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A B S T R A C T   

The pressure dependence of the yield stress in solute strengthened aluminium alloys is investigated by first 
principle calculations. The solute elements studied are magnesium, silicon and copper. A fixed boundary cluster 
model is employed to calculate the interaction energies between the edge dislocation and the solutes, while 
simultaneously controlling the hydrostatic pressure in the system. The results show a systematic increase in yield 
stress with increasing hydrostatic pressure for all solute elements. The calculated pressure dependence is in 
qualitative agreement with experiments, but underestimated quantitatively. It is suggested that the experi
mentally observed pressure dependence is caused by both the static and the transient dilatancy of dislocations. In 
contrast to magnesium and copper atoms, silicon atoms are found to interact non-elastically with dislocations 
within the core field, indicating that the favourable position for the silicon atoms is in the distorted sites in the 
matrix.   

1. Introduction 

Atomistic scale investigations are essential tools in understanding 
the behaviour of dislocations. Dislocation motions and interactions are 
the cause of plastic flow and work hardening in metals and alloys. 
Simulations of these phenomena can help develop material models for 
properties and structural analysis in both academia and industry, and 
aid in calibrating such models. Further development of an experimen
tally validated framework for multi-scale material modelling would 
reduce the need of time-consuming and expensive testing. 

An accurate material model must be able to account for all relevant 
phenomena in order to be robust and reliably used in industry. One 
particular effect often neglected in higher scale constitutive models for 
aluminium alloys is the strength-differential (SD) effect. The SD effect 
signifies a difference in flow stress depending on whether the material 
is subjected to tensile or compressive loading. This effect has been 
studied since the 70s, when it was first observed in high-strength steel  
[1–3]. Later, it was shown to also be relevant for aluminium alloys, 
both for the 1xxx-series [4] and the age-hardenable 6xxx-series [5]. 

Several hypotheses for the mechanism behind the SD effect were 
tested by early pioneers on the topic [1,6]. The SD effect was initially 

believed to be an artefact caused by the experimental setup, such as 
friction in compression testing. This was eliminated through thorough 
investigations, which resulted in various other hypotheses [7], namely 
microcracking due to quenching and residual stresses from prior pro
cessing of the material. The former was ruled out after the same effect 
was observed in materials resistant to microcracking [1]. The latter 
failed on the account that the SD effect should disappear after cyclic 
loading or at plastic strain of a few percent [8]. Two strong hypotheses 
remained: non-linear elastic effects, as discussed by Hirth and Cohen  
[1], and a permanent volume change during plastic deformation stu
died by Drucker [6]. The latter was investigated by Spitzig and Rich
mond [4,9] and disregarded on the basis that this hypothesis predicts a 
significantly higher volume expansion than measured. 

Spitzig and Richmond [4] also investigated if the SD effect was 
caused by the pressure sensitivity of dislocation motion, which is a non- 
linear elastic effect. Two dislocation models were compared, one by 
Shmatov [10] and another by Jung [11]. The study yielded good 
agreement between theories and predictions of both the volume change 
and the influence of the hydrostatic pressure on the shear modulus and 
the shear strength. The volume change was predicted through a change 
in the dislocation density. The effect on the shear modulus was argued 
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to be a result of the influence of the hydrostatic pressure on the dis
location motion. Based on their results, Spitzig and Richmond [4] 
proposed that the flow stress, expressed in terms of the von Mises 
equivalent stress eq, depends linearly on the hydrostatic pressure P 
according to 

= + P(1 3 ),eq 0 (1) 

where 0 is the yield stress at =P 0 and is a constant governing the 
pressure dependence. Bulatov et al. [12] investigated the dislocation 
motion in pure aluminium by molecular dynamics (MD), and, in par
ticular, the effect of hydrostatic pressure on the transient dilatancy 
caused by the movement of a dislocation. The MD calculations yielded 

-values in good agreement with the value reported by Spitzig and 
Richmond [4]. The SD effect in age-hardenable aluminium alloys was 
investigated by Holmen et al. [5]. They conducted finite element 
modelling in combination with experiments, and found good agreement 
between simulations and experiments when adopting the -value re
ported in [4] for aluminium. The study by Holmen et al. illustrates the 
importance of the SD effect in high strength aluminium alloys, and 
further strengthen the hypothesis proposed by Spitzig and Richmond  
[4]. 

