are reflected waves from a particular depth range x1, but the
subset x1 is not known precisely, just that it is a subset which makes local
analysis diffult. As the correction to the state relies on cross-covariances
cov [x,yk], parameters at shallower depth must be accounted for before
cross-covariances between parameter further down can be well estimated.
Hence, to work the inversion from top to bottom is essential.

With respect to the predicted observation error covariance cov [y] =
YYT + R, the sample estimate YYT will have rank min(n − 1, pk) with
pk number of data points in kth DAW. When the observation dimension pk
is larger than ensemble size pk ≫ n, this constitutes a reduction in total
variance the sample covariance matrix is capable of representing. The total
variance of the true, full covariance would equal the sum of its pk eigenval-
ues. If these were indexed in descending magnitude, we can say that the
sample approximation truncates this sum after n − 1 terms. Hence, if the
eigenvalue magnitude around the n− 1 term is small, the remainder of the
total variance truncation might be less significant and the misspecification
not too bad. Vice versa, if the eigenvalue magnitude around this truncation
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point is significant, the remainder can be a considerable contribution to the
total variance, and the misspecification more severe.

Another aspect of the cross-covariance is that all three elastic properties
are to be inferred from the same observations, the same wave amplitudes.
The effect of the different elastic properties on the waveform data is not
of equal scale. Where the acoustic and shear velocities are much more di-
rectly affecting the reflected waveforms, the density effect is much more
subtle. Estimation of cross-covariance between density and waveforms is
more prone to spurious correlations than are the velocities. By iterating,
this sampling error effect is reduced as the iterations offer the possibility to
re-evaluate the cross-covariances, but the ensemble still needs to be of sub-
stantial size. If there is a potential multimodal solution, the misestimation
of the density gradient can cause the iterate solution to move towards the
wrong local mode/minimum.

9 Future work

There are still many interesting challenges to the practical/industrial appli-
cation of elastic inversion using ensemble filtering. The two subjects pre-
sented next are but a subset, albeit of the more difficult kind.

Uncertainty in prior

The spatial covariance structure that enters the prior specification, was al-
ways fixed to a specific structure in this work where the true state was
known. As the analysis state is found as a linear combination within this
prior ensemble, the ability to correctly represent a true subsurface profile
heavily depends on this ensemble. Roughly speaking, it will not be possible
to represent a highly varying profile from a basis of almost linear ensem-
ble members. Secondly, the spatial structure might be different at different
depths, i.e. nonstationary throughout the domain, which again is difficult
to known anything about beforehand.

This sort of flexibility in prior structure leads towards considering hy-
perpriors on the spatial covariance structure, maybe even different spatial
structures for elastic properties taken as independent.

While the usefulness of including multivariate non-stationary covari-
ance in the prior model (as hyperprior) is attractive, the way to do so is
less straight forward. Just augmenting the ensemble with some (several)
hyperparameterswouldmost likely not be theway to go. For adequate sam-
pling of the hyperprior space and the (conditional to this) elastic parameter
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space, the necessary ensemble size grows very quickly. Emerick (2016) con-
sidered assembling the prior ensemble with sets of samples from different,
pre-chosen multivariate Gaussian distributions each with different param-
eterization, and got some promising results. So the question of uncertainty
in prior specification is in the wind and would be valuable future work.

Model error

Model error, or model misspecification, is a serious concern. The data are
waveforms and if the forward model does not simulate the data well, the
error between prediction and observation will contain systematic features.
This bias, that is not represented by the predicted observation error, is likely
tomake the filter diverge quickly. How to include this is an interesting ques-
tion. Perhaps the answer is to not consider data as time domain waveform
amplitudes, but instead transform these into another domain where the ef-
fect of a model bias is reduced. How to transfer the likelihood function is
then the challenge.

10 Summary

First are summaries of conference presentations given in chronological or-
der. This is to give a historical perspective on the development through the
project. Then follows summaries and the background for the contributed
papers.

Petroleum Geostatistics 2015, Biarritz, France
(Gineste and Eidsvik 2015)

The first presentation was on acoustic velocity inversion only. While using
a 2D spectral element solver (SpecFem2D) for the (acoustic) wave simula-
tion, the computational grid elementswere blocked as to form a 1.5Dmodel
(horizontally constant). The full data set was said to be a collection of shot
gathers and each of thesewere assimilated sequentially by an EnKSmethod
with perturbed observation. A fairly small ensemblewas used, and collapse
was immediate due the large observation dimension. So post-analysis infla-
tion was used.
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EAGE 2017, Paris, France
(Gineste and Eidsvik 2017)

At this point the aspect of data dimension and ensemble collapse was in
focus. The presentation continued the case of acoustic velocity inversion
and the use of the spectral element solver for simulating observations. The
assumption of layered subsurface model was still applied although with a
finer resolution than previously. The assimilation method was still EnKS
with perturbed observations. The data covered 9 shots and now data parti-
tioning started to block in time windows as well.

An approach for reducing the data dimensionality, inspired by an ap-
plication in history matching (Sætrom et al. 2010), was investigated. This
made use of Partial Least Squares (PLS) modeling to form the Kalman gain
matrix. The PLS basis was truncated to suppress ensemble collapse and the
truncation level was found using a cross-validation technique.

EAGE 2018, Copenhagen, Denmark
(Gineste, Eidsvik, and Zheng 2018)

Now, the forward model was changed to the reflectivity method, while in-
version still only considered acoustic velocity. The data partitioning made
used of very small windows in time- and offsets intervals that were set
manually. These were processed in an order of far-to-close offsets, early-
to-late arrival times. An adaptive strategy for efficiency was applied. This
consisted of evaluating the analysis of each data window. If the analysis
seemed negligible, the window was skipped and the ensemble evaluation
re-used for next window. If the analysis showed sign of overfitting, the data
windowwas processed using an MDA approach thereby regularizing each
update of the MDA iterations.

EAGE/PESGB Workshop on Velocities 2019, London, England
(Gineste, Eidsvik, and Zheng 2019)

This presentationwas on the preliminary results of Paper I. The assimilation
method was the IEnKS which was applied over partitions of time windows
of increasing arrival time. The time intervals was found by using two-way
traveltime at zero offset, such that each time window would cover layers in
a 500m depth range. This time division was generated prior to any assimi-
lation and used the prior mean as reference velocity profile.
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Petroleum Geostatistics 2019, Florence, Italy
(Gineste and Eidsvik 2019)

This presentation was on the results of Paper I, combined with a prelimi-
nary version of the adaptive data assimilationwindow selection fromPaper
II.

Paper I
(Gineste, Eidsvik, and Zheng 2020)

This paper sets the framework for doing elastic inversion of seismic data
with the IEnKS. The true elastic profile was contributed by BP and based
on this, a synthetic gather was used as observations. The gather data was
partitioned in time windows and the IEnKS used to obtain analysis ensem-
ble. The partitioning was made previous to any assimilation and used a
two-way traveltime at zero offset to partition the full depth range in blocks.

This paper alsomade use of the adaptive inflation provided by the finite-
size EnKF-N (Bocquet 2011; Bocquet and Sakov 2012; Bocquet, Raanes, et
al. 2015) formulation. The inflation was included to counteract reduction
in ensemble spread over successive assimilation cycles. In retrospect, this
successive deflation was more related to premature termination of the iter-
ations, than to sampling error. The paper ends in a discussion on the DAW
size and how choosing it too large leads to instability.

The main contribution of this paper is, what might be the first example
of a such, the application of an deterministic, iterative ensemble smoother
to the inversion of elastic properties using reflected waveform data.

Paper II

In this paper stability and efficiency are keywords, and continues the dis-
cussion of an suitable DAW size of Paper I. The problem configuration of
Paper I is repeated, whereas the previous manually and preset partitioning
was to be selected automatically, prior to each assimilation cycle. Imaging
a departure from the stacked layer assumption (i.e. use in 2D application),
the two-way traveltime approach to blocking had to be abandoned. The re-
search question of this article is thus how the assimilation window can be
chosen as large as possible while minimizing the risk of overfitting.

The paper has as focus a spectral decomposition of the initial Gauss-
Newton update direction. This update direction is analyzed in the light
of being composed of contributions from prior and likelihood. Arguing
for balance between these contributions, two criteria to stop extending the
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DAW was presented. In a repeated experiment, one approach was found
to work as intended and the other not so.

This paper also introduces the use of an information theoretic measure,
the mutual information measure, as a possible stopping criterion for iterat-
ing.

The main contribution of this paper is the increased usability and im-
proved robustness of elastic inversion using IEnKS, resulting from the adap-
tive determination of an assimilation window length. The establishment of
an evaluation criterion, determining whether a proposed data partition is
appropriate, might be useful in other applications that share the same par-
ticular problem.

Paper III

This report is a tutorial on using IEnKS for seismic invesion using different
types of seismic data. Three examples are used, ranging from linear travel-
time over AVO to elastic waveformdata. The examples span varying degree
of nonlinearity thus building up a justification for the additional computa-
tional effort of iterating. This report is to be offered to industrial consor-
tium partners, as well as other PhD students that might continue along the
research lines of this thesis. It might also be used as material for course
projects at NTNU. The intention is thus transfer of knowledge and exem-
plification of how to do iterative, ensemble-based parameter estimation. Its
distribution is accompanied by a Matlab code basis that shortens the time
from modeling to implementation.

The main contribution of this report is the availability of a code base for
seismic inversion examples in a common formulation.



36 Background

References

Anderson, J. L. (2001). “An Ensemble Adjustment Kalman Filter for Data
Assimilation”. In: Monthly Weather Review 129.12, pp. 2884–2903.

Asch, M., M. Bocquet, and M. Nodet (2016). Data Assimilation: Methods, Al-
gorithms, and Applications. Philadelphia, PA: Society for Industrial and
Applied Mathematics.

Baldick, R. (2006). Applied optimization. Formulation and algorithms for engi-
neering systems. Cambridge Univ. Press. 768 pp.

Bierman, G. J. (1977). Factorization methods for discrete sequential estimation.
Vol. 128. Elsevier, Amsterdam.

Bishop, C. H., B. J. Etherton, and S. J. Majumdar (2001). “Adaptive Sam-
pling with the Ensemble Transform Kalman Filter. Part I: Theoretical
Aspects”. In: Monthly Weather Review 129.3, pp. 420–436.

Bocquet, M. (2011). “Ensemble Kalman filtering without the intrinsic need
for inflation”. In: Nonlinear Processes in Geophysics 18.5, pp. 735–750.

Bocquet, M., P. N. Raanes, and A. Hannart (2015). “Expanding the validity
of the ensemble Kalman filter without the intrinsic need for inflation”.
In: Nonlinear Processes in Geophysics 22.6, pp. 645–662.

Bocquet, M. and P. Sakov (2012). “Combining inflation-free and iterative
ensemble Kalman filters for strongly nonlinear systems”. In: Nonlinear
Processes in Geophysics 19.3, pp. 383–399.

Bocquet,M. and P. Sakov (2013). “Joint state and parameter estimationwith
an iterative ensemble Kalman smoother”. In: Nonlinear Processes in Geo-
physics 20.5, pp. 803–818.

Bocquet,M. andP. Sakov (2014). “An iterative ensembleKalman smoother”.
In: Quarterly Journal of the Royal Meteorological Society 140.682, pp. 1521–
1535.

Carrassi, A. et al. (2018). “Data assimilation in the geosciences:An overview
ofmethods, issues, andperspectives”. In:WIREsClimate Change 9.5, e535.

Chen, Y. and D. S. Oliver (2011). “Ensemble RandomizedMaximum Likeli-
hoodMethod as an Iterative Ensemble Smoother”. In:Mathematical Geo-
sciences 44.1, pp. 1–26.



References 37

Eikrem,K. S., G.Nævdal, andM. Jakobsen (2019). “Iterated extendedKalman
filter method for time-lapse seismic full-waveform inversion”. In: Geo-
physical Prospecting 67.2, pp. 379–394.

Emerick, A. A. and A. C. Reynolds (2013). “Ensemble smoother with mul-
tiple data assimilation”. In: Computers & Geosciences 55, pp. 3–15.

Emerick, A. A. (2016). “Towards a hierarchical parametrization to address
prior uncertainty in ensemble-baseddata assimilation”. In:Computational
Geosciences 20.1, pp. 35–47.

Evensen, G. (2009). Data Assimilation. Springer.

Evensen, G. (2018). “Analysis of iterative ensemble smoothers for solving
inverse problems”. In: Computational Geosciences 22.3, pp. 885–908.

Evensen,G. et al. (2019). “Efficient Implementation of an Iterative Ensemble
Smoother for Data Assimilation and Reservoir History Matching”. In:
Frontiers in Applied Mathematics and Statistics 5, p. 47.

Fichtner, A. (2010). Full Seismic Waveform Modelling and Inversion (Advances
in Geophysical and Environmental Mechanics and Mathematics). Springer.

Gineste, M. and J. Eidsvik (2015). “Framework for Seismic Inversion of Full
Waveform Data Using Sequential Filtering”. In: Conference Proceedings,
PetroleumGeostatistics 2015. EuropeanAssociation of Geoscientists & En-
gineers.

Gineste, M. and J. Eidsvik (2017). “Seismic Waveform Inversion Using The
Ensemble Kalman Smoother”. In:Conference Proceedings, 79th EAGECon-
ference and Exhibition 2017. Vol. 2017. 1. European Association of Geosci-
entists & Engineers, pp. 1–5.

Gineste, M. and J. Eidsvik (2019). “Seismic Waveform Inversion of Elastic
Properties Using an Iterative Ensemble Kalman Smoother”. In: Confer-
ence Proceedings, Petroleum Geostatistics 2019. Vol. 2019. 1. European As-
sociation of Geoscientists & Engineers, pp. 1–5.

Gineste, M., J. Eidsvik, and Y. Zheng (2018). “Velocity Estimation in Lay-
eredMediaUsing Ensembled-based Sequential Filtering”. In:Conference
Proceedings, 80th EAGE Conference and Exhibition 2018. Vol. 2018. 1. Euro-
pean Association of Geoscientists & Engineers, pp. 1–5.

Gineste, M., J. Eidsvik, and Y. Zheng (2019). “Seismic Waveform Inversion
Using an Iterative Ensemble Kalman Smoother”. In: Conference Proceed-



38 Background

ings, Second EAGE/PESGBWorkshop on Velocities. Vol. 2019. 1. European
Association of Geoscientists & Engineers, pp. 1–3.

Gineste, M., J. Eidsvik, and Y. Zheng (2020). “Ensemble-based seismic in-
version for a stratified medium”. In: GEOPHYSICS 85.1, R29–R39.

Hunt, B. R., E. Kalnay, et al. (2004). “Four-dimensional ensemble Kalman
filtering”. In: Tellus A 56.4, pp. 273–277.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh (2007). “Efficient data assim-
ilation for spatiotemporal chaos: A local ensemble transform Kalman
filter”. In: Physica D: Nonlinear Phenomena 230.1-2, pp. 112–126.

Jazwinski, A. H. (1970). Stochastic processes and filtering theory. Mathematics
in Science and Engineering. New York, NY: Academic Press.

Johnson, R. A. and D.W.Wichern (2007).Applied multivariate statistical anal-
ysis. 6. ed. Pearson/Prentice Hall. 773 pp.

Kennett, B. L. N. (2005). ERZSOL3. http://www.spice-rtn.org/library/
software/ERZSOL3.html. Accessed on 2017-09-01.

Kennett, B. L. N. (2011). Seismic Wave Propagation in Stratified Media. ANU
Press.

Kennett, B. L. N. and N. J. Kerry (1979). “Seismic waves in a stratified half
space”. In: Geophysical Journal International 57.3, pp. 557–583.

Komatitsch, D. and J. Tromp (1999). “Introduction to the spectral element
method for three-dimensional seismic wave propagation”. In: Geophysi-
cal Journal International 139.3, pp. 806–822.

Livings, D. M., S. L. Dance, and N. K. Nichols (2008). “Unbiased ensemble
square root filters”. In: Physica D: Nonlinear Phenomena 237.8, pp. 1021–
1028.

Madsen, H. (2007). Time Series Analysis. Chapman & Hall / CRC Texts in
Statistical Science. CRC Press.

Mallick, S. and L. N. Frazer (1987). “Practical aspects of reflectivity model-
ing”. In: GEOPHYSICS 52.10, pp. 1355–1364.

Müller, G. (1985). “The reflectivity method: a tutorial”. In: Journal of Geo-
physics 58.1-3, pp. 153–174.

Nerger, L. et al. (2012). “A Unification of Ensemble Square Root Kalman
Filters”. In: Monthly Weather Review 140.7, pp. 2335–2345.



References 39

Petersen, K. B. and M. S. Pedersen (2012). The Matrix Cookbook. Version
20121115.

Pham, D. T. (1996). A Singular Evolutive Interpolated Kalman filter for data
assimilation in Oceanography.

Pham,D. T. (2001). “StochasticMethods for SequentialDataAssimilation in
StronglyNonlinear Systems”. In:MonthlyWeather Review 129.5, pp. 1194–
1207.

Raanes, P. N., A. S. Stordal, and G. Evensen (2019). “Revising the stochastic
iterative ensemble smoother”. In: Nonlinear Processes in Geophysics 26.3,
pp. 325–338.

Sætrom, J. andH.Omre (2010). “Ensemble Kalman filteringwith shrinkage
regression techniques”. In: Computational Geosciences 15.2, pp. 271–292.

Sakov, P. and L. Bertino (2011). “Relation between two common localisation
methods for the EnKF”. In: Computational Geosciences 15.2, pp. 225–237.

Sakov, P., G. Evensen, and L. Bertino (2010). “Asynchronous data assimila-
tion with the EnKF”. In: Tellus A 62.1, pp. 24–29.

Sakov, P. and P. R. Oke (2008). “Implications of the Form of the Ensem-
ble Transformation in the Ensemble Square Root Filters”. In: Monthly
Weather Review 136.3, pp. 1042–1053.

Sakov, P., D. S. Oliver, and L. Bertino (2012). “An Iterative EnKF for Strongly
Nonlinear Systems”. In: Monthly Weather Review 140.6, pp. 1988–2004.

Särkkä, S. (2013). Bayesian Filtering and Smoothing. Institute ofMathematical
Statistics Textbooks. Cambridge University Press.

Sheriff, R. E. and L. P. Geldart (1995). Exploration Seismology. 2nd ed. Cam-
bridge University Press.

Själander, M. et al. (2019). “EPIC: An Energy-Efficient, High-Performance
GPGPU Computing Research Infrastructure”. In: arXiv.

Tarantola, A. (1984). “Inversion of seismic reflection data in the acoustic
approximation”. In: GEOPHYSICS 49.8, pp. 1259–1266.

Thurin, J., R. Brossier, and L.Métivier (2019). “Ensemble-based uncertainty
estimation in full waveform inversion”. In: Geophysical Journal Interna-
tional 219.3, pp. 1613–1635.



Tippett, M. K. et al. (2003). “Ensemble Square Root Filters”. In: Monthly
Weather Review 131.7, pp. 1485–1490.

Virieux, J., A. Asnaashari, et al. (2017). “An introduction to full waveform
inversion”. In: Encyclopedia of Exploration Geophysics. Geophysical Refer-
ence Series. SEG. Chap. 6, R1-1-R1–40.

