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Abstract— In this paper we consider the problem of mixed
H2/H∞ control to combine optimal and robust control for
a double integrator system with nonlinear performance vari-
ables, and we apply this to control an articulated intervention
autonomous underwater vehicle (AIAUV). The AIAUV has an
articulated body like a snake robot, is equipped with thrusters,
and can be used as a free-floating underwater manipulator.
The objective is to control the joints of the AIAUV to desired
setpoints without causing collisions between links or with obsta-
cles in the environment. The mixed H2/H∞ problem is viewed
as a differential game, and a set of matrix equations is solved
in order to construct an approximate solution to the problem
for a system described by double integrator dynamics and
with nonlinear performance variables. A feedback linearising
controller is derived to obtain the double integrator dynamics
for the joints of the AIAUV, and the solution found for the
mixed H2/H∞ control problem is applied to the resulting
system. Simulations demonstrate that collisions between links of
the manipulator are successfully avoided also in the presence
of parameter uncertainties while regulating the joints to the
desired setpoints, and the method can easily be extended to
include collision avoidance with static and dynamic obstacles
in the environment.

I. INTRODUCTION
Robotic systems are increasingly taking over tasks in envi-

ronments which are dangerous or inaccessible to humans, an
example of which are deep seas. Exploration and interven-
tion for research and industry purposes are more and more
often not only performed by machines, but also done auton-
omously, removing the need for involving a human operator.

An articulated intervention autonomous underwater vehi-
cle (AIAUV) combines the jointed body of an underwater
snake robot with thrusters, which enable it to propel itself
forward or hover in one place [1]. This, combined with its
articulated body, allows it to be used as a free-floating ma-
nipulator arm to perform inspection, maintenance and light
intervention tasks. The slender, articulated body allows it to
access narrow, confined spaces, which makes it well-suited
for operating at sites such as underwater constructions, caves
or ship wrecks. However, in order to operate within confined
spaces, the AIAUV must avoid colliding with obstacles in the
environment, and also avoid collision with itself.
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Being an underwater vehicle, the AIAUV is subject to
hydrodynamic effects, the parameters of which are difficult
to identify [2]. This calls for robust control methods capa-
ble of handling parameter uncertainties, as well as other
disturbances. Some robust control approaches have been
considered for the AIAUV already in e.g. [3] for tracking
of pre-planned trajectories for the joints and position of
the vehicle. While collisions with static obstacles can be
prevented by planning appropriate trajectories using methods
such as those in e.g. [4], collisions with dynamic obstacles
require a different approach.

Avoiding collisions with both static and dynamic obstacles
was considered already in [5], where desired joint velocities
of a manipulator arm are modified to avoid an obstacle, so
long as it does not interfere with the main task. Multiple tasks
in strict priority can be combined in a similar manner [6].
These approaches require the manipulator to be kinematically
redundant, i.e. that it has more degrees of freedom (DOFs)
than required to perform its primary tasks, which enables it
to satisfy multiple objectives. This redundancy resolution is
usually performed at the kinematic level, requiring a separate
dynamic controller, but approaches including dynamics also
exist [7]. Objectives such as collision avoidance, where the
goal is to keep a task variable within a set of values, can be
accomplished by considering them only when the variable is
outside of or exiting the set of desired values, and deactivat-
ing them otherwise [8]. This results in discontinuous velocity
or acceleration references. Methods for smooth transitions
exist [7], [9], but in [7], where both kinematics and dynamics
are considered, priority is lost during transitions. This allows
lower-priority tasks to interfere with higher-priority ones, the
consequences of which could be catastrophic in the case of
safety-critical, high-priority tasks. Loss of priority is not an
issue in [9], but here only the kinematic level is considered.
Robustness of such approaches against modelling errors is
examined in [10] for the case of redundancy resolution at
the dynamic level, and errors are found to only affect the
transient behaviour of the system. In the case of redundancy
resolution at the kinematic level, robustness can be achieved
by pairing it with a robust dynamic controller, such as in [11].
Neither of the works [10], [11] consider activation and
deactivation of tasks, which is necessary for implementing
tasks such as collision avoidance.

While the aforementioned methods have been developed
primarily for redundant robotic manipulators, a method of
collision avoidance which is applicable to a larger class of
systems relies on the use of artificial potential fields, de-
signed to push a robot or parts of it away from obstacles and



towards a goal [12]. This is a local approach and vulnerable
to the presence of local optima or equilibria. This issue has
been addressed in [13], for scenarios in which the location
of obstacles in the environment is known beforehand.

Local equilibria, such as e.g. deadlocks are avoided
in [14], [15], where collision avoidance for multi-agent sys-
tems is achieved by formulating the problem as a differential
game. A benefit of this game theoretic formulation is that
it enables multiple objectives, which may or may not be
conflicting, to be considered simultaneously. This can also
include robustness with respect to disturbances. The problem
of mixed H2/H∞ control, which concerns the combination
of optimal control and disturbance attenuation, is formulated
as a game played by the control input and an exogenous
disturbance in [16] for linear systems, and in [17] for a
more general class of nonlinear systems. Mixed H2/H∞
control for robotic manipulators was considered in [18] for
tracking joint angle trajectories, but only with a quadratic
optimisation objective with constant weights. For general
nonlinear system dynamics and more complex objectives,
approximate solutions to differential game problems can be
found by using the approach in [19]. However, this requires
the solution to a set of matrix equations which may be
difficult to solve. The agents considered in [14], [15] satisfy
or are made to satisfy single integrator dynamics by using
feedback linearisation. An explicit solution for a manipulator
not subject to any damping or gravitational forces was found
in [20], for the case of either optimal control or H∞-control.