However, the fundamental mechanism of the SD effect is still under 
discussion. It is not known if there exists a pressure dependence of the 
interaction between dislocations and other defects, and whether it is 
important for alloy systems. In this study, density functional theory 
(DFT) is applied to investigate the effect of hydrostatic pressure on the 
solute-dislocation interaction energy and the yield stress of solute- 
strengthened aluminium alloys. The influence of hydrostatic pressure 
on the static dilatation of an edge dislocation in the presence of solute 
atoms has been studied, and a difference in yield stress during com
pression and tension has been observed, in qualitative agreement with 
literature. 

2. Background 

Solute strengthening is the increase in strength due to the impeding 
of dislocation motion by solute elements. The mechanism is governed 
mainly by the interactions between the elastic mismatch of solute ele
ments and the pressure field of dislocations. This interaction increases 
the energy barrier for dislocation mobility. Solute strengthening can be 
treated by classical models through elasticity theory, in which case the 
region nearest to the dislocation is omitted as to avoid the divergency in 
the stress field. Leyson et al. [13] showed that the atoms close to the 
dislocation have a large contribution to the strengthening, and thus 
they are crucial for an accurate model. An approach combining elastic 
and atomistic models is capable of taking both the classical and 
quantum effects into account. The numerical model employed in this 
study is similar to the model of Leyson et al. [13], which is discussed 
and explained in detail in the review article by Varvenne et al. [14]. 
The next portion of this section will serve as a brief summary of the key 
components and properties of the model. 

The model is based on the idea that a statistical distribution of so
lutes interacts with the pressure field of a dislocation. An infinitely long 
straight edge dislocation, placed in a statistical solute configuration, 
will yield a total energy of the system above the equilibrium value. To 
minimise the energy of the system, the dislocation is allowed to bow out 
to gain a more favourable solute configuration at the cost of the energy 
gained through excess line tension. This is illustrated in Fig. 1, where 
connected line segments of length have relaxed in energy wells. The 
energy wells are spaced by a bow-out amplitude w. The change in the 
total energy as a function of the length of the line segments and the 
bow-out amplitude can be expressed by [14] 

=E w w
b

E w L( , )
2 3

( )
2

,ptot
2 1

2 2
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where is the line tension, L is the length of the dislocation line, and b 
is the length of the Burgers vector. The ratio L/2 represents the 
number of pinned segments of length . By assuming a dilute binary 
alloy, the key mesoscale quantity for solute strengthening E w( )p can 
be approximated by 

=E w c U x w y U x y( ) [ ( , ) ( , )] ,p
i j

i j i j
,
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where c is the solute concentration and U x y( , )i j is the solute-dislocation 
interaction energy for a solute placed at position x y( , )i j . The co
ordinates xi and yj are defined to be orthogonal to the dislocation line 
and to each other, and the origin is placed at the centre of the dis
location. The positive direction of xi is defined to be parallel to the glide 
direction of the edge dislocation. The sum in Eq. (3) is taken over the 
whole space, but scales as +w x y/( )i j

2 2 . An energy minimisation of Eq.  
(2), with respect to w and , will yield the characteristic values c and wc
of the segment length and bow-out amplitude that are specific for the 
system. Note that the minimisation of Eq. (2), with respect to , yields a 
characteristic value w( )c , which depends on the bow-out amplitude. 

