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Abstract—In recent years, software defined networking (SDN)
has been proposed for enhancing the security of industrial
control networks. However, its ability to guarantee the quality of
service (QoS) requirements of such networks in the presence
of adversarial flow still needs to be investigated. Queueing
theory and particularly queueing network models have long been
employed to study the performance and QoS characteristics
of networks. The latter appears to be particularly suitable to
capture the behaviour of SDN owing to the dependencies between
layers, planes and components in an SDN architecture. Also,
several authors have used queueing network models to study
the behaviour of different application of SDN architectures, but
none of the existing works have considered the strong periodic
network traffic in software-defined industrial control networks.
In this paper, we propose a queueing network model for software-
defined industrial control networks, taking into account the
strong periodic patterns of the network traffic in the data plane.
We derive the performance measures for the analytical model
and apply the queueing network model to study the effect of
adversarial flow in software-defined industrial control networks.

Index Terms—Adversarial flow, SDN, QoS, Industrial control
systems, Queueing network model

I. INTRODUCTION

Recent advances in networking technology have witnessed
a gradual shift in industrial control networks from serial-
based communication to Ethernet technology. This provides
the opportunity of exploiting the benefits of SDN for indus-
trial control networks because the correctness of industrial
control system protocols rely on the guaranteed QoS. SDN
is a network paradigm in which “the control and data plane
are decoupled, network intelligence and state are logically
centralized, and the underlying network is abstracted from the
applications” [1]. The separation of the control and data plane
provides several advantages which include easier network
management, network programmability, increased visibility
into the network, efficient use of network resources and
dynamic updating of network policies. However, SDN not only
offers benefits but also raises questions about the ability to
satisfy the guaranteed QoS in the presence of adversarial flow.
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Adversarial flow is an additional flow usually malicious,
that may be introduced into the SDN architecture by an
attacker. The arrival rate and service time distribution of the
adversarial flow can be manipulated by the attacker to achieve
desired ends. We had described the idea of adversarial flow
in our previous work [2] and opined that modelling based
on aggregating distribution or modelling based on analysing
the effect of two queues separately may be deployed to study
the effect of adversarial flow in the analysis of SDN using
queueing network models.

Queueing network models have been employed in the
literature for performance evaluation of different applica-
tion of SDN architectures [3]-[7]. The approach adopted by
several authors involves the use of well-established results
from queueing theory to study the interaction between the
forwarding plane switches and the control plane controllers.
Although simulations and experimentations could be desirable,
analytical models, allow the study of wider configurations and
how different parameter choices would affect the behaviour of
network traffic.

The existing literature on the analysis of SDN using queue-
ing network models has examined the different features of
SDN and also its application in different domains. However,
none of the existing literature has considered software-defined
industrial control networks and the strong periodic patterns of
the network traffic. Also, the effect of adversarial flow in SDN
architectures has not been investigated using queueing network
models. We had proposed the use of queueing network models
to study the effect of adversarial flow in [2]. We exploit
the idea here, to investigate the effect of adversarial flow in
software-defined industrial control networks.

In this paper, we propose an analytical model for software-
defined industrial control networks taking into account the
strong periodic patterns of the network traffic in the data
plane. Analytical modelling of software-defined industrial con-
trol networks provides useful insights for benchmarking and
facilitates the identification of factors that could cause the



network to breach the stringent QoS requirements. In addition,
we use the analytical model to study the effect of adversarial
flow in software-defined industrial control networks.

The rest of this paper is organised as follows. Section II
presents related works on the analysis of SDN using queueing
network models. Section III describes the queueing network
model used in this paper to model the behaviour of network
traffic in software-defined industrial control networks and the
performance measures. Section IV discusses the application
of the developed queueing network model to investigate the
effect of adversarial flow in software-defined industrial control
networks. Section V concludes the paper and presents future
works.

II. RELATED WORKS

The first known analytical modelling of SDN using a
queueing network model is presented by Jarschel et al. in
[8]. The work focus on characterizing the interaction between
SDN switch and the controller without consideration for any
specific application of the SDN architecture. In the same
way, authors in [9]-[12] employ queueing network models to
study different features of SDN. The tradeoffs between buffer
sharing mechanisms are investigated using queueing network
models in [9]. The authors in [10] propose a queueing network
model to characterize the performance of hardware switches
and software switches in SDN. The paper in [11] presents the
performance study of SDN switches using a queueing network
model. And the authors in [12] use a queueing network
model to examine the performance of SDN with network
virtualization function under or aside the controller.