In this paper, we consider the problem of regulating the
joints of an AIAUV to desired setpoints, while simultaneous-
ly avoiding collisions, in the presence of parameter uncertain-
ties. In order to obtain a tradeoff between optimality and
robustness, we use the method of H2/H∞ control. We first
develop a mixed H2/H∞ controller for the general class of
systems described by double integrator dynamics, with non-
linear performance variables. Specifically, we find a solution
to a set of equations required to apply the result from [17] to
such systems. We then use a feedback linearising input to
simplify the joint dynamics of the AIAUV to those of a
double integrator, and combine it with the solution found
for the mixed H2/H∞ control problem. Collision avoidance
between the links of the AIAUV is demonstrated in simula-
tions, and the method can easily be extended to consider
also collisions with static and dynamic obstacles in the
environment. Since the problem of mixed H2/H∞ control
considers disturbance attenuation, the result can be used to
compensate for possible partial cancellation of terms in the
feedback linearisation due to parameter uncertainties. This
is especially important for underwater systems, which are
subject to hydrodynamic effects that are difficult to identify.
The solution found in this paper is applicable to a wide
class of systems, in particular mechanical systems for which
feedback linearisation can be used to simplify the system to
double integrator dynamics. It is also applicable to multi-
agent systems in which all agents collaborate to accomplish
a common objective.

This paper is organised as follows: the method for con-

structing solutions of (general) mixed H2/H∞ control prob-
lems presented in [17] is recalled in Sec. II, where also
the specific solution corresponding to systems described
by double integrator dynamics is provided. In Sec. III the
AIAUV model, the feedback linearising input for the joints
and the objective used for collision avoidance are presented.
Simulations illustrating the results from Secs. II and III are
provided in Sec. IV, and conclusions are given in Sec. V.

II. MIXED H2/H∞ CONTROL
In this section we recall the method for constructing

approximate solutions to the differential game formulation of
the mixed H2/H∞ control problem provided in [17], and we
find the solution required to apply the result to a system de-
scribed by double integrator dynamics. While the dynamics
themselves are linear, the performance variables considered
in this paper will be nonlinear. Consequently, solutions for
linear systems such as those in e.g. [16] cannot be applied.
A. Solution for a general nonlinear system

The systems considered in [17] are nonlinear systems of
the form ẋ = f(x) + g1(x)w + g2(x)u (1)
with state x ∈ Rm, w ∈ Rm1 a disturbance or exogenous in-
put, and u ∈ Rm2 a control input. The functions f(x), gi(x)
with i = 1, 2 are continuous. The origin is assumed to be an
equilibrium of the system (1) and f(x) sufficiently smooth,
such that there exists a mapping F (x) with f(x) = F (x)x.

The system (1) has the associated performance variables
z1 = h1(x) + k1(x)u, z2 = h2(x) + k2(x)u (2)

with z1 ∈ Rp1 , z2 ∈ Rp2 and where hi(x), ki(x) with i =
1, 2 are continuous in x. The performance variables z1 and
z2 will be associated with the H∞ and the H2 criteria in the
mixed H2/H∞ control problem, respectively.

The mappings in (2) are assumed to satisfy hi(0) =
0, hi(x)

⊤ki(x) = 0 and ki(x)
⊤ki(x) = Im2 for i = 1, 2,

where Im2 denotes the m2 ×m2 identity matrix. From the
first of these conditions it follows that we can write

hi(x)
⊤hi(x) = x⊤Qi(x)x (3)

where Qi(x) ≥ 0 for i = 1, 2.
The mixed H2/H∞ control problem can be stated as

follows.
Problem 1: Given the system (1), determine a feedback

control law u∗ such that
i) The origin is a (locally) asymptotically stable equilibrium

of the system when w(t)=w∗, w∗ being the worst-case
disturbance, with region of attraction including a non-
empty neighbourhood Ω̄ containing the origin.

ii) For every w ∈ L2 such that the trajectories of the system
remain in Ω̄, the L2-gain from w to z1 is less than some
γ > 0, i.e. ∫ T

0

∥z1∥2 dt ≤ γ2

∫ T

0

∥w∥2 dt (4)

iii) The control input u∗ regulates the state x(t) in such a
way as to minimise the output energy with respect to the
output z2 when the worst case disturbance w∗ is applied
to the system, i.e. u∗ minimises

J2(u,w) =
1

2

∫ T

0

z⊤2 z2 dt =
1

2

∫ T

0

x⊤Q2(x)x+u⊤u dt (5)

when w = w∗.
We consider the infinite horizon case, i.e. when T → ∞.



