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Abstract
This thesis applies operations research methods to planning problems related to the
plugging and abandoning of offshore oil and gas wells. We consider two problem
settings, for which we develop new models and solution approaches.

The first problem is on a tactical planning level and considers the optimal planning
of a plugging campaign. The problem is defined as a variant of an uncapacitated
vehicle routing problem with time-windows and is being treated in the first three
papers in this thesis. We focus on different aspects, ranging from the application of
different model formulations and solution methods, to obtaining more economically
oriented insights. A main finding is that significant cost-savings can be made by
using the developed methodology for planning plugging campaigns, as opposed to
conventional methods. In addition, we contribute to the vehicle routing literature
by developing a methodology that allows for incorporating a learning effect. That
is, the time it takes to perform a particular operation reduces as similar operations
have been performed before.

The second problem considers the strategic problem of developing a mature
offshore oil field, and is treated in the fourth paper. We develop a multistage
stochastic integer program and solve it using the stochastic dual dynamic integer
programming algorithm (SDDiP). The problem can be considered to represent a
portfolio of real options, incorporating both shutdown and expansion options. We
show that the SDDiP algorithm is very suitable for solving complex real options
problem. This enables us to perform an extensive analysis on factors affecting the
abandonment decision. We show that traditional real options findings for single
options might behave differently when considered in portfolios.
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Chapter 1

Introduction

In 2018, approximately 70% of the world’s oil and gas production came from mature
fields (O’Brien et al., 2016) and this share is most likely going to grow in the years to
come. The low oil and gas prices of the recent years put pressure on the profitability
of offshore fields. Especially in areas that have high operational expenditures, such as
the North Sea. As a result, thousands of offshore wells are planned to be permanently
plugged and abandoned in the upcoming decades. The total costs for performing
these operations will be substantial (Myrseth et al., 2017; Oil & Gas UK, 2016).
Operators now informally refer to this as the upcoming plugging wave.

This PhD thesis is part of the “Economic Analysis of Coordinated Plug and
Abandonment Operations” (ECOPA) project1. The principal objective of the ECOPA
project is to determine how the large costs of plug and abandonment can be reduced
by better planning methods. Moreover, this thesis is written under the PhD program
in Industrial Economics and Technology Management at the Norwegian University
of Science and Technology. This is a multidisciplinary program that aims to bridge
the gap between technology and industry on the one hand, and academic theory
and methods on the other hand. In line with these objectives, this PhD thesis
identifies planning problems connected to the plugging and abandoning of offshore
wells, where methods from the field of Operations Research (OR) can be applied.
We aim to develop knowledge, models and solutions methods that create value for
both industry, society and academia.

The scope of this thesis is further restricted to the planning problems that are
identified in Chapter 2.3. Moreover, the developed case studies, as well as certain
elements in the problem formulations, are based upon the Norwegian Continental
Shelf (NCS). Other production areas and/or regulatory regimes might possess
different features. Nevertheless, the developed methods are constructed as general
as possible and can easily be adopted to different settings.

The first three papers in this thesis consider the planning of an offshore plugging
campaign and make use of vehicle routing methodology. The fourth paper targets
the development of a mature offshore oil field and applies methods from multistage
stochastic programming as well as real options.

The structure of this thesis is as follows. Chapter 2 puts the papers presented
in this thesis into context. First, it provides a general background over relevant
aspects of the oil and gas industry as well as the plug and abandonment process.
Subsequently, we distinguish P&A planning problems on an operational, tactical
and strategic planning level. We then discuss the methods and research topics that
are used in the papers included in this thesis. This includes vehicle routing, real
options and stochastic dual dynamic integer programming. We provide an overview
of relevant literature, place the conducted research in this scientific landscape and
elaborate on some of the methods. In Chapter 3 we provide a summary of each

1The ECOPA project is funded by the Research Council of Norway through the PETROSAM2
and PETROMAKS2 programs (p-nr 247589)
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1. Introduction

paper in this thesis. In addition, for each paper, we present the contributions to the
research community and industry, and specify the individual contributions of each
author. Finally, general conclusions based on the research are given in Chapter 4,
as well as suggested further work. The papers presenting the actual research are
included as appendices.

2



Chapter 2

Background and Literature
The purpose of this chapter is to put the papers presented in this thesis into context.
We start by giving an overview of relevant aspects of the oil and gas industry and
plug and abandonment process. Subsequently, we present planning problems related
to the plug and abandonment process, where optimization methods can be of use.
Finally, we discuss the different methods that we have used in solving these planning
problems.

2.1 Oil and Gas Industry

The oil and gas value chain can be divided into three sectors: upstream, midstream
and downstream. The upstream sector includes the exploration and production
(E&P) of hydrocarbons, midstream includes transportation and processing, while
downstream focuses on the filtering, sales and distribution. The work in this thesis
can be related to the upstream sector, for which a detailed background is given in
Jahn et al. (2008). It is common to define a life cycle for (offshore) oil and gas fields,
consisting of five phases:

1. Exploration. Exploration is the process of locating potentially viable oil and
natural gas sources. This is usually done through geological/seismic surveys.

2. Appraisal. Fields that are successfully identified during exploration are
examined in more details in the appraisal phase. Initial infrastructure can
be set up to access the sites and exploratory wells can be drilled to map the
oil/gas reserves.

3. Development. During the development phase the company develops plans on
how to produce the reserves. If the plan is approved by regulatory bodies,
the required infrastructure and production facilities are developed. As a
development concept, we distinguish between a platform-based or subsea-
solution.

4. Production. The oil/gas reserves are being extracted during the production
phase. Important activities during this phase include deciding on production
levels, the drilling of new wells, maintaining old wells and injection of
water/chemicals/gas.

5. Decommissioning. Finally, the field has to be decommissioned, which means
that all wells have to be plugged and abandoned and pipelines, facilities and
other structures have to be removed.

There are multiple actors involved in the life cycle of an oil and gas field. First, we
have the state, which can be represented by national or local governments. They are
responsible for regulations, managing legal and fiscal infrastructure, and collecting

3



2. Background and Literature

revenues through taxes. Within the oil and gas industry, the main actor is the E&P
company that is responsible for production, known as the operator. The operator
tends to operate on behalf of other E&P companies within a license/consortium.
Finally, we mention service companies, whose main focus is to provide products and
services associated with the oil and gas exploration and production process.

2.2 Plug and Abandonment (P&A)

Plug and abandonment (P&A) is part of the decommissioning phase of an offshore
oil/gas field. In this section, we give a short introduction to the P&A process, and
refer to Vrålstad et al. (2019) for a more detailed review.

Permanent P&A is the process of securing a well by installing required well
barriers (plugs) such that it will not be used or re-entered again (Standards Norway,
2013, Chapter 9). P&A includes the setting of permanent barriers to isolate both
the reservoir as well as other fluid-bearing formations. These barriers should prevent
oil, gas and water to migrate to the surface or flow from one formation to another.
A simplified illustration of a typical offshore production well before and after P&A
is given in Figure 2.1.

Figure 2.1: Simplified illustration of a typical offshore production well before and
after P&A, adapted from Standards Norway (2013).

Barriers are usually constructed by the placement of cement plugs inside the
wellbore, but other materials can be used as plugging material as well (Saasen et al.,
2011; Khalifeh et al., 2014). Nevertheless, in many cases, placing a cement plug
inside a cased wellbore is insufficient to prevent leakages. These leakages might
for example occur due to poor annulus cement outside the casing. So, the barriers

4
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must cover the whole cross-section of the well, both vertically and horizontally. This
implies that the barrier should stretch all the way to the formation surrounding
the borehole, and should include all annuli as well as cement plugs. If one of these
elements fails, potential leak paths might arise. To prevent such leak paths from
forming, before setting the plugs, poor annulus barriers must be removed. Two
of the conventional techniques that target this are section milling (Scanlon et al.,
2011) and Perforate-Wash-Cement (Ferg et al., 2011; Delabroy et al., 2017). Section
milling aims to create a cross-sectional barrier towards the formation. This is done
by milling out, i.e. removing, sections of the wellbore where the annulus material is
not suitable as a barrier. For this process, special milling blades and cutters are used.
Perforate-Wash-Cement can be used when the annulus is filled with poor cement,
or not cemented at all. In this case, the casing is perforated to gain access to the
annulus. The annulus is then washed to get rid of any poor cement or debris and is
subsequently filled with new cement. In some cases, a part of the casing string might
have to be removed. Besides section milling, another method that can be used is to
cut and pull the casing (Desai et al., 2013). However, a main downside here is that
the casing can get stuck, which can lead to a huge delay in operations.

P&A operations can be classified based on three different phases (Oil & Gas UK,
2015). In addition, Moeinikia et al. (2014) proposed to include a Phase 0, prepatory
work, which includes pre-P&A work such as killing the well, logging the tubing quality
and establishing temporary barriers. We then have phase 1, reservoir abandonment,
which comprises the installation of primary and secondary barriers towards the
reservoir as given in Figure 2.1. For a typical well this includes the rigging of a
blowout preventer (BOP), the pulling of tubing, installation of the primary barrier
with its base at the reservoir and installation of the secondary barrier, such that
the base of the barrier can withstand anticipated future pressures. Depending on
the condition of the well and the bonding with the surrounding formation, some
tubing and/or casing might have to be removed, which can be done by means of
milling or cutting and pulling. These are very time-consuming operations, especially
when several cutting and pulling trips have to be made into the well before the next
phase can proceed. Phase 2, intermediate abandonment, includes the installation of
potential barriers towards flow zones in the overburden as well as possible installation
of a surface plug, depending on regulations. In addition, casing strings might have
to be removed in this phase. Phase 3, wellhead and conductor removal, includes the
cutting of casing strings and conductor below the seabed to prevent interference
with marine activity. Moreover, casing strings and the conductor and wellhead are
removed.

There is a huge difference in performing P&A operations on subsea wells compared
to platform wells. The main difference being that subsea wells have the x-mas tree
and all production equipment at the seabed. As a result, subsea wells require mobile
offshore units (MOU) to perform P&A operations. The most expensive and versatile
type of MOU are mobile offshore drilling units (MODU), also referred to as rigs.
This category consists of drilling ships, jack-up rigs and semi-submersible rigs (SSR).
These units are equipped with a derrick that can handle heavy loads and recover,
for example, casing strings. Moreover, it is equipped with a marine riser system
and internal BOP, making it possible to perform cement jobs by displacing and
retrieving well fluids. In addition, riserless light well intervention vessels (RLWI) are
vessels that are designed to do subsea well intervention activities using wireline or
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2. Background and Literature

coiled tubing as opposed to a marine riser system. A downside is that RLWI vessels
have limited capabilities in pulling casing strings. However, a RLWI has much lower
operational costs compared to a MODU. Finally, light construction vessels (LCV)
are even lighter and cheaper than RLWI vessels and can be used to perform very
simple operations.

So, each of these MOUs has different characteristics in terms of compatibility with
operations, durations, day rates, sailing times, and so on. Here, we highlight that
MODUs can be used all year round, while lighter vessels have much lower operability
due to weather conditions. With current available technology, a MODU is needed
in the P&A process due to various reasons. It provides fluid handling capacity,
rotation of drill string and pulling capacity and is required for complex operations
such as section milling. compatibility. Nevertheless, significant cost-savings can be
made when certain P&A operations are performed using lighter vessels, such as
RLWI and LCV, that have much lower day rates (Sørheim et al., 2011; Varne et al.,
2017). Additional costs might be saved when all phases of the P&A process can be
performed from a vessel instead of a MODU. Øia et al. (2018) discusses how existing
techniques can be used to perform full P&A of subsea wells using RLWI. They find
that for more complex wells, a rig is still required to perform operations such as
section milling and heavy lifting, and would be the least risky option. Moreover, a
prerequisite for full subsea P&A from a vessel is that the production tubing has to
be left in the well, which might lead to potential leak paths.

2.3 P&A Planning Problems

Planning problems can be divided according to different time horizons (Simchi-
Levi, 2003). When focusing on petroleum production, different frameworks have
been introduced (Schlumberger, 2005; Ulstein et al., 2007; Gunnerud et al., 2012).
However, an overview over planning problems related to the P&A process has not
been presented. In this section, we suggest different planning levels and identify
related P&A planning problems that can benefit from optimization methods.

On a short time horizon such as days, operational planning focuses on generating
detailed plans for the execution of P&A operations. Techniques and materials used,
the number and length of the plugs set, or the deployment of workers are topics that
can be considered.

Tactical planning takes place on a medium-term horizon, typically from a month
up to a year. Related decisions involve the scheduling and planning of P&A operations
for a number of wells that have to be shut down.

On a long-term horizon, typically from a couple of years in the future and up to
the end of a license, strategic planning deals with decisions that have long-lasting
effects. These decisions are based on, amongst others, production profiles, output
prices and possibilities for extension of productive life (enhanced recovery). The
main strategic decision for a license holder of a field is to determine when to cease
production.

2.3.1 Operational level: configuration of a P&A plan

The operational level looks at the P&A process from a detailed, short term, single-well
perspective. Operators on the NCS are obliged to hand in a plan for an abandonment
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P&A Planning Problems

program for each well that will be shut down. Such a plan includes, amongst others,
techniques/technologies to use as well as locations, thicknesses and materials of
the plugs. Plans are based on factors such as conditions of the well, locations of
hydrocarbons, types of formations and well logs. These factors tend to be (partially)
uncertain, due to the difficulty of obtaining information in the subsurface. Currently,
plans are constructed manually by experts for each single well that has to be P&A’d,
which might lead to non-optimal solutions. As many different combinations can be
chosen, an optimization approach might prove to be very useful in deciding which
technology/specifications to use. Even though the goal of plugging operations is to
seal the wells with an eternal perspective (Standards Norway, 2013), there always
is a risk of plug failure after abandonment (Mainguy et al., 2007). Optimization
techniques allow for a risk-based approach, which is needed when evaluating different
techniques to perform P&A. The main challenge in developing this problem setting
is the availability of operational data due to confidentiality issues (Myrseth et al.,
2017). We are not aware of any literature that applies mathematical programming
methods to operational planning problems related to P&A. In the sequel we will
focus on tactical and strategic planning problems. If detailed data on technical parts
of the P&A process would be available, machine-learning techniques might prove a
valuable tool in designing operational plugging plans.

2.3.2 Tactical level: offshore P&A campaign planning

On a tactical level, we have identified the planning of an offshore plugging campaign
as the main problem. To plug a single well, a set of operations has to be executed.
Depending on well-conditions, the time to plug such a well might range from a couple
of days up to a couple of weeks. When plugging a set of wells, many operations
have to be performed. As a result, planning for a large set of plugging operations
quickly leads to a scheduling problem with a horizon of several months. Contrary
to platform wells, subsea wells require MOUs to perform plugging operations. This
adds an extra dimension to the planning of plugging operations: deciding on which
MOUs are going to perform which operations. The problem of planning a P&A
campaign aims to find the most cost-efficient routes and schedules for a set of MOUs
to carry out P&A-operations on a given number of subsea-wells in a tactical planning
horizon. Cost savings might result from decreased sailing time or usage of vessels
with a low day-rate.

Related work has been performed by Moeinikia et al. (2015), who developed a
simulation approach for obtaining cost and duration estimates of P&A campaigns.
Nevertheless, we are not aware of any work that applies optimization methods to
the planning of P&A campaigns.

The problem of planning a P&A campaign has been defined in Paper I (Bakker
et al., 2017). The developed model is a variant of an uncapacited Vehicle Routing
Problem and is improved in Paper II (Bakker et al., 2019) and Paper III (Bakker
et al., 2020b). Moreover, Øia et al. (2018) use the model to evaluate the cost benefits
of rigless techniques using RLWI vessels. Section 2.4.1 presents a literature review
of vehicle routing problems and puts these three papers in perspective.
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2. Background and Literature

2.3.3 Strategic level: mature field development

The goal of a field’s license holder on the Norwegian Continental Shelf is to extract
as much hydrocarbons out of a field as possible, while this is economically feasible
and environmentally responsible (Petroleumsloven, 1996, §4-1). To achieve this, the
license holder has to consider his production strategy continuously. Inevitably, the
question arises when a field should be shut down, which is alternatively referred to
as abandonment or cessation of production.

The shutdown decision can be made on different levels of detail. We distinguish
between a license, field, structure and well-level, where the structure level refers to
a group of wells that are connected to a platform or subsea installation. As the
shutdown decision is a complicated decision depending on many interacting factors,
we define three factors influencing the shutdown decision:

1. Economical
The main factor affecting the shutdown decision is based on the economics
of the project. Clearly, low output prices can turn a profitable field into a
loss incurring project, inducing premature shutdown. On the other hand,
available projects that can increase production, might extend the lifetime of a
field. The value of an asset is typically evaluated using the net present value
criterion, and should be calculated using a method that takes into account the
prevailing uncertainties. Although it might be profitable to invest in a project
and continue production, resource restrictions can lead to premature shutdown.
This can be due to restrictions on available capital, alternative projects that
are more profitable or high utilization of scarce resources/equipment (e.g. rigs).
This means that strategic decisions have to be evaluated based on a portfolio
perspective.

2. Natural
As hydrocarbons are produced, the reservoir pressure and hydrocarbon reserves
drop. This phenomenon is known as depletion, and might make it impossible
to continue production. A well that has run dry, has to be plugged at some
point. Moreover, reservoir depletion can induce seabed subsidence, which can
lead to sinking platforms. Other integrity problems can arise both on a well
level (e.g. degrading wellbores) or a structure level (e.g. corrosion).

3. Political/legal
An extraction license tends to give a company the rights to produce
hydrocarbons for a limited amount of time. When the owner of the mineral
rights (usually a government) decides not to extend a license, production has
to stop. As an example, with the intended switch to sustainable energy sources,
it might become a realistic scenario that fields with remaining reserves will
not get a license extension.

The problem of shutting down an offshore oil field is a classical research question
and has received attention from real options as well as mathematical programming.
Section 2.4.2 and Section 2.4.3 give a literature review over these works respectively.

Paper IV (Bakker et al., 2020a) presents a multistage stochastic integer program-
ming model that focuses on the development of a mature oil field. The value of
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the asset is affected by uncertain output prices, and can be influenced by shutting
down or undertaking activities that increase production (such as drilling new wells).
Moreover, increasing decommissioning costs due to integrity issues are considered.
As such it incorporates important economical and natural factors, while the horizon
of the problem is determined based on legal restrictions.

While the shutdown problem has received considerable attention, we are not
aware of any other strategic P&A problems in the optimization literature. A possible
research direction can be the construction of plug and abandonment portfolios.
Taking the perspective of operators, when a field becomes economically unprofitable,
it becomes a liability instead of an asset. As a result, operators are looking for
the cheapest way to abandon the field. Organizing a decommissioning project can
be a complicated and time consuming venture. So, selling/outsourcing (parts) of
this project, can be an interesting alternative. A third party can specialize in such
decommissioning projects. By bundling decommissioning projects in portfolios,
resources can be utilized more efficiently, which might lead to potential cost-savings.

2.4 Methodology

The models developed in this thesis are based on methods from different fields within
operations research. To put our research in perspective, we give a short background
on these fields and methods. Paper I, II and III in this thesis (Bakker et al., 2017,
2019, 2020b) treat the problem of planning an offshore P&A campaign using a
vehicle routing problem, while Paper IV Bakker et al. (2020a) draws from both the
field of real options, as well as multistage stochastic optimization and in particular
stochastic dual dynamic integer programming.

2.4.1 The Vehicle Routing Problem

The P&A Campaign Planning Problem (PACP) contains scheduling as well as
routing aspects. That is, plugging operations on the different wells have to be
scheduled to vessels, while at the same time optimal routes have to be constructed
for each vessel. The Vehicle Routing Problem (VRP) methodology (Cordeau et al.,
2007) allows for the modeling of these aspects.

A VRP tends to be defined on a graph. Customers that have to be visited,
or operations that have to be performed, are represented by nodes (or vertices),
while line segments connecting these nodes are referred to as arcs. These arcs can
represent the physical time, distance or cost between nodes. Arcs can be directed and
undirected, giving information about the direction of travel and possible precedence
relationships. A route then specifies in which order nodes (or arcs) are being visited,
whereas a schedule specifies when each node is visited.