Virieux, J. and S. Operto (2009). “An overview of full-waveform inversion
in exploration geophysics”. In: GEOPHYSICS 74.6, WCC1–WCC26.

Vogel, C. R. (2002). Computational Methods for Inverse Problems. Society for
Industrial and Applied Mathematics.

Wang, X., C.H. Bishop, and S. J. Julier (2004). “Which Is Better, an Ensemble
of PositiveNegative Pairs or a Centered Spherical Simplex Ensemble?”
In:Monthly Weather Review 132.7, pp. 1590–1605.

Wikle, C. K. and L. M. Berliner (2007). “A Bayesian tutorial for data assim-
ilation”. In: Physica D: Nonlinear Phenomena 230.1-2, pp. 1–16.

Zhang, X. and A. Curtis (2020). “Variational full-waveform inversion”. In:
Geophysical Journal International 222.1, pp. 406–411.



Paper I

Ensemble-based seismic inversion for a stratified
medium

Michael Gineste, Jo Eidsvik & York Zheng

Published in
GEOPHYSICS, 2020, Vol. 85, No. 1, 29-39

doi: 10.1190/GEO2019-0017.1





Ensemble-based seismic inversion for a stratified medium

Michael Gineste1, Jo Eidsvik1, and York Zheng2

ABSTRACT

Seismic waveform inversion is a nontrivial optimization
task, which is often complicated by the nonlinear relationship
between the elastic attributes of interest and the large amount
of data obtained in seismic experiments. Quantifying the
solution uncertainty can be even more challenging, and it re-
quires considering the problem in a probabilistic setting. Con-
sequently, the seismic inverse problem is placed in a Bayesian
framework, using a sequential filtering approach to invert for
the elastic parameters. The method uses an iterative ensemble
smoother to estimate the subsurface parameters, and from the
ensemble, a notion of estimation uncertainty is readily avail-
able. The ensemble implicitly linearizes the relation between
the parameters and the observed waveform data; hence, it re-
quires no tangent linear model. The approach is based on se-
quential conditioning on partitions of the whole data record
(1) to regularize the inversion path and effectively drive the
estimation process in a top-down manner and (2) to circum-
vent a consequence of the ensemble reduced rank approxima-
tion. The method is exemplified on a synthetic case, inverting
for elastic parameters in a 1D medium using a seismic shot
record. Our results indicate that the iterative ensemble method
is applicable to seismic waveform inversion and that the en-
semble representation indeed indicates estimation uncertainty.

INTRODUCTION

Seismic waveform inversion aims at obtaining a parameterized
subsurface model of elastic attributes which, evaluated with a for-
ward model representing the physics of seismic wave propagation,
matches measured data to a satisfactory degree. In most cases, this
inversion is treated as an optimization problem, in which the goal
is to find the best subsurface model according to some matching

criterion. Full-waveform inversion, see, e.g., Virieux and Operto
(2009) and Fichtner (2010), requires minimum processing of the ac-
quired seismic data. Other forms of seismic waveform inversion start
the inversion on somewhat processed data, such as common-midpoint
(CMP) gathers and angle stacks (Sheriff and Geldart, 1995).
One key challenge of waveform inversion is to guide the iterative

search for the optimum subsurface parameters. In most situations,
this relies on derivatives of the forward model obtained via an ad-
joint-based approach (Plessix, 2006). It appears useful to start by
bringing parts of the model in place, such as low-frequency trends,
to obtain a stable optimization (Bunks et al., 1995). One can also
consider the inversion in a probabilistic setting.
Bayesian inversion aims at obtaining the posterior distribution of

the subsurface parameters, conditioned to observed seismic waveform
data. A Gaussian approximation of the posterior distribution is de-
fined by a mean at the posterior mode and a covariance matrix defined
by the inverse negative Hessian of the log objective function, evalu-
ated at the posterior mode (Gouveia and Scales, 1998). This approach
is not considered here because (1) it restricts solutions to Gaussian
approximations and (2) it requires derivative calculations that are
not always available in black-box forward models. Instead, posterior
assessment using Monte Carlo sampling (Eidsvik et al., 2004; Bosch
et al., 2007) appears to be more suitable for this kind of nonlinear
problem. But the seismic forward model evaluation is computation-
ally costly, and this limits the choice of sampling methods.
In this paper, an ensemble-based approach for seismic waveform

inversion is presented. An ensemble consists of multiple realizations
of a subsurface model and represents a sample set from a probability
distribution. The ensemble representation allows and calls for parallel
evaluation of the forward model, so this type of method leverages
the availability of distributed computing resources. The inversion
is performed by conditioning this ensemble to data, thereby obtaining
a conditional ensemble representation. Notably, the suggested ap-
proach assimilates subsets of seismic data in incremental temporal
intervals, which appears to stabilize the inversion. Rather than
obtaining derivative information explicitly, it is extracted from the
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covariances in the ensemble; hence, no adjoint model is required.
The ensemble-based approach relies on correlations between subsur-
face model parameters and synthetic seismic data and finding a tan-
gent linear model at each assimilation step using the ensemble. The
method is demonstrated on a synthetic seismic record using the
reflectivity method (Kennett and Kerry, 1979; Kennett, 2011) as
the forward solver.
The new approach outlined in this paper resembles ensemble

Kalman filtering techniques, in particular the iterative ensemble
smoother (see Chen and Oliver, 2011; Evensen, 2018), which
has shown very good results in several application domains.
Whereas the usual filtering methods update a dynamic state vector
from observations, the problem considered here has a static state. It
is a parameter estimation problem much like that of extracting static
reservoir properties from well production data, known as the history
matching problem (for a review, see Aanonsen et al., 2009; Oliver
and Chen, 2010). The problem of seismic inversion and history
matching has similarities such as the forward model being a black
box, which requires a restart at parameter updates. Another similar-
ity is the potential multimodality of the posterior solution. Ensemble
Kalman filtering by itself does not handle multimodality well, when
the ensemble-based tangent linear model approximation is used
(Evensen, 2018). When the posterior solution is sought and ex-
plored in terms of multimodality, the use of a Gaussian mixture
models has been investigated as a means to accommodate the effect
of nonlinearity (Stordal, 2014) or as a prior specification (Dovera
and Della Rossa, 2011), and recently also more “model-free”
approaches to multimodality have been presented (e.g., Zhang et al.,
2018). Here, the multimodal solution is not studied, and with the
use of Gaussian prior and ensemble linearization, the posterior sol-
ution will be unimodal. An immediate dissimilarity between history
matching and seismic waveform inversion is the high data dimen-
sionality and the complex wave propagation phenomena in the
latter, and because of this, a straightforward implementation of
the ensemble smoother will not work well. There is currently much
interest in developing ensemble-based approaches for reliable seis-
mic inversion (Gineste and Eidsvik, 2015; Thurin et al., 2017, 2019;
Liu and Grana, 2018). The main contribution of the current paper
is to investigate the applicability of an iterative ensemble-based
smoother approach for elastic inversion of seismic data in a situation
of stratified layers. Results demonstrate that the suggested method

is useful for optimization and uncertainty assessment in seismic
waveform inversion.
The paper is structured as follows: First, inverse problems are

discussed in a probabilistic setting, followed by sequential methods
for inversion, using only parts of the data at every conditioning step.
Then, the iterative ensemble Kalman smoother (IEnKS) is presented
in the context of seismic waveform inversion. This is applied on
an example with synthetic seismic data generated from a well log,
followed by a discussion of the sensitivities.

BAYESIAN INVERSION

A characteristic of seismic waveform inversion, and many similar
problems in the geosciences, is the tremendous difference between
forward modeling and inversion. The forward model is defined by
geophysical modeling; it can be evaluated and understood. The in-
verse problem is much more difficult because there is generally no
unique solution for the subsurface parameters as a function of the
seismic waveform data (Tarantola, 2005). An example of prestack
seismic data is provided by a gather of vertical displacement record-
ings over a range of time and receiver offsets (Figure 1). The wave-
field is initiated by a known source, and the measurements contain
the direct wave and the weaker reflected wavefield, caused by
material inhomogeneity met by the wave when propagating through
the subsurface. The latter holds the information from which the
subsurface parameters are estimated. The forward model generating
the synthetic seismic data is the reflectivity method, as implemented
in the program/solver ERZSOL3 (Kennett, 2005). Under the
assumption of a locally 1D subsurface with stratified, isotropic elas-
tic properties, the full elastic wave equation can be transformed into
an ordinary differential equation in the slowness-frequency domain.
In this domain, an analytic solution is possible, involving the re-
sponse of a stack of uniform layers that can be iteratively computed,
and the solution is subsequently mapped to time-domain seismo-
grams via the inverse Fourier transform. Therefore, synthetic seis-
mic data are generated for the entire time length at once because
there is no explicit time integration, whereas the number of layers
and ranges for frequency- and slowness-domain integrations di-
rectly affects the program runtime.
Inversion of seismic waveform data is studied here under the

assumption of (1) a stratified subsurface with laterally invariant
properties represented by a parameter vector x ∈ Rm with m, the
number of layers, (2) a deterministic wave propagation forward
model hðxÞ that includes all initial and boundary conditions, as well
as the data recording configuration, and (3) the observed data y are
noisy observations of hðxÞ, contaminated by additive noise e, so that
y ¼ hðxÞ þ e. Table 1 summarizes the notation used throughout
this paper.
The most common solutions to such inverse problems are based

on regularization of the model parameters and multiple evaluations
of the forward model, where the mismatch with data is minimized.
These approaches can be formalized in a coherent manner using the
Bayesian framework. With a prior probability density pðxÞ imposed
on the subsurface parameterization along with a prescribed likeli-
hood model pðyjxÞ involving the seismic forward model, Bayes’
rule gives the sought solution in form of the posterior distribution
pðxjyÞ ∝ pðyjxÞpðxÞ.
With Gaussian distributions for the model parameters and the

observation error — pðxÞ ¼ Nðμx;ΣxÞ and pðeÞ ¼ Nð0;RÞ —
the posterior distribution is
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Figure 1. CMP gather of vertical displacement.
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pðxjyÞ ∝ exp

�
−
1

2
ðky − hðxÞk2R þ kx − μxk2Σx

Þ
�
; (1)

with the notation kak2B ¼ aTB−1a. The maximum a posteriori
(MAP) solution can be found by minimizing the negative log pos-
terior, which has the weighted nonlinear least-squares cost/misfit
form:

JðxÞ ¼ 1

2
ky − hðxÞk2R þ 1

2
kx − μxk2Σx

: (2)

The first term is the mismatch between the synthetic seismic data
and the observations, whereas the second term contains the prior
information regularizing the model solution to be not too distant
from the prior mean μx and with smoothness indicated by the prior
covariance matrix Σx. The prior and likelihood terms are possible to
evaluate, but with the nonlinearity in the forward model, the pos-
terior is not analytically tractable. Instead, one must resort to sam-
pling-based methods to represent the posterior distribution. But, the
forward model is often computationally costly, and the choice of
Monte Carlo methods for seismic inversion must be realistic in the
number of possible forward evaluations. Exact sampling based on
Markov chain Monte Carlo (MCMC) sampling is usually imprac-
tical because one cannot evaluate the forward model as many times
as is required. Approximate ensemble-based sampling is a practical
solution, in which the ensemble represents possible posterior sol-
utions, including the main trends and variability.
Below, a combination of sampling and iterative optimization is

used to maintain the ensemble representation. To motivate this set-
ting, the main idea is presented here. First, con-
sider a linear forward model hðxÞ → Hx, then the
posterior distribution in equation 1 is Gaussian.
Oneway of sampling from this posterior involves
minimizing the quadratic cost function in equa-
tion 2 for one prior and one data residual sample.
By substituting μx in equation 2 with a prior
sample xf ∼ pðxÞ and adding a sample from the
noise distribution ei ∼ pðeÞ such that y → yþ ei,
the minimization of the (stochastic) cost function
JðxÞ gives an exact sample from the posterior
distribution. This is referred to as the randomized
maximum likelihood (RML); see Gu and Oliver
(2007) and Chen and Oliver (2011, 2013) for
ensemble variants. A similar approach based on
stochastic simulation and optimization can be
used for approximate sampling in nonlinear
problems.

SEQUENTIAL BAYESIAN
INVERSION

Seismic waveform inversion for elastic param-
eters is a considerably nonlinear problem. The
posterior surface is difficult to explore, and there
can be many local posterior optima for the param-
eters x. To perform robust inversion, a key com-
ponent of the solution presented here is to
partition the seismic data record y into K disjoint
subsets yk so that y ¼∪K

k¼1 yk. These data subsets
are then assimilated sequentially as

pðxÞ → pðxjy1Þ → pðxjy1; y2Þ → pðxjy1; y2; y3Þ
→ · · ·→ pðxjy1; : : : ; yKÞ: (3)

In the Bayesian framework, this means that the posterior from one
assimilation cycle serves as prior for the next. For the situation with a
seismic record, there is a natural geometric blocking structure as ear-
lier data are reflected by shallower layers only, whereas later data are
reflected from deeper depths. This argument leads to sequential con-
ditioning on data of increasing arrival times to reduce the subset of
parameters causing the observed data and thus enhancing their iden-
tifiability. This results in inverting for subsurface parameters in a top-
down manner and the goal is that this divide-and-conquer strategy
alleviates the nonlinearity of the problem. For the data example
shown later, regular timewindowing is used as data assimilation win-
dows (DAWs).
Sequential conditioning to data is facilitated by embedding the

parameters in a state space model as is commonly done in filtering
problems. In the current situation, the order or index k indicates
assimilation cycles over which the data partition yk is used for model
conditioning. The state vector holds the static parameters x. Initiating
with pðx0Þ ¼ pðxÞ ¼ Nðμx;ΣxÞ, then for k ¼ 1; : : : ; K, the system
and observation equations become

xk ¼ xk−1; (4a)

yk ¼ hkðxkÞ þ ek; (4b)

Table 1. Summary of notations.

Notations related to modeling aspects

x Subsurface model parameter, length m vector

Nðμx;ΣxÞ Gaussian density with mean μx and covariance Σx

y Seismic data

hðxÞ Seismic forward model

R Covariance matrix of the seismic measurement noise

pðyjxÞ Likelihood model of seismic data, given model

pðxjyÞ Posterior model, given seismic data

Notations related to blocking of seismic data

yk Seismic data in block k ¼ 1; : : : ; K

hkðxÞ Seismic forward model for data in block k

Rk Covariance matrix of seismic measurement noise in the block

pðxjy1; : : : ; ykÞ Posterior model given seismic data up to block k ¼ 1; : : : ; K

Notations related to ensemble-based updating

E ¼ fx½i�gni¼1 Parameter ensemble of size m × n

x̄ Ensemble mean of the model parameters

Xf Forecast model anomalies around the mean x̄f , size m × n matrix

Yf Forecast seismic data anomalies around the mean, size p × n matrix

w Weight of the linear combination of model ensembles

JðwÞ Objective function, negative log-posterior

∇J Ensemble-based gradient of the objective function

H Ensemble-based Hessian of the objective function
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where the forward observation operator hkðxÞ forecasts (simulates) a
seismic record and extracts the kth subset of the data. The observation
errors ek are assumed to be independent zero-mean Gaussian varia-
bles with covariance matrix Rk.
For the ensemble-based methods of sequential data assimilation, the

following sub- and superscript notation is used: “f” indicates forecast
(also known as prior or background) and “a” indicates analysis (i.e.,
posterior or update). Ignoring index k, this means that Ef ¼ fxf½i�gni¼1

is an ensemble of n forecast states, where the bracketed index indicates
the ith ensemble member andEa ¼ fxa½i�gni¼1 is the ensemble of analy-

sis states. At every assimilation step, the forecast ensemble is updated
to the analysis ensemble. Applying the static state transition equation
for xk (equation 4a), the analysis ensemble becomes the forecast en-
semble for the next assimilation step. The procedure is run through all
of the K cycles.
The actual assimilation is achieved here by an approximate

Monte Carlo approach similar to RML as mentioned in the previous
section. This means that the forecast elastic parameters and associ-
ated forecast seismic data are combined in an objective function that
is optimized. The solution to this defines the analysis ensemble.

ITERATIVE ENSEMBLE KALMAN SMOOTHER

The data assimilation method applied here is the IEnKS; see
Bocquet and Sakov (2013, 2014) and Asch et al. (2016). Developed
in the atmospheric sciences for the purpose of estimating dynamic
states, it is here adapted to the case of static parameters in seismic
inversion. The IEnKS merges the ensemble and variational ap-
proaches: (1) it iteratively solves the variational problem to obtain
a good fit to observations over the DAW, and (2) it uses the ensem-
ble to approximate the tangent linear observation operator ∂xhðxÞ
and obtains sensitivities for the variational formulation. The method

is very suitable for cases in which the forward model/simulator is a
black box.
The IEnKS uses a square-root filter (SRF)-type approach, sepa-

rately updating the state mean and square-root of the covariance ma-
trix. Moreover, it finds the Kalman gain in the ensemble subspace,
which is computationally efficient when the ensemble space dimen-
sion is smaller than the observation space dimension. A requirement
of the method is that the observation error covariance R is easily
invertible, which is the case with independent observation errors.
The ensemble-based Kalman filtering framework has several

causes for suboptimality, with optimality only in principle for Gauss
linear models and an infinite ensemble size. The ensemble estimates
of the first- and second-order moments replace the true but unknown
counterparts from the prior distribution and assume that these ensem-
ble moments are correct. This sampling error often causes the under-
estimation of the error covariance, and over successive analysis steps,
this can lead to collapse of the ensemble, known as filter divergence.
This negative consequence of a limited ensemble size is often practi-
cally handled through the use of inflation, in which the ensemble
spread is artificially increased, formally as x½i� → x̄þ βðx½i� − x̄Þwith
inflation factor β > 1. The finite-size ensemble approach derived by
Bocquet (2011) and Bocquet et al. (2015) offers adaptive inflation to
address this issue of sampling error. Without going into the details of
its underlying theory, this is used here within the IEnKS, without any
special consideration (Bocquet and Sakov, 2012).
A description of the components used in the IEnKS analysis step

is now presented, followed by a description of the variational prob-
lem. A pseudocode describing the implementation of this approach
is summarized in Algorithm 1, which is reproduced from Bocquet
and Sakov (2012) and Asch et al. (2016) with some modifications
for this particular use.
In the description, index k is dropped because the focus is on a

single analysis cycle. It is implied that Ef ¼ Ef
k ¼ fxf½i�;kgni¼1 consists

of realizations from the predictive probability den-
sity pðxjy1; : : : yk−1Þ of elastic parameters. The
sample mean and covariance of this forecast dis-
tribution are

x̄f ¼ 1

n

Xn
i¼1

xf½i�; Pf ¼ XfXT
f ; (5)

where the m × n forecast anomaly (or perturba-
tion) matrix Xf has an ith column:

½Xf �i ¼ ðn − 1Þ−1∕2ðxf½i� − x̄fÞ: (6)

This anomaly matrix Xf is accordingly a square
root of the forecast covariance matrix Pf . Simi-
larly, a square root of the forecast covariance in
observation space is defined as the p × n observa-
tion anomaly matrix Yf :

½Yf �i ¼ ðn − 1Þ−1∕2ðyf½i� − ȳfÞ; (7)

where the size p synthetic seismic data are yf½i� ¼
hðxf½i�Þ, i ¼ 1; : : : ; n and ȳf ¼ 1∕n

P
n
i¼1 y

f
½i�. So,

the forecast observation anomalies Yf are devia-
tions in waveform data predictions and represent
a square root of the forecast observation
covariance.