Problem 1 can be formulated as two-player differential
game (see [16]). To this end, let

J1(u,w) =
1

2

∫ ∞

0

−z⊤1 z1 + γ2w⊤w dt

=
1

2

∫ ∞

0

−x⊤Q1(x)x− u⊤u+ γ2w⊤w dt .
(6)

Problem 2: Consider the system (1). Determine a set of
admissible feedback strategies u∗, w∗ which satisfy the Nash
equilibrium inequalities

J1(u
∗, w∗) ≤ J1(u

∗, w), J2(u
∗, w∗) ≤ J2(u,w

∗) (7)
for all admissible pairs (u,w∗) and (u∗, w).

A pair of feedback strategies (u,w) is said to be admissi-
ble if the origin of the system (1) in closed loop with (u,w)
is a (locally) asymptotically stable equilibrium point.

Note that

J1(u,w) ≥ 0 ⇒
∫ T

0

∥z1∥2 dt ≤ γ2

∫ T

0

∥w∥2 dt . (8)

The factor γ > 0 in (6) is referred to as a disturbance
attenuation level. When J1(u,w) ≥ 0, γ is the L2-gain from
the disturbance w to z1.

Solving this differential game requires the solution of a
set of partial differential equations which are in general
difficult to solve for nonlinear systems. Instead of finding the
exact solution, a means of constructing approximate solutions
was developed in [19], and applied to the mixed H2/H∞
control problem in [17]. A dynamic extension ξ(t) ∈ Rm is
introduced, along with the extended value functions

V1(x, ξ) =
1

2
x⊤P1(ξ)x− 1

2
(x− ξ)⊤R1(x− ξ) ,

V2(x, ξ) =
1

2
x⊤P2(ξ)x+

1

2
(x− ξ)⊤R2(x− ξ)

(9)

where Ri = R⊤
i > 0, and P1(x) ≤ 0, P2(x) ≥ 0 are

so-called algebraic P̄ solutions for the system (1), (2), to
be introduced in Sec. II-C. Furthermore, the system (1) with
output y = x⊤Q1(x)x+x⊤Q2(x)x must satisfy the following
assumption.

Assumption 1: The pair {f, y} and the pair {f −
1
γ2 g1(x)g1(x)

⊤ ∂V ⊤
1

∂x , y} are both zero-state detectable.
An approximate solution of Problem 2 is provided in the

following statement (see [17], [19] for details).
Theorem 1 ([17]): Consider the system (1), the cost func-

tionals (6), (5) and the resulting nonzero-sum differential
game in Problem 2. Let R1 and R2 be such that R2 > R1

and Ri(R1 + R2) + (R1 + R2)Ri > 0, for i = 1, 2. There
exists a neighbourhood Ω, containing the origin, and κ̄ > 0
such that for all κ ≥ κ̄ the inequalities

HJI1 = −1

2
h1(x)

⊤h1(x)−
1

2

∂V2

∂x
g2(x)g2(x)

⊤ ∂V ⊤
2

∂x

− 1

2γ2

∂V1

∂x
g1(x)g1(x)

⊤ ∂V ⊤
1

∂x
+

∂V1

∂x
f(x)

− 1

2

∂V1

∂x
g2(x)g2(x)

⊤ ∂V ⊤
2

∂x
+

∂V1

∂ξ
ξ̇ ≥ 0 ,

(10a)

HJI2 =
1

2
h2(x)

⊤h2(x)−
1

2

∂V2

∂x
g2(x)g2(x)

⊤ ∂V ⊤
2

∂x

+
∂V2

∂x
f(x)− 1

2

∂V2

∂x
g2(x)g2(x)

⊤ ∂V ⊤
1

∂x
+

∂V2

∂ξ
ξ̇ ≤ 0

(10b)

with

ξ̇ = −κ

(
∂V2

∂ξ
− ∂V1

∂ξ

)⊤

, (11)

are satisfied for all (x, ξ) ∈ Ω. Suppose Assumption 1
is satisfied with V1, V2 given by (9). Then, the dynamic
feedback strategy

u∗ = −g2(x)
⊤ ∂V ⊤

2

∂x
, w∗ = − 1

γ2
g1(x)

⊤ ∂V ⊤
1

∂x
(12)

is such that the closed-loop system (1), (11), (12) is (locally)
asymptotically stable.

The optimal input and worst case disturbance given by (12)
are the Nash equilibrium strategies of a modified differential
game with modified cost functionals J̃1(u,w) ≤ J1(u,w)
and J̃2(u,w) ≥ J2(u,w) (see [16], [17] for details).

B. Double integrator dynamics
Consider now a system described by double integrator

dynamics, influenced by a disturbance at the acceleration
level, i.e.

ẋ =

[
0 In
0 0

]
x+

[
0
In

]
w +

[
0
In

]
u (13)

with x ∈ R2n and w, u ∈ Rn.
The system (13) has associated performance variables (2)

as defined previously. The matrices Q1(x), Q2(x) are now
assumed to satisfy the following.