The VRP literature is rich and there exist myriad variants of the VRP (Toth &
Vigo, 2002). VRPs can be classified based on different characteristics, such as the
number of available vehicles/vessels, capacity of the vehicles or timing restrictions
such as synchronization (Drexl, 2012). At the basis of each VRP lies the traveling
salesman problem (TSP). In the TSP, there is only one vehicle available, the nodes
can be visited in any order and there are no capacity or scheduling restrictions. The
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2. Background and Literature

multiple traveling salesman problem (mTSP) is obtained when allowing for multiple
vehicles. A review of formulations and solution methods to the m-TSP is given
in Bektas (2006). Real world VRPs gives rise to many constraints. This class of
problems is known as rich VRPs. Lahyani et al. (2015) gives a taxonomy over all
the different characteristics that rich VRPs can possess.

The PACP is formulated as an uncapacitated VRP with Time Windows and
Precedence Constraints (uVRPTWPC) and can also be referred to as an mTSP
with Time Windows and Precedence Constraints (mTSPTWPC) (Balas et al., 1995;
Ascheuer et al., 2001). The PACP has a heterogeneous fleet, meaning that each
vehicle/vessel can have different characteristics in terms of costs and operations.
Another important characteristic is that The PACP does not consider capacity. Even
though fluid returns are obtained when performing P&A operations, these returns
can be stored in storage tanks and drained offshore by supply vessels of which the
day rates are significantly lower than the vessels used to perform P&A operations.
Finally, the PACP considers precedence between nodes and time-windows on when
nodes can be visited.

Typically, VRPs involve binary decision variables and are formulated as mixed
integer programs (MIP). Depending on the definition of the routing variables,
the model formulation can be categorized as an arc-flow formulation or path-flow
formulation (Toth & Vigo, 2002). An arc-flow formulation contains binary variables
for traversing arcs in the graph, representing whether a vehicle travels between two
distinct nodes. A path-flow formulation contains binary variables for routes/paths
in the graph, representing whether a vehicle performs a certain route.

VRPs can be solved using an exact or a heuristic approach. The VRP is
NP-hard and large instances are thus very difficult to solve. A large stream of
literature focuses therefore on heuristic solution approaches (Toth & Vigo, 2002,
Chapter 5). Nevertheless, the research in this thesis takes an exact approach. When
the constructed MIP is solved exactly, the branch-and-bound technique lies usually at
the basis. When an arc-flow formulation is used, valid inequalities tend to be added
dynamically in a branch-and-cut framework. An application to a maritime routing
problem can be found in Glomvik Rakke et al. (2012). For path-flow formulations,
the large number of possible routes can be generated before the problem is solved
or while the problem is solved. This is referred to as a priori and dynamic column
generation respectively. The branch-and-price method is the main approach being
used for the latter. An example of this method applied to a maritime routing problem
is given by Stålhane et al. (2015).

The work in Paper I, II and III uses an arc-flow approach, as it more easily
accounts for synchronization constraints between operations (nodes) and routes,
compared to a path-flow approach. Paper I adapts a Miller, Tucker and Zemlin
formulation, while Paper II switches to a commodity flow type formulation, leading
to a tighter model formulation (Öncan et al., 2009). Finally, Paper III implemented
a branch-and-cut approach that did not lead to any computational gains. This paper
also introduces an approach to account for a learning effect in the setting of vehicle
routing problems. A learning effect can occur when many similar operations are
performed. That is, the time it takes to perform an operation reduces as similar
operations have been performed before. Previous works have considered a learning
effect in the context of a multi-day VRP, were the service time parameters are
updated between model runs in an exogenous (Zhong et al., 2007; Kunkel & Schwind,
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2012). The methods developed in Paper III allow for an endogenous learning effect,
where the learning occurs within the time-horizon of the VRP.

2.4.2 Real Options

The term real options refers to the application of option pricing theory to valuating
investments in real (non-financial) assets. Flexibility and the possibility to obtain
information on the stochastic process over time are important factors contributing
to the value of a real option. The oil and gas industry has been one of the main
industries applying real options tools in practice (Smith & Mccardle, 1999). The
option to shut down (or to abandon) an oil-field has been used as one of the main
applications (Paddock et al., 1988; Ekern, 1988). Other typical real options include
the option to expand, wait or switch. A real options problem then aims to exercise
these options at the optimal time. Although there is agreement around the concept
of real options, there exist many different approaches and underlying assumptions
to implement such real options (Borison, 2005). Nevertheless, the main reference to
the field of real options is Dixit & Pindyck (1994).

The foundation of traditional real options literature is financial option pricing.
The main assumption is the existence of a replicating portfolio of financial instruments
that can replicate the (uncertain) returns of the real option. This approach is used
by Myers & Majd (1983); McDonald & Siegel (1985) to value an abandonment option
using standard no-arbitrage arguments. It is typically assumed that the prevailing
stochastic processes, such as the oil price or production rate, evolves according to a
Geometric Brownian Motion (GBM). Based on these assumptions, analytical results
can be calculated for single options. Examples include the optimal abandonment
time (Olsen & Stensland, 1988; Clarke & Reed, 1990) or optimal switching time
(Støre et al., 2018).

Real options problems are characterized by the possibility to take decisions
in time, where information on an uncertain process is revealed during this time
period. There are different methodologies that allow for these features, including
decision analysis, dynamic programming and stochastic programming. Each of
these methods allows for sequential decision making under uncertainty and therefore
allows to value flexibility. However, there are also some key differences between
these methods. For example, when considering restrictions on the stochastic process,
dynamic programming bases itself on Markov properties, stochastic programming
requires a finite scenario tree, while decision analysis needs full enumeration of the
discrete process.

Traditional option pricing makes use of a replicating portfolio argument to value
price uncertainty. Dynamic programming and stochastic programming use a different
approach to value risk, in which a risk-free interest rate is used to discount future
cash-flows.

Considering the real options problem to abandon a project with uncertain future
revenues, Bonini (1977) formulated a discrete time dynamic programming model.
Many recent applications take a similar approach (Lund, 2000; Fleten et al., 2011;
Nadarajah et al., 2017).

An elegant way to integrate the option pricing approach and decision analytic
approach is by Smith & Mccardle (1998, 1999). A distinction is made between
market uncertainties (e.g. oil prices) and private uncertainties (e.g. production
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rates). The key difference being that market risks can be perfectly hedged by traded
financial instruments, opposed to private risks.

Real options has been applied to many petroleum field development problems.
For example, Lund (2000) describes a stochastic dynamic programming model for
the development of a marginal offshore oil field under uncertainty through its entire
life cycle. In addition, Dias (2004) presents an overview of real options occurring in
petroleum exploration, development and production. In particular, the option to
expand production is discussed.

Many real options problems are formulated as stochastic dynamic programs. In
this case, the most common approach to value the options is by means of a Least
Squares Monte Carlo Approach (LSM) (Longstaff & Schwartz, 2001), also known as
the simulation-and-regression method. Applications of this approach in the oil and
gas industry can be found in (Fleten et al., 2011; Jafarizadeh & Bratvold, 2012).

Even though in practice options tend to be available in portfolios, the approaches
presented above have their limitations in allowing for multiple interacting options.
A possible approach to resolve this challenge is by incorporating real options in a
stochastic programming framework. This can in addition allow for the inclusion of
more (technical) details. Nevertheless, this might come at a cost of an increase in
computational complexity. A discussion on the differences and similarities between
real options and stochastic programming has been given by Wallace (2010), while
Wang & de Neufville (2004) proposes a method to incorporate real options in a
stochastic programming framework. A more recent approach that allows for portfolios
of real options is by (Maier et al., 2019, 2020). It is based on a stochastic dynamic
program and extends the traditional LSM method. Paper IV (Bakker et al., 2020a) in
this thesis takes a similar perspective, but uses the Stochastic Dual Dynamic Integer
Programming (SDDiP) algorithm to solve the real options problem, as opposed to
the LSM method. This appears to be a very promising approach to solve complex
real options problems.

2.4.3 Multistage Stochastic Integer Programming

The model in Paper IV (Bakker et al., 2020a) is formulated as a multistage stochastic
integer programming (MSIP) model and is solved using the Stochastic Dual Dynamic
Integer Programming (SDDiP) algorithm. As such, the main focus of this section is
to give an overview over the SDDiP algorithm, together with a course overview over
MSIP.

Focusing on the mathematical programming literature, there are several works
that develop MSIPs for planning problems in the oil and gas industry. To begin
with, Jonsbråten (1998) presents a stochastic mixed integer program for the problem
of optimally designing and operating an oil field under price uncertainty. A modified
progressive hedging algorithm, that allows for integer variables, is used to solve
the problem. In addition, Goel & Grossmann (2004); Tarhan et al. (2009); Gupta
& Grossmann (2014) consider a MSIP for the planning of offshore oil or gas field
infrastructure, making use of a Lagrangean Decomposition as well as a duality based
branch-and-bound procedure. To be able to solve these problems, the size of the
scenario set, as well as the number of stages, tends to be fairly limited.

SDDiP is another approach to solve MSIPs (Zou et al., 2019). SDDiP is an
extension of the Stochastic Dual Dynamic Programming algorithm developed by
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(Pereira & Pinto, 1991), that allows for (and requires) binary state variables. The
algorithm is based on a dynamic programming formulation with a nested cost-to-go
function and can be considered an adaptation of the nested benders decomposition
(Birge, 1985). The SDDiP algorithm has been applied to problems in hydropower
plant scheduling (Hjelmeland et al., 2019) and electric power infrastructure planning
(Lara et al., 2019).

A conceptual description of the SDDiP algorithm is described below, while
we refer to Zou et al. (2019) for a more detailed and formal treatment of the
algorithm. The SDDiP algorithm is used to solve MSIPs and bases itself on a
dynamic programming formulation that includes expected cost-to-go functions for
each time stage. The problem is decomposed based on time stages, which prevents a
combinatory explosion of the number of states/scenarios. We note that we consider
a minimization problem and that the constraints need to be linear.

SDDiP explicitly distinguishes between two types of decision variables in each
stage. That is, state variables linking successive stages, and local (or stage) variables.
The SDDiP algorithm requires the state variables to be binary. This is not a big
restriction for real options problems, as the decisions (to wait, abandon or expand)
are of binary nature. Moreover, SDDiP puts several restrictions on the stochastic
process. First, the stochastic process needs to be stage-wise independent. Second,
the stochastic process needs to have a finite number of realizations. If this is not the
case, such a process can be approximated using methods such as sample average
approximation or other constructive methods (Pflug, 2001). The original (continuous)
stochastic process, is sometimes referred to as the true distribution (Ding & Ahmed,
2019). Finally, the optimization problems in each stage need to be linear.

The cost-to-go functions are approximated in an iterative fashion using the
solutions of the optimization problem in each stage, which can be interpreted as
Benders cuts. Each iteration consists of a forward pass and a backward pass. In
the forward pass a set of scenarios is sampled. The current policy (represented
by the approximated cost-to-go function) is evaluated on each of these scenarios,
leading to a set of policy values. Based on these realized policy values, a statistical
upper bound on the objective function value can be constructed. This is an upper
bound for the minimization problem, as the cost-to-go function is represented by an
outer-approximation. The backward pass then generates cuts that outer approximate
the expected cost-to-go function. The backward pass consists of solving relaxed
subproblems from the last to the first stage, where the solutions of future stages are
used to generate cuts and approximations to the cost-to-go function. The relaxed
solution in the first time stage gives a lower bound to the problem, as only a subset
of scenarios is considered. This procedure is repeated until a convergence criterion
has been reached. The performance of the obtained policy can be tested on the
(true) distribution by means of a simulation, which finally gives an expected policy
value.
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Chapter 3

Contributions

This chapter discusses the contributions of the research presented in this thesis. The
thesis consists of four papers that are enclosed as appendices. For each paper, a
summary is presented together with an overview of contributions to the research
community and industry.

3.1 Papers

Paper I - Planning of an Offshore Well Plugging Campaign: A Vehicle
Routing Approach

Authors: Steffen Bakker, Mats Mathisen Aarlott, Asgeir Tomasgard, Kjetil Midthun

Published in: Bektaş T., Coniglio S., Martinez-Sykora A., Voß S. (eds) Computa-
tional Logistics. ICCL 2017. Lecture Notes in Computer Science, Volume 10572,
Pages 158-173. Springer, Cham.

Thousands of offshore wells are planned to be permanently plugged and abandoned
in the upcoming decades, and the costs are to be substantial.

In this paper we present a new optimization problem targeting the planning of
an offshore well plugging campaign. We propose a mixed integer linear programming
model based on a variant of the uncapacitated vehicle routing problem including
precedence and non-concurrence constraints. Subsea wells that have to be plugged
are modeled using nodes representing plugging operations that have to be performed.
A set of heterogeneous vessels is available to perform these operations. This is, to
the best of our knowledge, the first paper that applies operations research techniques
to a problem related to plug and abandonment. To account for multilateral wells, a
new type of synchronization constraints referred to as non-concurrence constraints
is defined. Further, we discuss and define different objective functions that can be
used depending on various contract structures. Finally, a relatively small case study
is constructed, consisting of three wells, that shows the value of the optimization
approach for the planning of plugging campaigns. However, we are not able to solve
cases with more than six wells to optimality.

The main contribution of this paper is the introduction of a new problem setting
and corresponding model formulation for an increasingly relevant topic.

My contributions to this paper include the conceptualization of the problem,
developing and formulating the model, performing the programming and performing
the analyses. Together with my co-authors, I have analyzed and discussed the case
study and results. Finally, I have been the main author of the manuscript.
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Paper II - An optimization model for the planning of offshore plug and
abandonment campaigns

Authors: Steffen Bakker, Torbjørn Vrålstad, Asgeir Tomasgard

Published in: Journal of Petroleum Science and Engineering, Volume 180, 2019,
Pages 369-379.

Due to the nature of the project, the work in this thesis is multidisciplinary. The
goal with this paper has been to target petroleum engineers and the oil and gas
industry and show the value of an optimization model for the planning of plugging
campaigns.

First, we give a detailed description of the P&A process and its connection with
the planning of a plugging campaign. Second, the model is improved in different
ways to be able to solve realistically sized instances of the problem. We adapt a
commodity flow formulation instead of the Miller-Tucker-Zemlin formulation used
in paper I. This leads to a tighter model formulation and allows us to solve larger
instances. Moreover, we recognize that wells tend to be clustered on templates
and use this feature to reduce the size of the model. In addition, the problem is
made more realistic by allowing for restricted operability of light vessels during the
winter-period. Then, a set of benchmark instances is constructed that span the
sizes of realistic plugging campaigns, ranging from 8 to 44 wells, and these instances
are solved to (near-)optimality. By comparing them with strategies that reflect
current practice of operators, we show that there lies significant value in the use of
an optimization approach.

The main contribution of the paper is that we demonstrate that the model can
be used to solve large and realistic instances and that there lies significant value in
using this approach opposed to conventional planning methods.

My contributions to this paper include the conceptualization of the problem,
development of the model and case studies, programming, formal analysis, and
writing of the manuscript. Torbjørn Vrålstad has given valuable input on the
operational part of the P&A process, as well as reviewing and editing the final
manuscript. Asgeir Tomasgard has contributed with general supervision.

Paper III - Vehicle Routing with Endogenous Learning: Application to
Offshore Plug and Abandonment Campaign Planning

Authors: Steffen Bakker, Akang Wang, Chrysanthos Gounaris

A slightly revised version of this paper has been published in: European Journal of
Operational Research, 2020, in Press.

The motivation for this paper originated from input from our industry partners.
They made us aware about the fact that a significant learning effect is present
when performing plugging operations. That is, when a particular operation is
performed many times, the time it takes to perform this operations reduces as
similar operations have been performed before. The vehicle routing literature has
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considered an exogenous learning effect for multi-period problems. In this approach
VRP models are solved in a rolling horizon fashion and the service time parameters
are updated in between the different periods.

However, in our problem setting the learning occurs within the same time period
in an endogenous way. To be able to analyze the effect of learning, we had to develop
an approach that can account for this effect.

The main contribution in this paper is that we present a general approach to
account for an endogenous learning effect in the context of a vehicle routing problem.
That is, service times at customers are dependent on the experience gained within the
routing horizon. Here, the experience level is defined using flow variables that count
the number of times a service has been performed before. We show that the non-
linear effect of learning can be represented in an exact way using a piecewise-linear
function, without introducing any new binary variables.

The planning of a plugging campaign is used as an application of a vehicle routing
problem with endogenous learning and existing instances are extended with learning
data. For this application, we develop a solution approach based on clustering, which
allows us to improve on the computational results presented in Paper II.

Finally, computational results on the performance of the clustering approach
are presented and the effect that learning can have on solutions is demonstrated.
In general, significantly different plans are obtained when considering the learn-
ing effect. Optimal plans try to reap the benefits of learning by utilizing the
vessels with most experience. Overall, we conclude that the implications of a
learning effect on VRP solutions can be significant and that the should be explic-
itly incorporated in the decision-making process, whenever such effects are applicable.

I have conceptualized the problem, developed the clustering approach and written
the manuscript. Chrysanthos Gounaris developed the main ideas for the learning
effect methodology. Moreover, my co-authors contributed in the design of the
analyses and review and editing part of the writing process.

Paper IV - Mature offshore oil field development: solving a real
options problem using stochastic dual dynamic integer programming

Authors: Steffen Bakker, Andreas Kleiven, Stein-Erik Fleten, Asgeir Tomasgard

Submitted to an international, peer-reviewed journal.

Deciding when to shut down an oil or gas field has been a classical research
question. However, after many discussions with industry partners and reading
existing literature, we concluded that existing approaches do not capture all the
important aspects related to this research question.

In this paper we acknowledge that the shutdown decision should be evaluated
together with other activities that can enhance the life-time of a field, which might
include the drilling of new wells. A real options problem is defined and formulated as
a multistage stochastic integer program (MSIP). We identify the oil price as the main
uncertain factor and include the short-term long-term of Schwartz & Smith (2000)
to fully account for the dynamics in oil price fluctuations. Moreover, a linearization
approach is developed to include this stochastic process in the MSIP and it is solved
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using the stochastic dual dynamic integer programming (SDDiP) algorithm. We then
construct a case study based on realistic data and present computational results on
the performance of the algorithm. We show that the value of stochastic solutions is
considerable and evaluate the effect of different factors on the timing of the shutdown
decision.

The main contribution of this paper is that we show that real options problems
can be efficiently solved using the SDDiP algorithm. Utilizing the developed frame-
work, we are able to analyze the interaction between different options in a portfolio.
We find that an increase in uncertainty can decrease the expected shutdown time,
which contrasts the traditional relationship that is found for single options.

My contributions to this paper include the conceptualization of the problem,
development of the model and case study, programming and performing the analyses.
I was the main author of the manuscript. My co-authors contributed in reviewing
and editing the final manuscript, where Andreas Kleiven and Stein-Erik Fleten also
contributed with valuable discussions on the methodology.

3.2 Additional Contributions

One of the initial research goals of the ECOPA project has been to develop an
open-source plug and abandonment database. We have set up a prototype database
that we filled with publicly available data. I have contributed in this study by
mapping existing data sources and filling the database. Moreover, I have integrated
the database with the decision-support models presented in this thesis. Due to
several obstacles, we have unfortunately not been able to fulfill this ambitious project.
Nevertheless, we have published our experiences in the following paper:

• Myrseth, V., Perez-Valdes, G. A., Bakker, S. J., Midthun, K. T., & Torsæter,
M., 2017. Development of a Norwegian Open-Source Plug-and-Abandonment
Database With Applications. SPE Economics & Management. 9, 27–31.
https://doi.org/10.2118/180027-PA

The contributions of this paper lie outside the scope of mathematical programming,
and as such we have decided not to include this paper in this thesis.
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Chapter 4

Concluding Remarks and Future
Research

The overarching goal of the works in this thesis has been to develop knowledge,
models and solutions methods related to the plugging and abandoning of offshore oil
wells, that can create value for both industry, society and academia.