The energy barrier to unpin a 2 c-long dislocation segment is ex
pressed as [14] 

=E
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where the prefactor 1.22 is a result of the numerical constants emerging 
during the derivation. For the dislocation to glide, it has to be affected 
by an applied resolved shear stress. The stress matching the energy 
barrier will be the zero Kelvin yield stress, which can be calculated as 

= E
E w

b w
0.82

( )
.p

0 b

2
c

2 4
c
7

1
3

(5)  

To compare with experiments, the yield stress at higher tempera
tures is required. Dislocation motion can be thermally activated, and 
thus motion can be initiated at lower shear stress at higher tempera
tures. From transition state theory, assuming a quasi-static loading, the 
finite temperature yield stress can be approximated by [14] 

= k T
E

1 ln ,0
b

b

0

(6) 

where kb is the Boltzmann constant, T is the temperature, and 0 and 
are the reference and macroscopic strain rates, respectively. Assuming a 
polycrystalline sample during a tension or compression test, the shear 
yield stress must be multiplied by a Taylor factor to account for the bulk 
behaviour. The Taylor factor is dependent on the texture and loading 
direction, and a Taylor factor of 3 is generally accepted for random 
texture, and enables the calculated stress to be comparable to the yield 
stress found experimentally. 

Fig. 1. The solid red line represents a dislocation in a favourable energy con
figuration after bow out. The dashed line represents the straight dislocation 
before bow out. The red circles represent solutes that have a positive interaction 
energy with the dislocation, while blue circles represent solutes with a negative 
interaction energy. w is the bow-out amplitude, and is the length of a line 
segment. 
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An expression for the solute-dislocation interaction energy is needed 
in order to calculate the characteristic bow-out amplitude from Eq. (2) 
and (3). The interaction energy is well defined by elasticity theory far 
away from the dislocation core, and can be approximated by 

=U x y p x y V( , ) ( , ) ,i j i j (7) 

where V is the misfit volume associated with the solute and p x y( , )i j is 
the pressure field of the dislocation. The pressure field of a straight 
dislocation is given by the Volterra solution through anisotropic elas
ticity [15], 

= +
+

p x y µb
y

x y
, 1

3 (1 )
,i j

j

i j
2 2

(8) 

where is the Poisson ratio, and µ is shear modulus. 
It is evident from Eq. (8) that the pressure field is divergent when 

approaching the origin, i.e. the centre of the dislocation. The elasticity 
approach is inaccurate close to the dislocation, which is why the solute- 
dislocation interaction energy in this region must be calculated using an 
atomistic approach. In an atomistic approach, different atomistic 
models are used to isolate the interaction. Considering a system con
sisting of aluminium matrix, a dislocation at the origin and a solute at 
position x y( , )i j , the calculation is done by 

=U x y E x y E E( , ) ( , ) ,i j i jtot dis sol (9) 

where Etot is the total energy of the full system, Edis is the energy of 
having a dislocation in the matrix including the free surface, and Esol is 
the energy difference of substituting a solute in the matrix, see Fig. 2. 
The atomistic models used in the DFT calculations are discussed in 
Section 3. 

3. Method and model 

The DFT calculations were performed using the Vienna Ab Initio 
Simulation Package (VASP) [16,17]. The functional used for the cal
culations is the Perdew-Burke-Ernzerhof generalized gradient approx
imation [18], which has shown to be accurate for metals and is rela
tively fast computationally. The plane-wave energy cut-off was 400 eV 
and a gamma sampling of 0.18 k-points per Å was used to model the 
Brillouin zone. 

The bulk fcc aluminium lattice constant has been calculated for 
multiple levels of hydrostatic pressure. A change in the hydrostatic 
pressure P will result in a volumetric strain, represented by a minuscule 
change in the lattice constant. This is resulting in a linear relation be
tween the hydrostatic pressure and the lattice constant, which was 
calculated in a preliminary study, see Fig. 3. In these calculations, two 
different sized supercells were used to minimise the numerical error. 