Assumption 2: The matrices Q1(x) and Q2(x) can be
partitioned into n×n-blocks

Qi(x)=

[
Qi11(x) Qi12(x)
Qi12(x)

⊤ Qi22(x)

]
(14)

where the blocks Qi12(x) satisfy
Qi12(x)

⊤Qi12(x) < b1b2In ∀x (15)
for i = 1, 2 and some constants b1, b2 > 0.

C. Algebraic P̄ matrix solution
An X -algebraic P̄ solution for the general, nonlinear

system (1), (2) for the mixed H2/H∞ control problem is a
set of matrix-valued C1 functions P1(x), P2(x) ∈ Rm×m,
with Pi(x) = Pi(x)

⊤, i = 1, 2, and such that for all
x ∈ X ⊆ Rm they satisfy

−Q1(x)− P2(x)g2(x)g2(x)
⊤P2(x)

− 1
γ2P1(x)g1(x)g1(x)

⊤P1(x) + P1(x)F (x)

+ F (x)⊤P1(x)− P1(x)g2(x)g2(x)
⊤P2(x)

− P2(x)g1(x)g
⊤
1 P1(x)− Σ1(x) = 0 ,

(16a)

Q2(x)− P2(x)g2(x)g2(x)
⊤P2(x) + P2(x)F (x)

+ F (x)⊤P2(x)− 1
γ2P2(x)g1(x)g1(x)

⊤P1(x)

− 1
γ2P1(x)g1(x)g

⊤
1 (x)P2(x) + Σ2(x) = 0 ,

(16b)

where Σi(x) ∈ Rm×m are symmetric, positive semidefinite
matrix-valued functions satisfyingΣi(0)>0 for i=1, 2, and
such that the matrices P1(x), P2(x) satisfy P̄2−P̄1>0, where
P̄i=Pi(0), i=1, 2, solve a set of coupled Riccati equations
for the system (1), (2) linearised about the origin. Because
the dynamics of the system (13) are linear, the linearised
coupled Riccati equations coincide with the equations (16)
evaluated at x=0. P1(x) and P2(x) are called algebraic P̄
solutions if the equations (16) hold for all x ∈ R2n, i.e. if
X =R2n.



−Q111 − P212P
⊤
212 −

1

γ2
P112P

⊤
112 − P112P

⊤
212 − P212P

⊤
112 − Σ111 = 0 (18a)

−Q112 − P212P222 −
1

γ2
P112P122 + P111 − P112P222 − P212P122 − Σ112 = 0 (18b)

−Q122 − P 2
222 −

1

γ2
P 2
122 + P⊤

112 + P112 − P122P222 − P222P122 − Σ122 = 0 (18c)

Q211 − P212P
⊤
212 −

1

γ2
P112P

⊤
212 −

1

γ2
P212P

⊤
112 +Σ211 = 0 (19a)

Q212 − P212P222 + P211 −
1

γ2
P112P222 −

1

γ2
P212P122 +Σ212 = 0 (19b)

Q222 − P 2
222 + P⊤

212 + P212 −
1

γ2
(P122P222 + P222P122) + Σ222 = 0 (19c)

The dependency of Pi, Qi, Σi on x will now be omitted
for brevity. Let

Pi =

[
Pi11 Pi12

P⊤
i12 Pi22

]
, Σi =

[
Σi11 Σi12

Σ⊤
i12 Σi22

]
. (17)

Substituting (13) for the double integrator dynamics and (2)
for the performance variables into (16) yields a set of six
equations, given in (18) and (19).

Algebraic P̄ matrix solutions, i.e. matrices P1 and P2

satisfying (18) and (19), are not unique, and determining the
block elements of Pi in (17) is nontrivial. In the following,
we will show that choosing P112 = −kP212, with k > 0,
enables us to find an algebraic P̄ solution for the game
defined in Problem 2.

Inserting P112 = −kP212 into (18a) and (19a) gives(
2k − 1− k2

γ2

)
P212P212

⊤= Q111 +Σ111 (20a)(
1− 2k

γ2

)
P212P212

⊤= Q211 +Σ211 (20b)
Since Qi11 + Σi11 ≥ 0, in order for a solution of (20) to
exist γ and k should satisfy

2k − 1− k2

γ2 > 0 , 1− 2k
γ2 > 0 (21)

which requires k to be chosen such that
γ2 − γ

√
γ2 − 1 < k < γ2

2 . (22)
Let k then be chosen as the solution to 2k−1− k2

γ2 = 1− 2k
γ2

satisfying (22), which gives
k = 1 + γ2 −

√
1 + γ4 . (23)

Notice that in order for the interval in (22) from which k
can be chosen to be non-empty, γ must satisfy

γ > 2√
3
. (24)

Remark 1: A γ > 1 merely limits how much the dis-
turbance w is amplified in the performance variable z1.
A solution admitting lower values for γ may be found
by introducing lower weights on the input u in the cost
functionals (5), (6), as was done in [18]. A similar effect
can be achieved by instead increasing the elements of the
matrixQ1.

Now let a = 1
1− 2k

γ2
. Choosing Σ111 = Q211 + b1In and

Σ211 = Q111 + b1In, with b1 > 0, gives
P212P212

⊤ = a (Q111 +Q211 + b1In) . (25)
Since the right-hand side of (25) is positive definite, P212

can be chosen as the Cholesky decomposition of the right-
hand side, and will also be positive definite [21].