The three first papers give a solid foundation for the development of a decision
support tool for the problem of planning an offshore P&A campaign. While
Paper I introduced this problem, Paper II and Paper III extended it with more
realistic features and improved solution methods. Paper II showed that there
are significant benefits in using the developed optimization approach for planning
plugging campaigns, compared to conventional approaches. The results from this
paper have been presented for a group of P&A managers from different operators
on the Norwegian Continental Shelf. The general consensus was that there can be
significant value in the use of a decision support system based on the developed
model. Nevertheless, there are several practical challenges in applying the developed
methodology. To begin with, decommissioning activities tend to be planned
exclusively within a license or field. This makes it difficult to plan large plugging
campaigns, that include wells from different fields. It might be necessary to change
prevailing regulations to be able to obtain cooperation between different operators.
Paper III treated the existence of a learning effect in the context of a vehicle routing
problem. This feature leads to significantly different optimal plans compared to when
neglecting this effect, but also increases the computational complexity of the problem.
To be able to capture this effect, while still solving realistically sized instances, we
developed a clustering-based solution approach. Paper III also investigated the effect
of uncertainty around parameter estimates on optimal routes and plans, by means
of a sensitivity analysis. An interesting extension would be to investigate the effect
of uncertainty on this problem by means of an appropriate technique that deals
with decision making under uncertainty, such as stochastic programming or robust
optimization. As the deterministic versions of this problem are already difficult to
solve, the use of heuristic approaches might have to be considered.

Paper IV focused on the development of a mature offshore oil field, and in
particular the shutdown decision. We treated this as a real options problem and
formulated it using a multistage stochastic integer program. To the extend of
our knowledge, this is the first work that solves such a problem using the SDDiP
algorithm. This framework allowed us to investigate the relationship between
interrelated options that occur in portfolios. We found that, contrary to traditional
findings for single options, an increase in long term price volatility can speed up
the shutdown decision, when various (expand) options are available. The developed
method easily accounts for different stochastic factors, such as price uncertainty.
We show that the conventional planning methods of operators, based on expected
values or high/low realizations of uncertain factors, can lead to sup-optimal plans.
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Another interesting finding is related to the expected shutdown time. A common
belief is that postponement of the shutdown decision is beneficial for operators, as
the huge plugging costs are discounted away in the future. However, this effect
can be counterbalanced by increasing decommissioning costs due to degrading well
integrity, which can speed up the expected shutdown time. The research in this
paper can be extended in many directions. The methodology can be applied to even
more realistic case studies, or to other real options problems with different problem
characteristics.
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Abstract. When a petroleum well no longer serves its purpose, the
operator is required to plug and abandon (P&A) the well to avoid con-
tamination of reservoir fluids. An increasing number of offshore wells
needs to be P&A’d in the near future, and the costs of these opera-
tions are substantial. Research on planning methods in order to allocate
vessels that are required to perform these operations in a cost-efficient
manner is therefore essential. We use an optimization approach and pro-
pose a mixed integer linear programming model based on a variant of
the uncapacitated vehicle routing problem that includes precedence and
non-concurrence constraints to plan a plugging campaign. P&A costs are
minimized by creating optimal routes for a set of vessels, such that all op-
erations that are needed to P&A a set of development wells are executed.
In a case study, we show that our proposed optimization approach may
lead to significant cost savings compared to traditional planning meth-
ods and is well suited for P&A planning purposes on a tactical level.

Keywords: Routing, Plug and Abandonment, Plugging Campaign

1 Introduction

An active petroleum well goes through different phases: exploration, production,
and injection. After the well has served its purpose, and is no longer profitable,
it must be plugged and abandoned. According to [13, Chapter 9], Plug and
Abandonment (P&A) is the process of securing a well by installing required well
barriers (plugs) such that the well will be permanently abandoned and cannot
be used or re-entered again. We refer to P&A as the permanent abandonment
of the well, as opposed to temporary P&A, where the well may be re-entered.
Permanently plugged wells shall be abandoned with an eternal perspective taking
into account the effects of any foreseeable chemical and geological processes. This
definition holds for offshore and onshore wells, but in this paper we consider
solely the former. Moreover, we only focus on development wells (consisting of
production and injection wells), as exploration wells are P&A’d immediately
after drilling.

To give an impression of the magnitude of future P&A work, [12] forecast a
total of 1, 800 development wells to be P&A’d the next decade on the United
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Kingdom and Norwegian Continental Shelf. The average P&A cost per well in
the same period and regions is estimated to be around £5−15 million. Currently,
approximately 50% of the costs of decommissioning, which also takes into ac-
count removal of installations, is related to P&A. On the United States Outer
Continental Shelf, which most notably consists of the Gulf of Mexico, there are
at present 5, 082 production wells and 3, 220 temporarily plugged wells, that are
in need of permanent plugging [3].

The high costs related to these operations and opportunity costs of the ves-
sels required to perform these operations (e.g. exploration or drilling activities),
makes this topic highly relevant for research on efficient resource allocation and
scheduling of P&A operations.

In this paper, we look at a tactical time horizon for the planning and schedul-
ing of P&A operations for a number of subsea wells in which the production sys-
tems are located on the seabed. In this respect, a P&A campaign is an allocation
of vessels (ships and rigs) to perform plugging operations on a set of wells.

As P&A costs derive mainly from renting vessels, cost savings can be achieved
by, e.g., developing new or improving existing techniques such that the durations
of the operations are reduced. When taking a system perspective, savings may
also be obtained by optimizing routing of vessels and scheduling of operations.
These cost savings might result from, for example, decreased sailing time or
more use of vessels with a low day-rate. Here lies the basis for developing and
demonstrating how an optimization approach based on vehicle routing theory
may be used to reap these rewards.

In view of this, we propose an optimization model for the tactical planning
problem concerned with P&A campaigns. We refer to this problem as the P&A
Campaign Problem (PACP).

Even though optimization has been extensively applied to the petroleum
industry (e.g. [10, 6]), literature on the use of optimization in P&A planning is,
to the best of our knowledge, scarce. The only application of optimization to
P&A that we are aware of is [1].

The planning of a P&A Campaign can be considered to be a vehicle routing
problem (VRP). In this context, ”routing” can be defined as the assignment of
sequences of operations to be performed by vessels. The term ”scheduling” is
then used when the timing aspect is brought into routing. Therefore, scheduling
includes the timing of the various events along a vessel’s route. [4] give a review
of ship routing and scheduling problems within maritime transportation, cat-
egorized on the basis of strategic, tactical and operational planning levels. An
optimization model for maintenance routing and scheduling for offshore wind
farms, based on a VRP with pick-up and delivery, is proposed in [7]. This model
has similar features as the PACP. However, just like most maritime transporta-
tion problems, it involves cargo or inventory considerations.

The PACP can be represented as an extension of the Uncapacitated Vehicle
Routing Problem (u-VRP) or Multiple Traveling Salesman Problem (m-TSP)
with precedence and non-concurrence constraints, a heterogeneous fleet of vessels
and the possibility of multiple routes, see [14]. Related work is done in [5] and
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[2]. The former paper considers an extension of the traveling salesman problem
(TSP) with precedence constraints applied to ship scheduling and presents other
related work on TSPs, whereas the latter contains a review of literature on the
m-TSP and practical applications.

There are several ways in which the PACP problem can be formulated. We
have investigated using a time-indexed mixed-integer programming formulation.
However, as P&A campaigns are characterized by both a long time horizon
(1-2 years) and a fine time resolution for individual operations (hours/days),
this formulation leads to a large number of binary variables. As a result, the
model quickly becomes intractable, even for toy-sized problems. Therefore, we
formulate the model using an arc-flow formulation, treating time as continuous.
This formulation requires significantly less binary variables and is capable of
solving larger instances of the problem.

We extend current literature on vehicle routing problems by introducing a
new practical application of an u-VRP, besides proposing ’non-concurrence’ con-
straints, which are required when considering multilateral wells.

The remainder of this paper is structured as follows. We start by giving a
problem description in Section 2 and provide a model formulation in Section 3.
A case study consisting of three wells is then described in Section 4, of which
the computational as well as economical results are presented in Section 5. The
results are compared with other realistic routing alternatives. The paper con-
cludes with Section 6, which summarizes the main findings from this work as
well as suggesting the direction future research could take.

2 Problem Description

Offshore petroleum wells can be distinguished by being connected to either a sub-
sea or platform installation, where the wells are usually clustered in templates.
In order to P&A an offshore well, several operations have to be performed in a
strictly ordered sequence. These operations consist of amongst others prepara-
tory work, the setting of plugs and removal of the wellhead. Subsea wells need
vessels to perform these operations. There are several classes of vessels that are
able to carry out these operations. In general, Mobile Offshore Drilling Units
(MODUs), also called rigs, can conduct all types of operations. This class of ves-
sels includes jackup rigs, semi-submersible rigs (SSRs) and drillships. Another
class consisting of lighter vessels such as light well intervention vessels (LWIVs)
and light construction vessels (LCVs) can only perform a subset of operations,
but have a cheaper day-rate compared to rigs.

A categorization of these different operations into phases is given by [11],
which is also extensively used by the industry. Based on this categorization, we
define four operation types, or phases, which will be used more explicitly in the
case study in Section 4. Phase 0 consists of preparatory work, which can, in
general, be executed by all vessels. Phase 1 comprises the cutting and pulling of
casing and tubing and setting of primary and secondary barriers, which requires
a rig. Phase 2 again requires a rig and includes the setting of a surface plug.
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Finally, phase 3, removal of the conductor and well head, might be performed
from some lighter vessels. An overview of compatibilities between phases and
vessel classes is given in Table 1.

Table 1. Compatibility of phases
and vessel classes

Phase SSR LWIV LCV

0 X X X
1 X - -
2 X - -
3 X X -

Note that this categorization is con-
structed for wells in the North Sea, and need
not necessarily hold for wells under different
regulatory regimes. Still, it is a good repre-
sentation that is useful in showing the traits
of the model.

Besides traditional wells with a single
wellbore, there also exist wells with multiple
wellbores connected to a common wellhead.
These wells are known as multilateral wells.
To give an example, Figure 1 shows a multi-
lateral well with three lateral wellbores and a
mainbore. The nodes represent operations in
the wellbores that have to be performed to P&A the well. Multilateral wells are
designed to reduce construction costs and increase production from a reservoir.
Operations in different lateral wellbores cannot be performed simultaneously, as
these wellbores must be entered through the same mainbore.

Fig. 1. Diagram of a multilateral
well

P&A operations are in general not time-
critical, which means that wells can be left
temporarily or partially plugged, as long
as the wells are continuously monitored.
Nonetheless, there might be reasons to in-
clude time windows for the operations. This
might be due to legal issues, such as the ex-
piry of a lease contract, or plans made by the
operators. Vessel-use can also be limited due
to contractual issues, alternative usage such
as exploration or drilling, or other conditions
like harsh weather.

Based on these different aspects of the
P&A process we are able to formulate a gen-
eral optimization model that minimizes the
total costs related to a P&A campaign. The
decision variables consist of binary variables
determining the routes of the vessels and con-
tinuous variables specifying start times of operations. The constraints in the
model are related to timing, precedence, non-concurrence and legal routes for
vessels. The objective of the model is to minimize total rental costs, which is
constructed based on time usage and day-rates of the different vessels.
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3 Mathematical Formulation

In this section, we present the Mixed Integer Linear Programming (MILP) Model
for the PACP. We explain the notation (sets, indices, parameters and variables)
used in the model and we provide the mathematical formulation of the con-
straints and objective functions.

3.1 Sets and Indices

To P&A a well, a certain number of operations have to be executed. These oper-
ations might be represented by the previously defined phases, but can be more or
less detailed. We therefore define the setN =

{
1, ..., NOPS

}
, which consists of all

the operations required to be executed on all wells. The set K = {k1, ..., kNV ES}
consists of NV ES heterogeneous vessel that are available to perform these P&A
operations. For every vessel k ∈ K, we define Nk ⊆ N to be the set of operations
that vessel k can perform. We define origin and destination vertices o(k) and d(k),
which represent locations such as harbours, where the vessels are situated at the
start and end of the planning period, respectively. We model routing options as
arcs, and P&A operations as vertices. Let Ak = {(i, j) : i, j ∈ Vk} represent the
arc set corresponding to vessel k ∈ K, where Vk = Nk∪{o(k), d(k)} is the vertex
set of vessel k. The precedence set P, consists of pairs (i, j) with i, j ∈ N , for
which operation i should precede operation j. This set is included to ensure cor-
rect sequencing of operations. Some operations are prevented, due to technical
reasons, from being executed simultaneously. Therefore, we let S consist of pairs
of operations (i, j) with i, j ∈ N that cannot be executed simultaneously.

Moreover, given vertex i, δ+k (i) is defined as the set of vertices j such that
arc (i, j) ∈ Ak. That is, the set of possible vertices j that vessel k can visit after
visiting vertex i. Similarly, given vertex i, δ−k (i) is defined as the set of vertices
j such that (j, i) ∈ Ak, i.e. the set of possible vertices j that a vessel k may have
visited before visiting vertex i. The term ”visit” is used to include operations as
well as leaving the origin or entering the destination.

The PACP is now defined on the directed graphs Gk = (Vk,Ak) for all k ∈ K.

3.2 Parameters

For each vessel k ∈ K, non-negative durations TS
ijk and TEX

ik representing sailing
and execution times, are associated with each arc (i, j) ∈ Ak and vertex i ∈
Vk, respectively. Sailing times equal zero for arcs between operations in the
same well and otherwise consist of (de-)mobilization time and actual sailing
time between wells. For every vertex i ∈ ∪

k∈K
Vk we associate a time window

[
T i, T i

]
, where T i and T i represent earliest start time and latest completion

time of the corresponding operation in vertex i, respectively.
Non-negative day-rates Ck are defined for each vessel k ∈ K. When using

an alternative objective function which depends on vessel usage, we make use
of varying day-rates CEX

k , CS
k , C

SB
k , for execution, sailing, and stand-by time,

respectively.
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3.3 Variables

The aim of the PACP is to find a collection of feasible vessel routes that min-
imizes total cost. We present this problem using an arc-flow formulation. We
define a binary flow variable xijk for each vessel k ∈ K and arc (i, j) ∈ Ak;
equaling 1 if vessel k traverses arc (i, j) in the optimal solution, and 0 otherwise.
Moreover, we define the continuous time variables tik, for each k ∈ K, i ∈ Vk,
specifying the start-time of operation i by vessel k. We also introduce auxiliary
variables, yij , for all (i, j) ∈ S, taking the value 1 if operation i is executed before
operation j, to deal with non-concurrence in multilateral wells.

3.4 Constraints

The constraints defining the MILP are treated below.

Operations. To P&A all wells under consideration, all corresponding operations
have to be executed. This is ensured by the following constraints:

∑

k∈K

∑

j∈δ+k (i)

xijk = 1, i ∈ N . (1)

These constraints also restrict the assignment of each operation to exactly one
vessel.

Routing. The following sets of constraints define the possible routes that the
vessels are allowed to take. First, we make sure that a vessel’s route starts at its
origin, and performs only one route:

∑

j∈δ+k (o(k))

xo(k)jk = 1, k ∈ K. (2)

The inclusion of an arc between the origin and destination with zero cost gives
the option not to make use of a vessel. Then, we assure that each vessel ends its
route in its destination:

∑

i∈δ−k (d(k))

xid(k)k = 1, k ∈ K. (3)

Finally, we have flow balance constraints ensuring feasible routing, stating that if
a vessel is used to perform a P&A operation, it must move to another operation
(in the same or any other well), or to the destination:

∑

i∈δ−k (j)

xijk −
∑

i∈δ+k (j)

xjik = 0, k ∈ K, j ∈ Nk. (4)
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Multiple Routes. The previous constraints force the number of times a vessel
can be used to one, assuming that when a vessel has left its origin to perform
P&A operations, it must perform all its planned operations on that one route.
This is a reasonable assumption if vessels are committed to a project for a longer
time and vessel rent has to be payed throughout this whole period, independent
on whether it is executing an operation or remains idle. However, if a vessel is
allowed to return to a harbour where rental costs are not incurred, the possibility
of multiple trips should be taken into account. This can be done by redefining the
set K. We include copies of the vessels if multiple routes are allowed. Formally,
this leads to the following. First, we define Rk :=

{
1, .., NR

k

}
, k ∈ K, where

NR
k equals the maximum allowed number of routes for vessel k. Now, let K̃ ={
k̃kr : k ∈ K, r ∈ Rk

}
. To make sure that the routes are then planned in correct

order we define the following constraints:

td(k̃kr)k̃kr
≤ to(k̃kr′ )k̃kr′

, k ∈ K, r, r′ ∈ Rk | r′ − r = 1. (5)

That is, if we have two subsequent routes for a vessel, then the former route
should be finished before the latter can start. The model now allows for multiple
routes by replacing K with K̃.

Timing. The time constraints ensure schedule feasibility with respect to start
times of the operations. If a vessel performs an operation on a well (or enters its
destination), it must have completed its previous operation (or left its origin)
and travelled to the current location:

xijk

(
tik + TEX

ik + TS
ijk − tjk

)
≤ 0, k ∈ K, (i, j) ∈ Ak. (6a)

This can be linearized as

tik + TEX
ik + TS

ijk − tjk ≤Mijk(1− xijk) k ∈ K, (i, j) ∈ Ak, (6b)

where Mijk = T i + TS
ijk − T j .

Time windows for operations are defined by the following constraints:

T i

∑

j∈δ+k (i)

xijk ≤ tik ≤ (T i − TEX
ik )

∑

j∈δ+k (i)

xijk, k ∈ K, i ∈ Nk. (7)

If a vessel does not perform a certain operation, then these constraints force the
corresponding time variable to zero.

We also impose time windows for the origin and destination vertices, repre-
senting limitations in vessel use:

T i ≤ tik ≤ T i, k ∈ K, i ∈ ∪
k∈K

{o(k), d(k)} . (8)
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Precedence. As explained in Section 2, there exists a strict ordering in the
sequence in which operations have to be performed within a well. This ordering
is guaranteed to hold by the following precedence constraints:

∑

k∈K
tik +

∑

k∈K

∑

l∈δ+k (i)

TEX
ik · xilk −

∑

k∈K
tjk ≤ 0, (i, j) ∈ P. (9)

Non-concurrence. The precedence constraints control the order in which op-
erations in the same wellbore are being executed, but they cannot deal with the
fact that operations from different lateral wellbores cannot be performed simul-
taneously. This phenomenon arises when considering multilateral wells. We refer
to the constraints that arise in this situation as non-concurrence constraints.
The following constraints enforce that for all non-concurrence pairs (i, j) ∈ S we
have that either operation i is performed before operation j (yij = 1), or vice
versa (yij = 0).:

∑

k∈K
tik +

∑

k∈K

∑

l∈δ+k (i)

TEX
ik · xilk −

∑

k∈K
tjk ≤Mji(1− yij), (i, j) ∈ S, (10a)

∑

k∈K
tjk +

∑

k∈K

∑

l∈δ+k (j)

TEX
jk · xjlk −

∑

k∈K
tik ≤Mijyij , (i, j) ∈ S, (10b)

where Mij = T j − T i.

Alternatively, one can represent multilateral wells in a more restricted way,
such that constraints (10) are not necessary. We can obtain this by either
bundling operations that have the same phase but are in different wellbores
or imposing an order for the execution of operations in the different lateral
wellbores. This approach leads to a reduction in the number of constraints and
integer variables, but might lead to sub-optimality.

