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Abstract

There are many successful proposals for using electron spins in quantum
dots as qubits: From the original single-spin qubit proposed by Loss and
DiVincenzo to multi-electron qubits. However, despite the considerable
progress in the past two decades, a semiconductor quantum dot-based
qubit that is scalable, reliable and robust enough for actual quantum in-
formation applications has not been realized yet. Common problems in
semiconductor quantum dot-based spin qubits are (i) the manipulation
and coupling of spin states in a scalable way and (ii) the extension of the
coherence time of the qubit to allow for enough qubit operations before
the quantum state decoheres.

The first problem has been overcome with the so-called exchange-only
qubit. In this qubit the spin state of few coupled electrons in neighboring
quantum dots can be fully controlled using electric fields only, and these
electric fields can be easily localized on the scale of single dots. The
second problem, however, is still hindering the progress towards large-
scale quantum computation using quantum dot-based spin qubits.

In this regard, we propose a feasible and scalable exchange-only spin
qubit composed of four quantum dots that is, to leading order, intrinsically
insensitive to randomly fluctuating magnetic noise, while still offering a
full electric control [1]. Motivated by our findings, we then analyze in full
detail the main relaxation mechanisms in exchange-only spin qubits com-
posed of three and four dots, and find the regimes where the coherence
time of the qubit can be extended by several orders of magnitude [2]. We
then explore the possibility of implementing our proposal from Ref. [1]
in a device composed of three quantum dots—which would offer an un-
precedented degree of tunability [3]—and in an already existing device
with five quantum dots, proving that the straightforward implementation
of our proposal is feasible.
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We conclude this project with a thorough analysis of a common electric
dipole spin resonance (EDSR) experiment in a system composed of two
quantum dots with intrinsic spin-mixing mechanisms. EDSR is a broadly
used tool for spectroscopy of quantum dots, yet a detailed theoretical
analysis of the physics of an electrically driven system of quantum dots
at resonance is still lacking. We thus investigate this system with the
aim to find an explanation to many of the features observed in an EDSR
experiment that are, up to date, unexplained.
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Preface

This thesis is submitted in partial fulfillment to the requirements for the
degree of Philosophiae Doctor at the Norwegian University of Science and
Technology (NTNU), Trondheim, Norway. The work was performed at the
Department of Physics under the supervision of Jeroen Danon, with Prof.
Jacob Linder as a cosupervisor. In addition to the thesis, the doctoral
program included 30 ECTS of coursework, corresponding to the workload
of one semester, as well as teaching undergraduate physics courses during
six semesters, also corresponding to the full workload of one semester.

The PhD project was funded by the Onsager Fellowship Program
at NTNU, and was also supported by the Research Council of Norway
through its Centers of Excellence funding scheme, Project No. 262633
“QuSpin”.

This text is meant to supplement the papers that we have published
during these four years at NTNU, attached at the end of the thesis, and
provide an extensive description of unpublished work that is still not in
the form of a paper.

In Chapter 1 we provide the motivation for the project and intro-
duce some basic concepts about quantum computation and quantum dots.
Chapter 2 contains the theoretical framework that we need to understand
the physics of quantum-dot based spin qubits and reproduce all the results
from the papers. Chapters 3, 4 and 5 contain the results from Papers I,
II and III, plus some additional work that is not yet published. In Chap-
ter 3 we introduce the exchange-only singlet-only spin qubits and show its
properties. In addition, we also explain how our proposal can be imple-
mented in devices that already exist. In Chapter 4 we present a simplified
version of the qubit from Chapter 3 that is much more tunable. In Chap-
ter 5 we study the most relevant mechanisms of decoherence in triple- and
quadruple-dot exchange-only qubits and explore mechanisms to mitigate
their effects on the coherence time of the qubit. Finally, in Chapter 6 we
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study in rigorous analytical detail the electric dipole spin resonance on a
system composed of two quantum dots with intrinsic spin-mixing mecha-
nisms. The contents of this chapter will eventually result in a publication
that is now in preparation.
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1
Introduction

This chapter is only an appetizer. We will not go into details
here, but we will introduce some concepts that we use in the
rest of this thesis.

1.1 Quantum computation

It seems that with a computer we can calculate anything: We just need
enough memory and enough time. Yet every time we write a code to run
some calculations we have to think how to optimize it because we never
have enough memory or time. A quantum computer is not much different.
We will not be able to solve any problem instantaneously with a quantum
laptop (if such a thing ever exists), but if we are smart enough we can use
the extra toolbox that quantum mechanics provide to solve some problems
very efficiently.

Take for example Shor’s algorithm. Everyone has studied (or heard
about) this algorithm in undergraduate courses. If you want to factorize
a large number N in your laptop you can take the naive approach and
try dividing it by all prime numbers between 2 and

√
N , but that can

take some time. There are more efficient algorithms to do that, but in the
best case the computational time that takes to solve this problem scales
exponentially with the number of digits of N and becomes intractable for

1



2 1. INTRODUCTION

Figure 1.1: A quantum state |ψ〉 is represented as a point in the surface of
the Bloch sphere. The angle theta contains information about the overlap
between the state |ψ〉 and the basis states |0〉 and |1〉, whereas the angle
ϕ describes a phase.

large enough N [4]. Shor’s algorithm [4–6] may look inefficient too because
it requires calculating Fourier transforms, which are typically slow (and
also require a large amount of memory). But there is a twist: In a quantum
computer we can calculate Fourier transforms in a polynomial time rather
than exponential, as is the case in classic computers. Shor’s algorithm
can thus be implemented in a quantum computer to solve the problem of
factorization of large numbers efficiently in a polynomial time.

We will not go into details about quantum computation and quantum
algorithms. This is just an example of the powerful capabilities of a quan-
tum computer, but it is not in the scope of this thesis to convince anyone
why we need quantum computers and what can they do for us. A quick
Google search will already mention some of its applications in Internet
security, research, etc. We will instead focus on the most essential part of
quantum computers: the qubit. A qubit is a quantum bit. It is the analog
of a bit in a classic computer but it is not limited to be either in the state
0 or 1. A qubit can be in any quantum superposition of the states |0〉 and
|1〉. Qubits are often represented as points in the surface of a sphere: the
Bloch sphere. Indeed, any qubit can be expressed as

|ψ(θ, ϕ)〉 = cos θ2 |0〉 + eiϕ sin θ2 |1〉, (1.1)
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Figure 1.2: A 2DEG is formed e.g., close to the interface between a
GaAs/AlGaAs heterojunction [9]. It consists of a thin layer (∼ 10nm)
where electrons can have a high mobility. Top gates (G1 and G2), litho-
graphically grown, can create a depletion zone in the 2DEG (dark areas),
isolating a small region where we can trap one or a few excess electrons
(the region enclosed by the dashed red curve). This is a quantum dot.

up to an overall phase, where θ and ϕ are the polar and azimuthal angles
in the Bloch sphere of Fig. 1.1. The states |0〉 and |1〉 denote the north
and south poles, respectively, of the sphere.

A qubit is thus a quantum mechanical two-level system, and we need
to find a physical implementation of this two-level system if we want to
create a quantum computer. When one thinks about two-level quantum
systems the first thing that comes to mind is probably the spin of an
electron. That is text-book physics. And that is (maybe) what Daniel
Loss and David DiVincenzo thought when they wrote their seminal paper
on quantum computation using quantum dots [7].

The idea is very simple: If we can localize one electron and manipulate
its spin, we can use the spin states |↑〉 and |↓〉 as the qubit states. We
also need a mechanism to initialize the qubit into any desired quantum
state, read out the output state after running a quantum algorithm and
we must also be able to couple this qubit to, at least, another qubit to
perform two-qubit gates [4, 8]. In Ref. [7] the authors address all these
issues and propose to localize the electrons in quantum dots.

1.2 Quantum dots

A quantum dot is a potential well that can trap one or a few electrons
(or holes). They are typically fabricated in semiconductors, in a two-
dimensional electron gas (2DEG). We can think of a 2DEG as a surface in
a semiconductor where electrons occupy the conduction band and, thus,
can move relatively freely. A 2DEG can be created in Si MOSFETs, in



4 1. INTRODUCTION

Figure 1.3: Negative voltages applied to the metallic gates G1, G2, G3
and G4 create a depletion zone in the 2DEG (blue surface). This results
in two small isolated islands, the quantum dots, where electrons can be
trapped (red circles). The electrochemical potential in the dots can be
controlled by the gates V1 and V2.

Si/Ge heterostructures, in GaAs/AlGaAs, etc, and in all cases the elec-
trons are confined in a triangular potential along the z direction only, but
are unbounded in the x-y plane [9, 10].

On top of the heterostructure we can put metallic gates. These can be
used to apply a localized electric field and create a depletion zone in the
2DEG (see Fig. 1.2). These depletion zones can be engineered to create a
whole closed area in the 2DEG where we can trap one or a few electrons.
This artificial potential well is a quantum dot.

Once we have a quantum dot we can couple it to a reservoir (by letting
electrons tunnel in and out of the quantum dot) and trap one electron.
Then we can use the spin of this localized electron for quantum computa-
tion.

1.3 Making a spin qubit (using quantum dots)

To understand how a quantum dot-based spin qubit works it is better to
see a top view of the device. Fig. 1.3 shows a schematic illustration of a
system composed of two quantum dots.

The blue surface represents the 2DEG. On top of the device several
metallic gates can be individually addressed to create and manipulate
the quantum dots: By applying a negative potential on the gates Gi,
the resulting electric field creates a depletion zone on the 2DEG where
electrons are not allowed and a small island where the electrons can be
trapped. In Fig. 1.3 we show two of such islands, indicated by red dashed
circles. These are the quantum dots. We can control the coupling between
the two dots by detuning of the gate G2. The gates G1 and G3 can be
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used to allow electrons in and out of the quantum dots, while the gates
V1 and V2 control the electrochemical potential in the dots.

If we now trap one electron in each of the dots we can control its spin
with magnetic fields. In fact, with such a simple device, composed of only
two quantum dots, it is possible to implement a quantum algorithm [11].

But in this thesis we are not interested in single-spin qubits. The goal
of our project is to study decoherence mechanisms in exchange-only spin
qubits and mitigate their effects.





2
Spin qubits in quantum dots

This chapter serves as an introduction to the concepts presented
in the following chapters and in the papers. Here we also in-
troduce most of the theoretical framework that we need to un-
derstand the physics of quantum dot-based, exchange-only spin
qubits.

While a two-level system such as the spin of the electron confined in a
quantum dot seems the ideal implementation for a qubit, there are many
practical issues that make it unfeasible. The two most dramatic obstacles
are (i) the problem of manipulating a single spin and (ii) the limited
coherence of the quantum state [9, 10, 12].

Since Loss and DiVincenzo’s proposal for a spin qubit based on quan-
tum dots, the field has advanced significantly. Major obstacles that would
made quantum dot-based spin qubits impractical have been overcome.
The first problem mentioned above is not an issue anymore if we use
exchange-only (XO) spin qubits. These are quantum dot-based spin qubits
that can be fully manipulated solely by electrostatic gates built on the top
surface of the nanostructure [13, 14].

The second problem, on the other hand, is still hindering the progress
in the field of semiconductor spin qubits and constitutes the motivation of
this thesis. Quantum coherence can be lost if the spin couples to randomly
fluctuating magnetic fields, such as those produced by the ensemble of

7



8 2. SPIN QUBITS IN QUANTUM DOTS

Figure 2.1: Diagram of the electric potential in a system of two quantum
dots along the x direction, within the 2DEG. (a) The system is initialized
in a configuration where each quantum dot (gray areas) is occupied by
one electron (red dots). (b) Electrons can tunnel to neighboring quantum
dots when the tunnel barrier is low enough.

nuclear spins in the spin-full atoms of the material that host the quantum
dot. These atoms are typically Ga and As, or even natural silicon, and
in all cases nuclear spins have a dramatic effect on the coherence time of
the qubits. On top of that, electric noise and electron-phonon coupling,
together with other spin-mixing mechanisms such as spin-orbit interaction,
also contribute substantially to decoherence [15–18].

2.1 The singlet-triplet qubit

We already mentioned that manipulating a single spin is challenging, al-
though not impossible. It can be achieved by using localized magnetic
fields on the quantum dot that contains the single electron [19] or via
an on-chip microwave antenna [20], but the complexity of the resulting
system would make scalability virtually impossible, since a full control
of the qubit requires a control over two perpendicular directions of the
fields. Lots of research has therefore been devoted to achieve an electric
control of the qubit, and very soon some devices capable of a partial elec-
tric control were built and tested. One of them is the singlet-triplet (S-T)
qubit [21–23]. This device is composed of two quantum dots with one
excess electron on each of the dots. The two quantum dots are tunnel
coupled. This means that the potential barrier between the two quantum
dots, schematically represented in Fig. 2.1, is low enough so that one of
the electrons can jump from one quantum dot into the other.
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When the two electrons are confined in different quantum dots, the
spin of the system can be in four possible states: the spins can either form
a singlet or a triplet with different spin projections,

|S〉 = 1√
2

(|↑↓〉 − |↓↑〉) , (2.1)

|T (0)〉 = 1√
2

(|↑↓〉 + |↓↑〉) , (2.2)

|T (+)〉 = |↑↑〉, (2.3)
|T (−)〉 = |↓↓〉. (2.4)

The system can then be tuned in the spin blockade regime (or Pauli spin
blockade regime) [9]. In this regime two electrons can occupy the same
quantum dot only if they form a singlet state, but doubly occupancy is
forbidden if they form a triplet.

We model the quantum dots as a parabolic potential in the x and y
directions but we assume a very strong potential on the z direction. If
we consider only one electron, integrating out the z component leaves us
with the single-particle Hamiltonian

H = 1
2m∗ (p + eA(r))2 + 1

2m
∗ω2

0r2, (2.5)

where p is the momentum of the electron, r is its coordinates vector,
A is the vector potential, ω0 sets the effective radius of the dot σ0 =√
~/(m∗ω0) and m∗ is the effective mass of the electron. The solutions

of the Schrödinger equation for an electron confined in such a poten-
tial are the Fock-Darwin states [24], with eigenenergies equally spaced
by Eorb = ~2/(m∗σ2

0). Let us consider a quantum dot with size σ0 and
with one electron, as we show in the diagram in Fig. 2.2(a). If we add a
second electron and they form a singlet state, then the electrons can oc-
cupy the same orbital state and the only cost in energy will be given by an
electrochemical potential Vg and a Coulomb potential U [Fig. 2.2(b)]; but
if the two electrons from a triplet state instead, Pauli’s exclusion principle
states that the electrons must occupy different orbital states and, there-
fore, the energy cost will be further incremented by Eorb [Fig. 2.2(c)]. If
σ0 is small enough, doubly occupancy of the dot by a pair of electrons in a
triplet state will be, in practice, forbidden. This is the Pauli spin blockade
regime, and it has some implications: In a double dot with a finite tunnel
barrier between the dots and with one electron on each quantum dot, as in
Fig. 2.1, if the electrons form a singlet state then one of the electrons can
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Figure 2.2: Schematic representation of the orbital states in a quantum
dot in the Pauli spin blockade regime. (a) The system contains one elec-
tron that occupies the lowest state. (b) If two electrons are added into the
dot and they both occupy the lowest orbital state, the energy of the system
is increased by an electrochemical potential Vg and a Coulomb potential
U . This is only possible if the two electrons form a singlet state. (c) If
the two electrons form a triplet state, the energy will be further increased
by Eorb, an energy that is typically orders of magnitude larger than any
other energy scale in the system.

tunnel into the neighboring dot, but if they form a triplet state they can-
not. The S-T spin qubit takes advantage of this spin-selective tunneling.

A typical energy spectrum for a S-T qubit is shown in Fig. 2.3 [9].
In the presence of an external magnetic field the polarized triplet states
(|T (+)〉 and |T (−)〉) split out, while the singlet and the unpolarized triplet
(|S〉 and |T (0)〉) remain degenerate. If the tunnel barrier between the two
dots is low enough then the singlet state hybridizes with the state |S02〉—
this is the state with zero electrons in one dot and two electrons forming a
singlet state in the other dot. This results in an exchange energy splitting
J between the singlet and triplet states. One can then use these two states
as the qubit states: we can define |0〉 ≡ |S〉 and |1〉 ≡ |T (0)〉. The effective
Hamiltonian for such a qubit, with a fixed tunnel barrier, is given by1

Heff = 1
2Jσ

z + 1
2gµB∆Bzσ

x, (2.6)

1We will not go into full detail here. The effective Hamiltonian for a triple quantum
dot spin qubit will instead be derived below, since triple dot spin qubits are more
relevant for this thesis. For more details about the S-T qubit please refer to Ref. [9].
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Figure 2.3: Typical energy spectrum of a S-T qubit as a function of
the gate-induced offset Vg in one of the dots, keeping the electrochemical
potential in the other dot fixed. Red lines show singlet states and blue
lines triplet states. When the tunnel barrier is small enough, the states
|S〉 and |S02〉 hybridize and an emerging exchange energy J splits out
the singlet and triplet states. The vertical gray line indicates a possible
operating point of the qubit.

with a qubit splitting J that depends on the gate offset potential Vg that
we apply to one of the quantum dots. This potential can thus be used
to achieve an electric control of the z axis in the Bloch sphere, while for
the detuning along a perpendicular axis (for qubit rotations) we still need
localized magnetic fields in the form of a magnetic field gradient ∆Bz

between the two dots. The remaining two parameters, g and µB, are the
g-factor and the Bohr magneton.

The S-T spin qubit thus limits the need for localized magnetic fields
to only gradients of fields in one direction, and opens the path to a full
electric control of spin qubits. Indeed, the work of the authors in Ref. [21]
indicate that a full electric control can be achieved if the origin of all the
detuning axis is an exchange interaction.

2.2 The exchange-only qubit

As in the S-T qubit, the exchange-only (XO) qubit also uses multi-spin
states as qubit states. In this chapter we focus on the triple quantum
dot XO spin qubit. This qubit is composed of three quantum dots with
one electron each. The dots are placed in a linear array and are tunnel
coupled to each other, as we show in Fig. 2.4. The system is tuned into the
spin blockade regime, allowing each dot i to contain Ni ∈ {0, 1, 2} excess
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Figure 2.4: We consider three quantum dots in a linear array. The
dots are tunnel coupled to the nearest neighbor only, and the strength
of this tunneling interaction can be controlled by gate electrodes on the
semiconductor. The electrochemical potential on each quantum dot can
be controlled by the gate-induced offsets V1, V2 and V3.

electrons. We model the system with a Hubbard-like Hamiltonian [25–28]:

HHubb =
∑

i

[
U

2 ni(ni − 1) − Vini

]
+
∑
〈i,j〉

Ucninj +
∑

〈i,j〉,α

tij√
2
c†

i,αcj,α.

(2.7)

In this expression the operator ni =
∑

α c
†
i,αci,α is the particle number

operator for the dot i, with c†
i,α the creation operator for an electron with

spin α in the orbital ground state of dot i. The first two terms describe
the electrostatic energy of the system. The energy U is the responsible
for the Coulomb interaction between two electrons in the same quantum
dot. When only one electron (or none) is present in the quantum dot this
term vanishes. The next term, with Vi, accounts for the electrochemical
potential on each quantum dot when it contains at least one excess elec-
tron. This is controlled by electric fields coming from the electrostatic
gates that are lithographically placed on top of the device. Lastly, the
term with Uc accounts for the Coulomb repulsion between two electrons
in neighboring quantum dots. This energy Uc is typically smaller than
the on-site Coulomb repulsion U . We will assume throughout (unless oth-
erwise specified) that the orbital level splitting on the dots, Eorb, is the
largest energy scale in the system (larger than U), so we will only include
states involving double occupation (Ni = 2) if the two electrons are in a
singlet state.

With three electrons, each in one different quantum dot, there are eight
possible spin states—four doublets and four quadruplets—, all degenerate:

|0−1/2〉 = 1√
6

(|↓↓↑〉 + |↑↓↓〉 − 2|↓↑↓〉) , (2.8)
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|1−1/2〉 = 1√
2

(|↓↓↑〉 − |↑↓↓〉) , (2.9)

|Q−1/2〉 = 1√
3

(|↓↓↑〉 + |↑↓↓〉 + |↓↑↓〉) , (2.10)

|Q−3/2〉 = |↓↓↓〉, (2.11)

|0+1/2〉 = 1√
6

(|↑↑↓〉 + |↓↑↑〉 − 2|↑↓↑〉) , (2.12)

|1+1/2〉 = 1√
2

(|↑↑↓〉 − |↓↑↑〉) , (2.13)

|Q+1/2〉 = 1√
3

(|↑↑↓〉 + |↓↑↑〉 + |↑↓↑〉) , (2.14)

|Q+3/2〉 = |↑↑↑〉. (2.15)

The states |0−1/2〉, |1−1/2〉 and |Q−1/2〉 have a spin projection Stot
z = −1

2 ,
whereas the states |0+1/2〉, |1+1/2〉 and |Q+1/2〉 have a spin projection
Stot

z = 1
2 . The states |Q−3/2〉 and |Q+3/2〉 have a spin projection Stot

z = −3
2

and Stot
z = 3

2 , respectively. A magnetic field along the z direction will thus
split out some states, adding an energy EZ between them. However, some
degeneracies will remain.

The last term in the Hamiltonian (2.7) describes the tunneling inter-
action between quantum dots. Electrons can tunnel from one dot to the
other via a process that preserves the spin of the tunneling electron. This
interaction lifts the remaining degeneracies. Let us focus on the subspace
formed by the doublet states |0−1/2〉, |1−1/2〉 and the spin-1

2 quadruplet
|Q−1/2〉: because of the magnetic field, the other states will be further
apart in the spectrum. These states can also be written as:

|0〉 ≡ |0−1/2〉 = 1√
3

(|S12〉|↓3〉 − |S23〉|↓1〉) , (2.16)

|1〉 ≡ |1−1/2〉 = − |S13〉|↓2〉, (2.17)

|Q1〉 ≡ |Q−1/2〉 = 1
2
√

3

(
|T (0)

12 〉|↓3〉 + |T (0)
13 〉|↓2〉 + |T (0)

23 〉|↓1〉
)
, (2.18)

Where |Sij〉 indicates a singlet pairing between electrons in dots i and j

and |↓i〉 indicates a spin-down electron in dot i. Similarly, |T (0)
ij 〉 indicates

an unpolarized triplet pairing between electrons in dots i and j.
The qubit will be manipulated by a modulation of the potentials Vi,

but since an equal shift of all three potentials only adds an offset to the
Hamiltonian we only need to consider two independent detuning parame-
ters [28]. For these we choose ε = (V3 −V1)/2 and Vm = (V1 +V3)/2 −V2.
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Figure 2.5: (a) Charge stability diagram as a function of the detuning
parameters ε and Vm. We show the position of the sweet spot, at the center
of the (1,1,1) region, and the RX regimes. (b) Schematic representation
of the lowest part of the energy spectrum of an XO qubit within the
RX regime as a function of ε (in arbitrary units), with t12 = t23. For
completeness we have included the state |Q2〉 = |Q−3/2〉 in the spectrum.
In both panels we have used Uc = 0.3U and V2 = 2Uc − V1 − V3.

Recall that the system is tuned into the spin blockade regime. Since the
state |Q1〉 is formed by triplet pairings only, the electrons in this state can-
not tunnel from one quantum dot to another. For the other two states,
tunneling is possible. The three electrons can then be in different charge
states. We have started this discussion with the electrons in the charge
state (1,1,1), where (N1, N2, N3) indicates the number of electrons in each
quantum dot. Because of the finite tunneling interaction, other states are
possible. We can, in fact, use the electrostatic part of the Hamiltonian in
Eq. (2.7) to find out which charge states are relevant. For that we eval-
uate the energy of different charge states and construct a diagram that
shows the lowest energetic charge state for different values of the detuning
parameters ε and Vm. The result is the charge stability diagram (CSD) in
Fig. 2.5(a).

In the following we will consider the charge states (2,0,1), (1,0,2),
(1,2,0) and (0,2,1)2. Given that doubly-occupied quantum dots can only
host singlet states, all the spin states that we need after including these
extra charge states take the form |S11〉 ⊗ |↑3〉, |S11〉 ⊗ |↓3〉, etc. That is,

2Other charge states are also possible, but we want to keep it simple and consider
only states that are coupled to (1,1,1) by only one tunneling event. At the same time,
we only consider states with no more than two electrons per quantum dot.
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two spin states per charge state.
Let us summarize what we have so far: We have a list of eight states

in the (1,1,1) charge region, but we also have a strong magnetic field that
splits the states, so we can focus on the subspace formed by the states
with Sz = −1

2 ; There are other charge states that are coupled to the
states in (1,1,1), and these need also to be considered. For simplicity
we will consider an XO qubit operated at the resonant-exchange (RX)
regime—top of the (1,1,1) charge region in Fig. 2.5. To study a system in
this regime we only need three charge states: the states (1,1,1), (2,0,1) and
(1,0,2), with the spin states |0〉, |1〉, |Q1〉, |D201〉 ≡ |S11〉⊗|↓3〉 and |D102〉 ≡
|S33〉 ⊗ |↓1〉. We subsequently use the basis {|0〉, |1〉, |Q1〉, |D201〉, |D102〉}.
Using this basis the Hamiltonian in Eq. (2.7) takes the form:

HHubb =


0 0 0

√
3

2 t12 −
√

3
2 t23

0 0 0 −1
2 t12 −1

2 t23
0 0 0 0 0√

3
2 t12 −1

2 t12 0 U − 2Uc + ε− Vm 0
−

√
3

2 t23 −1
2 t23 0 0 U − 2Uc − ε− Vm

 .
(2.19)

In order to arrive to this expression we have subtracted an energy offset
Eoff = 2Uc − V1 − V2 − V3 − 1

2Ez. Note the block structure of the Hamil-
tonian. We can identify a first 3 × 3 block, where all the matrix elements
are zero; a second 2×2 block, with non-zero elements in the diagonal; and
the tunnel elements coupling the two blocks. By writing the Hamiltonian
in this way we can see that the states in the (1,1,1) region will hybridize
with the states in the other charge regions. This hybridization provides
an additional exchange energy that lifts the degeneracy of the states in
the (1,1,1) region. For a small enough tunneling tij � (U − 2Uc ± ε−Vm),
this exchange energy can be evaluated perturbatively. We chose to apply
a Schrieffer-Wolff (SW) transformation to the Hamiltonian (2.19) to sep-
arate the two blocks. A SW transformation is a very useful method to do
a perturbation expansion of a Hamiltonian when some of the states are
degenerate, as the first block of the Hamiltonian above3.

After the transformation, the first block contains a shift in the energies
due to the exchange interaction between the quantum dots. The SW
transformation also results in an effective coupling, whose origin is also the
exchange interaction, that couples the two qubit states. The quadruplet

3See the Appendix A for more details about the SW transformation.
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state remains unmodified and decoupled from the other states because
there are no tunnel coupling elements between this state and any other
state in a different charge region. To simplify the notation further we
define ∆ ≡ U − 2Uc − V m, and write the transformed Hamiltonian into
the (1,1,1) subspace:

HSW =


−3

4

(
t2
12

∆+ε + t2
23

∆−ε

) √
3

4

(
t2
12

∆+ε − t2
23

∆−ε

)
0

√
3

4

(
t2
12

∆+ε − t2
23

∆−ε

)
−1

4

(
t2
12

∆+ε + t2
23

∆−ε

)
0

0 0 0

 (2.20)

If we now project this Hamiltonian onto the qubit subspace and subtract
an energy offset we can write the effective qubit Hamiltonian as

Hqb = 1
2Jzσ

z + Jxσ
x, (2.21)

with the exchange energies Jz and Jx given by

Jz = 1
2

(
t212

∆ + ε
+ t223

∆ − ε

)
, Jx =

√
3

4

(
t212

∆ + ε
− t223

∆ − ε

)
, (2.22)

and σx and σz the first and third Pauli matrices. This is the Hamiltonian
of a triple quantum dot XO qubit in the RX regime. For equal tunneling
between quantum dots τ ≡ t12 = t23, at zero detuning, defined as ε = 0,
the exchange energies reduce to Jz = τ2/∆ and Jx = 0. The qubit splitting
Jz can thus be controlled via the gate potentials by changing ∆, thus
providing an electric control over the z axis in the Bloch sphere.

2.2.1 Manipulation of the qubit

Let us go back to the Hamiltonian (2.19). The matrix element coupling
the state |0〉 to the state |D201〉 is larger than the matrix element coupling
the state |1〉 to the state |D201〉 by a factor η201 =

√
3, but they are both

non-zero. There is, therefore, another state |ψ201〉 that will couple with
a larger matrix element to the state |D201〉. If we take the states |0〉 and
|1〉 as opposite states in the Bloch sphere, the state |ψ201〉 that maximally
couples to the state |D201〉 is at an angle θ201 = 2 arctan(η201) = 2π/3
in the Bloch disk (a vertical cut of the Bloch sphere). Similarly, the
state |ψ102〉 that maximally couples to the state |D102〉 is at an angle
θ102 = 2 arctan(η102) = −2π/3 in the Bloch disk. We show this in Fig. 2.6.
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Figure 2.6: Vertical cut of the Bloch sphere. Here we can see the detuning
axes that result from the exchange interaction. At zero detuning, with
Jx = 0 and Jz = τ2/∆, the Bloch field points towards the north pole, but
pulsing into the neighboring charge states results in a detuning axis along
θ201 = 2π/3 and θ102 = −2π/3.

The ratio Jx/Jz = −
√

3ε/(2∆) additionally shows that we can achieve
any rotation angle continuously from 0 to 2π/3. This function is continu-
ous in ε and vanishes at ε = 0. At this point the Bloch field points towards
the North pole, thus θ = 0. Increasing theta will make the Block field tilt
continuously up to its maximum angle θmax = 2π/3 when ε is large enough
to drive the system into the charge state (2,0,1). We thus have full control
of the qubit by detuning of the gate-induced offsets Vi.

The qubit can also be manipulated via Rabi driving. A small pertur-
bation of ε around zero detuning results in the Hamiltonian

Hqb = 1
2
τ2

∆ σz −
√

3
2
τ2ε

∆2 σ
x + O(ε2). (2.23)

A small, periodic detuning on ε around ε = 0 will thus not shift the qubit
splitting substantially but it will provide rotation axis along the orthogo-
nal direction that will induce fast periodic oscillations between the qubit
states. Let us see this in more detail. Consider the qubit Hamiltonian in
Eq. (2.23) but with a periodic detuning ε = A cosωt oscillating around
ε = 0 with an amplitude A and a frequency ω. We can write this Hamil-
tonian as

H ′
qb = 1

2~ωz σ
z + Ã cos(ωt)σx, (2.24)
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with Ã =
√

3τ2A/(2∆2) and the qubit splitting ~ωz = τ2/(2∆). We then
move into a rotating frame via a unitary transformation

Hrf = eiωztσz
H ′

qbe
−iωztσz

. (2.25)

Since we are interested in driving the system at resonance, with ω = ωz,
we use a rotating wave approximation to remove the fast oscillating terms
(terms that oscillate with ω + ωz) and keep only the terms that oscillate
with ω − ωz. At resonance, this Hamiltonian simplifies to

H ′
rf = 1

2Ã σ
x. (2.26)

Now we can solve the Schrödinger equation with this Hamiltonian and
find the time evolution of an initial qubit state. Suppose that we prepare
the system into the state |0〉 and after some time t we want to measure
the probability of finding the system in the state |1〉. This probability is
given by

P1(t) = | 〈1|0(t)〉 |2 = sin2
(
Ãt

2~

)
. (2.27)

Via a detuning of the offset potentials Vi, we thus expect to see Rabi
oscillations from one qubit state to the other with a frequency Ω = Ã/~.

2.3 Electron-phonon coupling

In quantum dot-based spin qubits where both qubit states have the same
spin structure—doublets in the case of triple dot XO qubits or singlets in
the case of the XO singlet-only spin qubit of Paper I, see Chapter 3—one of
the main mechanisms of qubit relaxation is the coupling of phonons with
the electrons in the quantum dots [27, 28]. This electron-phonon coupling
is also responsible for the dissipation of energy during other relaxation
processes [16–18, 29, 30]: An electron in an excited state |↑〉 with energy
EZ/2 under the presence of a Zeeman field and random magnetic noise
gµBδB · σ, can relax into the lower energy state |↓〉, with energy −EZ/2,
with the consequent dissipation of energy δdis = EZ by a phonon. It is
thus utterly necessary to account for the effects of the electron-phonon
coupling when studying the coherence time of a semiconductor spin qubit.

We estimate the coherence time by evaluating the relaxation rate from
one initial state |i〉 to another state |f〉 using Fermi’s golden rule and con-
sidering the electron-phonon interaction perturbatively. The relaxation
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rate to lowest order in perturbation is

Γi→f = 2π
~

|〈f |H ′|i〉|2δ(Ef − Ei), (2.28)

with |i〉 and |f〉 two eigenstates of the unperturbed Hamiltonian, with en-
ergies Ei and Ef , respectively; H ′ would be the Hamiltonian that describes
the electron-phonon interaction. We model this interaction as

He-ph =
∑
k,p

λk,pρk
(
ak,p + a†

−k,p

)
, (2.29)

where λk,p are the matrix elements of the electron-phonon coupling, ρk
is the Fourier transform of the electronic density operator and a†

k,p is a
ladder operator that creates a phonon with momentum k and polarization
p. In a system with n quantum dots, the Fourier transform of the density
operator in second quantization formalism, is

ρk,α =
n∑

i,j=1

∫ ∞

−∞
dre−ik·rψ∗

i (r)ψj(r)c†
i,αcj,α, (2.30)

with the electron wave function ψi(r) (now accounting for spin as well,
indicated by the index α). For circular quantum dots defined by the
parabolic potential from Eq. (2.5), these wave function are given by the
Fock-Darwin states [16] ψi(r) = exp[−(r − di)2/4σ2

0]/
√
πσ2

0, where di la-
bels the position of the dot i. For simplicity we will assume that the wave
functions of two electrons in different quantum dots do not overlap, such
that

∫
dre−ik·rψ∗

i (r)ψj(r) = 0 if i 6= j, and we instead include this over-
lap in the Hubbard Hamiltonian only as a phenomenological parameter4:
the tunneling elements tij . We impose a strong confinement along the
z direction (perpendicular to the plane of the 2DEG) and set the origin
of coordinates to one of the quantum dots (i.e., d1 = 0). The matrix
elements of the electronic density operator will then be∫ ∞

−∞
dre−ik·rψ∗

i (r)ψi(r) = e−ik·diFk (2.31)

with Fk = exp[−k2
‖σ

2
0/4], where k‖ is the projection of the vector k into

the plane of the quantum dots, σ0 is the size of the quantum dot.
4The tunneling tij accounts for the overlap of wave functions and also for the

Coulomb exchange interaction between two electrons in different quantum dots.
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There is one remaining element in Eq. (2.29) that we have not talked
about: the matrix elements of the electron-phonon coupling. These matrix
elements are given by

λk,p =
(
M (p)

pe +M
(p)
def

)√ ~
2ρVvpk

. (2.32)

M
(p)
pe and M

(p)
def describe the coupling to piezoelectric and deformation

phonons, respectively, ρ is the mass density of the semiconductor, V is a
normalization volume and vp is the sound velocity for the phonons with
polarization p. In the rest of the text we will consider quantum dots in
GaAs and Si only. We will therefore describe these couplings for the two
materials. For GaAs, we have both piezoelectric and deformation phonons,
and the couplings M (p)

pe and M
(p)
def are given by

M (p)
pe = ieh14Ak,p, M

(p)
def = Ξkδpl, (2.33)

where e is the elementary electric charge, h14 is the piezoelectric constant,
Ξ is the deformation potential and Ak,p are the anisotropy factors, which
depend only on the phonon polarization p = {l, t1, t2} and the direction
of the vector k. For GaAs they read [16]:

(Ak,l)2 =9 cos2(θ) sin4(θ) sin2(2φ), (2.34)

(Ak,t1)2 =1
4 [1 + 3 cos(2θ)]2 sin2(θ) sin2(2φ), (2.35)

(Ak,t2)2 = sin2(2θ) cos2(2φ), (2.36)

where the polar direction θ = 0 is taken to be perpendicular to the plane
of the 2DEG and the azimuthal angle φ is the in-plane angle. We assumed
that the direction {θ, φ} = {π/2, 0} points along the [100] crystallographic
direction. For Si quantum dots these expressions are simpler because there
are no piezoelectric phonons in this semiconductor [31]:

M
(l)
def = (Ξd + Ξu cos2 θ) k, M

(t1)
def = Ξu sin θ cos θ k, (2.37)

and the coupling for one of the transversal polarizations is zero M (t2)
def = 0.

