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A B S T R A C T   

Current decision making regarding whether to abort a high-risk aquaculture operation in a Norwegian fish farm 
is mainly experience-driven. The on-site personnel decides whether to start/delay/abort operations primarily 
based on their subjective judgement about whether they can handle the situation. The risk is considered im-
plicitly as “gut feelings”. There are no explicit operational limits nor a structured process to derive these for high- 
risk operations. In this research, a predefine safety-critical attributes have been identified from major accident 
scenarios to guide machine learning process to define operational limits based on multi-source data. Bayesian 
network, Tree Augmented Naïve Bayes (TAN) search algorithms were selected to build up prediction model so 
that operational limits upon a given condition can be decided. The paper concludes that machine learning 
techniques have great potential to be used to support safe decision-making in high-risk aquaculture operation, 
and the risk-based operational limits facilitates better understanding of operational context, and comprehension 
of the meaning of several deviations which may indicate a dangerous situation.   

1. Introduction 

1.1. Norwegian aquaculture 

Aquaculture in Norway has been identified as the sector with sig-
nificant potential for further growth. The Norwegian fish farming industry 
is expected to grow fivefold by 2050 [1] compared to 2010. The most 
recent figures from Statistics Norway show that in 2018, the sector pro-
duced 1.35 million tons of fish for human consumption, with a first-hand 
value of almost €6.5 billion, of which, Atlantic salmon made up 95% of the 
total [2]. Despite the positive prediction, the industry is facing challenges 
of a lack of sheltered coastal sites and increasing negative ecological 
consequences due to sea lice, fish escapes and farm waste left on the 
seabed [3]. The industry is also experiencing technological innovations in 
more exposed locations. The severe wave and current conditions, irregular 
wind and sheer remoteness, and uncertainties in new technologies amplify 
the risk to both personnel and the fish [4, 5]. It is especially challenging to 
get skilled staff at exposed locations [6]. 

1.2. Safety in aquaculture 

Safe production of Atlantic salmon is the key to ensure a healthy and 
sustainable expansion of the industry. The safety by definition is the 
“Freedom from those conditions that can cause death, injury, occupa-
tional illness, damage to or loss of equipment or property, or damage to 
the environment” [7]. Achieving safety is predicated on reducing the 
risk “to a level that is as low as reasonably practicable, where the re-
maining risk is generally accepted” [8]. Safety has a broader inter-
pretation in aquaculture industry due to dealing with living animals in 
an open marine environment to provide food to the end customers. Five 
dimensions of risk need to be considered and minimized to an accep-
table level, which are the risk to personnel (i.e., personal injury and 
fatality), the environment (e.g., fish escape, pollution), the fish welfare 
(e.g., fish injury, mortality), the marine assets (e.g., fish farms, service 
vessels) and food safety (e.g., food poisoning of end customers) [9]. 

https://doi.org/10.1016/j.ress.2020.107208 
Received 31 May 2019; Received in revised form 24 May 2020; Accepted 20 August 2020    

Abbreviation: AI, Artificial Intelligence; API, Application programming interface; BN, Bayesian network; FN, False negatives; FP, False positives; ICT, Information 
and communications technology; IMR, Inspection, Maintenance, and Repair; LOA, Length of the vessel; ML, Machine learning; NYTEK, Technical requirements for 
fish farming installations; ROC, Receiver operating characteristic curve; SVM, Support vector machine; TAN, Tree Augmented Naïve Bayes (TAN); TN, True nega-
tives; TP, True positives; WEKA, Waikato Environment for Knowledge Analysis 

⁎ Corresponding author. 
E-mail address: xue.yang@ntnu.no (X. Yang). 

Reliability Engineering and System Safety 204 (2020) 107208

Available online 23 August 2020
0951-8320/ © 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2020.107208
https://doi.org/10.1016/j.ress.2020.107208
mailto:xue.yang@ntnu.no
https://doi.org/10.1016/j.ress.2020.107208
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2020.107208&domain=pdf


1.3. High-risk aquaculture operations 

Aquaculture operations (e.g., fish transportation, delivery of feed, 
feeding, net cleaning, delousing, and IMR (Inspection, Maintenance, 
and Repair), etc.) are critical to achieving safety objectives. Norwegian 
sea-based aquaculture is the second most dangerous profession after 
capture fisheries in terms of personal safety [10]. The industry is al-
ready operating at the edge of safety limits [24]. Operators working in 
aquaculture operations are exposed to harsh weather conditions such as 
high winds, stiff currents, and large waves that cause confined spaces 
unstable and moving. Crane operations can be complicated when the 
vessel is moving relative to net cages. The statistics of fish escape during 
2010–2016 show that among sea-based aquaculture operations, most 
fish escapes happened during delousing operation, handling of the 
sinker tube, handling of the dead fish pump during net cleaning, and 
loading and unloading of fish [11]. The delousing operation is also 
critical to fish health and welfare. The Norwegian food safety authority 
has received over 400 incident reports during and after the delousing 
operation in one year indicating a severely compromised fish welfare  
[12]. 

1.4. Challenges in decision-making related to safe operations 

The large and demanding aquaculture operations are mostly done 
by specialized service companies. The rapid development of the in-
dustry follows fast employment growth [13]. Concerns about in-
experienced employee arise from both the industry and the authorities, 
especially in service companies. Today, one service company may 
provide service to over 100 fish farms in different locations along the 
coast of Norway. Some fish farms have more complicated topography 
than the others. The technical, operational and geographical differences 
among fish farms raise challenges for service companies. Operators 
must be able to make critical decisions to avoid personal injuries, 
system failures, fish escape and negative impact on the fish health and 
welfare before/during the operation in a relatively short time. The on- 
site personnel decides whether to start/delay/abort operations mainly 
based on weather conditions and their experience. What is perceived as 
bad weather is rather subjective depends on whether the personnel feels 
they can handle the operation in such weather. The risk is considered 
implicitly as “gut feelings”, which is described as “risk-as-feelings”  
[14]. There is no explicit operational limits and cut off criteria or for 
high-risk operations. This could be dangerous in some situations. Re-
search has shown that in some adverse weather conditions, operators 
prioritize fish safety (e.g., reducing the risk of fish escape) over per-
sonnel safety [15]. The need for such operational limits, as well as a 
systematic and structured process for determining the limits, increases 
strongly. 