Algorithm 1. Iterative ensemble Kalman smoother.

Require: Prior ensemble E0 ¼ Ef
k; DAW index k; algorithm parameters: εJ; jmax

1 j ¼ 0, w ¼ 0, T ¼ In
2 x0 ¼ E01∕n ⊳ prior mean

3 X0 ¼ ðE0 − x01TÞ∕
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p ⊳ prior anomalies

4 repeat ⊳ variational iteration

5 x ¼ x0 þ X0w ⊳ iterate mean

6 E ¼ x1T þ ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
X0T ⊳ iterate ensemble for sensitivities

7 ȳ ¼ hkðEÞ1∕n ⊳ observation mean

8 Y ¼ ðhkðEÞ − ȳ1TÞT−1∕
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p ⊳ observation anomalies

9 ∇J ¼ ðnþ1Þw
n−1∕nþwTw − YTR−1

k ðyk − ȳÞ ⊳ gradient

10 H ¼ ðnþ1Þððn−1∕nþwTwÞIn−2wwT Þ
ðn−1∕nþwTwÞ2 þ YTR−1

k Y ⊳ Hessian

11 w :¼ w −H−1∇J ⊳ Gauss-Newton step

12 T ¼ H−1
2 ⊳ iterate ETM

13 j :¼ jþ 1

14 until: ðSj < εJÞ ∨ ðj > jmaxÞ
15 Ea

k ¼ x01T þ X0w� þ ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
X0T� ⊳ analysis, equation 7
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The SRF approach seeks to map the forecast square-root covari-
ance to the analysis square-root covariance by using the Kalman
equation for the covariance update. Thus, a transform Xf ↦ Xa is
the goal with Xa defined similarly as in equation 6. The Kalman
covariance update equation with the sample (ensemble) covariance
matrices inserted can, using the matrix inversion lemma, be formu-
lated as

XaXT
a ¼ Xf

�
β−1 Iþ YT

f R
−1Yf

�
−1
XT

f ¼ XfTðXfTÞT; (8)

so by selecting the ensemble transform matrix (ETM) as
T ¼ ðIþ YT

f R
−1YfÞ−1∕2, the analysis square-root covariance can

be updated as Xa ¼ XfT. This approach is not unique, and SRF
variants differ in how this transformation is found. The ETM being
a matrix square root is not uniquely defined either, but here the
version referred to as the symmetric square root is used (Sakov
and Oke, 2008; Raanes et al., 2015). Furthermore, the multiplicative
inflation factor β (Hunt et al., 2007) establishes a link to the adaptive
inflation provided by the finite-size ensemble scheme.
The low-rank property of ensemble-based variants causes the

analysis state to be a linear combination within the span of the fore-
cast ensemble. This is stated explicitly by introducing a weight vec-
tor w so that the analysis mode is x̄a ∈ fx̄f þ Xfwjw ∈ Rng. By
finding the optimal analysis weight w� and the corresponding T
(i.e., evaluated at w�), the ensemble mean and perturbation matrix
are updated separately as x̄a ¼ x̄f þ Xfw� and Xa ¼ XfT, and the
analysis ensemble of the model parameters is

Ea ¼ x̄a1T þ Xa ¼ x̄f1T þ Xfðw�1T þ ðn − 1Þ12TÞ: (9)

Now we consider the variational part of the methodology that
specifies the optimal weight vector w, i.e., the coordinate vector
within the ensemble subspace, for seismic data in the kth DAW.
When considering the cost function, equivalent to equation 2 in this
subspace, the prior term becomes 1∕2kwk2 (Hunt et al., 2007). The
change in prior for parameters x from the finite-size formulation can
be propagated into the coefficient space w so that the cost function
becomes

JðwÞ¼1

2
kyk−hkðx̄fþXfwÞk2Rk

þnþ1

2
ln

�
1þ1

n
þkwk2
n−1

�
:

(10)

This cost function is minimized using an iterative method. The
gradient ∇J and approximative Hessian H (lines 9 and 10 in Algo-
rithm 1, respectively) use the simulated observation anomalies Yf in
the terms originating from the seismic data misfit part of the objective
function. The iterative schemewðjþ1Þ ¼ wðjÞ −H−1∇J is of a Gauss-
Newton type. The iteration is stopped when either the relative change
of a function is sufficiently small Sj ¼ jfj − fj−1j∕jfj−1Þj < εJ or if
a termination condition on the maximum number
of iterations j > jmax is reached. The function fj
makes use of the objective function evaluation,
and a standard choice would be fj ¼ JðwðjÞÞ.
However, in our experience, this could lead to pre-
mature termination, especially at later assimilation
cycles in which noise starts dominating the resid-

uals and the objective value decrease during iterations is more mod-
erate. Therefore, a weighting functional is used instead as
fj ¼

P
2
m¼0 Jðwðj−mÞÞ to make the objective value level out before

ending.
At each iteration j, an ensemble EðjÞ, based on equation 9

with iterates wðjÞ and TðjÞ initialized as wð0Þ ¼ 0 and Tð0Þ ¼ I, is
evaluated to obtain the synthetic seismic observation anomalies
YðjÞ

f ≡ YðjÞ
f ðTðjÞÞ−1. The ETM TðjÞ involves only the observation

anomalies via the underlying linearization Yf ≡HXf , with H being
the tangent linear model ∂hk∕∂x of the observation operator hk.
This loop is depicted in Figure 2. When an analysis step is initiated,
this linearization might not be very good, but it improves significantly
over a few iterations; thus, the effect of iterating not only improves the
mean but also the Hessian approximation and thereby the ETM.
The quality of the observed tangent linear approximation and the

associated Hessian depend on the DAW span, the ensemble size,
and the prior ensemble itself. For instance, if the data partition
in the current cycle cost function is relatively localized in time/offset
(i.e., a small number of observations), the first iteration estimates
the relevant parameters accurately and subsequent iterations do not
bring much change to the analysis mean or the anomalies. The iter-
ation permits larger DAWand smaller ensembles. For the transform
version of the IEnKS, the first iteration is equivalent to the
4D-ETKF of Hunt et al. (2004), which is also equivalent to the
asynchronous EnKF (AEnKF) of Sakov et al. (2010) when these
methods are adapted for static parameter estimation. However, if
it is used for assimilating observations at a single time instance,
it is like a maximum likelihood ensemble filter (Zupanski, 2005).
Because the method seeks to fit the velocity profile by a linear

combination within the ensemble subspace, the depth range reflected
within the span of the DAW cannot be too large. It is problematic to
obtain a weight vector to adequately approximate a large depth sec-
tion profile. For the case below, a depth window of constant length is
used. Based on the prior mean, seismic traveltime intervals are con-
structed so that these approximately cover the specified depth span by
the assimilation cycle. With increasing velocity as a function of
depth, the time windows will be larger at earlier arrival times.
The prior in an assimilation cycle defines the exploration space,

and as such it must have sufficient variability. Otherwise, it will be
difficult to obtain an analysis mean x̄a ¼ x̄f þ Xfw, resulting in syn-
thetic waveform data that are sufficiently close to the observations
within the DAW. A larger ensemble size is always helpful, but a
trade-off exists with the realistic time constraint set by the complex
forward model.

EXAMPLE

The example consists of seismic CMP gather data that are con-
structed by forward modeling a well log. The aim is to predict the
true smoothed well-log profile of elastic parameters and conduct
some degree of uncertainty quantification.

w(0) T(0) E
Start ( j) w ( j) T ( j) w* T*Y ( j)

f
End

j = j + 1

Figure 2. Diagram indicating the iterative structure of an IEnKS analysis cycle.
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The target region of the subsurface is 4 km in depth, and it is para-
meterized by l ¼ 40 layers of 100 m thickness each. These layers
have homogeneous elastic parameters of P-wave velocity VP, S-wave
velocity VS, and density ρ, along with compressional and shear at-
tenuation factorsQP andQS that are held fixed. Hence, the parameter
vector for the inversion is the l layer distribution of P-wave velocity
VP ¼ ½VP;1; VP;2; : : : ; VP;l�T with VP;i being the ith layer value and

similarly for shear velocity VS and density ρ. To ensure the positivity
of the elastic properties, the unknownm ¼ 3l dimensional parameter
state is defined as x ¼ ½log VP; log VS; log ρ�T .
The initial prior pðxÞ is defined as a m-variate Gaussian distri-

bution Nðμx;ΣxÞ. Its mean μx is constructed as a linear depth trend
in the P- and S-wave velocities and density and then log-trans-
formed, whereas the covariance matrix is defined in the log domain.
An assumption of increasing (marginal) variance with depth is used
for each of the properties. They share a common depth correlation
structure, defined via a Matérn (of order 3∕2) function (Chiles,
2012). The correlation length parameter is set to obtain a correlation
of 5% at 500 m. Because it is expected that the P- and S-wave
velocities are dependent in the true depth profile, the correlation
coefficient between them is set as ηPS ¼ 0.5, whereas density is
considered independent of the velocities. The prior covariance is
then formed as

Σx ¼ diagðσxÞ
2
4
2
4 1 ηPS 0

ηPS 1 0

0 0 1

3
5 ⊗ Γ

3
5diagðσxÞ; (11)

where diagð·Þ∶Rm ↦ Rm×m maps the marginal standard deviation
vector σx into a diagonal matrix and ⊗ is the matrix Kronecker
product. The size l × l correlation matrix Γ holds the correlations
between variables at different depths.
For the initial ensemble, n ¼ 300 samples are drawn from this

prior distribution. Figure 3 displays in the empirical median line
and 90% limits as the shaded area, in the physical domain. The non-
symmetry is due to the exponential transformation. The true profile
(the black line) is covered by the initial ensemble. Having a large
ensemble size provides a better basis to form the analysis estimate.
With several elastic parameters covering the same depth space caus-
ing the reflection signal, one obtains more degrees of freedom to
estimate all of the parameters within the relevant depth range. With
a small ensemble, the dominant elastic property would be favored in
the estimation, most likely VP, and leaving less, if any, freedom for
the other parameters.
For this numerical example, synthetic data are generated using

the ERZSOL3 forward model on a smoothed version of the well-
log data. A sample from the Gaussian observation error is added to
this “true” seismic gather. The noise covariance matrix R has a
diagonal structure with a constant variance R ¼ σ2eI, so the obser-
vation noise signal has zero cross-covariance and equal power
throughout the CMP gather. The noise variance was set to obtain
a signal-to-noise level of 10 dB, where the reference signal power
is based on an average signal power over offsets in the range 0–3 km
in the time interval of 1–3 s in the true model. With such a constant
noise variance, the noise contribution will vary a lot through time
and offsets, and toward the end of the gather, it will be difficult to
distinguish the signal from the noise.
The seismic point source is located in the topmost water layer at

depth 5 m below the free surface. The source time function is a fifth-
order minimum-phase Butterworth wavelet with a bandpass in the
range of 2–50 Hz, albeit the seismograms are limited to a frequency
response within 2–30 Hz. Reducing the output frequency band-
width is primarily done for reasons of computational resources,
but it also reduces the nonlinearity of the cost function. The output
temporal sampling is 2 ms. The receiver array is located at the same
depth as the source with spacing of 50 m. There are 100 receiver
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Figure 3. Prior ensemble distribution: (a) acoustic velocity, (b) shear
velocity, and (c) density. The black line indicates the true model; the
colored line indicates the ensemble median, and the shaded area
covers 90% of the ensemble span.
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stations giving an offset range of 50 m to 5 km. The water layer has
a thickness of 500 m and an acoustic velocity of 1.495 km s−1.
Gather data are partitioned into time intervals such that each

assimilation cycle is supposed to condition on data that are reflected
from a limited depth range. This is archived using simple depth-to-
time conversion. With the velocity profile (VP only) of the initial
prior mean as reference, the ith layer is attributed a zero-offset,
two-way traveltime as ti ¼ 2

P
i
j¼0 Tj∕VP;j where Tj’s are layer

thickness. With increasing velocity, these time intervals become
shorter with depth, and a minimum size of 250 ms is enforced
for later arrival times. Here, depth spans of four layers covering
400 m are used, resulting in 11 time intervals. Because the first
0.66 s is roughly the two-way traveltime for the first reflection from
the seabed, the first time values start at approximately 0.6 s; thus,
data between 0.6 and 4 s are used.
This division in time intervals is displayed in Figure 4, where a

mute line is also indicated. The line defines an outer mute region in
which observations are discarded, and it is found as the normal
moveout for the top water layer. This mute region does exclude re-
fraction data at far offsets, containing valuable information on shal-
lower layers. But these parameters should already be estimated
previously from the reflection data at earlier times, so it does
not affect the estimation.
Shortening the DAW length as the estimation area moves down-

ward, reduces the nonlinearity of the current cycles’ minimization
problem, and thus increases the chance of obtaining convergence
for data with an increasing noise level compared with signal strength.
The tolerance for stopping the iteration is εJ ¼ 1 × 10−3, and the
termination criteria are set to jmax ¼ 15.
The estimation results are shown next. Results are presented in

the physical domainm ¼ expðxÞ — withm being eitherVP;VS, or
ρ — where they are log-normal distributed and tend to be non-
symmetric. The best-guess estimate m̂ in this domain is taken as the
median of the mapped ensemble. The absolute error statistic is
jm̂ −mtj with mt being the true model. Some of the figures present
standard deviations that indicate the scale parameters of the mapped
ensemble distribution.
After the final assimilation cycle (Figure 5), the ensemble is hard

to distinguish from the true model in the depth span of 0.5–3.5 km,
and the prediction appears to be very good. Summary results from
these posterior ensembles are displayed in Figure 6 as the estimation
bias and the (ensemble) standard deviation. The estimation bias is

seen to correlate well with the ensemble standard deviation.
Whereas the estimation bias in field data application is unknown,
the standard deviations in Figure 6 will be available and indicates
that from depth approximately 3.5 km and downward, the estima-
tion starts being more uncertain, which is also depicted in Figure 5.
This increase in uncertainty might be due to the sharp contrast in
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Figure 4. Seismic data with normal moveout line used for muting
and boxes indicate time interval blocking.
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Figure 5. Posterior ensemble distribution: (a) acoustic velocity,
(b) shear velocity, and (c) density. The black line indicates the true
model; the colored line indicates the ensemble median, and the
shaded area covers 90% of the ensemble span.
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P-wave velocity, but there are also less informative reflection data at
these depths.
The estimation bias and uncertainty of S-wave velocity are sur-

prisingly large at depths of 0.7–0.9 and 1–1.2 km. Both regions are
associated with a drop in the S-wave velocity, whereas the acoustic

velocity is smoother. The relatively large bias of VS is hence inter-
preted as a consequence of the preferential estimation of VP before
VS, in addition to the solution being a linear combination within the
ensemble subspace and the imposed correlation between elastic
velocities in the prior.
The inclusion of the finite-size ensemble formulation is intended

to counteract the resulting ensemble deflation in each analysis up-
date due to the limited ensemble size. Figure 7a shows the adaptive
inflation effect (equation 8). The dots are the values this factor takes
during the iterative solution at each cycle, whereas the line connects
the value at the last iteration and hence is the factor that enters the
actual analysis ensemble update. The inflation factor depends on the
weight norm wTw, and the range it takes during a cycle thus indi-
cates how much the weights change during the iteration. Whereas
the first value at each iteration is the same (as wð0Þ ¼ 0) and cor-
responds to a slight deflation, this changes quickly after the first
iteration depending on the norm of the weight update and essen-
tially reflects how much the ensemble mean needs to move. The
effective values of inflation are seen to vary quite a lot, and being
a function of ensemble and DAW size, they would be difficult to
establish manually.
This kind of inflation aims at maintaining the ensemble spread.

Figure 7b displaying the ensemble standard deviation for VP over
the course of assimilation cycles shows that the parameter estima-
tion works its way down, and the intended behavior of keeping the
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Figure 6. Estimation results as bias jm̂ −mtj and standard
deviation around m̂: (a) acoustic velocity, (b) shear velocity, and
(c) density.
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Figure 7. Adaptive inflation over assimilation cycles. (a) Adaptive
inflation factor β. (b) Ensemble standard deviation. The order of
assimilation cycles goes from light (first) to dark (last).
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ensemble spread in place at lower depths is clearly fulfilled. This
prevents an unnecessary shrinkage of prior parameter spread before
the reflections from these are observed at later times. (The behavior
is similar for the other elastic properties and is omitted here).

DISCUSSION

There are many components within this methodology that can be
discussed; gaining geophysical insight about the inversion properties,
understanding the effects of the DAW, and of course various elements
with the prior and likelihood modeling, including differences in the
true forward model and the implemented model used in the inversion.
Here, the discussion is restricted to a comparison of acoustic and elas-
tic inversion and the amount of data included in an assimilation cycle.
To compare a case of acoustic inversion to the elastic case, an

inversion with shear velocity and density fixed at their true value
is performed. The acoustic case uses the same initial prior ensemble
for VP, the same set of noise added to the observations, identical
DAWs, and stopping criteria. The resulting estimation bias and
ensemble standard deviation are compared in Figure 8, where the
results for the elastic case are identical to the ones presented in Fig-
ure 6a. As expected, the acoustic case shows better estimation and
lower uncertainty, as this case is relying on the true shear velocity
and density. However, the trends are similar, and the acoustic case
shows a similar increase in the standard deviation from approxi-
mately 3.5 km and downward, albeit to a smaller degree. Because
the ensemble size is the same, the acoustic case has more degrees of
freedom to fit the true profile, and the forecast observations are not
influenced by variability of the other elastic properties. Both cases
ran on 20 cores on the available moderate-size computing facility;
the acoustic case finished in 3 h and 8 min, and the elastic case in
4 h and 41 min. This difference is solely attributed to the elastic case
requiring more iterations before termination. These calculation
times should be viewed in a relative sense because they are influ-
enced by several factors. The reflectivity method (the forward
model) can be implemented using different approaches and the
ERZSOL3 program implementation might not be the most efficient.
Other than that, in an industrial setting, the number of cores for
parallel evaluation of the ensemble would be much larger. Finally,
the overall execution time depends on the number of assimilation
cycles, so how the data partitioning is carried out has a significant
impact. The DAW sizes used in this example could have been
longer, making the estimation more efficient.
The limitation on the DAW size is due to a detrimental effect

when including too many observations in the analysis step. The data
partitioning used in the example was constructed to localize certain
depth ranges; it was a means to an end, which is to avoid a critical
amount of data. Accordingly, this discussion will exemplify further
the necessity of splitting the gather data into smaller blocks and
condition on these sequentially.
For the sake of avoiding external effects, the finite size approach

with inflation is not used in this comparison. The first term in the
Hessian then becomes the identity matrix; thus, the ETM is
T ¼ ðIþ YT

f R
−1YfÞ−1∕2.