3.5 Objective Functions

Differences in the construction of P&A contracts leads to the need to model
different types of objective functions. To illustrate this, we present two exem-
plifying objective functions. When service companies perform P&A operations
for operators, contracts are usually written on a day rate or turnkey basis [8].
Day rates are made up of, amongst others, vessel rent and personnel and equip-
ment costs. Specification of turnkey contracts needs a precise breakdown of P&A
costs, which leads to an analysis of the same cost factors. Therefore, we formulate
the objective function in its most basic form as the sum of individual day-rates
multiplied by total time the vessels are used offshore:

min
∑

k∈K
Ck(td(k)k − to(k)k). (11)
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Some contracts specify varying day rates, such as operating, sailing and stand-by
rates (CEX

k , CS
k , C

SB , respectively), which can easily be taken into account by
the following objective function:

min
∑

k∈K

(
CEX

k tEX
k + CS

k t
S
k + CSB

k tSB
k

)
, (12)

with:

tEX
k =

∑

i∈Nk

TEX
ik

∑

j∈δ+k (i)

xijk, k ∈ K, (13)

tSk =
∑

(i,j)∈Ak

TS
ijkxijk, k ∈ K, (14)

tSB
k = td(k)k − to(k)k − tSk − tEX

k , k ∈ K, (15)

where tEX
k , tSk and tSB

k denote the execution, sailing, and stand-by time, respec-
tively.
In some cases, large operating companies perform the P&A operations them-
selves. They usually have entered into long-term contracts with ship companies
to rent vessels, which are used for multiple purposes. In this situation, the ob-
jective function might reflect opportunity costs arising from alternative uses of
the vessel, such as exploration or well development.

3.6 Variable Domains

The domains of the variables used in the aforementioned constraints and objec-
tive functions are declared below:

xijk ∈ {0, 1} , k ∈ K, (i, j) ∈ Ak, (16)

tik ∈ R+
0 , k ∈ K, i ∈ Nk, (17)

yij ∈ {0, 1} , (i, j) ∈ S. (18)

Thus, the PACP model used in the case study in this paper consist of constraints
(1) - (10b), variables (16) - (18), and objective function (11).

4 Case Study

To test the functioning and show possible benefits of the model, we run the
model under several scenarios. We then compare these results with the results
resulting from the use of simple plugging strategies, reflecting different ways in
which plugging campaigns currently are, or could be, executed. The scenarios
consist of one base case scenario, and five alternative scenarios that are derived
by changing some parameters of the base case scenario. In the base case, we
consider three subsea wells (denoted by W1, W2 and W3) on which operations
have to be performed such that all wells will be permanently P&A’d. We assume
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that the vessels under consideration are located at the same harbour at the
beginning of the planning period, and that this harbour is also the destination.
The wells have a single wellbore and are located on the same field, of which
W2 and W3 are located on the same template. We assume that all wells are
at a distance of 150 kilometers from the harbour and W1 is 5 kilometers apart
from W2 and W3. The locations and distances between wells are taken from
existing wells on the Alvheim field in the North Sea. We use the four phases as
described in Section 2 as a categorization of the P&A operations for each well.
We assume that two different vessels are available to carry out the operations: a
Semi-Submersible Rig (SSR), that can perform operations in all phases, and a
Light Well Intervention Vessel (LWIV), that can perform operations in phase 0
and 3. Both vessels have a fixed day-rate, independent of the activity (executing
P&A operations, sailing, or stand-by). Input data to the model, retrieved from
the P&A database as described in [9], is given in Table 2. Note that the execution

Table 2. Summary of input data for SSR and LWIV.

Execution time (days) Day Rate Speed (de-) Mobilization

Phase: 0 1 2 3 (k$) (knots) (days)

SSR 11.9 8.85 5.63 0.75 700 5 2.5
LWIV 11.9 - - 0.75 450 15 0.2

times are the same for all wells, as we assume that all wells are similar. However,
the model allows for unique values for execution times in the case where well
specific duration estimates are available. Sailing times consist of actual sailing
times (calculated based on distances between the wells and speeds of the different
vessels), as well as mobilization and de-mobilization time. As opposed to LWIVs,
some SSRs require anchor handling, which leads to a significant difference in (de-
)mobilization time. We note that when a vessel moves between wells on the same
template, no anchor handling is required.

4.1 Scenarios

We perform a sensitivity analysis in which we, ceteris parabus, change some of
the parameters of the base case as defined above (SCEN1 ). As an LWIV is more
sensitive to bad weather than a SSR, we look at the scenarios where we increase
the execution times for the LWIV. To investigate this effect we multiply the
duration of phase 0, when using a LWIV, by arbitrary factors 1.5 and 2 given
in scenarios SCEN2 and SCEN3 respectively. In the fourth and fifth scenario
(SCEN4 and SCEN5 ), we multiply the duration of phase 3 by factors 1.5 and 2
as well, when executed by a LWIV.

Finally, in the sixth scenario (SCEN6 ) the execution time of phase 3 for both
LWIV and SSR is multiplied by a factor of 2. This scenario is chosen to reflect a
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case where it is optimal to perform all possible operations using a LWIV in two
separate trips.

4.2 Strategies

We now define five different strategies that might be employed to perform a plug-
ging campaign. The first strategy is simply the optimal outcome suggested by
the model (OPT ), whereas the last four strategies are examples of how different
P&A campaigns can be planned manually. Traditionally, P&A operations are
performed by a single rig, which is characterised by STRAT1. The optimal solu-
tion in this case is to execute all operations in a well consecutively and find the
optimal sequence of wells to visit for the rig. More recently, cheaper light vessels
are being used to perform light P&A operations that do not require a drilling
rig. This might be optimal from a well perspective, but not necessarily from
a system perspective. Different variations of vessel use are given in STRAT2,
STRAT3 and STRAT4. We refer to these strategies as manual strategies, even
though we solve restricted versions of the optimization model. The five strategies
are now given by:

– OPT : In this case, we allow the model to find the optimal allocation of vessels
to P&A operations. The SSR may perform all operations in all phases (but
must perform all operations in phases 1 and 2. The LWIV may perform any
operations in phases 0 and 3. Finally, the LWIV is allowed to perform two
routes. That is, it can return to the harbour once, where it does not incur
rental costs.

– STRAT1: We restrict the model only to make use of the SSR to perform all
the P&A operations on the wells.

– STRAT2: We require that all phase 0 operations are performed by the LWIV,
and that the remaining operations are done by the SSR. The LWIV is only
allowed to perform one route.

– STRAT3: Same as STRAT2, but we also require that all operations in phase
3 are performed by the LWIV.

– STRAT4: Same as STRAT3, however this strategy allows the LWIV to per-
form two routes. This reflects the possibility to do all preparatory work with
a light vessel (after which the vessel goes back to the harbour), then use a rig
to perform the cutting and pulling operations in phase 1 and 2, and finally
use the light vessel to perform phase 3.

5 Results

In this section, we present results from running the model for the different strate-
gies and scenarios set out in Section 4. The model has been implemented in
the Mosel programming language, and solved with FICO Xpress version 8.0.4.
The analyses have been carried out on a HP dl165 G5 computer with an AMD
Opteron 2431, 2,4 GHz processor, 24Gb RAM running Red Hat Linux v4.4.
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Table 3. Cost increase (in percentage) for the different strategies compared to the
optimal cost (in million dollars) and start- and end-times for the routes in the optimal
strategy (second route in parenthesis).

Scenario

1 2 3 4 5 6

Cost (M$) Optimal 55.32 63.16 63.65 55.41 55.42 56.55

Strategy

1 15.06 0.77 0.00 14.87 14.86 15.34

Cost
increase
(%)

2 0.17 0.44 12.30 0.00 0.00 0.77
3 15.79 8.80 20.59 15.90 16.20 13.87
4 0.39 0.64 12.49 1.14 2.06 0.00

Start- and
end-times
(days)

SSR
start 9.1 19.4 0 9.1 9.1 9.1
end 63.5 73.2 90.9 64.3 64.3 62.0

LWIV
start 0 0 - 0 0 0 (54.7)
end 38.2 56.8 - 37.2 37.2 37.2 (60.7)

Table 3 shows numerical results for the different strategies and scenarios,
whereas Figure 2 illustrates the optimal routes for each of the five scenarios.

There are several observations we can make based on these figures. To begin
with, we see from Figure 2 that each scenario results in a different optimal
routing (except for SCEN4 and SCEN5 ), despite the differences between the
scenarios being small. As the LWIV cannot perform operations in phases 1 and
2, the main differences between the optimal routing strategies become apparent
in the choice of vessel to perform phased 0 and 3. Looking at Table 3, in the
first two scenarios, none of the defined manual strategies is optimal (even though
strategies 2 and 4 result in objective function values that are close to the optimal
value). For each of the last four scenarios, one of the manually defined strategies
is optimal, however none of these strategies performs well under all scenarios.
Based upon the data input, the performance might even get arbitrarily bad.
STRAT3 performs worst under all scenarios. In this strategy we commit the
LWIV to perform the operations in phases 0 and 4. But, since the LWIV cannot
start operations in phase 4 before the SSR is done with phase 3, this strategy
leads to an increase in costs due to idle time of the LWIV.

The dynamics in scenarios 1 to 3 are also worth mentioning. In the base case,
the LWIV only performs phase 3 on one well. When it takes more time (factor
1.5, scenario 2) to perform phase 0, the LWIV no longer has to wait to perform
an additional phase 3 operation. However, when the duration of phase 0 doubles
(scenario 3), using the LWIV is no longer optimal at all.

The differences between scenario 4 and 5 are small as phase 3 has a relatively
short duration

We conclude that the optimal routes depend heavily on differences in travel
distance, execution times and day rates for the different vessels. Based on our
inputs, assumptions, and choice of case study, we see that the optimal solution
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(a) SCEN1 (b) SCEN2 (c) SCEN3

(d) SCEN4 and SCEN5 (e) SCEN6

Fig. 2. Optimal vessel routes for the six different scenarios. The solid and dashed routes
correspond to the SSR and LWIV respectively.

might represent cost savings in the order of magnitude of US$ million compared
to other and more conventional planning methods, represented by the manually
defined strategies. This shows the strength of the application of an optimization
model in planning of a P&A campaign.

Considering that the scenario in question consists of three wells, it is reason-
able to assume that cost savings will be significant when including more wells.

The case study we considered consisted of three wells that needed to be
P&A’d, which is a realistic sized problem. However, depending on the case,
P&A campaigns on larger sets of wells can be planned, and might result in other
system effects. We therefore perform a computational study, to investigate the
scalability of the model. We take the previously defined case study with two
vessels (SSR and LWIV) and three wells as base case. We then add wells that
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are located on the same field and are in need of P&A, and try to solve the model
to optimality. The results are given in Table 4. The maximum run time is set
to 24 hours, which is reached in the case with 7 wells. Since the addition of one
extra well implies adding four different operations or vertices, we clearly see an
exponential increase in the solution time. Moreover, we observe very slow con-
vergence of the lower bound.

Non-concurrence in Multilateral Wells. In the following example we show
the importance of including the non-concurrence constraints (10) as opposed to
using a simplification. We consider a multilateral well that needs to be P&A’d.
The well has one mainbore and three lateral wellbores, as represented in Fig-
ure 1. We assume that the well is located on the same field as in the case study,
and we make use of the same vessels (i.e. a LWIV and SSR). Now assume that
the LWIV is only available in the first month. Embracing the formulation with
non-concurrence constraints, this leads to an optimal solution where the LWIV
performs phase 0 operations in two lateral wellbores, after which the SSR per-
forms the remaining operations. This results in an objective value of 47.806
million dollars. In a more restricted version of the model with an imposed order
for the execution of operations in the different lateral wellbores, in the optimal
solution, the SSR performs all operations and the LWIV is not being used. This
leads to an objective function value of 53.116 million dollars. So, in this exam-
ple, not including the non-concurrence constraints leads to an additional cost
of approximately 5 million dollars. The simplified model consists of 61 binary
variables and 124 constraints. Inclusion of non-concurrence constraints leads to
an additional number of binary variables equal to the cardinality of the set S
(denoted by |S|) and 2 · |S| extra constraints. In the example above we have
|S| = 12, which does not lead to a significant increase in solution time.

6 Conclusions

Table 4. Computational results

Wells Time (sec) MIP-Gap (%)

3 0.51 0
4 2.52 0
5 46.14 0
6 900.74 0
7 86401.50 0.48

The main contribution in this paper is
a novel formulation of an optimization
model for a P&A campaign. This is a
field where, to the extent of our knowl-
edge, optimization techniques so far have
not been applied. In the case study, we
show that there might be significant ben-
efits from using this optimization model
in monetary terms. Small changes in the
data basis may lead to highly differing op-
timal routes. The manually defined plan-
ning strategies are therefore not robust to
such changes in the data. Moreover, we
show that the inclusion of non-concurrence constraints is preferred over a sim-
plified representation of multilateral wells. As a result, the model may serve as
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decision support to decision makers. Nonetheless, we recommend to run more
extensive case analyses, to evaluate alternative campaigns and discover general
rules that can be used when planning P&A campaigns. The model can then also
be used to run different scenario analyses to evaluate the effect of changes in
parameters or definition of phases due to, for example, new technology.

The major challenge is related to scalability of the model. In order to solve
more realistic cases, future research might therefor be conducted into several di-
rections. To begin with, the literature suggests the implementation of decompo-
sition techniques, such as column-generation, and inclusion of valid inequalities.
Alternatively, when taking a non-exact approach, heuristics mights be developed
for the problem, which however cannot guarantee that the obtained solution is
optimal. Still, routes obtained from a heuristic approach might perform signifi-
cantly better than existing planning approaches. Moreover, the case study in this
paper did not define specific start and completion times for the individual oper-
ations and vessels. Inclusion of such time-windows might decrease computation
time as well.

Another aspect worth looking at is the possible inclusion of a learning ef-
fect. Industry actors have observed that dedicated vessels performing operations
during a P&A campaign have a significant reduction in execution times. The
inclusion of such an effect is however challenging, and would lead to endogenous
execution times.

Finally, there is a lot of uncertainty in the execution times of operations,
due to unknown well conditions. Schedules and routes resulting from the deter-
ministic model formulated in this paper might therefore be non-optimal when
uncertainty is taken into account. Future work might therefore also focus on the
application of stochastic programming to this problem.
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A B S T R A C T

Plug and abandonment (P&A) operations can be time-consuming and thus very costly, especially for subsea
fields. P&A of subsea wells require dedicated vessels such as high cost semi-submersible drilling rigs or lower
cost Riserless Light Well Intervention vessels. This paper describes an optimization model that can be used to
plan multi-well P&A campaigns by finding cost-efficient vessel routes and allocation of P&A operations to dif-
ferent rigs and vessels. The model's functionality is demonstrated on ten different synthetic cases, generated from
realistic data. Results show that significant cost savings can be made by adapting the optimal solutions from this
model compared to planning strategies that are currently used by operators, as well as by cooperating across
fields and licenses in a large campaign.

1. Introduction

Thousands of offshore wells are planned to be permanently plugged
and abandoned in the upcoming decades, and the total costs will be
substantial (Myrseth et al., 2017; Oil & Gas UK, 2016). A significant
portion of these wells are subsea wells, where the wells are located at
one or more subsea templates across the entire field. In a mature area
such as the North Sea for example, the Oil & Gas UK (2016) has esti-
mated that the average P&A cost per well during the next decade is
around £5–15 million. The main cost driver for plug and abandonment
(P&A) operations is time consumption, and depending on well condi-
tions, P&A operations can be very time-consuming (Ferg et al., 2011;
Scanlon et al., 2011). Platform wells can be plugged and abandoned
with the existing drilling rig at the platform or by coiled tubing and
snubbing equipment, whereas subsea wells require dedicated vessels,
conventionally semi-sub drilling rigs, with high spread rates. However,
total rig rental time can be reduced if simpler parts of the P&A opera-
tion are performed by a riserless well intervention (RLWI) vessel
(Saasen et al., 2013; Sørheim et al., 2011; Valdal, 2013).

Several authors have focused on duration- and cost-estimation of P&
A operations. Kaiser and Dodson (2007) and Kaiser and Liu (2014)
estimated the costs of different stages of the decommissioning opera-
tions in the Gulf of Mexico based on regression models. Moeinikia et al.
(2014a,b, 2015a,b,c) developed a probabilistic method to estimate cost-
and duration for P&A of subsea wells using a Monte-Carlo simulation

approach. They showed that the implementation of rigless P&A tech-
nologies by moving operations from a rig to lighter vessels leads to
significant cost and duration savings in subsea multiwell campaigns.
Øia and Spieler (2015) and Aarlott (2016) presented statistics on the
number of wells to be plugged and abandoned in Norway, and esti-
mated total costs for P&A on the Norwegian Continental Shelf. They
also conclude that there is potential for cost-savings when performing
operations with a vessel instead of a rig.

Furthermore, since the rigs and/or RLWI vessels must physically
move between the different subsea template locations, total time con-
sumption can be reduced further by optimizing the allocation of the
different types of mobile offshore units (MOU) during subsea P&A op-
erations. As semi-sub rigs and light vessels can be used in many dif-
ferent combinations during multiwell campaigns, it may thus be chal-
lenging to manually find the most efficient allocation, sequence and
routing of the required rigs and vessels. An optimization model can
analyze all the different possibilities and suggest optimal solutions for
MOU utilization for the entire campaign. This results in optimal plans
that specify when particular operations on wells should be performed
by which vessels or rigs, while complying to restrictions and con-
straints. Moreover, the optimization approach allows for scenario
analyses, such that P&A engineers can evaluate how different strategies
for vessel allocation, changed rental rates and effects of improved
technology, affect decisions and the impact on total cost.

In this paper we describe an optimization model that can be used for
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planning of P&A multiwell campaigns. Previously, Bakker et al. (2017)
presented a simple version of the model used on relatively small cases,
whereas in this paper we extend this model with more realistic features
which enables us to solve realistically sized problems. We demonstrate
the applicability of the model through different synthetic case studies
based upon realistic data, and show that there is significant value in
using an optimization model for planning P&A campaigns.

2. The plug and abandonment process

2.1. P&A operations

A review of P&A operations has been given by Vrålstad et al. (2019),
but a brief summary is given below. Fig. 1 shows a schematic illustra-
tion of a plugged and abandoned well with the most important barriers
and operations.

The purpose of P&A operations is to create several barriers in the
well, where several plugs are placed inside the wellbore. Cement is
normally used as plugging material, but other plugging materials can
potentially be used as well (Saasen et al., 2011; Khalifeh et al., 2014;

Vrålstad et al., 2019). P&A operations in a well-regulated area such as
the Norwegian Continental Shelf require two independent barriers to-
wards the reservoir (Standards Norway, 2013). Furthermore, any fluid-
bearing formations in the overburden must also be isolated with two
independent barriers. However, plug placement is only a small part of
the full P&A operation. As the created barriers must cover the full cross-
section of the well, poor annulus barriers must be removed. This can be
achieved either by section milling (Scanlon et al., 2011) or the Perfo-
rate-Wash-Cement technique (Ferg et al., 2011; Delabroy et al., 2017).
In addition, a surface plug is placed a few hundred meters below the
seabed to prevent leakages of drilling mud from the well, and the
wellhead and top of conductor are subsequently cut and removed. The
total time spent on P&A operations can therefore be considerable.

To simplify P&A planning, the Oil & Gas UK (2015) has classified P&
A operations into three distinct phases: Phase 1 “Reservoir abandon-
ment” includes setting primary and secondary barriers towards the
reservoir; Phase 2 “Intermediate abandonment” includes potential
barriers in the overburden and the surface plug; and Phase 3 “Wellhead
and conductor removal” includes shallow cuts of casings/conductor and
wellhead retrieval. In addition to these three phases, Moeinikia et al.
(2014a) suggested to include a Phase 0 “Preparatory work” as well,
which includes pre-P&A work such as killing the well, logging the
tubing quality and establishing temporary barriers. Table 1 lists these
four phases and summarizes their contents, which are used in the re-
mainder of this paper.