Yen and Su in [3] deploy a queueing network model to ex-
amine SDN-based cloud computing architecture. The queueing
network model is based on M/M/1 (using Kendall’s notation)
queue, and they demonstrate it is appropriate for modelling the
operation of SDN-based cloud computing architecture. Also,
they show that the proposed SDN-based cloud computing
architecture can provide QoS guarantees for cloud services.
Chowdhary and Huang in [4] use a queueing network model
to consider SDN-based network function parallelism in the
cloud. They use a M/M/c queue for optimizing the service
function allocation for every service function chain and show
that service functions with independent action sets can be
parallelized to reduce the performance overhead.

Queueing network models have also been used to study
the behaviour of SDN in ultra dense network and satellite
communication networks [5], [6]. The authors in [5] examine
the use of SDN to ease the management of ultra dense data
plane with distributed controllers. They propose a distributed
flow management model based on queueing network model
and characterize the distributed controllers by considering the
flow characteristics and outage. M/M/1 and M*/M/1 queues
are use to model the incoming mice and elephant flows
respectively, with an additional M/M/c queue for detection of
an outage. In [6], the authors propose an analytical model
for software defined satellite networks using a queueing net-
work model. They place the controllers on geosynchronous

earth orbit (GEO) satellites and the forwarding functions on
medium earth orbit (MEO) satellites and low earth orbit (LEO)
satellites. M/M/1 queues are then used to model both the
control plane and the data plane; finally, numerical analysis
is employed to analyse the effect of different parameters on
the file sojourn time.

Similar to our work is the performance modelling and
analysis of SDN under bursty multimedia traffic [7]. The
authors use Markov modulated Poisson process (MMPP) to
investigate the performance of SDN in the presence of bursty
and correlated arrivals. However, they assume that the packet
departure process from the MMPP queue is MMPP to allow
for tractable analytical model. Unlike them, we consider
network traffic in software-defined industrial control networks.
We use the results from [13] to better model the packet arrival
process at the control plane. Also, we observe how adversarial
flow may impact network traffic in software-defined industrial
control networks.

In contrast to all the works presented above, we exploit
queueing network model to analyse the behaviour of network
traffic in software-defined industrial control networks. We
consider the strong periodic patterns of the network traffic in
industrial control networks and approximate the arrival process
using MMPP. Also, we use results from [13] to obtain a
realistic characterization of the interaction between the data
plane and the control plane. We then apply the analytical
model to study the effect of adversarial flow in software-
defined industrial control networks.

ITI. SYSTEM MODELLING

In this section, we present a discussion on the queueing
network model used in this study to model the behaviour of
network traffic in software-defined industrial control networks.
Also, we describe the performance measures that may be
used for investigating how different parameter choices would
affect the behaviour of network traffic. These performance
measures are deployed in the application of the model to
study adversarial flow in software-defined industrial control
networks as presented in section IV.

A. The Software-Defined Industrial Control Network

We consider the software-defined industrial control network
proposed in [14]. The data plane consists of Raspberry Pis
(RPis), sensors, and actuators. RPis are used for receiving
packets from sensors and instructing the relevant actuators to
take actions based on the respective flow retrieved from the
flow table or corresponding controller [14]. An existing flow
is retrieved from the flow table while a new flow is sent to the
controller via a Packet-In message. On getting the Packet-In
message, the controller instructs the RPi on how to forward
the flow via a Packet-Out/Flow-MOD message. The interaction
between the data plane and the control plane occurs through
the southbound interface of the control plane.

Moreover, many recent measurement studies have shown
that network traffic in industrial control networks exhibits
strong periodic patterns [15]-[17]. These are usually bursty



and cannot be properly modelled using Possion arrival process.
Also, a peculiar characteristic of industrial control network
traffic is that there are a number of components interacting
with each other, which implies that the bursty and correlated
nature of the traffic can be captured by superposing multiple
bursty sources. And considering that the MMPP has shown
to be an effective tool for capturing time-varying arrival, it
would be appropriate for modelling the bursty and correlated
arrival patterns of network traffic in software-defined industrial
control networks [7], [18].