Modelling of dislocations with periodic plane wave DFT has an in
herit challenge due to the asymmetric nature of the long-range stress 
field generated by the dislocation. With periodic boundary conditions, 
the system has to be large enough for the stress field to be insignificant 
at the boundaries, or the model must be designed in such a way that the 
stresses at the boundaries are cancelled. Alternatively, the system could 

be surrounded by vacuum in two directions, creating a so-called cluster 
model. The surface of the cluster model must be corrected by a fixed or 
a flexible boundary condition to represent an infinite matrix [19]. Such 
a model would circumvent the problems of the long range displacement 
field of the dislocation, but at the cost of introducing an artificial sur
face. Applying a fixed boundary condition adds the benefit of having a 
controllable hydrostatic pressure in the system. The drawback of a fixed 
boundary condition is a constrained displacement field in the centre of 
the dislocation, referred to as the core field. The approximation is jus
tified by a faster decay of the non-elastic part of the displacement field 
compared to the elastic part. 

The cluster model adopted in this work is illustrated atomistically in  
Fig. 4. The cluster is divided into an outer and inner region, represented 
by purple and grey colours, respectively. The radius of the inner region 
is R1, and the outer region is between R1 and R2. The model is periodic in 
the [112̄] direction, parallel to the dislocation line. 

The centre of the cluster is referred to as the centre-of-symmetry 
(COS), represented by a green large in Fig. 4. A Burgers circuit en
closing the model yields a Burgers vector =b [1̄10], indicating an edge 

Fig. 2. Illustration of the different systems used to find the solute-dislocation 
interaction energy, U x y( , )i j . The blue dot represents the solute, while the 
illustrates the dislocation. The grey area defines the matrix, while the white 
area is the artificial vacuum introduced in the super cell. E x y( , )i jtot is the total 
energy of the full system, Edis is the energy introduced by the dislocation and 
matrix, while Esol is the energy introduced by the solute. 

Fig. 3. The graph shows hydrostatic pressure P as a function of lattice constant 
in pure aluminium calculated with density functional theory. The regression 
line is calculated from the data points. The data points are the mean of two 
individual calculations at different supercell size. 

Fig. 4. Atomistic cluster model with two partial dislocations represented by 
small red . The centre of symmetry is located at the green large . The purple 
region is a fixed boundary for relaxation of the grey region. Outside the fixed 
boundary, vacuum extends sufficiently to avoid influence from periodic images. 
Periodic boundary conditions are used in the direction [112̄], i.e. parallel to the 
dislocation lines. R1 and R2 are the radii defining the size of the relaxed region 
and the full atomic slab, respectively. 
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dislocation at the COS. The displacement field has mirror symmetry 
with the mirror plane =n 1̄10 through the COS. Preliminary relaxation 
of the system resulted in a dissociation of the edge dislocation into two 
Shockley partials, separated by a distance of approximately b4 . The 
partial dislocations have an edge component and a screw component, 
and thus result in a displacement in the [112̄] direction. The dissociation 
of the edge dislocation corrects some of the error in the constrained 
core field, and reduces the relaxation time considerably. 

The displacement field is given by the Volterra solution from ani
sotropic elasticity theory [15], which was imposed to all atoms in the 
model. The atoms in the outer region of the model were constrained 
during the relaxations, under the assumption that these atoms were 
sufficiently far away from the partial dislocations so that the non-elastic 
part of the displacement field is negligible. Relaxations with different R1
values, R [10, 22]1 Å, showed a maximum displacement of any atom 
of less than 0.05 Å near the interface between the fixed and the relaxed 
region. The value chosen for R1 puts a limit to how many positions there 
are for solutes in the relaxed region, as the strain field of solutes are 
excluded in the fixed region. The inner and outer radii were set to 

=R 141 Å and =R 202 Å for systems containing Mg solutes, while for Si 
and Cu containing systems both radii were increased by 6 Å due to the 
higher selection space for solute placement needed in the analysis. In 
the periodic [112̄] direction, a slab thickness of one unit cell length, 4.96 
Å, was used. The full atomistic model contains 371 and 640 atoms for 
the small and large version, respectively. The minimum width of the 
surrounding vacuum was set to be 10 Å, making the interactions with 
periodic images negligible. 

