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Abstract. In this paper, we evaluate a method to calculate hourly global solar radiation and improve the 

calculation of diffuse and vertical surface radiation on building facades by accounting for ground conditions 

based on publicly available data of cloud coverage, temperature and precipitation from a forecast service 

covering the Nordic countries. The detailed weather forecasts produced by MET Norway provide hourly 

forecasts for the next 60 hours, and 6-hour predictions for the next week. To calculate solar radiation on 

cloudy days the clear and cloudy sky MAC model developed by Davies and Mckay (1982) is used. Instead of 

basing the prediction on ground observations as in the original method, cloud coverage in three levels and 

total cloud cover is used as input in a cloud product parameterisation. The resulting global horizontal 

irradiance is validated against the output of the numerical weather prediction (NWP) model and compared to 

a year of hourly ground measurements in Trondheim, Norway. To evaluate applicability to the building 

sciences, vertical irradiance measurements are compared to tilted surface irradiance calculated with the ISO 

52010:2017 method. For the location, six-hour forecasting performance is on par with the GHI output of the 

NWP model (using the cloud layer model and the available weather parameters of the location forecast API). 

To account for the unpredictability of clouds and improve the short-term forecasting performance beyond 38 

% RMSD, 38 % SD and 0.80 R2 a different approach is needed, like combining model and sky observations.

1 Introduction 
Solar radiation is rarely measured in buildings and local 
data is often a missing component in building energy 
modelling. Even when it is part of an on-site weather 
station, maintaining high-quality measurements is 
difficult and the data is rarely used for control or followed 
up by analysis. This is changing following the availability 
of satellite derived solar radiation (such as Copernicus 
Atmosphere Monitoring Service (CAMS) covering 
Europe), and data from numerical weather prediction 
(NWP) models representing detailed atmospheric 
conditions run in forecast, nowcast or reanalysis mode for 
respectively long and short-term predictions or historic 
time-series [1]. Different techniques have been developed 
to generate solar forecasting and nowcasting data [2, 3]. 
Nowcasting is a relatively new concept, referring to 
weather forecasting for the next few minutes to six hours 
using all immediately available weather data. 
Sophisticated techniques used for short-term solar 
predictions may involve combining NWP models with 
observations from sensor-networks like radiometers or 
PV-installations, shadow cameras, satellite-derived 
images, statistics and machine learning methods. In the 
following work, we simply rely on empirical modelling 
making use of weather forecasts from an operational 
NWP model covering the Nordic countries. As it turns 
out, anyone with basic computer skills can download 
these location forecasts up to multiple days ahead through 
web application program interfaces (web API’s) from 
various weather service providers. Some national weather 

centres, like the Norwegian Meteorological Institute 
(MET Norway), offer additional model and research data. 
In the building sciences, ability to access past forecasts 
can, for example, be valuable to train a model predictive 
controller for energy management in buildings on actual 
forecast data. 

However, a recent review by Du et. al. (2019) shows 
that solar radiation forecasts tend not to be offered freely 
to the public. Their study reveals that only 1 out of 8th 
public weather API’s has started to offer solar radiation 
parameters [4]. The particular service, Weatherbit, was 
found to offer meaningful short-term predictions of global 
horizontal solar radiation, but the diffuse horizontal 
component was only valid under clear sky conditions. A 
decomposition into direct and diffuse radiation is essential 
to calculate the amount of incoming solar radiation on 
building facades and tilted surfaces, like PV-systems. 
Empirical models exist to account for differences in the 
diffuse part between overcast and cloudless weather and 
variations in ground reflection from snow cover. 
Interestingly, the other parameters that are available from 
public weather API’s like cloud coverage and 
precipitation (that are rarely monitored) represent an 
opportunity to easily implement these phenomena in a 
processing step to improve solar predictions for building 
energy management. In this paper, we test if cloud 
coverage, air temperature, humidity and other parameters 
are sufficient to estimate diffuse and global solar 
radiation, even when solar radiation is not available. 