1.5. Opportunities for a safer decision-making process 

1.5.1. Multi-source data 
The Norwegian aquaculture industry has taken the direction of 

using ICT-based solutions, such as monitoring and control tools in 
production. There are more operational data registered in the fish farms 
and services companies to keep records of the production and services 
provided. Along with the increase in using technology, the volume of 
open data is steadily increasing in the sector as well. Norwegian 
Meteorological Institute provides Application programming interface 
(API) to access historical weather and climate data. As such, obtaining 
weather data for different locations in the Norwegian coastal and 
marine areas has largely become feasible. Norwegian Food Safety 
Authority publishes sea lice reports from all fish farms weekly, and 
Norwegian Veterinary Institute publishes fish health data to reveal 
which fish farms have affected or are suspected of having pancreas 
disease and infectious salmon anemia. 

All the above data from various sources contain valuable risk 

information that provides input to make safe operational decisions. A 
critical question, however, is to investigate how to identify the most 
critical information from multiple sources and how to integrate this 
information into risk models to derive operational limits. The risk-based 
operational limits should help the operator to interpret the presented 
information and comprehend the meaning of several deviations to 
highlight any indication of a dangerous situation. 

1.5.2. Artificial intelligence and machine learning 
One of the main paradigms of Artificial Intelligence (AI) is problem- 

solving in which an intelligent task to automate is interpreted as a series 
of problems to be solved [16]. In our safe decision-making scenario, the 
intelligent task(s) are problems that arise in determining major risk 
contributors and predicting whether an operation is risky and should be 
aborted. 

Machine learning (ML) is a powerful technique for solving AI pro-
blems and has gained more traction over the past few years with the 
popularity of modern neural network and deep learning. Machine 
learning can be briefly explained as a reasoning strategy (inductive) 
that a program or AI agent harnesses to learn from past experiences or 
background knowledge to discover new, relevant information. It is 
normally employed a) in categorization in which it learns why ex-
amples are put together in a certain way, to later predict the category of 
an unseen example, and b) to learn a way of predicting the value of an 
unseen data attribute, given series of examples and some background 
information about those examples. In summary, ML is used to extract 
implicit patterns of data that cannot be easily found using experts and is 
concerned with ways to construct computer programs to improve au-
tomatically through experience. The main distinction between ML and 
statistical data modeling lies in their goals and strategies. Statistics is 
primarily concerned with model validity and accurate estimation of 
model parameters from which inferences are made. However, predic-
tion of unseen examples that is the main goal of ML is less of a concern. 

A wide range of fields try to harness ML techniques instead of re-
lying solely on statistical models with strong or weak assumptions. 
However, within the aquaculture sector, modern data science meth-
odologies, especially machine learning, have not been explored. The 
digitalization, open source data and operational data in today's aqua-
culture open the opportunity to employ ML techniques to build models 
to “unlock” the subjective experience of operators. By harnessing ML 
techniques, we would embrace the uncertainties brought by new 
technologies and more complex and unfamiliar operating environment. 

1.6. Objective 

The main objective of the paper is to explore an approach to define 
operational limits for aquaculture operations from a risk and safety 
perspective using modern data science. The defined operational limits 
aims to provide the aquaculture industry, especially the service com-
panies, support to make safe operational planning decisions for both 
coastal and offshore fish farms. 

2. Material and methodology 

2.1. Methodology 

As illustrated in Fig.1, the research starts with a literature review to 
identify accident scenarios and major risk factors that could impact the 
abort operation decision in typical aquaculture operations. An opera-
tional log from a service company is analysed and events are aggregated 
to extract relevant information. A selection of thirteen predictor attri-
butes based on major risk contributors are identified and relevant data 
are collected from different sources. The data are integrated into one 
datasheet, cleaned, pre-processed, and transformed to categorical data 
to enable an effective machine learning process. 

A statistical correlation analysis is carried out to identify attributes 
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that significantly correlate with the decision. Attributes are evaluated 
by the use of machine learning techniques to find the most important 
predictors to avoid overfitting and improve prediction model perfor-
mance. Subsets of attributes that are significant with respect to de-
termining the decision are used to define operational limits, results of 
which are presented and discussed in the paper. 

The operational decisions analysed in this study was obtained from 
a service company which provides aquaculture operation service to fish 
farmers, such as delousing, net cleaning, and mooring and so on. Such 
an operational log is used to record working hours for the clients (163 
fish farms). The recorded information includes the date of the opera-
tion, time to start operation, time to finish the operation, name of the 
fish farm, type of operation, vessels used for operation, whether the 
operation is aborted, and general comments. In some circumstances, the 
causes for aborted operation are commented, for example, “the wind is 
too strong”, “the visibility is poor”. Four meetings have been carried out 
with the service company and sea-based fish farms. The topics covered 
issues related to operation procedures, past accidents, possible accident 
scenarios, and risk factors to obtain domain knowledge. 

Whether the operation is aborted is interpreted as our classification 
problem which have two classes: “Abort operation = YES” and “Abort 
operation = NO”. WEKA (Waikato Environment for Knowledge 
Analysis) open-source machine learning suite/workbench [17] devel-
oped by the University of Waikato is used as a toolkit. Weka enables 
users to harness a large number of machine learning algorithms. The 
algorithms are used to select attributes and evaluate and develop a 
prediction model based on the most relevant factors. Genie (Graphical 
Network Interface) software developed by the University of Pittsburgh  
[18] is also used to reproduce and present the prediction model to infer 
under different conditions. More details about the process are given in 
the following subsections. 