The initial relaxation of the inner region was performed for systems 
with different hydrostatic pressures P ranging from −600 MPa to 
600 MPa. The pressure was superimposed by changing the lattice 
constant in accordance to Fig. 3. 

The complete system consists of two partial dislocations constituting 
a pure edge dislocation at the COS, and one solute substituted at dif
ferent aluminium sites for different calculations. The various sites used 
for substitution are indicated in the figures in Section 4. Due to the 
mirror symmetry, only one side of the COS was sampled. This as
sumption was confirmed in preliminary calculations. The interaction 
energy was calculated as described by Eq. (9) and Fig. 2. 

Esol can be calculated using two methods. The first method relies on 
an assumption that the solute-dislocation interaction energy is anti
symmetric over the tension–compression boundary of the dislocation 
stress field. As a consequence, the interaction energies of systems with 
an even number of solutes, sampled at both sides of the boundary, will 
be cancelled out. Esol can then be found by subtracting the energy in
troduced by the dislocation from the total energy of the systems and 
dividing by the number of solute sites sampled. The second method is 
finding the energy difference between two systems, one of pure alu
minium and one where an aluminium atom is substituted with another 
element. The latter method should be performed with a thin simulation 
cell to reproduce the system geometry in Fig. 4. The numerical im
plications of the two methods are discussed in Section 4. 

The parameters used to calculate the yield stress for systems at 
different hydrostatic pressure are summarised in Table 1. The numer
ical value of the solute concentration has been chosen in accordance 
with previous experimental and numerical studies. The results are 
presented in the next section. 

4. Results and discussion 

The contour plots of the solute-dislocation interaction energy for Mg 
and Cu, at P 0, are presented in Fig. 5. The most energetically fa
vourable position for the Mg solutes is in the lowest density regions of 
the system, i.e. the tensile area of the dislocation. With Mg solutes, the 
highest energy is found when the solutes are placed above the partial 
dislocation cores, in the compressed area. The energetically favourable 
positions of the Mg solutes can be predicted by elasticity theory, since 

they are influenced by the difference in misfit volume of the elements. 
Mg has a positive misfit energy, see Table 1, resulting in a compressive 
strain in the matrix, while Cu and Si have a negative misfit volume. 
Thus, the interaction energy is expected to be qualitatively reversed 
over the tension–compression boundary for Cu and Si. 

Although this is the case for Cu, see Fig. 5b, the Si solutes seem to be 
expressing a non-elastic effect manifested through an increase in the 
interaction energy in the stacking fault, see Fig. 6a. The preferred po
sition of a Si atom is close to the partial dislocation cores, where the 
lattice is most displaced. There is also a localised energy plateau ap
proximately five sites above the centre of symmetry, where the inter
action energy turn positive. For Cu solutes a non-elastic effect is seen on 
the tensile side through an increased interaction energy in the stacking 
fault, but a change from negative to positive interaction energy on the 
compressive side is not observed. The change of sign in the interaction 
energy for Si was first suspected to be an artefact caused by the small 
size of the system, =R 141 Å. However, the non-elastic behaviour was 
as prominent when repeating the calculations with an increased radius 

=R 201 Å, indicating that the observation was caused by other factors 
which will be discussed later. Based on the investigation of the Si 
system, the R1 value was increased to 20 Å in the production runs for Si 
and Cu as a precaution, and for the added benefit of a larger selection 
space for solute placements valuable for further analysis. Another 
possible reason for the localised energy plateau in the interaction-en
ergy map could be the slab thickness of one unit cell that results in a 
continuous column of Si atoms. To check if this is the case, a calculation 
was performed with the system thickness doubled. In agreement with 
Layson et al. [13], this results in an insignificant change in the inter
action energy of less than 0.01 eV, indicating that the thickness of the 
slab is not the source of the observed energy plateau. 