With these ingredients we can calculate relaxation rates from an initial
state |i; vac〉 ≡ |i〉 ⊗ |vac〉 to a final state |f ; 1k,p〉 ≡ |f〉 ⊗ |1k,p〉, where
|vac〉 is the phonon vacuum and |1k,p〉 describes a phonon with momentum
k and polarization p. More specifically, we evaluate

Γi→f =
∑
k,p

2π
~
∣∣〈f ; 1k,p|He-ph|i; vac〉

∣∣2 δ(Ef − Ei), (2.38)
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where we summed over all possible final states, i.e., all phonon momenta
and polarizations. If we want to study other relaxation processes that
combine the electron-phonon interaction with another mechanism then
we will need to include other terms in the perturbation expansion. We
will see that when we study spin-mixing mechanisms of relaxation in the
section 2.5 below.

2.4 Electric noise and sweet spots

Another important source of decoherence is the electric noise. The cou-
pling strength between the spin of an electron and electric fields produced
by random electric noise is not strong enough to be relevant. However, in
XO qubits, where we have full control of the quantum states by electric
fields only, the system is very susceptible to electric noise in the form of
electric field fluctuations in the gate offsets Vi [32–34]. It is thus necessary
to investigate any forms to limit the consequences of this noise. Let us
start first by quantifying the effects of electric noise. We have previously
seen, in Eq. (2.21), that the effective Hamiltonian of the qubit subspace
has the form Hqb = 1

2Jzσ
z + Jxσ

x, with the exchange energies Jz and Jx

that depend on some or all the gate-induced offsets Vi. A small fluctuation
in the electric field on these Vi will result in

H
(1)
qb = 1

2(Jz + δz)σz + (Jx + δx)σx, (2.39)

where δz =
∑

[dJz(Vi)/dVi]δVi is responsible of dephasing of the qubit and
δx =

∑
[dJx(Vi)/dVi]δVi is responsible of relaxation or mixing between

the qubit states. We focus on pure dephasing in this qubit basis, i.e.,
we investigate how the phase of a quantum state is randomized due to
fluctuations in the qubit splitting ~δωz(t), and assume the noise δVi to
be quasistatic Gaussian noise with zero mean [32]. For simplicity we only
consider noise in Jz, since the effects of noise in Jx will be much smaller5

and study the dephasing time of the qubit at zero detuning (Jx = 0).
We prepare the system in the state |+〉 = 1√

2(|0〉 + |1〉). After some
time t, we expect the system to have evolved into the state |ψ(t)〉 =

5We can actually show that at zero detuning (Jx = 0) the Hamiltonian H
(1)
qb can

be diagonalized and we can obtain a new set of qubit states. In this new basis the
Hamiltonian will then read H

(1)
qb = 1

2 (Jz + δ′
z)σz, with δ′

z ' δz + 2δ2
x/Jz. Since we

expect the two energy variations δz and δx to be of the same order of magnitude, it is
reasonable to consider only the effects of noise in Jz and drop out δx.
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1√
2(|0〉 + eiφ(t)|1〉), where φ(t) = ω0t+ δφ(t), and the unknown part of the

phase being δφ(t) =
∫ t

0 δωz(t′)dt′. To quantify the dephasing time we have
to evaluate 〈eiδφ(t)〉. We can do that by evaluating log〈eiδφ(t)〉 and using

δφ(t) = t

~
∑

i

∂Jz

∂Vi
δVi + O(δV 2). (2.40)

To leading order, δφ(t) is linear in the fluctuations δVi, and thus Gaussian.
Then we can do a cumulant expansion of the logarithm,

log〈eiδφ(t)〉 =
∞∑

n=1
κn

(it)n

n! , (2.41)

with κn the n-th cumulant of the distribution of δωz, and use that, for
Gaussian variables with zero mean, only the second cumulant of the ex-
pansion κ2 =

∑
i(∂Jz/∂Vi)2〈δV 2

i 〉/~2 is non-zero. This yields log〈eiδφ(t)〉 =
−1

2 t
2κ2, from where we can extract an approximate dephasing time Tϕ by

using log〈eiφ(t)〉 = −t2/T 2
ϕ [15]. Once we have an analytical expression

for the pure dephasing time Tϕ we can proceed to find a way to minimize
it. Note that the on-site potentials Vi enter into the expression for Tϕ via
Eq. (2.40). If we can find a set of detuning potentials—that is, a point
in the charge stability diagram—that makes ∂Jz/∂Vi = 0 for all or some
i, then the dephasing time would be substantially extended. Such point
is called Sweet Spot (SS) and, from Eq. (2.40), we can see that this point
maximizes the dephasing time of the qubit [15, 32, 34–36].

At the SS we cannot use the same procedure to calculate the dephasing
time. Here the first derivative of the qubit splitting Jz vanish, and we are
left with

δφ(t) = t

2~
∑
i,j

∂2Jz

∂Vi∂Vj
δViδVj + O(δV 3). (2.42)

The phase δφ(t) is not Gaussian anymore, causing log〈eiφ(t)〉 6= −1
2 t

2κ2 [37].
In the cumulant expansion we would have to consider more (or all) terms,
especially if we want to consider long times, leaving us with expressions
that are not possible to evaluate. One can only use that method as long as
∂ωz
∂Vi

� ∂2ωz
∂Vi∂Vj

, a condition that is not satisfied at the SS. We can instead
estimate the dephasing time in a different way: We can calculate the prob-
ability that a state initially prepared in |+〉 remains in the state |+〉 after a
time t. That is, evaluate |〈+|ψ(t)〉|2. And then calculate the average of the
probability over the random noise 〈P+(t)〉 = 〈|〈+|ψ(t)〉|2〉noise. We start by
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solving the Schrödinger equation with the HamiltonianH(1)
qb = 1

2(Jz+δz)σz

in a rotating frame, as we did in Section 2.2.1, from which we obtain
|ψ(t, δVi)〉. Then we evaluate

〈P+(t)〉 =
∫ ∏

i

(
d(δVi)√

2πσ2
e

exp
[
−δV 2

i

2σ2
e

])
|〈+|ψ(t, δVi)〉|2, (2.43)

where σe is the standard deviation of the noise in the offset potentials.
We then extract a dephasing time from the resulting expression (we will
see this in Chapter 5).

2.5 Spin-mixing mechanisms

Besides the electron-phonon interaction and the electric noise-induced de-
phasing described above, the remaining main sources of decoherence in
Xo qubits are spin-mixing mechanisms. The two most common are the
spin-orbit (SO) interaction and the hyperfine coupling between the spin
of an electron confined in a quantum dot and the nuclear spins of the host
material in the semiconductor. These two mechanisms, combined with the
electron-phonon coupling as a mechanism to dissipate energy, can lead to
relaxation between the qubit states or out of the qubit subspace. One
of the goals of this thesis is to mitigate the effects of these decoherence
mechanisms and we will thus study them in detail.

2.5.1 Hyperfine interaction

High quality III-V semiconductors such as GaAs consist of atoms carrying
randomly oscillating, non-zero nuclear spins. These nuclear spins couple
to the electrons confined in the quantum dotscausing spin relaxation and
decoherence. We model the ensemble of nuclear spins in each quantum dot
(estimated to be around ∼ 106 spins) as a randomly fluctuating effective
magnetic field Ki (the Overhauser field) that acts on the electrons localized
in the dot i [9, 12, 38]. The dynamics of the Overhauser field is typically
slower than a single qubit operation time of an XO qubit, so we can threat
the effective field Ki as quasistatic.

However, like any other magnetic moment, the magnetic moments of
the nuclei will also couple to the orbital degrees of freedom of nearby
electrons, but this coupling is weak and can be safely neglected [9, 38–
41]. We thus model the electron-nuclei interaction as a Fermi contact
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interaction and describe this hyperfine interaction between nuclear spins
and the electron spins with the Hamiltonian

Hhf = gµB
2

∑
i,α,β

c†
i,αKi · σαβci,β, (2.44)

where σ is the Pauli matrices vector and c†
i,α is the ladder operator that

creates an electron with spin α in the quantum dot i. The hyperfine
interaction can cause relaxation via a spin flip or via dephasing due to
random shifts of the qubit splitting. We study this in more detail in the
following chapters, where we consider the effects of this interaction on
specific devices.

2.5.2 Spin-orbit interaction

The spin-orbit interaction couples the motion of an electron in a crystal
to its spin. Within a 2DEG in the x-y plane, this coupling is described by
the Hamiltonian [29, 30]

HSO = α(−pyσ
x + pxσ

y) + β(−pxσ
x + pyσ

y). (2.45)

In quantum dots, where the electrons are localized in a small region of
space, the average motion 〈p〉 of the electron vanishes. However, a spin
flip is still possible via three mechanisms: (i) a virtual tunneling of the
electron from one quantum dot to the nearest; (ii) a virtual excitation of
a higher orbital state6 within the same dot; (iii) a virtual excitation of a
valley state (in Si-based qubits) within the same dot as well.

We can then calculate relaxation rates out of the qubit subspace using a
second-order Fermi’s golden rule and considering both the electron-phonon
and the SO interactions as perturbation:

Γi→f =
∑
k,p

2π
~

∣∣∣∣∣∑
v

〈f ; 1k,p|H ′|v〉〈v|H ′|i; vac〉
Ev − Ei

∣∣∣∣∣
2

δ(Ef − Ei), (2.46)

where H ′ = HSO + He-ph, the initial state |i〉 is a qubit state combined
with the phonon vacuum, the final state |f〉 is a lower energy state out
of the qubit subspace combined with a phonon with momentum k and
polarization p, and the sum runs over all possible virtual states |v〉.

6Even though quantum dot-based spin qubits are usually operated in the spin block-
ade regime, where excited orbitals are not accessible, we will allow for a virtual excitation
of these high energy states to make this section comprehensive.
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Figure 2.7: Reference frame of the system. We use two quantum dots as
an example. The quantum dots are located in the (001) crystallographic
plane, and the tunneling direction is along the x axis, which forms an
angle χ with the [100] crystallographic direction.

In the XO qubits that we consider in this thesis both quit states have
the same spin structure. Qubit relaxation—that is, from the state |1〉 to
the state |0〉—does therefore not require a spin-mixing mechanism. The
SO interaction is only relevant for relaxation (or leakage) out of the qubit
subspace. In this section we will focus of leakage processes, since qubit
relaxation has been treated in Sec. 2.3 above.

We consider a system of a few quantum dots with the 2DEG in the
(001) plane of the crystal, and choose the axis of the tunneling direction
to be along the x direction, forming an angle χ with the [100] direction
of the crystal, as we illustrate in Fig. 2.7. Then we model the spin-flip
mechanism of the SO coupling (terms with σx only) for each electron as

HSO = Axxpxσ
x′ +Axypyσ

x′ (2.47)

where p is the momentum of the electron, which we consider strongly
confined along the z direction. The Pauli matrices σ act on the spin
states and we consider the z′ direction to be aligned with the external
magnetic field which, in turn, points along the x direction (see Fig. 2.7).
The two coupling constants Axx and Axy contain information about the
angle χ and the Rashba and Dresselhaus coupling amplitudes α and β:

Axx = α+ β sin 2χ, Axy = α+ β cos 2χ. (2.48)

The derivation of the matrix elements of the SO Hamiltonian and the
electron-phonon coupling is quite tedious and is also device-specific: The
geometry of the system as well as the material of the host semiconductor
play an important role. We will therefore not derive them in this chapter,
but we provide below the recipe for obtaining the matrix elements, which
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we took mainly from Refs. [16, 18, 36, 42]. The full expressions will be
presented in Chapter 5.

In the following we use the basis {|nvs〉}, where n denotes the orbital
state (we only consider the ground and first excited states, 0 and 1), v is
the valley state (either − or +, and only relevant for quantum dots defined
in Si) and s is the spin state (↑ or ↓).

(i) Charge sates

In order to evaluate the matrix elements of the SO interaction for a spin-
flip tunneling process we need to find an expression for the momentum
operator p. For this we use p = i

~m
∗[HHubb, r], with HHubb the Hamilto-

nian from Eq. (2.7) and m∗ the effective electron mass [16, 43]. Phonon
emission is then governed by the matrix elements that we calculated in
Section 2.3. The matrix element that describes the emission of a phonon
by an electron in quantum dot j and in the lowest orbital (n = 0) and
valley (v =“−”) states reads, for any spin s:

〈0−s; 1k,p|He-ph|0−s; vac〉 = λk,pe
−ik·dje−(k2

x+k2
y)σ2

0/4. (2.49)

(ii) Orbital states

So far we have only considered the lowest orbital state in the quantum
dots, but the parabolic potential that confines the electrons in the quan-
tum dots [see the Hamiltonian in Eq. (2.5)] results in Fock-Darwin states
with energy splitting Eorb = ~2/(m∗σ2

0). And, even though the energy
separation Eorb is, by far, the largest energy scale in the system, the first
orbital state can, in principle, be virtually excited. The electron can then
undergo a spin flip during this virtual excitation. Since the SO interac-
tion couples the orbital ground state to the first excited state with opposite
spin [9], we need to evaluate the matrix element

〈1α−s̄|pασ
x′ |0−s〉 = i~√

2σ0
, (2.50)

where s̄ is the spin state opposite to s and the superscript α denotes the
component of the wave function is in the excited state [43]. The electron-
phonon Hamiltonian also couples these two orbital states [18], with the
matrix elements

〈1α−s; 1k,p|He-ph|0−s; vac〉 = − i√
2
kασ0λk,pe

−ik·dje−(k2
x+k2

y)σ2
0/4. (2.51)
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(iii) Valley states

Silicon-based quantum dots have the advantage that the most abundant
isotope of Si is nuclear spin-free, hence reducing the effects of hyperfine
noise. On the other hand, the band gap in bulk Si is indirect and the
conduction band has six minima. In most Si-based heterostructures strain
splits off four of these minima, but we are still left with two of them.
Localized electrons in the conduction band thus have an extra “valley”
degree of freedom, which we describe by the wave function

ψ(v) = F (v)(r)
[
α

(v)
1 u1(r)eikzz + α

(v)
2 u2(r)e−ikzz], (2.52)

where F (v)(r) is the envelope wave function corresponding to valley v and
u1,2(r) are the periodic Bloch functions at the minima of the conduction
band.

Both SO and electron-phonon interaction can couple opposite valley
states [18], in a similar they couple orbital states. However, the relevant
matrix elements of both the SO and the electron-phonon Hamiltonians
depend sensitively on details of the confinement along the z direction,
and these are hard to predict. To simplify the calculations and obtain a
qualitative expression we use the dipole approximation e−ik·r ≈ 1 − ik · r
in the electron-phonon Hamiltonian of Eq. (2.29). This approximation
is valid if the wave length of the emitted phonon—with momentum k,
proportional to the energy difference between the initial and final states,
dissipated by the phonon—is much larger than the confinement length σ0.
That is, ∆E2 � (~vt/σ)2, where ∆E is the energy difference between the
initial and final states. This is indeed the case in typical XO qubits. By
employing this approximation we can write

〈0+s; 1k,p|He-ph|0−s; vac〉 ≈ λk,pe
−ik·dj (k · r+−), (2.53)

with r+− = 〈0+s|r|0−s〉 the valley dipole matrix element. If we use again
that p = i

~m
∗[HHubb, r], then we can obtain the matrix elements of the SO

Hamiltonian in terms of the dipole matrix elements. For simplicity we will
use that |z+−| � |x+−|, |y+−| and assume equal dipole matrix elements
along the x and y directions, with x+− = y+− ≡ rd [44, 45].

With all these ingredients we can investigate all the major mechanisms
of relaxation and decoherence in XO qubits and find mechanisms to min-
imize their effects, suitable for each implementation of the XO qubit.





3
The exchange-only

singlet-only spin qubit

We propose a new, exchange-only singlet-only spin qubit of un-
precedented quality. The qubit is scalable and offers full electri-
cal control and a large coherence time. We additionally explain
how to implement our proposal into already existing devices.
Some of the contents of this chapter are included in Paper I.

Exchange-only qubits are easy to manipulate and fabricate, and scala-
bility is indeed one of their main advantages. Nevertheless, the XO qubit
that we have introduced in the previous chapter works with qubit states
that have non-zero spin. This non-zero spin can couple to magnetic noise
and provide a channel for relaxation outside the qubit subspace, thus lim-
iting substantially the coherence time of the qubit [27, 32, 39, 40]. It is
especially concerning the magnetic field gradients set up by the ensemble
or randomly fluctuating nuclear spins in the materials that host the quan-
tum dots. Especially in III-IV semiconductors such as GaAs, since this is
a broadly used material to fabricate state-of-the-art semiconductor-based
quantum devices [46–50]. Many approaches have been proposed to over-
come this problem, such as devising hyperfine-induced feedback cycles,
optimizing complex echo pulsing schemes, etc [51–59]. These approaches

29
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lead indeed to prolonged coherence times, although complicating the ma-
nipulation of the qubit. But we will not discuss them here.

Quantum-dot-based spin qubits can also be fabricated in isotopically
purified 28Si, which can be nearly nuclear-spin-free. The down side of this
approach is that the stronger charge noise in silicon-based devices and the
extra valley degree of freedom complicate the qubit operation. This will
be further analyzed in Chapter 5.

We want a simple XO device that can be easily fabricated in GaAs.
But we also want a qubit that does not decohere in the presence of mag-
netic field gradients of any nature. If we look back at the (short) history
of quantum dot-based spin qubits we can get a hint on how to proceed.
One electron offers the quantum two-level system that we need, but it is
is hard to control and decoheres fast. Two electrons are easier to control
since two-electron spin qubits allow for electric control of the qubit along
one axis of the Bloch sphere, but still require localized magnetic fields
for full control; also the coherence time is smaller. Three electrons offer
a promising alternative, and decoherence, although it is still a problem,
can be overcome by implementing some of the protocols aforementioned.
Four electrons... What about four electrons? With four electrons we can
construct a qubit subspace where both qubit states are singlet (spin-less)
states. Since singlet states do not couple to each other by any external
or intrinsic magnetic fields, the coherence time of the qubit will, in prin-
ciple, be very large. Indeed, a singlet-only subspace is known to be a
“decoherence-free” subspace for spin qubits [60, 61].

3.1 The singlet-only spin qubit

We propose a system composed of four quantum dots arranged in a T-like
geometry, as shown in Fig. 3.1, with one electron on each dot. Our calcu-
lations show that a linear array of four quantum dots would also display a
similar non-degenerate spectrum, but the arising exchange interaction will
only allow for control of axis along one hemisphere of the Bloch sphere.
This is in principle enough for a full qubit manipulation if this is done
via a pulsing scheme (see Sec. 3.2) but qubit operations via Rabi driving
would be challenging. We thus want to design a qubit that has at least
the same features as the triple dot XO qubit, and the T-like design offers
exactly what we need, as we show below.

With four electrons—independently of the geometry—we have sixteen
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Figure 3.1: The XO singlet-only spin qubit is composed of four quantum
dots in a T-like geometry. The dots are tunnel coupled to their nearest
neighbor only, indicated by red lines and the tunnel coupling energies tij .
Gate electrodes control the potentials Vi in the dots.

spin states, out of which two are singlets1. These two singlet states, that
we will conveniently label |0〉 and |1〉 are:

|0〉 = 1
2
√

3
[
|↑↑↓↓〉 + |↓↓↑↑〉 + |↑↓↑↓〉 + |↓↑↓↑〉 − 2|↑↓↓↑〉 − 2|↓↑↑↓〉

]
, (3.1)

|1〉 = 1
2
[
|↑↑↓↓〉 − |↑↓↑↓〉 − |↓↑↓↑〉 + |↓↓↑↑〉

]
. (3.2)

We use the two singlet states as the qubit states. These can also be
expressed in terms of singlet or triplet couplings between pairs of electrons:

|0〉 = 1√
3

[|S13S24〉 + |S12S34〉] , (3.3)

|1〉 = |S14S23〉 , (3.4)

but it is even more interesting if we write the state |0〉 in terms of couplings
of the electrons in quantum dots 1 and 4 and the electrons in the quantum
dots 2 and 3, as we do with the state |1〉:

|0〉 = 1√
3

[
|T (0)

14 T
(0)
23 〉 − |T (+)

14 T
(−)
23 〉 − |T (−)

14 T
(+)
23 〉

]
. (3.5)

1There are several ways to see this. The simplest is to construct the four-particle
spin operator S2 and diagonalize it. But the most beautiful way is to count on one’s
fingers: we know that there are only five quintuplet states (the state |↑↑↑↑〉 has Sz = 2,
and quintuplets come in groups of five) and we also know that there are

(4
2

)
= 6 states

with Sz = 0; the only possible combination is five quintuplets, three three-fold (nine in
total) triplets and two singlets.
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The state |0〉 is formed by triplet pairings only, even though it has S2 = 0,
whereas the state |1〉 is composed of singlet pairings only. Since we tune
the system into the spin blockade regime we expect to see a different
exchange energy associated to each of the two states. The other fourteen
states within the (1,1,1,1) charge region are

|Q(+2)〉 = |↑↑↑↑〉 , (3.6)

|Q(+1)〉 = 1
2[|↑↑↑↓〉 + |↑↑↓↑〉 + |↑↓↑↑〉 + |↓↑↑↑〉], (3.7)

|Q(0)〉 = 1
2[|↑↑↓↓〉 + |↑↓↑↓〉 + |↓↑↑↓〉 + |↑↓↓↑〉 + |↓↑↓↑〉 + |↓↓↑↑〉], (3.8)

|Q(−1)〉 = 1√
6

[|↓↓↓↑〉 + |↓↓↑↓〉 + |↓↑↓↓〉 + |↑↓↓↓〉], (3.9)

|Q(−2)〉 = |↓↓↓↓〉 , (3.10)

|T (+)
α 〉 = 1√

6
[2 |↑↑↓↑〉 − |↓↑↑↑〉 − |↑↑↑↓〉], (3.11)

|T (0)
α 〉 = 1

2
√

3
[2 |↑↓↓↑〉 − 2 |↓↑↑↓〉 − |↑↓↑↓〉 + |↓↑↓↑〉 + |↑↑↓↓〉 − |↓↓↑↑〉],

(3.12)

|T (−)
α 〉 = 1√

6
[|↓↓↓↑〉 + |↑↓↓↓〉 − 2 |↓↓↑↓〉], (3.13)

|T (+)
β 〉 = 1√

2
[|↑↑↑↓〉 − |↓↑↑↑〉], (3.14)

|T (0)
β 〉 = 1

2[|↑↓↑↓〉 − |↓↑↓↑〉 + |↑↑↓↓〉 − |↓↓↑↑〉], (3.15)

|T (−)
β 〉 = 1√

2
[|↑↓↓↓〉 − |↓↓↓↑〉], (3.16)

|T (+)
γ 〉 = 1

2
√

3
[3 |↑↓↑↑〉 − |↓↑↑↑〉 − |↑↑↓↑〉 − |↑↑↑↓〉], (3.17)

|T (0)
γ 〉 = 1√

6
[|↑↓↑↓〉 − |↓↑↓↑〉 − |↑↑↓↓〉 + |↓↓↑↑〉 + |↑↓↓↑〉 − |↓↑↑↓〉],

(3.18)

|T (−)
γ 〉 = 1

2
√

3
[|↓↓↓↑〉 + |↓↓↑↓〉 + |↑↓↓↓〉 − 3 |↓↑↓↓〉]. (3.19)

Besides the two singlet states from above, there are nine triplet states T
and five quintuplet states Q. Note, though, that the choice of the basis
is not random. We have chosen a basis that knows about the total spin,
but any other basis that is formed by e.g., a rotation of the qubit states
would be an equally valid basis.
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Figure 3.2: (a) Three-dimensional CSD. The figure shows the borders
of each charge region as a function of ε14, ε23 and εΛ. (b) We fix εΛ = 0
and focus on the RX regime, close to the charge regions (2,0,1,1), (1,0,2,1)
and (1,0,1,2). The qubit is operated along the read dashed line, with the
points Q and R showing the qubit operation point and the readout point.

After introducing a finite, spin-conserving tunneling interaction be-
tween quantum dots the system will no longer be in the charge state
(1,1,1,1). The wave function of the electrons will extend to neighboring
quantum dots and other charge states will then be accessible.

We model the system as we did in section 2.2: with a Hubbard-like
Hamiltonian. Recall that the system we study is composed of four quan-
tum dots in a T-like geometry with nearest-neighbor tunneling, on-site
gate offset potentials and an external, in-plane and homogeneous mag-
netic field that produces a Zeeman splitting of the states with non-zero
spin. The Hamiltonian is then

HHubb =
∑

i

[
U

2 ni(ni − 1) − Vi ni

]
+
∑
〈i,j〉

Uc ninj

−
∑

〈i,j〉,α

tij√
2
c†

i,αcj,α +
∑
i,α

EZ
2 c†

i,ασ
z
ααci,α, (3.20)

The first line of Eq. (3.20) describes the electrostatic energy of the system
and the second line contains the spin-conserving tunnel coupling and the
Zeeman splitting of the electronic spin states, with EZ = gµBBz.

We can use the electrostatic part of H to find the charge ground state
as a function of the gate-induced offsets Vi and obtain a charge stability
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diagram as a function of V1, but for convenience we introduce four different
tuning parameters

ε14 = (V4 − V1), (3.21)

ε23 = 1
2(V3 − V2), (3.22)

εΛ = 1
4(−V1 + V2 + V3 − V4), (3.23)

εΣ = 1
4(V1 + V2 + V3 + V4). (3.24)

and we fix εΣ = 3
4Uc, so that the (1,1,1,1) state |Q(0)〉 has zero energy.

The CSD is thus three-dimensional [see Fig. 3.2(a)] but in this chapter we
restrict ourselves to the plane εΛ = 0 and focus on the RX regime, close to
the charge states (2,0,1,1), (1,0,2,1) and (1,0,1,2), where exchange effects
due to the vicinity of these charge regions can be significant. Fig. 3.2(b)
shows the relevant part of the charge stability diagram as a function of ε14
and ε23, with εΛ = 0, U = 50 τ , and Uc = 15 τ (τ being our unit of energy,
of the order of the tunnel coupling energies).

We now introduce the finite tunnel coupling energies tij and the Zee-
man energy EZ, and investigate the spectrum of H in more detail, defining
the qubit operation point Q to have the tuning ε14 = ε23 = εΛ = 0, corre-
sponding to setting V1 = V2 = V3 = V4.

Along the red dashed line in Fig. 3.2(b) ε14 parametrizes a “linear
tilt” of the potential of the dots 1, 2, and 4, equivalent to the triple-
dot detuning parameter ε that we used in Chapter 2 to operate the XO
qubit (see Refs. [27, 28, 62]). In Fig. 3.3 we plot the energy spectrum of
the six lowest-energy states with Sz = 0 as a function of ε14 along the
red line. For this plot we set t12 = t24 = 4

3 t23 = τ and use a Zeeman
energy EZ = 1.875 τ (corresponding to EZ = 30µeV, for τ = 16µeV [27]).
We only show the part of the plot that corresponds to the top of the
(1,1,1,1) region. Other charge states are higher up in energy and thus not
shown, but the exchange effects are nevertheless evident. In the plot we
can identify a quintuplet state, labeled |Q(0)〉, three triples that we label
|T1,2,3〉 (blue curves), and the two qubits states (in green and red) that
split out by an energy ~ωz. The other spin states in the (1,1,1,1) region,
with Sz = ±1,±2, are split off by multiples of EZ and not shown.
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Figure 3.3: Energy spectrum of the subspace spanned by the states with
Sz = 0. We plot the eigenenergies along the red line in Fig. 3.2, with
t12 = t24 = 4

3 t23 = τ .

3.1.1 Effective Hamiltonian

Close to the qubit operation point Q, in Fig. 3.2, with ε14 = 0, the ex-
change effects are significant but still small enough to allow us to treat
the system perturbatively and derive an effective qubit Hamiltonian. We
tune the system such that ∆ ≡ U − 3Uc > 0. In this situation, around
the qubit operation point Q lowest-lying excited states are the charge
states (2,0,1,1), (1,0,2,1), and (1,0,1,2), all with an excitation energy ∆.
We additionally assume that the energy scale of the tunnel coupling τ
is much smaller than this excitation energy, τ � ∆, and proceed as in
Section. 2.2, performing a SW transformation of the Hamiltonian. The
resulting Hamiltonian has a block structure, with the singlet states being,
in the basis {|1〉, |0〉}:

HS =
(

−1
4(J12 + J24 + 4J23)

√
3

4 (J12 − J24)√
3

4 (J12 − J24) −3
4(J12 + J24).

)
(3.25)

In this expression we have used the exchange energies

J12 = t212
∆ + 2εΛ + ε14 − ε23

, (3.26)

J24 = t224
∆ + 2εΛ − ε14 − ε23

, (3.27)

J23 = t223
∆ − 2ε23

. (3.28)
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We find similar expressions for the triplets block, whereas for the quin-
tuplets block we simply have HQ = 0. Moreover, since the Hamiltonian
HHubb commutes with the total spin projection operator Sz

tot, none of the
states with Sz

tot = 0 is coupled to any other state with Sz
tot 6= 0, not only

to this order in perturbation, but to all orders in the tij .
For the case where t12 = t24, the singlet and triplet Hamiltonians, HS

and HT 0 , simplify considerably at the point Q, resulting in

HS =
(

−1
2(J + 2J23) 0

0 −3
2J

)
, (3.29)

HT 0 =

 −1
6(J + 2J23) 0 2

3
√

2(J − J23)
0 −1

2J 0
2

3
√

2(J − J23) 0 −2
3(2J + J23)

 , (3.30)

where for the triplets we used the basis {|T (0)
α 〉, |T (0)

β 〉, |T (0)
γ 〉}. Ignoring

corrections to the wave functions of the order τ/∆, the states |1〉, |0〉
and |T2〉 ≡ |T (0)

β 〉 are eigenstates of the Hamiltonians HS and HT 0 , re-
spectively, at the qubit operation point. The two remaining unpolarized
triplet eigenstates being

|T (0)
1 〉 = cos θ2 |T (0)

α 〉 + sin θ2 |T (0)
γ 〉, (3.31)

|T (0)
3 〉 = sin θ2 |T (0)

α 〉 − cos θ2 |T (0)
γ 〉, (3.32)

where we have introduced an angle θ, defined as tan θ = 4
√

2(J−J23)/(7J+
2J23), with J = τ2/∆ and J23 = t223/∆. We again used t12 = t24 = τ . The
first order corrections in τ/∆ to these basis states read

|1〉(1) = 1
2
τ

∆
(
|S11S34〉 − |S13S44〉

)
− t23

∆ |S14S33〉, (3.33)

|0〉(1) = −
√

3
2
τ

∆
(
|S11S34〉 + |S13S44〉

)
, (3.34)

|T1〉(1) = −
(

cos θ
2

2
√

3
+

2 sin θ
2√

6

)
τ

∆
(
|S11T

(0)
34 〉 − |T (0)

13 S44〉
)

−
(

cos θ
2√

3
−

2 sin θ
2√

6

)
t23
∆ |T (0)

14 S33〉, (3.35)

|T2〉(1) = −1
2
τ

∆
(
|S11T

(0)
34 〉 + |T (0)

13 S44〉
)
, (3.36)
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|T3〉(1) = −
(

sin θ
2

2
√

3
−

2 cos θ
2√

6

)
τ

∆
(
|S11T

(0)
34 〉 − |T (0)

13 S44〉
)

−
(

sin θ
2√

3
+

2 cos θ
2√

6

)
t23
∆ |T (0)

14 S33〉. (3.37)

3.1.2 The singlet-only qubit subspace

We define the qubit Hamiltonian as the singlet-only Hamiltonian in Eq. (3.25)
after subtracting a constant energy offset. This results in

Hqb = 1
4(J12 + J24 − 2J23)σz +

√
3

4 (J12 − J24)σx, (3.38)

where σz and σx denote the Pauli matrices, and the two qubit states, to
lowest order in τ/∆ are

|1〉 = |S14S23〉 + 1
2
τ

∆
(
|S11S34〉 − |S13S44〉

)
− t23

∆ |S14S33〉 (3.39)

|0〉 = 1√
3

(|S13S24〉 + |S12S34〉) −
√

3
2
τ

∆
(
|S11S34〉 + |S13S44〉

)
, (3.40)

up to some normalization constant. We observe that: (i) All the terms
of this qubit Hamiltonian can be controlled by detuning of the (electric
only) tuning parameters ε14, ε23 and εΛ. Therefore, the singlet-only spin
qubit that we propose here is indeed an XO qubit. (ii) The structures of
both this Hamiltonian and its eigenstates are fully equivalent to that of
the triple-dot XO qubit [cf. Eq. (5) in Ref. [28]. See also Eq. (2.20) and
Section 2.2.1]. This qubit can, thus, be operated in the same way as the
XO qubit: either by static pulsing [62] or via resonant driving [27]. (iii) At
the qubit operation point Q, the qubit splitting ~ωz = (t212+t224−2t223)/2∆,
vanishes if all three tunnel couplings are equal. We therefore choose t12 =
t24 6= t23. We can see this behavior in Fig. 3.4: The qubit state |0〉 couples
the electrons in dots 2 and 3 in a triplet state, but the state |1〉 couples
these electrons in a singlet state. Changing t23 thus cannot have any
effect on |0〉, but it must change the energy of the state |1〉 because of the
exchange effects that go as t223/∆. In Fig. 3.4(b) we show that indeed the
energy of the state |1〉 changes as a function of t23 and for t23 = τ the
qubit subspace becomes degenerate.