2.2. Accident scenarios and major risk factors 

In Norwegian sea-based aquaculture, the most common modes of 
fatalities related to aquaculture operations are loss of vessel, man 
overboard, and blow from an object [19]. From 2004 to 2015, the 
majority (67%) of the accidents happened onboard work vessels, in-
cluding wellboats (i.e., a fishing vessel with a tank for the storage and 
transportation of live fish), and 21% happened in the fish farm. Severe 
injuries are mostly due to blowing from objects, falls, and entangle-
ment. [20] point out in current practices in the industry that the ha-
zards are generally identified; however, there is a lack of knowledge 
about risk factors during aquaculture operations. 

Fish escape is regarded as the most severe risk to the environment 
and is a challenge for the Norwegian aquaculture industry. Farmed fish 
is regarded as a threat to the wild fish population due to transferring of 
disease, interbreed, and competing with wild stock [21]. The fish es-
cape has been designated as one of three main categories of Norwegian 
fishery crime since 2011 [22]. The operators face fines if found re-
sponsible for large-scale escapes (i.e., escape of more than 10 000 fish  
[21]), in addition to reputation damage. The major causes of the fish 
escape are structural damage and holes in the net [23]. Collisions be-
tween non-operation related vessels and fish farms can also cause se-
vere damages, not only to the cages (in the worst case it may result in 
loss of the fish farm) but may also lead to large-scale fish escape [24,  
25]. 

In the research presented in this paper, the following five accident 
scenarios with corresponding risk factors are used as a basis for the 
work.  

• Scenario 1: fish escape due to structural damage  
• Scenario 2: fish escape due to holes in the net  
• Scenario 3: fatality due to loss of vessel  
• Scenario 4: fatality due to blow from objects  
• Scenario 5: loss of fish farm due to ship collision 

The following subsections describe important risk factors involved 
in the accident scenarios related to the weather, work vessel, the fish 
farm, operation, and crew. These factors are further used to derive at-
tributes for machine learning research. 

2.2.1. The weather 
The weather condition is a predominant accident cause in aqua-

culture operations. The weather includes wind, waves, current, pre-
cipitation, daylight, and relative humidity. Interviews conducted by  
[23] show that what is perceived as bad weather depends on the in-
dividual farm site and its location in terms of typical wind direction and 
currents. Generally, as long as the personnel on the fish farm perceive 
that the weather is “acceptable”, the operation would not be called off. 

2.2.1.1. Wind and waves. The upper parts of the vessel and the fish 
farm are mainly influenced by wind, while wind-generated wave and 
current loads mainly influence the lower parts. The wind load could 
account for 5–10% of the total forces on the mooring system of a farm  
[26]. Strong wind and high waves increase the capsizing risk of service 
vessels (scenario 3). It becomes difficult for the service vessels to berth 
to the floating collar and increase the chance for mooring lines of the 
net cage and the net come in contact with the vessels' hull and 
propellers. This increases the possibility to make holes on the net so 
that fish can escape (scenario 2). It is also observed that in rough 
weather, a strong wind gust can make it difficult for large service 
vessels to moor to the cages and that the operation has to be aborted 
eventually. Crane operations are particularly vulnerable to wind and 
waves. The strong wind increases the risk of the blow from objects in 
lifting operations (scenario 4). Moreover, the rough weather conditions 
make operations between vessels and fish cage challenging to perform, 
and, in turn, increase the risk related to operator slips/trips/falls while 
moving on the vessel deck or net cage. The strong wind and high waves 
also increase the likelihood of fish escape, especially for certain 
operations, such as handling the net and the sinker tube [23] 
(scenario 2). 

The wave conditions depend on wind condition, topography, 
proximity to open sea, and bathymetry. There are two types of waves: 
wind-generated and swell-generated waves. In sheltered areas where 
the most fish farms are located, the ocean swells are not significant to 
operability, while the wind-generated waves are the major concern 
while planning for aquaculture operations. 

2.2.1.2. Current. Current loads contribute to approximately 70% - 75% 
of the total forces on a typical mid-size fish cage in current conditions 
0.5–1.0 m/s [26]. Besides, during aquaculture operations, when the 
service vessels, especially large service vessels moor at the weather side 
of the cage, the anchor load could increase significantly in high current 
velocity. There is limited numerical study of large service vessels 
operating at a fish farm in current, but a similar research on wellboat 
shows that the anchor load to the cage could increase by up to 90% in 
current velocity 1.0 - 1.5 m/s, because of the wellboat [27]. In such 
situation, the risk of escape due to structural damage will increase 
(scenario 1). The current is therefore considered a potential risk factor 
for aquaculture operations. 

2.2.1.3. Visibility. Poor visibility has been identified as a risk factor in 
maritime accidents [28-31]. Heavy rain and fog can result in reduced 
visibility. The reduced visibility increases the demand for vessel 
maneuvering and positioning skills, which may increase the 
likelihood of vessels colliding with the fish farm (scenario 5). [23] 
reported darkness as a factor that led to human mistakes during 
operation, and night work has contributed to previous fish escapes 
and near accidents (scenario 2). With poor lighting, it is difficult to 
ensure that operations are performed properly. In some operations like 
net cleaning, the visibility becomes even poorer as water and biofouling 
are sprayed around. 
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2.2.2. The vessel 
2.2.2.1. Size of the vessel and age of the vessel. Aquaculture operations 
are performed by different types of vessels. For cleaning operations, 
mooring, inspections, changing of nets, and transportation of workers 
between shore and the fish farm, the most used vessels are 14.9 m 
catamarans, 25 m catamarans, and 40 m monohulls. 60 m vessels are 
sometimes used for delousing operations and mooring operations. In 
general, the small and medium vessels are more vulnerable to waves 
than the large service vessels. The statistics show that the fleet of vessels 
of 24 m and smaller has the largest share of shipwreck and the highest 
fatality rate among the accidents from 2007 to 2016 [32]. The 
majorities of accidents registered by the Norwegian Maritime 
Authority in 2015 and 2016 involved small vessels under 15 m [32]. 

The vessel related accidents have not been analyzed statistically 
with focus on the aquaculture sector. In the maritime industry, the size 
of the vessel and age of the vessel have been identified as risk factors 
that influence the severity of the accidents [31]. Age of the vessel has 
been identified as an indicator of ship conditions [31], but old ships do 
not always suffer more accidents than young ships [33, 34]. The quality 
of the shipbuilding, combined with the maintenance of the ship during 
operation, influence the accident rates. [34] point out that an older ship 
over 20 years of age is more prone to total loss accident. 