The p-dimensional observation perturbations Yf are mapped
(projected) onto the n-dimensional ensemble subspace with n ≪ p.
Whereas p is large, the effective dimension will be smaller due to a
large degree of multicollinearity within the waveform data. Still, the
forecast observation covariance needs to be sufficiently resolved

within the provided n degrees of freedom; otherwise, it is underes-
timated and will likely lead to filter divergence.
The experiment is as follows: For a particular sample of prior en-

semble and observation noise, a first analysis cycle is carried out with
stopping criteria as in the previous section, thus obtaining an analysis
ensemble. This ensemble forms the prior for the next cycle, which is
what is evaluated here. For each sample (ensemble and noise), two
cases of time window lengths are compared. The top is identical, but
one is 100 ms longer than the other. Hence, the amount of data that is
projected onto the ensemble subspace is larger for the longer window.
The lengths of the windows are chosen such that the shorter one is
stable, whereas the longer one starts to be unstable.
The notion of too many data points is relative to the ensemble

size and the waveform signal content in the ensemble. Thus, there
will be a difference between a case of only acoustic velocity var-
iations or variation in all of the elastic parameters. Therefore, these
two cases are compared for the same time windows.
In each case, the analysis is replicated 20 times, for elastic and

acoustic. The ensemble size is reduced to 100 here because it does
not affect the example, but only the critical length of the time
window.
The results are shown in Figure 9 with the left column being the

shorter time window and the right column the longer one. Shaded
areas are ranges over the set of 20 replicates. The top rows show the
ETM eigenspectrum after the first ensemble evaluation. Here, λi is
the ith eigenvalue of ðYð0Þ

f ÞTR−1Yð0Þ
f . The bottom rows show the
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Figure 8. Comparison of VP estimation between the acoustic and
elastic case. (a) Bias jV̂P − VP

tj. (b) Standard deviation around V̂P.
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analysis ensemble estimate (mean) for each replicate with the
shaded area ranging over the set of replicates. This is used as a
proxy for the appropriateness of the analysis ensemble for use in the
next assimilation cycle, as this ideally should be fairly similar over
replicates and close to the mean of the initial prior for larger depths.
A comparison of Figure 9a and 9b shows that the ETM has fewer

eigenvalues close to one when a longer DAW is used (right column).
For this case (Figure 9d), the acoustic analysis mean through depth
still remains within a confined region and the estimation goes a little
further down due to the longer time window. But, for the elastic case,
there is much more variability among the replicates, indicating large
sensitivity to the ensemble sample. For this elastic case, the shaded
areas only cover 15 of 20 replicates as the remaining five replicates
terminate with wild updates, of which a single replicate is visualized.
Such an analysis would be useless as prior for subsequent data
assimilation cycles, and the forward model solver might not accept
such input. An overshooting update in the mean is accompanied by
collapse in the preconditioned ensemble used for the sensitivities and
the solution diverges quickly within the iteration.

In the cases presented here, the synthetic seismograms were lim-
ited to a certain frequency bandwidth as part of the forward mod-
eling. Enlarging this bandwidth and thereby introducing higher
frequency waveforms into the forecast data would further increase
the need to reduce the data amount to adequately resolve the infor-
mation content within the ensemble subspace.

CONCLUSION

In this paper, an ensemble-based method is used for elastic in-
version of seismic reflectivity data. This is a novel approach for
seismic waveform inversion, and results from applying the IEnKS
method are very promising. In this context, the assimilation is per-
formed over blocks of seismic data, which regularizes the estima-
tion and reduces the potential problem of overfitting. Moreover, the
assimilation step is performed in an iterative manner, where a tan-
gent linear model is implicitly defined and iteratively refined to
approximate the seismic observation model. The ensemble-based
approach means that the gradients and Hessian expressions are

a) b)

c) d)
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Figure 9. Replicate set of analysis results over different time window lengths. The left column represents the shorter time window, whereas the
right column represents the longer one. The top row shows ETM eigenspectrum, whereas the bottom row shows the analysis mean mapped
onto the physical domain. The black line indicates the true profile.
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specified via the sample variability. The results appear to give a fair
estimation and reasonable levels of uncertainties in the solution for
elastic parameters.
Even though ensemble-based methods have shown large success

in several applications, it is not obvious how to transfer them to this
application with seismic data. One challenge is the enormous vol-
ume of seismic data, another complexity is that of the wave equation
forward model that complicates the likelihood model for the data. In
this paper, the main results are augmented by studying the statistical
properties of predictions, and this kind of analysis fosters insight
about the potential applicability of the method.
A numerical experiment is used to provide a proof-of-concept

study. Further work includes extensions to more complicated wave-
form data, as well as applications with 2D subsurface models. In the
end, the assimilation choices would depend on the nonlinearity in-
herent in the problem and the geometry. Some kind of real-time
diagnostic plots could be used to inspect the quality of the current
inversion, and this might facilitate more adaptive data assimilation.
Such approaches must also consider the evaluation costs that should
not grow too large.
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Abstract An ensemble-based method for seismic inversion
of elastic attributes is considered, namely the iterative en-
semble Kalman smoother. The main focus of this work is
the challenge associated with ensemble-based inversion of
seismic waveform data. The amount of seismic data is large
and, depending on ensemble size, cannot be processed in a
single batch. Instead a solution strategy of partitioning the
data recordings in time windows and processing these se-
quentially is suggested. This work demonstrates how this
partitioning can be done adaptively, with a focus on reliable
and efficient estimation. The adaptivity relies on an analysis
of the iterative update and an interpretation of contributions
from prior and likelihood to this update. The idea is that
these must balance; if the prior dominates, the estimation
process is inefficient while if data dominates, the estimation
if likely to overfit and diverge. Two alternative interpreta-
tions are formulated and evaluated, and only one is found to
sufficiently regularize the data window. Although no guar-
antees for avoiding ensemble divergence are provided in the
paper, the results of this adaptive procedure indicate that ro-
bust estimation performance can be achieved for ensemble-
based inversion of seismic waveform data.
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1 Introduction

The motivation behind this work is seismic waveform inver-
sion, where the goal is to predict the elastic attributes of the
subsurface, in the form of acoustic- and shear velocity and
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E-mail: michael.gineste@ntnu.no, jo.eidsvik@ntnu.no

density, conditional on records of seismic reflection data.
Seismic inversion thus provides an image of the subsurface
and its interpretation can, combined with other geophysical
analysis, be used to establish a geological model.

Phrased in a Bayesian setting, where initial knowledge is
incorporated via a prior probability distribution and a like-
lihood model is used for the specific data, the solution to
this Bayesian inversion problem is available as the posterior
probability distribution. However, with the non-linearity and
complexity of the forward model, there is no exact solution
to this posterior.

With the growing availability of diverse data types in
complex spatio-temporal systems, there is currently much
focus on data assimilation methods that scales well with
high-dimensional spaces. Such is the ensemble Kalman frame-
work [1, 5, 10] that is increasingly applied to problems in the
geosciences [4] and has a succesful track record in history
matching applications. In particular, the method referred to
as the iterative ensemble Kalman smoother (IEnKS), intro-
duced by Bocquet and Sakov [2], is here used for the case
of static parameter estimation. The IEnKS combines aspects
of ensemble-based and variational approach to data assimi-
lation. Notably, it avoids the need for tangent linear models,
an attractive feature when using black-box forward models.
Instead the sensitivity is indirectly provided by the ensemble
evaluation. This implies that the ensemble is updated using
a common sensitivity, and excludes the possibility of multi-
modality in the posterior ensemble.

Recent developments indicate that ensemble-based ap-
proaches can be used for inversion of seismic waveform data
[7, 17], but it is not obvious how to assimilate the massive
data in a reliable manner. The inversion is then formulated as
a sequential data assimilation problem, where disjoint sub-
sets of the seismic data records, denoted by data assimilation
windows (DAWs), are used to update the ensemble at every
assimilation cycle. If the DAWs are too large, the IEnKS
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analysis will diverge. If the DAWs are too small, the inver-
sion run time will grow because of the time-requirements
of the forward model. A key issue here is hence to find ef-
ficient DAW sizes, and to do so automatically. An efficient
DAW size is maximizing amount of data to be assimilated
while providing a good starting point for convergence. This
is what is meant by regularizing the DAW.

Analysis of the iterative update as a vector in the Hessian
eigenbasis has been considered by others, e.g. [16] that used
it to guide the choice of Levenberg-Marquardt regularization
parameter. The focus in this work is also on the vector co-
efficients whereas the angle of analysis here is on how they
are made up of contributions from prior and likelihood, and
how these changes when the amount of data increases. The
prior is a regularizing component and maintaining enough
of its influence is the aimed balance.

An example with synthetic seismic data is used through-
out the paper to give intuition around concepts and methods.
The methodological developments should also be of interest
in other applications.

A general issue with ensemble-based methods is rank
deficiency of estimated covariance matrices, which is of-
ten addressed using localization and/or inflation. Neither of
these techniques are considered here, as the focus is solely
on the data dimension aspect and how to select this appro-
priately. While still in a synthetic setting, the challenges ad-
dressed are realistic and so are the described solution. Hence
this paper describes a remedy to enable ensemble-based seis-
mic waveform inversion and how an ensemble-based method
can be applied to an inverse problem when its knobs are
tweaked and adjusted in light of particularities of the applied
problem.

The paper is structured as follows: In section Section 2
the main building blocks for sequential seismic inversion are
introduced. In Section 3 the IEnKS method is outlined. In
Section 4 two alternative methods for adaptive DAW are
presented. In Section 5 one of the methods are applied to
examplify the seismic inversion problem. In Section 6 a dis-
cussion and analysis of the two methods is provided.

2 Seismic inversion by sequential data assimilation

2.1 Seismic waveform model and Bayesian inversion

The motivation for this work is probabilistic inversion of
seismic waveform data. The seismic inverse problem is that
of inferring the subsurface properties from measured seis-
mic reflection data, in the light of a physical model sup-
posed to be able to predict the seismic experiment. This in-
verse problem is ill-posed and can have multiple solutions.
This non-uniqueness of surface properties resulting in nearly
identical seismic traces in some time window, poses prob-
lems to seismic inversion.

The elastic properties sought inferred are acoustic wave
velocity vp , shear wave velocity vs and density ρ. As seis-
mic data providing information to infer these from, com-
mon mid point (CMP) gathers are considered here. Such
gathers represent partly processed waveform data, obtained
by stacking shot-receiver data to a common mid-point lo-
cation along the seismic acquisition line and sorted in the
time-offset domain [15]. Assuming a subsurface consisting
of layers, such data can be simulated by a seismic forward
model that maps a depth profile of layer thickness’ with as-
sociated elastic properties, to seismograms at offset points
from the source. A commonly used forward model is the
reflectivity method [9]. Under the assumption of a layered
subsurface, the elastic wave equation can be transformed
and solved in the slowness-frequency domain, and mapped
to time domain seismograms via (inverse) Fourer transfor-
mation. The full recording time of the gather is thus cal-
culated at once. Several implementations of the reflectivity
method exists, the one used here is ERZSOL3 [8]. While the
reflectivity method is quite fast compared to other numerical
methods for elastic wave propagation, it is still time consum-
ing and the realistic number of simulations as part of solving
the the inverse problem is limited.

The seismic gather that will provide the example in this
paper is shown in Fig. 1. Here, the seismic CMP data are

Fig. 1: Example of seismic CMP gather data

semi-synthetic in the sense that processed data from a well
log of elastic measurements have been forward propagated
with the same forward model. The strongest reflections in
Fig. 1 represent major gradients in the elastic properties at
shallower layers. These reflections appear as hyperbolic lines
in the time-offset plot as the seismic waves take longer time
to reach far offsets. At far offsets and earlier arrival time, the
gather contains no records of a reflected wave, and data in
this region will be excluded by imposing a mute region. This
includes ignoring the direct source-to-receiver wave propa-
gation. The seismic gather record has a set end time after
which measurements are no longer used for inversion.
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Because the pressure wave travels faster than the shear
wave, the earlier parts of the data are dominated by the pres-
sure wave differences in the subsurface, while the differ-
ences in shear properties arrive later in the data and with
smaller amplitude. Notably, the seismic reflection data indi-
cate products or sums of the elastic properties: For instance,
the acoustic impedance is defined as the product of pres-
sure wave velocity and density. It is hence difficult to split
a reflection event in a causal underlying change in lower
pressure wave velocity and higher density, or vice versa.
The data sensitivities to density perturbations are somehow
masked behind the sensitivity to wave velocities, and these
must be known quite accurately before one can target den-
sity. These ambiguities are smaller with plenty of angle in-
formation available in time-offset plots as in Fig. 1, but it
is still difficult to infer elastic properties from seismic CMP
data.

Framed as a Bayesian inverse problem, the random vari-
able of interest is the parameter state vector x, with an as-
signed prior probability density function p(x). The state con-
sists of elastic properties in l homogeneous layers of the sub-
surface, and the prior distribution is represented by a multi-
variate Gaussian process with mean and covariance terms
specified from initial knowledge. To ensure positivity of the
elastic attributes, the state vector is the log-transform of these,
x =

[
logvp,logvs,logρ

]
∈ Rm, where the parameter dimen-

sion m is three times the number of layers l. The number of
layers and the thickness’ depth profile are held fixed.

Data are denoted y and are measurements of the reflected
wave amplitude as function of, besides the subsurface model,
arrival time and offset relative to source position, as well
as the source signal and boundary conditions. The data are
linked to the state via the forward model h(x), which rep-
resents the elastic wave propagation as simulated by the re-
flectivity method. The observation model for data y is as-
sumed to be unbiased according to the forward model (per-
fect model assumption) and with additive noise, i.e. y= h(x)+
e, where e is an independent zero-mean Gaussian measure-
ment noise vector with covariance matrix R. The resulting
likelihood is p(y|x) =N(h(x),R). The solution to the prob-
abilistic inverse problem is then, from Bayes’ rule, the pos-
terior probability density function p(x|y) ∝ p(y|x) p(x). Due
the non-linear relationship between parameter state and ob-
servations, the posterior distribution is not directly available.

The non-uniqueness of the inverse problem means that
the posterior distribution principally can be multimodal at
certain depth regions. The ensemble Kalman method is in-
capable of representing multimodality as such, and the re-
sulting posterior ensemble is likely to converge to a local
mode.

2.2 Sequential data integration

The seismic gather can be split in disjoint subsets yk ,k =
1, . . . ,K such that y = {y1, . . . ,yK }. In this example with seis-
mic waveform data, the partitions of data cover different ar-
rival times, as defined by a data assimilation window (DAW).
Partition k of data is extracted by selecting suitable elements
of the forward operator for the data, denoted by hk(x). As-
suming conditionally independent measurement noise terms,
given the state vector, the likelihood function can also be
partioned p(y|x) =

∏
k p(yk |x), with the k-th DAW likeli-

hood p(yk |x) = N(hk(x),Rk) where the k-th DAW noise
covariance matrix is Rk . When data is partitioned in such
windows of arrival time, the reflected wave measured in a
window will stem from a certain depth region which is here
referred to as the observed depth region.

Data are assimilated sequentially over these disjoint sub-
sets. At the first assimilation cycle, the prior forms the fore-
cast model, which is updated using data y1 in the first DAW.
The analysis model from the first cycle is then p(x|y1). This
procedure of going from a forecast model to an analysis
model continues at the subsequent cycle, and from Bayes’
rule:

p(x|y1, . . . ,yk) ∝ p(yk |x) p(x|y1, . . . ,yk−1) , (1)

for k = 2, . . . ,K . At the last K cycle, all data has been assimi-
lated. The main contribution of this paper is to robustly scale
the size of the DAW when initiating an assimilation cycle.
With this focus, the cycle index k is ignored in the follow-
ing where the method is outlined for one assimilation cycle
only.

3 Iterative Ensemble Kalman Smoother

This section introduyces the IEnKS and its components, of
which some are fundamental for the adaptive DAW selec-
tion. First, its ensemble aspect is presented followed by out-
lining the iterative solution to the variational problem.

3.1 Ensemble-based Data Assimilation

The density functions in Eq. 1 are considered approximated
by ensembles of realizations from these distributions, and
their moments approximated by sample moments. In an as-
similation cycle the forecast ensemble is input while the out-
put is an analysis ensemble. For this static parameter estima-
tion problem, the analysis ensemble then forms the forecast
for the next cycle, and this continues until all DAWs are pro-
cessed.

The members (columns) of a forecast ensemble Ef are
denoted xf

i , i = 1, . . . ,n, where n is the ensemble size. The
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state estimate is the ensemble mean:

xf =
1
n

n∑
i=1

xf
i , (2)

and along with the m× n normalized state anomaly matrix
Xf

Xf =
(
Ef −xf 1T

)
/(n−1)1/2 , (3)

as the square root of the error covariance estimate

Pf = Xf XT
f , (4)

the two moments are defined via the ensemble. Turning (3)
around, the forecast ensemble matrix assembles the mean
and anomalies as

Ef = xf 1T
+ (n−1)1/2 Xf . (5)

With the available data y in the considered DAW, the
IEnKS updates the forecast ensemble to get an analysis en-
semble, described by the analysis mean xa and anomaly ma-
trix Xa .

The analysis state is found as a linear combination xa ∈{
xf +Xf w |w ∈ Rn

}
within the span of the ensemble anoma-

lies Xf . With this parameterization of the analysis state, the
control vector w replaces the elastic parameters as the vari-
able of interest. The state that maximizes the posterior dis-
tribution of the Bayesian update in Eq. 1, is equivalent to the
state that minimizes the following objective function

J(w) = 1
2 ‖y− h

(
xf +Xf w

)
‖2
R+

1
2 ‖w‖2 . (6)

Here, the notation ‖a‖2
B = aTB−1a is used. The analysis mean

is xa = xf +Xf wa with the optimal weight vector being the
solution wa = argminw J(w). The analysis anomaly matrix
is updated using an ensemble transform matrix T such that
Xa = Xf T. This transform matrix is the inverse square-root
of the Hessian of the objective function (6), evaluated at wa .
With analysis mean xa and anomalies Xa in place, the anal-
ysis ensemble is assembled similarly to Eq. 5 and thereby
closes an analysis cycle.

3.2 Iterative procedure

The optimal weight vector is found by an iterative approach.
Letting index j indicate iteration number, this variational
problem is solved as wj+1 = wj + ∆wj+1, where the cur-
rent iteration search direction is defined by ∆wj =−H

−1
j ∇Jj .

This involves the n×1 gradient (Jacobian) ∇J and the n×n
(approximative) Hessian H, of the objective function, and
the iterative scheme is a Gauss-Newton method.

The gradient and Hessian calculation notably involves
ensemble evaluations only. The observation anomalies are
assumed to be the image of the prior state anomalies, mapped

through the forward model gradient (or tangent linear) Yj =
∂h
∂x

��
x j

Xf . This is achieved using the transform variant of
IEnKS [14]. Therein a preconditioned state ensemble is used
to evaluate observation anomalies, followed by the latter be-
ing rescaled or un-transformed (or “de-conditioned”, [12]),
before being used to form the sensitivities. At iteration j,
this preconditioned ensemble is centered around the current
mean xj = xf +Xf wj and the transform matrix from the pre-
vious iteration. This iterative ensemble

Ej = xj1T
+ (n−1)1/2Xf Tj , (7)

is used to evaluate the p×n observation anomaly matrix

Y =
(
h(Ej)−yj1T

)
/(n−1)1/2 ,

with yj = h(Ej)1/n being the mean of the observation en-
semble. As the observation anomalies are conditional to the
iterative ensemble but should relate to the prior, they are
therefore unconditioned as Yj = YT−1

j before entering the
sensitivities:

∇Jj = wj −YT
jR

−1
(
y−yj

)
, (8a)

Hj = In +YT
jR

−1Yj . (8b)

The assimilation cycle is initialized with w0 = 0 and T0 =

I, and sensitivities used in the first iteration are based on
the prior ensemble. The preconditioned/iterative ensembles
(Eq. 7) thus represent a sequence of ensembles going from
forecast to analysis, and the process reflects the gradual change
in both the parameter estimate and its uncertainty. The grad-
ually changing preconditioning ensemble is important for
the evaluation of sensitivities. For the ensemble averaging to
approximate the tangent linearization of the forward model
satisfactorily, the cross-covariances between variables in the
observed region and data arennn required to be adequately
estimated. This would not be the case if variability in pa-
rameters above the currently observed depth region was still
large. The top-down construction of DAWs enables sequen-
tial reduction in this variability, and allows the algorithm to
focus naturally on the observed regions.