Manipulation of the qubit

At the RX regime, close to the nearby charge states, the exchange inter-
action is significant. This results in two symmetric detuning axis readily
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Figure 3.4: (a) We can express the qubit states in terms of couplings
between the electrons in dots 1 and 4 and the electrons in dots 2 and 3.
(b) Energy spectrum of the six states with Sz = 0 at the point Q as a
function of t23, with t12 = t24 = τ .

available by detuning of ε14. Proceeding as in Section 2.2.1, for small de-
tuning, |ε14| � ∆, we can expand the effective qubit Hamiltonian Hqb to
linear order in ε14, yielding

Hqb = 1
2~ωzσ

z −
√

3
2
τ2ε14
∆2 σx, (3.41)

A harmonic modulation of the detuning, of the form ε14 = A cos(ωτ), will,
as we saw in Section 2.2.1, induce Rabi rotations with a period TRabi =
4π~∆2/(

√
3τ2A). Using ∆ = 5 τ , and a small driving amplitude of A =

0.15τ , this would yield a rotation time TRabi ≈ 50 ns.

Decoherence

We mentioned before that the reason for choosing a singlet-only spin qubit
was to avoid relaxation and decoherence produced by gradients (fluctuat-
ing or static) of magnetic fields across the quantum dots. An example of
these being the gradients of magnetic fields arising from the fluctuating
bath of nuclear spins in GaAs nanostructures, which couple to the qubit
states through the hyperfine interaction [9, 27, 40].

To analyze the effect of the hyperfine interaction on the XO singlet-only
qubit, we use the effective Hamiltonian that we introduced in Section 2.5.1

Hhf = gµB
2

∑
i,α,β

c†
i,αKi · σαβci,β, (3.42)
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where Ki is the local Overhauser field acting on an electron in dot i, and
project this Hamiltonian onto the qubit subspace:

〈1|Hhf|1〉 = 〈0|Hhf|0〉 = 〈1|Hhf|0〉 = 0 (3.43)

To leading order, the nuclear fields do not affect the qubit subspace and,
therefore, do not cause any decoherence. However, this hyperfine Hamil-
tonian couple both qubit states to the other four-electron triplet states.
Transitions to states with Sz = ±1 are strongly suppressed by the large
Zeeman energy EZ. We thus focus on the coupling to the triplet states
with Sz = 0, via Kz,i. This component of the nuclear fields thus couple |0〉
and |1〉 to the triplets |T1〉, |T2〉 and |T3〉, and the small energy difference
between these states, which is of the order of J , J23, favors a hybridiza-
tion of the singlets and triplets. We see that by evaluating the Hyperfine
Hamiltonian in the basis {|1〉, |0〉, |T1〉, |T2〉, |T3〉}:

Hhf = gµB
9


0 0 h.c.
0 0

3
√

3κ14u κ23u− 6
√

2κΛv 0 0 0
3κ23 3

√
3κ14 0 0 0

3
√

3κ14v 6
√

2κΛu+ κ23v 0 0 0

 , (3.44)

where “h.c.” stands for hermitian conjugate. Here we have introduced the
field gradients

κ14 = gµB
Kz,1 −Kz,4

2 , (3.45)

κ23 = gµB
Kz,2 −Kz,3

2 , (3.46)

κΛ = gµB
Kz,1 −Kz,2 −Kz,3 +Kz,4

4 , (3.47)

and we used the notation

u = cos θ2 −
√

2 sin θ2 , (3.48)

v =
√

2 cos θ2 + sin θ2 , (3.49)

with the angle θ as defined above. This coupling can cause leakage out
of the qubit subspace, as in the triple-dot XO qubit. On the other hand,
it does not affect the qubit splitting to linear order in Ki. However, this
coupling can contribute to qubit decoherence by producing a higher-order
shift in the qubit splitting.
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A second-order perturbation expansion in the nuclear fields yields an
energy shift in the qubit splitting δhf = δE1 − δE0

δhf = ∆
τ2

(
89κ2

14
72 − 688κ2

23
2187 − 928κ23κΛ

729 − 112κ2
Λ

243

)
. (3.50)

This energy shift, of the order of magnitude ∼ K2∆/τ2, is smaller by a
factor ∼ K∆/τ2 as compared to the shift induced by the hyperfine cou-
pling in other semiconductor-based spin qubits. We estimate the resulting
decoherence time of the qubit to be T ∗

2 ∼ ~J/(gµBK)2. This is the coher-
ence time that we would expect from a Ramsey experiment. For typical
parameters (that is, for J = 2 µeV and K = 1 mT) this amounts to an
improvement of two orders of magnitude over other spin qubits in GaAs,
where T ∗

2 ∼ ~/(gµBK).
Let us now analyze the main effect of the higher-order correction to

the qubit splitting set by the random nuclear noise. We proceed as in Sec-
tion 2.2.1 but now with a random shift δhf in the qubit splitting, and study
the evolution of a qubit state when the system is driven at resonance with
an amplitude Ã =

√
3τ2A/(2∆2). We thus use the effective Hamiltonian:

Heff = 1
2(~ωz + δhf)σz + Ã cos(ωzt)σx, (3.51)

and using a rotating wave approximation, we write the Hamiltonian in a
rotating frame,

Hrf = 1
2δhfσ

z + 1
2Ãσ

x. (3.52)

We then prepare the system in the initial state |0〉 and assume a fixed δhf.
The Schrödinger equation can then be solved analytically, yielding Rabi
oscillations on the probability of finding the system in |1〉 after a time t,

P1(t, δhf) = |〈1|ψ(t)〉|2 = 1
2

Ã2

Ã2 + δ2
hf

[
1 − cos

(
t

~

√
Ã2 + δ2

hf

)]
. (3.53)

We consider the fluctuations in Kz,i to be quasistatic, i.e., constant
for each operation cycle, and average over many cycles, with a different
configuration of Kz,i each time. This leads to a suppression of the Rabi
oscillations, described as

〈P1(t)〉 =
∫
dKz,1dKz,2dKz,3dKz,4

8π2σ4
Kz

Ã2

Ã2 + δ2
hf

[
1 − cos

(
t

~

√
Ã2 + δ2

hf

)]

+ exp
(

−
K2

z,1 +K2
z,2 +K2

z,3 +K2
z,4

2σ2
Kz

)
, (3.54)
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Figure 3.5: This is time-dependent expectation value of the probability
P1(t) (blue curve) after initializing in |0〉 and driving resonantly with ε14 ∝
cos(ωzt). We calculated this probability numerically, averaging over 2500
random configurations of the nuclear fields. We also compare the results
with an equivalent calculation for a triple-dot XO qubit (red curve), using
the same parameters.

where all the nuclear fields Kz,i are assumed to be Gaussian-distributed
with zero mean and a standard deviation σKz [32]. At large times t �
~Ã/δ2

hf, this integral suggests that the hyperfine coupling in the XO singlet-
only spin qubit leads to a power-law decay in the Rabi oscillations, 〈P1(t)〉 ∝
t−α with α ≈ 1.

We also complement the analytical calculations by performing numer-
ical simulations of resonant driving of the qubit. We project the Hamilto-
nian in Eq. (3.20) to the Sz = 0 subspace of all relevant charge states and
diagonalize the resulting Hamiltonian at the point Q (see Fig. 3.2). This
yields the eigenstates at ε14 = 0 as well as the qubit splitting ~ωz. Then
we initialize the system into the singlet state |0〉 and let it evolve under the
Hamiltonian HHubb +Hhf, with ε14 = A cos(ωzt) and four random nuclear
fields Ki. We repeat these steps many times, with a different set of Ki

each time, and calculate the average time-dependent probability 〈P1(t)〉.
In Fig. 3.5 we show the probability 〈P1(t)〉 (blue curve), evaluated with
A = 2.5 µeV and averaged over 2500 random nuclear field configurations.
We considered Ki as Gaussian-distributed noise with σKz = 0.07 µeV. In
the figure we observe several Rabi oscillations in ∼ 500 ns without any
significant decay. At much longer times, nevertheless, we expect to see a
suppression in the oscillations.

As a comparison, we also show equivalent simulations of a resonant
driving of the triple-dot XO qubit, using the same parameters. The result
is plotted with a red curve in Fig. 3.5, together with the Rabi oscillations
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Figure 3.6: This is the initialization scheme that we propose. The qubit is
prepared in the only singlet state available in (2,0,0,2) and pulsed adiabat-
ically from the point I to the qubit operation point Q, without entering in
the charge regions (1,0,1,2) and (2,0,1,1) to avoid possible level crossings.

in the XO singlet-only qubit. In this case the probability 〈P1(t)〉 decays
significantly in the first few Rabi periods. The clear contrast between the
two curves shows the improvement, regarding the coherence of the qubit,
that offers the XO singlet-only spin qubit that we propose in this chapter.

3.1.3 Initialization and readout of the qubit states

One important ingredient of every quantum computation protocol is the
ability to reliably initialize a qubit in one of its basis states and read out
the output quantum state after running an algorithm.

Readout of the qubit can be performed by spin-to-charge conversion,
in a similar way as in the S-T [21] and triple-dot XO [27, 62] qubits. In
our setup this can be done by pulsing into the point R in Fig. 3.2 via
detuning of ε14. Only the singlet state |0〉, couples adiabatically to the
singlet state in this charge region. A protective measurement of the qubit
state can be achieved by simply measuring the charge configuration of the
system at this point.

Initialization can be carried in a similar way. We prepare the system in
a ground state that couples adiabatically to only one of the qubit states.
For that we choose the charge state (2,0,0,2), which has a singlet structure
because of Pauli’s spin blockade. This state couples adiabatically to the
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Figure 3.7: This XO singlet-only spin qubit is composed of five quantum
dots in a linear array. The dots are tunnel coupled to their nearest neigh-
bor only, indicated by red lines and the tunnel coupling energies tij . Gate
electrodes control the potentials Vi in the dots.

state |0〉 when the system is pulsed back to Q along the red dashed line
in Fig. 3.6.

One requirement for successful initialization and readout of the qubit is
that all possible level crossings during the initialization and readout paths
are swept through fast enough so that the chance for spin-flip transition
to a different spin state is strongly suppressed. This exact same condition
holds for the triple-dot XO qubit, where the qubit state |0〉 crosses a spin-3

2
state during readout [27].

3.2 A straightforward implementation

We now want to study the possibility of implementing this qubit into
an existing device. We believe that the qubit can be straightforwardly
implemented in the device in Ref. [48]. This device consists of five tunnel
coupled quantum dots in a linear arrangement, as we show in Fig. 3.7,
with the central dot being substantially larger than the other four dots
and hosting a large (between 50 and 100) even number of electrons. The
system can be tuned into a configuration where the two lowest energy
states in the central dot are a singlet and a triplet multi-electron spin
states. We further assume that the energy separation between them is
small enough so that a transition from a singlet to a triplet ground state 2

is possible via electric or magnetic tuning with reasonable electric and
magnetic fields [48, 63].

2This is similar to what we showed in Fig. 3.4, where via a modulation of t23 the
ground state of the system changes from the qubit state |0〉 to |1〉.
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The system is prepared in a state (1, 1,m, 1, 1) with m such that the
ground state of the multielectron dot is a singlet state but the ground state
for m+ 2 is a triplet state [48]. An orbital excitation within the quantum
dot m is, in this system, possible when it contains m+ 2 electrons with a
small cost in energy. With m+ 2 electrons the first excited state will then
be a singlet state [48]. Within the charge state (1,1,m,1,1), and taking the
middle dot to be always in a singlet state, there are up to 16 different spin
configurations, two of which are singlet states (see Section 3.1). We call
the lowest energy singlet state |0〉 and the higher energy singlet state |1〉,
defined as:

|0〉 = |S14SmS23〉

= 1
2 (|↑↑ Sm ↓↓〉 − |↑↓ Sm ↑↓〉 − |↓↑ Sm ↓↑〉 + |↓↓ Sm ↑↑〉) , (3.55)

|1〉 = 1√
3

(
−|T+

14SmT
−
23〉 − |T−

14SmT
+
23〉 + |T 0

14SmT
0
23〉
)

= 1
2
√

3
(|↑↑ Sm ↓↓〉 + |↓↓ Sm ↑↑〉 + |↑↓ Sm ↑↓〉

+ |↓↑ Sm ↓↑〉 − 2 |↑↓ Sm ↓↑〉 − 2 |↓↑ Sm ↑↓〉) . (3.56)

With this notation, Sm denotes a singlet configuration in the central dot.
We use the state |0〉 as the north pole of the Bloch sphere and its orthogo-
nal singlet state |1〉 as the south pole. See Fig. 3.8(a). The system can be
unambiguously initialized in a state |i〉 = |S12SmS34〉, more conveniently
expressed as:

|i〉 = − 1
2 |0〉 +

√
3

2 |1〉. (3.57)

This is achieved by preparing the system into the initialization charge
state (2, 0,m, 0, 2), where due to a large orbital energy splitting in the
lateral dots the electrons in the two external quantum dots can only be in
a singlet state, and then pulsing into (1, 1,m, 1, 1), the region I in Ref. [48]
(see also Fig. 3.10 below). The state |i〉 has an angle of 120 degrees with
respect to |0〉. Qubit manipulation is achieved by electrostatic tuning
of the gate voltages Vi. Either via the external quantum dot potentials
V1 and V4 or the central dot potential Vm. Close to the charge state
(2, 0,m, 0, 2), but still in region I, the external quantum dots are strongly
coupled, while the exchange interaction between them and the central dot
is smaller [see Fig. 3.8(b)] this results in an axis at 120 degrees in the Bloch
sphere, parallel to |i〉. In region I, increasing Vm towards regions IIa/IIb



3.2. A STRAIGHTFORWARD IMPLEMENTATION 45

Figure 3.8: (a) Vertical cut of the Bloch sphere showing the initialization
state |i〉 in the basis {|0〉, |1〉} and (b) quantum dot couplings and detuning.

(Fig. 3.10), effectively couples the dots 2 and 3 to the central dot m and
results in an exchange energy Jc. This is represented in the Bloch sphere
by an axis pointing towards the north pole (see also Fig. 3.9). Increasing
Vm further, into the region III, brings the system into the charge state
(1, 0,m+ 2, 0, 1), where the sign of Jc is reversed, i.e., the field now points
towards |1〉, at 180 degrees.

Since the Bloch angle θ in Fig. 3.9 is rather step-like and angles beyond
180 are not accessible (as opposed to what we saw in Section 2.2, where
any rotation in the Bloch sphere is possible), full rotations between the
states |0〉 and |1〉 are challenging: in this figure we can only reach precisely
the angles 0, 120 and 180 degrees, as reported in Ref. [48]. An angle θ =
90o lays in the sharp, step-like, transition and is therefore experimentally
difficult to achieve. Manipulating the qubit at close proximity to other
charge states can, on the other hand, produce a “richer” set of detuning
tools. To study the effects of the charge states (2, 0,m, 1, 1), (1, 1,m, 0, 2),
(2, 0,m+ 1, 0, 1) and (1, 0,m+ 1, 0, 2) we use the Hamiltonian [48, 63]

H = −
∑

i

Vini + Ui

2 ni(ni − 1) +
∑
i 6=j

Ki,j

2 ninj

+
∑

〈i,j〉,σ

tij√
2
c†

i,σcj,σ − ξ

2S2 + 1
2gµBB‖(n↑ − n↓), (3.58)

with Ui the on-site Coulomb interaction in dot i and Ki,j the cross-
capacitance between neighboring dots. The Coulomb interaction between
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Figure 3.9: Bloch angle θ as a function of the gate potential Vm for
V1 = V2 = V4 = 0 and V3 = 2µeV. Other parameters as in Ref. [48]

two electrons in different orbitals in the middle dot is also accounted for via
Ki,j . We study the magnitude of the exchange field and the Bloch angle as
a function of Vm and V1, while keeping V4 = V1 and fixing V2 and V3 > V3
close to zero, as in the model used in Ref. [48]. This is shown in Fig. 3.10,
where we used the same parameters as in their text. In this Hamiltonian,
the spin operator S2 acts only on the two higher-orbital electrons in the
central quantum dot when it is occupied by m + 2 electrons. This term
enforces a triplet ground state in the region III, where the charge state is
(1, 0,m + 2, 0, 1). The last term describes the Zeeman splitting between
states with different spin projection.

We study in more detail two special cases, both very close to the
charge states (2, 0,m+1, 0, 1) and (1, 0,m+1, 0, 2): (i) the vertical dashed
line in Fig. 3.10, at V1 = V4 = 4.6Um, and (ii) the tilted dotted line
Vm = 10Um − 2V1, also with V1 = V4. In both cases initialization and
readout is performed at the i/r point (white star), where the ground state
couples adiabatically to |i〉.

Fig. 3.11(a) shows the lowest part of the spectrum along the line (i),
centered at the charge region (1, 0,m+ 1, 1, 1)/(1, 0,m+ 1, 1, 1). The two
lowest singlet states are shown in blue and green. At the center of the
spectrum, the lowest state points towards |0〉 in the Bloch sphere and the
excited state to |1〉. Other singlet states are shown in gray. Fig. 3.11(b)
shows the strength of the exchange field (relative to its maximum in the
domain) and the angle in the Bloch sphere along the same line. Close
to Vm = Um, where the system goes from the charge states (1, 0,m +
1, 1, 1)/(1, 0,m + 1, 1, 1) to (1, 0,m + 2, , 1), the exchange energy changes
sign. This is indicated by the abrupt change in the angle θ that goes
from nearly 0 to 180. Moving towards the opposite direction produces a
smoother change of θ (and also a smooth variation of |J |) from 0 to 120
degrees. This enables a precise control of the angle in the Bloch sphere
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Figure 3.10: Bloch angle θ and exchange magnitude |J | as a function of
Vm and V1 (keeping V4 = V1) with V2 = 0 and V3 = 2µeV. Different charge
regions are indicated. We also show curves along which the exchange field
magnitude is constant (white curves) and curves along which the Bloch
angle is constant (gray curves). The color gradient indicates the angle θ
and the transparency shows the strength of the exchange field |J |. Two
lines (dashed and dotted) indicate two possible paths for manipulation of
the qubit. The white star marks a region where initialization and readout
would be most successful.
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Figure 3.11: Singlet states spectrum along (a) the dashed line in Fig. 3.10
and (c) the tilted dotted line. The two lowest singlet states, which we
use as qubit states, are colored. (b,d) Magnitude of the strength of the
exchange field |J | and Bloch angle θ along the same lines, respectively.
The exchange field |J | is given in arbitrary units, with |J | = 1 being the
maximum value of |J | within the domain we consider in each panel.

and makes possible full rotations by electrostatic pulsing of the gates.
Similar features are observed if the detuning is along the tilted line

(ii), with a similar spectrum [Fig. 3.11(c)] but with more and larger peaks
in |J | [Fig. 3.11(d)]. Note, however, that initializing in the charge states
(2, 0,m+1, 0, 1) and (1, 0,m+1, 0, 2) does not necessarily result in a singlet
state (see Fig. 3.10 as well), and readout may result inefficient if there are
spin mixing mechanisms that couple singlet and triplet states, since not
all quantum dots are doubly occupied.

3.2.1 Qubit manipulation

Let us, for simplicity, introduce an effective two-level Hamiltonian to in-
vestigate possible mechanisms to manipulate the qubit. This effective
Hamiltonian results from the projection of the Hamiltonian in Eq. (3.58)
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into the two-level qubit subspace:

Hqb = 1
2 |J(Vi)| cos

[
θ(Vi)

2

]
σz + |J(Vi)| sin

[
θ(Vi)

2

]
σx. (3.59)

If the exchange field |J | close to θ = 0 is large enough, a small modulation
of the field along Vm can induce Rabi rotations with a period h/A, where
A = δVm

∣∣∣ d
dVm

(|J | sin θ
2)
∣∣∣. δVm is the amplitude of the oscillations in the

potential and |J | and θ the magnitude of the exchange field and the angle
in the Bloch sphere.

Detuning of the qubit via pulsing is also possible: The smoothnes of
the curve θ(Vm) allow us to precisely select any rotation angle in one side
of the Bloch sphere [see Figs.3.11(b,d)]. Nevertheless, since we do not have
control over the full Bloch sphere, the qubit rotations will be challenging.





4
Higher tunability

We propose a novel implementation of an XO singlet-only qubit
in GaAs that can be straightforwardly implemented in existing
triple-dot devices and with a qubit splitting that can be tuned
over several tens of µeV. The contents of this chapter are in-
cluded in Paper III.

In the XO singlet-only spin qubit proposed in Chapter 3, the coher-
ence time of the qubit is substantially extended by eliminating the leading
effects of magnetic noise. However, the long coherence time of the qubit
comes at the cost of a relatively small qubit splitting. This is a common
problem with XO qubits [50, 64–66]. To overcome this problem, we pro-
pose a new GaAs-based singlet-only spin qubit that can be implemented
in triple-dot devices. This qubit will have a simpler design and a substan-
tially larger (and tunable) qubit splitting. Fig. 4.1 shows the device that
we propose. It consists of three quantum dots with a middle dot that can
allocate several electrons.

We tune the triple quantum dot to a (1,4,1) charge configuration and
apply an out-of-plane magnetic field. On the central dot, the interplay
between the magnetic field and the Coulomb interaction between the elec-
trons results in a rich energy spectrum with many crossings between levels
with different total spin and orbital angular momentum. As we will see
below, when the central dot is occupied by four electrons, the ground state

51
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Figure 4.1: The system is composed of three quantum dots, with a central
dot that can allocate several electrons and two outer dots in the spin
blockade regime. The dots are tunnel coupled to their nearest neighbors
and the electrochemical potential in each dot can be controlled by the
gate-induced offsets V1, V2 and V3.

changes from a triplet to a singlet character, typically at a moderate field
of ∼ 100 mT [67], in a similar way as we saw in the last chapter. We
prepare the system close to this singlet-triplet crossing, and couple the
central dot to two singly-occupied outer dots via a tunneling interaction.
This yields an XO singlet-only qubit where the singlet-triplet splitting on
the central dot, and thus the qubit splitting, can be tuned over a large
range of energies by adjusting the external magnetic field. The qubit is
equivalent to the XO singlet-only qubit presented in Chapter 3, but now
the singlet/triplet nature of the electrons in the dots 2 and 3 in Fig. 3.4(a)
is replaced by singlet/triplet couplings of two electrons in the middle dot
in Fig. 4.1. This yields a GaAs-based XO singlet-only qubit that is not
more complicated to create or operate than existing triple-dot devices.
Moreover, this has a qubit splitting that can be straightforwardly tunable
through a wide range of energies, from zero to several µeV. Conceptually
similar qubits have been proposed in Refs. [66] and [68]. Probably the
most promising one is a proposal for a singlet-only qubit in Si, taking
advantage of valley states [66]. Our proposal differs from this in that our
qubit is more tunable1, is easy to manipulate and can be implemented
both in GaAs but also in Si quantum dots.

1In Si-based quantum dots the magnitude of the valley splitting, as well as the phase
differences between valley couplings on different dots, are hard to control or predict in
practice [10], severely affecting the qubit operation and its coherence time [69].
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4.1 A singlet-only spin qubit in three dots

The only substantial difference between this qubit and the XO qubits
that we talked about in Chapters 2 and 3 is the multi-electron central
quantum dot. Until now we have considered small quantum dots in the
spin blockade regime, but for this proposal we have to consider a slightly
larger dot that can accommodate more electrons and produce an electron
orbital spectrum with seizable energies. The physics of multi-electron
quantum dots has been studied before, but we will now do it in more
detail and derive some expressions that we will need later to construct an
effective Hamiltonian that governs the dynamics of the qubit. For this we
will mostly follow the method used in Ref. [67].

4.1.1 Multi-electron quantum dots

The physics of a multi-electron quantum dot is qualitatively different from
that of the quantum dots in the spin blockade regime that we have seen
previously. Here we have to account for other orbital states, as well as for
the Coulomb interaction between the many electrons that occupy the dot.
Moreover, in this system we also include a magnetic field perpendicular
to the plane of the quantum dots that squeezes the wave function of the
electrons. Let us consider each of these new ingredients, one at a time.

A perpendicular magnetic field

Consider a quantum dot defined by a circularly symmetric parabolic po-
tential in the x-y plane (the plane of the 2DEG) and a very strong con-
finement along the z direction. Consider also an out-of-plane magnetic
field. We saw in Chapter 2 that the Hamiltonian of a single electron in
such a potential is given by

H
(i)
0 = 1

2m∗ [pi + eA(ri)]2 + 1
2m

∗ω2
0r2

i + 1
2gµBBσ

z
i , (4.1)

where ω0 defines the strength of the in-plane confinement of the electrons
and thus define the quantum dot. The effective radius of the dots in the
absence of a magnetic field is given by σ0 =

√
~/(m∗ω0). The vector

potential A(r) = 1
2B(xŷ − yx̂) describes the magnetic field along the z

(out of plane) direction, and last term couples the magnetic field to the
spin of the electrons.
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The eigenstates of this Hamiltonian are the Fock-Darwin states [24],

ψn,l,η(ri) =
√

n!
πσ2(n+ |l|)! ρ

|l|
i e

−ρ2
i /2L|l|

n

(
ρ2

i

)
e−ilθi , (4.2)

where we used the polar coordinates ρi = ri/σ and θi. Here, σ =
√
~/m∗Ω

is the effective, magnetic field-dependent dot radius, with a magnetic-field-
dependent oscillator frequency Ω =

√
ω2

0 + ω2
c/4, and ωc = eB/m∗ the

cyclotron frequency. Lb
a (x) is the associated Laguerre polynomial. The

quantum number n = 0, 1, 2, . . . in the expression above labels the radial
orbital degree of freedom of the electron, and the quantum number l ∈ Z
labels the orbital angular momentum. We use η = ±1 for the spin of the
electron. The corresponding eigenenergies are

E
(i)
n,l,η = ~Ω(2n+ |l| + 1) − 1

2~ωcl + 1
4g
m∗

me
~ωcη, (4.3)

where me is the mass of the electron at rest. The first term describes the
two-dimensional harmonic-oscillator energies, now with a magnetic-field-
dependent frequency Ω. The second term comes from the direct coupling
of the angular momentum l to the out-of-plane magnetic field. Finally,
the last term accounts for the Zeeman effect.

This produces the text-book Fock-Darwin spectrum of Fig. 4.2. In
this figure we show the single-particle energies as a function of the ωc for
different quantum numbers n and l. The levels plotted in red are the ones
we used in our analytic and numerical calculations.

Many-particle interactions

Next we want to find the expressions for the eigenenergies of the multi-
electron states and their spin structure, in the presence of electron-electron
interactions. For this we follow the method used in [67, 70]. We describe
the electron-electron interaction with the Hamiltonian

V =
∑
i<j

e2

4πε|ri − rj |
, (4.4)

where ε is the effective dielectric constant of the surroundings of the quan-
tum dot. For a system with two electrons analytical diagonalization of the
Hamiltonian H1 =

∑
iH

(i)
0 +V is possible [43], but for more than two elec-

trons there is no obvious solution. We thus treat this many-body problem
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Figure 4.2: Fock-Darwin spectrum as a function of ωc, where the boxed la-
bels indicate the orbital and angular momentum quantum numbers (n, l).
For simplicity we have omitted the Zeeman effect and all the lines are thus
two-fold degenerate. In red we plotted the levels that we include in our
calculations.

perturbatively and work in a restricted configuration space. We construct
a basis of many-particle states from products of single-particle states and
impose a cutoff on the quantum numbers n and l as was done in Ref. [67].
Working in this basis allow us to find explicit expressions for the matrix
elements of the Hamiltonian in Eq. (4.4)

Let us start by constructing a basis from antisymmetrized products
of Fock-Darwin states. We denote these states |s〉. For a system of M
electrons, the states |s〉 are characterized by a set of quantum numbers
s = {ns1 , ls1 , ηs1 ; . . . ;nsM , lsM , ηsM }. We then write the antisymmetrized
wave function in position space 〈r1, . . . rM |s〉 = φs(r1, . . . rM ) as

φs(r1, . . . rM ) = A[ψns1 ,ls1 ,ηs1
(r1) . . . ψnsM

,lsM
,ηsM

(rM )], (4.5)

where A is the antisymmetrization operator. Since
∑

iH
(i)
0 is diagonal in

the basis of these product states, we can write the full Hamiltonian as

H1 =
∑

s

[
~Ω(2Ns +Ks +M) − 1

2~ωcLs + 1
2g
m∗

me
~ωcSs + Vss

]
|s〉 〈s|

+
∑
s 6=r

Vsr|s〉 〈r| , (4.6)

where Ns =
∑

i nsi , Ks =
∑

i |lsi |, Ls =
∑

i lsi , Ss = 1
2
∑

i ηsi , and Vsr =
〈s|V |r〉. To write an explicit matrix form of this Hamiltonian we therefore
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need to evaluate the integrals

Vsr =
M∑
i<j

∫
dr1 · · · drM φ∗

s(r1, . . . rM ) e2

4πε|ri − rj |
φr(r1, . . . rM ) (4.7)

for all sets of quantum numbers s and r. However, since the Coulomb
potential couples electrons pairwise, we only need to evaluate integrals of
the form∫

dr1dr2 ψ
∗
n1,l1,η(r1)ψ∗

n2,l2,η′(r2)ψn3,l3,η′(r2)ψn4,l4,η(r1) e2

4πε|r1 − r2|
.

(4.8)

Using the Fock-Darwin states from Eq. (4.2) and the results from Ref. [71]
we can evaluate the integral analytically and find a closed form expression
for all Vsr in Eq. (4.8) and thus H1, from Eq. (4.6).

Multi-electron spectra

With these ingredients the eigenstates and eigenenergies of the full many-
particle Hamiltonian H1 =

∑
iH

(i)
0 +V can then be found from numerical

diagonalization or, in the weak-interaction limit characterized by κ ≡
e2/(4π~εσ0ω0) � 1, from a perturbation expansion in κ.

We will use a charge configuration (1,4,1), which means that we will
have four electrons in the middle quantum dot. Nevertheless, since we in-
troduced as well a finite tunneling interaction that gives rise to exchange
effects, we must also consider other charge states. For simplicity, in the
following analytical calculations we will restrict ourselves to charge states
that are only one tunneling event away from (1,4,1). This means that we
need to consider the states (1,5,0), (0,5,1), (2,3,1), (1,3,2). We therefore
need to study the spectra of quantum dots with three, four and five elec-
trons. For the numeric evaluations we consider also other charge states
that are close to the (1,4,1) region although not coupling to it directly by
one single tunneling transition, such as the states (2,2,2) and (0,6,0).

We carry the analysis assuming a relatively small magnetic field, with
ωc/ω0 ≤ 0.3, and a not too strong electron-electron interaction κ < 1.
Moreover, for the multi-electron dot, we use the 28 single-particle states
with n ∈ {0, 1}, l ∈ {0,±1,±2,±3} and η = ±1 from Fig. 4.2 to construct
our basis of many-particle states.

The numerical analysis shows that, for up to five electrons and small
κ = 0.5, the low-energy part of the spectrum ofH1 of the middle dot resem-
bles the exact many-particle spectrum reported in Refs. [67, 72] with quite
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Figure 4.3: (a) Energy spectrum of a quantum dot with four electrons
in a perpendicular magnetic field as a function of ωc, with κ = 0.5 and
g = −0.4. The dots show the results from a numerical diagonalization of
the Hamiltonian. Solid lines show the analytic expressions for the mag-
netic field-dependent energies. Singlet states are plotted in green and
triplet states in blue. (b) Numerically evaluated energy of the state |Sα〉
relative to |T 0

β 〉 for two values of κ.

high accuracy. In Fig. 4.3(a) we show the lowest part of the energy spec-
trum of a quantum dot with four electrons, where we used g = −0.4. The
numerical results are shown by blue (states with a triplet character) and
green (states with a singlet character) dots. In this plot we show only the
six states with lowest energy. The three triplet states are labeled |Tβ〉 and
have the largest weight in the orbital configuration (0, 0)2(0, 1)1(0,−1)1,
where (n, l)m means m electrons in the orbital state (n, l) [67]. The
three lowest singlet states are labeled |Sα,β,γ〉, and their largest weights
are in the orbital configurations (0, 0)2(0, 1)2, (0, 0)2(0, 1)1(0,−1)1, and
(0, 0)2(0,−1)2, respectively. The magnitude of the Zeeman splitting is so
small compared to the orbital energies that it is not possible to distinguish,
visually, the three triplet states.

At zero magnetic field, exchange effects arising from the electron-
electron Coulomb interaction favor a spin triplet ground state. When
the field is increased, we observe that: (i) all orbital energies increase due
to the magnetic compression of the wave functions, through an increase
in Ω(ωc), (ii) the singlet states |Sα〉 and |Sγ〉 split out due to the coupling
of the magnetic field to their total projected orbital angular momentum
Lz = ±2~, and (iii) the Zeeman effect splits out the three triplet states
as well.

This leads to a singlet-triplet crossing at ωc/ω0 ∼ 0.1. At around this
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point the four-particle ground state changes from a singlet to a triplet
character in the same way as the quadruple dot XO qubit from Chapter 3,
(cf. to Fig. 3.4). Close to this degeneracy the next excited state—one of
the other two singlet states—is typically ∼ 0.2 ~ω0 higher in energy. This
large energy difference allows us to disregard these excited states. Note
also that the magnitude of the magnetic field, through ωc, that forces a
singlet-triplet crossing also depends on κ. Therefore, for larger quantum
dots, with a smaller Eorb = ~ω0, a smaller ωc will be required.