Subsea wells require mobile offshore units (MOU) to perform P&A
operations. These MOUs comprise semi-submersible rigs (SSR), RLWI
vessels and Light Construction Vessels (LCV). Each of these vessels
might have different characteristics in terms of execution times, com-
patibility with operations, day rates, sailing times and (de-)mobilization
times. We note that SSRs can be used all year round, whereas lighter
vessels have a lower operability. On the Norwegian Continental Shelf,
lighter vessels are not used in winter due to severe weather conditions
(high waves). During these winter months they are either in the docks
or operating in different countries/continents. To perform the plugging
operations, the MOU must be able to maintain a position in line with
the subsea wellhead. Depending on the water depth, an SSR has to be
anchored, whereas an RLWI vessel always makes use of an integrated
dynamic positioning system. Furthermore, rigs and vessels differ in the
way they connect to a subsea well, what well control equipment they
use and how fluid transport and intervention possibilities are organized.
The main difference being that an SSR uses a workover or marine riser,
whereas an RLWI vessel makes use of a riserless system. An illustration
of these features is given in Fig. 2.

With current available technology, an SSR is required in the P&A
process for various reasons. It provides amongst others fluid handling
capacity, pulling capacity and rotation of drill string, and is needed to
perform complex operations such as section milling. However, simpler
elements of the P&A operation can be performed by lighter vessels to
save rig time (Sørheim et al., 2011; Varne et al., 2017). An SSR can
perform all P&A operations, whereas an RLWI vessel can perform Phase
0 and Phase 3 and an LCV can only perform Phase 3.

Fig. 1. Simplified illustration of a typical offshore production well after P&A.
The color coding of primary barriers (blue), secondary barriers (red) and sur-
face plug (green) are based on current Norwegian well barrier definitions
(Standards Norway (2013)).

Table 1
Different phases of P&A operations for typical well with vertical Xmas tree (Vrålstad et al. (2019)).

Phase Name Contents

0 Preparatory work Retrieve tubing hanger plugs, kill well, install deep set mechanical plug, punch/perforate tubing, circulate well clean
1 Reservoir abandonment Rig up BOP, pull tubing hanger and tubing, install primary barrier with its base at top of influx zone (i.e. reservoir), install secondary

barrier where the base of barrier can withstand future anticipated pressures
2 Intermediate abandonment Remove casing strings (if necessary), install primary and secondary barriers towards potential flow zones in overburden, install

surface plug
3 Wellhead and conductor removal Cut conductor and casing strings below seabed to avoid interference with marine activity, retrieve casing strings, conductor and

wellhead
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2.2. P&A campaign planning

When several wells are plugged and abandoned together, making
use of one or several MOUs, it can be called a “P&A campaign”. As
subsea wells are located at different locations around the seabed, the
MOUs must physically move from well to well to perform the plugging
operations. The routing of MOUs is time-consuming and hence sig-
nificant cost savings can be achieved by plugging subsea wells together
in campaigns. Wells do not have to be plugged in one go, and different
MOUs can be used to perform different phases. So, additional savings
can be achieved by performing part of the campaign with light vessels,
instead of the more expensive SSRs.

As an example, Sørheim et al. (2011) conducted an analysis where
they showed that when at least two wellheads are removed in a plug-
ging campaign, it is beneficial to use a dedicated light vessel to perform
the Phase 3 operations, while using a rig for the other operations. Si-
milarly, Varne et al. (2017) show in two case studies that the deploy-
ment of an RLWI vessel for Phase 0 (pre-P&A) operations can provide
considerable cost savings, compared to only making use of a dedicated
rig. Finally, Clyne & Jackson (2014) describes the planning and ex-
ecution of Australia's largest subsea well abandonment campaign to
date, which consisted of 19 wells, where they stress the importance of
using light vessels to perform Phase 0 and Phase 3 operations. These
findings have been quantitatively verified by Moeinikia et al. (2014a, b,
2015a, b, c). However, these studies do not describe a way to optimally
plan plugging campaigns that take into account relevant constraints.

P&A decisions are taken on a field level by the responsible operator/
license holders. When planning for a P&A campaign, in which several
wells will be plugged with multiple MOUs, the scope is therefore re-
stricted by the number of wells on the field under consideration. Subsea
wells may be found individually (single satellite) or clustered on a
template. Multi-well templates might consist of several wellheads and
have the advantage that vessels don't have to be relocated when per-
forming operations on the same template. In general, as long as the
operator has well-control and there are no integrity issues, P&A op-
erations are not time-critical. However, a well might have to be plugged
and abandoned within a particular time-window, due to, for example,
regulations.

We consider the situation where an operator has multiple subsea

wells that have ceased production and have to be permanently plugged
and abandoned within a time-horizon. On each well or template, sev-
eral operations must be performed to permanently plug the well. We
consider the previously defined phases as operations, however any
other mutually exclusive and collectively exhaustive separation of op-
erations can be used. The objective of planning a P&A campaign is
therefore to find the most cost-efficient routes and schedules for a set of
vessels to carry out P&A-operations on a given number of wells or
templates in a tactical planning horizon, typically ranging up to 2 years,
while satisfying a set of (time-)constraints.

3. Optimization

The problem of planning a P&A campaign can be addressed using
the field of operations research (OR), also knowns as optimization. This
problem contains elements of routing and scheduling and can be
viewed as an uncapacitated Vehicle Routing Problem with Time-
Windows (u-VRPTW), which has received a lot of attention from the OR
community throughout the years. The problem is also known as the
multiple Traveling Salesman Problem with Time Windows (m-TSPTW),
see Toth and Vigo (2002). A review of formulations and applications to
the m-TSPTW is given in Bektas (2006). In this context, Bakker et al.
(2017) present a mixed-integer linear programming (MILP) model for
planning relatively small plugging campaigns. But, we are not aware of
any other research that combines the field of optimization with P&A.
Nonetheless, there is a lot of research that applies OR to the (upstream)
petroleum industry that can be related to our problem.

Notable examples of MILP models applied to upstream petroleum
problems are the following. Iyer and Grossmann (1998); Goel and
Grossmann (2004); Gupta and Grossmann (2014) developed MILP
models for the planning and scheduling of investment and operation in
offshore oilfield development. Another multi-period MILP model that
focuses on investment planning for offshore fields is presented in
Nygreen et al. (1998). This model has been extensively used by the
Norwegian Petroleum Directorate, showing the practical relevance of
using optimization models in the petroleum industry. A more recent
contribution is from Rodrigues et al. (2016), in which a MILP is de-
veloped to minimize development costs by picking the optimal number
and location of wells as well locations and capacities of production
platforms. When focusing on the production phase, Ulstein et al. (2007)
used optimization models for tactical planning of petroleum production
in fields.

4. Model

In this section, we present the optimization model, which is a a
Mixed Integer Linear Programming (MILP) Model, that is used for the
problem of finding the most cost-effective plan to plug and abandon a
given number of subsea wells within given time-horizons, using a set of
heterogeneous MOUs.

A P&A plan consists of a collection of feasible routes and schedules
for the different MOUs, such that all plugging operations are performed.
A first model for this problem has been presented in Bakker et al.
(2017), which formulates a m-TSPTW and adapts a Miller, Tucker and
Zemlin formulation. We improve this model in several ways. To begin
with, we switch to a commodity flow type formulation, which is known
to lead to a tighter model formulation (Öncan et al. (2009)). This in
turn allows for larger problems to be solved. Moreover, we change the
way in which we allow MOUs to take multiple routes, which also re-
duces the size of the model. Finally, we take into account the restricted
operability of lighter vessels during the winter season.

We note that we do not consider capacity restrictions in our pro-
blem. The reason being that fluid returns are stored in storage tanks and
can be drained offshore by supply vessels of which the day rates are
significantly lower than the vessels used to perform P&A operations.

Moreover, when making use of rigs, anchor handling vessels are

Fig. 2. Illustration of subsea P&A with an SSR with a workover riser (left) and
an RLWI vessel with a riserless system (right), Øia et al. (2018).
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required to perform anchor handling operations such as transporting
and deploying the anchors (Tjøm et al., 2010). Nevertheless, we have
decided to keep these vessels out of the model. The aim of the model is
to optimize the planning, routing and scheduling of the MOUs that
perform the plugging operations. The model is not developed to obtain
a cost-estimate of the whole plugging campaign. As anchor handling
vessels are only required for a subset of wells, we consider the cost
resulting from renting these vessels as a fixed cost, which we do not
consider in the model. Nonetheless, these extra costs can be added to
the total campaign costs if required.

We start by defining the notation and components being used in the
model, after which the objective function and constraints that con-
stitute the model are presented in a stepwise fashion.

4.1. Formulation

To find the optimal plan in a P&A campaign, we present a model
that is a an extension of an m-TSPTW with precedence constraints,
where we adapt an arc-flow formulation. An overview over all the sets,
parameters and variables that are used in the model is given in
Appendix B.

The setN , indexed by i or j, consists of all the operations that have
to be performed to plug all the wells that are considered in the P&A
campaign. A single operation in this set is also referred to as a node. The
MOUs that can perform these operations are collected in the setK and

kN consists of the subset of operations that unit ∈k K can perform.
Moreover, the cost of renting these MOUs is represented by the day rate
for each vessel, Ck

DAY .
The time it takes for vessel k to perform operation i, also referred to

as the execution time, is denoted by Tik
EX . Each unit k starts and finishes

in a location, referred to as its origin o k( ) and destination d k( ) re-
spectively. These locations do not necessarily need to be equal.
Moreover, the MOUs might have the opportunity to return to a harbor
h k( ). This allows for MOUs to be used in separate campaigns and is
alternatively referred to as multiple trips. The problem is defined on the
directed graphs =G ( , )k k kV A , where the node set of unit k is given by= ∪ o k d k h k{ ( ), ( ), ( )}k kV N and the arc set kA consists of feasible
pairs i j( , ) for which ∈i j, kV , for all ∈k K .

In this context, we define binary routing variables xijk for all∈i j( , ) kA and ∈k K , equaling 1 if unit k performs operation j after
operation i and zero otherwise. In addition, we will make use of the
continuous variables tik and wik, for ∈i kV and ∈k K , representing the
time when unit k arrives at node i and the time it waits there respec-
tively. Finally, we let the continuous variables t̃ijk be defined as follows:

= ⎧⎨⎩ ==t
t x

x
˜ if 1,

0 if 0,ijk
jk ijk

ijk

where ∈k K and ∈i j( , ) kA . These variables are commodity flow
variables, where the commodity can be considered to be the start time
of the operations.

Lastly, we define sailing time parameters Tijk
S for all ∈i j( , ) kA and∈k K . These sailing times equal zero when operation i and j are lo-

cated on the same template or well and are otherwise equal to the
sailing time between operation i and j for unit k, possibly increased with
anchor handling time in the case of rigs. We note that this is the extra
time the rig needs in the anchor handling process and does not reflect
the need for anchor handling vessels.

4.1.1. Discussion on P&A operations
The operations in the setN can be defined in several ways and can

have different levels of detail. To begin with, we work with a cate-
gorization of operations based on the four phases that where defined in
Section 2.1. We consider the set of phases = +p p p p{ 0, 1 2, 3}P , where
phase 1 and phase 2 are merged, as it is assumed in this study that these
phases only can be executed by a rig. When a rig performs a phase 1

operation, it is natural that it continues with phase 2 as well. Moreover,
the operations can be defined on a well or template level. For single
satellite wells, we are always on a well level. However, when several
wells are clustered on a template, an MOU does not have to move when
performing operations on these wells. In this situation, we assume that
one would always use the same MOU to perform operations of the same
phase. Operations can hence be defined on a template level, which
reduces the complexity of the problem.

As an example, Fig. 3 visualizes the operations an SSR performs
along a particular route. It first visits a single satellite well, where it
performs all operations, after which it moves to a template consisting of
three wells, where it again performs all operations. On the last three
templates it only performs operations in +p p1 2. For the campaign to
be finished, another MOU must perform the remaining operations on
the last three wells.

4.2. Constraints

4.2.1. Objective function
The aim of this work is to construct P&A campaigns that minimize

total plugging costs, which mainly arises from renting MOUs. Operators
that are planning P&A campaigns have to rent these rigs and vessels for
the duration of the planned campaign. Although rig and vessel contracts
might have different structures, typically, a day rate is specified. This
day rate might be differentiated based on the type of activity, such as
execution, sailing or waiting. Alternatively, operators might already
have long-term contracts for some rigs and vessels that are being used
for other purposes such as exploration and development/drilling ac-
tivities. When using these MOUs in a plugging campaign, this leads to
an opportunity cost, which can be represented by a specific day rate.

The objective of the problem is to minimize the sum of the rents for
the MOUs, which is given by the product of the day rate of an MOU
(Ck

DAY ) and the duration it is being used. The duration a vessel is being
used is given by the difference between the time the vessel enters the
destination (td k( )) and leaves the origin (to k( )), subtracted with the time
it possibly waits in the harbor (wh k( )). The objective function is now
given by:∑ − −∈ C t t wmin ( ).

k
k
DAY

d k o k h k( ) ( ) ( )
K (1)

We note that various objective functions can be used. Bakker et al.
(2017) shows that when considering different rates for distinctive ac-
tivities this would still lead to an additive and linear objective function.
However, as publicly available data on MOU rent typically is given
using a single day-rate, we choose to present the objective function in
this way.

Moreover, we assume that the MOUs do not incur any rental costs in
the harbor, as we subtract the waiting time in the harbor from the total

Fig. 3. Visualization of the operations that an SSR performs along its route.
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time usage.

4.2.2. Degree
The following constraints are known as degree constraints in the

optimization literature. They contribute to the construction of feasible
routes for each of the MOUs.

To begin with, we must ensure that all operations are being exe-
cuted by exactly one MOU:∑ ∑ = ∈∈ ∈ + x i1,
k j δ i

ijk
( )k

N
K (2)

Here, +δ i( )k is defined as the set of operations j such that arc∈i j( , ) kA . In other words, the set of operations j that unit k can per-
form after executing operation i. Similarly, given operation i, −δ i( )k is
defined as the set of operations j such that ∈j i( , ) kA . Hence, Equation
(2) ensures that for all operations ∈i N , there is exactly one MOU
( ∈k K ) that performs this operation and moves on to perform some
other operation j.

Constraints (3) and (4) make sure that the routes of all MOUs start
in their origins and finish in their destinations respectively:∑ = ∈∈ + x k1,
j δ o k

o k jk
( ( ))

( )

k

K

(3)∑ = ∈∈ − x k1,
i δ d k

id k k
( ( ))

( )

k

K

(4)

The inclusion of an arc between the origin and destination with zero
travel time, allows for MOUs not to be used in the plan.

Finally, constraint (5) states that the flow into a node j (∑ ∈ − xi δ j ijk( )k
)

should equal the flow out of a node j (∑ ∈ + xi δ j ijk( )k
) for each MOU:∑ ∑= ∈ ∈∈ ∈− +x x j k, ,

i δ j
ijk

i δ j
jik k

( ) ( )k k

N K

(5)

So, if MOU k executes operation j, then the flow into and out of that
node will both be equal to one.

4.2.3. Timing of operations
Constraint (6) ensures correct timing of all operations. It states that

if unit k performs operation j after i, then, the start time of operation j
should equal the start time of operation i increased with the execution
time of operation i (Tik

EX ) and waiting time at i (wik) and the sailing time
from i to j (Tijk

S ):

⎜ ⎟+ ⎛⎝∑ ⎞⎠ + = ∑ −∈ ∈∈ ∈− +t x T w t x T

i k

(˜ ),

,

ik j δ i jik ik
EX

ik j δ i ijk ijk ijk
S

k

( ) ( )k k

N K (6)

Together with the degree constraints (2)–(5), this constraint elim-
inates subtours.

Moreover, we have to relate the start time variables tik with the
commodity flow variables t̃ijk. That is:∑= ∈ ∪ ∈∈ −t t i d k k˜ , { ( )},ik

l δ i
lik k

( )k

N K

(7)∑= − = ∈∈ +t t x T i o k k(˜ ), ( ),ik
j δ i

ijk ijk ijk
S

( )k

K

(8)

4.2.4. Precedence
Plugging operations on a single well or template have to be per-

formed in a strictly ordered sequence, but not necessarily directly after
each other. To control for this, we make use of the setR , which consists
of pairs i j( , ) for ∈i j, N , for which operation i has to be performed
before operation j. The precedence constraints read:

⎜ ⎟∑ ⎛⎝ ∑ ⎞⎠ ∑+ ≤ ∈∈ ∈ ∈−t x T t i j, ( , )
k

ik
l δ l

lik ik
EX

k
jk

( )k

R
K K (9)

That is, operation j should be started after operation i is finished.
The precedence relations that we use are based on the different

phases that have to be performed. So, on an individual well or template,
p0 has to be performed, before one can start executing +p p1 2.

4.2.5. Time-windows for operations
Operations can have time windows for when they must be per-

formed. Examples of situations where time-windows might arise are the
following. A well that is producing during part of the planning horizon
cannot be plugged during that period and a well with integrity issues
might need plugging operations within a short time-horizon and.
Moreover, regulatory regimes might set time-windows for when a well
has to be abandoned. For example, on the Norwegian Continental Shelf,
a temporarily plugged and abandoned well that does not have access to
a monitoring system must be permanently plugged and abandoned
within three years (Standards Norway (2013)). To allow for these re-
strictions, we include the following constraint:≤ ≤ ∈ ∈ ∈x T t x T i j k j¯

˜ ¯ , ( , ) , |ijk j ijk ijk j k kA K N (10)

However, we note that in this application the time-windows tend to
be fairly loose.

Besides, satisfying time-windows, equation (10) forces t̃ijk to zero,
when unit k does not move from node i to j.

4.2.6. MOUs
MOUs might have restrictions on when they can be used due to

other planned activities or restricted rental periods. This leads to the
following constraints:≤ ≤ ∈ ∈T t T i o k d k k¯

¯ , { ( ), ( )},k
MOU

ik k
MOU K (11)

In contrast to SSRs, RLWIs and LCVs cannot be used al year round
due to rough weather conditions. During the winter months, these
vessels therefore have to go back to the harbor. This is incorporated in
the following way:≤ ∈t T k¯ ,h k k k

WINTER WINTER
( ) K (12)+ ≥ ∈t w T k¯ ,h k k h k k k

WINTER WINTER
( ) ( ) K (13)

So, vessel k has to arrive in the harbor before the start of the winter,
where it has to wait until the end of the winter season.

4.2.7. Domains of the variables
Finally, the variables have the following domains:

∈ ∈ ∈ ∈+x t i j k{0,1}, ˜ , ( , ) ,ijk ijk k0 A K (14)

∈ ∈ ∈+t w i k, , ,ik ik k0 N K (15)

This means that all the variables are nonnegative and continuous,
except for the routing variables which are binary.

5. Case study

A case study has been developed to demonstrate the potential of the
optimization model. The case study consists of synthetically con-
structed subsea fields based upon realistic data and well locations, so
that the field examples resemble typical Norwegian subsea fields.

5.1. Data

Input data on time durations for P&A operations have been obtained
from Øia et al. (2018), who provide a thorough description of opera-
tional procedures for both SSRs and RLWI vessels, as well as presenting
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duration estimates for three types of subsea wells (low, medium and
high complex wells). These estimates are on a low level, and within
each phase, multiple operations are defined. For use in our model, we
aggregate the durations within each phase. An overview over the re-
sulting data is given in Table 2.

Data on durations for LCVs are not presented in Øia et al. (2018),
but since LCVs and RLWI vessels have similar capabilities, we assume
that the durations of phase 3 are equal for these two vessel types. In the
case study, each well is assigned a complexity, to account for the var-
iations between wells.

As we want to test the performance of the model for different pro-
blem sizes, we have constructed 10 different cases. The optimization
literature usually refers to a specific case of a problem as an instance.
Nevertheless, we make use of the more general term ‘case’. To generate
these cases we have made use of an extensive publicly available dataset
by Norwegian Petroleum Directorate (2019), that contains data on all
the wellbores on the NCS. All cases are inspired by the topology,
number of wells and templates on existing fields on the NCS. So, all the
cases are based upon realistic data, but do not reflect any particular real
life plugging campaigns. Descriptive statistics for the different cases are
given in Table 3.

As one can see, the cases vary in size and differ in terms of the
number of wells (ranging from 8 to 44), well complexities, templates,
fields (and locations). As the size of a plugging campaign is in general
bound from above by the maximum number of wells that can be
plugged on a particular field, we had to add wells from neighboring
fields to create the largest cases.