We evaluate a method to calculate hourly global solar 
radiation and improve the calculation of diffuse and 
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vertical surface radiation by accounting for ground 
reflection based on publicly available data of cloud 
coverage, temperature and precipitation from a location 
forecast product covering the Nordic countries 
(api.met.no). The weather forecasts on yr.no, delivered by 
MET Norway and NRK, present the same parameters. 

The detailed weather forecasts produced by MET 
Norway provide hourly forecasts for the next 60 hours and 
6-hour predictions for the next week. To calculate solar 
radiation on cloudy days the cloudy sky MAC model 
developed by Davies and McKay (1982) is used [5]. 
Instead of basing the prediction on ground observations as 
in the original method, cloud coverage in three levels and 
total cloud cover is utilized as input in a model product 
parameterisation. The resulting global horizontal 
irradiance is validated against the native output of the 
NWP model and compared to a year of hourly ground 
measurements in Trondheim, Norway. To evaluate the 
applicability to the building sciences, vertical irradiance 
measurements are compared by calculating tilted surface 
irradiance with the Perez sky model (ISO 52010:2017) 
[6]. In an intermediate step, the Engerer diffuse separation 
model is utilized [7]. Furthermore, to investigate the 
influence of reflections, an albedo calculation method is 
also evaluated using additional parameters provided by 
the forecast; precipitation (to estimate snow cover) and 
temperature (to account for melting) as input [8]. 

1.1 Irradiance in forecasts covering Scandinavia 

The location forecast of MET Norway is a public weather 
API with parameters listed in Table 1. Cloud cover in 
multiple levels and a number of other parameters are 
available, but solar irradiance is not included. A possible 
explanation found in literature is that up until recently 
“this data was not provided as model output because they 
were deemed unimportant relative to temperature, wind, 
humidity, and cloud cover” [2]. Acknowledging interest 
in solar forecasts from electricity operators faced by the 
intermittency of renewable energy sources, the Swedish 
Meteorological and Hydrological Institute (SMHI) 
compared the performance of two NWP systems that 
cover Scandinavia [12]. The two models are: 

• The global Integrated Forecast System (IFS) of the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF). The two models High Resolution forecast – 
“HRES” (Deterministic) and Ensemble forecast – “ENS” 
are evaluated, with a grid resolution of about 9 km and 18 
km, respectively. 

• The MetCoOp Ensemble Prediction System (MEPS) 
run by the meteorological services of Sweden, Norway 
and Finland. The grid spacing of MEPS is 2.5 km and 65 
atmospheric levels are covering the Nordic region (higher 
horizontal resolution but less vertical levels than the IFS 
model of 137 and 91 levels for HRES and ENS). 

The main differences between the involved models are 
horizontal and vertical resolution, number of ensemble 
members and perturbation technique of the ensemble 
members. Shortwave radiation is parametrized the same 
way in both NWP models based on the Morcrette 
radiation scheme "McRad" [13, 14]. In July 2017, a new 

model, ecRad was made operational in ECMWF’s 
integrated forecasting system, it improves on the McRad 
model in the treatment of clouds and optical gas properties 
[15]. However, during the analysis period of the SMHI 
study, the old McRad scheme was still operational. The 
results display the applicability of NWP models by 
showing a good fit to the distribution of global and direct 
horizontal irradiance with better performance from MEPS 
ensemble mean, and secondly the MEPS control member. 

 
Table 1. Current parameters available in location forecast 1.9 

and parameters announced in version 2.0 (in parenthesis). 
 