Remark 2: The closer γ is chosen to its lower bound (24),
the greater a becomes. In order for the optimal control
input (12) to be feasible, the inequality (24) should be
satisfied with some margin.

Now let P122 = −cP222 with c > 0. Equations (18c)
and (19c) give(
2c− 1− c2

γ2

)
P 2
222 = Σ122 +Q122 + k

(
P212

⊤+P212

)
, (26a)(

1− 2c
γ2

)
P 2
222 = Q222 +Σ222 + P212

⊤+P212. (26b)
Let c = k, and choose

Σ122 = Q222 + (1−k)
(
P212

⊤+ P212

)
+ b2In

Σ222 = Q122 + b2In
(27)

with b2 > 0. Since k < 1, Σ122 and Σ222 are both positive
definite. We then have

P 2
222 = a

(
Q122 +Q222 + b2In + P212

⊤+ P212

)
, (28)

where the right-hand side is positive definite, and hence its
root P222 exists and is likewise positive definite.

Finally, inserting P112 = −kP212 and P122 = −kP222

into equations (18b) and (19b) gives

P111 = Σ112 +Q112 −
1

a
P212P222, (29a)

P211 = −Σ212 −Q212 +
1

a
P212P222 (29b)

where we choose Σ112=−Q112, Σ212=−Q212.
To be an algebraic P̄ matrix solution, P1(x), P2(x) must

satisfy P2(0)−P1(0)>0, and the matrices Σi(x) must satisfy
Σi(x)≥0 and Σi(0)>0 for i = 1, 2. The matrices Σ1(x) and
Σ2(x) both have positive definite upper-left blocks Σi11(x).
They are then positive definite if they fulfil

Σi22(x)− Σi12(x)
⊤Σi11(x)

−1Σi12(x) > 0 . (30)
Inserting for Σ1(x), and using that P212(x) and Q211(x) are
positive (semi) definite gives

Q222(x) + (1− k)
(
P212(x)

⊤ + P212(x)
)
+ b2In

−Q112(x)
⊤ (Q211(x) + b1In)

−1
Q112(x)

≥ Q222(x) + b2In − 1
b1
Q112(x)

⊤Q112(x) .

(31)

By Assumption 2 and since Q222(x) is positive semidefinite,
this is positive definite and so Σ1(x) is positive definite.
Likewise, Σ2(x) can also be shown to be positive definite.

Consider now P2(x), with P211(x) given by (29b). Since
1
a > 0 and both P212(x) and P222(x) are positive definite,
so is their product P211(x) [21]. Then P2(x) > 0 if the
following holds:

P222(x)− P212(x)
⊤P211(x)

−1P212(x) > 0 (32)
Substituting (29b) into (32) gives(

P222(x)
2 − aP212(x)

⊤)P222(x)
−1 > 0 . (33)

Since P222(x) is positive definite, so is its inverse. By rear-
ranging (28) to find an expression for P222(x)

2−aP212(x)
⊤

we see that this term is also positive definite. Hence (33)
holds, and P2(x) is positive definite for all x.



The matrix P1(x) is negative definite if −P1(x) is positive
definite. Since −P111(x) > 0, −P1(x) is positive definite if

−P122(x) + P112(x)
⊤P−1

111P112(x) =

kP222(x)− k2P212(x)
⊤P211(x)

−1P212(x) > 0 .
(34)

Again inserting (29b) for P211(x), this can be rewritten as(
P222(x)

2 − akP212(x)
⊤)P222(x)

−1 > 0 (35)
Since k < 1, P212(x) is positive definite and the inequal-
ity (33) holds, the inequality (35) also holds. Since P2(x)
and −P1(x) are positive definite for all x, it follows that
P2(0)− P1(0) > 0.

The result of this section is summarised in the following
Lemma 1: Consider the the system (13) with output vari-

ables (2), where Q1(x), Q2(x) are subject to Assumption 2
and with γ > 2√

3
. The matrices P1(x), P2(x) with P2 given

by (25), (28), (29b), and P1(x) given by (29a) and
P112(x) = −kP212(x), P122(x) = −kP222(x) (36)

constitute an algebraic P̄ solution for Problem 2.

III. APPLICATION TO AIAUVS

In this section we give the dynamical model of the AIAUV.
We then derive the feedback linearising controller for the
joints, and define the performance variables z1 and z2 for
achieving collision avoidance between links.

A. Vehicle model
An AIAUV can be modelled as an underwater vehicle-

manipulator system (UVMS) using the model from [2],
where the backmost link can be considered to be the vehicle
base. The dynamics of an AIAUV with n 1-DOF joints and
n+ 1 links are given by

M(q)ζ̇ + C(q, ζ)ζ +D(q, ζ)ζ + g(q, η2) = τ(q) (37)
where q ∈ Rn is a vector of joint angles, and ζ =[
v⊤ ω⊤ q̇⊤

]⊤
is the generalised velocity vector consisting

of the linear and angular velocities v, ω ∈ R3 of the base.
The matrix M(q) is the inertia matrix, including added
mass effects, C(q, ζ) is the Coriolis and centripetal matrix
and D(q, ζ) is the damping matrix, as given in [22]. The
gravity and buoyancy forces acting on the AIAUV are given
by the term g(q, η2), where η2 is an appropriate choice of
representation for the orientation of the base.