2.2.3. The fish farm 
2.2.3.1. Location of the farm. The conventional fish farms are usually 
placed in areas that are sheltered from waves by islands or fjords. This 
implies that if the waves come from a direction such that islands are 
placed directly in front of the production facility; the operational 
conditions are better than if the waves come from an open sector. In 
harsh weather conditions, if the vessel fails to secure the mooring line 
to the cage, the vessel may drift quickly and collide with the islands or 
rocks nearby (scenario 3). 

2.2.3.2. Age of fish farm. Age of fish farm (i.e., calculated from the 
commissioning year) could be an indirect indicator of its technical 
condition. Also, in 2004, the technical standard NS 9415 “Marine fish 
farms - Requirements for design, dimensioning, production, installation 
and operation” was introduced as a response to a high number of fish 
escapes because of structural failures [35]. The NYTEK regulations (i.e., 
Technical requirements for fish farming installations) require that a fish 
farm shall comply with the standard which put the requirement to the 
physical design of all the main components in an installation, 
functionality after assembly, and how the installation shall be 
operated to prevent fish escape. The companies producing main 
components (i.e., net pens, floating collars, mooring lines, barges, 
etc.) need to have a producer's certification, and the products need to 
have a certificate, to ensure the equipment can sustain the operating 
environment. The effect of NYTEK and NS 9415 to reduce structural 
failures is significant, especially after the last revision of NS 9415 in 
2009. Under the assumption that producer's certification could improve 
the quality of the fish farm components, whether the fish farms were 
built before 2009 or after 2009 is also considered under age of fish farm 
(see Table 1). 

2.2.4. The operation 
2.2.4.1. Type of operation. Most fish escapes happened during 
delousing operation, handling of the sinker tube, handling of the 
dead fish pump, net cleaning, and loading and unloading of fish [11]. 
These operations increase the likelihood of tearing holes in the net 
(scenario 2). The operations that involve the use of cranes expose the 
operators to higher risk and blow by objects (scenario 4) and have 
become the single most significant cause of fatalities in the last twenty 
years [19, 36]. These lifting operations have also been identified as 
contributing factor to fish escape [23]. 

2.2.5. The crew 
Operational errors during delousing or maintenance have been 

identified as one of the causes to fish escapes [21]. Fish escape has 
happened, for example, due to the net being left open after sorting fish 
or changing of nets and tearing of the net when crowding the fish 
(scenario 2). A study carried out by [23] shows that the underlying 
causes to human errors are: interaction with technology, physical 
working environment, workload, work pressure, skills, training, ex-
perience, communication and safety management in general. 

Human factors are also identified as a contributing factor to mar-
itime accidents, along with the condition of the ship and other external 
factors, such as bad weather [37]. [31] summarize human conditions 
that contribute to accidents from different sources which include un-
professional behavior, decision failures, inappropriate planning, misuse 
of equipment, failures related to supervision, inadequate attention, 
communication and cooperation, distraction, confusion, fatigue, health, 
and education. 

2.3. Data collection and data transformation 

In our classification problem between the classes “Abort 
operation = YES”, and “Abort operation = NO”, we face the following 
challenges. First, the data obtained for the year 2018 from January to 
April is a continuous operational log that records both “Abort 
operation = YES” and “Abort operation = NO” classes. However, the 
data for the year 2016 and 2017 only contain “Abort operation = YES” 
class. This is because of the limitation of accessing to the database that 
we could not get the complete dataset. Second, if we classify the classes 
only based on continuous operational data for 2018, there is a low 
number of samples of “Abort operation” = YES (12%). Classification 
based on imbalanced datasets is rather challenging since one class 
(often the interesting one) does not have enough samples. As such, it 
would be difficult for learning algorithms to generalize and form a 
hypothesis around the minority class. There are a number of ways to 
tackle imbalanced datasets: under sampling the majority or over-
sampling the minority data samples. Oversampling technique is com-
monly performed by synthesizing data instances, the result of which 
should be considered with a grain of salt. However, in under sampling, 
no artificial data is produced [38]. Samples of “Abort operation = YES” 
from the operational log years 2016 and 2017 are merged with data 
from 2018 so that we have 724 samples with 390 class YES and 344 
class NO. 

2.3.1. Data collection and limitation 
Thirteen attributes, described above, reflecting the risk factors and 

influencing the predicted outcome “Decision to abort operation” are 
used in this study. These attributes include average wind speed, maximum 
wind speed of gust, significant wave height, type of operation, visibility, wind 
comes from open sector, precipitation, daylights, maximum relative hu-
midity, vessel size, vessel age, age of fish farm, and island/Rock on collision 
path. Current and crew factors have been identified as risk factors, but 
they are not included in the current analysis due to limited access to 
these data. 

In today's practice, recording of wind measurement is not common 
on most of the sea-based fish farms. Hence, in this research, these data 
are retrieved from the closest official observation sites from Norwegian 
Meteorological Institution [39]. One limitation is that the observation 
sites may be located tens of kilometers away from the fish farm. The 
other limitation is that the availability of hourly-based wind data is 
rather low for most of the locations. 

The wave measurement equipment is rarely installed due to ex-
pensive cost, which means that practical wave related data are chal-
lenging to obtain. The significant wave height, which indicates the 
wave condition is estimated by using the fetch method as described by  
[40]. The method uses wind data (i.e., average wind speed (6 h) and 
wind direction) in connection with the fetch length to estimate 
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Table 1 
The attributes and categories for the analysis.      