Next we proceed to carry our analytical analysis. For a quantum dot
with four electrons, and up to second order in κ, we find the energies for
the three lowest triplet levels:

E
T

(S)
β

= 6~Ω + S

2 g
m∗

me
~ωc + γ

(1)
T κ~

√
Ωω0 + γ

(2)
T κ2~ω0, (4.9)

where S ∈ {−1, 0, 1} labels the total spin projection of the triplet states.
The coefficients γ(1)

T and γ
(2)
T , given by

γ
(1)
T = 2

√
2π, γ

(2)
T = −195893509π

805306368 ≈ −0.764, (4.10)

determine the prefactor of the first- and second-order correction, respec-
tively. The energy of the two lowest singlet levels is

ESα,γ = 6~Ω − L

2 ~ωc + γ
(1)
S1 κ~

√
Ωω0 + γ

(2)
S1 κ

2~ω0, (4.11)

where L is the total orbital angular momentum projection of the state.
That is, L = 2 for the lowest singlet |Sα〉 and L = −2 for the first excited
singlet |Sγ〉. Here we have also introduced the two coefficients

γ
(1)
S1 = 67

16

√
π

2 , γ
(2)
S1 = −38109479π

134217728 ≈ −0.892. (4.12)

Finally, for the singlet |Sβ〉 we find

ESβ
= 6~Ω + γ

(1)
S2 κ~

√
Ωω0 + γ

(2)
S2 κ

2~ω0, (4.13)

with the coefficients

γ
(1)
S2 = 35

8

√
π

2 , γ
(2)
S2 = −1391260025π

4294967296 ≈ −1.02. (4.14)
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With these results we can write an expression for the singlet-triplet split-
ting EST = ET 0

β
− ESα ,

EST = ~ωc − 3
16

√
π

2κ~
√

Ωω0 + 32763365π
805306368κ

2~ω0, (4.15)

which for small ωc/ω0 can be very well approximated by

EST ≈ ~ωc +
(

− 3
16

√
π

2κ+ 32763365π
805306368κ

2
)
~ω0

≈ ~ωc +
(
−0.235κ+ 0.128κ2

)
~ω0. (4.16)

Note that the splitting between |Sα〉 and |T 0
β 〉 is to good approximation

linear in ωc in the regime of interest, and the ground state changes from
a spin triplet to a singlet around ωc/ω0 ∼ 0.1. These two generic features
are the key ingredients for our qubit proposal.

One could alternatively use levels that cross in this subsystem to con-
struct a singlet-triplet qubit [68], but in this case qubit control would still
rely on modulation of the magnetic field. If, instead, we add two more
quantum dots with a single electron on each, then we can create a triple-
dot exchange-only singlet-only qubit similar to the quadruple-dot qubit
proposed in Chapter 3, where the tunability of the singlet-triplet split-
ting of the two central electrons, via detuning of t23 (see Fig. 3.4), is now
replaced by tunability of the splitting through the external magnetic field.

4.1.2 The six-particle singlet-only qubit subspace

We construct our qubit using two six-electron spin states. We use the de-
vice sketched in Fig. 4.1, with a charge configuration (1,4,1), and proceed
again as in Chapter 2. We model the system with the Hamiltonian

H =
3∑

i=1

(
H

(i)
1 − Vini

)
+
∑
〈i,j〉

Ucninj −
∑

〈i,j〉,η

tij√
2
c†

iηcjη, (4.17)

where now we included H(i)
1 : the single-dot many-particle Hamiltonian for

a quantum dot i described above in Eq. (4.6).
This is a very simple model where we assumed that: (i) The gate-

induced potentials Vi are smooth enough so that they affect all electronic
orbitals in the same way. (ii) The distance between the quantum dots dots
is large enough to allow us to treat the interdot electrostatic energy (the
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Figure 4.4: Charge stability diagram of the six-electron XO qubit as a
function of Vm and Vd, centered at the charge region (1,4,1). The figure
shows the positions of the SS, at the center, and the RX regimes, on top
of the (1,4,1) region. The red dotted line indicates where the qubit is
manipulated, both for qubit operations and readout. For this figure we
have used ωc/ω0 = 0.1, Uc = 0.2ω0, κ = 0.5 and m∗ = 0.067me.

second term in the Hamiltonian) as being dependent only on the number
of electrons in the dots (ni) and not on their exact orbital configuration.
(iii) All tunneling processes we will consider below involve a (0,0)-orbital
on the lateral quantum dots and a (0,±1)-orbital on the central dot; since
all (0,±1)-orbitals have the same radial structure we take the tunneling
coefficients tij to be independent of the electronic orbitals involved. We
thus use tl for the magnitude of the tunnel coupling between the quantum
dots 1 and 2, regardless of the orbitals involved, and tr for the tunnel
coupling between the dots 2 and 3. Furthermore, the quantum dots that
form the qubit have different sizes. We use σ0 = 30 nm for the central dot
and σ0 = 20 nm for the lateral dots. This allows for spin blockade in the
external dots and seizable charging and orbital energies in the middle dot,
which are necessary for obtaining a qubit equivalent to the XO singlet-only
qubit of Chapter 3.

From the electrostatic part of H we find the CSD of Fig. 4.4 as a
function of the detuning Vd = 1

2 (V3 − V1) and Vm = 1
2 (V1 + V3) − V2. We

study the qubit within the charge state (1,4,1), either at the RX regime
or at the SS. Within the (1,4,1) region the four lowest-energy six-particle
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states with spin S2 = 0 can be written as

|0〉 = |SαS13〉, (4.18)

|1〉 = 1√
3

[
|T (0)

β T
(0)
13 〉 − |T (−)

β T
(+)
13 〉 − |T (+)

β T
(−)
13 〉

]
, (4.19)

|2〉 = |SβS13〉, (4.20)
|3〉 = |SγS13〉, (4.21)

where, as in the previous chapters, |S13〉 and |T13〉 indicate the pairing of
two electrons in the outer dots in a singlet or triplet state. The states
|Sα,β,γ〉 and |Tβ〉 are the lowest singlet and triplet states on the central
dot, as defined above (see Fig. 4.3 and the text around). The qubit is thus
defined in this singlet subspace, with the qubit states being |0〉 and |1〉.

We propose to tune the system close to the degeneracy of the states
|Sα〉 and |Tβ〉 on the central dot. For a dot size of σ0 = 30 nm, this happens
at B ≈ 75 mT (that is, ωc/ω0 = 0.1). Furthermore we use Uc = 0.2ω0
and κ = 0.5. Close to this point, the singlets |2〉 and |3〉 will be split off
by an energy much larger than the qubit splitting.

We derive an effective qubit Hamiltonian by means of a SW transfor-
mation of the Hamiltonian in Eq. (4.17). For this we assume that τ/∆ �
1, with τ the magnitude of the tunnel couplings (typically τ ∼ 10 µeV)
and 2∆ the width of the (1,4,1) region (see Fig. 4.4). This condition is
satisfied across most of the (1,4,1) charge region, and allows us to treat
the tunnel coupling perturbatively. We thus proceed as in Chapter 2 and
project the resulting transformed Hamiltonian onto the qubit subspace,
yielding to order τ2

Hqb = 1
2 (EST + Jz)σz + Jxσ

x. (4.22)

From this expression we observe that the qubit splitting is dominated by
the singlet-triplet splitting on the central dot EST which, from Eq. (4.16)
we see that it is, to good approximation, linear in ωc. We emphasize that
through ωc ∝ B this term, and therefore the qubit splitting, can be easily
tuned over tens of µeV.
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The other two terms, the energies Jz and Jx read:

Jz = 1
2

(
t2l ∆

(Vd − Vm)2 − ∆2 + t2r∆
(Vd + Vm)2 − ∆2

+ 3t2l (∆ + ωc)
(Vd − Vm)2 − (∆ + ωc)2 + 3t2r(∆ + ωc)

(Vd + Vm)2 − (∆ + ωc)2

)
, (4.23)

Jx =
√

3
2

(
t2r∆

(Vd + Vm)2 − ∆2 − t2l ∆
(Vd − Vm)2 − ∆2

)
. (4.24)

Close to the line where Vd = 0 and with tl ≈ tr, the two exchange
terms can be expressed as

Jz ≈ − τ2
[ ∆

∆2 − V 2
m

+ 3(∆ + ωc)
(∆ + ωc)2 − V 2

m

]
, (4.25)

Jx ≈
√

6τ∆
∆2 − V 2

m

[
δt+ 2tVm

∆2 − V 2
m

Vd

]
, (4.26)

for ∆ as defined in Fig. 4.4, and with τ = 1
2(tl + tr) and δt = tl − tr. The

exchange energy Jz gives only a small tuning-dependent correction to the
qubit splitting, largely dominated by EST . On the other hand, Jx provides
a coupling to σx, and its linear dependence in δt and Vd can be used to
drive Rabi oscillations, either via a detuning of the tunneling asymmetry
δt or via a detuning of Vd.

As we mentioned before, we are interested in studying the dynamics of
the qubit at the RX regime and at the SS. At the RX regime, close to the
top and bottom of the (1,4,1) region in Fig. 4.4, the strong coupling to the
other charge states offers fast qubit control through Vd [27]. In Fig. 4.5(a)
we show the lowest-energy states of the system as a function of Vd along
the horizontal dashed line in Fig. 4.4 (along Vm/ω0 = 0.27) obtained
from the Hamiltonian in Eq. (4.17). In this figure we have ignored the
Zeeman splitting for clarity, which would add an energy splitting between
the triplet (and quintuplet) states of ∼ 1.7µeV for ωc/ω0 = 0.1. We used
the same parameters as in Fig. 4.4 and further set τ = 25 µeV and δt = 0.
The green and blue curves show the qubit states |0〉 and |1〉, respectively.
The three spin triplets |T1,2,3〉, and a spin quintuplet |Q〉 is shown in gray.

At the SS the qubit is, to linear order, insensitive to electric noise in the
potentials Vi, offering some protection against charge noise. Nevertheless,
the spectrum at this point is qualitatively similar to the spectrum at the
RX regime. We show the spectrum at the SS in Fig. 4.5(b), for the same
set of parameters as in Fig. 4.5(a), but now as a function of the tunneling
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Figure 4.5: (a) Energy spectrum of the Hamiltonian in Eq. (4.17) at
the RX regime as a function of the detuning Vd, showing only the lowest
laying states and ignoring the Zeeman splitting. (b) Energy spectrum at
the SS as a function of the tunneling asymmetry δt. The green and blue
lines show the qubit states |0〉 and |1〉 respectively; the gray lines show the
spin triplet and quintuplet states. In both panels we have used τ = 25µeV
and ωc = 0.1ω0.

asymmetry δt, with Vd = 0. The smaller exchange effects at the center of
the CSD translate into a qubit splitting that is closer to EST (≈ 18.3 µeV
for ωc/ω0 = 0.1). Note, however, that both spectra are similar to the
energy spectrum of the XO singlet-only qubit of Fig. 3.3, in Chapter 3.
Furthermore, in both panels we show results for values of the magnetic
field on the right-hand side of the singlet-triplet crossing (Fig. 4.3), but
for smaller fields, on the left-hand side of the crossing, the qubit works
similarly, except that the ground state would be the qubit state |1〉.

Let us now study in more detail the degree of tunability of the qubit.
In Fig. 4.6(a) we show the qubit splitting ~ωz as a function of the magnetic
field, in terms of ωc, both in the RX regime and at the SS. This confirms
the high degree of tunability of our qubit: in a range of ωc/ω0 from 0.1
to 0.2 (equivalent to a magnetic field from ∼ 70mT to ∼ 140mT) the
qubit splitting increases from nearly 0 to ∼ 130µeV. This high degree of
tunability, unprecedented in any other XO spin qubit, permits an efficient
and adaptable coupling to other systems such as microwave cavities which
can be used to couple distant qubits [15, 50, 73, 74].
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Figure 4.6: (a) Qubit splitting as a function of the magnetic field at the
RX regime (yellow) and at the SS (purple), where ωc/ω0 = 0.1 corresponds
to B ≈ 75 mT. (b) This panel shows the derivative dJx/dq for q ∈ {δt, Vd}
as a function of Vm and at Vd = 0. This magnitude indicates the efficiency
of δt and Vd as driving parameters. For (a) we used Vm = 0.27 and Vd = 0.

4.1.3 Manipulation of the qubit

This qubit has exactly the same detuning axis as the XO qubits presented
in Chapters 2 and 3. Therefore, single-qubit rotations can be performed
via resonant Rabi driving via a sinusoidal modulation of a tuning param-
eter q—we choose either q = Vd or q = δt— with a small amplitude q̃ and
frequency ω. For small enough q̃ the qubit Hamiltonian from Eq. (4.22)
can be approximated as

Hqb = 1
2~ωzσ

z +Aq sin(ωt)σx, (4.27)

where Aq = q̃ (dJx/dq)q=q0 . Similarly to the XO singlet-only qubit and
the XO triple-dot qubit, driving this qubit resonantly, with a frequency
ω = ωz, induces Rabi oscillations with a period h/Aq. At the RX regime,
we can use Vd as the driving parameter. With an amplitude of Ṽd = 5–
10 µeV this will result in fast rotations with a Rabi period of TRabi ≈ 20–
40 ns. At the SS, a resonant detuning of the qubit is more efficient via a
driving on δt. A periodic driving on δt with an amplitude δt̃ = 2 µeV will
result in Rabi oscillations with a period of TRabi ≈ 20 ns. We can see this
in Fig. 4.6(b), where we plot the “efficiency” dJx/dq of the two driving
parameters q ∈ {δt, Vd} as a function of Vm, along the line Vd = 0. Note
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that at the SS, at Vm = 0, the sensitivity to Vd vanishes. At this point,
and also throughout all Vm within the charge region (1,4,1), driving of δt
is more effective. This behavior is in agreement with Eq. (4.26).

Fast qubit rotations can therefore be achieved both in the RX regime
and at the SS. Qubit initialization and readout can be accomplished in
the same way as in the XO triple-dot qubit or as in the XO singlet-only
spin qubit of Chapter 3.

4.1.4 Electric and magnetic noise: Decoherence

We have previously seen that in singlet-only spin qubits there is no direct
coupling between the qubit states via the hyperfine interaction, to lowest
order. Higher-order effects, however, can give rise to energy shifts of the
qubit splitting that may lead to qubit dephasing, in the same way as we
saw in the previous chapter. The qubit that we presented in this chapter
is not different in this regard. We thus need to study the effects of the
hyperfine interaction in this qubit. We model the interaction between the
electron spins and the spins of the nuclei in the same way as before2.

We thus proceed as before and find that a rough estimate for the scale
of the dephasing time caused by the higher-order effects of the hyperfine
fields is T ∗

2 ∼ Aq~(E0 − ET 0
1
)2/σ4

K , where E0 and ET 0
1

are the energies
of the qubit state |0〉 and the triplet state |T (0)

1 〉. As expected, when the
states |T (0)

1 〉 and |0〉 are very close in energy, the effective magnetic field-
induced interaction between both states is larger and the dephasing time
is thus shorter. At the SS, where the two states are closer, the dephasing
time is thus shorter than in the RX regime.

To corroborate this, we evaluate the probability 〈P1(t)〉 of finding the
qubit in |1〉 after initializing in |0〉 and driving resonantly, as a function of
time t. We carry this calculation numerically and focus on the two cases
illustrated in Fig. 4.5. The results are shown in Fig. 4.7. In this figure
we show the time-dependent probabilities for (a) driving via Vd in the RX
regime, and (b) driving via δt at the SS. In both cases we evaluate the
probability after averaging over 2500 random nuclear configurations of Ki

and considering the nuclear noise as Gaussian-distributed with zero mean
and σK = 0.07 µeV [32] (refer to Section 3.1.2). We used the driving
amplitudes Ṽd = 10 µeV and δt̃ = 2 µeV.

2The coupling between the nuclear magnetic moments and the orbital degrees of
freedom of the electrons in the central dot is, on the other hand, negligible, and will
therefore not be considered here.
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Figure 4.7: Time dependent probability 〈P1(t)〉 (a) at the RX regime and
(b) at the SS, after averaging over 2500 random nuclear field configura-
tions. The decay of the Rabi oscillations at long times show a longer
coherence time at the RX regime than at the SS.

The results show that the hyperfine-induced dephasing, even at the SS,
is small compared to the Rabi period. Nevertheless, a longer coherence
time is observed at the RX regime, where the energy difference between
the lowest qubit state and the leakage states |T (0,±)

1 〉 is larger.



5
Relaxation, leakage and

dephasing

We have seen a variety of XO qubits: From the triple-dot XO
qubit from Chapter 2 to the singlet-only XO qubits from Chap-
ters 3 and 4. Here we investigate the different mechanisms of
decoherence on these specific devices and show an enhancement
of the coherence time by several orders of magnitude when the
qubit is operated at the SS. Some of the contents of this chapter
are included in Paper II and partially also in Papers I and III.

In Chapter 2 we identified the main mechanisms of decoherence in
XO qubits, and in Chapters 3 and 4 we proposed two novel devices that
address some of these issues. Nevertheless, once the main mechanisms of
decoherence have been disabled we have to quantify the remaining sources
of decoherence in order to be able to predict the coherence time of the
qubit, that is, the usable computational time. In this regard we study
the remaining relaxation and decoherence mechanisms of two different
systems: (i) An XO triple-dot spin qubit hosted in purified 28Si, where
the fraction of spin-full nuclei in the bulk semiconductor is negligible, and
(ii) the XO singlet-only spin qubit of Chapter 3, which is intrinsically
insensitive, to leading order, to the effects of any random magnetic noise.

67
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We argued before that one of the main mechanisms of decoherence in
triple-dot XO spin qubits hosted in high quality III-V semiconductors is
a relaxation out of the qubit subspace due to the coupling between the
electrons confined in the quantum dots and the ensemble of fluctuating
nuclear spins in the semiconductor. To solve this problem we presented
a proposal for an XO singlet-only spin qubit, but another straightforward
solution, already investigated by many [10, 23, 32, 33, 75, 76], consist on
hosting the qubit in highly purified 28Si, which is the most abundant and
a nuclear spin-free isotope of silicon1. Indeed, when it comes to its fab-
rication, GaAs has been proven to be a very successful material [9, 13],
and although the fabrication of quantum dots in Si is more challenging
it also has many advantages. Certainly, the valley degeneracy in Si adds
more degrees of freedom, but this degeneracy can be efficiently lifted re-
sulting in a ground-state gap [10, 77]. One can then fabricate a triple-dot
spin qubit, with the advantage that there are (almost) no nuclear spins
and the qubit can be operated by means of electric fields only [33]. But
these two solutions—the XO singlet-only spin qubit of chapters 3 and 4
and the Si-based XO triple-dot spin qubit—albeit eliminating the major
source of decoherence, are not decoherence-free. The remaining sources of
decoherence are: (i) electric noise in the metallic gates that control and
define the quantum dots, leading to qubit dephasing [13, 34], also at the
SS, (ii) an electron-phonon coupling that can cause spin-conserving qubit
relaxation [28] within the qubit subspace, and (iii) the SO interaction that
can enable spin-flip transitions out of the qubit subspace when combined
with a mechanism of energy dissipation [9, 13].

In the this chapter we study the effects of electric noise, electron-
phonon coupling and the SO interaction for the XO qubit from Chapter 2
and the XO singlet-only qubit from Chapter 3, with some brief comments
on the highly tunable XO singlet-only qubit from Chapter 4. We thus
identify decoherence-free regions in the parameter space that extend sub-
stantially the coherence time of the qubits.

1Let us note, though, that perfect purification in Si is not possible, hence there
is always a weak random magnetic field gradient between dots. Moreover an effective
Zeeman noise has been reported in Si quantum dots [33]. This Zeeman noise has been
shown to be one of the main sources of decoherence, together with electric noise, in
triple QDs.
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Figure 5.1: Reference frame of the system. The quantum dots lie in the
x-y plane which, in turn, lies in the (001) crystallographic plane. An in-
plane magnetic field B is applied at an angle ϑ with respect to the interdot
axis to induce a Zeeman splitting of spin states. We consider an interdot
axis x at an angle χ with respect to the crystallographic [100] direction.

5.1 Model of the system

We model both qubits with the Hubbard-like Hamiltonian that we in-
troduced before. Nevertheless, since the geometry of the two qubits and
the properties of the host materials are different, we will briefly explain
the different peculiarities of the devices that we need to consider for the
further analysis.

The triple-dot XO qubit

Here we consider a linear array of three circular quantum dots, hosted
in 28Si, in the (001) crystallographic plane, as schematically depicted in
Fig. 5.1. The dots have radius σ0 and interdot distance d (center-to-
center). We assume a large orbital level splitting Eorb on the dots, and
hence tune the system into the spin blockade regime.

We model the system as in Chapter 2, including all possible three-
particle charge states that are coupled to the charge state (1,1,1) by only
one tunneling transition. These charge states are (2,0,1), (1,0,2), (1,2,0)
and (0,2,1). The full charge stability diagram is shown in Fig. 5.2. As
we did before, we included a nearest-neighbor, spin-conserving, interdot
tunnel coupling and an in-plane external magnetic field that adds a Zee-
man splitting between states with different spin projection Sz. The tunnel
coupling parameters t12 and t23 are renormalized to include the effects of
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Figure 5.2: (a) Charge stability diagram as a function of the detuning
ε and Vm. In the region (1,1,1) we indicate the position of the SS and
the RX regimes. (b) Qualitative sketch showing the lower-energy part of
spectrum of the XO triple-dot qubit as a function of ε (in arbitrary units)
within the RX regime. (refer to Section 2.2). The gray arrows indicate the
leakage processes investigated here. In both panels we used Uc = 0.3U ,
V2 = 2Uc − V1 − V3 and for the spectrum we further used t12 = t23.

the phase differences between the valley states on neighboring dots [9].
From here onward we will use t12 = t23 ≡ τ .

We are interested in the RX regime, at the top and bottom of the
(1,1,1) charge region, where a small modulation of ε with frequency ω
induces Rabi oscillations and allows for fast qubit operations [27, 62]; and
we are also interested in the SS, at the center of the (1,1,1) region, where
the qubit offers a similar control [32, 35, 78], and has also the benefit that
electric noise in the gate potentials does not influence, to leading order,
the qubit splitting. This results in a dephasing time T ∗

2 that is orders of
magnitude larger than in the RX regime [15, 36].

At ε = 0, for any Vm, the qubit splitting to lowest order in τ reads:

~ωz = τ2
( 1
U − 2Uc − Vm

+ 1
U + Vm

)
. (5.1)

The qubit splitting can be controlled through τ and Vm and, as we saw
earlier in Section 2.2, a small ε yields a term ∝ ε σx in the projected qubit
Hamiltonian.

Since phonon-mediated relaxation of the triple-dot XO qubit has been
studied elsewhere [13, 28, 65] and 28Si is nuclear-spin-free, we will focus
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Figure 5.3: (a) Four quantum dots are placed on the (001) plane of the
semiconductor at an angle χ from the [100] crystallographic direction in
a T-like geometry. (b) CSD of this setup with Uc = 0.3U . We show only
the section of the CSD with εΛ = Uc/2. This plane contains a SS at the
center of the (1,1,1,1) charge region.

here on leakage processes caused by the SO interaction. These are indi-
cated in the spectrum of Fig. 5.2(b) with gray arrows, and are defined
as transitions from one of the qubit states |0〉 or |1〉 to the quadruplet
state |Q2〉 that lays below the qubit subspace. We will additionally study
the dephasing of the qubit states as a consequence of electric noise in the
gate-induced offsets Vi.

The XO singlet-only qubit

We model the XO singlet-only qubit in a similar way, as we did in Chap-
ter 3. Before we studied, for simplicity, the plane defined by εΛ = 0. The
choice of the plane is not much relevant, but choosing this plane helps to
reduce the complexity of the calculations and incidentally contains enough
features to make the problem at hand interesting enough. Now we will
consider the plane εΛ = Uc/2, since this is the plain that contains the SS.

At zero detuning, with ε14 = 0 and in the plane εΛ = Uc/2, the qubit
splitting goes as (to lowest order in tij):

~ω = τ2
( 1
U − 2Uc − ε23

+ 1
U + ε23

)
− t223

( 1
U − 3Uc − 2ε23

+ 1
U + Uc + 2ε23

)
, (5.2)
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where we again used t12 = t24 = τ , and kept t23 6= τ .

Usually, in multi-dot qubits, a magnetic field is applied to the system
to break degeneracies within the qubit subspace. This is indeed what we
did in Chapter 3, but for the quadruple-dot XO qubit this field is not be
necessary. The absence of a magnetic field has some benefits:

1.—Due to the complexity of the fabrication of the quantum dots,
these may come with different sizes and different g-factors. This can give
rise to a magnetic field gradient between quantum dots when a magnetic
field is applied [33]. Suppressing the magnetic field thus eliminates this
problem.

2.—A magnetic field will split the triplet states with different Sz, and
some of them will lay lower down in the energy spectrum. This shift
in the energy difference between the qubit states and the triplet states
makes the relaxation rates out of the qubit subspace much larger and,
therefore, limit the coherence time of the system. Additionally, if we look
at the energy spectrum in Fig 3.3, from Chapter 3 we can see three triplet
states around the qubit states. If we include a magnetic field that is large
enough to sweep away the polarized triplets from the qubit subspace there
will be three polarized triplet states |T (+)

1,2,3〉 far below the qubit states, plus
one unpolarized the triplet state |T (0)

3 〉 close to the qubit state |0〉. Thus a
total of four triplet states below the qubit subspace. Without the magnetic
splitting only three triplet states lay below |0〉. Reducing the number of
states the qubit can leak to also increases the coherence time of the qubit.

3.—In absence of magnetic fields the system becomes time-reversal
symmetric and that gives rise to a further reduction of the relaxation
rates via a mechanism similar to a Van Vleck cancellation [30, 79] but
with a system of integer spin instead, as we will see below.

On the other hand, since the XO singlet-only spin qubit is intrinsically
insensitive to any magnetic noise or gradients, the downsides of applying
a magnetic field are not significant.

We will investigate the effects of electric noise on the coherence time
of the qubit and also leakage processes from the qubit states |0〉 and |1〉
to the triplet states |T 〉(±,0)

3 .
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Figure 5.4: Time-dependent return probability |〈+|ψ(t)〉|2 after initial-
izing in |+〉, averaged over 105 configurations of δVi taken from a normal
distribution with 〈δVi〉 = 0 and a standard deviation σe = 5µeV (blue
line). The black line shows the envelope function predicted in Eq. (5.5).

5.2 Electric noise and sweet spots

In a triple-dot XO qubit there is a sweet spot at Vm = −Uc, the center of
the charge stability diagram. At this point the qubit splitting is minimal:

~ωz = 2τ2

U − Uc
, (5.3)

with dωz/dVi = 0 for all Vi, and the effects of electric noise in the gates
on the coherence time of the qubit are also minimal. Nevertheless we
want to investigate the next-order correction to the dephasing time Tϕ

due to electric noise. We do that by evaluating the probability P+(t) of
finding the system in the initial state |+〉 = 1√

2(|0〉 + |1〉) after it has
been freely evolving under the influence of electric noise in the gate offsets
only. The average of this probability over noise should display several
oscillations between 0 and 1, with a period 2π/ωz, that decay in time to
〈P+(t → ∞)〉 = 0.5. We evaluate this expression both analytically and
numerically. We tune the system to the SS and add random offsets δVi

to all the gate-induced offsets Vi, taken from a normal distribution with
σe = 5 µeV [32]. By diagonalizing the Hamiltonian, we identify the two
qubit states |1〉 and |0〉, and create an initial state |+〉 = 1√

2(|0〉 + |1〉).
We then evaluate numerically the time-dependent qubit state |ψ(t)〉 =
exp{− i

~Ht}|+〉, and from this we calculate P+(t) for this specific set of
δVi. We repeat this process 105 times and calculate the average 〈P+(t)〉.
The result is the blue curve in Fig. 5.4, where we can see an oscillating
probability that decays to 1/2 over time.
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An analytical evaluation of the average 〈P+(t)〉, yields

〈P+(t)〉 = 1
2 +

cos
(
t 2τ2

~(U−Uc) − arctan
[
t 4τ2ξ2

~(U−Uc)3
])

2
√

1 + t2 16τ4σ4
e

~2(U−Uc)6

. (5.4)

This expression has been obtained by following the recipe outlined in Sec-
tion 2.4. This probability oscillates with a frequency 2τ2/~(U −Uc), while
additionally acquiring a phase shift that goes to −π/2 for large times.
From this we extract a simple expression for the envelope function of the
oscillations

Penv = 1
2 + 1

2
√

1 + t2 16τ4σ4
e

~2(U−Uc)6

. (5.5)

The oscillations will thus decay as a power law with Penv ∝ Tϕ/t, and
a dephasing time of Tϕ = ~(U − Uc)3/(4τ2σ2

e). This is in clear contrast
with the exponential decay ∝ e−t2/T 2

ϕ that is encountered elsewhere in
the CSD, and predicted by the “cumulant expansion method” [15, 73].
Fig. 5.4 shows a good match between the envelope function, in black, and
the numerical simulations, in blue.

In the XO singlet-only qubit the sweet spot is also located at the center
of the charge stability diagram, with ε14 = 0, ε23 = −Uc and εΛ = Uc/2,
and the qubit splitting at this point is

~ωz = 2τ2

U − Uc
− 2t223
U − Uc

. (5.6)

Here, the average of the probability over the noise δVi can also be evaluated
analytically, although the calculation is more tedious. Nonetheless, one
can still obtain the envelope function of the oscillations:

Penv = 1
2

1 +
(

1 + 64 t423σ
4
e t

2

(U − Uc)6~2

)−1/4(
1 + 16 τ4σ4

e t
2

(U − Uc)6~2

)−1/2
 . (5.7)

We show this result together with a numerical study of the probability
〈P+(t)〉 for an XO singlet-only qubit in Fig. 5.5, where we proceeded in
the same way as before. At long times we observe that the probability
decays as a power law Penv(t) ∼ t−3/2. We can then extract, from Eq. (5.7)
a characteristic time Tϕ = ~(U − Uc)3 (128 t223τ

4σ6
e

)−1/3.



5.2. ELECTRIC NOISE AND SWEET SPOTS 75

Figure 5.5: Time-dependent return probability 〈P+(t)〉 as a function of
time for the quadruple-dot XO qubit, averaged over 105 configurations
of δVi taken from a normal distribution with 〈δVi〉 = 0 and a standard
deviation σe = 5µeV (blue line). The black line shows the envelope of this
probability, estimated in Eq. (5.7).

Figure 5.6: Dephasing time as a function of t23 at the sweet spot, obtained
from Eq. (5.7). The dephasing time of the qubit is maximal when the dots
2 and 3 are decoupled, i.e., t23 = 0

The dependence of the probability on the tunneling amplitude t23 is
noteworthy. In Fig. 5.6 we plot the envelope probability Penv as a function
of t23 at the SS with zero detuning. Here, and also in Eq. (5.7), we see that
the dephasing time goes as Tϕ ∼ t

−2/3
23 , signaling a better performance for

smaller t23. This should motivate the choice t23 < τ . If one sets t23 = 0,
the dephasing time is maximal and so is the qubit splitting at the SS.
Nevertheless we still need to be able to couple the dots 2 and 3 (and thus
have a finite t23) for qubit initialization and readout (see Section 3.1.3).

We also investigate the effects of electric noise in the highly tunable
XO qubit from Chapter 4. In this case we analyze the coherence time T ∗

2
of the qubit away from the SS, since he wave already seen in Section 4.1.4
that the magnetic noise set by the environmental nuclear spins is more
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efficient at dephasing the qubit at the SS than at the RX regime.
Proceeding as before we find a shift in the qubit splitting in the RX

regime given by:

~δωz =
√

6t2VmδV

[
− ∆

(V 2
m − ∆2)2 − 3(∆ + ωc)

(V 2
m − (∆ + ωc)2)2

]
, (5.8)

where δV is the random fluctuation in the gates. We then estimate the
dephasing induced by the electric noise at the RX regime as

T ∗
2 ' Aq~

6t4V 2
mσ

2
e

[ ∆
(V 2

m − ∆2)2 + 3(∆ + ωc)
(V 2

m − (∆ + ωc)2)2

]−2
. (5.9)

At the SS, where ~δωz = 0 the qubit splitting is thus insensitive to fluctu-
ations in the potentials Vi to leading order. Here we find, via a numerical
evaluation of the coherence time, a dephasing time of T ∗

2 � 10 µs.

5.3 Spin-conserving qubit relaxation

The coupling between the electrons confined in the quantum dots and the
phonons present in the host semiconductor is unavoidable. Nevertheless
the effects of this interaction can be mitigated. In Si-based triple-dot XO
qubits the direct qubit relaxation rate, from the state |1〉 to |0〉 is

Γ1→0 = 1
70π

τ4

∆4
3

d2Ξ2
u(~ωz)5

~6v7
t ρ

, (5.10)

where ~ωz is the qubit splitting and ∆3 is defined as ∆−2
3 = (U − 2Uc −

Vm)−2−(U+Vm)−2. The variables d, Ξu, vt and ρ are the distance between
dots, the deformation potential, the sound velocity (along a transversal
direction) and the electron density in Si, all defined in Section 2.3. We
will not spend too much time discussing about this expressions because it
has already been studied before in other publications (see, e.g., Refs. [13,
28, 65]; the derivation of this expression is also sketched in Section 2.3).
But we can observe that the dependence of the rate on τ4/∆4

3 suggest
that, to this order of perturbation, the relaxation rate vanishes at the SS,
where 1/∆3 = 0, thus extending substantially the coherence time of the
qubit.

When studying the coherence properties of the XO singlet-only qubit
we found something very similar. Following the recipe from Chapter. 2,
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yields to leading order in τ

Γ1→0 = 2π
~
∑
k,p

|λk,p|2 3
4
τ4

∆4
4

sin2(kxd)

× exp
(

−k2σ2
0

2

)
δ(E0 − E1 + ~ω−k,p), (5.11)

where the energies E0 and E1 correspond to the states |0〉 and |1〉, and we
have used

∆−2
4 = 1

(U − 2Uc − ε23)2 − 1
(U + ε23)2

− τ2/t223
(U − 3Uc − 2ε23)2 + τ2/t223

(U + Uc + 2ε23)2 . (5.12)

For qubit splittings of the order ∼ µeV, the coupling to piezoelectric
phonons dominates [16], so we will not consider the contribution from
the deformation potential. The relaxation rate can be evaluated by con-
verting the sum over k to an integral. After substituting ~ωz = E1 − E0
and introducing the dimensionless coupling constant

g(p)
pe ≡ (eh14)2

2π2~ρv3
p

. (5.13)

we can obtain the simpler expression

Γ1→0 ≈ τ4

∆4
ω3

zd
3

v3
(eh14)2

10π~ρv2d
, (5.14)

with v a phonon velocity that, for convenience, we now assume to be equal
for all three polarizations, vt = vl ≡ v. To arrive here we have further
used a dipole approximation and expanded the sine and the exponential
functions in powers of ωzd/vp, ωzσ0/vp which are typically . 10−2.

Here, again, the relaxation rate depends on ∆4, signaling a large re-
laxation rate (and thus short coherence time) at the RX regime, where ∆4
is smaller. At the SS, on the other hand, the relaxation rate vanishes as
well (to this order of τ/∆4), showing that the electron-phonon coupling
becomes ineffective as a form of qubit relaxation at the sweet spot.