As an example, Fig. 3 shows a stylized visualization of case 3, which
contains eighteen subsea wells spread out over four templates and one
single satellite well. Of these 18 wells, 14 wells have medium com-
plexity and 4 wells have a high complexity. Moreover, a possible route
for an SSR is depicted, starting and finishing in the harbor.

The horizon of the cases is assumed to span two years and start in
spring. We assume that the length of the winter season is four months
(ranging from November to February), during which the lighter vessels
must stay in the harbor. Moreover, since we know that we in general
have loose time-windows, we have divided the wells into groups based
on whether they have to be plugged during the first year, second year,
or can be plugged at any time during the planning horizon.

Finally, in the analyses, we consider three MOUs (SSR, RLWI, LCV)
that can be used during disjoint periods of time. The use of extra MOUs
would be redundant, as it would never be optimal to make use of
multiple MOUs of the same type in the problems that we consider.

The travel time between operations on two different templates
comprises the physical moving time and possible demobilization and

mobilization times. The distances between all the wells are calculated
using the coordinates of the wells in the different cases, taken from the
Norwegian Petroleum Directorate (2019) database. Together with MOU
speed, this gives us the physical travel time. Mobilization and demo-
bilization times are defined when an MOU leaves or enters the harbor,
as well as when it performs operations offshore. The offshore mobili-
zation time of SSRs might be increased with the time required for an-
chor handling operations Tjøm et al. (2010), when the template is lo-
cated at a water depth less than 190m.

Day rates for MOUs are very volatile and depend on many factors
such as type of unit, whether the unit has been in use recently (warm
unit), whether it is a short or long contract, changes in oil and gas prices
and/or demand for the units in general (Osmundsen et al. (2012)). We
have chosen to work with the spread rate estimates from Øia et al.
(2018). These spread rates include a daily rate and an approximation of
the costs of the main equipment used. We note that changes in the
spread/day rates give rise to different optimal solutions and plans,
which makes this model a useful tool for engineers planning P&A op-
erations.

An overview over MOU data that is used in the case study is given in
Table 4.

5.2. Strategies

To demonstrate the usefulness of the model, we test the optimal
solution found by the model, against several different strategies. The
optimal solution is referred to as strategy 0, the base strategy. Inspired
by the campaigns in Sørheim et al. (2011); Clyne and Jackson (2014);
Varne et al. (2017), we define three additional strategies that operators
might adopt. Using the first strategy, a campaign is planned where the
operator only makes use of an SSR. This can be considered to be the
traditional way of planning plugging operations. The second and third
strategy, on the other hand, make use of an LCV to perform all Phase 3
operations, whereas the third strategy also uses makes use of an RLWI
vessel to perform the Phase 0 operations. When solving the models
using these strategies, we only fix the assignments of MOUs to opera-
tions. The routing and scheduling decisions are still chosen in an op-
timal way by the model. Hence, these strategies give lower bounds on
the optimal values of the campaigns that would be constructed manu-
ally by engineers planning P&A operations. An overview over the dif-
ferent strategies is given in Table 5.

Table 2
Durations (in days) of the different phases for different complexities when
performed by SSRs or RLWI vessels. Based upon Øia et al. (2018).

SSR RLWI

Phase Low Medium High Low Medium High
5.29 4.71 4.58 3.33 4.81 8.33
8.75 9.52 14.21 – – –
1.38 1.38 0.88 1.38 0.96 1.38

Table 3
Count on the number of templates and wells (for each complexity) for the ten
different cases.

Case 1 2 3 4 5 6 7 8 9 10

Number of Templates 4 5 5 8 8 11 11 14 14 16
Number of Wells 8 14 18 13 25 29 32 32 33 44
Complexity Low 2 9 0 5 2 15 17 12 7 16

Medium 6 5 14 6 19 6 5 10 20 22
High 0 0 4 2 4 8 10 10 6 6

Table 4
Speed, day rate, (de)mobilization- and anchor handling-durations for the dif-
ferent vessel types.

Type Speed (knots) Day Rate (k$) Harbor Offshore

Mob DeMob Ancher DeMob

Durations (days)

SSR 5 275 5 2 3 0.2
RLWI 11 230 3 2 0.1 0.1
LCV 11 200 2 2 0.1 0.1

Table 5
Overview over the different planning strategies.

Strategy Description

0 Optimal strategy, no restrictions
1 All rig
2 LCV for p3
3 RLWI for p0, LCV for p3
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6. Results

6.1. Computational issues

The model has been implemented in Python 3.5.3, formulated using
Pyomo 5.1.1 and is being solved with CPLEX version 12.7. The analyses
have been carried out on a HP EliteDesk 800 G1 computer with an Intel
Core i7-4790S CPU, 3.2 GHz processor, 16 Gb RAM, running Windows
10. All the cases are run with a time limit of 1 h. If a particular case has
not been solved to optimality within this time limit, we present the
relative optimality gap. The optimality gap is defined as the gap be-
tween the best known (integer) solution (BKS) and a lower bound on
the optimal value. This is a measure of the amount by which the BKS
possibly might increase. As we can see from Table 6, the BKSs are either
optimal or close to optimal, with optimality gaps lower than 2.5%. This
means that we can generate good solutions for all realistically sized
cases within a reasonable amount of time, using an exact approach.

6.2. Value of the optimization model

To show the value of the optimization model, we compare the ob-
jective functions and plans for the best known solution (s0), with the
ones resulting from the three different strategies. Fig. 4 shows the costs
in million dollars for the different strategies and cases, while Table 6
shows the percentage increase in the objective function value, when
embracing the ‘manual’ strategies instead of the plan suggested by the
model without any restrictions (s0).

We note that the manual strategies all could be solved to optimality,
except for strategy 1 and 2 in case 10. In this case, the problem turned
out to be infeasible, since the time-horizon is too short.

We see that the costs for the optimal P&A campaigns (s0) range from
37 to 186 million dollars. The gains of using the optimal plan instead of
the manual strategies are in the order of several million dollars for all
the cases. Only for case 2 and when embracing strategy 3, we find that
the objective function values are relatively close and differ by only
0.25%. Moreover, we observe that when embracing either strategy 1 (all
rig) or 2 (inclusion of LCV) in an optimal way, this would lead to an
increase in P&A costs ranging from 6% to 12% compared to the best
known solution. In the case of strategy 3, the increase is between 0.25%
and 6.2%.

To highlight the differences between the strategies, we take case
three as an example. Fig. 5 shows the optimal plans for the four dif-
ferent strategies for case 3. We see that the savings between 3.41% and
6.91% are obtained by using a mixture of strategy 1 and strategy 3. That
is, for the first three templates, an RLWI vessel and LCV are used for the
p0 and p3 operations respectively, while on the last two templates the
rig performs all operations.

6.3. Optimal plans

The optimal plans for the different cases all share similar features.
To illustrate, Gantt charts representing the optimal plans for cases 2,4,8
and 8 are given in Fig. 6, while Gantt charts for the remaining cases are
given in Figure C.7 in the Appendix. When studying these plans, we can
make several observations. We know that the rig always performs+p p1 2, but we see that the plans differ in which MOU performs p0 and
p3 operations.

To begin with, we observe that the RLWI vessel is being used in all
cases to perform preparatory work on the majority of wells. After
having done the p0 operations, the vessel might continue performing p3
operations on some of the wells, if it does not have to wait for it. This
feature is displayed in the optimal plans for case 1,2,4 and 10.

In addition, we observe that, in general, the LCV is used in the
campaigns to perform the majority of p3 operations. However, for
smaller cases (that is 1,2 and 4), it is not beneficial to make use of such
an MOU.

Finally, a vessel campaign might be split by the winter period, as
can be seen in case 8 (for the RLWI vessel) and case 9 (for the LCV).

Table 6
A summary of the results for the different cases. We present the percentage
increase of the objective functions for the different strategies compared to the
cost of the best known solution that uses the optimal strategy (s0), besides the
optimality gap for s0.

Case Cost s0(mil$) Optimality Percentage cost increase

s1 s2 s3
1 36.88 opt. 7.12% 8.57% 1.71%
2 56.29 opt. 12.45% 12.33% 0.25%
3 83.42 opt. 6.91% 6.85% 3.41%
4 56.59 0.65% 8.49% 9.03% 3.24%
5 109.73 0.19% 9.14% 8.65% 2.60%
6 133.60 0.28% 9.05% 8.77% 4.20%
7 140.67 1.19% 8.60% 8.61% 6.21%
8 143.95 2.49% 6.37% 6.39% 4.88%
9 143.11 1.00% 9.31% 9.42% 3.02%
10 186.14 0.88% infeas. infeas. 3.33%

Fig. 4. Campaign costs (in million dollars) for the different cases and strategies.
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6.4. Value of cooperation

Each of the cases 5,7,9 and 10 is made up from wells belonging to
two different fields. In practice, these fields will most likely be plugged
in separate campaigns. When operators cooperate between licenses and
fields and plan campaigns together, additional savings can be made. To
quantify this effect, we present the costs for the separate campaigns in
Table 7.

We present the objective function values of the optimal plans for the

complete campaign or two separate campaigns. We see that planning
for individual campaigns leads to relative cost increases between 3%
and 5%, which equals somewhere between 4 and 6 million dollar for
each case.

6.5. Sensitivity analysis

During the analyses we observed that the optimal solutions and
plans are dependent on data input such as well complexity or spread

Fig. 5. Gantt charts representing the different strategies for case 3.

Fig. 6. Gantt charts representing the optimal
plans for case 2,4,8,9 and 10.
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rate. This means that the optimization model can be a useful tool for P&
A campaign planners and/or rig/vessel contractors. With use of the
model, they can quickly find out which campaign is optimal under
different data inputs. To highlight this point, we investigate two sce-
narios.

While in a normal campaign one would expect to encounter wells of
different complexities, we did not have data on this distribution. In the
analyses performed so far, we worked with a random distribution of
well complexities. The two extreme scenarios that we consider consist
therefore of wells that all either have a low or high complexity.

For the high complex well scenario, we find that the optimal
strategy is to only make use of an SSR in all the cases under con-
sideration, whereas in the low complex well scenario the optimal plans
change for each of the cases, while still having either one of the
structures as described in Section 6.3.

7. Conclusions

In this article an optimization model has been developed for

planning P&A campaigns. As planning such a campaign is a complex
problem involving many constraints and combinatorics, this optimiza-
tion model can be a useful tool for P&A planners. The methodology
allows planners to find optimal solutions for many different cases and
perform scenario analyses.

We developed ten different synthetic cases, generated from realistic
data, to test the performance of the model. Even though the case study
is based on data from the Norwegian Continental Shelf, the model can
be applied to different countries and regulatory regimes. The results
from the case study show the following. With our model formulation,
we can solve realistically sized cases consisting of at least 44 wells. The
optimal plans generated differ from strategies mimicking the behavior
of actual planned campaigns. Depending on the case, the optimal plans
make use of RLWI vessels and/or LCVs, to perform phase 0 and phase 3
operations. We find that for all 10 cases, savings can be made that are in
the order of millions of dollars when adopting the optimal plans instead
of the ‘manual’ strategies. On top of this, we show that there is sig-
nificant value for operators from different fields to cooperate and
combine their forces in one large plugging campaign.
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Appendices

A. Abbreviations

LCV Light Construction Vessel

MOU Mobile Offshore Unit
MILP Mixed-Integer Linear Programming
NCS Norwegian Continental Shelf
OR Operations Research
P&A Plug and Abandonment
RLWI Riserless Light Well Intervention
SSR Semi-Submersible Rig
u-VRPTW uncapacitated Vehicle Routing Problem with Time Windows
m-TSPTW multiple Traveling Salesman Problem with Time Windows

B. Nomenclature

B.1. Sets and Indices

K set of MOUs that are available to perform the plugging operations, indexed by k
WINTERK set of MOUs that cannot be used during the winter months. This includes the RLWI vessels and LCVs

N set of operations that have to be executed to plug all the wells, indexed by i j,
kN subset of operations that unit k can perform

ok, dk origin and destination nodes for unit k, which represent the locations (harbours) where the MOUs are located at the start and end of the
planning horizon respectively

hk harbor node for MOU k, where ∈k HK

kV node set for unit k, defined as = ∪ o k d k{ ( ), ( )}k kV N

kA set of feasible arcs for unit k, defined as = ∈i j i j i j{( , ): , and ( , ) feasible}k kA V+δ i( )k set consisting of nodes j, for which arc i j( , ) is in the arc set kA−δ i( )k set consisting of nodes j, for which arc j i( , ) is in the arc set kA

R set of precedence pairs. Consists of pairs i j( , ), for which operation i should precede operation j
B.2. Parameters

Tijk
S Sailing time of vessel k, when moving from node i to j

Table 7
P&A Campaign Costs for the cases consisting of two fields when planned in one
complete campaign, or for the two fields separate.

P&A Campaign Costs (mil$) Cost increase

Case Complete Field 1 Field 2
6 109.73 31.47 83.42 4.70%
8 140.67 56.29 89.44 3.60%
10 143.11 83.42 64.05 3.05%
11 186.14 121.87 70.14 3.15%
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Tik
EX Execution time of operation i, when performed by vessel k

Ck
DAY Day rate for vessel k

T̄ i T̄i Time Window during which operation i has to be started
Tk

MOU T̄k
MOU Time Window during which vessel k can be used

T̄ k
WINTER T̄k

WINTER Time Window representing the period during which vessel k cannot be used
B.3. Variables

xijk Routing variable, equaling 1 if unit k moves from operation i to j
tik Start time of operation i for unit k
t̃ijk Commodity flow variable, equaling the start time tik when =x 1ijk wik Waiting time for unit k in node i

C. Optimal Plans

Fig. C.7. Gantt charts representing the optimal plans for case 1,3,5,6,7 and 10.

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.petrol.2019.05.042.
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1. Introduction

The Vehicle Routing Problem (VRP) literature is rich and there exist
myriad variants of the VRP (Toth & Vigo, 2002). Besides the routing part,
most VRP variants also consider the performance of some service at the
customer nodes. When this service entails a repetitive task, a learning e�ect
might arise for the routed asset; for example, the duration of the service
provided by a particular routed asset shall reduce when the latter performed
similar tasks in the past. Since such a learning e�ect occurs within the
routing horizon of the problem, it should be modeled in an endogenous way.
In this article, we present a methodology to incorporate such a learning e�ect
in VRP models, and we refer to this variant as the Vehicle Routing Problem
with Endogenous Learning.

Our interest in this topic arises from our work on plug and abandonment
(P&A) campaigns. When an oil or gas well reaches the end of its lifetime,
it must be permanently plugged and abandoned (P&A'd) (Vrålstad et al.,
2019). When several wells are P&A'd together, making use of one or several
available specialized vessels, we call this a P&A campaign. Even though
P&A operations have been conducted for a long time (Calvert & Smith,
1994), the focus on P&A has increased during recent years due to the large
number of o�shore wells that are approaching the end of their life-time in
established areas such as the North Sea and the Gulf of Mexico (Khalifeh
et al., 2013; Kaiser, 2017). As P&A operations can be very time-consuming
and costly, it is of interest to optimize the P&A process as much as possible.

Bakker et al. (2019) developed an extension of an uncapacitated Vehicle
Routing Problem with Time Windows (uVRPTW) model that can be used
for the planning of P&A campaigns. However, this formulation does not
allow for a learning e�ect. As recent experiences from operators show that
a signi�cant learning e�ect is present in the execution of P&A operations, it
is important to be able to use models that are aware of this reality. Other
variants of the VRP in which learning might occur due to the performance
of repetitive services include the Technician Routing Problem (Chen et al.,
2016), the Workover Rig Routing Problem (Aloise et al., 2006; Ribeiro et al.,
2012), the Maintenance Routing and Scheduling Problem (Irawan et al.,
2017), and the (multiple) Traveling Repairman Problem (Luo et al., 2014).

The main contributions of this article include: (i) the development of
a method to incorporate an endogenous learning e�ect in a standard VRP
setting by means of a linearization approach that does not introduce any ad-
ditional binary variables, (ii) the compilation of a suite of realistic benchmark
instances for the problem of planning a plug and abandonment campaign un-
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der learning, and (iii) the elucidation of the bene�ts from modeling such a
learning e�ect as well as the quanti�cation of the value of cooperation for
operators.

The structure of this paper is as follows. Section 2 reviews relevant VRP
literature as well as literature on learning e�ects. Section 3 presents the
uVRPTW as the base model for our work and its extension to account for
the learning e�ect. In Section 4, we introduce the problem of P&A cam-
paign planning, which serves as an application of the VRP with endogenous
learning. In addition, we develop a clustering-based solution approach that
e�ciently reduces the complexity introduced by the routing. Finally, Section
5 presents our computational studies, before we conclude in Section 6.

2. Literature Review

2.1. Related Vehicle Routing Problems

The problem studied in Bakker et al. (2019) arises from a real world
problem and can be referred to as a rich VRP (Lahyani et al., 2015), which
extends classical VRPs with issues arising in real world applications. At its
base lies the Vehicle Routing Problem with Time Windows (VRPTW), which
is one of the most important generalizations of the classical VRP (Cordeau
et al., 2007).

We focus in particular on the uncapacitated VRP with Time Windows
and Precedence Constraints (uVRPTWPC), which can also be referred to
as the multiple Traveling Salesman Problem with Time Windows and Prece-
dence Constraints (mTSPTWPC) (Balas et al., 1995; Ascheuer et al., 2001).
An overview of formulations and solution procedures for these problems has
been given by Bektas (2006).

2.2. The Learning E�ect

The term learning has often been used in the literature to refer to the
impact of experience on service or production times (Chen et al., 2016). This
is motivated by the fact that, when engaged in repetitive tasks, workers tend
to use less time to perform the later tasks due to their familiarity with the
operation. Mathematical representations of this process are referred to as
learning curves. There exists an extensive literature on the learning e�ect
and corresponding learning curves. Detailed discussions of various learning
curves and their applications are available in Anzanello & Fogliatto (2011).

The �rst quanti�cation of a learning curve is given by Wright (1936).
He observed that assembly costs of airplanes decreased as repetitions were
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performed. The Wright's model is now known as the Power, or Log-linear,
model of learning. Many other learning models have since been proposed, in
an e�ort to represent the learning e�ect more realistically in various contexts.
Notable classes of learning models are, for example, the Stanford-B, DeJong,
S-curve, plateau and the exponential model (Nembhard & Uzumeri, 2000).

In regards to the oil and gas industry, Brett & Millheim (1986) were
the �rst to use a learning curve to assess drilling performance (in terms of
completion time) for a series of similar wells that have to be drilled. They
used an exponential model to specify the learning e�ect and their approach
is still the standard when considering learning curves in o�shore drilling
operations. A visualization is given in Figure 1.

Figure 1: Visualization of a typical learning curve for the drilling of oil wells adapted from
(Brett & Millheim, 1986).

More recently, Hellström (2010) studied learning curves in drilling and
well operations for a Norwegian operator. He investigated amongst others
the use of the model of Brett & Millheim (1986) applied to P&A operations.
Moeinikia et al. (2014b) used the same learning curve model to evaluate cost
e�ciency of rigless P&A for subsea multiwell campaigns using Monte Carlo
Simulations. In addition, data on observed learning e�ects in recent plugging
campaigns has been presented by Straume (2018).
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Whereas the learning e�ect has been extensively discussed in the context
of manufacturing and machine/project/workforce scheduling (Biskup, 2008;
Azzouz et al., 2018), it has received less attention in the VRP community.
When learning is de�ned in the context of familiarity of vehicles with cer-
tain customers or areas, it is referred to as VRP with driver learning, driver
familiarity or driver-speci�c travel time information. The �rst attempt to in-
corporate a learning e�ect targeting travel times is from Zhong et al. (2007).
They consider a multi-day vehicle routing problem, where driver learning,
or familiarity, results from visiting service areas repeatedly. With increased
familiarity, driver performance increases due to ease of �nding addresses and
locations. The model is solved heuristically over a 30-day planning period
simulation. The learning e�ect is then taken into account by updating the
parameters between the model runs for each day. In a similar fashion, Kunkel
& Schwind (2012) considers a multi-day VRP with Driver Learning, which
again is solved heuristically. Contrary to the previous approaches, Schnei-
der (2016) assumes that driver learning already has taken place in the past,
leading to di�erent familiarity levels. That problem can then be viewed as a
variant of a heterogeneous �eet VRP. The authors note that the inclusion of
a learning model that describes the reduction of travel and service times in
dependence of the number of visits to each customer presents an interesting
opportunity for future research.