Available parameters api.met.no 

air pressure at sea level � 

weather symbol � 

precipitation amount � 

air temperature � 

wind from direction � 

wind speed � 

wind speed of gust � 

relative humidity � 

cloud area fraction � 

fog area fraction � 

cloud area fraction low � 

cloud area fraction medium � 

cloud area fraction high � 

dew point temperature � 

solar irradiance - 

uv-index clear sky max (�) 

 
The results were significant, as previous studies cited 

in the Swedish paper found that regional NWP models do 
not necessarily perform better than coarser models. The 
premise is that coarser models will represent smoother 
cloud cover that better agree with the observations. In 
detailed models (grid size<10 km), wrongly placed clouds 
may be counted twice, first where it is missing and later 
when it appears. It is suggested that the unpredictability 
of clouds can be improved by using the ensemble 
prediction system which is available for both IFS and 
MEPS. Another common approach to evaluate location 
forecasts from high resolution models, is to average the 
global horizontal radiation from all nearby model grid 
points within a distance to the location. In the post 
processed forecasts of MET Norway, the cloud area 
fractions are the median value of a neighbouring 37.5 x 
37.5 km grid. This is one of the techniques outlined by 
Larson (2013) who describe the challenges of modelling 
solar radiation with NWP in [37].  

Forecasting for the next minutes to 6 hours is pursued 
with different approaches. One is based on observations 
and the other on the use of NWP models, in combination 
with postprocessing techniques such as downscaling and 
the assimilation of ground-based or remote-sensing in situ 
measurements. How much value post processing can add 
depends on the weather variable. In the case of wind and 
temperature, bias-correction and persistence may be used 
extensively on the assumption that short-term projections 
will be similar to present conditions. The situation is more 
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difficult with solar radiation, where rapid changes in local 
cloud cover may lead to substantial changes in the flux. 
That is why some commercial forecasting services 
primarily rely on rapid update cloud tracking provided by 
meteo-satellite imaging to produce high-quality 
predictions on less than hourly time scales [37]. 

MET Norway has released two operational post-
processed products that can be characterized as nowcasts, 
integrating output from MEPS as well as temperature and 
precipitation measurements from professional stations, 
citizen stations, and radar. The forecasts are updated every 
hour as new observations and model fields become 
available. Wind, temperature, and precipitation is 
downscaled from 2.5 km to 1 km, whereas Surface Solar 
Radiation Downwards (W/m2), a synonym for global 
horizontal radiation (GHI), relative humidity, air pressure 
and cloud area fraction also are available parameters from 
the operational MEPS model. Product documentation is 
publicly available on (github.com/metno/NWPdocs). 
This recent development is making GHI from the 
operational MEPS forecast covering Scandinavia more 
accessible than before, even though it is not currently 
included in the location forecast web-API (Table 1). 

2 Method 

2.1 Approach to modelling 

Many packages exist for solar calculations & PV-
forecasting, such as the recent open source tools “Solar 
Forecast Arbiter”, and pvlib for Python [27-28], but no 
recent scripts have been found to include cloud layering 
models such as the cloudy sky MAC model. Several 
scripts are developed to process the weather forecasts in 
steps using Node-RED, a visual programming tool 
originally developed by IBM for wiring together 
hardware devices, APIs and online services using 
JavaScript functions. A second implementation of the 
model was written in R for analysis and parameter 
optimization with rStan, an interface for the probabilistic 
programming language Stan. 

 

The runtime of Node-RED is built on Node.js and the 
interface is accessed from a web browser (Figure 2). A 
package written in JavaScript called "soljs" was found in 
the Node package manager that already included solar 
positioning algorithms and the Perez sky model from ISO 
52010:2017. The solar positioning algorithm in this code 
(MIT lisence) was used as a basis for the ground albedo, 
clear sky and cloudy sky parametric models and the 
diffuse separation model (Figure 2). 

2.2 Observations 

The observations are hourly average measurements of 
global horizontal irradiance from the station SN68173 
operated by MET Norway. Their stations use first-class 
rated pyranometers (according to ISO 9060) from Kipp 
Zonen. SN68173 is located on NTNUs campus 
Gløshaugen, Norway. In Node-RED, the observations 
from SN68173 were queried by calling the Frost API of 
MET Norway and sent to a time-series database together 
with the post-processed forecast. This approach opens the 
possibility to include the ground observations in the 
processing steps to improve short-term predication. For 
vertical irradiance, measurements from the south facade 
of a lab building on campus was used, the ZEB Living 
Lab, located ca. 100 meters from the other station. The 
building facade is oriented 7 degrees westwards from 
south position. The vertical irradiance is measured by a 
"LP PYRA 03 AC" from Delta Ohm, which is a second 
class pyranometer according to ISO 9060. 