No. Attributes Categories Description  

1 Decision to abort 
operation 

Yes No Predicted attribute 

2 Average wind speed B0: [0.0, 0.2] Calm 
B1: [0.3, 1.5] Light air 
B2: [1.6–3.3] Light breeze 
B3: [3.4, 5.4] Gentle breeze 
B4: [5.5, 7.9] Moderate breeze 
B5: [8.0, 10.7] Fresh breeze 
B6: [10.8, 13.8] Strong breeze 
B7: [13.9, 17.1] High wind, moderate 
gale 
B8: [17.2, 20.7] Gale, fresh gale 
B9: [20.8, 24.4] Strong/Several gale 
B10: [24.5, 28.4] Storm 
B11: [28.5, 32.6] Violent storm 
B12: [32.6, →] Hurricane 

Mean wind speed at 10 m above sea level on the date of the operation. NS 9415 recommends using 
data from the nearest or the two nearest weather stations when establishing the long-term statistics 
of wind speed.  

Definition of categories is based on Beaufort wind force scale, which is widely used worldwide and 
also adopted by Norwegian Meteorological Institution.   

3 Maximum wind speed of 
gust 

B0: [0.0, 0.2] Calm 
B1: [0.3, 1.5] Light air 
B2: [1.6–3.3] Light breeze 
B3: [3.4, 5.4] Gentle breeze 
B4: [5.5, 7.9] Moderate breeze 
B5: [8.0, 10.7] Fresh breeze 
B6: [10.8, 13.8] Strong breeze 
B7: [13.9, 17.1] High wind, moderate 
gale 
B8: [17.2, 20.7] Gale, fresh gale 
B9: [20.8, 24.4] Strong/Several gale 
B10: [24.5, 28.4] Storm 
B11: [28.5, 32.6] Violent storm 
B12: [32.6, →] Hurricane 

Strongest wind gust on the operation day. Gust is “a flurry of wind” that is more powerful and can be 
significantly higher than the value of average wind speed. They are therefore, dangerous for 
operations such as lifting [44].   

Definition of categories is based on the Beaufort wind force scale. 

4 Significant wave height  S1: [0–0.1) Calm (rippled) 
S2: [0.1–0.5) Smooth (wavelets) 
S3: [0.5–1.25) Slight 
S4: [1.25–2.5) Moderate 
S5: [2.5–4.0) Rough 
S6: [4.0–6.0) Very rough 
S7: [6.0–9.0) High 
S8: [9.0–14.0) Very high 
S9: [14.0, →) Phenomenal 

In aquaculture today, the wave conditions are mostly based on subjective observation, instead of 
measurement based. The subjective observations are not recorded in the operational logs. Two 
parameters represent wave conditions: significant wave height and wave period. Significant wave 
height is a statistical description of the wave phenomena, which is defined as the average wave 
height for the highest third of the waves in one registration [35]. According to a study conducted by 
SINTEF Ocean [45], the operational limits for service vessels are mainly set based on significant 
wave height. 
Definition of categories is based on the World Meteorological organization's codes for sea state. 

5 Type of operation Delousing  
General 
Mooring 
Net cleaning 
Net inspection 
Remotely Operated Vehicle (ROV) 
inspection 
Inspection of ring 

The operations that are recorded in the operational logs. 

6 Visibility Good 
Bad 

Visibility of the environment during marine operation. The categories are retrieved from descriptive 
information registered in the comment column of the operational logs. 

7 Wind comes from open 
sector 

Yes 
No 

Wind direction is considered in connection with the fetch method, whether it comes from the open 
sector or not (Fig. 2).  

8 Precipitation Mainly dry: [0, 0.4) 
Light rain: [0.5, 2)  
Rain/Snow: [2, 20) 
Heavy: [20, → ) 

The accumulated amount of precipitation in 24 h. The heavy precipitation may lead to bad visibility 
and creates difficulties for the operation.  
Definition of categories is adopted from the Norwegian Meteorological Institute [46]. 

9 Daylights Good: the task can be carried out 
thoroughly under daylight 
Medium: half of the task can be carried 
out in daylight 
Bad: the task will be carried out 
thoroughly in the darkness 

Sunrise and sunset information of each location is retrieved from website [47]. 

10 Maximum relative 
humidity 

R0: [0, 10) 
R1: [10, 20) 
R2: [20, 30) 
R3: [30, 40) 
R4: [40, 50) 
R5: [50, 60) 
R6: [60, 70) 
R7: [70, 80) 
R8: [80, 90) 
R9: [90, 100) 
R10: [100) 

Maximum relative humidity in 24 h. The humidity may correspond to the possibility of fog forming, 
which would lead to bad visibility.  

11 

(continued on next page) 
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significant wave height upon fish farms that are registered in the op-
erational log on the day of the operation. The basic principle is that the 
longer the fetch length and the higher the wind speed, the more en-
ergetic the sea state will be, which means that the fish farm is exposed 
to a tougher operating environment. Fetch plot can be generated with 
indicated wind direction, which illustrates whether the wind comes 
from the open sector1 or not (Fig. 2). The fetch analysis must be used 
with the understanding that there is uncertainties in the estimates of the 
wave parameters. The method assumes deep water and constant wind 
over a period of 6 h. Also, it does not include swell waves. 

The operation and vessel related information is retrieved from the 
service company, and the fish farm related information (e.g., location, 
commission year) is obtained from the Norwegian Directorate of 
Fisheries [41] for further processing. 

2.3.2. Data transformation 
Data transformation is the process of aggregating, summarizing, and 

in general preparing the data into forms that can be used by machine 
learning algorithms [42]. In this project, original operational data 
consists of several events and actions logged during an operational day, 
and these events are all aggregated into one row. The final daily op-
erational decision is presented in the log and highlights whether the 
operation was eventually aborted or not. Often, during a day, the op-
eration starts and later aborts due to change of weather condition, and 
it would be possible to keep all interim decisions and their corre-
sponding weather conditions as one data point. However, since we did 
not have access to hourly weather data that caused the possible changes 
of the decision during each day, we focus on the general weather 
condition of an operational day and final decision in this study. 
Therefore, we decided to only keep the final decision of each day along 
with corresponding weather conditions. 

The original dataset consists of a mixed numeric (e.g., average wind 
speed) and categorical data (e.g., type of operation, outcome decision). 
The numeric data is discretised as this has been shown to be an effective 
measure to have improved performance of several Bayes net and lo-
gistic regression techniques [43]. The defined categories and descrip-
tions of the attributes are listed in Table 1. 