The work of Chen et al. (2016) and Chen et al. (2017) focuses on a
learning e�ect for service times, considering the Multi-Period Technician
Routing Problem with Experienced-based Service Times. Their model is
formulated based on a Markov decision process, and it is solved using a
rolling-horizon procedure based on a heuristic. The service time parameters
are then updated between the di�erent periods, according to the attained
increase in experience and de�ned learning e�ects.

The above presented VRP literature includes learning that tends to be
on an operational level and is used for daily planning. The learning e�ect is
treated in an exogenous way. That is, the learning e�ect is considered out-
side of the main model. These routing models are solved in a rolling horizon
fashion, where the learning e�ect is taken into account by iteratively updat-
ing the parameters between the model runs. In contrast, in this work we
consider a problem with a long time horizon at the strategic level. Learning
occurs within the time horizon of the problem and directly depends on the
decisions to be made. Hence, in the VRP with Endogenous Learning, we
incorporate the learning e�ect directly into the model.
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3. Mathematical Model

In this section, we present a commodity-�ow formulation for the uVRPTW
and show how to extend this with endogenous learning.We explain the no-
tation (sets, indices, parameters and variables) used in the model and we
provide the mathematical formulation of the constraints and objective func-
tion.

3.1. Model Formulation

In the uVRPTW, the objective is to �nd minimum-cost routes for a set
of vehicles, K, such that all customers, gathered in the node-set N , are being
served. We consider a heterogeneous �eet in which vehicles are not necessar-
ily compatible with all customers. The vehicles start and �nish at a depot,
typically modeled as two locations, denoted by o(k) and d(k), respectively.
The union of the depots and customers is denoted by the vertex set V. Each
vehicle k ∈ K has its own node- and vertex-set, denoted by Nk and Vk re-
spectively. In addition, we associate arc sets Ak = {(i, j) : i, j ∈ Vk ∧ i 6= j}
with each vehicle k. Moreover, given vertex i, δ+k (i) is de�ned as the set of
vertices j such that arc (i, j) ∈ Ak. Similarly, given vertex i, δ−k (i) is de�ned
as the set of vertices j such that (j, i) ∈ Ak.

Each vehicle k has travel times T TRijk for all (i, j) ∈ Ak. Moreover, each

customer i has a time window,
[
T i, T i

]
, when it may accept service. The

service times at customers are given by the continuous variables τSEik . In
addition, we de�ne binary �ow variables xijk, for each vehicle k ∈ K and arc
(i, j) ∈ Ak, such that xijk equals 1 if vehicle k uses arc (i, j) in the optimal
solution, and 0 otherwise. The cost of traversing arc (i, j) for vehicle k is
given by parameters cijk. We also de�ne continuous variables tik and wik, for
each k ∈ K, i ∈ Vk, representing the arrival time from and waiting time at
customer i by vehicle k, respectively. When vehicle k does not visit customer
i, these variables equal zero. The cost parameters corresponding to service
times and waiting times are given by dik and eik, respectively. Note that we
opt to model the waiting times explicitly because the cost of waiting might
be di�erent from the cost of serving customers, in general. In addition, let
the continuous variables t̃ijk be de�ned as follows:

t̃ijk =

{
tjk, if xijk = 1,

0, if xijk = 0,

where k ∈ K and (i, j) ∈ Ak.
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A commodity-�ow formulation of the uVRPTW is given below:

min
∑

k∈K


 ∑

(i,j)∈Ak

cijkxijk +
∑

i∈Vk
(dikτ

SE
ik + eikwik)


 (1)

s.t.
∑

k∈K

∑

j∈δ+k (i)

xijk = 1 i ∈ N (2)

∑

j∈δ+k (o(k))

xo(k)jk = 1 k ∈ K (3)

∑

i∈δ−k (j)

xijk −
∑

i∈δ+k (j)

xjik = 0 j ∈ Nk, k ∈ K (4)

tik + τSEik + wik =
∑

j∈δ+k (i)

(
t̃ijk − T TRijk xijk

)
i ∈ Nk, k ∈ K (5)

tik =
∑

l∈δ−k (i)

t̃lik i ∈ Nk ∪ {d(k)} , k ∈ K (6)

tik =
∑

j∈δ+k (i)

(
t̃ijk − T TRijk xijk

)
i = o(k), k ∈ K (7)

T jxijk ≤ t̃ijk ≤ T jxijk (i, j) ∈ Ak, k ∈ K (8)

xijk ∈ {0, 1} , t̃ijk ∈ R+ (i, j) ∈ Ak, k ∈ K (9)

tik, τ
SE
ik , wik ∈ R+ i ∈ Nk, k ∈ K (10)

The objective function (1) minimizes the routing costs and/or costs as-
sociated with time usage. Constraints (2)�(4) are the degree constraints.
Constraints (2) require that all customers must be visited by exactly one
vehicle, constraints (3) require that the routes start at the depot, and con-
straints (4) ensure that, when a vehicle arrives at a customer, it also leaves
that customer. Constraints (5) are known as the commodity �ow constraints.
If a vehicle travels between two customers, then they ensure correct account-
ing of travel time and arrival time for each of the visits. Together with the
degree constraints (2)�(4), the commodity �ow constraints (5) are also re-
sponsible for eliminating subtours. Constraints (6) and (7) link the di�erent
departure time variables, while constraints (8) impose time windows on the
times when the customers can be visited. Finally, the domains of the vari-
ables are de�ned in (9) and (10).

We observe that the service time variables τSEik only appear in con-
straints (5). When a learning e�ect is not considered, the following sub-
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stitution can be made:

τSEik =
∑

j∈δ−k (i)

TSEik xjik, i ∈ Nk, k ∈ K. (11)

Here, TSEik are the deterministic service times. The uVRPTW now consists
of constraints (1)�(11).

However, when there exist dependencies and/or restrictions between the
start times of service at the di�erent customers, then we can extend the
formulation for the uVRPTW with generalized precedence constraints of
the form

∑

k∈K
(tik + δijk) ≤

∑

k∈K
tjk, (i, j) ∈ ∆, (12)

where the parameters δijk specify the minimum di�erence in time between
when customers i and j are being serviced, and the set ∆ de�nes all customer
pairs (i, j) for which a temporal dependency exists. This constraint captures
all types of temporal dependencies between customers, such as, for example,
synchronization, overlap or precedence. The resulting model is generally
referred to as the VRPTW with Temporal Dependencies (Dohn et al., 2011).

3.2. Endogenous Learning

When services have to be performed at the customer nodes, a learning
e�ect might arise; that is, the service times reduce as a function of the
number of times this task has been performed before. Under this setting,
the constraints (11) from the uVRPTW model would no longer be valid, as
they assume a �xed service time for each customer. In the following, we
describe a way to allow for an endogenous learning e�ect in the context of a
commodity-�ow uVRPTW model.

3.2.1. Experience Level

A learning e�ect arises when a particular task is being performed repeat-
edly. As di�erent services might have to be done at di�erent customers, we
de�ne the set S to contain the services for which a learning e�ect exists. To
account for such an e�ect, we have to keep track of the experience level of
the vehicles for these di�erent services.

We de�ne nonnegative continuous variables zisk, i ∈ Nk, s ∈ Sk and
k ∈ K, that measure the experience level. More speci�cally, if vehicle k
performs service s at customer i, then zisk will represent the number of
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times vehicle k will have performed a service s, after having visited customer
i; it will equal zero otherwise. Moreover, we de�ne nonnegative continuous
variables z̃ijsk for (i, j) ∈ Ak, s ∈ Sk and k ∈ K. These variables are �ow
variables that keep track of the experience level. Finally, σ(·) : N → S is a
function that maps customers to the service they require.

The relationship between the experience variables is de�ned in the model
in the following way:

zisk =
∑

j∈δ+k (i)

z̃ijsk, i ∈ Nk, s ∈ Sk, k ∈ K, (13)

and

zjsk =
∑

i∈δ−k (j)

(
z̃ijsk + 1{σ(j)=s}xijk

)
, j ∈ Nk, s ∈ Sk, k ∈ K, (14)

where 1{σ(j)=s} is the indicator function, equaling one if the service required
at customer j equals s, and equaling zero otherwise. Here, constraints (14)
state that the �ow of the experience level out of a certain node should equal
the incoming �ow, increased with the possible gain in experience level when
executing that particular operation. In addition, the experience �ow vari-
ables should only be allowed to be positive when their corresponding x-
variables equal one, namely

z̃ijsk ≤ M̃sxijk, (i, j) ∈ Ak, s ∈ Sk, k ∈ K, (15)

where M̃s represents the maximum number of customers that require service
s.

Finally, one might encounter a reduction in the experience level in a
certain node. This can be the result of a change in the agent(s) performing
these services. For a plugging campaign this means, for example, that the
crew is being refreshed during a harbour visit. Let j′ and k′ represent the
node and vehicle for which this is the case. We can then reset the experience
level to zero, or to any other a�ne combination of the incoming experience
level,

zj′sk′ = αj′sk′ + βj′sk′




∑

i∈δ−
k′ (j
′)

z̃ij′sk′


 , s ∈ Sk′ . (16)
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3.2.2. Learning E�ect Representation

Anzanello & Fogliatto (2011) present a wide range of learning curves
based on di�erent mathematical relationships. The most popular such rela-
tionships can be categorized as power models or exponential models. The
typical learning curve in Figure 1 is an example of an exponential model.
It is important to highlight that, even though these models of learning are
non-linear, they are generally convex. It is also important to observe that
we are interested in the values of the learning curve over a discrete range;
that is, we are interested in the service time as a function of the number of
times a similar task has been performed before. This implies that we can
represent the (non-linear) learning curve in an exact manner (i.e., without
any approximation error) using a single-variable continuous piecewise-linear
function. Hence, moving forward, we can assume that the learning curves
(f̃ : R→ R) are of the following form:

f̃(z) := max
i∈{1,...,N}

fi(z), (17)

where z is the experience level (or sequence number), fi(z) := aiz + bi, and
the parameters ai and bi can be deduced from the original learning curve
relationship. Figure 2 shows a typical learning curve, together with its linear
representation.

We remark that, since our intentions in the VRP model are to minimize
makespan/task durations, there will exist an incentive by the optimizer to
maximize the experience level and minimize the service time. This implies
that we only have to bound f from below. Consequently, in order to account
for the learning e�ect, we need only de�ne the following equations of the
service time variables τSEik :

τSEik + bikl


1−

∑

j∈δ−k (i)

xjik


 ≥ aiklziσ(i)k + bikl, (18)

for l ∈
{

1, ..., M̃s

}
, i ∈ Nk, k ∈ K. Neglecting momentarily the second term

on the left hand side, these equations impose that that the service times
with learning should be larger than the piecewise linear functions evaluated
at ziρ(i)k. This is represented in Figure 2. But as the service times are
minimized, these functions will be bounding and the linear approximation
will be exact. However, we should be careful not to apply such lower bounds
when the vehicle k does not service customer i (i.e., when ziρ(i)k = 0). In this
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Figure 2: Visualization of a convex learning curve (solid line) and its representation using
the epigraph of a piecewise linear function (dashed lines)

case, we must simply allow that τSEik ≥ 0. To that end, the second term of
the left hand side of equation (18) adds bikl when vehicle k does not service
customer i (i.e., when

∑
j∈δ−k

xjik = 0) so as to appropriately relax these

constraints. Finally, we can tighten the overall formulation by enforcing:

τSEik ≤ b̄ikziσ(i)k, i ∈ Nk, k ∈ K, (19)

where b̄ik = maxl∈{1,...,M̃s} bikl.

4. P&A Campaign Planning

4.1. Problem Description

When an o�shore oil or gas well has reached the end of its productive
lifetime, it has to be plugged and abandoned to prevent leakages from or
into the well. While platform wells can be plugged and abandoned with the
existing drilling rig at the platform, subsea wells require dedicated vessels,
referred to as mobile o�shore units (MOU). When several subsea wells are
plugged and abandoned together, making use of one or several MOUs, the
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process is referred to as a P&A campaign (Bakker et al., 2019). We use the
problem of planning such a P&A campaign as an application of the Vehicle
Routing Problem with Endogenous Learning.

When plugging a well permanently, several operations have to be per-
formed. Based on the work by Oil & Gas UK (2015) and Moeinikia et al.
(2014a), these operations can be divided into four phases. Phase 0 (�prepara-
tory work�) includes pre-P&A work such as stopping the �ow from the well,
logging the tubing quality and establishing temporary barriers. Phase 1
(�reservoir abandonment�) and phase 2 (�intermediate abandonment�) in-
clude the setting of barriers towards the reservoir, possible barriers in the
overburden, and establishment of a surface plug. These two phases are typi-
cally performed consecutively, as a single service. Finally, phase 3 (�wellhead
and conductor removal�) includes the cutting of casing and conductor strings
as well as retrieval of the wellhead (Vrålstad et al., 2019).

Conventionally, P&A operations are performed by semi-submersible rigs
(SSR) with high spread rates. Current available technology still requires an
SSR to perform phase 1 and 2 operations. Among other functions, the rig
provides capacity to handle �uids returns as well as heavy lifting and cutting
operations. However, more recently, lighter vessels are being used to perform
simple P&A operations (Saasen et al., 2013; Sørheim et al., 2011; Valdal,
2013). This includes Riserless Light Well Intervention (RLWI) Vessels and
Light Construction Vessels (LCVs).

P&A operations are in general not time critical. This means that when
there are no integrity issues with the well and the operator maintains sat-
isfactory control of the well, then the various phases can be executed at
di�erent times by di�erent vessels. However, due to regulations or well con-
ditions, wells might have to be plugged and abandoned within a certain time
window.

Shut-down decisions are usually taken on a �eld level by the responsible
operator/license holders. This implies that the scope of a plugging campaign
usually is restricted to a single �eld. Nonetheless, plugging campaigns can
be planned across multiple �elds and licenses. As Bakker et al. (2019) shows,
such large scale campaigns can lead to cost-savings. On a �eld, subsea wells
can be found at di�erent locations on the seabed. They may be located on
their own as single satellites, or clustered on templates. As a result, the
MOUs must move between the wells to perform the plugging operations.
However, when performing operations on multi-well templates, a vessel does
not have to be relocated.

The problem of planning a plugging campaign can now be de�ned as
follows. A given number of subsea wells, possibly located on di�erent �elds,

12



has to be plugged and abandonded within certain time windows. To plug a
well, certain operations have to be performed in a strictly ordered sequence,
but not directly after each other and di�erent vessels can be used to per-
form these operations. The objective in a plugging campaign is then to �nd
optimal routes and schedules for a �eet of MOUs, such that all plugging
operations are performed.

Figure 3 visualizes the problem and a possible plan for the plugging of
two o�shore �elds, making use of three vessels (SSR, RLWI and LCV). Each
�eld contains three wells on which three operations have to be performed,
related to the three di�erent phases. In the �rst �eld, the RLWI vessel is
used to perform all three phase 0 (p0) operations as well as the phase 3 (p3)
operation on the �rst well, while in the second �eld, the LCV is used for the
p3 operations. For all other operations, the SSR is being used.

Figure 3: Visualization of a possible solution for the problem of planning a plugging
campaign

4.2. Formulation

The problem of planning a P&A campaign can be formulated as a uVRPTW
with Precedence Constraints. An extensive treatment is given in Bakker
et al. (2019), but a short interpretation is provided here for completeness.
Customer nodes represent operations, which have to be performed on wells
to be plugged and abandoned. The vehicles now represent vessels that can
perform these operations. On each well, three operations have to be per-
formed. These operations are categorized into phase 0 (p0), phase 1 and 2
(p1/p2), and phase 3 (p3), which represent the three di�erent services that
can be performed.

We base our model on the formulation for the uVRPTW that was pre-
sented in Section 3. The objective (1) is to minimize total rental costs,
which is a function of the durations the vessels are being used and their
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corresponding daily rates. This can be obtained by setting cijk = T TRijk C
DAY
k

and dik = eik = CDAYk , where CDAYk represents a uniform day rate for vessel
k. Constraints (2)�(11) can be interpreted in the standard way. In addition,
we require precedence constraints that capture the fact that, on each well,
the corresponding operations have to be performed in a strictly ordered se-
quence, starting with the p0 operation and �nishing with the p3 operation.
Constraints (12) capture this when setting δijk := τSEik and letting ∆ consist
of all pairs of operations (i, j) for which a precedence relationship exists. Be-
sides time windows for the operations, we also impose restrictions on when
the vessels can be used. This can be due to other planned activities or re-
stricted operability during the winter months. For each vessel, we introduce
an extra node to represent a harbour. This makes it possible for a vessel to
return to the harbour during the winter months, where it does not incur any
rental costs. We prescribe a learning e�ect for each of the di�erent operation
types. Consequently, we have that S = {p0, p1/p2, p3}.

4.3. Learning Curve

We make use of the model developed by Brett & Millheim (1986) as a
representation of the learning e�ect, since this model is being widely being
used by the Oil & Gas Industry. However, we note that other speci�cations
of the learning e�ect also may also be used as an alternative. A mathematical
representation of the Brett and Millheim learning curve that was visualized
in Figure 1 is given by:

tn = C1e
(1−n)C2 + C3, (20)

where tn is the time required to perform the n-th operation in a sequence, C1

is a constant re�ecting how much longer the initial operation takes to perform
than the idealized operation, C2 is referred to as the learning rate and re�ects
the speed with which the operator reaches the minimum execution time for an
operation, and C3 is a constant that re�ects the idealized minimum execution
time for an operation. We note that C2 ∈ R+ and ∂tn

∂C2
< 0. This means that

a high learning rate (C2) leads to a shorter execution time compared to low
learning rates.

4.4. Solution Approach

The computational study from Bakker et al. (2019) was based on ten
realistically sized instances. In this study, only the three smaller instances
could be solved to optimality within the given time limit, with the remaining
seven larger instances having an integrality gap of up to 2.5% after one hour.
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As the implementation of a general branch and cut framework proved not to
be very e�ective, we need to investigate di�erent solution approaches that
target a certain problem characteristic.

More speci�cally, in the context of o�shore logistics, locations tend to
be clustered together. For example, oil and/or gas wells tend to be located
relatively close to exist within the same �eld. In o�shore windmill parks,
wind turbines are positioned along narrow wind paths and the distances
between them are relatively small. When servicing such clustered locations,
the time it takes to travel between nodes within a cluster constitutes only
a small fraction of the time required to travel across multiple clusters and
to complete the whole route. Hence, when a cluster is serviced, the order in
which the corresponding nodes are visited is insigni�cant for the evaluation of
the total distance traveled or time consumed. This feature creates a certain
kind of combinatorial hierarchy and makes the problems computationally
di�cult. In order to take into account the clustered nature of our datasets,
we follow a solution approach as described below.

First, we de�ne clusters of wells that meet the following two criteria:

1. the wells are located on the same �eld and are within a certain distance
(application dependent) of each other, and

2. the wells have the same time windows.

Then, within a cluster, we de�ne a �xed sequence in which the wells have
to be plugged. This order can be chosen in di�erent ways, such as based
on the solution of a traveling salesman problem, or based on the complex-
ity of servicing each speci�c well. The former would lead to shorter travel
times within clusters, while the latter reaps the bene�ts from a learning ef-
fect. Speci�cally, when the wells have di�erent complexities, one would start
plugging the least complex wells �rst in order to accumulate experience for
the more complex jobs scheduled for later. In this way, the learning gains can
be more substantial. For reference, the solution visualized in Figure 3 abides
to the proposed approach, where wells within certain �elds are depicted such
that they have to be plugged from left to right. The above de�ned rules can
easily be enforced in the model by reducing the graph on which the problem
is de�ned.