2.3 Model performance metrics 

For model performance assessment, the suggestions from 
[9] are followed. Therefore, thirteen performance metrics 
are considered that can be categorised into three classes. 
A fourth class is included for visual indicators: 

• Class A: indicators of the dispersion (e.g. error) of 
individual points. These are the mean bias difference 
(MBD), root mean square difference (RMSD), mean 
absolute difference (MAD), standard deviation of the 
residual (SD), coefficient of determination (R2), slope of 
best-fit line (SBF), uncertainty at 95% (U95) and the t-
statistic (TS). A value of 0 is perfect performance for class 
A metrics, with exception of the SBF and R2 where 1 
rather indicates perfect performance. 

• Class B: indicators of overall performance. These are 
Nash-Sutcliffe’s efficiency (NSE), Willmott’s index of 
agreement (WIA), and Legates’s coefficient of efficiency 
(LCE). A maximum value of 1 indicates a perfect model. 

• Class C: indicators of distribution similitude in 
percentage. These are the Kolmogorov-Smirnov test 
integral (KSI), the critical limit overestimation (OVER) 
and the combined performance index (CPI). A value of 0 
for all Class C metrics indicates excellent performance. 

• Class D: visual (qualitative) indicators. The Taylor 
diagram combines information about RMSD, SD and R2 
into one single figure. Information about cumulative 
distribution and similarity can also be shown graphically. 

Most of the statistical indicators in class A except R2 and 
SBF) are presented in percentage of the mean observed 
GHI, Om = 228.5 W/m2. Multiplying each metric with 
Om/100 convert them from relative to absolute terms 
(W/m2). Only observations with solar height five degrees 
������������	
�������	�����
�������	��������zen < 85). A 
condition that is met for N = 3446 hours in the dataset. In 
Trondheim, the sun angle at noon is below the threshold 
before 12.1.2019 and after 30.11.2019. 

The indicators of distribution likeness, KSI and 
OVER, are calculated from the definitions in [10]. The 

Fig. 2. Flow based script implemented in Node-RED to 
download forecasts for the next hours, calculate tilted surface 
radiation, and post the solar forecast to a time-series database. 
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combined performance integral CPI may be the most 
versatile metric of all, as it combines information about 
dispersion and bias (through RMSE) and distribution 
likeness (through KSI and OVER). Therefore, it is argued 
by [9] that if only one statistical indicator is to be 
considered, the best choice would be CPI. It is defined as 
CPI = (KSI + OVER + 2RSMD)/4 as proposed by [9, 11]. 

2.4 Clear sky model 

What makes solar radiation data stand out from other 
types of time series, is the diurnal cycle due to the 
apparent position of the sun [3]. Image-based forecasting 
methods and NWP methods are driven by meteorology, 
but atmospheric parameters may also play an important 
role as inputs to other methods. For example, most 
statistical or machine learning solar forecasting consider 
the diurnal sun cycle before building a model, and the 
most common approach is to apply a clear sky model or 
calculate the solar radiation above the atmosphere (extra-
terrestrial flux) using a solar position algorithm [2,3]. 
Clear sky models can be divided into complexity, or by 
the number of inputs required. Among the most advanced 
and well-validated is the REST2 model [16]. Broadband 
models that fall into the middle category regarding input 
requirements, such as the MAC model also consistently 
performed well in validation exercises, especially at low 
sun angles [7]. A recent state-of-the-art worldwide 
performance assessment ranked the MAC and RESTv5 as 
the best scoring among 75 global clear-sky models [17]. 
In the following section, the MAC model is implemented. 
MAC is also described and validated in several other 
studies and has proved well at high latitudes [18–21]. This 
model was also used by Olseth and Skartveit (1993) in 
their formulation of an hourly global irradiance model 
from ground cloud observations in Bergen [22]. Code for 
a version called MAC2 is conveniently made available on 
GitHub by the authors of the recent validation study [17]. 
The inputs of the MAC2 model is broadband aerosol 
optical depth, total amount of precipitable water vapour 
(cm), local barometric pressure (mbar) and ground 
albedo. Equations to calculate aerosol transmittance in 
������������������������
���������	���!"#$  