The MMPP is a doubly stochastic Poisson process with
time-varying arrival and can be obtained by varying the arrival
rate of a Poisson process according to an m-state irreducible
continuous Markov chain that is independent of the arrival
process [18]. Several studies have exploited a two-state MMPP
to evaluate the performance of a network [7], [19]. Whilst
it is possible to model the network traffic using a single
distribution, we use multiple similar distributions to capture
the superposition of multiple bursty sources. The superposition
of MMPPs has shown to generate MMPP and if the process to
be superposed is identical, the complexity is greatly reduced
[18]. This allows us to derive the analytical model; as the
infinitesimal generator matrix Q of the Markov chain and
arrival matrix A can be parametrized as follows:
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where  is the transition rate from state 1 to 2, and o is
the rate out of state 2 to 1. Also, A; and A, represent the traffic
rates when the Markov chain is in states 1 and 2, respectively.
We can then obtain the average rate of arrival A\ of network
traffic in industrial control networks as:
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B. Queueing Network Model for Software-defined Industrial

Control Networks

We employ queueing network model here, to study the
behaviour of network traffic in software-defined industrial
control networks. The arrival process of packet at the data
plane of SDN deployed in industrial control networks consists
mainly of the network traffic modelled using MMPP. This
makes up the existing flow in the software-defined industrial
control networks. However, there could be a new flow that
needs the attention of the control plane. This type of flow
does not have an entry in the flow table of the RPi (switch)
and it would have to be processed by the control plane.

For the control plane, we consider the case of multiple
controllers. Multiple controllers are usually deployed to im-
prove the resilience of SDN architecture. This is to ensure
that the network continues to function even if one of the
controllers fails. The handover between the controllers in the
case of failure is initiated by the controllers themselves, which
facilitates fast recovery from failure and also controllers load
balancing [20]. The mechanism used by the controllers to

manage the data plane devices among themselves is beyond
the scope of this paper. Also, according to the OpenFlow
specification [20], the data plane devices must connect to
all the controllers they are configured with and would try to
maintain connectivity with all of them concurrently. Hence,
the packets departing from the data plane are simultaneously
fed into the controllers in the control plane of the SDN
architecture. A more complex architecture for the controllers
have been considered in [21], [22] but for the purpose of the
discussion in this paper, we are concentrating on this simple
model.

The arrival process of packets at the controllers in the
control plane is dependent on the departure process of packets
from the data plane. Tian [13] have shown that the output
process of the Markovial arrival process is not a Markovial
process, but rather, it becomes a Poisson process. Thus, like
most existing works on the analysis of SDN using queueing
network models, we employ a Poisson arrival process with
exponential service time distribution (M/M/1) to model the
behaviour of the controllers in the control plane [8], [10]-[12],
[23]-[25]. Also, to obtain a more realistic characterization of
the controllers’ behaviour, we use a finite capacity queue of
M/M/1 (M/M/1/K) for the controllers at the control plane.

The queueing network model used for this study is shown
in Figure 1, such that n < m.
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Fig. 1. Queueing Network Model for Software-defined Industrial Control
Networks

From the queueing network model of the software-defined
industrial control network shown in Figure 1, an arriving
packet at the data plane is checked to see if it belongs either
an existing flow or if it is a new flow. The probability that the
arriving packet is a new flow is given as p. If the arriving
packet is a new flow, the packet is sent to the controllers
in order to obtain information on how the packet should be
forwarded. In the case where the arriving packet belongs to



an existing flow, the packet is forwarded with a probability of
1 — p without consulting the controllers.

C. Performance Measures

Let Ts be the forwarding time of a packet through the data
plane, and 7, be the forwarding time of a packet through
the control plane, then we can obtain the total forwarding
time of a packet through the queueing network model, T
by dividing the packet forwarding into two cases: forwarding
without the intervention of control plane and forwarding with
the involvement of the control plane. The latter case consists
of the sojourn time of the packet (the expected time spent by
the packet) in the data plane T, and the sojourn time of the
packet in the control plane 7., while the former is just the
sojourn time of the packet in the data plane. Thus, we have:

_JTs with probability 1 — p
| T, + T, with probability p

Also, we can obtain the total forwarding time of packet
through the queueing network model as:

T= (1 - p)Ts +p(TS + Tc)
=Ts + pT. (2)

The value of T, which is the average sojourn time in the
data plane can be calculated using the method proposed by
Fischer and Meier-Hellstern [18]:
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where p is the traffic intensity at the data plane, given
by p = As/ps; my and mgo are the mean and the second
moment of the service time, given by m; = 1/u, and
mo = 2/us2, respectively; ge = 1 and gus = (1 — p)~!
[26]; ™ = (¢1,92)/(p1 + @2); and Ae = (A1, A2).