2.4. Classification 

2.4.1. Classification methods 
In an initial analysis, the performance of classification model with 

all 13 attributes using different classifiers are assessed. The classifiers 
include decision trees, Bayesian networks, and Support Vector 
Machines. The best success rate reaches 87.4% with ROC area 0.942, 
which means 87.4% of the cases can be appropriately classified based 
on the pre-identified attributes. This can be considered as a significant 
result in the domain of aquaculture operation, in which we don't have 
all the possible information at our disposal. 

Random Forest (unlimited depth), Bayesian network using Tan 
search algorithm, and support vector machine (SVM) showed good 
predictive power with rather similar performances. Among the classi-
fiers, the graphical Bayesian network (BN) model which captures the 
compositional structure of the relations offers an interesting perspective 
on interpreting the outcome decision. BN is a graphical representation 
of a joint probability distribution of a set of attributes. The node in the 
directed acyclic graph represents a variable, and a directed arc provides 
independence/dependence relationships between the nodes. A BN is 
both descriptive and predictive. One attractive feature of BN is the in-
ference capability of the class given the observed values of the attri-
butes. We may also infer the probability distribution for some attributes 
given the values or distributions for the remaining attributes. Therefore, 
the BN was chosen for further detailed analysis. 

In the research, K2 with the number of parents restricted to a pre-
defined maximum, Hill-climber, and Tree Augmented Naïve Bayes 
(TAN) are used as network training algorithms. K2 algorithm has a 
fixed ordering of attributes and processes each node in turn, and 
greedily considers adding edges from previously processed nodes to the 
current processing one to maximize the network's performance [48]. 
Hill-climber algorithm follows a hybrid search-and-score principle that 
first reconstructs a skeleton of a BN and then adding and deleting arcs 
with no fixed ordering of attributes to improve the network perfor-
mance [49]. The algorithm for learning TAN classifiers first learns a 
tree structure over node set, then use mutual information tests condi-
tioned on classification node. A link is added from the classification 
node to each attribute node [50]. The class then has no parents, and 
each attribute has the class attribute as the parent. 

2.4.2. Accuracy of classifiers 
The following classifier accuracy measures are used to evaluate the 

prediction models.  

• Classification success rate: the percentage of test set tuples that are 

Table 1 (continued)     

No. Attributes Categories Description  

Vessel size 
(Length of the vessel) 

Small: 15 m 
Medium: 25 m 
Large: > 40 m 

The vessel size is defined based on the length of the vessel (LOA), which are usually used in 
aquaculture operations. 

12 Vessel age Very old: [25, ) 
Old: [20, 25) 
Medium-old: [15, 20) 
New-Medium: [10, 15)  
Relative new: [5, 10) 
New: [0, 5) 

Age of the vessel at the time of the operation. The study of accidents about the age of the ships shows 
that most of the vessels are over 25 years old [33], which are defined as “Very old”.  

In 2015, the Norwegian Maritime Authority enforced a new regulation for cargo vessels of 8–24 m 
length, which introduced new technical requirements for the aquaculture fleet below 24 m to 
improve the safety level of the service vessels. This forms the basis to define to vessels less than 5 
years old as “New”. 

13 Age of fish farm Old: [<1979) 
Old-Medium: [1979, 1989) 
Medium: [1989, 1999) 
Medium-New: [1999, 2009) 
New: [2009, →] 

The age of the fish farm. To incorporate the effect of NS 9415, the fish farms that are established 
after 2009 is classified as “New”. The others are grouped in a ten-year range. 

14 Island/Rock on collision 
path 

Good: The average fetch length > 
500 m 
Bad: The average fetch length <= 500 
m 

The average fetch length from the Fetch analysis also indicates the vicinity of the site to islands or 
land and can be used to indicate whether there are islands in an average radius of 500 m. The 
resolution of the fetch search is 1 deg x 50 m, so islands smaller than 50 might not be detected.   

1 When the fetch reaches 40 km, the search for island is terminated, and the 
sector is assumed to be open [40] Lader P, Kristiansen D, Alver M, Bjelland HV, 
Myrhaug D. Classification of Aquaculture Locations in Norway With Respect to 
Wind Wave Exposure. ASME 2017 36th International Conference on Ocean, 
Offshore and Arctic Engineering: American Society of Mechanical Engineers; 
2017. p. V006T05A5-VT05A5. 
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correctly classified.  
• Confusion matrix (contingency table): a measure that shows how 

well the classifier can recognize tuples of different classes. In our 
case, Abort operation has two classes: YES or NO. True positives (TP) 
shows the number of cases that the classifier predicted NO, and they 
indeed are NO in the test dataset. True negatives (TN) shows the 
other class that they are predicted YES and actually are YES too. 
False positives (FP) are the cases that are predicted YES, but their 
actual class is NO. False negatives (FN) is the number of tuples that 
are predicted NO, but they actually are YES. High True negative rate 
is practically more important than high True positive rate, because 
the more Abort operation = YES are correctly classified, the better to 
ensure safe operations. The low True positive rate, which means high 
False positives rate that the operation was classified not need to be 
aborted, but aborted, is not safety critical. So, if two models have the 
same classification success rates, higher TN is preferred than the 
lower one. The results of the confusion matrix in Section 3 are 
presented based on contingency table (Table 2).  

• ROC area (the area under Receiver operating characteristic curve): 
ROC curve is a plot that shows the True positive rate against the 
False positive rate at various threshold settings. The area under the 
ROC curve is a metric commonly used to evaluate the overall per-
formance of the classification model. A perfect classifier will have an 
area of 1.0. Therefore, we can evaluate the models by comparing the 
areas under the different ROC curves. 

2.5. Relevance analysis 

Relevance analysis, which includes correlation analysis and 
wrapper feature selection, are used to highlight attributes that are more 
relevant to the outcome (abort operation or not-abort operation deci-
sion) [42]. The results of the relevance analysis give a list of selections 
of attributes for further evaluation via different classifiers to find the 
best prediction model. 