The performance of clear sky models inevitably 
depends on the input data. In the past, monthly means or 
flat assumptions have often been made due to the 
difficulty in obtaining certain dynamic variables such as 
aerosols. Today, high temporal atmospheric data is 
available from satellite (i.e. CAMS Aerosol forecasts) and 
as parameters in weather forecasts and reanalysis products 
(i.e. MERRA-2, ERA5) [17]. Nevertheless, monthly 
gridded data was used below. The Linke turbidity factor 
is a simple approximation used to describe the 
atmospheric absorption and scattering of solar radiation 
under a clear sky. Several datasets exist formatted as 
monthly tables on a latitude/longitude grid covering the 
whole world [23, 24]. For this work, a function in the 
pvlib-python package [26] is used to extract data for 
Trondheim and interpolate from monthly to daily values. 
Many studies have found that the Linke turbidity factor 
(TL2, for an air mass equal to 2) is correlated with 

precipitable water vapour (uH2O) and the Ångström 
���%	�	�&� %��
� ��'$� *	+� �	�������� �����-
�	���� �����
literature were found to produce a considerable variation 
and impact on clear sky model performance in [17]. In the 
following, one of the formulations (TL2Gr) was reversed to 
calculate the Ångstrøm beta from the Linke dataset and 
hourly calculations of water vapour column (derived from 
forecasted dewpoint temperature). This approach was 
taken to introduce some dynamic to the model, but may 
not be without implications in terms of model 
performance. Comparisons carried out in an intermediate 
step show that the clear sky output is generally well 
attenuated to ground measurements from Trondheim 
April 2019 ("SN68173" in Figure) and the year overall, 
but some dynamics are lost when compared to models that 
rely on satellite data, such as Copernicus Atmosphere 
Monitoring Service (CAMS) clear sky model McClear. 

 
Fig. 3. The clear sky MAC2 model in yellow (with monthly 
atmospheric data and hourly variables from the NWP model) 
compare well to ground measurements and to hourly estimates 
of the CAMS radiation service in blue (W/m2). 

2.6 Ground reflectivity 

The ground albedo calculation method uses additional 
parameters provided by the forecast; precipitation (to 
estimate snow cover) and temperature (to account for 
melting) [8]. Dumitrascu (2019) provide an overview of 
different methods to calculate ground reflectivity for 
building energy simulation and propose an empirical 
model with separate calculations for: 

• Ground free of snow period 

• Snow accumulation or non-melting period 

• Snow melting period, where significant variation in 
ground albedo from one day to another was observed 
because of ambient temperature above zero and sporadic 
snowfalls. The calculation uses two melting rates 
controlled by a threshold temperature increasing towards 
spring [8].  

The inputs of the proposed model are snow age (in 
hours), outdoor temperature, day of year, solar zenith 
angle and sky transmissivity (Kt). Hence, the hours since 
last snowfall was calculated from the forecast. A 
conservative approach was taken in this study due to 
Trondheim’s location in a coastal climate, hence the non-
melting period was neglected and the highest albedo of 
the snow melting and the ground free of snow calculations 
was assumed. 
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2.7 Cloudy sky model 