Similar results are found, as we expected, for the highly tunable XO
qubit of Chapter 4. In the RX regime, where the qubit splitting can be
extensively tuned through ωc, we estimate relaxation rates from Γ1→0 ∼
1 GHz for ~ωz ∼ 50 µeV to Γ1→0 ∼ 1 MHz for ~ωz ∼ 10 µeV, while is
strongly suppressed as we approach the SS.
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5.4 Spin-flip mechanisms

We now investigate the SO-mediated leakage mechanisms that we saw in
Section 2.5.2, applied onto the triple-dot XO qubit and the XO singlet-
only qubit, in more detail. For the first case we evaluate the leakage rates
Γ1 and Γ0 from qubit states |1〉 and |0〉 to the ground state |Q2; 1k,p〉, that
is, the ground state |Q2〉 [see Fig. 5.2(b)] combined with one phonon with
momentum k and polarization p. For simplicity we will evaluate these
rates at ε = 0 and with a symmetric tunnel coupling, t12 = t23 = τ . For
the XO singlet-only qubit the initial state would be either |1〉 or |0〉, and
and the final state |T (±,0)

3 ; 1k,p〉. In all cases we proceed as in Section 2.5.2
and calculate the rates using a second-order Fermi’s golden rule, treating
the SO interaction and the electron-phonon coupling as perturbations.

5.4.1 Virtual spin-flip tunneling

As we discussed earlier, electrons can undergo a spin-flip transition while
virtually tunneling to another quantum dot. This is equivalent to a transi-
tion from a three-electron spin state in the (1,1,1) region to another three-
electron spin state in (1,1,1) via a virtual excitation of another charge
state. This exchange-enabled mechanism produces the relaxation rates,
to leading order in τ/∆3

Γ1 ≈ 1
16π

d2

l2so

τ4

∆4
3

Ξ2
uE

3
Z

~4v5
t ρ
f ex

1

(
dEZ
~vt

)
, (5.15)

Γ0 ≈ 3
16π

d2

l2so

τ4

∆4
3

Ξ2
uE

3
Z

~4v5
t ρ
f ex

0

(
dEZ
~vt

)
, (5.16)

with the SO length lso = ~/(m∗Axx) containing the constants:

Axx = α cosϑ+ β(cosϑ sin 2χ+ sinϑ cos 2χ), (5.17)
Axy = α sinϑ+ β(cosϑ cos 2χ− sinϑ sin 2χ), (5.18)

as given in Section 2.5.2 but now with a magnetic field pointing at an angle
ϑ from the x axis (see Fig. 5.1). The dimensionless functions f ex

1,0(x) are
given in the Appendix C, and for x & 1 they go as f ex

1,0(x) ∼ 1. For small
E2

Z � (~vt/d)2 we can expand the functions f ex
1,0(x) in small x, yielding

Γ1 ≈ 1
840π

d2

l2so

τ4

∆4
3

d4Ξ2
uE

7
Z

~8v9
t ρ

, (5.19)

Γ0 ≈ 1
35π

d2

l2so

τ4

∆4
3

d2Ξ2
uE

5
Z

~6v7
t ρ

. (5.20)
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Figure 5.7: Exchange-enable leakage rates across the whole (1,1,1)
charge region, from the state (a) |1〉 and (b) |0〉 to |Q2〉 in units of
γex ≡ d2Ξ2

uE
3
Z/(l2so~4v5

t ρ) = 960 kHz. For these plots we used We used
τ = 16 µeV, U = 50 τ , Uc = 15 τ , EZ = 2 τ [31, 36, 80–82], and we set the
angles ϑ = χ = 0

At this order of perturbation the rates scale as Γ1 ∝ E7
Z and Γ0 ∝ E5

Z,
and Γ1 is smaller than Γ0 by a factor (dEZ/~vt)2. This only holds in
case of equal tunneling amplitudes. Otherwise we find that both rates
scale as Γ ∝ E5

Z. We can compare these two rates with the direct, spin-
conserving, qubit relaxation rate Γ1→0, from Eq. (5.10), which comes,
mainly, via electron-phonon coupling [28, 30]. In all cases the rates can-
cel when 1/∆3 = 0, that is, at the SS. At this point qubits are highly
insensitive to (i) dephasing due to electric noise, (ii) spin-conserving re-
laxation from (mainly) an electron-phonon coupling and (iii) leakage via
a tunneling-assisted SO interaction. Additionally, we observe a strong an-
gular dependence of SO-mediated relaxation rates, via the dependence of
Axx on the angles χ and ϑ. This allows for a further reduction of these
rates by varying the device orientation (χ) and the direction of the mag-
netic field (ϑ). This feature has already been predicted and observed in
other qunatum dot-based devices [17, 77, 83, 84].

We also perform a numerical analysis of the leakage rates across the
entire (1,1,1) charge region. For the numerical calculations we diagonalize
the Hamiltonian H = HHubb +HSO [see Eqns. (2.7) and (2.47)], disregard-
ing the excited orbital and valley states and evaluate the relaxation rates
using Fermi’s golden rule, considering the electron-phonon interaction as
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Figure 5.8: Exchange-enable leakage rates Γ1,0 across (a) the vertical
dashed lines in Fig. 5.7 for ε = 0 and (b) the horizontal dashed line in
Fig. 5.7 for Vm = −0.3U . Circles and crosses show numerical results,
whereas solid lines show the analytical rates from Eqns. (5.19) and (5.20).

a perturbation of the Hamiltonian H:

Γα = 2π
~
∑
k,p

|〈Q2; 1k,p|He-ph|α; vac〉|2 δ(Ef − Ei). (5.21)

We show the results in Fig. 5.7, where we plot the leakage rates as a
function of the detuning ε and Vm in units of γex ≡ d2Ξ2

uE
3
Z/(l2so~4v5

t ρ).
For this we assumed Si/SiGe quantum dots with size σ0 = 10 nm and
interdot distance d = 100 nm. Fig. 5.7(a) shows the rate Γ1 and Fig. 5.7(b)
the rate Γ0. In both cases, the magnitude of the rates (from ∼ 10−12 γex ∼
10−9 kHz to ∼ 10−5 γex ∼ 10−2 kHz), is typically much smaller than the
magnitude of the relaxation rate due to phonon-mediated qubit relaxation,
of the order of ∼ 1 kHz.

We conclude the numerical analysis with Figs. 5.8(a,b). This figure
shows line cuts of the plots in Fig. 5.7 along the vertical and horizontal
dashed lines. In Fig. 5.8(a) we plot the leakage rates as a function of Vm

for ε = 0, and in Fig. 5.8(a) we plot the same rates as a function of ε for
Vm = −0.3U . Circles and crosses show the numerical results, while the
solid lines in (a) show the rates from Eqs. (5.19, 5.20) that we obtained
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analytically. The plots show a good agreement between the numerical and
the analytical analysis.

At the SS, where the relaxation rates are strongly suppressed, the
qubit can also be operated via a modulation of the tunneling amplitudes,
without the need of leaving this point of low decoherence [13, 78].

Let us now study the leakage mechanisms in the XO singlet-only spin
qubit from Chapter 3. This qubit is hosted in GaAs, which is a material
with a weak spin-orbit interaction. Nevertheless we want to quantify the
effects of the SO interaction and compare them with those of the electron-
phonon coupling and the hyperfine interaction. Unfortunately, for a sys-
tem composed of four quantum dots, with 16 different spin states in the
(1,1,1,1) charge region, the analytical calculation of the relaxation rates
can become cumbersome and simple expressions can only be obtained at
certain special points, such at the sweet spot, up to the lowest order of
perturbation. We therefore prefer to show numerical results instead, since
it is possible to calculate the relaxation rates numerically without further
approximations.

We have proceeded in the following way: We calculated the matrix ele-
ments of the Hubbard Hamiltonian [in Eq. (3.20)], the SO Hamiltonian [in
Eq. (2.47)] and the Hyperfine interaction Hamiltonian [in Eq. (2.44)] for
this device and evaluated the relaxation rates using the electron-phonon
Hamiltonian of Eq. (2.29) as the perturbation of the full Hamiltonian
H = HHubb +HSO +Hhf. We have first studied each spin-flip mechanism
independently, starting with the SO interaction. In this case the SO in-
teraction lifts the degeneracy of the triplet states and makes possible the
numerical evaluation of the rates. We found unusually low relaxation rates
at all points in the charge region (1,1,1,1). These are shown in Fig. 5.9.
The left panel shows the relaxation rates from the qubit state |0〉 to the
triplets that lay underneath (see Fig. 3.11) and the panel on the right
shows the relaxation rates from the qubit state |1〉 to the triplets.

A more detailed analysis shows that when the system we consider is
free of nuclear fields, and therefore time-reversal symmetric, the relaxation
rates experience a significant reduction, similar to that produced by the
Van Vleck cancellation in half-integer spin systems [30, 79]. In Fig. 5.10 we
show that by treating the SO interaction as a perturbation, together with
the electron-phonon coupling, the relaxation rates calculated via Fermi’s
golden rule (numerically) up to second order are exactly zero (left side,
with Bz → 0).

When an external magnetic field is applied to the system, splitting the
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Figure 5.9: Relaxation rates across the whole (1,1,1,1) region from (a)
the qubit state |0〉 to the triplet states and (b) from the qubit state |1〉
to the triplet states. Both panels account for all the possible channels
of leakage out of the qubit subspace via SO interaction together with
the electron-phonon coupling in the absence of external magnetic fields.
These rates have been calculated using U = 800µeV, Uc = 0.3U , t12 =
t24 = 24µeV, t23 = 16µeV and χ = 0. The anisotropy of the figure is a
consequence of the T-like structure of the system and the dependence of
the SO Hamiltonian on the geometry of the system. Changing the third
dot from the bottom to the top results in a mirror reflection of the figure
with respect to an horizontal axis that goes through the center of the
charge stability diagram.

triplet states, the relaxation rates increase gradually and the SO interac-
tion becomes a relevant mechanism of relaxation, although less significant
than direct qubit relaxation via the electron-phonon interaction only.

In this figure the relaxation rates have been calculated in the regions
where we can define qubits states, that is, when we can distinguish two
states with total spin S = 0 that have sufficiently different energies and
are not too close, to the triplet states [red solid and green dashed lines
in panel (a)]. In the lower panel the solid lines show the exact relaxation
rates calculated numerically by diagonalizing H (with Hhf = 0), and the
thick dashed lines are the same relaxation rates when the SO Hamiltonian
is treated as a perturbation. It is here where we see the Van Vleck-like
cancellation. The vertical dashed gray line shows an estimate of the upper
limit of the magnitude of the nuclear fields that each electron feels in the
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Figure 5.10: (a) Energy spectrum of the system as a function of an
external magnetic field at a random point in the parameter space: ε14 = 0,
ε23 = −100µeV = −0.125U , with U = 800µeV, Uc = 0.3U , t12 = t24 =
24µeV, t23 = 16µeV and χ = 0. A qubit can be defined wherever there is a
significant level splitting that allows us to distinguish two states with total
spin S = 0 (solid red and dashed green lines). In (b) the relaxation rates
are calculated at the same point as a function of the external magnetic
field. We show the rates from the state |1〉 (green) and |0〉 (red) calculated
via an exact diagonalization of the Hamiltonian HHubbard + HSO (solid
lines) and using HSO as a perturbation (dashed lines). In both cases the
hyperfine interaction is not considered, but we show the expected largest
magnitude of the effective nuclear fields with the vertical dashed gray line.

quantum dots—since the nuclear spin noise is assumed to be Gaussian,
about 95% of the measurements of the random fields will yield a field
smaller than 2σK .

For small or zero magnetic fields these relaxation rates are negligible,
and what will determine the coherence time of the exchange-only singlet-
only spin qubit is the dephasing due to electric noise and the qubit re-
laxation via the electron-phonon coupling. Note, nevertheless, that at the
SS, at the center of the CSD in Fig. 5.3, any relaxation process involving
an electron-phonon interaction cancels (to lowest order in Fermi’s golden
rule, treating the electron-phonon interaction as a perturbation) because
of the isotropic symmetry of the charge stability diagram.
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5.4.2 Virtual orbital excitation

The effective mass of electrons in Si is larger than in GaAs and, therefore,
the energy splitting Eorb = ~2/(m∗σ2

0) in Si is much smaller than in GaAs
for two quantum dots of the same size. In order to tune a quantum-
dot-based qubit into the spin blockade regime one then has to make the
quantum dots in silicon smaller, but this can result in quantum dots with
an orbital splitting smaller than in GaAs [10]. In this section we will
assume that the orbital splitting is seizable and we will therefore consider
the possibility that an electron in a Si-based quantum dot can virtually
excite an orbital level during the qubit operation. Nevertheless, because
of the smaller effective electron mass in GaAs and also the weaker SO
interaction in this semiconductor, we will not consider this possibility for
the XO singlet-only spin qubit.

Under the same assumptions as before we evaluate the relaxation rates
out of the qubit subspace for the triple-dot XO qubit:

Γ1 ≈ 1
4π
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Γ0 ≈ 1
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where the dimensionless functions forb
1,0 (x) are, again, in Appendix C. The

first thing that we notice is that these rates come with large powers of
EZ/Eorb instead of the powers of τ/∆3 that we see in the exchange-enabled
rates. For typical device parameters these rates are thus much smaller. We
can again expand the functions forb

1,0 (x) and obtain a simplified expression
for the rates:
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Γ0 ≈ 2
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Note that these “orbital-assisted” rates do not depend on any of the de-
tuning parameters, and thus survive at the SS, as opposed to those in
Eqns. (5.19, 5.20). Also, in this case Γ1 is larger than Γ0 by (dEZ/~vt)−2,
opposite to the exchange-enabled rates from above.
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5.4.3 Virtual valley excitation

Similarly, the valley-enabled relaxation rates are only calculated for the
Si-based qubit. Proceeding as we described in Chapter 2 we find

Γ1 ≈ 1
π
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Γ0 ≈ 1
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where Ev denotes the splitting between the two valley states and we in-
troduced the Zeeman length lZ = ~/

√
m∗EZ. The strength of the SO

interaction is given by A ∼ α, β (see Section 2.5.2). We again make use of
two dimensionless functions fval

1,0 (x), given in Appendix C, and expanded
them in small x (small E2

Z � (~vt/d)2), giving
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Γ0 ≈ 16
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We find again that the rates do not depend on any of the detuning pa-
rameters, and thus survive at the SS. Comparing all the expressions, we
see that the valley-assisted rates are typically smaller than the orbital-
assisted ones by a factor ∼ |rd|4E2

orb/(σ4
0E

2
v), given that |rd| ∼ 1–2 nm

and σ0 ∼ 10–30 nm.
Even though both orbital- and valley-enabled relaxation rates are con-

stant throughout the whole (1,1,1) charge region, and thus surviving at
the SS, the electron-phonon coupling, the electric noise and the hyperfine
noise are the dominant mechanisms of decoherence (albeit weak) at this
point. The SO interaction at the SS should thus not be a concern.





6
Electric dipole spin

resonance

In this chapter we study in full theoretical detail many of the
features observed in the results of an electric dipole spin res-
onance experiment that, up to date, are still unexplained. A
paper with the contents of this chapter is now in preparation.

In the previous chapters we have studied many aspects of the physics
of quantum dot-based spin qubits, but here we will instead focus on one of
the fundamental aspects needed to consider before setting up a spin qubit:
the characterization of the quantum dots. In a system with quantum
dots within the few-electron regime, as is the case for the systems that
we have studied so far, spectroscopy of the dots is usually carried out
via electric dipole spin resonance (EDSR) [54, 85–94]. However, despite
being a widely used tool, there are still many features in the outcome of
an EDSR experiment that still lack a thorough theoretical description.

We will thus investigate a common implementation of an EDSR ex-
periment, consisting of two quantum dots, tunnel coupled, in a material
with a strong SO coupling. The quantum dots are also coupled to external
source and drain leads, as it is schematically depicted in Fig. 6.1(a). A
voltage bias between the dots allows for a current through the system.
The dots are then tuned into the spin blockade regime, allowing electrons

87
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Figure 6.1: (a) The system is composed of two quantum dots, tunnel
coupled. The dots are also coupled to external source (S) and drain (D)
leads. Two metallic gates control the electrochemical potentials V1 and
V2 in the dots. (b) Electrons flow from the source to the drain leads.
When only one electron occupies the second quantum dot, the chemical
potential on the dot is not enough to let the electron tunnel to the drain
lead. When a second electron enters the system it can tunnel from the
first to the second dot only if both electrons occupy the lowest orbital
state, and thus are paired in a singlet state. Then one of the electrons can
tunnel to the drain lead.

to tunnel out of the system only if the spin selection rules set by the in-
terplay between the spin blockade and the SO coupling allow it. That
is, only when the dot closest to the drain lead can be occupied by two
electrons in the lowest electronic orbital in a singlet state [see Fig. 6.1(b)].
Therefore, when tunneling is not allowed the current is blocked. To come
out of the blockade, a periodically oscillating electric field is applied to the
quantum dots through detuning of V2. This external drive does not couple
directly to the spin of the electrons, but the interplay between the oscillat-
ing potential and the SO coupling can induce spin rotations (as we saw in
Chapters 2 and 5). These spin flips occur whenever the frequency of the
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driving is in resonance with the level splitting of different spin states, set
up, in this case, by a Zeeman splitting. This resonant response can thus
lift the spin blockade and give rise to an increase in the current through
the double dot. Since this increase of the current occurs when the drive
frequency is at resonance with the Zeeman splitting, a measurement of
the resonance frequency as a function of the magnetic field will thus yield
the effective g-factor of the electron that couples to the driving.

In the following, we identify the different spin-orbit-mediated spin mix-
ing mechanisms that could play a role in an EDSR experiment. We in-
vestigate the resulting differences in the shape of the resonances as they
appear in the current as a function of the drive frequency.

6.1 The model of the system

We model the subsystem formed by the two tunnel-coupled quantum dots
with the Hubbard-like Hamiltonian that we saw in the previous chapters:

HHubb =
∑

i

[
U

2 ni(ni − 1) − Vi ni

]
+
∑
〈i,j〉

Uc ninj

−
∑

〈i,j〉,α

tij√
2
c†

i,αcj,α +
∑
i,α,β

1
2giµB c

†
i,α(B · σ)αβ ci,β, (6.1)

with the last line describing a spin-conserving tunneling and the coupling
of the spin of the electrons to an external magnetic field, with a different
g-factor gi for each dot. The difference in the g factors across dots is due
to the strong SO coupling in the material. For simplicity we will consider
this field to be in-plane. The SO interaction gives rise to an effective spin-
flip tunnel coupling tso between the states in the (1,1) charge region and
the states in other charge configurations, given by [16, 95]

t(x,y,z)
so = i d t12

l
(x,y,z)
so

, (6.2)

where d is the distance between the quantum dots and l(x,y,z)
so is the relevant

SO length, as defined in Chapter 5 (see also Ref. [95]). The quantum
dots are initially occupied by two electrons in the charge configuration
(1,1). A tilt in the electrochemical potential in the dots V2 − V1 > 0
results in the transition (1, 1) → (0, 2) if the two electrons can occupy the
lowest electronic orbital of the quantum dot in the right, forming a singlet
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state. A further bias voltage between the source and drain leads allows
the transition (0, 2) → (0, 1), and this then produces a measurable current.
The system is then subsequently refilled into the state (1,1), by an addition
of one electron coming from the source lead. With this picture in mind
it is clear that we only need to consider the (1,1) spin states |↑↑〉, |↑↓〉,
|↓↑〉, |↓↓〉 and the (0,2) singlet state |S02〉. In the basis set by these five
states, and with a magnetic field along the z direction only, the Hubbard
Hamiltonian reads

H5 =


gµBBz 0 0 0 t1

0 δgµBBz 0 0 t2
0 0 −δgµBBz 0 t∗2
0 0 0 −gµBBz t∗1
t∗1 t∗2 t2 t1 −E02

 . (6.3)

In order to arrive to this expression we have set the energy of the five states
in the (1,1) region to 0 and we used g ≡ (g1 + g2)/2 and δg ≡ (g1 − g2)/2.
The coupling elements t1 and t2 (and their complex conjugate t∗1 and t∗2)
now account for both tunneling and SO coupling:

t1 = t12 + t
(z)
so√

2
, t2 = t(x)

so − it(y)
so . (6.4)

The electrostatic energy difference between the first four states and the
state |S02〉 is E02 = V2 − V1 − U + Uc > 0. We model the source and
drain leads as a bath of electrons that couples to the quantum dots via
an escape rate Γ out of the state |S02〉. Additionally, the other four (1,1)
states are refilled with equal probability with the same state Γ as soon as
one of the electrons leaves the system into the drain lead.

At zero magnetic field, where the first four states are degenerate, one
can always find a different basis where the Hamiltonian H5 takes the form

H̃5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0

√
2 τ

0 0 0
√

2 τ −E02

 , (6.5)

with τ =
√

|t1|2 + |t2|2. In this situation, if the two electrons that occupy
the dots in the charge configuration (1,1) form a state that is not coupled
to |S02〉 (a dark state), the current will be blocked. On the other hand,
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if the only (bright) state that couples to |S02〉 is occupied, a current can
be measured and the whole process can start again. As the magnetic field
is increased, the different spin states split out and we can no longer write
the Hamiltonian in this form. More bright states will appear and thus the
probability of having a blocked current will be smaller.

Adding an external driving changes substantially the dynamics of the
system. When the driving is applied as a periodic detuning of one of
the on-site gate offsets, this effectively produces an oscillating exchange
coupling, via t1 and t2, inside the (1,1) subspace that results in spin rota-
tions. Additionally, the periodic change in the potential landscape in the
quantum dots results in a periodic change of the wave functions of both
localized electrons. The SO interaction then translates this change in the
wave functions into a periodic effective magnetic field coupling to the spin
of the electrons [86–88, 91]. We thus need to consider the effects of (i)
an electric driving in the on-site potentials and (ii) a driving through a
magnetic field.

When the electrons are in a dark state, a periodic detuning of the
offset potentials will help the system out of the blockade. With a driv-
ing of the form E02(t) = E0 + A cos(ωt), a small amplitude around zero
detuning can induce coherent Rabi oscillations when the system is driven
at resonance [86]. We have seen this behavior in the previous chapters.
For large amplitudes, of the order of A ∼ ~ω, the coherent oscillations are
then suppressed. We then observe resonances at different harmonics in
the form of peaks or dips in the current profile as a function of the driving
frequency or the magnitude of the Zeeman splitting [91].

With our model we want to reproduce both behaviors but also study
the intermediate case, when we have an intermediate amplitude and the
system is driven far from zero detuning. We therefore consider a time
dependence into E02 but also in the magnetic field B arising from the
strong SO couplings.

An analytical investigation of such a complex system is not easy, but
our model can be further simplified: The systems that we want to study
are typically characterized by having substantially different effective g-
factors on each quantum dot [86–88, 91]. In this case the different energy
levels are well separated and we can therefore study each of the resonances
independently. We can thus reduce the dimensionality of the system from
a 5 × 5 Hamiltonian to a 3 × 3 Hamiltonian where the only three lev-
els that need to be considered are the two (1,1) spin states that are at
resonance and the escape state |S02〉 [85, 91, 96, 97]. We thus make our
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analysis valid for the four subspaces {|↑↑〉 , |↑↓〉 , |S02〉}, {|↑↓〉 , |↓↓〉 , |S02〉},
{|↑↑〉 , |↓↑〉 , |S02〉}, and {|↓↑〉 , |↓↓〉 , |S02〉}. For simplicity, we will further
restrict our analytic investigations to the first harmonic, i.e., where the
driving frequency matches the Zeeman splitting on one of the two dots,
~ω ≈ g1,2 µBB.

6.2 Resonances

We study the different forms of driving separately, focusing on the resulting
shape of the 1-photon resonance in the current (the first harmonic). In all
cases the 3 × 3 Hamiltonian that we consider takes the form

H
(α)
3 =

 B 0 q1
0 −B q2
q∗

1 q∗
2 −E0

+A cos(ωt)V (α)
drive, (6.6)

where the parameters B, q1 and q2 that we have introduced in this Hamil-
tonian will be different for each of the subspaces that we consider. Let us
anticipate, though, that in all the following results the couplings qi will
always appear as |qi|2. In order to simplify further the notation we thus
take them as real. Regarding the energy B, here we use B = giµBBz/2,
where gi corresponds to the electron that couples to the driving and thus
undergoes a spin flip.

The external driving enters into the Hamiltonian via the matrix V (α)
drive,

where α ∈ {d, z, x} indicates driving of the detuning, via Bz or via Bx,
respectively,

V
(d)

drive =

 0 0 0
0 0 0
0 0 1

 , (6.7)

V
(z)

drive =

 1 0 0
0 −1 0
0 0 0

 , (6.8)

V
(x)

drive =

 0 1 0
1 0 0
0 0 0

 , (6.9)

for the three mechanisms mentioned above.
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6.2.1 Driving of the detuning

We have mentioned before that the current through the quantum dots is
only possible when the electrons can occupy the state |S02〉. Indeed, the
current will be given by I = Γps, with ps being the probability of finding
the system in the state |S02〉, and Γ is the escape rate from the state |S02〉
into the drain lead. If we set up a master equation of the form

dρ

dt
= − i

~

[
H̃(t), ρ

]
, (6.10)

for a density matrix ρ and some Hamiltonian H̃(t) that accounts for both
the quantum dots subsystem and the external source and drain leads, then
we can obtain the current by evaluating the element of the density matrix
ρss = |S02〉 〈S02|.

We are interested in a steady state solution of this master equation.
To find this solution with a time-dependent Hamiltonian we consider two
options: (i) we expand the master equation in Fourier modes and find
the solution that corresponds to the zeroth mode, which will give us the
time-averaged ρss; or (ii) we first evaluate the transition rates Γij from
all the states |i〉 → |j〉 using the time-dependent Fermi’s golden rule and
then set up a classical master equation and find a steady state solution.

For the case where the driving is in the detuning we opt for the latter.
Upon imposing the normalization condition on the probabilities p1 + p2 +
ps = 1, the master equation yields the set of equations


Γ21p2 + Γps/2 − (Γ12 + Γ1s)p1 = 0
Γ12p1 + Γps/2 − (Γ21 + Γ2s)p2 = 0
p1 + p2 + ps = 1

, (6.11)

where pi is the probability of measuring the system in the state |i〉, with
|i〉 one of the three states of the subspaces that we consider. The current
is then

I = Γps = 2Γ(Γ1sΓ2s + Γ12(Γ1s + Γ2s))
2Γ1sΓ2s + 2Γ12(Γ1s + Γ2s) + Γ(4Γ12 + Γ1s + Γ2s) . (6.12)

For the evaluation of the rates Γij , using the time-dependent Fermi’s
golden rule, see Appendix B, where we proceed as in Ref. [96]. We thus
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obtain the rates (setting ~ = 1 and using Γ � A)

Γ12 = q2
1q

2
2

((B + E0)2 + (γ + Γ)2/4) ((B − E0)2 + (γ + Γ)2/4)

×
(

(γ + Γ)2

Γ + γ
(
E2

0 + (γ + Γ)2/4
)

4B2 + γ2 + A2γ

2((2B − ω)2 + γ2)

)
, (6.13)
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(
E2
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)4 , (6.14)

and a similar rate for Γ2s. Additionally we found Γ21 = Γ12. In these
expressions we introduced γ, an effective, exchange-enabled escape rate
from the states in (1,1) into the drain leads, defined as

γ = 1
2

(
Γq2

1
(B + E0)2 + Γ2/4 + Γq2

2
(B − E0)2 + Γ2/4

)
. (6.15)

Putting all together, and after some approximations that amount to as-
sume E0 � B and Γ � A, we obtain the current

I ≈ 2γ
( 2q1q2
q2

1 + q2
2

)2

+
( 2q1q2
q2

1 + q2
2

)2 8γA2
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0+Γ2

)2
q2

1q
2
2 + δ2

+
( 2q1q2
q2

1 + q2
2
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4E2
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2
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. (6.16)

The first line describes the background current. This is the current that
we would observe in absence of a driving, when A → 0. In the next two
terms we describe the exchange-induced level shift with ε1,2, given by

ε1,2 =
4E02q

2
1,2

4E2
02 + Γ2 . (6.17)
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We also characterize the detuning from the 1-photon resonance as

δ = 2B − ω. (6.18)

The second line in Eq. (6.16) describes a peak or dip in the current. For
typical parameters (q1, q2 � Γ, E0 and Γ > E0) the sign of this term is
negative and it results in a dip in the current. As the energy E0 → 0
the dip will become a peak. Note that this term resembles a Lorentzian
curve. Indeed the peak/dip has a maximum/minimum at δ = 0, which
corresponds to ω = 2B, and a width given mostly by γ when the driving
amplitude is small. We can observe all these features in Fig. 6.2, where
we further compare the analytical findings with numerical results.

The last term accounts for an asymmetry in the shape of the peak or
dip. This term is also Lorentzian-like but it comes with a factor of δ on
the numerator. For equal couplings q1 = q2 (equivalent to ε1 = ε2), that is
for a transition from |↑↑〉 to |↓↓〉 or from |↑↓〉 to |↓↑〉, this term vanishes,
but for the four other cases that we are interested in, this last term tilts
substantially the current around the peak and makes it asymmetric. The
sign of this tilting depends on the sign of q2

1 − q2
2 via ε1 − ε2.

Note that the peak or dip will always occur at δ = 0, that is, for
ω ' 2B = giµBBz. It is then possible, in an EDSR experiment, to measure
and distinguish two different g-factors in two quantum dots: The current
profile as a function of the magnetic field and the driving frequency will
show a line (a peak or a dip) with two different slopes.

6.2.2 Driving via a magnetic field

Since the oscillations in the magnetic field are expected to be a conse-
quence of the driving in the detuning we expect the amplitude of this
driving to be small compared to the amplitude that we considered previ-
ously. Here we will thus investigate the current profile for a driving via a
magnetic field, both along the z and x directions, with a driving amplitude
A � B.

Driving via Bz

The current profile for a driving via a magnetic field can be obtained in a
simpler way. We describe the time evolution of the system with a Lindblad
master equation and find a steady-state solution by expanding the master
equation in Fourier modes. Setting again ~ = 1, the Lindblad master
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Figure 6.2: Current profile as a function of the frequency when the driving
is via the detuning. We subtracted an offset for clarity. Blue lines show
the analytical results from Eq. (6.16). Black lines show the numerical
results. (a) For large E0 � A we always observe a dip in the current. If,
additionally, the couplings q1 and q2 are different, the dip in the current
is asymmetric. (b) As E0 → 0 the dip becomes a peak instead. (c) For
equal couplings q1 = q2, the dip is symmetric. In all cases we focus on
the 1-photon resonances. In (a) we used E0 = 50µeV, q1 = 3µeV and
q2 = 2µeV; for (b) we used E0 = 5µeV, and the same q1 and q2; in (c) we
used E0 = 50µeV and q1 = q2 = 2.5µeV. For the remaining parameters
we used A = 20µeV, Γ = 150µeV and B = 3µeV, together with ~ = 1.
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equation for the system that we consider in this section reads

dρ

dt
= −i[H(z)

3 , ρ] + 1
2Γ

 ρss 0 −ρ1s

0 ρss −ρ2s

−ρs1 −ρs2 −2ρss

 , (6.19)

where we included decay of the state |S02〉 to the drain lead with rate Γ,
and assumed that immediately after such a decay process the system is
initialized again in one of the (1,1) states, as we discussed before.

Since now Γ is, by far, the largest energy scale of the system we can
separate time scales and assume that all dynamics induced by Γ reach
(quasi-)equilibrium instantaneously on the time scale of the rest of the
dynamics. We will then have a subsystem formed by the first 2 × 2 block
of the master equation, with slow dynamics; and another subsystem, de-
scribed by the escape state |S02〉 and its coupling to the other two sates,
with fast dynamics. Under this assumption we can focus on the dynamics
of the (1,1) subspace. We first find a steady-state solution of the Lindblad
equation as a function of the matrix elements in the (1,1) subspace (the
first 2×2 block). Since the time dependence is included only in this block,
and we assumed the dynamics of this block to be very slow compared to
the time scale of the dynamics of ρss, we can take the matrix elements in
the (1,1) subspace as constant.

We thus obtain the matrix elements ρ1s, ρ2s, ρs1, ρs2 and ρss as a
function of the matrix elements of the first block, ρ11, ρ12, ρ21 and ρ22.
With this we can write a reduced master equation for the first block only.
If we “vectorize” this expression 1 the resulting master equation reads

dρ(2)

dt
=


− 2Γq2

1
4E2

0+Γ2
4iE0q1q2
4E2

0+Γ2 −4iE0q1q2
4E2

0+Γ2
2Γq2

2
4E2

0+Γ2

− 2q1q2
Γ+2iE0

B 0 2q1q2
−Γ+2iE02q1q2

−Γ+2iE0
0 B∗ − 2q1q2

Γ+2iE0
2Γq2

1
4E2

0+Γ2 −4iE0q1q2
4E2

0+Γ2
4iE0q1q2
4E2

0+Γ2 − 2Γq2
2

4E2
0+Γ2

·


ρ11
ρ12
ρ21
ρ22

 ,
(6.20)

with B = −2iB(t) + 2q2
1

2iE0−Γ − 2q2
2

2iE0+Γ . Once we find a solution for this
equation we can calculate the current as I = Γρss, with the ρss as a

1An equation of the form A ·B = C, with A, B and C three different n×n matrices
can be written as A · b = c, with A an n2 × n2 matrix and b and c two vectors of
length n2. Writing a matrix equation in this form allows us to use the tools from linear
algebra to solve it.
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function of ρ11, ρ12, ρ21 and ρ22 that we obtained before. However, since
the energy B(t) is time-dependent we cannot solve the master equation
straightforwardly. We instead expand the density operator and the master
equation in Fourier modes using

ρ(t) =
∞∑

n=−∞
ρne

inωt. (6.21)

With this transformation, a master equation in the form of Eq. (6.19)
transforms as∑

n

einωt d

dt
ρn =

∑
n

{
−i[H(z)

3 (t), ρn]einωt + Γ[ρn]einωt − inωρne
inωt

}
,

(6.22)

where Γ[ρn] is the escape/refill term from Eq. (6.19) now written in terms
of the Fourier modes. A similar expression can be found as well for the
reduced master equation from Eq. (6.20),

Next we write the detuning as B(t) = B0 + A cosωt, expanding the
cosine using exponential functions, B(t) = B0+A(exp[iωt]+exp[−iωt])/2,
and use these exponential functions as the basis states in the Fourier
space. This results in a high dimensional master equation matrix with
a block structure, where each block corresponds to a Fourier mode. The
elements with ρn exp[inωt] are in the diagonal blocks, and the elements
with ρn exp[i(n+ 1)ωt] and ρn exp[i(n− 1)ωt] are in the upper and lower
diagonals, coupling the block matrices in the main diagonal.