From the observations, Si behaves differently depending on the 
position of the nearest neighbours, indicating a chemical effect not 
captured by elasticity. One likely cause of the plateau is the covalent 
bonds of Si. The covalent bonds are directional and do not match with 
the positions of the Al sites in the fcc matrix, nor in the stacking fault. 
Owing to the displaced nature of the dislocation core, it can potentially 
be a more suitable position for the Si atoms, thus making them more 
tightly bonded. Charge-density difference maps of different Si sites 
were investigated, but did not yield any conclusive results. The ob
servations in the interaction energy map motivate further studies on the 
interaction between solutes and dislocations, and the interaction be
tween solutes and distorted matrices. The increased interaction energy 
away from the core of the partial dislocations may affect the local 

Table 1 
Numerical parameters used in the analysis of so
lute-strengthening in aluminium binary alloy: c is 
the solute concentration, V is the misfit volume 
of the respective solute, where values are calcu
lated by Leyson et al. [20], is the dislocation line 
tension energy, calculated by Dong et al. [21] and 
used by Leyson et al. [20], is the chosen strain 
rate, and and µ are Poisson’s ratio and the shear 
modulus, respectively.    

Parameter: Value:  

cMg 0.44 at.% 
cCu 0.09 at.% 
cSi 0.81 at.%  

VMg 5.71 Å 
VCu −5.57 Å 
VSi −2.65 Å  

4.3 eV Å−1 

104 s−1 

0.33 
µ 28.7 GPa 
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kinetics of solutes. This can in turn have an influence on other phe
nomena, such as dynamic strain ageing where cross-core diffusion is a 
possible mechanism [22]. 

The non-elastic effect on the interaction energy in Fig. 6a had an 
effect on the value of the key mesoscale quantity Ep, and thus on the 
value of the characteristic bow-out amplitude wc. To explore the mag
nitude of this effect, different samplings of solute placement were used 
when calculating wc. Fig. 6b shows an example of an alternative solute 
sampling, where the rows nearest the dislocation are sampled. As seen 
in the figure, the inelastic behaviour is not well captured due to the low 
sampling set. However, it was found that the position of the peaks in the 
interaction energy on the nearest rows, caused by the dissociated dis
location, plays a more critical role on wc. 

In addition to the solute sampling near the core region, the choice of 
interpolation of the interaction energy also influenced the calculations 
of wc. Two different methods of interpolation were specifically ana
lysed. The interaction-energy map was interpolated by linear inter
polation of all atoms, or in a two-step method. The two-step inter
polation was first done by interpolating the interaction energy on the 
tensile and compression sides separately, and then the two interpolated 
fields were merged. The idea is that interpolation over the discrete 
jump from a negative to a positive interaction energy is problematic. 
The difference in the resulting wc of the two interpolation procedures 
was noticeable. That said, the solute-strengthening model by Leyson 
et al. [20] has shown to correctly take the interaction energy in the near 
vicinity of the dislocation core into account, and these solute atoms 

Fig. 5. Solute-dislocation interaction energy map for (a) Mg and (b) Cu, at approximately zero hydrostatic pressure. The white dots represent solute placement where 
individual DFT calculations have been conducted. The black and white crosses are the partial dislocations and the centre of symmetry, respectively. The interaction 
energy inside the black circle, enclosing the relaxed region of the system, was found by linear interpolation between the interaction energy outside the black circle, 
calculated from elasticity theory, and the white dots. 