The generalised input τ(q) ∈ R6+n consists of the total
forces and moments on the base, and total joint torques
resulting from the control inputs. Based on [22], τ(q) can
be expressed as

τ(q) =

[
B(q)

06×n

In

] [
τthr
τq

]
. (38)

For an AIAUV equipped with m thrusters, the thrust config-
uration matrix B(q) is an (6 + n) ×m-matrix. The control
inputs τthr ∈ Rm, τq ∈ Rn are thruster forces and joint
torques, respectively.

B. Joint dynamics
In this paper we consider only the joint motion of the

AIAUV will be considered. The position and orientation of
the base are assumed to be controlled using the thrusters
independently of the joint motion, using control methods
such as those in e.g. [3].

The dynamics of the joints alone are described by the
lower n rows of the dynamics (37), which can be written as

q̈ =
[
0n×6 In

]
M(q)−1

(
B(q)τthr +

[
06×n

In

]
τq

− C(q, ζ)ζ −D(q, ζ)ζ −g(q, η2)

) (39)

Assume now that only an estimate of the parameters of
the manipulator inertia matrix is available. In particular
hydrodynamic parameters due to added mass effects are
difficult to identify. The inertia matrix estimate M̂(q) must
be positive definite. Let M̃(q) = M(q)− M̂(q) be the error
between the inertia matrix and its estimate. Further let the
lower-right n×n-block of M̂−1(q) be denoted M̂inv,q(q),
such that (39) can be written as

q̈ = M̂inv,q(q)τq +
[
0n×6 In

]
M̂(q)−1

(
B(q)τthr

− C(q, ζ)ζ −D(q, ζ)ζ −g(q, η2)− M̃(q)ζ̇
) (40)

Since the mass matrix estimate M̂(q) is positive definite,
the inverse and its lower-right block M̂inv,q(q) are likewise
positive definite, and hence invertible.

Assume further that the parameters of the thrust configu-
ration matrix B(q) and hydrostatic forces g(q, η2) are known
exactly, whereas for the parameters of C(q, ζ) and D(q, ζ)
only estimates are available, due to uncertain hydrodynamic
parameters. In particular, the estimated matrix Ĉ(q, ζ) should
be computed from the estimate M̂(q). Denote the estimated
damping matrix D̂(q, ζ), and let
τq = M̂inv,q(q)

−1
(
u−

[
0n×6 In

]
M̂(q)−1

(
B(q)τthr

+ Ĉ(q, ζ)ζ +D̂(q, ζ)ζ −g(q, η2)
)) (41)

where u is a new, virtual input to be assigned later.
Remark 3: The parameters of the thrust configuration

matrix and hydrostatic forces should be known exactly in
order for the disturbance due to parameter uncertainties to
have bounded energy, as considered in Problem 1. In some
cases also the parameters of g(q, η2) may be uncertain, e.g. in
the presence of tunnel thrusters through links, making it
difficult to know their volume exactly. The simulation results
in [18], where an error in the gravitational term is included,
suggests some robustness to this type of errors as well.

Inserting the input (41) into the dynamics (40), and
introducing error terms C̃(q, ζ) = C(q, ζ) − Ĉ(q, ζ) and
D̃(q, ζ) = D(q, ζ)− D̂(q, ζ), yields
q̈ =u+

[
0n×6 In

]
M̂(q)−1

(
−C̃(q,ζ)ζ−D̃(q,ζ)ζ−M̃(q)ζ̇

)
︸ ︷︷ ︸

=w

(42)

The dynamics of the joint angles q can then be written as[
q̇
q̈

]
=

[
0 In
0 0

] [
q
q̇

]
+

[
0
In

]
w +

[
0
In

]
u (43)

Finally, in order to achieve setpoint regulation, let q̃ = q−qd,
where qd is a vector of constant, desired joint setpoints. Then

˙̃q = q̇, ¨̃q = q̈ (44)
which gives[

˙̃q
¨̃q

]
=

[
0 In
0 0

] [
q̃
˙̃q

]
+

[
0
In

]
w +

[
0
In

]
u (45)

since the linearised system dynamics (43) do not depend on
the original state q. The control input (41) still requires the
original state q, which can be found as q = q̃ + qd. We will
now let x =

[
q̃⊤ ˙̃q⊤

]⊤
denote the error state of the system,



and note that it satisfies double integrator dynamics (13).
The virtual input u will be selected as the optimal control

input in (12).
C. Performance variables

We wish to design the cost functional (5) to be minimised
by the virtual control input u such that it leads to a trajectory
along which collisions between links of the AIAUV are
avoided, similarly to what has been done in [14] for collision
avoidance between multiple agents. In addition, joint limits
should be obeyed.

The matrix Q1(x) will be chosen simply as a constant,
diagonal matrix. A natural choice is the identity matrix I2n.