In addition, the blocking probability P, that an arriving
packet finds the buffer full can be obtained by calculating the
probability P/, 0 < n < K, that there are n packets in a
MMPP/M/1/K queue [27] and it is given by [28]:

1
Pi= (TP, xAxe) PuxAxe (4

Thus, the blocking probability P, can be written as [27]:

Py, = P, (5)

For the value of T, the packet arriving at the control plane
is obtained from the packet departing from the data plane.
Unlike the assumption made by Maio et al. [7] that the packet
departure process from the MMPP queue is MMPP to allow
for a tractable analytical model, we use results from Tian
[13] to model the packet arrival process at the control plane.
The results show that the departure process of the Markovial

arrival process is not Markovial but rather, it becomes a
Poisson process [13]. Hence, the packet departure process of
the Markovial arrival at the data plane, which is the same as
the packet arrival at the control plane )\, can be obtained using
the Laplace transform matching method and it is given as [13]:

Ae = ps(M1 A2 + A2 + A1) (6)

Given that N, is the number of packets in the M/M/1/K
queue at the control plane, the average number of packets at
the control plane E[N.] can be calculated using the standard
formula given as:

_p(1 = (K +1)p% + Kpith)
BN =2 = e

where p is the traffic intensity at the control plane (\./p.)
and K is the buffer size .

We can then derive the value of T, which is the average
sojourn time in the control plane using Little’s Law as follows:

(7
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The blocking probability, which is the probability that an
arriving packet finds the system full is given as:
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IV. MODELLING THE ADVERSARIAL FLOW USING THE
QUEUEING NETWORK MODEL

In this section, we investigate the effect of adversarial
flow in software-defined industrial control networks using the
developed queueing network model. We model the adversarial
flow by aggregating the adversarial traffic and the regular traf-
fic. We assume that the attacker has probabilistic knowledge
of the regular traffic and using this assumption, we observe
how an attacker may vary the arrival rate of the adversarial
traffic to increase the average sojourn time of traffic in the
network leading to a breach of QoS requirement. The main
objective of the attacker is to cause a denial of service (DoS)
attack.

A. The Adversarial Flow Model

In order to model the adversarial flow, there are different
hierarchies of models that may be considered. These hierar-
chies of models would be based on how much knowledge the
adversary is using to formulate the adversarial flow model.
The first level of the model involves the superposition of the
adversarial traffic and the regular traffic. In the second level of
the model, a stochastic model of the legitimate traffic can be
used for the modelling the adversarial flow. Furthermore, the
third level of the model involves the use of actual observation
of the regular traffic for modelling the adversarial flow.

Although the hierarchy of models describes a spectrum of
how much information we allow the attacker to have when
formulating the model, we present the first level of the model
in this subsection. Along that spectrum, what we then describe



is the simplified version of the adversarial flow model to show
the utility of our model. We assume that the attacker has some
knowledge of the existing flow and is able to create the model
of the regular flow. This will allow the attacker to adapt future
adversarial flow by looking at the historical flows that have
been seen. The attacker does not need to see the actual traffic,
but rather the model of the traffic can be employed to adapt
the adversarial flow. It is then possible for the attacker to use
the knowledge of the model to modify the adversarial flow in
such a way that it could increase the average sojourn time of
network traffic which may cause a DoS attack.

The first level of the modelling, which is the superposition
of the adversarial traffic and the regular traffic is shown in
Figure 2. The arrival rate of traffic A\s to the queueing network
model is then the ratio of the arrival rate of regular traffic Ap
as in (1), and that of the adversarial traffic A4 (which is under
the control of the attacker). Already, we have assumed that
the adversary knows the model of the regular traffic, which
implies that the adversary is aware that the regular traffic
follows MMPP arrival process. We can then evaluate how an
adversary can adapt the arrival rate of the adversarial traffic
by looking at the regular traffic such that the average sojourn
time of network traffic is increased in the next subsection.

As = ArlAa —

Fig. 2. Superimposing Regular Flow and Adversarial Flow

B. Evaluation of the Model

The purpose of this evaluation is to study the effectiveness
of adding an adversarial flow in breaching QoS parameters. To
do this, we parametrize the queueing network model by first
assuming that the traffic rates of the regular traffic are same
as the traffic rates of the adversarial traffic. This is to allow
us to examine how an intelligent attacker may manipulate the
arrival rate of the adversarial flow against the regular traffic in
such a way that the probability of the network traffic breaching
QoS requirement is high. An explicit estimate of the combined
traffic can then be obtained such that we take the regular traffic
and express the adversarial traffic as an addition with some
probability of extra traffic.