Numerical simulations guarantee that, for small amplitude A . ω,
expanding the master equation in only the modes n = 0,±1 is enough to
describe with high accuracy all the features of the current profile around
the 1-photon resonance.

After this Fourier expansion, the master equation above becomes a
12-dimensional time-independent object, and the steady state solution of
the elements of the zeroth Fourier mode, combined with the solution that
we found for ρss gives the current

I ≈ 2γ
( 2q1q2
q2

1 + q2
2

)2 A2[(ε1 + ε2)2 + 4γ2] + 16B2γ2 + (A2 − 2Bδ)2

4A2(ε1ε2 + 2γ2) + 16B̃2γ2 + (A2 − 2B̃δ)2 ,

(6.23)

where, again, we have made some simplifications assuming that B �
ε1,2, γ. Additionally, to shorten the notation, we have introduced B̃ =
B + (ε1 − ε2)/2 = −Im[B]/2.
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Figure 6.3: Current profile (minus an offset) as a function of the frequency
with a SO-mediated driving via Bz. Blue lines show the analytical results
from Eq. (6.23), and black lines show the numerical results. (a) For equal
couplings q1 = q2 = 2.5µeV and a moderate-large amplitude A = 0.5µeV
we observe a symmetric dip in the current. (b) Changing the magnitude of
the couplings to q1 = 3µeV and q2 = 2µeV makes the dip asymmetric. (c)
For a very large E0 = 120µeV and very asymmetric couplings q1 = 3µeV
and q2 = 1µeV, the dip starts a transition towards becoming a peak. The
other parameters are the same as before.
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In this expression we observe similar features as before. To investigate
this let us write the current in a simplified form, by dropping a factor
2γ(B2/B̃2)[q1q2/(q2

1 + q2
2)]2 and writing the resulting expression as

f = a2 + (b− δ)2

c2 + (d− δ)2 , (6.24)

with the parameters a, b, c and d given by

a2 = A2

4B2 [(ε1 + ε2)2 + 4γ2] + 4γ2 (6.25)

b = A2

2B (6.26)

c2 = A2

B̃2 (ε1ε2 + 2γ2) + 4γ2 (6.27)

d = A2

2B̃
. (6.28)

For any non-zero couplings q1 and q2, and finite E0, the parameters above
satisfy a2 . c2. Then, depending on the value of each exchange energies,
we can have b = d if q1 = q2, b > d if q1 > q2 or b < d if q1 < q2. At
resonance, when δ = d, the function f becomes

f =
a2 + 1

4(ε1 − ε2)2

c2 . (6.29)

We show in Fig. 6.3 that for equal couplings q1 = q2, we end up with
f = a2/c2 < 0 and we thus observe a decrease in the current, i.e., a dip.
But in the case where c2 < a2 + 1

4(ε1 − ε2)2, then we observe a peak. Note
also that the term (b − δ)2 cancels either before or after the resonance
point, depending on the sign of (ε1 − ε2). This produces an asymmetry in
the peak/dip similar to the one observed before.

Driving via Bx

We calculate the current profile for a driving via a SO-induced effective
magnetic field along the x direction, Bx, in exactly the same way. In this
case, we obtain the current

I ≈ 2γ
( 2q1q2
q2

1 + q2
2

)2
1 +

A2
(

q2
1−q2

2
2q1q2

)2

4γ2 + δ2

 , (6.30)
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Figure 6.4: Current as a function of the frequency with a SO-mediated
driving via Bx, where we subtracted an offset. The blue line shows the
analytical result from Eq. (6.30), and the black line shows the numerical
results. For this figure we used a reasonably small amplitude A = 0.1µeV
and asymmetric couplings q1 = 3µeV and q2 = 2µeV. The remaining
parameters are the same as before.

which displays only peaks when the system is driven at resonance (see
Fig. 6.4). Note also that the peak disappears when the couplings q1 and
q2 are the same.

6.2.3 A numerical analysis

We study the validity of our expressions with a numerical analysis. For
this we find a steady state solution of Eq. (6.22) for all three types of
driving. We found that using six Fourier modes (that is, for n ∈ [−6, 6])
the solution converges. Nevertheless, we considered ten modes instead.
The results shown in Figs. 6.2, 6.3 and 6.4 show a quite good agreement
with the analytical calculations.





A
Schrieffer-Wolff
transformation

A Schrieffer-Wolff transformation is a unitary transformation that is often
used to diagonalize a Hamiltonian of the form H0 + λV perturbatively,
treating the term with λV as the perturbation. This transformation is
particularly useful when the Hamiltonian has a block structure, as is the
case in the Hubbard-like Hamiltonians that we have seen in this thesis,
and some of the eigenvalues of the unpetrurbed Hamiltonian H0 are de-
generate.

One usually starts with a Hamiltonian H = H0 + λV , where H0 is a
diagonal Hamiltonian of the form

H0 =
(
H1 0
0 H2

)
, (A.1)

where H1 and H2 can be degenerate but the eigenenergies E(i)
1 of H1 must,

in general, differ from the eigenenergies E(i)
2 of H2. The perturbation V ,

with λ � |E(i)
1 − E

(j)
2 |, then couples the blocks of H0:

V =
(

0 V12
V21 0

)
. (A.2)
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We can diagonalize the Hamiltonian H with the unitary operator U =
eS(λ), for some operator S(λ), using H ′ = eS(λ)He−S(λ).

Suppose now that we want to find the eigenvalues of H up to O(λ2)
while, at the same time, decoupling the blocks H1 and H2 from H up to
order O(λ2). For this we can expand the operator S(λ) in powers of λ:

S(λ) =
∞∑

n=0
λnSn. (A.3)

For λ = 0 the Hamiltonian is already diagonal, therefore the unitary
transformation should read H0 = eS0H0e

−S0 . We thus choose S0 = 0.
Since we want to find an expansion to order O(λ2), we can use S(λ) = λS1.

Next we perform a series expansion on the transformed HamiltonianH ′

for small λ around λ = 0. For this we use the Baker-Campbell-Hausdorff
formula and write

H ′ = eλS1(H0 + λV )e−λS1

= H0 + λV + λ [S1, H0 + λV ] + λ2

2 [S1, [S1, H0 + λV ]] + O(λ3)

≈ H0 + λ (V + [S1, H0]) + λ2
(

[S1, V ] + 1
2 [S1, [S1, H0]]

)
. (A.4)

Recall that we want to uncouple the blocks H1 and H2 from the Hamilto-
nian to lowest order in λ. This amounts to find an operator S1 that leaves
only even powers of λ in the transformed Hamiltonian H ′. We can then
find the operator S1 by solving the equation V + [S1, H0] = 0. This yields
the effective Hamiltonian

Heff = H0 + λ2

2 [S1, V ] . (A.5)

This Hamiltonian has a block structure

Heff =
(
H̃1 0
0 H̃2

)
, (A.6)

where now H̃1 and H̃2 are not necessarily diagonal but the two blocks are
decoupled and we can treat them independently.

It is very common to encounter this perturbation expansion in many
publications, and indeed this is the perturbation expansion that we have
used in all the previous chapters, but sometimes doing the expansion to
order O(λ2) is not enough, and the generalization to the next order O(λ4)
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is not straightforward. We thus decided to include this Appendix in the
thesis hopping that some may find it useful.

We thus want to find a unitary transformation that, after a perturba-
tion expansion, decouples the two blocks of the Hamiltonian H0 + λV up
to order O(λ4). For this we need to expand the operator S(λ) up to a
higher power of λ. Since we want expressions with λ4 we need to consider
S(λ) = λS1 + λ2S2 + λ3S3 + λ4S4. The transformed Hamiltonian then
reads

H ′ = H + [S,H] + 1
2 [S, [S,H]]

+ 1
6 [S, [S, [S,H]]] + 1

24 [S, [S, [S, [S,H]]]] + O(λ5). (A.7)

We now expand S and write H = H0 + λV . This gives:

H ′ ≈ H0 + λ(V + [S1, H])

+ λ2
(

[S1, V ] + [S2, H0] + 1
2 [S1, [S1, H0]]

)
+ λ3

(
[S2, V ] + 1

2 [S1, [S1, V ]] + [S3, H0] + 1
2 [S1, [S2, H0]]

+1
2 [S2, [S1, H0]] + 1

6 [S1, [S1, [S1, H0]]]
)

+ λ4
(

[S3, V ] + 1
2 [S1, [S2, V ]] + 1

2 [S2, [S1, V ]]

+ 1
6 [S1, [S1, [S1, V ]]] + [S4, H0] + 1

2 [S1, [S3, H0]]

+ 1
2 [S2, [S2, H0]] + 1

2 [S3, [S1, H0]] + 1
6 [S1, [S1, [S2, H0]]]

+ 1
6 [S1, [S2, [S1, H0]]] + 1

6 [S2, [S1, [S1, H0]]]

+ 1
24 [S1, [S1, [S1, [S1, H0]]]]

)
(A.8)

Now we proceed as before and eliminate the therms with odd powers of
λ. For the term proportional to λ we have the same equation we found
previously: [S1, H0] = −V . Also, since S4 appears only once we are free
to set it to S4 = 0. We have two more unknowns, S2 and S3, but only the
term proportional to λ3 is left to be canceled. We are thus free to choose
a relation between S2 and S3. For simplicity we use S2 = 0. After some
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simplifications we arrive at the expression

H ′ ≈ H0 + λ2

2 [S1, V ]

+ λ3
(1

3 [S1, [S1, V ]] + [S3, H0]
)

+ λ4

2

(
[S3, V ] + 1

4 [S1, [S1, [S1, V ]]] + [S1, [S3, H0]]
)
, (A.9)

which, for

[S1, H0] = −V, [S3, H0] = −1
3 [S1, [S1, V ]] , S2 = S4 = 0, (A.10)

reduces to the effective Hamiltonian

Heff = H0 + λ2

2 [S1 + S3, V ] − λ4

24 [S1, [S1, [S1, V ]]] . (A.11)

This Hamiltonian is again block-diagonal and the matrix elements contain
terms of the order O(λ4). To construct this Hamiltonian we only need to
find the solution of Eqns. (A.10).



B
Time-dependent Fermi’s

golden rule

For the evaluation of the transition rates Γij from Chapter 6 we follow,
partially, Ref. [96]. Consider the Hamiltonian in a basis {|1〉, |2〉, |S〉}:

H =

 B1 0 q1
0 B2 q2
q1 q2 −E0 +A cos(ωt)

 , (B.1)

We can split this Hamiltonian in two terms H = H0(t) +H1, with

H0(t) =

 B1 0 0
0 B2 0
0 0 −E0 +A cos(ωt)

 , (B.2)

H1 =

 0 0 q1
0 0 q2
q1 q2 0

 (B.3)

As we did in Section 6.2.1, we introduce an effective decay rate out of the
states in the (1,1) charge configuration,

γ ≈ Γ(q2
1 + q2

2)
4E2

0 + Γ2 . (B.4)
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We now proceed by doing a perturbation expansion on the eigenstates of
H using H1 as the perturbation. Let |n〉 be the instantaneous eigenstates
of H0(t) at time t, with eigenvalues En(t). Then, any state |ψ(t)〉 can be
written as (for simplicity we set ~ = 1)

|ψ(t)〉 =
∑

n

cn(t)e−i
∫ t

0 dt′ En(t′)|n〉, (B.5)

with cn(−∞) = 1 if n is the initial state and 0 otherwise. Using the
Schrödinger equation

i
d

dt
|ψ(t)〉 = H|ψ(t)〉 (B.6)

we can find an equation for cn(t):

d

dt
cn(t) = − i

∑
k

ck(t)〈n|H1|k〉e−i
∫ t

0 dt′ (Ek(t′)−En(t′)), (B.7)

which can be integrated (now from −∞ to t), yielding

cn(t) = cn(−∞) − i

∫ t

−∞
dt′
∑

k

ck(t′)〈n|H1|k〉

× e−i
∫ t′

0 dt′′ (Ek(t′′)−En(t′′)). (B.8)

The transition rate can then be evaluated as Γi,n = d
dt |cn(t)|2. Using

ck(−∞) = δk,i and Eq. (B.8), we can find an expression for Γi,n up to
O(q)4. Let us start by calculating the rate Γ1,2, that is, the rate from the
state |1〉 to |2〉 via |S〉. For this we need:

cn(t) = cn(−∞) − i

∫ t

−∞
dt1

∑
k

ck(−∞)〈n|H1|k〉e−i
∫ t1

0 dt2 (Ek(t2)−En(t2))

−
∫ t

−∞
dt1

∫ t1

−∞
dt2

∑
k,l

cl(−∞)〈k|H1|l〉〈n|H1|k〉

× e−i
∫ t2

0 dt3 (El(t3)−Ek(t3))e−i
∫ t1

0 dt4 (Ek(t4)−En(t4)) + O(q)3. (B.9)

In this case we have n = 2 and cl = δl,1. The only possible value for |k〉 is
|S〉. This expression then becomes

c2(t) = −q1q2

∫ t

−∞
dt1

∫ t1

−∞
dt2e

−i(B1+E0)t1ei(B2+E0)t2

× e−i A
ω

sin(ωt1)ei A
ω

sin(ωt2), (B.10)
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But we are interested in the modulo squared of this expression:

|c2(t)|2 = q2
1q

2
2

∫ t

−∞
dt4

∫ t4

−∞
dt3

∫ t

−∞
dt2

∫ t2

−∞
dt1

× e−i(B1+E0)(t1−t3)ei(B2+E0)(t2−t4)

× e−i A
ω

(sin(ωt1)−sin(ωt2)−sin(ωt3)+sin(ωt4), (B.11)

We introduce the escape rates out of the states by hand, following the
diagrams in Fig. B.1 (see also Ref. [96]). For the diagram (a) we need to
include in the integral the terms exp(−γ(t4 − t1 + t3 − t2)/2) exp(−Γ(t2 −
t1)/2) exp(−Γ(t4 − t3)/2) and change the integration limits accordingly.
We do the same for all the diagrams and put everything together to obtain
an expression for Γ1,2:

Γ1,2 = q2
1q

2
2

((B1 + E0)2 + (γ + Γ)2/4) ((B2 − E0)2 + (γ + Γ)2/4)

×
(

(γ + Γ)2

Γ + γ
(
E2

0 + (γ + Γ)2/4
)

(B1 −B2)2 + γ2 + A2γ

2((B1 −B2 − ω)2 + γ2)

)
.

(B.12)

In these expressions we show only the terms with a positive frequency
(that is, the terms that come with an expression such as B1 − B2 − ω
that cancels with a positive frequency ω). The terms with the negative
frequency are small and will not be considered.

All the other transition rates are obtained in a similar fashion. For
these we need to use the diagrams in Fig. B.2.
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Figure B.1: The escape rates need to be included considering all possible
paths from the state |1〉 to the state |2〉 via the state |S〉 to order O(q4).
The addition of the contribution from all these paths will give us the
transition rate Γ1,2.

Figure B.2: To calculate the transition rate Γ1,s, we need to consider all
possible paths from the state |1〉 to the state |2〉 to order O(q4).



C
Special functions for the

relaxation rates

Upon calculating a relaxation rate mediated by the electron-phonon inter-
action, such as the rates given in Eqns. (2.38) and (2.46), one has then to
integrate over all possible final states. In Si quantum dots, where the de-
formation potential depends on the momentum of the emitted phonon, it
is still possible to evaluate these integrals, but the result is rather cumber-
some. To simplify the notation in Chapter 5 and make it more readable,
we introduced some dimensionless functions f ex

0,1(x), forb
0,1 (x), fval

0,1 (x) that
we define here. These function are used in Section 5.4.

For exchange-enabled transitions we have:

f ex
1 (x) = 4

5 + 1
16x5

[
128x(x2 − 9) cosx

− 2(4x2 − 9)(x cos 2x+ 64 sin x) + (16x2 − 9) sin 2x
]
, (C.1)

f ex
0 (x) = 4

15 + 1
16x5

[
2x(4x2 − 9) cos 2x− (16x2 − 9) sin 2x

]
. (C.2)

We encounter similar integrals when we evaluate the relaxation rate via a
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virtual excitation of an orbital state. In this case we need to use:

forb
1 (x) = 8

105

((
Axx

vt

)2
+
(
Ayx

vt

)2
)

+ 1
32x6

[
3
(
Ayx

vt

)2
(8x2 − 15)

+2
(
Ayx

vt

)2
(8x4 − 78x2 + 135)

]
cos 2x

+ 1
64x7

[(
Ayx

vt

)2
(16x4 − 84x2 + 45)

−2
(
Axx

vt

)2
(64x4 − 258x2 + 135)

]
sin 2x, (C.3)
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(8x4 − 129x2 + 270)
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−
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)2
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−2
(
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(64x4 − 258x2 + 135)

]
sin 2x

}
. (C.4)

And finally, for virtual valley excitations we have:

fval
1 (x) = 16

105 + 1
64x7

[
2x(16x4 − 132x2 + 225) cos 2x

− (112x4 − 432x2 + 225)
]
sin 2x, (C.5)
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fval
0 (x) = 16

35 + 8
x7
[
x(x4 − 33x2 + 225) cosx

− (7x4 − 108x2 + 225) sin x
]

− 1
64x7

[
2x(16x4 − 132x2 + 225) cos 2x

− (112x4 − 432x2 + 225) sin 2x
]
. (C.6)
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der, K. Ensslin, and T. Ihn, Physical Review Letters 119, 176807
(2017).

[84] M. Raith, P. Stano, and J. Fabian, Physical Review B 86, 205321
(2012).

[85] E. A. Laird, C. Barthel, E. I. Rashba, C. M. Marcus, M. P. Han-
son, and A. C. Gossard, Semiconductor Science and Technology 24,
064004 (2009).

[86] S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P. Kouwen-
hoven, Nature 468, 1084 (2010).

[87] M. D. Schroer, K. D. Petersson, M. Jung, and J. R. Petta, Physical
Review Letters 107, 176811 (2011).

[88] S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo, S. R.
Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P. Kouwenhoven,
Physical Review Letters 108, 166801 (2012).

[89] F. Pei, E. A. Laird, G. A. Steele, and L. P. Kouwenhoven, Nature
Nanotechnology 7, 630 (2012).

[90] V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg,
I. van Weperen, S. R. Plissard, E. P. A. M. Bakkers, and L. P.
Kouwenhoven, Nature Nanotechnology 8, 170 (2013).

[91] J. Stehlik, M. D. Schroer, M. Z. Maialle, M. H. Degani, and J. R.
Petta, Physical Review Letters 112, 227601 (2014).

[92] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi,
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We propose a feasible and scalable quantum-dot-based implementation of a singlet-only spin qubit which is
to leading order intrinsically insensitive to random effective magnetic fields set up by fluctuating nuclear spins
in the host semiconductor. Our proposal thus removes an important obstacle for further improvement of spin
qubits hosted in high-quality III-V semiconductors such as GaAs. We show how the resulting qubit could be
initialized, manipulated, and read out by electrical means only, in a way very similar to a triple-dot exchange-only
spin qubit. Due to the intrinsic elimination of the effective nuclear fields from the qubit Hamiltonian, we find
an improvement of the dephasing time T ∗

2 of several orders of magnitude as compared to similar existing spin
qubits.

DOI: 10.1103/PhysRevB.95.241303

Spin qubits in semiconductor quantum dots are one of the
more promising scalable qubit implementations put forward
so far [1]. The original proposal almost two decades ago
[2] was rapidly followed by early experimental successes,
including demonstration of the principles of qubit initial-
ization, manipulation, and readout [3,4]. At the same time,
two main challenges for further progress were identified:
(i) Single-qubit manipulation requires highly localized os-
cillating magnetic fields, which are very hard to realize in
practice. (ii) All high-quality III-V semiconductors (such as
GaAs) consist of atoms carrying nonzero nuclear spin, and
the fluctuating ensemble of nuclear spins in each quantum dot
couples to the spin of localized electrons through a hyperfine
interaction. This coupling causes spin relaxation [5] and yields
random effective local magnetic fields acting on the electron
spins, which present an important source of qubit decoherence
[6,7]. Most of the work in the field of semiconductor spin
qubits in the past decades has been aimed at overcoming these
two challenges.

One proposed way to overcome the requirement of oscillat-
ing magnetic fields is to use a material with a relatively strong
spin-orbit interaction (such as InAs), in which coherent spin
rotations could be achieved by the application of oscillating
electric fields [8–10]. A drawback is that the spin-orbit
interaction contributes to qubit relaxation [11] and also
interferes with the spin-to-charge conversion commonly used
for qubit initialization and readout [12]. Another approach is
to encode the qubit in a multielectron spin state, which enables
qubit control through (gate-tunable) exchange interactions
[13]: Using two-electron spin states in a double quantum dot,
one can define a qubit in the unpolarized singlet-triplet (S-T0)
subspace, which allows for electrical control of qubit rotations
along one axis of the Bloch sphere [14,15]; recently it was
realized that with one more quantum dot (and electron) one can
use two three-electron spin states to define a qubit that has two
such control axes [16]. The resulting triple-dot exchange-only
(XO) qubit can thus be fully operated by electrical means
only [16–18]. The downside of using exchange-operated spin
qubits is their increased sensitivity to charge noise, either
coming from environmental charge fluctuations or directly
from the gates. However, recent work indicates that symmetric
operation of such qubits could greatly reduce their sensitivity
to charge noise [19–21].

These successes thus eliminated the need for highly
localized oscillating magnetic fields, leaving the problem of
the nuclear spins as the main intrinsic obstacle for further
progress [22–25]. Common approaches to overcome this
problem include devising hyperfine-induced feedback cycles,
where driving the electronic spins out of equilibrium results in
a suppression of the fluctuations of the nuclear spin ensemble
[26–30], as well as optimizing complex echo pulsing schemes,
where the dominating frequencies in the spectrum of the
nuclear spin fluctuations are effectively filtered out [31–33],
or via a Hamiltonian parameter estimation to operate the qubit
with precise knowledge of the environment [34]. Although
some of these ideas led to significantly prolonged coherence
times, they all involve a large cost in overhead for qubit
operation. Another promising approach is to host spin qubits
in isotopically purified silicon, which can be (nearly) nuclear
spin free [35–37], but the stronger charge noise and the extra
valley degree of freedom complicate their operation.

Here, we propose a type of spin qubit that can be hosted in
GaAs-based quantum dots, but (i) is intrinsically insensitive
to the nuclear fields in the dots and (ii) can be operated
fully electrically, similar to the triple-dot XO qubit. The
idea is to encode the qubit in a singlet-only subspace, which
is known to be “decoherence free” for spin qubits (in the
sense that fluctuating Zeeman fields do not act inside the
subspace) [38,39]. It turns out that a system of four spin- 1

2
particles hosts such a subspace [40,41]: Among the 16 different
four-particle spin states there are two singlets, thus providing
a decoherence-free two-level subspace. Below, we present a
feasible implementation of a qubit in this subspace, using four
electrons in a quadruple quantum dot. We include a clearly
outlined scheme for initialization, manipulation, and readout
of this qubit, as well as an investigation of its performance
in realistic circumstances. We find that, at the price of a
slight increase in complexity beyond the triple-dot XO setup,
our qubit has superior coherence properties, extending T ∗

2
by orders of magnitude, while still having a highly scalable
design.

The qubit. We propose a setup in which four quantum
dots are arranged in a T-like geometry, as shown in Fig. 1(a),
where solid lines connect dots that are tunnel coupled. Nearby
charge sensors, indicated by “M”, can be used to monitor the
charge state (N1,N2,N3,N4) of the quadruple dot, where Ni is

2469-9950/2017/95(24)/241303(5) 241303-1 ©2017 American Physical Society
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FIG. 1. (a) Schematic representation of the quadruple-dot geom-
etry. The four dots are labeled 1–4 and solid lines indicate which dots
are tunnel coupled. The dashed circles labeled “M” show suggested
positions for charge sensors. (b) Charge stability diagram in the
four-electron regime as a function of ε14 and ε23, using U = 50t ,
Uc = 15t , and ε� = 0. The red dashed line shows the tuning axis
along which the qubit is operated. (c) Spectrum of the subspace with
Sz = 0 along the red dashed line in (b), with t12 = t24 = 4

3 t23 = t .
Only the lowest part of the spectrum is shown. The red solid and
green dashed lines correspond to the two singlet states that form the
qubit. (d) Charge stability diagram as a function of ε� and ε23 with
ε14 = 0 and further the same parameters as in (b). The red dashed
line shows the path we suggest for qubit initialization.

the number of excess electrons on dot number i, as labeled in
Fig. 1 [42]. To describe this system, we use a Hubbard-like
Hamiltonian [43,44],

Ĥ =
∑

i

[
U

2
n̂i(n̂i − 1) − Vi n̂i

]
+

∑
〈i,j〉

Uc n̂i n̂j

−
∑

〈i,j〉,α

tij√
2

ĉ
†
i,αĉj,α +

∑
i,α

EZ

2
ĉ
†
i,ασ z

ααĉi,α, (1)

where n̂i = ∑
α ĉ

†
i,αĉi,α with ĉ

†
i,α the creation operator for an

electron with spin α on dot i. The first line of Eq. (1) describes
the electrostatic energy of the system: The first term accounts
for the on-site Coulomb interaction of two electrons occupying
the same dot, the second term adds a local offset of the potential
energy that can be controlled via gating, and the last term
describes the cross capacitance between neighboring dots.
To this we added (spin-conserving) tunnel couplings between
neighboring dots, characterized by coupling energies tij , and a
uniform Zeeman splitting of the electronic spin states induced
by an external magnetic field applied along the z direction,
where EZ = gμBB is the Zeeman energy, with g the effective
g factor (g ≈ −0.4 in GaAs), μB the Bohr magneton, and B

the magnitude of the applied field.

We can use the electrostatic part of Ĥ to find the
charge ground state as a function of the gate-induced off-
sets Vi . For convenience, we introduce the tuning param-
eters ε14 = (V4 − V1)/2, ε23 = (V3 − V2)/2, ε� = (−V1 +
V2 + V3 − V4)/4, and ε� = (V1 + V2 + V3 + V4)/4, where
we fix ε� = 3

4Uc. Focusing on the four-electron regime, we
show a part of the resulting charge stability diagram as a
function of ε14 and ε23 in Fig. 1(b), where we have set ε� = 0,
U = 50t , and Uc = 15t (t being our unit of energy, of the
order of the tunnel coupling energies). Our region of interest
is the “top” of the (1,1,1,1) charge region, where exchange
effects due to the vicinity of the (2,0,1,1), (1,0,2,1), and
(1,0,1,2) charge regions can be significant and are effectively
tunable through the gate potentials Vi . We note here that we
will assume throughout that the orbital level splitting on the
dots is the largest energy scale in the system (larger than U ),
so we will only include states involving double occupation
(Ni = 2) if the two electrons are in a singlet state.

We now include finite tunnel coupling energies tij and a
Zeeman energy EZ, and investigate the spectrum of Ĥ in more
detail. The red dashed line in Fig. 1(b) indicates where ε23 =
0, and along this line ε14 parametrizes a “linear tilt” of the
potential of the three dots 1, 2, and 4, equivalent to the triple-dot
detuning parameter that is used to operate the XO qubit (see
Refs. [16,23,44]). In Fig. 1(c) we plot the resulting spectrum
of the six lowest-lying states with Sz = 0 along this line, as
a function of ε14, where we have set t12 = t24 = 4

3 t23 = t and
EZ = 1.875t . In the plot we can identify one quintuplet state
|Q0〉 (gray dotted dashed), three triplet states |T1,2,3〉 (blue
dotted), and two singlets (green dashed and red solid). The
ten other spin states, having Sz = ±1, ± 2, are split off by
multiples of EZ and not shown in the plot.

The two singlets we propose to use as qubit basis states
are marked |0〉 and |1〉 in Fig. 1(c) and read to lowest (zeroth)
order in the tunnel couplings tij

|1〉 = |S14S23〉, (2)

|0〉 = 1√
3
{|S13S24〉 + |S12S34〉}, (3)

where Sij denotes a singlet pairing of the two electrons in
dots i and j . As an example, one can write explicitly |1〉 =
{|↑↑↓↓〉 − |↑↓↑↓〉 − |↓↑↓↑〉 + |↓↓↑↑〉}/2.

Close to the central point ε14 = 0, marked Q in Fig. 1(b),
exchange effects are small in t/�, where � = U − 3Uc is the
half width of the (1,1,1,1) charge region along the detuning
axis ε14, and we thus treat the tunnel couplings as perturbations.
Including only the nearby charge states (2,0,1,1), (1,0,2,1),
and (1,0,1,2), we can project Ĥ to the qubit subspace spanned
by |0〉 and |1〉, yielding to second order in the tij ,

Ĥqb = 1

4
(J12 + J24 − 2J23)σ̂ z +

√
3

4
(J12 − J24)σ̂ x, (4)

where we subtracted a constant offset. The σ̂ x,z denote Pauli
matrices, and the relative magnitudes of the exchange energies
J12 = t2

12/(� + ε14), J24 = t2
24/(� − ε14), and J23 = t2

23/�,
can be controlled by the detuning parameter ε14 (note that
we have set ε23 = 0). We make two observations: (i) The
qubit splitting at zero detuning, h̄ω0 = (t2

12 + t2
24 − 2t2

23)/2�,
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vanishes if all three tunnel couplings are equal; ideally, one
tunes t12 = t24 	= t23. (ii) The structure of this Hamiltonian is
fully equivalent to that of the triple-dot XO qubit [cf. Eq. (5) in
Ref. [44]], including its qualitative dependence on the detuning
parameter. Thus, our qubit can be operated analogously to the
XO qubit, i.e., by static pulsing [16] or resonant driving [23],
and the point Q is a sweet spot where the qubit is to lowest
order insensitive to noise in ε14.

Qubit operation. Qubit rotations are most conveniently
achieved using resonantly driven Rabi oscillations [23]. For
small detuning, |ε14| 
 �, we can expand Ĥqb to linear order
in ε14, yielding

Ĥqb = 1

2
h̄ω0σ̂

z −
√

3

2

t2ε14

�2
σ̂ x, (5)

where we used t12 = t24 = t . A harmonic modulation of the
detuning, ε14 = A cos(ωτ ), will thus induce Rabi rotations of
the qubit which will have at the resonance condition ω = ω0

a Rabi period of TRabi = 4πh̄�2/(
√

3t2A). Using again � =
5t (consistent with the realistic parameters t = 20 μeV, U =
1 meV, and Uc = 0.3 meV), a moderate driving amplitude of
A = 2.5 μeV would yield a rotation time TRabi ≈ 50 ns.

Readout of the qubit can be performed by spin-to-charge
conversion, in a similar way as in the double-dot S-T0 [14]
and triple-dot XO [16,23] qubits. The detuning ε14 is quickly
pulsed to the point marked R in Fig. 1(c), which lies in
the (1,0,1,2) charge region. There are only two accessible
(1,0,1,2) states with Sz = 0: The two electrons on dot 4 must
be in a singlet state, but the electrons on dots 1 and 3 can
form either a singlet S or unpolarized triplet T0. Only the
singlet-singlet configuration couples adiabatically to one of
the qubit states (the state |0〉). After pulsing to R, the qubit
state |0〉 will thus transition to a (1,0,1,2) charge configuration
whereas the state |1〉 remains in a spin-blockaded (1,1,1,1)
state. Subsequent charge sensing amounts to a projective
measurement of the qubit state. One requirement is that the
detuning pulse has to be fast enough so that spin-flip transitions
from |0〉 to one of the lower-lying states with Sz = 1,2,
which are crossed at ε14 ∼ EZ, are very unlikely. (Note that
exactly the same condition holds for the triple-dot XO qubit
measurement scheme, where the spin- 1

2 state connected to |0〉
crosses a spin- 3

2 state [23].)
Initialization of the qubit can be achieved in a similar way.

The simplest procedure is to pulse to a point in gate space
where there is one unique singlet-only ground state, such as the
point marked I in the (2,0,0,2) charge region [see Fig. 1(d)].
After waiting long enough, the system will have relaxed to this
ground state, and a fast pulse back to the qubit tuning Q will
yield a qubit prepared in |0〉. The path we propose for this pulse
is marked in Fig. 1(d) by a red dashed line: First, ε� is increased
until the edge of the (1,1,1,1) charge region is reached, after
which both ε� and ε23 are increased simultaneously until the
system reaches the point Q. For this pulse the same condition
holds as for the readout pulse: It should be fast enough to not
allow for spin-flip transitions into the lower-lying states with
Sz = 1,2 [45].

Decoherence. The main source of decoherence in GaAs-
based spin qubits is known to be the fluctuating bath of nuclear
spins that couples to the qubit states through a hyperfine

interaction [1,6,23]. The effect of the ensemble of ∼106

nuclear spins in each quantum dot can, to good approximation,
be modeled as a randomly and slowly fluctuating effective
magnetic field Ki acting on the electrons localized in the
dot i. The fluctuations are slow enough that the field can
be considered as static on the time scale of a single qubit
operation, but it varies randomly over the course of many
measurement cycles. The rms value of these random fields
was reported to be K = 1–3 mT in typical GaAs quantum
dots [3,23,52]. The resulting uncertainty in the qubit level
splitting translates to a decoherence time T ∗

2 of tens of ns, and
forms at present the bottleneck for further improvement of the
performance of GaAs-based spin qubits.