The matrix power operations applied to the Hessian (8b)
are facilitated when this matrix is factorized in a eigen-de-
composition. In this work, the singular value decomposition
(SVD) is applied to the p× n ensemble of standardized ob-
servation anomalies, and with p � n generally being the
case, ’economic’ SVD offers significant computational sav-
ings. Ignoring the subscript j, the decomposition is

R−1/2Y = USVT
=

n∑
i=1
λiuivT

i , (9)

where the p× n matrix U has left singular vector ui as ith
column, and correspondingly for the n× n matrix of right
singular vectors V. The n× n diagonal matrix S holds the
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Regularizing the data assimilation window in the iterative ensemble Kalman smoother for seismic inversion 5

sorted singular values (S)ii = λi , λ1 ≥ λ2 ≥ . . . λn ≥ 0. Eq. 9
involves the inverse square root of the error covariance ma-
trix R−1/2, which is straightforward to compute when R is
a diagonal matrix. Inserting this decomposition into Eq. 8b,
and using the orthogonal properties VVT

= UTU = I which
holds when p > n, the Hessian becomes

H = VΛVT with Λ = I+STS .

Here, the diagonal matrix Λ has elements (Λ)ii = (1+ λ2
i ).

The inverse and square root of the Hessian are then the cor-
responding operations on the diagonal matrix Λ:

H−1 = VΛ−1VT and H−1/2 = VΛ−1/2VT
,

which are used for the search direction and as the transform
matrix, respectively.

3.3 Stopping criteria

A termination criteria is needed to stop the iteration process
when continuing this does not improve the solution signifi-
cantly. Such a criteria is most often expressed as an absolute
or relative change in either objective function evaluation or
some norm of the control variable, falling below a given tol-
erance level. In the considered application, it was challeng-
ing to set the appropriate tolerance level for any commonly
used measure (on J(wj) or wj) that resulted in consistent
termination across varying data dimension, signal-to-noise
ratios and ensemble sizes.

The reflection data assimilated in an analysis cycle is re-
lated to a (localized depth) observation region. The (global
depth analysis) optimal control variable wa is supposed to
form the estimate of the elastic parameters in this observed
region, while keeping the prior mean more or less unchanged
outside this region. The scale of the cost function is domi-
nated by the data misfit term and is insensitive to (smaller)
adjustments in w that acts on the state mean x outside the ob-
served region. Thus basing termination on changes in J(wj)

does not necessarily express that a steady global mean has
been reached. Norms on either wj or ∆wj are very depen-
dent on the DAW length and on the “distance” between fore-
cast and analysis mean. Suitable threshold on changes in
these would vary for different depths of observed region,
making them difficult to set beforehand.

One measure was observed to have a consistent behav-
ior across the data window length and its position within
the gather and across different ensemble sizes. Most impor-
tantly, the measure might have different scale but behaved
similarly when it seemingly was a good time to stop iterat-
ing, i.e. when ‖wj ‖ or ‖∆wj ‖ had reached stationary lev-
els. This measure is the mutual information (or Shannon
information content), originating from information theory

but also used within data assimilation [13, 6], which ad-
dresses the reduction in entropy/improvement of knowledge.
It can be evaluated from the eigenvalues of the n× n matrix
YTR−1Y, referred to as the information matrix in ensemble
subspace [18], as

MI =
1
2

n∑
i=1

log
(
1+λ2

i

)
, (10)

with λi the singular values of Eq. 9. This quantity decreases
during (converging) iterations, flattens out and eventually in-
crease slightly. The point where the measure reaches a min-
imum level is associated with stationarity in that the eigen-
values λ2

i does not change, meaning Yj and thus Tj does
not change either. Hence the stopping rule was formulated
as if MIj > MIj−1, iterations are terminated. This stopping
criterion is complemented by a maximum allowed number
of iterations.

4 Selection of DAW length

The amount of data included in an analysis step can be a
challenge for ensemble-based methods. In the application
with seismic gathers, the amount of waveform data available
to infer the subsurface parameters from is massive, and one
needs to assimilate this carefully to avoid problems. First,
the ensemble linearization becomes a limiting assumption
when a large time horizon of data are integrated, and then
the iterative procedure might not converge. Second, a large
dataset can lead to over-fitting as in under-estimation of the
state uncertainty. In what follows, methods for automatic se-
lection of the DAW are presented. At an analysis cycle, per-
formed as explained in the previous section, the data parti-
tion is set though hk , and each analysis cycle should be pro-
ceeded by a search for an adequate DAW. In the case with
seismic data, the data have a traveltime reference, and it is
natural to order the data partitioning by time intervals. This
choice of DAW, by the nature of the reflection signal, also
limits the influence region from the subsurface parameters
to a limited depth range and thereby regularizes the problem
of estimating the parameters.

4.1 Spectral analysis

Throughout the following analysis, the singular value spec-
trum of the normalized observation anomalies in Eq. 9 is
used, along with the resulting eigenspectrum of key quanti-
ties. The displays in Fig. 2 shows these eigenspectra. These
result are obtained by using a sequence of time windows
with identical start and increasing length, and thereby an
increasing the number of observations p. These plots pro-
vide a useful background visualization of the key findings
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(a) λ2
i (b)

(
1+λ2

i

)−1 and
(
1+λ2

i

)−1/2 (c) λi

(
1+λ2

i

)−1

Fig. 2: Eigenvalue distributions as a function of singular values λi for; (a) information matrix, (b) inverse Hessian (full) and
transform matrix (dashed), (c) weight factor for projected innovations, as a function of increasing data dimension p. Colors
are for same p across plots.

presented next: the distribution in Fig. 2a is the informa-
tion matrix eigenspectrum λ2

i from which eigenvalues of the

Hessian 1+λ2
i , inverse Hessian

(
1+λ2

i

)−1 and the transform

matrix eigenvalues
(
1+λ2

i

)−1/2 are derived. Their eigenba-
sis are the right singular vectors of R−1/2Y, as explained
in Section 2. While the specific shape of the λ2

i distribu-
tion and hence also of the derived spectra will depend on
the prior ensemble characteristics and configuration of the
forward model, the general behavior is well represented by
these displays.

Inserting the singular value decomposition (9) into the
gradient and Hessian expressions (8) along with the normal-
ized innovations ∆ỹ=R−1/2(y−y), the control vector search
direction can be written as

∆w = −VΛ−1VT
(
w−VΣTUT

∆ỹ
)

=

n∑
i=1

vi

(
−vT

i w
1+λ2

i

+
λi(uT

i ∆ỹ)
1+λ2

i

)
.

(11)

The update direction is explicitly within the span of right
singular vectors, the Hessian eigenbasis. The coefficient of
each singular vector vi is composed of (projected) contri-
butions from the prior (via w) and from the likelihood (via
∆ỹ). The update vector can be split into the vector compo-
nents ∆wx = Va and ∆wy = Vb, with ith coefficient ai =
−(vT

i w)(1+ λ2
i )

−1 and bi = λi(uT
i ∆ỹ)(1+ λ2

i )
−1 respectively,

which will be used later.
The reduced rank property of the forecast error covari-

ance means that when the number of observations increases,
the ensemble covariance cannot properly represent the vari-
ability in the (ensemble) waveform data. As a result, the
forecast error covariance is underestimated and observations
are given more weight in the analysis. The expression (11)
shows how this enters through the weighting of the two com-
ponents. When the amount of data is increased, the influence
of the prior component on the update ∆w is reduced as more

and more (1+λ2
i )

−1 → 0 (Fig. 2b). Where the weighting of
the normalized innovations projections λi(1+ λ2

i )
−1 centers

around λ2 = 1 with a maximum of 0.5 (Fig. 2c), the increase
of data shifts the weighting of the likelihood component to-
wards higher singular components and generally increases
the likelihood contribution to the analysis.

Referring to the information matrix, Zupanski et al. [18]
divide the eigenspectrum into a region of signal, where λ2

i ≥

1 and the forecast errors are larger than observational noise,
and a noise region with λ2

i < 1 and the forecast errors are
smaller than the noise. According to this, the weighting curves
(1 + λ2

i )
−1 and λi(1 + λ2

i )
−1 have relation to the influence

from observation and from prior, to the left and right of
λ2
i = 1 respectively. This division of eigenvalues into re-

gions of influence also applies to the transform matrix. The
eigenvalues (1+ λ2

i )
−1/2 affects the amount of shrinkage of

the preconditioning ensemble (7), where components with
eigenvalues approaching 1 contributes to maintained ensem-
ble spread. They are associated with states where observa-
tions are non-informative and the prior should dominate.
The opposite occurs for components approaching 0, which
are related to the influence from data, providing information
to improved estimation and reduced uncertainty.

The singular value index i for which λ2
i ' 1 is close in

value to another information theoretic measure referred to
as the degree of freedom for signal ds. This measure can
be viewed as the influence of observations to the analysis
[11, 3], and can be expressed as ds = trace

(
Im−Pa (Pf )−1)

where these error covariances are full-rank versions. The
corresponding quantity when considering the ensemble sub-
space can be found as ds =

∑n
i=1 λ

2
i

(
1+λ2

i

)−1 [18]. The com-
plementary degrees of freedom for noise can be interpreted
as a constrain imposed by the prior.

From this interpretation of the eigenvalues, it makes some
sense to base regularization of the initial update ∆w0 on the
data window length and therefore dimension p, via an anal-
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ysis of the effect p has on various elements of IEnKS. Two
strategies with different angle on (11) that seeks to address
what an appropriate data dimension is follows next.

4.2 DAW selection strategy

When entering the kth analysis cycle, the data partition ex-
pressed through hk must be set so the determination of this is
the first step when a cycle starts. The focus is on choosing a
partition size that regularizes the initial control variable up-
dates. The DAW selection searches for an end time tk ,L of a
time window so that the partition is hk : y(t, ·), t ∈ [tk ,0,tk ,L],
that is, reflection data for times tk ,0 to tk ,L for all offsets. The
exclusion of data in the mute region is implicit in hk . The
subsequent analysis cycle then starts at tk+1,0 = tk ,L + ∆t.
Simplicity is sought by using a minimum of user-supplied
tuning parameters. The approach involves repeated use of
matrix decomposition, but this cost is negligible compared
to the benefit of conducting an analysis cycle with adequate
block sizes for the seismic data.

The principle of the algorithm is to keep extending the
time window until a criterion is no longer respected. The
extension is done via a step size in traveltime. The approach
requires that the forecasted ensemble of simulated data gath-
ers are available for increasing arrival times, but because
the reflectivity method synthesizes the seismograms over the
full recording time at once, the step-wise increase of time
window does not require additional forward model ensem-
ble evaluations. For efficiency a larger step size for the time
window growth can be used initially. Once the criterion is no
longer satisfied (or the end time of the gather is reached), the
current window increase is reverted, the step size decreased
and the loop repeats until a minimum step size is reached.
So the window length search is independent of the expan-
sion acceptance criterion.

Weight criteria

When entering an analysis cycle, the control vector is ini-
tialised by w0 = 0 and the basis coefficients b determines the
first update. With increasing DAW size, the smallest singular
values increases in value and the index at which λ2

i ≈ 1 in-
creases. Consequently, the region of peak weighting projec-
tions moves to higher indices, thus amplifying singular com-
ponents with more high-frequency content, relative to com-
ponents with lower indices. Basing the search direction ∆w0
on projections of ∆ỹ onto higher-frequency ui-components
can over-fit to noise rather than structural eigenbasis com-
ponents of the observation error covariance. This could ren-
der the mean update x1 highly varying with values that are
unacceptable for the forward solver, or so far from the true
profile that the error covariances evaluated around this new
mean are useless.

A reasonable location of this (asymmetrically) bell-shaped
curve is argued to be of importance as an objective for deter-
mining a properly selected DAW size. The focus of this first
criterion is thus to balance the weighting curve λi(1+λ2

i )
−1

over the index interval [1,n]. As explained, the point λ2 = 1
has a central location on different curves that can be useful
for controling the distribution. The relative location of this
point is therefore taken as the key variable in the window ex-
pansion criterion, in order to balance the prior and likelihood
weighting curves in Eq. 11 from the start of the iterations.
Setting iC =max

{
i |λ2

i ≥ 1; i = 1, . . . ,n
}

the weighting curve
criterion is expressed by

n− iC
iC

≤ β , (12)

where β = 1 means iC ≈ n/2. The ratio parameter β must
naturally be positive, and for β > 1 the window size selection
will be smaller than for β = 1 and vice versa for β < 1.

Norm criteria

Another approach to selecting the data partition size, still
using an objective of balancing contributions from prior and
likelihood. This alternative approach is also based on the
control variable update direction (11), but the focus of argu-
ment is shifted from the weighting curves to the prior and
likelihood vector components. With ∆w = ∆wx + ∆wy all
that is known is that the inequality ‖∆w‖ ≤ ‖∆wx ‖+ ‖∆wy ‖

holds, using the standard 2-norm ‖z‖ =
[∑

i |zi |2
]1/2. The

second strategy to select the DAW size is based on the crite-
ria

‖∆wx ‖

‖∆wy ‖
≤ β , (13)

where again β is a preset threshold parameter. This indi-
rectly sets a bound on the ratio ‖∆w‖/‖∆wy ‖ and conse-
quently regularizes the likelihood component contribution
to the update vector. As mentioned an analysis cycle is ini-
tiated with w0 = 0 and T0 = I, and the first update direction
is solely determined by the likelihood contribution. Seeing
these initial values as the imposition of a standard normal
distribution as prior on w0, a Monte Carlo estimate of a
fictious prior component vector â is generated. For a given
DAW selection with associated set of singular components
{λi,ui}, a large batch of B samples wb ∼ N(0, I) is used to
form

âi =
1
B

B∑
b=1

�����−uT
i wb

1+λ2
i

����� , (14)

which subsequently sets ‖∆wx ‖ = ‖â‖ used to evaluate the
criteria Eq. 13. The Monte Carlo expectation is taken on the
norm argument instead of the norm due to Jensen’s inequal-
ity. The absolute value operator of the 2-norm is taken within
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the estimator (14) as otherwise the expectation would aver-
age out to nearly a zero vector.

At the initial window expansion (as described in Sec-
tion 4.2), the smaller observation dimension makes the fic-
tious prior component norm dominate. Continuing the win-
dow expansion with increasing p, enlarges the likelihood
component norm and eventually this dominates, consistent
with the evolution of the weight curves in Fig. 2b and 2c.
In contrast to the weight curve approach, this does include
the information from the innovations, which makes it more
adaptive.

The actual ∆wx |j=1 will still be zero as w0 = 0 but the
aim is that at the following iteration, the magnitude of the
prior component will be in the vicinity of that of the likeli-
hood component and thereby reduce the risk of observations
dominating the update on behalf of the prior constrainment.

5 Numerical example

Results of applying the IEnKS to seismic data inversion are
presented next. First, the seismic data acquisition design is
outlined, followed by the prior model description, and then
results of the adaptive DAW approach for sequential inver-
sion. This section uses the norm criterion with a ratio pa-
rameter of β = 1, while a result using the weight criterion is
discussed in 6.1.

5.1 Description of setup

The measurement configuration consists of a 100 receiver
locations, at offsets distributed in the range 50 m to 5 km
with a uniform spacing of 50 m. The source is located in the
top layer at 5 m below the top surface, which has the bound-
ary condition of a free surface. This top layer of 500 m depth
has fixed properties. The source time signal is a fifth or-
der Butterworth wavelet with frequency bandpass 2–50 Hz
and time sampling is 2 ms. The seismic traces has a limited
frequency bandwidth compared to the source signal, where
these are generated with a frequency content 5–32 Hz, with
linear in- and out-tapering from 5–7 Hz and 30–32 Hz. The
gather data up to 4 s is used for the inversion, excluding
data in a mute region defined by normal move-out in the
top layer. The total number of data points is ∼ 105.

Data from a processed well log are used as the true sub-
surface model mt and using this as input for the forward
model a simulated data set is considered the true seismic
CMP gather, with a sample of measurement noise added.
A constant noise level R = σ2

e I is used in the measurement
model, where the noise variance σ2

e is set to have a signal-to-
noise ratio of 13 dB with respect to a reference signal power.
This reference signal power is set as an averaged power in
the time interval 1–3 s and offset range 0–3 km of the true

seismic gather. As the amplitude of the seismic signal de-
cays with time, this means a very non-uniform signal to
noise ratio will be present in the data to be assimilated.

Larger ensemble size had a tendency to make the sys-
tem unstable. The reason is growth of the largest eigenvalues
of the information matrix during iterations. This propagates
into a corresponding largest eigenvalue of the inverse trans-
form matrix, so that observation anomalies were upscaled
unreasonably causing problems for the used SVD routine.
This is a numerical issue and was handled by clipping eigen-
values of the transform matrix below a certain threshold
which propagates into its inverse. This approach is exactly
the same as applied in [14].

5.2 Specification of prior

As the ensemble mean is a linear combination within the
ensemble subspace, the trends and smoothness specified in
the prior structure influence the ability to form combinations
of sufficient variability to fit the true underlying profile of
elastic parameters.

The prior ensemble is here specified by samples from
a multivariate Gaussian distribution of the log-elastic pa-
rameters. This initial distribution for the ensemble is de-
fined through a mean vector and a covariance matrix. The
log-units do not have the most intuitive domain for prior
specification, and instead, linear depth trends for the mean
and standard deviation are set in the physical domain of the
three elastic parameters. Using the relation between arith-
metic moments of normal and log-normal distributions, these
trends are mapped into normal-domain mean µx and stan-
dard deviation σx . A cross-correlation structure between the
three parameters and a spatial correlation must also be spec-
ified. Using a separable structure, the final covariance matrix
is

covx = Σx = diag (σx)




1 ηps 0
ηps 1 0
0 0 1

 ⊗ Γ
 diag (σx) ,

where the spatial (depth) correlation structure Γ is taken
as a Matérn function of order 3/2 with a range parameter
such that correlation is 5 % at 500 m distance. The cross-
correlation between velocities is ηps = 0.5, and ⊗ is the Kro-
necker product.

Initially, the ensemble consists of n independent sam-
ples from this Gaussian model. For the benchmark case pre-
sented here, an ensemble size of n = 300 is used. In the dis-
cussion part, ensemble sizes of n = 150 and n = 600 are also
studied for comparison.

The support of the prior ensemble when mapped to the
log-normal domain, is presented in Fig. 3. This displays the
ensemble median and the span of 90% empirical coverage
of the prior ensemble.
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5.3 Results

The gather data were limited to the time interval 0.6 s–4 s.
By running the algorithm this interval was partitioned into
5 blocks, as displayed in Fig. 4. The time lengths of these

Fig. 4: Partition into DAWs of seismic gather data.

windows were 556, 690, 798, 528 and 828 ms, with corre-
sponding number of data points 4247, 13635, 25304, 22125
and 40809 .