The remaining variables of the queueing network model are
parametrized as follows. We assume that the service rate of
the data plane is same as the control plane, the infinitesimal
generator of the MMPP arrivals is set as ¢; = 0.06 and g =
0.03, and we use the same buffer sizes for both the data plane
and the control plane. Also, we use the result from [8] that
show the probability that an arriving packet is a new flow,
p = 0.04 as the worst case estimate. By varying the arrival
rate of the adversarial traffic against the regular traffic, we
observe the condition under which the adversarial traffic would
increase the average sojourn time of traffic in the network.

In the scenario that we described, an attacker with some
knowledge of the regular traffic can increase the arrival rate of
the adversarial traffic in order to increase the average sojourn
time of traffic in the network. The attacker may continue to
increase the arrival rate of the adversarial traffic in a stealthy
way to avoid detection until it causes the network to breach
the QoS requirement. This implies that given a regular traffic
with parameters in the preceding paragraphs, if the attacker
is able to create adversarial flow with parameters described in
figure 3 then there would be a breach of QoS requirement.

Effect of Adversarial Flow

Arrival Rate of Adversarial Traffic

Fig. 3. Average Sojourn Time vs Arrival Rate of Adversarial Traffic

We can infer from our study that the probability of breach-
ing the QoS requirements of network traffic in software-
defined industrial control networks would increase with a
knowledgeable attacker. An attacker with some knowledge of
the regular traffic is able to manipulate the arrival rate of the
adversarial flow according to the nature of the regular traffic.
By so doing, the attacker can launch an attack at the right
time so as to trigger an adverse effect or event. Therefore, the
arrival rate of the adversarial flow would have to be at least
higher than the arrival rate of the regular traffic, so that the
probability of this breaching the boundary is high.

Considering the attacker’s objective, this can effectively
create an optimization problem with a number of constraints.
The optimization problem is not a static optimization, but has
constraints that can be expressed in the form of functions.
This is because the attacker is modulating based on the
existing bursty traffic. In addition, the attacker does not just
create a DoS attack, but is constrained by the number of
adversarial flows that can be used to maximise disruption
and stealthiness at the same time. We are formulating this
as standard optimization problem, but we are not dealing with
the optimization part here, because it is a well-known and
well-solved problem.

We can then say that given the constraints faced by the
attacker which can be expressed in the form of functions, these
would be the criteria for getting the sojourn time over the
threshold that could result in a DoS attack. These constraints
have to be solvable by the attacker to achieve the desired
goal (i.e., DoS attack). Under these constraints, the attacker
can adapt some parameters like the arrival rate to increase
the average sojourn time of network traffic. Although there
are more clever ways of modulating the attacker traffic than
the superposition with some knowledge of the regular traffic,



we use the idea here to show the capability of an intelligent
attacker.

V. CONCLUSIONS AND FUTURE WORK

Research in the applicability of SDN for industrial control
networks is still on-going and consideration for how adver-
sarial flow may impact network traffic in software-defined
industrial control networks is very pertinent. In this paper, we
have proposed an analytical model using a queueing network
model to study the behaviour of network traffic in software-
defined industrial control networks. We have observed that the
network traffic in industrial control networks exhibit strong
periodic patterns and we approximated the arrival process at
the data plane using MMPP. Also, we derived the performance
measures for the analytical model and then applied the model
to study the effect of adversarial flow in software-defined
industrial control networks.

Our study indicates that an adversary with some knowledge
of the regular traffic is able to increase the arrival rate of the
adversarial traffic in such a way that it is higher than that
of the regular traffic to increase the average sojourn time of
traffic in the network. It is also possible for the attacker to
continue to increase the arrival rate of the adversarial traffic
in a covert manner. This ensures that the intrusion detection
system will not notice the additional malicious traffic until the
QoS requirement has been breached.

There are several directions for future research within the
analysis of software-defined industrial control networks using
a queueing network model. One direction is to layer a particu-
lar application domain on top of the queueing network model.
For example, it is possible to consider the condition under
which the adversarial flow in SDN deployed for IEC 61850
substation could breach the performance bounds as specified
by the standard. Another direction is to investigate refinements
of the probability density function of the regular traffic and to
derive its performance metrics. This could then be referenced
when the regular traffic is combined with adversarial traffic to
study the effect of adversarial flow.
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