To understand the effect of hyperfine interaction on the
singlet-only qubit, we write the effective Hamiltonian

Ĥhf = gμB

2

∑
i,α,β

ĉ
†
i,αKi · σ αβ ĉi,β , (6)

and project this Hamiltonian to the qubit subspace,

Ĥhf,qb = 0. (7)

This confirms that, to leading order, the nuclear fields do
not affect the qubit and thus do not cause any decoherence.
The hyperfine Hamiltonian does, however, couple both qubit
states to all nine four-electron triplet states. Coupling to the
triplet states with Sz = ±1 is mediated by Kx

i and K
y

i , but
transitions to these states are strongly suppressed by the large
Zeeman energy EZ. The z components of the nuclear fields
couple |0〉 and |1〉 to |T1,2,3〉, and this coupling (i) can cause
leakage out of the qubit space, analogous to leakage to the
spin- 1

2 quadruplet state in the triple-dot XO qubit, and (ii) can
yield a higher-order shift in the qubit splitting, contributing to
qubit decoherence. Both effects are suppressed by the small
factor gμBK/J (where J is the typical energy scale of the
exchange energies Jij ), and the decoherence time resulting
from the fluctuations of the qubit splitting [53] can be estimated
as T ∗

2 ∼ h̄J/(gμBK)2. For typical parameters (J = 2 μeV
and K = 1 mT) this would present an improvement of two
orders of magnitude over other GaAs-based spin qubits, where
T ∗

2 ∼ h̄/gμBK .
To support these claims, we perform numerical simulations

of resonant driving of the qubit. We project the Hamiltonian
(1) to the 12-dimensional subspace of all (1,1,1,1), (2,0,1,1),
(1,0,2,1), and (1,0,1,2) states with Sz = 0. We diagonalize
the resulting Hamiltonian at the point Q [see Fig. 1(b)] using
the same parameters as before and specifying t = 16 μeV;
this yields all eigenstates at ε14 = 0 as well as the qubit
splitting h̄ω0. We initialize in the lowest-lying singlet state
|0〉, and then let the system evolve under the Hamiltonian
Ĥ + Ĥhf where we include resonant driving ε14 = A cos(ω0τ )
and four random nuclear fields Ki . In Fig. 2 (solid blue)
we show the resulting time-dependent probability to find the
system in |1〉, where we used A = 2.5 μeV and averaged over
2500 random nuclear field configurations with the gμBK

x,y,z

i

drawn from a normal distribution with mean zero and σ =
0.07 μeV. We observe eight Rabi oscillations in ∼450 ns
without any significant decay [54]. Of course, at longer
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FIG. 2. Solid blue: Calculated time-dependent expectation value
of |1〉〈1| after initializing in |0〉 and driving resonantly with ε14 ∝
cos(ω0τ ), averaged over 2500 random configurations of the nuclear
fields. Dashed red: Equivalent result for the triple-dot XO setup, using
the same parameters.

times eventually leakage out of the qubit space as well as
higher-order corrections due to the nuclear fields will suppress
the oscillations in 〈P1(τ )〉.

As a comparison, we also performed equivalent simulations
of resonant driving of a triple-dot XO qubit (cf. Ref. [23]),
using exactly the same parameters (basically setting t23 = 0
and adjusting ω0 to the new qubit splitting). The result is plotted
with a red dashed line in Fig. 2; in this case the hyperfine-
induced decay of 〈P1(τ )〉 is already significant in the first
few Rabi periods. The clear contrast between the two curves
illustrates the improvement presented by our quadruple-dot
XO qubit.

Relaxation. Electron-phonon coupling can contribute to
qubit relaxation, i.e., induce dissipative transitions from |1〉
to |0〉. The associated relaxation rate can be estimated using
Fermi’s golden rule, �rel = 2π

h̄

∑
f |〈f |Ĥe-ph|i〉|2δ(Ef − Ei),

where the initial state is |1〉|vac〉 (with |vac〉 denoting the
phonon vacuum) and the sum runs over all possible final states
|0〉|1k,p〉 where one phonon has been created with wave vector

k and polarization p. We use an electron-phonon Hamiltonian

Ĥe-ph =
∑
k,p

λk,pρ̂k(âk,p + â
†
−k,p), (8)

where â
†
k,p creates a phonon in mode {k,p}, ρ̂k is the Fourier

transform of the electronic density matrix, and λk,p are the
coupling parameters (see, e.g., Ref. [55]). At typical qubit
splittings the coupling to piezoelectric phonons dominates, in
which case an explicit evaluation of �rel yields to leading order
in t/� the estimate [45]

�rel ≈ t4

�4

ω3
0d

3

v3

(eh14)2

10πh̄ρv2d
, (9)

where v is the phonon velocity (for convenience now assumed
equal for all three polarizations), d the distance between
neighboring dots, h14 the piezoelectric constant, and ρ

denotes the mass density of the semiconductor (for GaAs,
v ∼ 4000 m/s, h14 ≈ 1.45 × 109 V/m, and ρ ≈ 5300 kg/m3;
see Ref. [56]). Setting d = 100 nm, this yields �rel =
ω3

0(t/�)4(3 × 10−23 Hz−2), which for � = 5t and h̄ω0 =
1.5 μeV gives �rel = 0.57 kHz.

Relaxation processes to |T3〉 require a change of the spin
state of the electrons [57] and are estimated to be smaller by a
factor ∼(gμBK/J )2. Dissipative transitions to the lower-lying
states with Sz = 1,2 require a spin flip and are suppressed by
the large Zeeman energy EZ.

Conclusions. We propose a quantum-dot-based singlet-only
spin qubit which is to leading order intrinsically insensitive to
randomly fluctuating nuclear fields. Our proposal thus removes
the main obstacle for further improvement of spin qubits
hosted in semiconductors with spinful nuclei, such as GaAs.
Its scalability, full electrical control, and large coherence
time make the singlet-only spin qubit one of unprecedented
quality.
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Exchange-only spin qubits hosted in 28Si-based triple quantum dots do not suffer from decoherence caused by
randomly fluctuating nuclear-spin ensembles and can be relatively robust against electrical noise when operated
at a sweet spot. Remaining sources of decoherence are qubit relaxation, leakage out of the qubit subspace, and
dephasing due to residual effects of charge noise, the latter two of which are the focus of this work. We investigate
spin-orbit-mediated leakage rates to the three-spin ground state accompanied by virtual (i) tunneling, (ii) orbital
excitation, and (iii) valley excitation of an electron. We find different power-law dependencies on the applied
magnetic field B for the three mechanisms as well as for the two leakage rates, ranging from ∝B5 to ∝B11, and
identify the sweet spot as a point of minimal leakage. We also revisit the role of electrical noise at the sweet spot
and show that it causes a decay of coherent qubit oscillations that follows a power law ∝1/t (as opposed to the
more common exponential decay) and introduces a π/2 phase shift.

DOI: 10.1103/PhysRevB.98.245409

I. INTRODUCTION

The development of semiconductor quantum-dot spin
qubits seems to be a promising path towards the material-
ization of large-scale quantum computation [1]. In order to
overcome the practical challenge of creating highly localized
oscillating magnetic fields, implementations of such qubits
have seen a development from single-dot single-spin systems
to a more complicated triple-dot three-spin exchange-only
(XO) qubit that can be fully operated by only electric fields
[2–7]. Furthermore, hosting spin qubits in purified 28Si, in-
stead of the more traditional III-V materials, led to a signif-
icant improvement of observed qubit coherence times due to
the negligible fraction of spinful nuclei in the material [8–14].

Remaining sources of decoherence for the 28Si-based XO
qubit are (i) electric noise in the environment of the qubit lead-
ing to qubit dephasing [15,16], (ii) electron-phonon coupling
that can cause (spin-conserving) qubit relaxation [5], and (iii)
spin-mixing mechanisms such as spin-orbit (SO) interaction
that can enable leakage out of the qubit subspace to the three-
spin ground state |↓ ↓↓〉 [15,17]. Some of these mechanisms
have already been studied: It was found that the effects of
charge noise can be strongly suppressed by manipulating the
qubit at a so-called sweet spot (SS), where the qubit splitting
is, to leading order, insensitive to electric fluctuations [7,18],
and electron-phonon coupling was shown to cause slow qubit
relaxation (estimated as �rel � 10 Hz) that is proportional to
the fifth power of the qubit splitting [19]; some effects of SO
interaction can also be suppressed during gate operations in
double quantum dots by shaping the pulse of the two-qubit
coupling [20,21] or by using superexchange coupling in a
triple-quantum-dot setup [22].

In this work we study some of the remaining questions. We
first investigate the SO-induced leakage rates from the two
qubit states to the ground state |↓ ↓↓〉. Since a SO-assisted
spin flip requires finite motion of the electron, such a leakage
process must involve virtual excitation of a different orbital

state [17]; here we consider the contributions from virtual
tunneling, on-site orbital excitation, and valley excitation sep-
arately. For these three mechanisms we find different power
laws for the dependence of the two rates on the applied
magnetic field B, ranging from �leak ∝ B5 to �leak ∝ B11, and
we also show that the SS is the point where both the qubit
relaxation and leakage rates are minimal. Finally, we also re-
visit the role of charge noise at the SS, and we show that slow
electric fluctuations in the qubit’s environment cause a power-
law decay ∝1/t of coherent qubit oscillations, as opposed to
the exponential decay that is usually assumed [23,24].

The rest of this paper is organized as follows: In Sec. II
we introduce our description of the system and the model
Hamiltonians we use. In Sec. III we present our analytic
results for the leakage rates based on the three mechanisms
mentioned above. Then, in Sec. IV, we corroborate these
results with a numerical evaluation of the dominating leakage
rates, across the whole (1,1,1) charge region. In Sec. V we
investigate charge-noise-induced dephasing, and in Sec. VI
we finally present our conclusions.

II. MODEL

We consider a linear array of three circular quantum dots
with radius σ and interdot distance d (center to center), as
schematically depicted in Fig. 1(a). Assuming a large orbital
level splitting on the dots, we allow each dot i to contain ni ∈
{0, 1, 2} excess electrons, and the triplet (n1, n2, n3) will here-
after be used to label the different charge configurations. We
model the system using a Hubbard-like Hamiltonian [5,6,25],

Ĥ =
∑

i

[
U

2
n̂i (n̂i − 1) − Vin̂i

]
+

∑
〈i,j〉

Ucn̂i n̂j

+
∑

〈i,j〉,α

tij√
2
ĉ
†
i,αĉj,α +

∑
i,α

1

2
gμBBĉ

†
i,ασ αα

z′ ĉi,α, (1)
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FIG. 1. (a) Reference frame of the system. The quantum dots
(dashed gray circles) lie in the xy plane. An in-plane magnetic
(Zeeman) field B is applied at an angle ϑ with the interdot axis,
which, in turn, is at an angle χ with the crystallographic [100]
direction. (b) Charge stability diagram, showing the charge ground
state of the electrostatic part of the Hamiltonian (1) as a function of ε

and Vm, using Uc = 0.3U and V2 = 2Uc − V1 − V3. (c) Qualitative
sketch of the lower part of the spectrum of (1) as a function of ε in
the regions labeled “RX” in (b), where we assumed t12 = t23. The
gray arrows indicate the leakage processes investigated here. In this
plot all variables are in arbitrary units.

where n̂i = ∑
α ĉ

†
i,αĉi,α , with ĉ

†
i,α being the creation operator

for an electron with spin α in the orbital ground state of dot i,
and σ̂z′ is the diagonal Pauli matrix, acting in spin space. As
in Refs. [5,26], the first line describes the electrostatic energy
and includes an on-site charging energy U , gate-tunable local
potentials Vi , and a nearest-neighbor charging energy Uc.
The second line adds nearest-neighbor (spin-conserving)
interdot tunnel couplings and a Zeeman splitting due to an
externally applied magnetic field B, which we assume to be
in plane. The tunnel coupling parameters could be effectively
renormalized due to phase differences between the valley
states on neighboring dots [27]; we assume such effects are
included in the tij we use.

Figure 1(b) shows part of the charge stability diagram
resulting from the first line of (1), where the regions with
different charge (ground) states are indicated, as a function of
ε = (V3 − V1)/2 and Vm = (V1 + V3)/2 − V2 for Uc = 0.3 U

and V1 + V2 + V3 = 2Uc. Within the (1,1,1) region finite
tunnel couplings tij lead to exchange effects that split the
spectrum in a fourfold-degenerate spin quadruplet and two
doubly degenerate doublets. The additional Zeeman field B

further splits all states with different total spin projection S tot
z ,

and in Fig. 1(c) we qualitatively sketch the resulting lowest
part of the spectrum of (1) in the (1,1,1) region as a function of
ε, where we assume that t12 = t23 ≡ τ and use EZ = gμBB.

At ε = 0 the two spin doublet states with S tot
z =

− 1
2 are |0〉 = (| ↓↓↑〉 + | ↑↓↓〉 − 2| ↓↑↓〉)/

√
6 and |1〉 =

(|↓ ↓↑〉 − |↑ ↓↓〉)/
√

2 and provide a basis for a qubit that
can be controlled fully by electrical means [5–8,15,28]: The
qubit splitting reads (to lowest order in τ ) h̄ω = 2τ 2(U −
Uc )/EoEi , with Eo = U − 2Uc − Vm and Ei = U + Vm,
which can be controlled through τ and Vm, and a small
ε yields a term ∝ε σ̂x in the projected qubit Hamiltonian
[29]. Close to the borders of the (1,1,1) region [the regimes
labeled “RX” in Fig. 1(b)] a small modulation of ε with
frequency ω thus induces Rabi oscillations. This so-called
resonant-exchange (RX) regime has the advantage that the
qubit operations can be fast [6,8]. At the center of the (1,1,1)
region (the sweet spot, labeled “SS”) the qubit should be
operated with larger pulses (resonant or static) [7,14,18], but
here one has the benefit that the qubit splitting is, to leading
order, insensitive to noise in the gate potentials. The qubit
dephasing time T ∗

2 is thus predicted to be orders of magnitude
larger at this point than in the RX regime [23,30]. Below we
will investigate the remaining dephasing at the SS in more
detail.

The leading effects of charge noise can thus be suppressed
by operating the qubit at the SS, and since 28Si is nuclear
spin free, the hyperfine interaction that reduces the dephasing
time in GaAs-based spin qubits to ∼10 ns [6,8,31,32] is not a
concern here. That leaves as possibly dominating decoherence
mechanisms (i) qubit relaxation (transitions from |1〉 to |0〉)
due to electron-phonon coupling and (ii) leakage out of the
qubit space (dissipative transitions to the ground state |Q2〉 =
|↓ ↓↓〉) enabled by SO interaction combined with electron-
phonon coupling [see the gray arrows in Fig. 1(c)] [33–35].
Since phonon-mediated relaxation of the triple-dot XO qubit
has been studied before [5,15,19], we will focus here on the
leakage caused by SO interaction.

We model the SO coupling for each electron with the
Hamiltonian [17,36]

ĤSO = Axxp̂xσ̂x ′ + Ayxp̂yσ̂x ′ , (2)

where p̂ is the electron’s momentum. We exclusively fo-
cus on the spin-flip terms ∝σx ′ [see Fig. 1(a)] and use
Axx = α cos ϑ + β(cos ϑ sin 2χ + sin ϑ cos 2χ ) and Ayx =
α sin ϑ + β(cos ϑ cos 2χ − sin ϑ sin 2χ ), where α and β are
the amplitudes of the Rashba and Dresselhaus terms, re-
spectively. Rashba SO coupling in Si-based quantum wells
is predicted to come from structural inversion asymmetry
arising from electric fields set up by interface effects [37,38].
Dresselhaus SO coupling is usually associated with inversion
asymmetry of the crystal lattice, which is, in principle, absent
in Si [10,39]. However, theoretical work predicted that micro-
scopic details (such as the exact number of atomic Si layers
in the well or roughness of the interfaces) can give rise to a
Dresselhaus-like term that could be comparable to or even
dominate over the Rashba term [40–42]; this was recently
confirmed by several experiments [38,43,44].

For the electron-phonon coupling we use the Hamiltonian
[37,45,46]

Ĥe-ph =
∑
k,p

λk,pρ̂k(âk,p + â
†
−k,p ), (3)
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with ρ̂k = ∫
dre−ik·rρ̂(r) being the Fourier transform of the

electronic density operator, â
†
k,p being the creation operator

of a phonon with wave vector k and polarization p, and the
coupling parameters λk,p given by

|λk,p|2 = h̄

2ρ0vpkV
[
�dep

k · k + �u

(
ep

k

)
z
kz

]2
, (4)

with vp being the (polarization-dependent) sound velocity, ρ0

being the electron density, V being the normalization volume,
�u and �d being the uniaxial shear and dilatation deformation
potentials [47], and el

k and et
k being unit vectors along the

longitudinal and transversal directions of phonon propagation.
For localized electrons, such as in quantum dots, 〈p̂〉 van-

ishes, and therefore SO interaction does not directly couple
states that have the same orbital wave function but oppo-
site spin. Spin-flip transitions within the orbital ground state
thus require the excitation of a virtual state which involves
finite motion of the electrons. We will investigate three such
mechanisms: (i) virtual tunneling to a neighboring dot (an
“exchange-enabled” spin flip), (ii) virtual excitation of a
higher orbital on the same dot, and (iii) virtual excitation
of the other valley state, also on the same dot. All three
mechanisms, in combination with the emission of a phonon
to ensure energy conservation, can thus lead to a spin flip
and thereby cause leakage out of the qubit space as discussed
above.

We should note, however, that in realistic systems one often
cannot treat the orbital or valley index of an excited state as
a good quantum number, the actual states being of a mixed
valley-orbital nature [10,48]. For clarity of presentation, we
will first investigate the cases of pure virtual orbital and pure
virtual valley excitation separately and then, at the end of
Sec. III C, discuss how our results relate to the case of mixed
valley-orbital states.

III. ANALYTIC RESULTS

We now investigate the three spin-orbit-mediated leakage
mechanisms in more detail, and we evaluate the leakage rates
�1,0 from qubit states |1〉 and |0〉 to the ground state |Q2〉,
focusing on ε = 0 and symmetric tunnel coupling, t12 = t23 ≡
τ . In all cases we will calculate the rates using a second-order
Fermi’s golden rule,

�α =
∑
k,p

2π

h̄

∣∣∣∣∣
∑

v

〈f |Ĥ ′|v〉〈v|Ĥ ′|i〉
Ev − Ei

∣∣∣∣∣
2

δ(Ef − Ei ), (5)

where Ĥ ′ = ĤSO + Ĥe-ph and the second sum runs over all
possible virtual states |v〉. The initial state |i〉 is |α; vac〉 with
α ∈ {1, 0} (one of the qubit states combined with the phonon
vacuum), and the final state |f 〉 is |Q2; 1k,p〉 (the ground
state combined with one phonon with wave vector k and
polarization p).

A. Virtual spin-flip tunneling

By using p̂ = i
h̄
m∗[Ĥ , r̂], with Ĥ as in (1) and m∗ being

the effective electron mass, one can derive matrix elements
of ĤSO that couple states with different spin and charge
configurations [45,49]. These “spin-flip tunneling” matrix

elements couple both |1〉 and |0〉 to |Q2〉, and phonon emission
is then governed by matrix elements that do not alter the
spin or orbital state of the electrons. Assuming a parabolic
confinement in the quantum dots, and thus a Gaussian ground-
state envelope wave function, the matrix element describing
the emission of a phonon by an electron in a quantum dot j at
position xj reads

〈0j−s; 1k,p|Ĥe-ph|0j−s; vac〉

= i

√
h̄

2ρ0vpkV
[
�dep

k · k + �u

(
ep

k

)
z
kz

]
e− 1

4 (k2
x+k2

y )σ 2−ikxxj ,

(6)

where |0j−s〉 denotes the state of an electron in the ground
state in dot j with spin s and in the lowest valley state (denoted
by the − symbol).

Taking into account all three electrons, we can arrive at
analytic expressions for the leakage rates. Defining �−2 =
E−2

o − E−2
i , we find to leading order in τ/�

�1 ≈ 1

16π

d2

l2
so

τ 4

�4

�2
uE

3
Z

h̄4v5
t ρ0

f ex
1

(
dEZ

h̄vt

)
, (7)

�0 ≈ 3

16π

d2

l2
so

τ 4

�4

�2
uE

3
Z

h̄4v5
t ρ0

f ex
0

(
dEZ

h̄vt

)
, (8)

where lso = h̄/m∗Axx is the relevant spin-orbit length and the
functions f ex

1,0(x) ∼ 1 for x � 1; they are given explicitly in
Appendix A. To arrive at these expressions, we assumed that
EZ � τ 2/Ei,o (which is typically satisfied if B � 10 mT) and
E2

Z � (h̄vt/σ )2 (which, for σ = 15 nm, limits B � 2 T). Fur-
thermore, we used the fact that in Si vl ≈ 2vt , which makes
(vt/vl )5 � 1. For small E2

Z � (h̄vt/d )2 we can expand the
functions f ex

1,0(x) in small x, yielding

�1 ≈ 1

840π

d2

l2
so

τ 4

�4

d4�2
uE

7
Z

h̄8v9
t ρ0

, (9)

�0 ≈ 1

35π

d2

l2
so

τ 4

�4

d2�2
uE

5
Z

h̄6v7
t ρ0

. (10)

We see that �1 ∝ E7
Z and �0 ∝ E5

Z in this limit, and �1 is
smaller than �0 by a factor of (dEZ/h̄vt )2. In the case of
substantially asymmetric tunneling amplitudes (i.e., t12 �= t23)
we find that both rates scale as � ∝ E5

Z.
These rates can be directly compared with the qubit relax-

ation rate, from |1〉 to |0〉, which comes mainly via electron-
phonon coupling [5,34]

�rel = 1

70π

τ 4

�4

d2�2
u(h̄ω)5

h̄6v7
t ρ0

, (11)

where h̄ω is the qubit splitting.
Note that all relaxation rates cancel when 1/� = 0, which

happens at the SS. A qubit operated at this point will therefore
be highly insensitive to both dephasing due to charge noise
and relaxation and leakage. Additionally, the dependence
of Axx on the angles χ and ϑ allows for a reduction of
the leakage rates by varying the device orientation and the
direction of B: In fact, for χ equal to a multiple of π/2, we see
that there are angles ϑ = (n + 1

2 )π for which Axx = 0. Such
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strong angular dependence of spin-orbit-mediated relaxation
rates is already well known from theory and experiments on
double quantum dots [50–53].

B. Virtual orbital excitation

The parabolic potential that confines the electrons in the
quantum dots results in Fock-Darwin eigenstates with energy
splitting Eorb = h̄2/m∗σ 2. The SO interaction couples the
orbital ground state to the first excited state with opposite
spin [17],

〈
1α

j −s̄
∣∣p̂ασ̂x ′ |0j−s〉 = ih̄√

2σ
, (12)

where s̄ denotes the spin state opposite to s and the superscript
α indicates which component of the wave function is in
the excited state [54]. The electron-phonon Hamiltonian also
couples these two orbital states [37],〈

1α
j −s; 1k,p

∣∣Ĥe-ph|0j−s; vac〉

= i

√
h̄

2ρ0vpkV
[
�dep

k · k + �u

(
ep

k

)
z
kz

]
g

(j,α)
10 (k), (13)

with g
(j,α)
10 (k) being the Fourier transform of the overlap

between the ground and first excited states on dot j ,

g
(j,α)
10 (k) = − i√

2
kασe− 1

4 (k2
x+k2

y )σ 2−ikxxj . (14)

The resulting leakage rates, involving the virtual excita-
tion of an orbital state, can straightforwardly be evaluated.
Compared to the exchange-enabled rates, they come with
large powers of EZ/Eorb instead of τ/�, which makes them
typically much smaller. Under the same assumptions as before
we find

�1 ≈ 1

4π

E4
Z

E4
orb

�2
uE

3
Z

h̄4v5
t ρ0

f orb
1

(
dEZ

h̄vt

)
, (15)

�0 ≈ 1

12π

E4
Z

E4
orb

�2
uE

3
Z

h̄4v5
t ρ0

f orb
0

(
dEZ

h̄vt

)
, (16)

where the dimensionless functions f orb
1,0 (x) are given in

Appendix A. For x � 1 they are of the order of (A2
xx +

A2
yx )/v2

t , and for small E2
Z � (h̄vt/d )2 we can again expand

the functions, yielding

�1 ≈ 2

315π

3A2
xx + A2

yx

v2
t

E4
Z

E4
orb

d2�2
uE

5
Z

h̄6v7
t ρ0

, (17)

�0 ≈ 2

10395π

5A2
xx + A2

yx

v2
t

E4
Z

E4
orb

d4�2
uE

7
Z

h̄8v9
t ρ0

. (18)

In this case we thus find that �1 ∝ E9
Z and �0 ∝ E11

Z and
that now �1 is larger than �0 by a factor of (dEZ/h̄vt )−2

(on top of a rather large difference in numerical prefactors),
opposite to the exchange-enabled rates. Comparing the two
mechanisms qualitatively, we see that the factor d2τ 4/l2

so�
4

in the exchange-enabled rates is replaced here by the factor
A2E4

Z/v2
t E

4
orb, which is typically much smaller [55]. Another

qualitative difference is that the “orbital-assisted” rates (15)

and (16) do not depend on the tuning through � and thus
survive at the SS.

We can compare these results with Eq. (12) in Ref. [37],
where the authors calculated the ground-state spin relaxation
rate in a single quantum dot via virtual excitation of an orbital
state. We see that our results are fundamentally the same,
apart from extra factors of (dEZ/vt h̄)2, which result from the
multielectron/multidot nature of our system and account for
interference between spin-flip amplitudes on different dots.
If we were to make the orbital energy splitting substantially
different on each dot, we would also find � ∝ E7

Z for both
relaxation rates.

C. Virtual valley excitation

The band gap in bulk Si is indirect, and the conduction
band has six minima, away from k = 0. In most Si-based
heterostructures strain splits off four of these minima, leaving
two minima at k ≈ ±0.85 kmaxẑ, where ẑ is the growth di-
rection of the structure. Localized electrons in the conduction
band thus have an extra “valley” degree of freedom and can
be described by the wave function

ψ (v) = F (v)(r)
[
α

(v)
1 u1(r)eikzz + α

(v)
2 u2(r)e−ikzz

]
, (19)

where F (v)(r) is the envelope wave function corresponding
to valley v and u1,2(r) is the lattice-periodic part of the
Bloch functions at the conduction band minima at ±kz.
Inhomogeneities such as disorder and interface roughness
typically couple the two minima, resulting in eigenstates with
α

(±)
1 = 1√

2
and α

(±)
2 = ± 1√

2
.

Both SO and electron-phonon interaction can couple op-
posite valley states [37], and virtual valley excitation can thus
cause leakage in a way similar to virtual orbital excitation.
The relevant matrix elements, however, depend sensitively on
details of the confinement along the z direction that are hard
to predict. We thus take a slightly more qualitative approach
and start by employing the dipole approximation e−ik·r ≈ 1 −
ik · r in the electron-phonon Hamiltonian (3), which amounts
to assuming that the emitted phonon has a wavelength much
larger than the electronic confinement length [equivalent to
the assumption E2

Z � (h̄vt/σ )2 used before]. This allows us
to write

〈0j+s; 1k,p|Ĥe-ph|0j−s; vac〉

≈
√

h̄

2ρ0vpkV
[
�dep

k · k + �u

(
ep

k

)
z
kz

]
e−ikxxj k · r+−,

(20)

with r+− = 〈0j+s|r|0j−s〉 being the valley dipole matrix
element. If we use again p̂ = i

h̄
m∗[Ĥ , r], then we can express

the SO Hamiltonian in terms of the same dipole matrix
elements. The precise magnitude of these elements depends
again on microscopic details, and for simplicity we will use
|z+−| � |x+−|, |y+−| and assume x+− = y+− ≡ rd [56,57].
This phenomenological parameter can be related to the mag-
nitude of SO-induced anticrossings in the electronic spectrum
between states with different spin and valley indices; for Si
metal-oxide-semiconductor-based quantum dots |rd | ∼ 1–2
nm has been reported [57].
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We can now calculate the leakage rates and find, using
again the same assumptions,

�1 ≈ 1

π

A2

v2
t

|rd |4
l4
Z

E2
Z

E2
v

�2
uE

3
Z

h̄4v5
t ρ0

f val
1

(
dEZ

h̄vt

)
, (21)

�0 ≈ 1

3π

A2

v2
t

|rd |4
l4
Z

E2
Z

E2
v

�2
uE

3
Z

h̄4v5
t ρ0

f val
0

(
dEZ

h̄vt

)
, (22)

where, for convenience of notation, we introduced the Zeeman
length lZ = h̄/

√
m∗EZ and Ev denotes the splitting between

the two valley states. The parameter A ∼ α, β sets the strength
of the SO interaction; we cannot resolve the detailed depen-
dence on the angles ϑ, χ in this case since that would require
knowing the exact relative magnitude and phase of x+− and
y+− as well. The dimensionless functions f val

1,0 (x), given in
Appendix A, are again of the order of 1 for x � 1 and can be
expanded in small x when E2

Z � (h̄vt/d )2, giving

�1 ≈ 32

315π

A2

v2
t

|rd |4
l4
Z

E2
Z

E2
v

d2�2
uE

5
Z

h̄6v7
t ρ0

, (23)

�0 ≈ 16

3465π

A2

v2
t

|rd |4
l4
Z

E2
Z

E2
v

d4�2
uE

7
Z

h̄8v9
t ρ0

. (24)

We find again �1 ∝ E9
Z and �0 ∝ E11

Z , as well as that �1 is
larger than �0 by a factor of (dEZ/h̄vt )−2 and that the rates
do not depend on tuning parameters, all qualitatively similar
to the rates based on virtual orbital excitation. Comparing
the rest of the expressions, we find that the valley-assisted
rates are smaller than the orbital-assisted ones by a factor
of ∼|rd |4E2

orb/σ
4E2

v , where typically |rd | ∼ 1–2 nm and σ ∼
10–30 nm, which makes this a very small factor. A significant
variation of Ev or |rd | over the dots would yield relaxation
rates that scale as � ∝ E7

Z in both cases.
In the presence of valley-orbital mixing of the excited

states it is also hard to write analytic expressions for the
dipole matrix elements needed. In this case Eqs. (21)–(24)
are the most useful results, where rd now describes the dipole
matrix element between the ground state and first excited
valley-orbital state and Ev should, of course, be replaced by
the valley-orbital ground-state gap Evo.

IV. NUMERICAL RESULTS

We corroborate our approximate analytic results with a
numerical evaluation of the leakage rates across the whole
(1,1,1) charge region. We focus here on the dominating
exchange-assisted mechanism of Sec. III A, which is also the
only one that shows a dependence on the tuning parameters ε

and Vm.
We start by diagonalizing the Hamiltonian Ĥ + ĤSO, dis-

regarding the excited orbital and valley states. We then iden-
tify in the spectrum the two qubit states |1〉, |0〉 (the spin
doublet states with S tot

z = − 1
2 ) and the quadruplet state |Q2〉.

Using Fermi’s golden rule,

�α = 2π

h̄

∑
k,p

|〈Q2; 1k,p|Ĥe-ph|α; vac〉|2 δ(Ef − Ei ), (25)

we finally calculate the two leakage rates numerically.
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FIG. 2. Spin-flip-tunneling-assisted leakage rates out of the qubit
space across the whole (1,1,1) charge region, from (a) |1〉 and (b) |0〉
to |Q2〉 in units of γex ≡ d2�2

uE
3
Z/l2

soh̄
4v5

t ρ0 (see text for the choice
of parameters). (c) �1,0 as a function of Vm for ε = 0 (circles and
crosses), i.e., along the vertical dashed lines in (a) and (b). Solid
lines show the analytical results from Eqs. (9) and (10). (d) �1,0 as
a function of ε for Vm = −0.3 U , i.e., along the horizontal dashed
lines in (a) and (b).

The results are shown in Fig. 2, where we plot the leakage
rates in units of γex ≡ d2�2

uE
3
Z/l2

soh̄
4v5

t ρ0. We used t12 =
t23 ≡ τ = 16 μeV, U = 50τ, Uc = 15τ, EZ = 2τ and set
the angles ϑ = χ = 0. We assumed Si/SiGe quantum dots
with σ = 10 nm and d = 100 nm, and we used the material
parameters α = 609 m/s, �d = 5 eV, �u = 9 eV, ρ0 = 2330
kg/m3, vl = 9150 m/s, vt = 5000 m/s [30,46,58,59] and the
transverse effective mass m∗ = 0.19me [58,60], for which we
find γex = 960 kHz. The value of β is irrelevant in this case
since Axx is independent of β for our choice of angles ϑ and
χ . Figure 2(a) shows the rate �1, and Fig. 2(b) shows the
rate �0. We see that the magnitude of the rates ranges from
∼10−12 γex to ∼10−5 γex, which is typically much smaller
than the decoherence rates due to other mechanisms, such as
phonon-mediated qubit relaxation (transitions from |1〉 to |0〉)
and dephasing caused by charge noise. Vertical and horizontal
dashed lines indicate the line cuts that we show in Figs. 2(c)
and 2(d). Here we plot the leakage rates as a function of Vm

for ε = 0 [Fig. 2(c)] and as a function of ε for Vm = −0.3U

[Fig. 2(d)]. Circles and crosses present numerical results, and
the solid lines in Fig. 2(c) show the analytical results of
Eqs. (9) and (10), which indeed agree well with the numerical
results.

At the SS the qubit can also be operated electrically by
tuning the tunnel barriers, without the need of leaving this
point of low decoherence, as has been pointed out before
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[18]. Our numerical calculations confirm that at the SS the
relaxation rates between any two states in the lowest part
of the spectrum (including the qubit relaxation rate �rel) are
strongly suppressed, not only for t12 = t23 as in Fig. 2 but
for any combination of tunneling energies. The triple-dot spin
qubit can thus be operated at the SS via a modulation of
the tunneling amplitudes (the always-on exchange-only qubit
[15]) while being highly insensitive to charge noise, relax-
ation, and SO-assisted leakage. The constant contributions
of virtual valley and orbital excitation to the leakage rates
(see Secs. III B and III C) are estimated to be ∼10−10 γex for
our choice of parameters and therefore do not affect these
conclusions qualitatively.

V. DEPHASING AT THE SS

Dephasing in 28Si-based triple-dot spin qubits is believed
to mainly come from electric noise in the qubit’s environment
[13,24]. As a first approximation, one can understand such de-
phasing by assuming the noise manifests itself as fluctuations
of the gate potentials, Vi (t ) = Vi + δVi (t ), that are Gaussian
and have zero mean. To leading order, the qubit frequency
then acquires a time dependence ω(t ) = ω + δω(t ), with
δω(t ) = ∑

i (∂ω/∂Vi )δVi (t ), and a qubit prepared in the co-
herent superposition |ψ (0)〉 = |+〉 = 1√

2
(|0〉 + |1〉) will thus

evolve as |ψ (t )〉 = 1√
2
(|0〉 + ei[φ(t )+δφ(t )]|1〉), where δφ(t ) =∫ t

0 dt ′ δω(t ′). The noise-induced dephasing can then be char-
acterized by investigating the expectation value 〈eiδφ(t )〉: Since
the fluctuations δω(t ), and thus the fluctuations δφ(t ), are
Gaussian, only the second cumulant in the expansion of
〈eiδφ(t )〉 is nonzero, resulting in low-frequency noise in an
exponential decay of the coherent qubit oscillations ∼e−t2/T 2

ϕ ,
where the exact form of the dephasing time Tϕ depends on the
detailed noise spectrum [23,24,61,62].