The correlation analysis is carried out between attributes and out-
come, based on only 2018 dataset that has a representative of 391 
aggregated events. Person's Chi-square test is commonly used to carry 
out the correlation analysis for categorical attributes. However, in the 
dataset, more than one cell of the contingency table has less than five 
observations, which means the data is considered skewed and Chi- 
square is not suitable anymore. Fisher's exact test, which is specifically 
designed for small samples (less than 1000), is used instead, as re-
commended by [51]. 

The following data processing are carried out for Fisher's exact test 
to avoid bias caused by missing values, as recommended by [52]:  

a) Dataset without missing values.  
b) All the events that have missing values are excluded so that a 

complete dataset can be available for the statistical analysis. 172 
events are left for the analysis.  

c) Dataset with missing values imputed.  

d) All missing values are marked as level “NaN”. All 391 events are 
included in the analysis. 

e) Replace all missing values with means from the data for the statis-
tical analysis. All 391 events are included in the analysis. 

[53] pointed out that attributes that are significantly correlated 
with an outcome do not necessarily improve the prediction. This means 
significant attributes are not always good predictors, and the attributes 
with strong predictivity sometimes fail to be significant. In this study, 
the wrapper method using predictive machine learning algorithms is 
applied to evaluate attributes sets. One merit of wrapper method is that 
it supports detection of interaction between attributes. Another merit is 
that it searches for optimal attribute subset for the desired machine 
learning algorithm, which is Bayesian network in our study. 

3. Results 

The dataset (724 instances), which contains 390 class “Abort 
operation = YES” and 344 class “Abort operation = NO”, is divided 
into two parts, with 2/3 allocated to a training set and the remaining 1/ 
3 allocated to a test set. The training dataset is used to build the pre-
diction model, while the test dataset is to estimate the accuracy of the 
classification model. Predictive capacity is assessed based on success 
rate, confusion matrix, and ROC area. 

The BN generated using the selected features by the algorithms re-
ported success rate 85.4% with ROC area 0.939. The Bayesian network 
TAN learning algorithm treats the classification node (i.e., abort op-
eration) as the first node in the ordering to learn the structure, which 
means the classification node is treated as the parent of all other nodes. 
The Bayesian network is reproduced using GeNIe and the inferred 
conditional probabilities from data are entered into the nodes (Fig. 3). 
The conditional probabilities from each state are estimated from the 
data using the maximum likelihood method. 

It is observed from the dataset that four attributes have the ability to 
override others when they reach a certain state. When Average wind 
speed reaches B7 [13.9, 17.1], or maximum wind speed of gust reaches 
B10 [24.5, 28.4], or visibility is Bad, or precipitation is heavy, the op-
erations are aborted. This is also in line with the BN that has been re-
produced. When above-mentioned four attributes are set up to limit 
states, the probability of abort operation is updated to be 97%, 90%, 
84% and 82%. If we use the metaphor based on the traffic light, a single 
red light can call off the operation, the operational limits can be any of 
these overriding attributes reaching the above-mentioned limits. The 
challenge lies in situations when some of the overriding attributes are in 
a marginal situation which can be designated as orange. If two or three 
attributes have orange lights, what would be the best suggestion to the 
operators? The Bayesian network opens possibility to derive opera-
tional limits in such situations by updating belief based on entered 
evidences. In most circumstances, certain factors are known while 
planning for operations, such as type of operation, farm age, vessel size, 
and vessel age. The operational limits can then be represented by states 
of a combination of other attributes. For example, if we plan to do net 
cleaning operation tomorrow, using new small service vessels, farm age 
is new, what would be the operational limits in terms of weather con-
ditions? From the updated BN based on evidences (Fig. 4), we can 
roughly interpret that, if the forecast for tomorrow indicates that the 
maximum wind speed of gust would be approximately or higher than 
B7 (i.e., [13.9, 17.1] m/s), average wind speed approximately or higher 
than B3 (i.e., [3.4, 5.4]), rain, there is a higher likelihood that the 
operation will be aborted. In such a manner, the BN provides the pos-
sibility to derive operational limits upon the operational contexts, such 
as condition of the vessel and the farm, and type of operation, to fa-
cilitate operational planning decision-making. 

Table 2 
A confusion matrix for positive and negative tuples.      

Predicted class   

a (Abort  
operation = NO) 

b (Abort  
operation = YES)  

Actual class a (Abort  
operation = NO) 

True positive (TP) False positive (FP)  

b (Abort  
operation = YES) 

False negative(FN) True negative (TN) 
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4. Discussion 

The proposed approach is a risk-assessment guided development 
process using machine learning techniques to derive operational limits 
to support planning decisions related to high-risk aquaculture opera-
tions. The risk to personal safety, fish escape are considered in the 
process. The objective of the study is not to propose accurate opera-
tional limits, but an approach to define such limits. From the devel-
opment process of the limits, the following topics for discussion arise, 
which are:  

• Novelty of the approach  
• Usefulness of risk-based operational limits  
• Advantage and disadvantage of the approach  
• Limitations 

4.1. Novelty of the approach 

Machine learning has been applied to safety and risk research in 
recent years mainly to explore the factors that contribute to accidents  
[26-29]. Within the aquaculture sector alone, the advantage of machine 
learning has not been explored and harnessed. In this study, we used a 
risk assessment guided approach and the possibilities that arise in open 
source data and operational data in aquaculture to explore subjective 
and experience-based decision-making process. The results show that 
based on carefully selected attributes and multi-source data, there is a 
potential to crack the code of “gut feelings” of the operators to explicitly 
express operational limits from a safety and risk perspective. 

The process starts from identification of accident scenarios from 
accidents reports. Major risk factors that may contribute to the identi-
fied scenarios are further identified from relevant literature in aqua-
culture field and other industries that have similar operating environ-
ment. The attributes that can represent the risk factor are established 
based on domain knowledge and further feed into machine learning 
process. The results show that the initial selection of attributes guided 
by the accident scenarios and identified risk factors have a rather good 
predicative performance of the decision. The approach eliminates the 
number of attributes so that the computation cost can be reduced sig-
nificantly. 