In the 1982 paper introducing the clear sky MAC 
model, Davies and McKay evaluated four cloudy sky 
models [5]. Among them, the cloud layer MAC model 
has the best performance, and with its three-layer 
product, it matches the information available in the 
location forecast web API. The percentage of total 
cloud coverage and cloud amounts reported in three 
layers (high, medium and low clouds) and the clear sky 
global horizontal radiation are inputs. In another study 
(1995) using ground observations of clouds in the 
Arctic, the MAC cloud layer model produced the 
lowest range of error compared to 11 other simple 
cloudy sky models [29]. More advanced methods for 
cloud detection and classification at mid- and high 
latitudes exploits remote sensors on geostationary and 
polar-orbiting satellites, such as the software packages 
of the EUMETSAT Satellite Application Facilities on 
Support to Nowcasting and Very Short Range 
Forecasting (NWC-SAF) providing operational cloud 
imaging products over the Arctic and Europe [30-32]. 

Simple cloud layer models like MAC take into 
consideration the variations in cloud transmittance with 
cloud type. Total cloud transmission is the product of 
the individual layer transmission [(1 - Ci) + ti Ci]. The 
equation can be expanded into a geometric series to 
account for multiple reflections between the ground 
and atmosphere. In the following equation only one 
reflection from the ground and one from the cloud is 
considered (or one can consider the effect of multiple 
reflections to be incorporated in the denominator). 
 

GHI = ���

� [(1 � ��) + 	���]


���

1 � 
�
�

 (1) 

 
In Eq.1 Gcs is the hourly global horizontal radiation from 
a clear sky and Ci and ti are cloud amount and 
transmittance for the ith layer, �b is the atmospheric 
albedo for radiation reflected from a ground surface with 
albedo �s. 

In the paper by Davies McKay, cloud transmissivity 
for 16 cloud types are presented following the cited work 
of Haurwitz (1946) on insolation in relation to cloud type: 
 

	� = �� ���(��� ��) (2) 
 
 
Were Ai and Bi are table values for different cloud types 
dependent on optical airmass mr. Other studies have used 
constant ti values like 0.32, 0.42 and 0.78 for low medium 
and high cloud layers [33]. As a starting point, the table 
values of [26] are used (table 2). 
 

Table 2. Typical cloud albedo and absorptivity of clouds [26]. 
Level Cloud type ��� �� 

High Cirrus 0.25 0.75 

Middle Alto 0.60 0.38 

Low Low cloud 0.70 0.36 

 

Atmospheric and surface albedo is calculated using the 
formulas below, described in the studies of [18, 19, 33]. 
 


� = 
�(�)(1 � ��) + 
�(�) + 
� �� (3) 

where constant 
�(�) = 0.0685 is molecular scattering 
affecting only the clear sky part, 
�(�) is the aerosol 
scattering below clouds and 
� is the cloud albedo. In this 
paper, no attempts are made to cover the complex 
reflections between various cloud layers. For simplicity, 
we use total cloud coverage C0 and the cloud albedo is 
approximated according to cloud level by equation 4. 
 


�  =
� 
����

� ��

 (4) 

Another change from the original model is that the aerosol 
scattering below clouds �b(a) is set to zero so that the 
model attenuation under a clear sky is close to zero (GHI 
1�Gcs). Finally, an extension of the model is tested that 
include precipitation, derived from the assumption that 
cloud transmissivity is lower during forecasted showers: 
 

	� = (	� + (	����Rainfall[0,1]) (5) 

Rainfall events are not parametrised directly in the MAC 
cloud model but can be considered indirectly when 
choosing between the 16 cloud type transmissivities to 
represent current weather conditions. In a report by the 
same authors [18] another cloud layer model variant is 
evaluated. 2��Josefson model �	3�������������	�������
aspects notably by applying 5+��� �-���� -
&���
transmissivities and 30 % reduction in total cloud 
transmissivity if precipitation occur during the hour, and 
20 % if it ended within the hour. In our model (Eq. 5), rain 
transmissivity is added or subtracted from ti in each layer. 