Exactly at the SS, all first-order derivatives ∂ω/∂Vi van-
ish, and therefore this type of dephasing is highly sup-
pressed. To understand the remaining charge-noise-induced
dephasing at the SS, one could thus try to use the
same approach but now focus on the next order, δω(t ) =∑

i,j (∂2ω/∂Vi∂Vj )δVi (t )δVj (t ). In this case, however, the
fluctuations δω(t ) [and thus δφ(t )] are no longer Gaus-
sian, and one would thus have to include all cumulants in
the expansion of 〈eiδφ(t )〉 [63]. Therefore it is more conve-
nient to investigate the explicit time evolution of the qubit
[5,7,15,28]. Assuming for simplicity quasistatic fluctuations
[23,61,62], we can evaluate the time-dependent probability
P (t ) = |〈+|ψ (t )〉|2 to find the qubit in the state |+〉 and
average this probability over the fluctuations δVi [64]. To good
approximation we then find (see Appendix B for details)

〈P (t )〉 = 1

2
+ cos(ωt − arctan[t/Tϕ])

2
√

1 + t2/T 2
ϕ

, (26)

where Tϕ = h̄(U − Uc )3/4τ 2ξ 2 is the dephasing time, with
ξ 2 = 〈(δVi )2〉 being the variance of the fluctuations. At
the SS the leading-order contribution of the charge noise
to dephasing thus results in (i) a time-dependent phase
shift in the qubit oscillations, which goes to −π/2 for
t � Tϕ , and (ii) a decay of the coherent oscillations with a

0

0.25

0.5

0.75

1

1 10

〈P
(t
)〉

t (ns)
1000 10000

FIG. 3. Numerically calculated time-dependent return probabil-
ity |〈+|ψ (t )〉|2 after initializing in |+〉, averaged over 105 different
sets of δV1,2,3 taken from a normal distribution with ξ = 5 μeV (thin
blue line). The thick black line shows the envelope function of the
oscillations as predicted by Eq. (26), and the dashed red line shows
the best fit obtainable assuming an exponential envelope of the form
1
2 + 1

2 e−t2/T̃ 2
ϕ .

power-law behavior, ∼Tϕ/t for large times, in contrast to
the exponential decay ∼e−t2/T 2

ϕ one finds away
from the SS, whenever

∑
i (∂ω/∂Vi )δVi (t ) �∑

i,j (∂2ω/∂Vi∂Vj )δVi (t )δVj (t ) [24]. One can also use a
detailed cumulant-expansion approach to describe quadratic
coupling to Gaussian noise, which leads to the same long-time
behavior as we found here [63].

We can also calculate the averaged probability 〈P (t )〉
numerically, again assuming quasistatic charge noise. Using
the same parameters as before, we tune the Hamiltonian
(1) to the SS (ε = 0, Vm = −0.3 U ) but then add random
offsets δV1,2,3, taken from a normal distribution with ξ =
5 μeV [14]. We diagonalize the resulting Hamiltonian, iden-
tify the two qubit states |1〉 and |0〉, and create an initial state
|+〉 = 1√

2
(|0〉 + |1〉). We then evaluate numerically the time-

dependent qubit state |ψ (t )〉 = exp{− i
h̄
Ĥ t}|+〉, and from this

we can calculate P (t ) for the specific set of δVi chosen. This
procedure is repeated 105 times, and the resulting average
〈P (t )〉 is shown by the blue curve in Fig. 3. As expected, we
see an oscillating probability that decays to 1/2 over time. The
black solid line shows the envelope function of the decaying
oscillations, as given by Eq. (26), where we have Tϕ ≈ 4 μs
for our choice of parameters. We see that the power-law decay
predicted by (26) matches the numerical results very well. For
comparison we include a best fit of the form 1

2 + 1
2e−t2/T̃ 2

ϕ (red
dashed line), which yields T̃ϕ ≈ 12.4 μs but indeed shows a
much worse agreement with our numerical results than the
power-law from (26).

VI. CONCLUSIONS

Leakage out of the qubit subspace in XO qubits hosted
in 28Si-based triple quantum dots is caused mainly by SO
interaction via virtual spin-flip tunneling. Together with spin-
conserving phonon emission, this results in tuning-dependent
leakage rates that scale as �1 ∝ E7

Z and �0 ∝ E5
Z and are

strongly reduced at the SS, where the qubit is minimally
sensitive to charge noise as well. We found that the other
two mechanisms of leakage we investigated, virtual orbital
and valley excitation, result in much smaller relaxation
rates, scaling as �1 ∝ E9

Z and �0 ∝ E11
Z ; they are constant
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throughout the entire (1,1,1) charge region, thus becoming
the most relevant mechanism of leakage only at the SS.
Further, we showed that also (spin-conserving) qubit re-
laxation, enabled by electron-phonon coupling, is minimal
at the SS, making this an ideal operation point in many
respects.

We also investigated the residual effects of charge noise
at the SS, which are most likely the dominating source of
pure dephasing at that point. We found that slow electric
fluctuations result in dephasing that makes coherent qubit
oscillations decay as ∝1/t , in analogy to Refs. [63,64]; this

in contrast to the exponential decay that dominates elsewhere
in the (1,1,1) charge region.

ACKNOWLEDGMENTS

This work was partly supported by the Research Council
of Norway through its Centers of Excellence funding scheme,
Project No. 262633, QuSpin.

APPENDIX A: DETAILED ANALYTIC RESULTS

The dimensionless functions used in the analytic results
presented in Sec. II read explicitly

f ex
1 (x) = 4

5
+ 1

16x5
[128x(x2 − 9) cos x − 2(4x2 − 9)(x cos 2x + 64 sin x) + (16x2 − 9) sin 2x], (A1)

f ex
0 (x) = 4

15
+ 1

16x5
[2x(4x2 − 9) cos 2x − (16x2 − 9) sin 2x], (A2)

f orb
1 (x) = 8

105

(
a2

xx + a2
yx

) + 1

32x6

[
3a2

yx (8x2 − 15) + 2a2
xx (8x4 − 78x2 + 135)

]
cos 2x

+ 1

64x7

[
a2

yx (16x4 − 84x2 + 45) − 2a2
xx (64x4 − 258x2 + 135)

]
sin 2x, (A3)

f orb
0 (x) = 8

35

(
a2

xx + a2
yx

) + 1

64x7

{
512x

[
3a2

yx (2x2 − 15) + a2
xx (x4 − 39x2 + 270)

]
cos x

− 2x
[
3a2

yx (8x2 − 15) + 2a2
xx (8x4 − 78x2 + 135)

]
cos 2x + 512

[
a2

yx (x4 − 21x2 + 45) − a2
xx (8x4 − 129x2 + 270)

]
× sin x − [

a2
yx (16x4 − 84x2 + 45) − 2a2

xx (64x4 − 258x2 + 135)
]

sin 2x
}
, (A4)

f val
1 (x) = 16

105
+ 1

64x7
[2x(16x4 − 132x2 + 225) cos 2x − (112x4 − 432x2 + 225)] sin 2x, (A5)

f val
0 (x) = 16

35
+ 8

x7
[x(x4 − 33x2 + 225) cos x − (7x4 − 108x2 + 225) sin x]

− 1

64x7
[2x(16x4 − 132x2 + 225) cos 2x − (112x4 − 432x2 + 225) sin 2x], (A6)

where the spin-orbit velocities in (A3) and (A4) are rescaled
with the transverse phonon velocity, axx,yx ≡ Axx,yx/vt .

APPENDIX B: CHARGE NOISE AND DEPHASING AT THE
SWEET SPOT

In the absence of significant hyperfine interaction, the
main source of decoherence for exchange-based spin qubits
is believed to be (low-frequency) charge noise on the gate
electrodes [14–16]. Such noise results in fluctuations of the
on-site potentials as used in the Hamiltonian Ĥ in Eq. (1),

Vi (t ) = Vi + δVi (t ). (B1)

This causes the projected qubit Hamiltonian to fluctuate as
well,

Ĥqubit = h̄

2
[ω0 + δωz(t )]σ̂z + h̄

2
δωx (t )σ̂x . (B2)

We focus on pure dephasing in this qubit basis; that is,
we investigate how the phase of the qubit gets randomized
through the fluctuations in the qubit splitting δωz(t ). To this
end, we consider the system to be prepared in the state
|+〉 = 1√

2
(|0〉 + |1〉) at t = 0. After some time t , the sys-

tem evolved into the state |ψ (t )〉 = 1√
2
(|0〉 + eiφ(t )|1〉), where

φ(t ) = ω0t + δφ(t ), the unknown part of the phase being
δφ(t ) = ∫ t

0 δωz(t ′)dt ′.
The expectation value of this random component of the

phase can be found by evaluating ln〈eiφ(t )〉. For simplicity
we will assume quasistatic (time independent during each
individual time evolution) Gaussian noise in Vi :

δφ(t ) = t

3∑
i=1

∂ωz

∂Vi

δVi + t

2

∑
i,j

∂2ωz

∂Vi∂Vj

δViδVj + O(δV 3).

(B3)

Usually, one then focuses on the leading (first-order) term,
which is linear in the fluctuations δVi . This makes δωz also a
Gaussian variable, and then one can do a cumulant expansion
of the logarithm,

ln〈eiδφ(t )〉 =
∞∑

n=1

κn

(it )n

n!
, (B4)

with κn being the nth cumulant of the distribution of δωz, and
use the fact that for Gaussian variables with zero mean only
the second cumulant κ2 = ∑

i (∂ωz/∂Vi )2〈δV 2
i 〉 is nonzero.
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This yields the familiar result ln〈eiφ(t )〉 = − 1
2 t2κ2, from

which one can extract an approximate dephasing time.
At the sweet spot, however, where we expect this dephas-

ing time to be maximal, the first derivative of ωz vanishes (per
definition [18,24]), and one has to use the next (second-)order
term in the series expansion of the phase (B3). A subtle point,
sometimes overlooked, is that, although the fluctuations δVi

are Gaussian, the product δViδVj of two Gaussian random
variables is not Gaussian anymore. This implies that the cu-
mulant expansion has many more nonzero terms that become
relevant at long times, causing ln〈eiφ(t )〉 �= − 1

2 t2κ2 [63]. One

can use such an equality only as long as ∂ωz

∂Vi
� ∂2ωz

∂Vi∂Vj
, a

condition that is not satisfied at the sweet spot.
To extend the analysis to the sweet spot we focus on

the Schrödinger equation resulting from the effective qubit
Hamiltonian instead. We will consider only a diagonal
Hamiltonian,

ih̄
∂

∂t
ψ (t ) = h̄

2
(ωz + δωz)σ zψ (t ), (B5)

and use again the initial condition |ψ (t = 0)〉 = |+〉 =
1√
2
(|0〉 + |1〉), with |0〉 and |1〉 being two eigenvalues of the

qubit Hamiltonian for δωz = 0. In this case, the probability of
finding the qubit in the initial state |+〉 after time t is

P = |〈+|ψ (t )〉|2 = cos

(
t[ωz + δωz]

2

)2

. (B6)

For the exchange-only qubit at the sweet spot, the fluctuation
δωz is given by the second-order term

δωz = τ 2

(U − Uc )3
[(δV2 − δV1)2 + (δV2 − δV3)2], (B7)

where we again have set t12 = t23 ≡ τ .

In order to average over the fluctuations, we define two
variables, x1 = δV2 − δV1 and x2 = δV2 − δV3, that we will
consider independent for simplicity. These variables have
mean zero and standard deviation

√
2ξ (with ξ being the

standard deviation of the original variables δVi) and can be

combined into one χ2-distributed random variable y = x2
1

2ξ 2 +
x2

2
2ξ 2 . With this the probability becomes

P = 1

2

∫ ∞

0
dye−y/2 cos2

[
t

2h̄

(
2τ 2

U − Uc

+ 2σ 2τ 2

(U − Uc )3
y

)]
.

(B8)

This integral can be solved analytically, yielding

P = 1

2
+

cos
(
t 2τ 2

h̄(U−Uc ) − arctan
[
t

4τ 2ξ 2

h̄(U−Uc )3

])
2
√

1 + t2 16τ 4ξ 4

h̄2(U−Uc )6

. (B9)

We see that, as expected, the probability oscillates with a
frequency 2τ 2/h̄(U − Uc ) (while also gradually acquiring a
phase shift that goes to −π/2 for t → ∞). The amplitude of
the oscillations decays within the envelope function

Penv = 1

2
+ 1

2
√

1 + t2 16τ 4ξ 4

h̄2(U−Uc )6

, (B10)

which, for long times, predicts a decay ∝Tϕ/t with a de-
phasing time of Tϕ = h̄(U − Uc )3/4τ 2ξ 2. This is in contrast
to the exponential decay ∝e−t2/T 2

ϕ that is predicted by the
“cumulant expansion method” [23,24]. A simple simulation
of the time evolution of the state |+〉 under the action of
quasistatic random noise at the sweet spot corroborates this
result (see Sec. V).
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We propose an implementation of a singlet-only spin qubit in a GaAs-based triple quantum dot with a (1,
4, 1) charge occupation. In the central multielectron dot, the interplay between Coulomb interaction and an
out-of-plane magnetic field creates an energy spectrum with a tunable singlet-triplet splitting, which can be
exploited to create a six-particle singlet-only qubit with a qubit splitting that can straightforwardly be tuned over
tens of μeV by adjusting the external magnetic field. We confirm the full exchange-based electric control of the
qubit and demonstrate its superior coherence properties due to its singlet-only nature.
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Introduction. Semiconductor spin qubits are among the
most promising candidates for the physical realization of
quantum processors [1,2]. Multispin exchange-only (XO)
qubits, in particular, have drawn much attention in recent
years since they offer fast qubit manipulation and full electric
control [3–10]. However, rapid decoherence of the qubit—due
to magnetic noise from randomly fluctuating nuclear spins
[11,12], electric noise in the qubit’s environment [13–15],
electron-phonon coupling [16–18], and other spin-mixing
mechanisms [19–22]—still causes the usable operation time
of most XO qubits to be too short for scaling up. Besides, the
typically small qubit splitting [4,8] hinders the long-distance
coupling of XO qubits via, e.g, microwave resonators, where
a large qubit splitting is required for fast two-qubit gates
[23–25].

There have been several proposals put forward to increase
the coherence time of quantum-dot-based XO qubits while
retaining their conceptual simplicity and ease of manipulation.
Of special interest are (i) proposals to suppress the effects of
charge noise and electron-phonon interaction, via a symmetric
operation of the qubit or operating at a sweet spot (SS) [17,26–
28], and (ii) proposals to reduce magnetic noise or suppress
its effects, either by isotope purification or by constructing
decoherence-free qubit subspaces [9,29–32].

In the exchange-only singlet-only (XOSO) spin qubit pro-
posed in Ref. [31], the leading effects of magnetic noise are
suppressed by encoding the qubit states in a four-electron
singlet-only subspace, while electric noise can be mitigated
by operating the system symmetrically at a SS. However,
the exceptionally long coherence time of the qubit comes at
the cost of an increase in device complexity (a quadruple
quantum dot in a T geometry) and the proposal suffers from
the common problem with XO qubits of having a relatively
small qubit splitting.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Here, we propose a GaAs-based implementation of the
XOSO qubit that overcomes both drawbacks and, further-
more, has a qubit splitting that is straightforwardly tunable
over a large range of energies. The reason why the XOSO
qubit of Ref. [31] used a fourth quantum dot is that the qubit
splitting scales with the singlet-triplet splitting of the “central”
two electrons: Implementing the same qubit in a linear triple
dot in a (1, 2, 1) charge configuration is in principle possible
but results in a qubit with a splitting of the order of the orbital
level splitting on the central dot (∼ meV), which is too large
for practical purposes. In Ref. [32], it was pointed out that
one can implement the same qubit in a Si-based triple dot,
where the on-site singlet-triplet splitting is typically set by the
valley splitting, which can be 20–200 μeV. The drawback of
this proposal is that (i) the magnitude of the valley splitting is
hard to control or predict in practice [2] and (ii) uncontrollable
phase differences between valley couplings on different dots
can severely affect the exchange effects used to define and
operate the qubit [33]. Besides, Si can be purified to be almost
nuclear spin free, which eradicates the need for a singlet-only
qubit [9].

The solution is to tune the triple quantum dot to a (1, 4, 1)
charge configuration and apply an out-of-plane magnetic field.
On the central dot, the interplay between the magnetic field
and the Coulomb interaction between the electrons results
in an energy spectrum with many crossings between levels
with different total spin and orbital angular momentum. For
the case of four electrons, the ground state changes from a
triplet to a singlet character, typically at a moderate field of
≈ 100 mT [34]. Tuning close to this crossing and adding the
singly occupied outer dots to the picture yields a XOSO qubit
where the singlet-triplet splitting on the central dot, and thus
the qubit splitting, can be tuned by adjusting the external mag-
netic field. This yields a superior GaAs-based XOSO qubit
that is not more complicated to create or operate than existing
spin qubits and has a qubit splitting that is straightforwardly
tunable from zero to tens of μeV [35]. This high degree of
tunability could also be beneficial for a Si-based version of
this qubit.

Multielectron dot. The single-particle Hamiltonian of an
electron labeled i in a two-dimensional planar quantum dot,
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assuming a parabolic confinement and an external magnetic
field perpendicular to the plane, is

H (i)
0 = [pi + eA(ri )]2

2m∗ + 1

2
m∗ω2

0r2
i + 1

2
gμBBσ z

i , (1)

where A(r) = 1
2 B(xŷ − yx̂) is the vector potential, ω0 sets the

effective radius of the dot in the absence of a magnetic field
σ0 = √

h̄/m∗ω0, g is the g factor of the host material, and σ z

is the third Pauli matrix. The eigenstates of this Hamiltonian
are the Fock-Darwin states

ψn,l,η(r) =
√

n!

πσ 2(n + |l|)!ρ
|l|e−ρ2/2L|l|

n (ρ2)e−ilθ , (2)

in terms of the dimensionless polar coordinates ρ = r/σ and

θ . We used σ =
√

h̄/m∗	, with 	 =
√

ω2
0 + ω2

c/4 and ωc =
eB/m∗, and Lb

a(x) is the associated Laguerre polynomial. The
quantum numbers n ∈ N0, l ∈ Z, and η = ±1 label the radial
state, orbital angular momentum, and spin of the electron,
respectively. The corresponding eigenenergies are (we will set
h̄ = 1 from now on)

En,l,η = 	(2n + |l| + 1) − 1

2
ωcl + 1

4
gωc

m∗

me
η. (3)

In order to find the approximate eigenenergies and
spin structure of multielectron states in the presence of
electron-electron interactions, we follow the method used in
Refs. [34,36]; see the Supplemental Material [37] for the
details. We create a many-particle basis of antisymmetrized
products of single-particle states (2), where we restrict our-
selves to the states with n � 1 and |l| � 3, which corresponds
to including all single-particle levels up to ≈ 4 	 at small
fields. In the thusly constructed basis, we evaluate all matrix
elements of the interaction Hamiltonian

V =
∑
i< j

e2

4πε|ri − r j | , (4)

and the eigenstates and eigenenergies of the full many-particle
Hamiltonian H1 = ∑

i H (i)
0 + V can then be found from nu-

merical diagonalization or, in the weak-interaction limit char-
acterized by κ ≡ e2/4πεσ0ω0 � 1, from perturbation theory
in κ . For few particles and not too large κ (we consider
up to five electrons and κ � 1.5), the low-energy part of
the spectrum of H1 will resemble the exact many-particle
spectrum fairly accurately [34,44].

In Fig. 1(a), we present typical results for the lowest few
levels for the case of four electrons, where we set κ = 0.5 and
g = −0.4. The dots show the numerically calculated lowest
five eigenenergies, where green (blue) dots indicate a state
with a four-particle spin singlet (triplet) structure. The three
triplet states are labeled |Tβ〉 and have the largest weight in
the orbital configuration (0, 0)2(0, 1)1(0,−1)1, where (n, l )m

means m electrons in the orbital state (n, l ) [34]. The three
lowest singlet states, labeled |Sα,β,γ 〉, live mostly in the or-
bital configurations (0, 0)2(0, 1)2, (0, 0)2(0, 1)1(0,−1)1, and
(0, 0)2(0,−1)2, respectively.

For small κ , these lowest eigenenergies can also be ap-
proximated through perturbation theory in the interaction
Hamiltonian V . Up to second order in κ , this yields for the

FIG. 1. (a) Field-dependent low-energy part of the spectrum of a
four-electron quantum dot with κ = 0.5 and g = −0.4. Dots present
numerical results and solid lines show the perturbative results of (5).
(b) The numerically evaluated energy of the state |Sα〉 (green lines)
relative to |T 0

β 〉 for two values of κ .

lowest six states the generic expression

Eν = 6	− L

2
ωc + S

2
gωc

m∗

me
+ c(ν)

1 κ
√

	ω0 + c(ν)
2 κ2ω0, (5)

where L and S denote the total orbital and spin angular
momentum along ẑ of the four electrons. The coefficients
c(ν)

1,2 ∼ 1 differ per state |ν〉 but can be found explicitly; see
Ref. [37] for their exact values. The resulting energies Eν are
plotted in Fig. 1(a) as solid lines and show good agreement
with the numerics. For larger κ , the perturbation theory breaks
down, but the low-energy part of the spectrum is qualitatively
the same. This suggests that one can use Eq. (5) to describe
the Eν if one treats the coefficients c(ν)

1,2 as fit parameters to
the numerical data. As illustrated in Ref. [37] for the case
κ = 1.5, this still leads to excellent agreement. In Fig. 1(b),
we show the numerically evaluated energy of the state |Sα〉
relative to |T 0

β 〉 as a function of ωc, for κ = 0.5 and κ =
1.5. In both cases, the splitting between |Sα〉 and |T 0

β 〉 is to
good approximation linear in ωc in the regime of interest,
and the ground state changes from a spin triplet to a singlet
around ωc/ω0 ∼ 0.1. These two generic features are the key
ingredients for our qubit proposal.

Triple-dot six-electron states. We will construct our qubit in
two six-electron states hosted in a linear arrangement of three
quantum dots with a perpendicular magnetic field applied,
such as sketched in Fig. 2(a), where the effective on-site
potentials Vi and the interdot tunnel couplings ti j can be
controlled through nearby gate electrodes, as schematically

-0.4

 0

 0.4

-0.4 0  0.4

FIG. 2. (a) Sketch of the linear triple-dot setup in a (1, 4, 1)
charge configuration with a perpendicular magnetic field applied.
(b) Six-electron charge stability diagram around the (1, 4, 1) ground
state, as a function of Vm and Vd .
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indicated. We describe this system using a simple Hubbard-
like Hamiltonian [16,31,45],

H =
3∑

i=1

(
H (i)

1 − Vini
) +

∑
〈i, j〉

Ucnin j −
∑

〈i, j〉,η

ti j√
2

c†
iηc jη, (6)

where ni = ∑
η c†

iηciη is the number operator for dot i, ciη

annihilates an electron on dot i with spin η, Uc accounts for the
cross capacitance between neighboring dots, and H (i)

1 is the
single-dot many-particle Hamiltonian for dot i as described
above. We thus made several simplifying assumptions: (i) The
gate-induced potentials are smooth enough so that they affect
all electronic orbitals in the same way. (ii) The separation
between the dots is large enough to allow us to treat the
interdot electrostatic energy as being dependent only on the
ni and not on the exact orbital configuration of the electrons
on the neighboring dots. (iii) All tunneling processes we will
consider below mostly involve a (0, 0) orbital on a lateral
dot and a (0,±1) orbital on the central dot; since all (0,±1)
orbitals have the same radial structure, we assume that this
allows us to use tunneling coefficients ti j that are independent
of the exact electronic orbitals involved.

We first study the electrostatic properties of H by diago-
nalizing the first two terms in Eq. (6). The charge stability
diagram in Fig. 2(b) shows the resulting six-electron ground-
state charge configuration (n1, n2, n3), where ni is the number
of electrons on dot i, as a function of the detuning parameters
Vd = 1

2 (V3 − V1) and Vm = 1
2 (V1 + V3) − V2. We fixed V1 +

4V2 + V3 and focused on the regime around the (1, 4, 1) state.
As indicated in Fig. 2(a), we assumed different dot sizes,
σ0 = 30 nm for the central dot and σ0 = 20 nm for the lateral
dots, which results in a good ratio between the orbital splitting
on the outer dots and the splitting of the many-electron states
in the middle dot [46]. Furthermore, we used Uc = 0.2 ω0

(where ω0 is the bare level splitting on the central dot) and
set ωc/ω0 = 0.1, κ = 0.5, and m∗/me = 0.067.

In the (1, 4, 1) region, the four lowest-energy six-particle
states with S2 = 0 can be written as

|0〉 = |SαS(13)〉, (7)

|1〉 = 1√
3

[∣∣T 0
β T 0

(13)

〉 − |T −
β T +

(13)〉 − |T +
β T −

(13)〉
]
, (8)

|2〉 = |SβS(13)〉, (9)

|3〉 = |Sγ S(13)〉, (10)

where |S(13)〉 and |T(13)〉 indicate pairing in a singlet or triplet
state of the two electrons in the outer dots, and |Sα,β,γ 〉 and
|Tβ〉 are the lowest four-particle singlets and triplet on the
central dot, see above.

The qubit. We propose to tune close to the degeneracy
of |Sα〉 and |Tβ〉 on the central dot, which for σ0 = 30 nm
happens at B ≈ 75 mT. The two lowest-energy singlet states
|0〉 and |1〉 can then be used as qubit basis, and the singlets
|2〉 and |3〉 will be split off by an energy much larger than the
qubit splitting.

We assume that t/� � 1, with t the magnitude of the
tunnel couplings (typically t ∼ 10 μeV) and 2� the width of
the (1, 4, 1) region; see its definition in Fig. 2(b). Then we can

treat the tunnel coupling perturbatively for most of the (1, 4, 1)
region, and we thus project the full Hamiltonian (6) onto the
qubit subspace by means of a Schrieffer-Wolff transformation
[37], yielding to order t2

Hqb = 1
2 (EST + Jz )σz + Jxσx, (11)

where σx,z are Pauli matrices. The qubit splitting is dominated
by the singlet-triplet splitting on the central dot EST = ET 0

β
−

ESα
[see Fig. 1(b)], which follows to good approximation from

the expressions given in Eq. (5),

EST ≈ γ0ω0 + ωc, (12)

with γ0 = −0.235 κ + 0.128 κ2, accurate for κ � 0.5 (see
Ref. [37] for all derivations and an explicit expression for
γ0). We wrote EST here up to linear order in ωc/ω0; the
next correction is smaller by a factor ≈10−2κωc/ω0. Through
ωc ∝ B, this term, and thus the qubit splitting, can be easily
tuned over tens of μeV. We emphasize that this magnetic field
dependence arises through coupling of the field to the orbital
degrees of freedom of the electrons; the (singlet-only) qubit
subspace is insensitive to the coupling of magnetic fields to
the spin of the electrons.

Close to the line where Vd = 0 and assuming approx-
imately symmetric tunnel couplings t12 ≈ t23, the two ex-
change terms read as [37]

Jz ≈ − t2

[
�

�2 − V 2
m

+ 3(� + ωc)

(� + ωc)2 − V 2
m

]
, (13)

Jx ≈
√

6t�

�2 − V 2
m

[
δt + 2tVm

�2 − V 2
m

Vd

]
, (14)

for � as defined in Fig. 2(b) and with t = 1
2 (t12 + t23) and

δt = t12 − t23. We see that Jz in general presents a small
tuning-dependent correction to the qubit splitting, which is
dominated by EST , whereas Jx provides a coupling to σx linear
in δt and/or Vd (depending on tuning), which can be used to
drive Rabi oscillations.

We now discuss two regimes of special interest in the
charge stability diagram shown in Fig. 2(b): (i) In the
resonant-exchange (RX) regime, close to the top and bottom
of the (1, 4, 1) region, the strong coupling to the other charge
states offers fast qubit control through Vd [8]. In Fig. 3(a),
we show the lowest-lying states as a function of Vd along the
horizontal dashed line in Fig. 2(b) (Vm/ω0 = 0.27) calculated
from the Hamiltonian as given in (6), where we ignored the
Zeeman splitting for clarity. We used the same parameters as
in Fig. 2(b) and further set t = 25 μeV and δt = 0. We labeled
the two qubit states |0〉 and |1〉, three spin triplets |T1,2,3〉,
and a spin quintuplet |Q〉; including the Zeeman effect, a
triplet (quintuplet) acquires an additional threefold (fivefold)
splitting of 1.7 μeV for ωc/ω0 = 0.1. (ii) In the center of the
(1, 4, 1) region, we find a SS where the qubit is to linear order
insensitive to fluctuations of the potentials Vi, offering some
protection against charge noise. In Fig. 3(b), we show the
spectrum at the SS for the same parameters as in Fig. 3(a), now
as a function of δt while setting Vd = 0. At the SS exchange
effects are much smaller and thus the qubit splitting is closer
to EST (≈18.3 μeV for ωc/ω0 = 0.1), but apart from that the
spectrum looks similar to the RX regime.
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FIG. 3. Low-energy part of the spectrum of the Hamiltonian (6)
(a) as a function of Vd at Vm/ω0 = 0.27 and (b) as a function of δt at
the SS, Vd = Vm = 0. The green and blue lines show the spin-singlet
qubit states |0〉 and |1〉 respectively; the gray lines show the spin
triplet and quintuplet states. (c) The qubit splitting as a function of
the magnetic field, where ωc/ω0 = 0.1 corresponds to B ≈ 75 mT.
(d) The derivative dJx/dq for q ∈ {δt,Vd} as a function of Vm and at
Vd = 0.

In Fig. 3(c), we plot the qubit splitting ωqb as a function
of the magnetic field, in the RX regime (Vm = 0.27, Vd = 0,
yellow line) and at the SS (purple line). This confirms the
high degree of tunability of our qubit. We further note how
the spectra in Figs. 3(a) and 3(b) strongly resemble those in
the XOSO spin-qubit proposals of Refs. [31,32], the main
difference being the large and straightforwardly tunable qubit
splitting ωqb ∝ B in our proposal. This permits an efficient
and adaptable coupling to other systems such as microwave
cavities which can be used to couple distant qubits [47–50].

Qubit operation. Single-qubit rotations can be performed
via resonant Rabi driving, using a sinusoidal modula-
tion of a tuning parameter q = {Vd ,Vm, t, δt} with a small
amplitude q̃ and frequency ω, i.e., q(t ) = q0 + q̃ sin(ωt ).
For small enough q̃, the qubit Hamiltonian (11) can be
approximated as

Hqb = 1
2ωqbσz + Aq sin(ωt )σx, (15)

where Aq = q̃ (dJx/dq)q=q0 . Driving the qubit resonantly,
ω = ωqb, then induces Rabi oscillations with a frequency Aq.
At the RX regime, where we can use Vd as the driving pa-
rameter, an amplitude of Ṽd = 5–10 μeV gives a Rabi period
of TRabi ≈ 20–40 ns. At the SS, Rabi rotations are much more
efficient via a driving of δt , which gives a period of TRabi ≈
20 ns for an amplitude δt̃ = 2 μeV. Fast qubit rotations can
therefore be achieved both in the RX regime and at the SS. In
Fig. 3(d), we plot the “efficiency” dJx/dq of the two driving
parameters q ∈ {δt,Vd} as a function of Vm, along the line
Vd,0 = 0. We see that at the SS the sensitivity to Vd vanishes, in
accordance with Eq. (14), whereas driving of δt stays effective
all the way down to Vm = 0.

Qubit initialization and readout can be accomplished by
standard spin-to-charge conversion, i.e., pulsing the qubit to
one of the neighboring charge configurations that has only
one low-lying six-particle singlet state. For example, when
tuning into the (1, 3, 2)/(2, 3, 1) charge regions, only the
qubit state |0〉 is adiabatically connected to the new ground-
state charge configuration. This allows for initialization in
|0〉 as well as readout of the qubit by means of charge
detection.

Decoherence. In most GaAs-based spin qubits, the main
source of decoherence is the fluctuating bath of nuclear spins
that couples to the electron spins via contact hyperfine inter-
action. On a mean-field level, the effect of this interaction can
be described by the Hamiltonian Hhf = 1

2 gμB
∑

i Ki · σ i, with
Ki being a random effective nuclear field acting on electron i,
typically of the order of a few mT. In the device we propose
in this paper, both qubit states are singlets and therefore the
qubit splitting is not directly influenced by any intrinsic or
external (gradient) of Zeeman fields acting on the electrons,
thereby reducing the hyperfine-induced decoherence dramati-
cally [31,32]. We estimate the coupling between the nuclear
magnetic moments and the orbital degrees of freedom of
the electrons to be negligible and dominated by hyperfine
coupling of the qubit states to nearby triplet states, which leads
to random higher order shifts of the qubit levels [31]. The
timescale of this residual hyperfine-induced dephasing can
be estimated as T ∗

2 ∼ Aqh̄(δε)2/σ 4
K , where δε is the energy

splitting between |0〉 and |T1〉; see Figs. 3(a) and 3(b) [37].
For the range of parameters considered here, we find T ∗

2 ∼
0.5–5 μs [37], giving a number of visible, coherent Rabi
oscillations of ncoh = T ∗

2 /TRabi ∼ 25–250.
Another source of decoherence for exchange-based qubits

are low-frequency fluctuations in the electrostatic environ-
ment of the system. A common way to mitigate such charge
noise is to operate the qubit at the SS [Fig. 3(b)], where the
qubit splitting is insensitive to fluctuations in the potentials
Vi to leading order; there we find a dephasing time of T ∗

2 �
10 μs. Away from the SS, the effects of charge noise are
larger. At the RX regime [Fig. 3(a)], far away from the SS, the
contribution from charge noise to dephasing becomes similar
to that of nuclear noise, with a dephasing time of T ∗

2 ∼ 0.5 μs
[37].

Finally, qubit relaxation via electron-phonon coupling
causes qubit decoherence. The relaxation rate can be esti-
mated using Fermi’s golden rule and depends on the qubit
splitting and on the strength of the exchange interaction [31].
In the RX regime, where the qubit splitting can be extensively
tuned through ωc, we estimate relaxation rates from �rel ∼
1 GHz for ωqb ∼ 50 μeV to �rel ∼ 1 MHz for ωqb ∼ 10 μeV.
And, as is common in exchange-based qubits [18,31], the
relaxation rate is strongly suppressed as we approach the SS.

Conclusions. We propose a six-electron exchange-only
singlet-only spin qubit hosted in a GaAs linear triple quan-
tum dot. Its singlet-only nature makes the qubit intrinsically
insensitive to randomly fluctuating nuclear fields. The qubit
can be operated fully electrically, either in an RX regime
which enables fast qubit operations or at a SS where the
qubit is better protected against charge noise. Furthermore,
the fact that the qubit splitting is highly tunable over a large
range of energies allows for efficient and adaptable coupling
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to microwave resonators, enabling coupling of distant qubits.
The only ingredient on which this tunability relies is the
appearance of a ground-state singlet-triplet transition at finite
magnetic field in the multiparticle spectrum of the central dot.
This is a very commonly observed feature in quantum dots of
various shapes and sizes.
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