The BN, Tan search algorithms was selected to build up the model 
based on most important attributes following wrapper feature selection 
method. The operational limits derived from BN enables inference 
under conditions of uncertainty so that operational limits can reflect 
known evidences and unknow status of the other attributes. 

4.2. Usefulness of risk-based operational limits model 

The research shows that the operational limits model has potential 
to improve situational awareness of operational contexts, which is 
critical for service companies who have to operate in more than 100 
locations that have different technical, operational and geographical 
conditions. The model will facilitate understanding of how interactions 
between risk factors can influence the decision. The interactions are 
relatively hard to capture especially in an unfamiliar location with 
complicated typology. The risk-based operational limits should help the 
operator to interpret the presented information and comprehend the 
meaning of several deviations to highlight any indication of a dan-
gerous situation. The model can be one of the responses to industrial 
challenge of not able to get sufficient skilled staff [7]. 

The model of operational limits derived from the proposed approach 
can also contribute to guiding data collection by specifying data need to 
be more accurately recorded. Acquisition of data is the most time- 
consuming and difficult task in this study due to challenges discussed in  

Section 2.3.1. The research reveals the importance of collecting and 
sharing critical data to ensure safe operations. For instance, the data 
quality can be improved in the future by recording weather forecast 
data while planning the operation, and wind measurement data prior to 
decisions. 

4.3. Advantage and disadvantage of the approach 

In a data science project, it is essential to gather data, aggregate and 
integrate it, clean the data and pre-process it, and ultimately select the 
features and design a predictive system. Thus many trials and errors 
should be performed while going through all the mentioned stages [54]. 
It is estimated that data cleaning and exploration constitutes as much as 
80% of a data mining effort [55]. The risk assessment guided initial 
selection of attributes shows good results, and a good preparation of the 
attributes at the beginning of the analysis process can save time, avoid 
unnecessary trials and errors. 

One finding of the study is that the feature selection process dis-
carded several attributes without significantly influencing the pre-
dictive accuracy. This includes wind comes from open sector, daylights, 
maximum relative humidity, and island/rock on collision path. Following 
the law of parsimony, a simpler model that contains less number of 
features that can have higher predictive accuracy compared to more 
complex models is the drive behind feature selection. These features 
may be irrelevant in presence of the others or redundant from data 
processing perspective. Whether they can be regarded as non-safety 
critical is subject to discussion. The analysis is based on historical op-
erational logs. What is “unlocked” are what the operators have been 
considering while making abort operation decisions. The derived model 
can illustrate how the decisions have been made, but not necessarily 
how the decisions should be made. 

The performance of the derived operational limits is highly depen-
dent on the quality of attributes interpreted from identified risk factors. 
There is uncertainty related to whether the most important risk factors 
have been identified, whether the attributes represent the risk factors 
sufficiently, and whether data for each attribute is available. For ex-
ample, visibility can be influenced by precipitation, relative humidity, 
and daylights, however, sometimes, low visibility cannot be explained 
by these three attributes only. Sea fog usually occurs at a relative hu-
midity near 100% (R10); however, fog can also form at a lower hu-
midity, and sometimes even with a relative humidity of 100%, the fog 
fails to form . To ensure the most representative attributes, sufficient 
domain knowledge will be required. A line of research about risk and 
risk indicators can be the basis for better defining the attributes. Earlier 
work on safety-critical parameters, which are factors that have direct 
and significant influences on the risk involved in operation [56], can be 
further explored in further work. 

4.4. Limitations 

This approach assumes that the decisions (i.e., abort operation or 
not) were risk-based, which means the operators were considering the 
risk of doing operation while making the decisions. The scenarios are 
the ones that expose both the personnel and the fish to high risk. The 
scenarios are used to derive major risk factors to further find possible 
relevant attributes. However, the factors that may influence the severity 
of consequences are not covered in the study. In other words, the 
quantifications of losses is not considered/covered. This is a limitation 
of the approach. 

In our case, the Bayesian network is selected as the most feasible 
model due to its high predictive performance, powerful representation 
of knowledge, and inference capability under conditions of uncertainty. 
There is inherent uncertainty in machine learning techniques, 
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especially in the attribute subset selection domain, due to the statistical 
nature of most of its algorithms. It is still a challenge that sometimes the 
attributes look irrelevant in isolation, but may become relevant in 
combination [54]. 

Besides the uncertainty rooted in the machine learning techniques, 
there are also uncertainties with respect to handling missing values. As 
typical, imputing missing values usually gives more accurate models 

than dropping the column entirely [42]. In this research, part of the 
missing values is filled by the most probable values manually. For ex-
ample, some missing “gust”-values are replaced by the indicated wind 
speed in the comments´ column if there is any. Some algorithms (e.g., 
Bayes net classifier) replace all missing values in the dataset auto-
matically the modes and means from the training data [57]. The un-
certainties of the replaced value may introduce bias into the final re-
sults. 

The on-site validation of the operational limits model is not covered 
in the current study yet. To be used by the service company, the model 
has to be further learned by larger datasets, and digitalization of the 
data collection and transformation will be necessary. Such validation 
will be implemented at later stage of the project with close collabora-
tion with the service company. 

5. Conclusion 

The objective of the research is to explore the possibilities that arise 
from multi-source data to propose an approach to define operational 
limits, as an input to support safe operational decision-making. A risk 
assessment guided development process using machine learning tech-
niques is proposed, and the resulted operational limits model con-
tributes to a better understanding of operational contexts. The digita-
lization in aquaculture industry and advances in data science open up 
the possibility to turn implicit experiences to explicit knowledge. The 
operational limits and the proposed approach to define such limits, will 
be validated on field operations in the same service company. Based on 
the research outcome and test results, a guideline for data collection 
will be prepared to improve data quality, especially for site-specific 
data. The potential of digitalizing the results to ICT system will also be 
discussed in the further work.  

Fig. 1. Method used in the research presented in this paper.  

Fig. 2. Example of fetch plot that shows the wind direction and open sector  
[50]. 
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