2.8 Diffuse separation model 

The diffuse separation model is the Engerer separation 
model [34] that was recently reparametrized as the 
Engerer2 model and released with source code 
available by the authors on GitHub [35]. The model 
requires global horizontal irradiance and ground albedo 
as input as well as solar position and clear sky 
irradiance which in this case was provided with MAC2. 

2.8 Inclined surface irradiance (ISO 52010) 

See section 2.1 for description. An alteration to the 
equations in ISO 52010 [6] is enabling setting the time 
shift parameter of the solar positioning algorithm to other 
values than -0.5 hours, in order to allow other time steps 
than one hour. With hourly solar data, the convention is 
that the timestamp 14:00 refers to the time interval 13:00 
to 14:00, so the time shift should be set to the mid of the 
interval (in this case hour) leading up the current one. 
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3 Results 

3.1 Cloudy sky model parametrisation 

First the cloudy sky model was tested with values from 
literature (Table 4). Then a simple model fitting of the 
parameter was performed using Stan, one time on the GHI 
output of the forecast model (NWP) and one time on the 
observations from station (SN68173). The model form is: 
 

�!"#�� � �!"$�%& = '*-��/(0, 7) (6) 

 
The result of the model fitting is presented in Table 4. The 
values from literature were used as initial model 
parameters, assigned weakly informed normally 
distributed priors with 𝜎 = 0.5, a lower bound of 0 and 
upper bound of 1, to help provide identifiability (except 
train that had bounds -1 to 1).  
 
Table 4. Parameters from literature, and results of training the 

model on either global horizontal irradiance from forecast 
(NWP) or observations (SN68173). 

 
Parameters 

MACL 
Literature 

MACN 
Fit to NWP 

MACO 
Fit to obs. 

ti;low 0.36 0.45 0.49 
ti;med 0.38 0.41 0.51 
ti;hig 0.75 0.87 0.77 
�i;low 0.70 0.32 0.03 
�i;med 0.60 0.94 0.12 
�i;hig 0.25 0.03 0.11 
train 0.00 ti-0.08 ti+0.03 
�b(R) 0.07 0.04 0.006 

 
Notice the increased transmittance during hours with 
rainfall when fitted to observations versus the expected 
decrease when fitted to the GHI output of the forecast 
model. Figure 4 show density plots of the posterior 
parameter distributions for the model, when fitted to 
observations (MACO in table 4). 

 
Fig. 4. Parameter density distribution from the cloudy sky 
model training on the observed GHI (see table 4). 
 
Performance assessment following the framework 
introduced in the method section (Table 2) show that the 
NWP GHI model output has the overall best score, but 
even the cloudy MACL model with parameters from 
literature perform reasonably well with slightly lower 
class C scores, indicating less distribution likeness. 
 

Table 2. Performance statistics of the NWP and cloudy sky 
MAC model validated against 60-min measured data. The 

percent statistics refer to the mean observed GHI, 228.5 W/m2 
for N=3446 hours ��zenith < 85°). 

 NWP MACL MACO 
Mean GHI (W/m2) 237 254 238 
Class A (%)    

MBD 3.90 11.34 4.60 
RMSD 41.98 41.89 37.77 
MAD 26.47 26.99 25.10 
SD 41.80 40.32 37.46 
R2 0.78 0.79 0.80 
SBF 0.92 0.90 0.83 
U95 116.11 113.96 104.22 
TS 5.47 16.51 7.21 

Class B    
NSE 0.75 0.75 0.80 
WIA 0.94 0.94 0.94 
LCE 0.62 0.61 0.64 

Class C (%)    
KSI 62.7 117.5 73.6 
OVER 4.3 44.2 25.5 
CPI 37.7 61.4 43.6 

 
The Taylor diagram show that the difference between the 
model scores on key Class A metrics are minor, indicating 
the same level of error of individual points. An additional 
linear correction factor was applied to the NWP output 
and the optimized cloudy sky model “MAC_O” to see 
how much it impacts the overall scores. Results of the 
scaling are given in light green and pink. 
 

 
Fig. 5. The Taylor diagram show relatively little difference in 
RMSD (%), SD (%) and Pearson correlation between models. 
 