For the matrix Q2(x), the lower right block Q222(x) will
be chosen simply as a diagonal matrix. The upper-left block
Q211(x) will be a diagonal matrix with elements Q211i(x),
i = 1, ..., n chosen as

Q211i(x) = αi + βl
ig

l
i(qi) + βc

i g
c(q) (46)

where αi, βl
i, βc

i are positive weights, gli(qi) is a joint lim-
it avoidance function for joint i, and gc(q) is a collision
avoidance function penalising collisions between links of the
AIAUV.

The joint limit avoidance function gli(qi) is chosen as
gli(qi) =

1

(q2i − q2lim,i)
2

(47)

where qlim,i is the absolute value of the maximum joint angle
allowed for joint i, typically due to physical limitations.

Collision avoidance between links will be achieved sim-
ilarly as in the case of separate agents in [14], by using
inverse barrier functions as weights in the matrix Q2(x).
Each joint may cause collisions between not only the links
which it connects, but any two links on opposite sides of the
joint. Therefore, creating separate functions including only
the collisions a given joint may cause would give a large
overlap between the individual functions. To simplify this,
all joint errors will be weighted by the same function which
takes into account all possible collisions.

Denote by li half of the length of link i. A sphere of
radius li can then almost encompass the link in the case
of cylindrical links. To simplify the collision avoidance
function, this sphere will be used as an approximation of
the shape of the link. A collision between two links i and j
can then be avoided by ensuring that the distance between
their centers is greater than li + lj . A less conservative
behaviour can be achieved by approximating the link shapes
as ellipsoids instead. In the case of neighbouring links, colli-
sions can easily be avoided simply by respecting appropriate
joint angle limits, and will therefore not be included in the
collision avoidance function.

The distance between the centers of two links can be
found using homogeneous transformations. Let each link
have a reference frame attached to its back, as in [1]. The
homogeneous transformation from frame i to i + 1, for
i = 1, ..., n is

T i
i+1 =

Rqi

2li
0
0

01×3 1

 (48)

where Rqi is the rotation matrix describing the rotation
caused by joint qi. Consequently, the position pij of the center

TABLE I
LINK PROPERTIES

Link no. Length [m] Mass [kg] Thrusters
1 0.62 14.3 None

2, 4, 6, 8 0.104 6.0 None
3 0.584 12.7 2: Z, Y
5 0.726 9.8 3: X, X, Z
7 0.584 12.7 2: Y, Z
9 0.37 7.8 None

of link j relative to the center of link i in homogeneous
coordinates, with j > i, can be found as

pij =

Rqi

li
0
0

01×3 1

T i+1
i+2 ... T j−1

j

lj
0
0
1

 (49)

Then the distance between the links i and j, squared, is
dij(q) = pi⊤j pij − 1. We now define the collision avoidance
function as

gc(q) =

n+1∑
i=1

n+1∑
j=i+2

1

(dij(q)− (li + lj)2)
2 . (50)

As in [14], neither the initial state q(0) nor the desired
state qd can be states in which a collision occurs, and there
must exist a collision-free path from q(0) to qd in the state
space.

Collision avoidance with obstacles in the environment can
be similarly achieved by taking into account the position of
the base relative to the obstacle.

The matrices Q1(x), Q2(x) have now been chosen such
that Q1(x) + Q2(x) is positive definite and hence has full
rank. Then if the output y = x⊤Q1(x)x + x⊤Q2(x)x is
identically equal to zero, so is the state x, and Assumption 1
is satisfied for the system for any choice of Q1(x), Q2(x)
such that their sum is positive definite. Then using the alge-
braic P̄ matrix solutions for the double integrator dynamics
from Sec. II-C, Theorem 1 states that the system (45) is
asymptotically stable if u, w are the optimal input and worst-
case disturbance, respectively, as given by (12) with dynamic
extension ξ as given by (11) and V1, V2 as in (9).

IV. SIMULATION RESULTS

A. Implementation
The simulation model is implemented in

MATLAB/Simulink based on [22]. The model has 9
cylindrical links and 8 joints, out of which joints 1, 3, 5 and
7 rotate about the z-axis, and joints 2, 4, 6 and 8 about the
y-axis. The links have radius 0.085 m, and further properties
given in Table I. The notation ”2: Z, Y” means that the
link has two thrusters, one acting in the z-direction and one
in the y-direction. The vehicle has 7 thrusters in total. The
even-numbered links are short links separating two joints,
simulating a physical vehicle with 2DOF-joints and 5 actual
links. The collision function (50) is therefore implemented
such that it only considers the odd-numbered links.

B. Simulations
The initial joint configuration is q(0) =

[π4 ,
π
6 ,

π
2 ,

π
6 ,

π
2 ,

π
6 ,

π
4 ,

π
6 ]

⊤, and all initial joint
velocities are 0. The desired setpoint is qd =
[π4 ,−

π
6 ,

π
2 ,−

π
6 ,

π
2 ,−

π
6 ,

π
4 ,−

π
6 ]

⊤, and the initial and



Fig. 1. Initial (left) and desired final (right) joint configuration.

desired configurations are shown in Fig. 1. Motions like
this may for instance arise if the vehicle has attached one
end to a structure, while the other end has to interact with
multiple points on the structure.