The resulting posterior ensemble is displayed in Fig. 3,
along with the truth and the prior ensembles. This shows
that acoustic and shear velocities are estimated well down to
around 4 km depth, whereas density is only estimated well
down to 3.5 km. Generally, the density estimate is less ac-
curate than that of velocities, consistent with the expected
reduced sensitivity of the waveform data misfit to perturba-
tions in density.

The assimilation statistics are presented further in Fig. 5.
Here, the estimation bias

��m̂−mt
�� is shown. The physical

state estimate m̂ =median (exp(Ea )) is seen to correlate well
with the (marginal) standard deviation from the analysis en-
semble. For the shear velocity in Fig. 5b, estimation results
stand out in two areas at shallower depths (at 0.6 km–0.8 km
and 1 km–1.2 km depth). In these areas, the bias deviates

largely and this can also be seen in the standard deviation
where there is a local increase. Both cases are associated
with very low values of true shear velocity. The estimation
is there seen to be more difficult, possibly associated with
challenging parts in the forward model. The consistent cor-
relation between the (unknown) estimation bias and the en-
semble spread shows that an indicative quantification of the
estimation uncertainty can indeed be extracted from the en-
semble solution.

Figure 6 shows how the sequential estimation method
proceeds, by displaying the ensemble (marginal) standard
deviation for the three parameter types over the course of
assimilation cycles. The sensitivity to the three parameter
types is also somehow visible from these plots. Each anal-
ysis update reduces P-wave uncertainty to slightly larger
depths than S-wave velocity and density. Hence, given a
window of data, the estimation of acoustic velocity occurs
slightly further in depth than for the other two parameters.
This is to be expected due to the higher acoustic wave speed.
Not visible from these plots is the order of estimation dur-
ing iteration, where the acoustic velocity parameter also gets
estimated first followed by shear wave velocity and density.

Figure 7 shows the iteration history of the objective func-
tion, the mutual information measure used as stopping cri-
teria, and norms of control vector and its update, for each of
the five DAWs. The objective function consistently reaches
a stationary level faster than the other measures. The objec-
tive is dominated by the data misfit, and it flattens out when
continued iteration does not update the ensemble mean xj in
the observed region. Still, the changes below the observed
region could be substantial, where the analysis mean ide-
ally should not be far from the prior mean. Hence, much of
the later effort of iterating does not contribute to reduce the
data misfit, but rather to focusing the analysis update to the
relevant parameters in the observed region. This is reflected
in the continued change in magnitude of control variable w
and its update, which continues long after a stationary level
of data misfit is observed. The MI measure also reaches a

(a) Acoustic velocity (b) Shear velocity (c) Density

Fig. 3: Ensemble and truth; blue is prior, red is posterior, black is truth.
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(a) Acoustic velocity (b) Shear velocity (c) Density

Fig. 5: Estimation statistics.

stationary level later than the objective function, but the (it-
eration) onset of this flattening out correlates much better
with ‖wj ‖ converging, than with data misfit. Which support
the choice of using this measure as stopping criterion. Not
shown here is the evolution of the degrees of freedom for
signal measure ds, mentioned in Section 4.1. Similarly to
mutual information, it is based on the eigenvalues λ2

i and its
iterative evolution is very similar to that of mutual informa-
tion. The ds indicates the proportion of λ2

i ≥ 1 and the evo-
lution of the information matrix spectrum during iterations.
Similarly to mutual information, a stationary level means
further iterations will no significant update to them.

Another apparent feature is the large dependency of rel-
ative difference between initial and final level of objective
value, on the overall signal-to-noise ratio within the DAW.
Seismograms will always have decaying amplitude with trav-
eltime and the measurement error might not decay in a simi-
lar manner, so this issue will generally be present. In Fig. 7a
the first DAW has much larger difference than the others as
measurement noise is so relatively low. In constrast, the data
of fifth assimilation cycle is so contaminated with noise that
the data misfit has very little reduction, but nevertheless con-
tributes to better estimation of parameters in the 3.5–4 km
depth range.

6 Discussion

The challenges of non-unique solutions to the inverse prob-
lem are discussed first, continuing the numerical example
using the weight criterion rather than the norm criterion.
Then a replicate study is presented for both weight and norm
criteria, comparing stability, block sizes and the number of
forward evaluations

6.1 Challenge of non-uniqueness

The example presented previously used the norm compo-
nent approach to finding the DAW lengths. Using the same
sample of prior ensemble and measurement noise, the inver-
sion was performed using the weight curve strategy instead,
with a ratio parameter β = 1. This approach generally choses
larger windows thus making it more exposed to entering an-
other mode of the posterior distribution.

Figure 8 shows the results after the third assimilation cy-
cle, which indicates divergence and exemplifies a case of
misestimation. The observable region starts at around 2.5 km
depth, and the top of this region is well estimated. Down the
observed region around 3 km, the divergence starts. The data

(a) Acoustic velocity (b) Shear velocity (c) Density

Fig. 6: Ensemble standard deviation over analysis cycles. Order is from lightest (initial ensemble) to darkest (final analysis).
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(a) J(w j ) (b) MI j

(c) ‖w j ‖ (d) ‖∆w j ‖

Fig. 7: Iterative history of (a) objective function, (b) mutual
information and Euclidean norm of (c) w and (d) ∆w, over
the 5 DAWs.

time window covers 2.326–3.184 s with 34052 data points.
This DAW is larger than both the third and fourth DAW in
Section 5.3.

Below the depth where a wrong local mode is found, the
mean is highly spurious. The mechanism driving the mises-
timation in this case is the ensemble linearization of the den-
sity gradient/tangent linear model. The cross-covariances be-
tween waveform data and densities are much more suscep-
tible to being poorly estimated, i.e. “spurious correlations”,
than for the velocities. The density effect on the reflected
waveform amplitudes is more obscure, and acts in combi-
nation with the velocities. Ambiguity in the estimation of
density sensitivity can lead to an update direction ∆w that
points towards a local and erroneous mode. And the chance
of this occuring increases with the DAW length. Once a local
mode is discovered through the control vector w, the mean
x below that local misestimation will diverge. A false mode
has ρ̂ > ρt and velocities v̂p,s < vt

p,s or vice versa in some
localised depth region. In which “direction” the false mode
is estimated is seemingly a question of the position of the
prior mean xf of the assimilation cycle.

To illustrate this, a closer look at the course of iterations
is displayed in Fig. 9. Focusing on the depth range 2.5 km–
3.5 km, Fig. 9a shows the estimation bias for each of the
elastic properties over the course of the first 5 iterations.
The top 2-3 layers are seen to be well estimated within the
first few iterations, whereas divergence clearly takes place
in layer 4 or 5 and downwards. The density bias indicates
that the onset of misestimation is from the very first itera-
tion, starting at depth around 3.2 km and that it indeed is
density that drives the estimation divergence. The objective

function, Fig. 9b, shows that the data misfit is reduced while
the mean is updated towards an erroneous local solution. So
the minimization problem is converging in the sense of re-
ducing the data misfit, just at the wrong solution.

The norm criterion seeks to limit the DAW so that ‖∆wx, j ‖

and ‖∆wx, j ‖, j = 2 are of comparable size in the hope that
this is a good start for stable iterations. In comparison, the
weight criterion has no notion of this. Figure 10 shows the
norm components for this divergent 3rd DAW, along with
the corresponding components from the 4th assimilation cy-
cle in Section 5.3. It is not a fair comparison, as the previous
section’s 4th cycle is shorter with fewer data points, but it
highlights an observation that is fairly consistent across en-
countered examples of divergence and exemplifies a charac-
teristic of convergent versus divergent solutions. The main
difference is the continued dominance of ‖∆wy, j ‖ when the
estimation is diverging. While the norm criterion starts out
with a slightly lower ‖∆wx,2‖ than ‖∆wy,2‖, the following
iterations has a largest prior component magnitude until they
equalize, which is the point where ‖w‖ reaches a station-
ary level (Fig. 7c). Contrary for the divergent weight crite-
rion, the likelihood component keeps dominating until they
equalize. From our experience, the pattern is that the rela-
tion between these vector norms in the first iterations, say 2
to 4 or 5, determines whether the estimation is converging
or not.

We speculate whether monitoring the course of the up-
date vector’s components’ magnitude could effectively be
used as a running diagnostic. A diagnostic that indicates di-
vergence with the potential to stop iterating and restart the
assimilation cycle with a shorter data window. The monitor-
ing does not come for free though, as the left singular vector
ui must be available for calculating ∆wy while not strictly
necessary for various component of IEnKS as such. Yet, this
could be outweighed by the possible robustness added to an
inversion routine

As a final remark on the issue of non-uniqueness and
misestimation of a gradient towards a false local mode. As
the general observed picture is as seen in this case, where
the top of the observed region is well estimated but the mean
updates towards a local mode further down, we thought that
dampening the update could help by the mean moving less
(at deeper depths), giving an opportunity to re-evaluate the
sensitivities when the top of the observed region had been
accounted for. To dampen the update step, the principle of
Multiple Data Assimilation (MDA) was applied. A sequence
of MDA iterations with its inflation of the observation error
covariance matrix, was used for a fixed number of initial it-
erations. The sequence choice of inflation factors was based
on a geometric serie. The MDA error inflation changes both
the update direction and dampen its magnitude, and it was
thought that it could downplay the contributions from obser-
vations to the control vector that locked the mean state in a
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(a) |m̂ j −mt | (b) J(w j )

Fig. 9: Over iterations: (a) the estimation bias |m̂j −mt | for
the first 5 iteration for each elastic attribute and j = 0 is prior
estimate, and (b) the objective function.

Fig. 10: Norm over iterations of vector components ∆wx, j

and ∆wy, j . In legend, ’w’ (weight) refers to 3rd DAW in
Fig. 8, while ’n’ (norm) refers to 4th DAW of Fig. 3.

wrong mode. But the results showed no effective improve-
ment as it did not guarantee against misestimation. This might
be due that MDA inflates the error for all data points equally,
whereas it probably would be benefial to have inflated them
differently, in order to downplay data at later time points
within the window. This could be archived though covari-
ance (R-) localization, by upscaling the observation error
at later time instances and reducing this inflation gradually
over the initial iterations. How the upscaling should be dis-

tributed across time and offsets is the question and a com-
plicated one, and this approach has not been pursued any
further here.

6.2 Replicate study

The example presented so far was for a particular sample
of prior ensemble and measurement noise. If these were re-
sampled and the inversions done again, another outcome is
obtained. In order to examine the general robustness of the
strategies, the parameter β and dependency on the ensem-
ble size, repeated estimation trials are performed. Indepen-
dent replicate trials that randomize the initial prior ensemble
and the additive noise in the synthetic measurement data,
are used to evaluate estimation performance. The statisti-
cal model and forward model configuration are kept fixed,
so the results are in light of those. For each of the ensem-
ble sizes used, a batch of 20 samples are used across the
β parameter variation and the strategies. For each strategy,
the configurations are combinations of three ensemble sizes
n = (150,300,600) and β = (3/2,1,3/4). The larger β = 3/2
is a slightly more conservative choice with shorter time span
of windows and smaller β increases the window lengths.

Each replicated estimation is accepted or rejected. If the
solver was not able to compute with the given model input,
the replicate is naturally rejected. Otherwise, to classify a
posterior as an acceptable estimation, the state subset z =
logvp |depth ≤ 3.5km ∈ R35 is used as a proxy. This is so
because the estimation of acoustic velocity will generally be
better than for the other two elastic properties, especially for
smaller ensemble sizes. As estimation measure we use the
Mahalanobis distance of the true zt subset to the distribution
represented by the posterior ensemble:

MDt =
(
(zt − ẑ)TC−1(zt − ẑ)

)1/2
, (15)

where ẑ is the ensemble mean. The covariance matrix C
is the ensemble sample covariance, but with an important

(a) Acoustic velocity (b) Shear velocity (c) Density

Fig. 8: Prior and analysis ensemble of the 3rd DAW; blue is prior, red is posterior, black is truth.
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modification as it will use a truncated eigenbasis that retains
only 75% of the total variance. The reason for doing this
truncation is to make the distance measure more robust. The
eigen-components with the smallest 25% of total variance
are associated with the shallower layers and smaller estima-
tion error at these layers between different ensembles, makes
the measure more volatile and less useful for this purpose.
To set a (per replicate) threshold for the accept/reject clas-
sification, each ensemble member is distance-measured as
MDi against the same (̂z,C), which gives a level of within-
ensemble distance. If MDt ≤ MDi + 4× std(MDi), it is ac-
cepted as a satisfactory solution. Thus each replicate has its
own threshold value. No false positive, i.e. an accepted di-
vergent solution, was confirmed by visual inspection. On the
contrary, especially for the smallest ensemble size consid-
ered, some cases could have been judged acceptable but did
not pass the classification rule.

According to this rule, the number of accepted runs’
amongst the 20 replicates is listed in Table 1 and the av-
erage number of resulting windows K is listed in Table 2. In
the header of these tables, the strategy ’w’ and ’n’ refers to
the weight and norm criteria respectively.

n 150 300 600

β\Criteria w n w n w n

3/2 11 17 9 20 15 20
1 8 19 8 17 12 17

3/4 4 12 9 13 5 15

Table 1: Number of accepted inversion runs out of 20 repli-
cates.

The general pattern is that the norm strategy is much
more robust than the weight strategy, and that estimation
performance decays with increasing DAW lengths. A devia-
tion of from are the cases β = 3/2 versus β = 1 for n = 150,
but the cause is more related to ensemble size than to DAW
length.

From these results, the emphasis on balancing the update
vector contributions from prior and likelihood, is definitely
more influential on stable updates than is the weight curve
argument. The latter, with its focus on the likelihood vec-
tor itself, is not addressing the mechanism that controls the
potential spurious update. As the norm approach utilizes in-
formation from the actual errors and hence is more adaptive,
this increased robustness was pictured.

The expected correlation between shorter windows and
estimation stability is present for all ensemble sizes. The
norm approach is generally more conservative than its alter-
native, resulting in a higher number of windows, as Table 2
shows. Where perturbing the β-parameter for the weight ap-
proach seemingly does not do much for the number of win-

n 150 300 600

β\Criteria w n w n w n

3/2 7 18 5 8 3 5
1 6 9 4 6 3 4

3/4 6 7 4 5 3 3

Table 2: Average number K , rounded to nearest integer, of
DAWs.

dows, the difference lies in their distribution, where for β =
3/4 the last window just becomes shorter (up to the gather
end time). The norm criterion on the other hand, is more sen-
sitive to the ratio β setting along with a stronger dependency
on ensemble size.

The number of accepted estimation (for n-criterion) are
comparable for β ≥ 1 and n = 300 and 600, and one could
get the impression that there is no benefit of using the largest
ensemble size. Especially when considering the total num-
ber of forward model evaluations, as listed in Table 3. But
the estimation results (not shown here) show that n = 600
performs much better than n = 300, at estimating density
generally and all elastic properties at the bottom 1 km depth.
So size does matter for sufficiently resolving the gradients
when data has a high level of noise.

The numbers in Table 3 are quite high and this implies
and demands parallel ensemble evaluation. The number of
evaluation decreases with longer windows, so it is not the
case that shorter data windows results in an earlier termi-
nation of iterating, sufficient to counterbalance the larger
number of windows. In terms of efficiency, the β = 1 case
is preferable, while not as consistent in accepted estimations
as β = 3/2 (for n ≥ 300). If combined with a monitoring and
handling of divergence as described in previous section, the
intuitive parameter value of 1 seems as a good choice.

7 Summary and conclusions

In this paper an ensemble-based sequential method for seis-
mic inversion is presented. The iterative ensemble Kalman
smoother is the core method that uses the ensemble to eval-
uate sensitivites, thus no tangent linear model is needed and
suitable for black-box forward models.

The approach for assimilating the high-dimensional seis-
mic data builds on a strategy of partitioning the data in win-
dows of traveltime, and the inversion is stable if these win-
dows are selected wisely.

A method for automatically selecting an appropriate data
window when entering an assimilation cycle is introduced.
The method is based on an analysis of the iterative update to
the control variable of the variational problem, and on an in-
terpretation of how this update is influenced by the prior and
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n 150 300 600

β\Criteria w n w n w n

3/2 9122 (327) 15908 (1146) 16766 (1054) 19230 (967) 29120 (903) 32640 (2548)
1 8643 (375) 10318 (762) 15450 (578) 17311 (1111) 25900 (668) 29188 (819)

3/4 8812 (495) 9200 (390) 14866 (400) 16223 (1063) 24000 (1200) 25840 (1350)

Table 3: Total number of forward model evaluation. The table entries is the average over accepted replicates, while in
parenthesis is the standard deviation. Numbers are rounded to nearest integer.

likelihood. Two alternative angles of interpretation are pre-
sented and their performance evaluated through a repeated
trials simulation study. Only one of the alternatives showed
robust with respect to estimation performance, the approach
based on norms of prior and likelihood vector. This aspect
was highlighted and discussed in a comparison of a converg-
ing and a divergent estimation.

Even though the motivation for this work is reliable non-
linear elastic inversion, the need to partition the data set and
assimilate these sequentially is expected to be present in
other types of parameter estimation problems. In the geo-
science domain there is for instance potential for similar in-
version methods for electromagnetic data, gravimetric data,
fiber optical data and ground penetrating radar data, which
all involves large-size data, complex physical forward mod-
els and static state parameters. As a consequence, the obser-
vations from this study might be applicable to and of use in
other domains.
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Abstract
Demonstrations of code for doing seismic inversion with the iterative ensem-

ble Kalman smoother is provided. This kind of inversion is relying on sequential
data assimilation over blocks of seismic data. The setup is applied to three types
of seismic inversion of increasing complexity: linear seismic traveltime inversion,
seismic amplitude versus offset inversion, and seismic common midpoint gather
inversion. In each example of inversion, the subsurface model parameters of inter-
est are represented by a layered earth model. Documentation of the main steps of
the iterative ensemble Kalman smoother is presented. The code is implemented
in Matlab. The presentation is tutorial in its kind, with pedagogical demos for
each case and comparison with other methods for doing seismic inversion.

1 Introduction
The iterative ensemble Kalman smoother (IEnKS) (see e.g. Bocquet and Sakov, 2014;
Asch et al., 2016) is a method for sequential data assimilation, that easily can be applied
to estimation problems with static model parameters. Iterative ensemble smoothers have
been successfully used in various application domains such as history matching (Chen
et al., 2014), fluid contacts estimation (Wang et al., 2010), and wind resources evaluation
(Defforge et al., 2019). Ensemble Kalman smoothers has recently caught some interest
in seismic data inversion (Gineste and Eidsvik, 2015; Liu and Grana, 2018; Thurin
et al., 2019; Gineste et al., 2020), where the challenges include massive data dimensions
and non-linear forward models linking the elastic subsurface model parameters with the
seismic data. In mathematical terms, the inverse problem is addressed in a Bayesian
framework. The focus is on assimilating the seismic data reliably, starting with prior
knowledge, in order to assess the posterior distribution of the subsurface parameters of
interest.