Finally, the distribution likeness is investigated further 
using plots of CDF (Figure 6, left side) and absolute 
difference in CDF to the observation data (right side). In 
[10] we read that “The KSI parameter (Kolmogorov–
Smirnov test Integral) is defined as the integrated 
differences between the CDFs of the two data sets” while 
in the OVER-score “the integration is calculated only for 
those differences between the CDFs that exceed a critical 
limit, Dc”. The critical limit, Dc is shown as a dotted line 
in the right plot. 
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Fig. 6. Plot (left) of the cumulative distribution function for the 
models compared to the observations and (right) the absolute 
difference between them and the observations for Trondheim. 
The dotted line represent the critical value used in the KSI, 
OVER and CPI statistical tests presented in Table 2. 

3.2 Calculated vertical irradiances 

The diffuse part is calculated from the MACO GHI 
model output and used in the calculation of vertical 
irradiance to be compared to the measurements from a 
south facing façade pyranometer (see section 2.2). The 
focus is on the monthof March when the vertical 
irradiance is high due to a low solar position in 
Trondheim, little shading from trees, and ground 
reflectance that varies due to snowfall and melting. 

Figure 7 show that the day to day variations in solar 
energy on the façade is generally well represented, but 
on some days with mixed clouds, the forecast error is 
relatively large. 10-minute observations of direct 
irradiance on the façade are also shown with black 
points, (lines are hourly data) to indicate the cloud 
effects. The overestimation of solar irradiance on clear 
days is not entirely due to modelling error but could be 
partly prescribed to the measurement accuracy and 
maintenance (cleaning, snow covering the sensor). It 
was noticed that another pyranometer of the same type 
mounted horizontally also output less than the station 
maintained by Met Norway (SN68173) located <100 m 
away (Figure 8). This mismatch makes further analysis 
difficult. Method section 2.2 refer to the verical and 

horisontal pyranometers on the facility having lower rated 
accuracy. This may explain parts of the overestimation on 
clear days, while snow may cover the sensor and influence 
the measurements on days with heavy snowfall.  
 

 
Fig. 8. Global horizontal irradiance measured on the test 
facility (in red) and the station SN68173 used in the study. 

Conclusions 
The study shows that it is possible to get six-hour 
forecasting performance close to the GHI output of the 
NWP model using the parametric cloud layer model 
and the available weather parameters of the location 
forecast web API. To account for the unpredictability 
of clouds and improve the short-term forecasting 
performance beyond 38 % RMSD, 38 % SD and 0.80 
R2 a different approach is needed. Weighting ground 
measurements with a Kalman filter or regression would 
be one way to improve short term performance and 
bias. Replacing short term predictions of the cloudy sky 
model and NWP with a model relying on real-time 
satellite image projections is another approach that is 
taken in many commercial nowcasting services [36].  

In the validation, the MEPS control member, or 
more specifically the post-processed forecasts, was 
used. To our knowledge, it is the basis for the location 
forecasts and available sooner than the ensemble. The 
study of [12], showed that the ensemble mean had 
better forecasting performance than the control 
member. Future studies should investigate if the 
ensemble describes the probability well for day-ahead 
forecasts. Taking into consideration sky conditions in the 
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nearby 2.5 km model grid points is another suggestion. In 
the post processed forecasts used in the validation, the 
cloud area fractions in each layer of a grid point is the 
median value of a neighbouring area (37.5 x 37.5 km), 
while the solar radiation was extracted directly from the 
model. 

The clear sky radiation and ground albedo used in the 
cloud layer model are also utilized to calculate diffuse 
radiation and ground reflections and are input to the 
vertical surface radiation calculations. The results show 
that these variables can easily be calculated in a scripting 
environment when a new forecast is available to be used 
in solar predictions for energy management in buildings 
or local energy generation.  A closer study of the impact 
of the value of these effects and using other weather 
variables from the location forecast is planned. 
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