The initial value ξ(0) is chosen by selecting a start value
ξ0, then finding the nearest value for ξ(0) such that the
inequalities (10) are satisfied at t = 0, and ξ(0) + qd satisfy
joint limits and there are no collisions between links. The
search is performed using the MATLAB function fmincon
to minimise the norm of the error ξ(0)−ξ0 with ξ(0) subject
to the aforementioned constraints. The search is initiated at
ξ0 = [-π2 ,

π
3 , -π, π

3 , -π, π
3 , -π2 ,

π
3 , -10, 0, -10, 0, -10, 0, -10, 0]⊤,

and the final choice of ξ(0) is such that ∥ξ(0)− ξ0∥ = 0.07.
The physical joint limits of all joints are ±π

2 , and the
limits in (47) are set to qlim,i = π

2 + 0.1 to allow the full
range of the joints to be used. The parameters of the cost
functionals (6), (5) are chosen as γ = 1.2, Q1(x) = I2n,
Q222(x) =

1
2In, and Q211(x) with elements as given by (46)

with αi = 1
2 , βl

i = 0.1 and βc
i = 0.01 for all i. The

parameters of the algebraic P̄ solution are chosen to be
b1 = 4.5, b2 = 1.5, and the parameters of ξ̇ and the value
functions (9) are selected as κ = 1, R1 =

[
1.1 −1
−1 1.1

]
and

R2 = [ 1.2 1
1 1.2 ]. No thrust is used in the simulations, causing

the AIAUV to float freely and rotate due to the joint motion.
Simulations are performed for three cases:

1) With w = w∗,
2) With M̂(q) = 0.5M(q), Ĉ(q, ζ) = 0.5C(q, ζ) and

D̂(q, ζ) = 0.5D(q, ζ) in the controller (41),
3) With estimates as above, but with Q1(x) = 10I2n.

The simulation results are shown in Figs. 2, 3, 4 for cases 1,
2 and 3, respectively. In Fig. 2, the behaviour of joints 1 and
7, 3 and 5, and 2, 4, 6 and 8 coincides. The inequalities (10)
are fulfilled in the first simulation case, but not cases 2 and
3. In case 3, only HJI1 does not fulfil the inequality.
C. Discussion

The error converges to zero while successfully avoiding
collision between links in all the simulated cases, as can be
seen from Figs. 2, 3 and 4, despite Theorem 1 only stating
that the system is asymptotically stable when w=w∗. While
γ is the same in all cases, comparing Figs. 3a and 4a show
that better disturbance attenuation and faster convergence
can be achieved by increasing Q1(x), which corresponds to
reducing both γ and the weight on the input u in the cost
functional J1 (6). This way, disturbance attenuation can be
improved despite there being a lower bound on γ, but at the
expense of greater control effort, as can be seen in Figs. 3b
and 4b.

The inequalities (10) are not always satisfied in the cases
when the disturbance w is not the worst-case w∗. When the

inequalities are not satisfied, the L2-stability with respect
to the disturbance w is no longer guaranteed, and neither
is boundedness of h2(x)

⊤h2(x), which is what ensures
collision avoidance. While Theorem 1 states that there exists
a region Ω in which the inequalities (10) are satisfied, it gives
no guarantees that the solution will remain in Ω. Whether
or not the solution remains in Ω depends, at least in part,
on the choice of ξ(0). Finding such a ξ(0) is not easy and
often relies on much trial and error. In addition, a new ξ(0)
is required for every new motion to be performed. This
difficulty can be overcome by following an approach similar
to that presented in [23]. Namely, global asymptotic stability
can be achieved by enabling ξ to evolve according to hybrid
dynamics. This may come at the cost of discontinuities in
the input, which is difficult to realise and causes strain on
physical actuators.

The task considered here is setpoint regulation of joints.
If the true goal is to e.g. control the end-effector position,
there may be multiple joint configurations which give the
same end-effector position. In the case of obstacles in the
environment, some of them might be impossible to reach
from a given initial configuration, as pointed out in [4].
The selection of desired setpoints therefore requires careful
planning.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an algebraic P̄ matrix solution was found
for a system satisfying double integrator dynamics and non-
linear cost functionals in order to construct an approximate
solution to a mixed H2/H∞ control problem, formulated
as a differential game. Then, using feedback linearisation,
the joint dynamics of an AIAUV were simplified into those
of a double integrator, and the solution for mixed H2/H∞
control was applied to the task of joint setpoint regulation
while avoiding joint limits and collisions between the links
of the AIAUV. Simulation results show that collisions are
successfully avoided while regulating the joints to desired
setpoints, also in the case of parameter uncertainties in the
feedback linearising controller. The solution found in this
paper is applicable to any system which can be feedback
linearised into double integrator dynamics.

Future work to be considered includes developing a tra-
jectory tracking version, and using the results from [23] to
achieve a global result. In addition, the properties of the
solution in the case of disturbances other than the worst-
case disturbance should be examined closer in order to be
able to give guarantees for the collision avoidance.
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