The core of the IEnKS algorithm is only few lines of code, but it often requires
some adjustment for each practical case. In this document case studies for seismic
inversion using the IEnKS are highlighted, with code examples implemented in Matlab.
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The purpose of this work is to demonstrate the applicability of the IEnKS method for
Bayesian ensemble-based inversion. It can be tested on various kinds of seismic data
without too much change in the implementation setup, and also to other data inversion
problems by some modifications. Even though the method is exemplified with Matlab,
the elementary coding lines and the pedagogical presentation can hopefully make it
relatively easy to transform the scripts to another programming language.

Seismic data are characterized by waveforms that are generated by a source and
with measured responses at receivers. The source can be man-made in a controlled
setting, say by an air-gun. It can also be less controlled, say by (vibrational) energy
generated from cars or a train. The seismic signal could also be induced naturally for
instance by a landslide or earthquake. There is hence a rich class of problems which
can benefit from the availability of seismic data, and the specific type of seismic data
that is acquired depends very much on the situation. Our cases are largely linked
with traditional petroleum applications, where the seismic data acquisition is conducted
according to an accurately planned source and receiver setup.

In addition to having much variety in the acquisition procedures of seismic data,
there are also myriads of processing methods (Sheriff and Geldart, 1995). This means
that there are various levels or versions of seismic data even with the same original raw
seismic dataset. Higher degree of processing usually indicates more approximations, in
the sense that some physical relations are simplified or some parameters are kept fixed
to ease the interpretation and analysis of data. With a simpler physical model, the
inverse problem tends to be less difficult because the forward model is more tractable or
faster to compute, but the solutions could be biased because of processing artefacts in
the simplified geophysical modeling assumptions.

Here, the implementation and testing of IEnKS for seismic inversion is summarized
for three common levels of seismic data processing:

1. The simplest case represents seismic traveltime (TT) data. In the process-
ing this often entails some manual picking of seismic waveform data, where the
traveltimes are extracted from the larger amplitudes. In this way, the processed
traveltimes capture the largest signals in the seismic data, and the following anal-
ysis does not care about the additional amplitude information or the information
content in the subsequent waveforms.

2. The next case is that of seismic amplitude versus offset (AVO) data which
entails processing amplitude data to a common traveltime in gathers of similar
angles. Processed data consists of series of amplitude data over traveltimes, for
each lateral seismic data gathering location. One often process and analyze three
gather stacks (near, mid and far angles), giving tri-variate time series.

3. The third case has less processing as it only aligns the source and receiver data
to a reflection (Refl) common mid point (CMP) dataset. Processed amplitude
data then has traveltime on the first axis and receiver-source offset on the second
axis. This method has much less alignment or averaging associated with it than
the seismic AVO analysis.

2
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This document is structured as follows: Section 2 provides the background on Bayesian
inversion and presents IEnKS as a sequential data assimilation method, with implemen-
tation details for the considered demo cases of seismic inversion. Section 3 outlines
the case on seismic traveltime data. Section 4 outlines the case on seismic AVO data.
Section 5 outlines the case on seismic reflection data.

2 Seismic inversion by sequential assimilation
The variable of interest is denoted by state vector x ∈ Rn. In all examples, n is directly
proportional to the number of depth layers (multiplied by 3 for the elastic case where
interest lies in (acoustic) P-wave velocity, (shear) S-wave velocity and density in each
layer). The prior probability density function (pdf) for these variables is defined by p(x)
and represented by a Gaussian distribution denoted by p(x) = Normal(µ, Σ), where µ
represents the prior mean and Σ is the prior covariance matrix.

The likelihood of data y ∈ Rp is defined by a forward model and zero-mean inde-
pendent additive noise terms with a Gaussian error structure. This model is denoted by
p(y|x) = Normal(h(x), R), where the forward model h specifies the mean of the seismic
response and R is the noise covariance matrix. An assumption of diagonal or block
diagonal R is made in the following.

The posterior model for the variables is computed by Bayes’ rule:

p(x|y) ∝ p(y|x) p(x) . (1)

If the forward model h(x) is linear, this posterior is Gaussian with known mean and
covariance matrix. If the forward model in non-linear, there is no closed form solution
to the posterior.

Data can be split in nk disjoint subsets or data assimilation windows (DAWs), and
this gives yk, k = 1, . . . , nk, such that y = (y1, . . . , ynk

). The data in block k has size
pk, so that yk = (yk,1, . . . , yk,pk

). The likelihood for block subsets of data is denoted by
p(yk|x) = Normal(hk(x), Rk), where the forward model hk specifies the mean seismic
response for the k-th DAW, and Rk is the noise covariance matrix in this DAW.

The posterior model for the variables is computed by sequentially assimilating data
in the DAWs k = 1, . . . , nk. From Bayes’ rule:

p(x|y1, . . . , yk) ∝ p(yk|x) p(x|y1, . . . , yk−1) , (2)

for k = 2, . . . , nk. In this expression, the assumption of block diagonal covariance ma-
trix for the forward model noise terms is used, so the data in the disjoint blocks are
conditionally independent. At step k = nk, the posterior distribution is achieved, with
conditioning on all seismic data.

2.1 Iterative ensemble Kalman smoother
The IEnKS is a hybrid method that combines a variational approach and an ensemble
approach. The variational aspect is that the state estimate, the mean, is found as the

3
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state minimizing a functional whose solution is the maximum a posteriori (MAP) state.
The ensemble is used to evaluate sensitivities of this functional, and the solution can
be found iteratively using some gradient-based optimization scheme. Here, the Gauss-
Newton update is used. At the optimal solution, the Hessian provides information on
how to transform the forecast ensemble deviations around its mean, to analysis devia-
tions. Combined with the newly found analysis mean, this form the analysis ensemble.

The IEnKS is in the current context used for the joint subsurface model and with
blocks of seismic data. For non-linear problems, it tends to be more stable to include sub-
sets of the data in a sequential routine, because it improves the ensemble approximation
of the tangent linear model (Gineste et al., 2020).

The ensemble-based approximations of the pdfs are adjusted in the sequential as-
similation scheme, using data in subsequent DAWs. This setting is illustrated in Figure
1. At step k, the ensemble is conditioned on observed data yo

k . This means that the
forecast ensemble is changed to an analysis ensemble. This is then used as forecast for
step k + 1, and the recursion continues for all DAWs k = 1, . . . , nk.

Figure 1: Illustration of blocking scheme, and forecast and analysis update.

Formally, the members (columns) of a forecast ensemble Ef are denoted xf
i , i =

1, . . . , ne, where ne is the ensemble size. Initially, they are sampled from the prior model

4
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p(x). The state estimate is the ensemble mean:

xf = 1
ne

ne∑
i=1

xf
i . (3)

An associated n × ne anomaly matrix Xf has ith column

[Xf ]i = (ne − 1)−1/2
(
xf

i − xf
)

. (4)

This normalized anomaly matrix is the square root of the forecast error covariance
estimate, which becomes

Pf = Xf XT
f . (5)

The ensemble mean and anomaly matrix re-assembles the forecast ensemble as

Ef = xf 1T + (ne − 1)1/2 Xf . (6)

Predictions of data are generated from the forecast parameter ensemble. Denote
the size pk synthetic data by yf

i = hk(xf
i ), i = 1, . . . , ne, with mean yf = 1

ne

∑ne
i=1 yf

i .
A square root of the forecast covariance in observation space is defined as the pk × ne

observation anomaly matrix Yf :

[Yf ]i = (ne − 1)−1/2
(
yf

i − yf
)

.

The ensemble updating, the analysis step, transforms the forecast anomalies and cen-
ters these around a new mean that is found by an optimization procedure. A transform
that fulfills the Kalman covariance update equation can be derived as follows. This co-
variance update equation with the sample (ensemble) covariance matrices inserted can,
using the matrix inversion lemma (Petersen and Pedersen, 2012), be formulated as

Xa XT
a = Xf

(
I + YT

f R−1Yf
)−1

Xf = Xf T (Xf T)T , (7)

so by selecting the ensemble transform matrix (ETM) as T =
(
I + YT

f R−1Yf
)−1/2

the
analysis square-root covariance can be updated as Xa = Xf T. As the square root
matrix, the symmetric square root is used (Sakov and Oke, 2008). Using the eigen-
decomposition

(
I + YT

f R−1Yf
)

= VΛVT, the unique (inverse) symmetric square root
is T = VΛ−1/2VT.

The analysis state is found as a linear combination within the subspace spanned
by the forecast anomalies, xa ∈

{
xf + Xf w | w ∈ Rne

}
, where the weight vector w is

optimized in a variational problem. The cost function to find the optimal weights is
defined by

J(w) = 1
2

[
yo

k − hk

(
xf + Xf w

)]T
R−1

k

[
yo

k − hk

(
xf + Xf w

)]
+ 1

2wTw, (8)

which is minimized using an iterative method where the gradient ∇J and approximative
Hessian H are computed from the ensemble. With the optimal wa and Ta = H−1/2

∣∣∣
wa ,

the analysis ensemble is then

Ea = xa 1T + (ne − 1)1/2Xa = xf 1T + Xf
(
wa 1T + (ne − 1)1/2Ta

)
. (9)
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The structure of an IEnKS analysis cycle is summarized in Algorithm 1.

Algorithm 1 Iterative Ensemble Kalman Smoother
Require: Prior ensemble Ef = Ef

k

j = 0, wj = 0, Tj = In

xf = Ef 1/n

Xf =
(
Ef − xf 1T

)
/
√

n − 1
repeat

xj = xf + Xf wj

Ej = xj 1T +
√

n − 1Xf Tj

y = hk(Ej)1/n

Y =
[
hk(Ej) − y1T

]
T−1

j /
√

n − 1
∇J = wj − YTR−1

k (yo
k − y)

H = I + YTR−1
k Y

wj+1 = wj − H−1∇J
Tj+1 = H−1/2

j = j + 1
until termination criteria met
Ea

k = xf 1T + Xf
(
wj−11T +

√
n − 1Tj

)

This algorithm is the core for all examples, but the setup and splitting of data
differs somewhat for each type of seismic inversion, and this is explained in the relevant
sections for seismic traveltime, AVO and reflection inversion that follow. This algorithm
is tailored to the current purpose of ensemble-based seismic inversion. A general version
of the method with detailed discussion is provided by Asch et al. (2016).

2.2 Description of code
Accompanying this report is a Matlab code base to provide practical examples of
seismic inversion using the IEnKS method. The code folder has the structure as described
in Table 1, where the generic IEnKS functionality resides in the ienks folder and the
different seismic examples in the seis-model folder.

Folder Description
ienks/ main IEnKS function, helper and plot functions.
seis-model/ has the three subfolders:
TT/ files for traveltime inversion.
AVO/ files for AVO inversion.
Refl/ files for CMP inversion using the reflectivity method.

Table 1: Folder structure

Filenames within each subfolder have folder name prefix, so that files in ienks/
folder are prefixed with ienks_ and similarly for the seismic models. The IEnKS files
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are listed in Table 2. The main function used by the examples is ienks_cycle which
performs an assimilation cycle. This function, which implement the Algorithm 1, is
listed in Appendix A.

Filename Description
ienks_cycle main function, performs an assimilation cycle
ienks_make_matrices helper function, forms the transform matrices and inverse

Hessian.
ienks_zeropad helper function.
ienks_plot_ensemble plot ensemble during iterations.
ienks_plot_iter plot cost function and norms during iterations.
ienks_plot_spectra plot eigenspectra during iterations.

Table 2: Content of IEnKS folder.

The seismic models share a common structure and file naming, as listed in Table 3.
The examples are provided by their respective demo script and the remaining functions
are the forward models and functionality to extract the data block subsets. Additional
setup for each module is provided in the respective sections that follow.

Filename Description
demo main demo script and runs the example.
forward evaluates the (ensemble) forward model.
make_data_block makes linear indices used to extract the data for an as-

similation window.
make_prior samples a prior ensemble.

Table 3: Common file naming across seismic models.

Download

The package can be downloaded from https://folk.ntnu.no/michaegi/seismic-ienks/
seismic-ienks.zip.

3 Traveltime tomography

3.1 Case description
The problem described here is motivated by tomographic imaging of the subsurface using
seismic traveltime data. The situation that is tested resembles that of vertical seismic
profiling, where the source(s) is on the surface while the receiver(s) is in a borehole.

A layered earth model with n subsurface layers of 1m thickness is considered. The
measurements consist of traveltimes from the source locations to the receiver locations.
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There are nr receivers located at the n − nr + 1, . . . , n bottom layers in the subsurface
model. The case is illustrated in Figure 2 with n = 100 layers and receivers from layer
51 to 100. In the left display there is ns = 1 source at 10m. In the right display there
are ns = 5 sources at 10, 20, 30, 40 and 50 m. In this application an assumption of

(a) One source (b) Five sources

Figure 2: The layered earth model (red) is observed through seismic traveltime data.
The geometric acquisition design has a source (blue circle) at the surface and receivers in
a borehole (blue crosses). The measurements are traveltimes [msec] from the source to
receivers assuming straight ray-paths (black). (a) One source location. (b) Five source
locations.

straight line ray-paths is used. These are sketched in black in Figure 2. This involves
an approximation because the paths would bend according to Snell’s law giving more
complex ray-paths (Slawinski et al., 2000). For modest gradients in the subsurface
velocity properties, this assumption is still reasonable for many applications.

The goal of seismic traveltime inversion for this problem, is to learn the subsurface
properties from the traveltime data. For this setting, the seismic wave slowness (the
inverse of velocity) is often used as the variable of interest. The slowness in layer j =
1, . . . , n is denoted by xj, and the length vector of slownesses is x = (x1, . . . , xn), sorted
from shallow to deep. The traveltime from source s to receiver r is then described by
the following forward model

traveltimers = hrs(x) =
∑dr

j=1 xj

cos(θrs)
, (10)

where dr is the known depth layer of receiver r and θrs is the angle between this receiver
and source location s. The total data size is p = nrns. Notably, the forward model
in (10) is linear in the slownesses, and hence the characterization of these subsurface
parameters from the processed traveltime data represents a relatively simple inversion
problem.

The prior model for slownesses is Gaussian with mean µj = E(xj) = 0.5−0.001j, j =
1, . . . , n, standard deviation σ = 0.05 and correlation Corr(xj, xj′) = (1+ηhj,j′) exp(−ηhj,j′),
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η = 0.1, for distance hj,j′ = |j − j′|. These expressions define the joint prior model as
p(x) = Normal(µ, Σ).

Extending the forward model in (10) to a statistical model, the traveltime data yrs,
r = 1, . . . , nr, s = 1, . . . , ns, are described by the following model:

yrs = hrs(x) + εrs. (11)

Here, εrs ∼ N(0, τ 2) are assumed independent and τ = 0.5.

3.2 Simulation examples
For the ensemble-based approach, ne = 300 independent realizations from the prior
model for slowness is generated. They are denoted xf

i , i = 1, . . . , ne. For this purpose
a Cholesky factorization Σ = LLT is used in the generation of correlated variables, and
then adding the mean µ: xf

i = µ+Lzi, where zi ∼ N(0, I). Figure 3b shows the sampled
prior ensemble members. The true synthetic slowness profile is illustrated as well (black).

(a) Ensemble coverage (b) Ensemble members

Figure 3: Prior ensemble with truth in black; (a) shows the ensemble mean as blue line
and its 90 % coverage displayed as shaded area, while (b) shows the ensemble members.

Figure 3a shows the marginal 90 percentiles made up of the prior ensemble. Hence, this
display illustrates plotting of all ensembles or via the empirical 5 and 95 percentiles of
slowness in each layer, obtained by sorting the ensemble values.

Figure 4 shows traveltime data computed from the true synthetic model. This is for
the seismic wave going from source to each of the 50 receivers in the borehole. Here, noise
is added to the forward model, according to the likelihood specification. The traveltimes
of course increase as the lateral distance to source increases and with the depth of the
receivers.

The sequential algorithm goes recursively through all data in the nk blocks, each of
size pk = nrkns (ns sources and nrk receivers in each block k). The blocking of data
for the case with five sources is illustrated in Figure 5. Here, ten blocks are used, and
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(a) One source (b) Five sources

Figure 4: Traveltime data from source to receivers using the source-receiver designs in
Figure 2. (a) One source at the surface. (b) Five sources at the surface.

in each block there are then five receivers with traveltime data from each of the five
sources, giving pk = 25.

Figure 5: Data and blocking strategy for the situation with five sources and ten blocks.

Next, the IEnKS algorithm for the sequential data assimilation is demonstrated for
this problem. In Figure 6, the ensemble representation is visualized at a couple of
intermediate steps of the sequential analysis. The displays demonstrate the top-down
nature of the analysis due the block ordering. When the first few blocks have been
assimilated, the slowness in layers 50-70 is rather accurate, while there is still much
uncertainty for the deeper layers. The ensemble-based solution covers the truth rather
well. When all data have been assimilated, there is much more uncertainty for shallow
depths where the information only contains the average properties.

For this linear forward model, Gaussian prior and measurement noise assumptions,
the posterior solution for slowness is Gaussian. This can hence be computed directly, or
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(a) 1. cycle (b) 4. cycle (c) 8. cycle

Figure 6: IEnKS solution after 1, 4, and 8 data assimilation cycles.

via a recursive formulation as in a Kalman filter. Here, this exact solution is compared
with the ensemble-based approach. For a Kalman filter solution, starting with E(x) =
µ = µ0 and Var(x) = Σ = Σ0, update the conditional mean µk = E(x|y1, . . . , yk) and
covariance Σk = Var(x|y1, . . . , yk) as follows:

• For each receiver and each source, form a length n vector of active slowness vari-
ables and use angle θrs between receiver and source to adjust the distance in the
layer, i.e. grs = (1, . . . , 1, 0, . . . , 0)/ cos(θrs). Stack these rows on top of each other
for the relevant block, to get a pk × n matrix Gk.

• Kalman gain Kk = Σk−1GT
k /(GkΣk−1GT

k + τ 2) (size n × pk vector).

• Update mean µk = µk−1 + Kk(yo
k − Gkµk−1).

• Update covariance matrix Σk = Σk−1 − KkgkΣk−1.

The resulting exact distribution can then be compared at each DAW of the IEnKS
approach. The solution is shown only at the last step. This is done by plotting the
mean and the marginal 90 percent uncertainty intervals in Figure 7. In this display the
ensemble-based solutions (7a) is very similar to the exact one (7b).

Further, a comparison of the marginal cumulative distribution functions of the exact
and approximate solutions is carried out, using the energy score as follows: In a layer
j, denote the exact Gaussian posterior cumulative distribution function by F (x) =
Φ(x; µj|y, σ2

j|y), while the ensemble-based solution is denoted F̂j(x) = 1
ne

∑ne
i=1 I(xi,j < x).

The energy score between the two distributions is then

Ej =
∫

(Fj(x) − F̂j(x))2dx,

and in our setting is summed over all layers j = 1, . . . , n and over 2000 replicate runs of
different ensembles and synthetic data.