Finally, we remark that the above described clustering approach bears
resemblance to the Generalized VRP (GVRP) (Baldacci et al., 2010; Pop
et al., 2012) as well as the Clustered VRP (CluVRP) (Battarra et al., 2014).
In both these problems, customers are grouped into clusters, each of which
is being served by exactly one vehicle, while each cluster can only be visited
once. The main di�erence between the two is that, whereas in the GVRP
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exactly one customer is visited in each cluster, in the CluVRP all customers
have to be visited. So, our approach is related to the CluVRP, with the
exception that we allow customers within a cluster to be serviced by multiple
vehicles. We highlight that, even though we �x the order in which wells have
to be visited in a cluster, we do not �x the assignment of vessels to operations.

5. Computational Studies

5.1. Data

We apply the learning e�ect methodology to the problem of planning a
P&A campaign. To test this e�ect, we make use of the instances that were
de�ned in Bakker et al. (2019). These consist of synthetically constructed
subsea �elds based upon realistic data and well locations resembling typical
Norwegian subsea �elds. Each of these instances contains data on the num-
ber of wells, well complexities, templates, and operations. An overview of
the dataset is given in Table 1. Moreover, Bakker et al. (2019) present in-
formation about the di�erent vessels that are available for these campaigns.
This includes traveling speeds, day rates, operability restrictions and (de-
)mobilization times.

Table 1: Overview of the data instances

Instance 1 2 3 4 5 6 7 8 9 10

Number of Operations 12 15 15 24 24 33 33 42 42 48
Number of Templates 4 5 5 8 8 11 11 14 14 16

Number of Wells 8 14 18 13 25 29 32 32 33 44

Complexity
Low 2 9 0 5 2 15 17 12 7 16
Medium 6 5 14 6 19 6 5 10 20 22
High 0 0 4 2 4 8 10 10 6 6

We extend these instances to include a learning e�ect in the model. For
this, we calibrate the learning curve from Equation (20) using data about
the learning rates (C2), minimum execution times for operations (C3) and
maximum execution times (C1 + C3). Brett & Millheim (1986) categorizes
the values of C2 in four groups, namely excellent, good, average and poor
performers. Operators are assumed to work with a learning rate value corre-
sponding to an average performer. This implies a value of C2 between 0.25
and 0.45. In our analyses, we �xed C2 = 0.35, which has been found to be
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the industry average for the drilling of wells. To obtain values for C1 and
C3, we make use of the data presented in Øia et al. (2018). They provide
a thorough description of operational procedures for both SSR and RLWI
vessels, as well as they present duration estimates for three types of subsea
wells (low, medium and high complexity wells). These duration estimates
are provided as minimal, expected and maximal values. On our end, we
aggregated the data from Øia et al. (2018) at a phase level. That is, we
determined the duration of a phase by summing up the durations of all the
operations that are included in this phase. Finally, as we lack data on dura-
tions of performing services using LCVs, and since LCV and RLWI vessels
have similar capabilities, we assumed that the durations of phase 3 opera-
tions are equal for these two vessel types. A summary of the resulting data
is presented in Table 2.

Table 2: Durations (in days) of the di�erent phases when performed by SSR or RLWI
vessels, for wells of di�erent complexities, and categorized by minimum, expected and
maximum value (data based on Øia et al. (2018)).

Complexity Low Medium High

Min Exp. Max Min Exp. Max Min Exp. Max

SSR
p0 3.75 5.29 6.88 3.65 4.71 6.19 3.58 4.58 5.79

p1/p2 6.04 8.75 12.50 7.94 9.52 12.71 11.33 14.21 18.17
p3 1.08 1.38 1.75 1.08 1.38 1.75 0.58 0.88 1.17

RLWI
p0 2.58 3.33 4.50 4.06 4.81 6.08 6.58 8.33 10.92
p3 1.08 1.38 1.75 0.69 0.96 1.38 1.08 1.38 1.75

5.2. Results

In this section, computational results are presented and discussed for
the ten di�erent instances de�ned above. We focus on the inclusion of a
learning e�ect as well as the performance of the clustering approach. The
model was implemented in Python 3.5.3, formulated using Pyomo 5.1.1 and
is solved with CPLEX version 12.7. The analyses have been carried out
on an HP EliteBook 820 G2 computer with an Intel Core i5-5200U CPU,
2.2 GHz processor, 16Gb RAM, running Windows 10 and using up to eight
threads.
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5.2.1. Clustering Approach Validation

We shall �rst focus on quantifying the performance of the clustering
based solution approach. We start by comparing the results from the original
approach as presented in Bakker et al. (2019) with the results obtained using
clustering. As we do not yet consider a learning e�ect, we �x the sequences
within the di�erent clusters using the shortest route. The instances are run
with a time limit of one hour. Table 3 presents objective function values,
optimality gaps and CPU times as well as a summary of the plans for each of
the two approaches. In addition, we show the percentage change in objective
function value between the original and clustering approach.

Table 3: Performance of the clustering approach as compared to the original approach
from Bakker et al. (2019), including the best known solution (BKS) in million dollars
($MM), MIP gap, and CPU time (in seconds) for each instance. The last six columns
show the number of times a particular vessel is used to perform a certain phase∗.

Original Cluster Orig. Clust. Original Cluster

Inst.
BKS
($MM)

MIP
gap(%)

BKS
($MM)

MIP
gap(%)

∆BKS
(%)

CPU
time (s)

RLWI LCV RLWI LCV

p0 p3 p3 p0 p3 p3

1 36.88 (opt.) 36.88 (opt.) 0.01 14.2 0.2 4 1 0 4 1 0
2 56.29 (opt.) 56.31 (opt.) 0.02 316.7 0.2 5 2 0 5 2 0
3 83.42 (opt.) 83.42 (opt.) 0.01 21.0 0.2 5 3 0 3 0 3
4 56.59 (0.65) 56.67 (opt.) 0.15 3,600 0.4 6 3 0 6 1 0
5 109.73 (0.19) 109.75 (opt.) 0.02 3,600 1.0 6 0 6 6 0 6
6 133.60 (0.28) 133.61 (opt.) 0.01 3,600 0.4 9 0 9 9 0 9
7 140.67 (1.19) 140.51 (opt.) -0.11 3,600 8.6 8 0 7 8 0 8
8 143.95 (2.49) 143.54 (opt.) -0.28 3,600 1.1 11* 0 11 11* 0 8
9 143.11 (1.00) 142.55 (opt.) -0.39 3,600 205.9 10 0 10* 10 4 6
10 186.14 (0.88) 186.21 (0.50) 0.04 3,600 3,600 12 2 10 12 2 10
∗ Since a rig always performs p1/p2 operations, a plan is characterized merely by the allocation of vessels to
p0 and p3 operations.

Firstly, we observe that the objective function values for the most of
the instances are nearly identical. The worst deviation arises in the fourth
instance, where we observe a 0.15% upwards change in objective value as
compared to the full (non-clustering based) search. In fact, for instances
seven through nine, we manage to get a small improvement in the objective
function value due to the original approach not having converged to zero
gap. This empirical evidence suggests that clusters constructed in this way
make sense for the real problem setting and lead to solutions that do not
signi�cantly sacri�ce optimality.

From a computational tractability perspective, we observe that the so-
lution times drastically decrease in the clustering approach, which can be
attributed to the reduction of the combinatorial feasible region compared to
the original model. In fact, for nine out of ten instances, we can solve the
reduced problems to zero optimality gap in mere seconds. In contrast, the
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majority of the problems solved with the original model timed out after an
hour with a residual�albeit small�optimality gap.

Focusing on the generated plans, we can make several observations. In
particular, there is a trade-o� between using the di�erent vessels. In every
optimal plan, we need an SSR to perform p1/p2 operations, while the other
operations also can be performed by the lighter vessels. Hence, a plan is
mainly characterized by the usage of these lighter vessels and assignment to
p0 and p3 operations at the di�erent wells. As an example, Figure 4 shows
Gantt charts representing the plans for the representative instance 8 result-
ing from the original and the clustering approach. We note that, on eleven
out of the fourteen templates, an RLWI vessel is being used to perform the
p0 operations. Moreover, we see that the RLWI performs two disjoint cam-
paigns, separated by the winter period. The main di�erence between the two
plans lies in the fact that in the original approach the LCV performs eleven
p3 operations, while it only performs eight p3 operations in the clustering
approach. Finally, as can be seen from the last six columns of Table 3, in all
instances the clustering approach provides solutions with similar structure
as those provided by the original approach, as the assignment of vessels to
operations tends to be nearly identical.

5.2.2. Learning E�ect

In order to judge the impact of the inclusion of an endogenous learning
e�ect, we take the model including learning and solve it in two di�erent
ways. First, we take the best known plan that results from the model using
the expected execution times. We then solve the learning model with the
obtained routing variables �xed. This gives us a measure of how the plan
that does not consider learning would perform in the real setting. Second,
we solve the learning model without any restrictions, resulting in the optimal
plan for that case.

Table 4 presents a summary of this comparison for all instances. Firstly,
we note that the no learning plan is not feasible in the learning model for
instance 6. In addition, we observe that the plans that do not consider
learning perform signi�cantly worse than the plans that do. More speci�cally,
we can achieve reductions in the objective function values between 3% and
20%, which results from signi�cant changes in the plans. For example, we
see in the last six columns that the distribution of which vessels perform
the p0 and p3 operations changes signi�cantly. More speci�cally, when not
taking into account learning, both the RLWI vessel and LCV are being used
to perform p3 operations. However, in this way, the bene�ts from learning
are not optimally utilized. When we consider learning, we see that, in the
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(a) Original Approach (adapted from Bakker et al. (2019))

(b) Clustering Approach

Figure 4: Gantt charts representing the solution for the original (a) and the clustering (b)
approach for representative instance 8.
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optimal plans, the solution utilizes the RLWI solely for p0 operations and the
LCV for p3 operations. Therefore, in general, we can argue that the inclusion
of learning leads to the use of fewer vessels to perform certain operations.

Table 4: Comparison of the plans resulting from the no learning (NL) and learning (L)
model, evaluated in a learning setting. We present the best-known solution and the
distribution of vessels to operations. The CPU time for the learning model is also provided.

NL L NL L

Instance
BKS
($MM)

Change
CPU

time (s)
RLWI LCV RLWI LCV

p0 p3 p3 p0 p3 p3

1 58.04 52.32 -10 % 0.2 4 1 0 0 0 0
2 73.53 71.46 -3 % 0.2 5 2 0 3 0 5
3 118.95 105.63 -11 % 0.2 4 0 4 0 0 5
4 76.11 64.08 -16 % 0.7 6 2 0 0 0 8
5 168.26 134.11 -20 % 0.8 7 0 7 0 0 8
6 - 130.59 - 1.6 - - - 8 0 11
7 146.73 135.98 -7 % 75.5 8 0 8 9 0 12
8 152.24 145.00 -5 % 655.4 11* 0 11 7 0 14
9 178.50 153.65 -14 % 289.4 11 4 7 0 0 14*
10 217.91 197.62 -9 % 3,600.0 13 2 10 6 0 12

∗Operations performed over two disjoint periods, separated by the winter period.

5.2.3. Bene�ts of learning in large campaigns

In previous work, Bakker et al. (2019) have quanti�ed potential bene�ts
in running large plugging campaigns in lieu instead of several small ones.
They refer to this as the value of cooperation. The presence of learning e�ects
should make these bene�ts even more pronounced. To test this hypothesis,
we focus on instances 5, 7, 8 and 10, for which the wells could be located on
�elds belonging to two di�erent operators. Note that the results that we have
obtained so far assume that these operators cooperated in one big campaign.
We now consider the execution of two separate campaigns for the di�erent
operators. Table 5 compares the total costs of these two campaigns with
the cumulative cost of the single cooperative campaign. Overall, we observe
that cooperation in the planning of these campaigns leads to cost savings
in the 11 − 13% range, approximately. This is signi�cantly more than the
3−4% cost savings that Bakker et al. (2019) calculated when not considering
a learning e�ect. Finally, Figure 5 depicts the cost savings when operators
cooperate instead of planning separately for di�erent values of the learning
rate, C2. We observe that the bene�ts of cooperation peak somewhere at a
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Table 5: Total P&A campaign costs (in million dollars) for the two operators (�Oper. 1�
and �Oper. 2�). The last column provides the percentage cost savings when cooperating
(�Coop.�) instead of running separate campaigns.

P&A Campaign Costs ($MM)

Separate campaigns Coop. Cost
SavingsInst. Oper. 1 Oper. 2 Total Total

5 45.59 105.63 151.22 134.11 11.3 %
7 71.46 84.07 155.53 135.98 12.6 %
9 105.63 71.48 177.11 153.65 13.2 %
10 143.98 77.51 221.49 197.62 10.8 %

learning rate between 0.2 and 0.4, resulting in gains between 11% and 20%.
After these peaks, the gains slowly decrease to a steady value of around
7− 12%. Interestingly, these results suggest that there are signi�cant gains
for relatively slow learning rates.

Figure 5: P&A cost savings when operators cooperate instead of planning separately, as
a function of learning rate.

5.2.4. Sensitivity Analysis

The parameters of the learning curves have to be estimated based on
the results of previous plugging campaigns. However, the properties of a
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new campaign are likely to be somewhat di�erent, and as a result, we might
observe a di�erent learning e�ect than the one postulated. We are therefore
interested in the robustness of the optimal solutions of the di�erent instances
against changes in the learning e�ect. The minimum and maximum times it
takes to perform an operation are represented by C3 and C1 + C3, respec-
tively. These parameters are mainly determined by technical restrictions,
and can therefore be reasonably well estimated. In contrast, the learning
rate parameter C2 might vary signi�cantly between di�erent campaigns and
is more di�cult to estimate. To this end, we will focus here on evaluating
the e�ect of having misspeci�ed parameter C2, noting that similar analyses
can be performed around the other parameters as well, if desired.

More speci�cally, we �rst determine the optimal plan using the nominal
value of C2 = 0.35 (average performer), and we �x the obtained routing vari-
ables. We then consider six di�erent possibilities for the realized learning
rate that span the learning rate categorization of Brett & Millheim (1986),
namely the values C2 = 0.05 and C2 = 0.20 (poor performers), C2 = 0.50
and C2 = 0.65 (good performers) and C2 = 0.80 and C2 = 0.95 (excellent
performers), and we solve the partially �xed model to determine actual tim-
ings and costs in each case. Table 6 presents the percentage cost di�erences
in objective function values compared to the optimal solution for the postu-
lated value of C2 = 0.35, which provides an indication of the robustness of
this solution to changes in the learning rate parameter.

Table 6: Performance of the optimal plan corresponding to the nominal learning rate value
(C2 = 0.35), under di�erent realizations of the actual learning rate.

Inst.
Change in realized cost using nominal solution as reference

C2 = 0.05 C2 = 0.20 C2 = 0.50 C2 = 0.65 C2 = 0.80 C2 = 0.95

1 13.1 % 5.5 % -4.0 % -6.9 % -9.1 % -10.7 %
2 infeas. 6.6 % -4.5 % -7.6 % -9.9 % -11.5 %
3 21.5 % 8.2 % -5.2 % -8.6 % -10.9 % -12.5 %
4 infeas. 8.6 % -4.2 % -6.4 % -7.7 % -8.5 %
5 26.4 % 8.3 % -4.2 % -6.5 % -7.9 % -8.8 %
6 26.2 % 7.7 % -3.7 % -5.8 % -7.1 % -8.0 %
7 infeas. infeas. -4.0 % -6.2 % -7.6 % -8.5 %
8 infeas. 8.4 % -4.3 % -6.7 % -8.2 % -9.1 %
9 infeas. 6.7 % -2.4 % -3.4 % -4.0 % -4.3 %
10 infeas. 7.0 % -2.9 % -4.3 % -5.2 % -5.7 %

We observe that the realized learning rate strongly a�ects the feasibility
and costs of a plugging campaign. In fact, when the realized learning rate
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is lower than the anticipated (nominal) rate, the overall duration of the
campaign increases. This causes the planned routes to become infeasible
in many instances, while even when this is not the case, the campaign costs
increase between 5.5% and 26.2%. On the other hand, for a realized learning
rate that is higher than the nominal rate, the campaigns turn out to be
between 2.4% and 12.5% cheaper than anticipated.

Despite the sensitivity of the total costs on the learning rate, we highlight
that advance knowledge of the exact learning rate does not necessarily help.
To showcase this, we conduct an alternative analysis where we judge the
quality of the obtained plan under the nominal learning rate. Again, we �x
the routing variables obtained from the nominal case, and resolve the model
for the cases with di�erent learning rates. Subsequently, we solve the model
without any restrictions for the di�erent learning rates, to obtain the optimal
plans in each case. Table 7 now presents the percentage cost increase of the
objective function value of the nominal plan compared to the optimal plan,
as the latter is evaluated under the di�erent realizations of the learning rate.
This can be considered to be a measure of the value of perfect information.

Table 7: Comparison of the plan obtained from the nominal learning rate (C2 = 0.35) and
the optimal plan obtained under di�erent realizations of this parameter.

Inst.
Di�erence in optimal costs using nominal solution as reference

C2 = 0.05 C2 = 0.20 C2 = 0.50 C2 = 0.65 C2 = 0.80 C2 = 0.95

1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
2 infeas. 0.0 % 0.0 % 0.1 % 0.1 % 0.1 %
3 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
4 infeas. 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
5 0.0 % 0.0 % 0.0 % 0.0 % 0.4 % 0.8 %
6 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
7 infeas. infeas. 0.0 % 0.0 % 0.0 % 0.0 %
8 infeas. 0.7 % 0.0 % 0.0 % 0.0 % 0.0 %
9 infeas. 0.0 % 0.1 % 0.1 % 0.1 % 0.1 %
10 infeas. 0.0 % 0.2 % 0.5 % 0.2 % 0.5 %

We observe that, as long as the plan corresponding to the nominal learn-
ing rate remains feasible, then this plan tends to be (nearly) optimal. This
means that the value of perfect information is relatively low. In other words,
knowing the realization of C2 a priori would not a�ect the plan that would
be generated from solving the optimization model. This �nding follows from
the fact that the optimal plans that are generated when considering learn-
ing tend to have a structure as described in Section 5.2.2. Moreover, these
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structures tend to be similar for di�erent realizations of the learning rate.

6. Conclusions

In this article, we presented an approach that allows for the inclusion
of an endogenous learning e�ect in the setting of the uncapacitated Vehicle
Routing Problem with Time Windows. This approach consisted of the de�ni-
tion of continuous experience variables as well as the formulation of (possibly
non-linear) learning curves using piecewise-linear functions. To evaluate the
e�ects of the endogenous learning e�ect, we applied the methodology to the
problem of planning a Plugging and Abandonment campaign in the context
of the o�shore oil and gas industry. For this application, we developed a
solution approach based on clustering that manages to solve the majority
of real-life instances in seconds. Moreover, we extended existing instances
for this problem with additional data on the learning e�ect. We observe
that the inclusion of a learning e�ect leads to signi�cantly di�erent optimal
plans than when neglecting the learning part. In general, we see that the
optimal plans try to reap the bene�ts of learning by utilizing the vessels with
most experience. The consideration of learning in the planning of plugging
operations might lead to savings in the order of 3 − 20%. In addition, we
showed that there exists signi�cant value in cooperation between operators
in terms of planning campaigns together, as a result of learning e�ects. This
e�ect occurs even for very slow learning rates. We also tested the robustness
of the obtained solutions for possible deviations in the learning curves, and
we showed that deviations in the realized learning rate strongly a�ect the
feasibility and costs of the campaign. However, we found that the value of
perfect information is very low, and hence the nominal plan would perform
equally well under di�erent realizations of the learning rate. Only when the
learning e�ect is much smaller than anticipated, the original plan might be-
come infeasible, due to an increase in time usage. A possible direction for
future work can be to investigate this challenge by means of an appropriate
technique that deals with decision making under uncertainty. Overall, we
conclude that the implications of a learning e�ect on VRP solutions can be
signi�cant and should therefore be explicitly incorporated in the decision-
making process, whenever such e�ects are applicable.
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