The results are summarized in Table 4. The ensemble-based approximation is clearly
more accurate when the ensemble size increases. When it goes to infinity, it is exact
in this case. This holds for both data gathering schemes (ns = 1 and ns = 5). The
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(a) Ensemble Kalman filter solution (b) Exact Kalman filter solution

Figure 7: Traveltime solution by ensemble approach and exact.

ns = 1 ns = 5
ne 20 100 500 20 100 500

nk = 1 0.160 0.022 0.004 0.169 0.017 0.003
nk = 10 0.158 0.022 0.004 0.165 0.017 0.003

Table 4: Energy score results over 2000 replicate data sets and ensembles for comparing
the IEnKS and the exact Gaussian solution for different source numbers (ns), ensemble
sizes (ne) and number of blocks (nk).

uncertainty in the posterior distribution is smaller for ns = 5, so the larger discrepancy
for small ensemble sizes (ne = 20) means that the ensemble representation is slightly
less accurate when there is more data. In this linear example, there is only a very minor
effect of the blocking scheme, visible for the case with small ensemble size.

4 Seismic AVO data inversion

4.1 Case description
The case presented next is common in the setting with seismic AVO inversion. It is
assumed that the raw seismic data has been processed to seismic AVO data for a set of
angle gathers and in the traveltime domain. This is usually available as traces for every
inline and crossline in the seismic acquisition grid design. In this presentation only one
trace is considered. It is common to have three angles as is also considered here: near,
mid and far angles.

The inverse problem is then to predict the elastic properties as a function of traveltime
(depth), conditional on the seismic AVO data. With the three elastic properties in each
layer, the size of the variable of interest x = (x1, . . . , xn) is then n = 3nt, where nt is the
number of traveltimes considered. A Gaussian prior model is assigned to the logarithm of
the elastic properties. This is defined via a separable model assuming constant trivariate

12

84



marginal distribution for the three elastic properties at all traveltimes, and a correlation
function for modeling the dependence at various depths. This means that the prior
model has a constant mean (µ1, µ2, µ3) and constant 3 × 3 covariance matrix Σ0, for
the three elastic properties at all traveltimes. The joint pdf for all n elements is then
constructed via Kronecker products such that.

p(x) = Normal((µ1, µ2, µ3) ⊗ 1nt , Σ0 ⊗ Γ), (12)

where 1nt is a length nt vector of 1 entries and the matrix elements Γj,j′ are defined by
a parametric correlation function over the traveltime distances |j − j′|, see e.g. Buland
and Omre (2003). The specific parametric form of the covariance entries is similar to
what is presented in that paper.

Next, the forward model associated with seismic AVO inversion is described. The
amplitude data at an interface varies as a function of angle of incidence and as a function
of the changes in elastic properties in the depth profile. In addition, it is coupled by a
wavelet inherited from the seismic source signature.

The established model for seismic AVO data at an interface is due to Zoeppritz
equations, with an accurate approximation for weak contrasts and moderate angles as
developed by Aki and Richards (2002). In this formula, the seismic response at an
interface is affected by the contrast in the medium properties. Here, let αj−1 and αj

denote the logarithm of the pressure wave velocity at the top and bottom layer of an
interface. Similarly, βj−1 and βj are the logarithm of the shear wave velocity, and ρj−1
and ρj are the logarithm of the density in these layers. At the interface between layer
j − 1 and j, and for angle stack θ (near, mid or far), Aki-Richards formula says that the
seismic AVO reflectivity (r) is given by the following forward model:

rj,θ(x) = aα,j,θ(αj − αj−1) + aβ,j,θ(βj − βj−1) + aρ,j,θ(ρj − ρj−1), (13)

aα,j,θ = 1
2(1 + tan(θ)2), aβ,j,θ = −4ζ2 sin(θ)2, aρ,j,θ = 1

2(1 − 4ζ2 sin(θ)2), and the non-
linearity enters via the velocity ratio

ζ = V̄s/V̄P , V̄P = 1
2 [exp(αj) + exp(αj−1)] , V̄S = 1

2 [exp(βj) + exp(βj−1)] .

The seismic AVO measurements are modeled as a convolution of these interface
reflectivities by a wavelet operator. The wavelet, denoted here by wj′′,θ, for angle θ
and convolution window times j′′ = −c, −c + 1, . . . , c in a length 2c + 1 window around
location j, can usually be specified from well data combined with seismic data at a
key geological interface. It is often assigned a parametric form, for instance a Ricker
(Mexican hat) wavelet, which is used in our implementation. The forward model for the
seismic AVO data at depth j and angle θ is then defined as

AVOj,θ = hj,θ(x) =
j+c∑

j′=j−c

wj−j′,θrj,θ(x), (14)

where the wavelet weights wj′′,θ are normalized to sum to 0, for each angle θ. The
measurements are

dj,θ = hj,θ(x) + εj,θ, (15)
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where εj,θ are Gaussian distributed noise terms, and (15) then defines the likelihood
model in this setting. Edge problems of the convolution model are handled by wrapping
the trace around on a circle (torus).

4.2 Simulation examples
Simulated seismic AVO data for three angles are shown in Figure 8. Here, the Ricker

(a) Near (b) Mid (c) Far

Figure 8: Seismic AVO data for three angles. In blue the (synthetic) measurement data,
in red the forward model evaluation of posterior estimate.

wavelet is set to have a bandwidth defined by c = 10. The data indicates large amplitude
data at the locations with large contrasts in elastic properties.

The IEnKS is run with 5 iterations at each assimilation step. The convergence
is plotted in Figure 9. The objective function drops very fast and indicates that the
problem is almost linear since there is only minuscule decline in the curves after the first
iteration.

Figure 9: Convergence of cost function J(wj) over the 4 DAWs.

Figure 10 shows an IEnKS solution for each of the log elastic parameters after as-
similation of data blocks 2 and 4, along with the prior (top). The results clearly show
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Figure 10: Ensemble solution at different assimilation cycles. Black line is truth, blue
line is ensemble mean and shaded area is ensemble 90% percentile. Top row is prior
ensemble, middle row after 2 assimilation cycles and bottom row is final posterior.

the top-down idea of the sequential data assimilation procedure, where data from the
top influence only the shallower variables.

Next, a comparison is done with other approaches for seismic AVO inversion. A
linearized approach Buland and Omre (2003) is established by setting the P-S wave
velocity ratio constant. In this approach, the ζ parameter is here fixed at 0.22, and the
AVO inversion becomes a linear problem. A comparison with Markov chain Monte Carlo
(MCMC) sampler is also done. For this seismic AVO example such comparison has been
done previously by Eidsvik and Tjelmeland (2006) and Rabben et al. (2008). Here,
a Metropolis–Hastings version of MCMC sampling is implemented. A hybrid version
between a Random-Walk proposal and an independent proposal from the linearized
approximation is used. A proposed state is accepted or rejected according to the required
acceptance probability for each proposal mechanism.

Figure 11 shows the comparison of IEnKS with the linearized solution and the MCMC
sampler. The solutions are very similar for this problem because it is so close to linear.
The linearized solution tends to have near constant standard-deviations at all depths,
which cause slight overestimation of variability at some larger contrasts, e.g. for shear
velocity variable at depth 80-90, compared with the non-linear methods.
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Another notable difference in Figure 11 is for the density estimates, where the IEnKS
solution shows a slightly smaller uncertainty than the other two solutions. This is
attributed to spurious correlations between density and the seismic traces. In Figure
8 the predicted seismic data for the posterior state estimate is shown in red, which is
seen to correspond very well to the measurement data (in blue). The AVO seismic is
generally rather insensititive to the density parameter, thus the larger bias in density
estimation has no significant influence on the predicted seismic.

Figure 11: Ensemble-based solution compared with a linearized solution and an MCMC
sampler.

5 Seismic reflectivity data inversion

5.1 Case description
The reflectivity method is an approach for solving the elastic wave equation, based on
the simplifying assumption of a layered medium, see e.g. Kennett (2011). Under this
medium assumption and a plane wave approximation, the response from the stacked
layers, i.e. the reflected signal, can be derived analytically in the form of a wavenumber
integral. The elastic wave model is thus transformed to the wavenumber-slowness do-
main, solved therein, and the solution transformed back to time-domain seismograms.
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The method builds up a kind of response function for each wavenumber component, a
computational procedure that scales with number of layers and the range and discretiza-
tion of the slowness domain.

Thus, the computing time of the reflectivity method scales with the number of layers
so this is kept low in the current setup, to avoid very large computer times. Below a
top layer of 500 m thickness with known and fixed parameters, a total depth of 2 km is
parameterized into 20 layers, with uniform thickness of 100 m. Each layer has elastic
properties of acoustic wave velocity vp in km s−1, shear wave velocity vs in km s−1, and
density ρ in g cm−3.

The subsurface model x thus has dimension 3 × 20 and holds the log-transformed
elastic attributes of each layer, x = [log vp, log vs, log ρ]. The log-transform is to ensure
positive physical properties.

The gather collects seismograms at 40 offsets, ranging from 75 m to 3 km with a
uniform spacing of 75 m. The source is positioned 5 m down into the first layer, while
receiver locations are at 0 m depth.

The seismograms are waveform amplitude data, measurements of vertical displace-
ment. These are synthesized without the direct wave and multiples. The waveforms
are sampled at 2 ms and the total length of the seismograms is 8 s. This excess total
length is to alleviate issues with time aliasing and to provide sufficient resolution for the
frequency integration (Mallick and Frazer, 1987). The frequency bandwidth is limited
to 2 Hz–20 Hz.

The prior is specified as a multivariate Gaussian p(x) = Normal(µ, Σ). Units in
the log-domain are not directly intuitive, so linear means and scales in depth are set in
the physical domain and mapped into log-domain mean µ and standard deviation σ.
Each of the elastic parameters has the same depth correlation structure Γ, chosen to be
a Matérn function of order 3/2, as was used in the AVO example. For this order the
correlation function is

Γj,j′ = (1 +
√

3hj,j′/α) exp
(
−

√
3hj,j′/α

)
,

where hj,j′ is distance between layers j and j′, and a multiple of 100 m, and the range
parameter α is set such that correlation is 5 % at 500 m.

Further, cross-correlations between velocities is included while density is kept inde-
pendent of the two velocities. Combined, this gives the state prior covariance

Σ = diag (σ)


 1 0.5 0
0.5 1 0
0 0 1

 ⊗ Γ

 diag (σ) ,

where ⊗ is the Kronecker product.

Code description

Since this example is slightly more complex than the seismic traveltime and AVO, some
further implementation details are required. These are outlined next: The CMP exam-
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ple uses the reflectivity method from the CREWES1 Matlab Toolbox, which can be
downloaded from https://www.crewes.org/ResearchLinks/FreeSoftware/.
Only the reflectivity/ folder of this toolbox is needed, and the path to this folder must
be added the Matlab path. The main function called is reflectivity/reflectivity.m
that calculates the radial and vertical displacement seismograms, and depends on the
remaining functions in reflectivity/.

Some additional helper functions are required for this seismic model, which are listed
in Table 5.

Filename Description
refl_init_model specifies parameters for the forward model solver and off-

sets.
refl_make_model formats a state vector into the matrix format expected

by the forward model solver.
refl_make_mute_nmo makes (time) indices for each offset that specifies end of

mute region. Used by refl_make_data_block.

Table 5: Additional content of seismic model folder Refl.

5.2 Simulation examples
From the prior distribution, an ensemble of size ne = 200 is sampled plus one extra
sample used as truth. This prior ensemble, when exponentially mapped to the log-
normal, physical domain, is shown in the top row of Fig. 13.

The synthetic gather data using the true state sample is added noise with constant
variance R = σ2

e I. The noise level σ2
e = 10−8 is relatively benign. Gather data is

visualized in Fig. 12. This is in the range 0.6 s to 2.4 s, as used for the inversion. This
interval is partitioned into time windows of 0.6 s duration, resulting in 3 assimilation
windows. This blocking is depicted with the seismic data in Fig. 12, which also displays
a blanked out region which constitutes a mute region. This region specifies gather data
that are excluded. This region is defined by a time value for each offset, and data before
this time is part of the mute region. The time value is found by normal moveout in the
top layer. The traveltime for the first reflection from source to the rth offset, tr, is

t2
r = (2(d1 − zsource)/vp,1)2 + (hr/vp,1)2 ,

where d1 and vp,1 are top layer thickness and acoustic velocity, zsource the source depth
(assumed < d1) and hr the rth offset distance. While the first window is specified to
start from 0.6 s, it really starts at ≈ 0.66 s as the muting excludes the beginning.

The resulting posterior ensembles are shown in Fig. 13, while the iterative history
of the cost function and the norms of control variables and updates are displayed in
Fig. 14. Each assimilation cycle takes 15 iterations, no other stopping criterion is used.

1Consortium for Research in Elastic Wave Exploration Seismology, Department of Geoscience, Uni-
versity of Calgary.
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Figure 12: CMP gather with data partitioning.

Fig. 13 shows that the estimation of all three elastic attributes performs very well.
The estimation of shear velocity is slightly delayed compared to acoustic velocity due
its lower velocity, so within a data block shear waves arrival are from shallower depths
compared to acoustic waves. Density estimation has more uncertainty associated with
it as sensitivity to this parameter is lower than for the velocities.

Figure 14a shows that the data misfit converges after the first 4 to 6 iterations, so the
max limit on iterations could likely be smaller for this example. On the other hand, the
control variables continue to be updated after the data misfit has reached a stationary
level, as visible from Fig. 14b and 14c. Hence the ensemble mean gets some minor
updates at these later iterations.
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Figure 13: Sequential estimation results. Black is true parameter, blue line is ensemble
median and shaded area is empirical 90% coverage. Top row is initial prior ensemble
and subsequent rows are posterior over assimilation windows.

(a) Objective J(wj) (b) Norm ||wj || (c) Norm ||∆wj ||

Figure 14: Iterative history of (a) objective function and Euclidean norm of (b) w and
(c) ∆w.
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A Core IEnKS functions

Listing 1: ienks_cycle.m
1 function [mEnsVar_A, varargout] = ienks_cycle(mEnsVar_F, hForward, vObs, mRis, varargin

)
% IENKS_CYCLE − Performs an IEnKS analysis cycle
%
%
% Input:

6 % mEnsVar_F − matrix − [nVar, nEns] prior ensemble
% hForward − handle − to forward model evaluation. Takes as input a [nVar, nEns]

parameter ensemble and returns an [nObs, nEns] ensemble of observations.
% vObs − vector − [nObs, 1] of measurements.
% mRis − matrix − [nObs, nObs] inverse square root of observation error covariance

.
%

11 % Output:
% mEnsVar_A − matrix − [nVar, nEns] analysis ensemble
% The forecast parameter ensemble mEnsVar_F is of size nVar * nEns.
[nVar, nEns] = size(mEnsVar_F);
% Initialise the static (for a single analysis cycle) ensemble mean and anomaly

matrix
18 vX_0 = mean(mEnsVar_F,2);

mX_0 = (mEnsVar_F − repmat(vX_0, 1, nEns)) ./ sqrt(nEns−1);
% Initial transform matrix and its inverse
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mT = eye(nEns);
mTinv = eye(nEns);

25 % Initial weights vector
vW = zeros(nEns, 1);
% Iteration counter
jj = 0;
% Flag can be used for other stopping criteria

31 bStop = 0;
while ((jj < MaxIter) && not(bStop))
% current iteration mean
vX = vX_0 + mX_0 * vW;
% current iteration anomalies

38 mE = repmat(vX, 1, nEns) + sqrt(nEns−1) * mX_0 * mT;
if bPlot(2)
% Plot iteration ensemble
ienks_plot_ensemble(hAxes{2}, jj, mE, vTrue, 0);

end
45 % The function handle hForward maps each ensemble (in columns) to an output of size

nObs * 1, such that the forecast
% observation ensemble is [nObs, nEns]
mEnsObs_F = hForward(mE);
% Predicted observation; mean of observations
vObs_F = mean(mEnsObs_F, 2);

51 % Observation anomaly matrix
mY = ( (mEnsObs_F − repmat(vObs_F, 1, nEns)) * mTinv ) ./ sqrt(nEns−1);
% Normalized observation anomalies and innovations
mRY = mRis * mY;
vRy = mRis * (vObs − vObs_F);

57 % Gradient vector
vJ = vW − mRY' * (mRis * (vObs − vObs_F));
% % Hessian matrix (NOT USED FOR ANYTHING)
% mH = eye(nEns) + mRY' * mRY;
% Objective function

63 Jobj = 0.5 * (vRy' * vRy) + 0.5 * (vW' * vW);
% If ClipLevel is set empty, no ETM clipping is performed.
ClipLevel = [];
[mG, mT, mTinv, vS, mU, ~, mV] = ienks_make_matrices(mRY, ClipLevel);
[dW_X, dW_Y] = ienks_make_update_norms(vW, vRy, vS, mU, mV);

71 % Update weight
dW = −mG * vJ;
if bPlot(1)
ienks_plot_iter(hAxes{1}, jj, Jobj, vW, [dW, dW_X, dW_Y]);

end
77 if bPlot(3)

ienks_plot_spectra(hAxes{3}, jj, vS);
end
% Update iteration counter
jj = jj + 1;

83 fprintf(' − iteration %02i/%02i\n', jj, MaxIter);
% Evaluate other stopping criteria
bStop = 0;
if not((jj + 1) == MaxIter) || not(bStop)
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% Update for next iteration. If the loop is about to exit, this update should not
be performed as the (w,T) pair used

90 % for analysis should correspond.
vW = vW + dW;

end
end % while
% New analysis mean

99 vX = vX_0 + mX_0 * vW;
% New perturbations matrix
mX = sqrt(nEns−1) * mX_0 * mT;
% New analysis ensemble
mEnsVar_A = repmat(vX, 1, nEns) + mX;

105 return;
end % function ienks

Listing 2: ienks_make_matrices.m
function [mG, mT, mTi, vS, varargout] = ienks_make_matrices(mRY, Clip)

2 % IENKS_MAKE_MATRICES − Finds the inverse Hessian, ensemble transform and inverse
transform matrices.

%
% Input:
% mRY − matrix − [nObs, nEns] of normalized observation anomalies
% Clip − scalar − level below which to clip transform matrix egenvalues. Propagates to

inverse transform as well.
7 %
% Output:
% mG − matrix − [nEns, nEns] inverse Hessian
% mT − matrix − [nEns, nEns] transform matrix
% mTi − matrix − [nEns, nEns] inverse transform matrix

12 % vS − vector − [nEns, 1] of information matrix eigenvalues
nObs = size(mRY, 1);
nEns = size(mRY, 2);
[mU,mS,mV] = svd(mRY,0);
% Vector of singular values squared, padded with zeros if nObs<nEns.

19 vS = ienks_zeropad(diag(mS).^2, nEns);
%% Vector of diagonal matrices
% Inverse Hessian
vG = 1./(1 + vS);
% Transform matrix and its inverse. Clipping of eigenvalue only applied to ETM

matrices.
25 vT = 1./sqrt(1 + vS);

vTi = sqrt(1 + vS);
% The clipping functionality is optional and not applied if argument is empty
if not(isempty(Clip))
vIdx = find(vT < Clip);

30 if not(isempty(vIdx))
vT(vIdx) = Clip;
vTi = 1./vT;
fprintf(' − ienks_make_matrices: clipping %i eigenvalues\n', numel(vIdx));

end
35 end % if not

%% Assembling matrices with diagonals and eigenvectors.
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% Inverse ETM
mTi = mV * diag(vTi) * mV';
% ETM

41 mT = mV * diag(vT) * mV';
% Inverse Hessian
mG = mV * diag(vG) * mV';
if (nargout == 7)
varargout{1} = mU;

47 varargout{2} = mS;
varargout{3} = mV;

end
end % function ienks_make_matrices
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