Fig. 6. Solute-dislocation interaction energy map for Si, at approximately zero hydrostatic pressure, with different solute sampling, where (a) has a more complete 
sampling than (b). The white dots represent solute placement where individual DFT calculations have been conducted. The black and white crosses are the partial 
dislocations and the centre of symmetry, respectively. The interaction energy inside the black circle, enclosing the relaxed region of the system, was found by linear 
interpolation between the interaction energy outside the black circle, calculated from elasticity theory, and the white dots. 
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provided the most significant contribution to wc as indicated in their 
paper. In brevity, a decision was made to stay consistent throughout all 
the different pressure states of the system, and the results shown here 
are thus calculated using linear interpolation over the entire system. 

The inelastic behaviour of Si brought questions about the calcula
tion of the solute energy, Esol, entering into Eq. (7). A change in the 
solute energy is seen as a constant change in the interaction energy at 
all positions, and this could explain the change in sign that can be seen 
in Fig. 6a. The initial calculations of this quantity were carried out 
under the assumption that the interaction energy is antisymmetric over 
the tension–compression boundary of the dislocation stress field, as 
explained in Section 3. This assumption might not be valid as the solute 
energy could be biased by a solute tightly bonded, or strongly repelled 
by the dislocation. The alternative method in which Esol is calculated 
separately, avoids interfering with a dislocation. However, in this 
method the fluctuations due to the constrained core field are not cor
rected. The error of the core field should be relatively low, based on the 
convergence of the system size. The solute-dislocation interaction en
ergy, with the solute energy calculated separately, can be seen in Fig. 7. 
These results indicate that Si should be tightly bonded to dislocations, 
and not strongly repelled by the compression side to the extent pre
dicted by elasticity theory. This suggests that the core region is en
ergetically favourable for Si atoms to reside, due to a distorted matrix. 
Neither Mg or Cu showed similar effects, and the solute energy of Mg 
and Cu did not change considerably based on the calculation method. 
The interaction energy near a dislocation could be relevant when 
studying nucleation of precipitates at dislocation lines, where the in
teraction energy will affect both the local concentrations of solutes and 
the kinetics. This subject will not be expanded on in this study. 

The interaction energy found in this study is in good agreement with 
previous studies [20], with the exception of the energy map of Si. The 
solute-strengthening model was used to calculate the yield stress, and 
the zero pressure yield stress is used to compare with experiments for 
Mg and Cu. The results are shown in Table 2. Note that Eq. (6) is used to 
convert the predicted values at 0 K to corresponding values at 78 K. The 
low yield stress for Cu compared to experimental results is consistent 
with results obtained by Leyson et al. [20]. The higher values in the 
experimental results were attributed to the concentration of iron in the 

Al-Cu alloys under experimental testing [23]. The temperature is set to 
78 K for all the presented results regarding yield stress in this study for 
simplicity and consistency. 

Fig. 8 and 9 show the calculated yield stress for solute strengthening 
as a function of hydrostatic pressure for Mg, Cu and Si together with 
linear interpolations. The yield stress is undoubtedly higher for super
imposed compression than for tension. This trend is evident for all cases 
and in qualitative agreement with experimental studies [4,5]. The un
certainties in the calculated yield stresses are difficult to analyse, since 
the model relies on the relative values between interaction energy maps 
with different atom positions. The maximum value of the interaction 
energy was higher in compression than in tension, although the results 
are not conclusive due to limited statistics. However, the strength dif
ference found is less pronounced compared to experimental observa
tions. As mentioned, Spitzig and Richmond [4] proposed that the flow 
stress is linearly dependent on pressure, with a parameter de
termining the pressure dependence, see Eq. (1). This parameter was 
said to be material dependent [4], i.e. it should be dependent on the 
elastic constants of the matrix material, meaning that similar values of 

are expected for all solute elements. The -parameter values pre
dicted in this study were 14, 20 and 26 TPa−1 for Mg, Si, and Cu, 
respectively. The results indicate a pressure dependence that is affected 
by the solute elements. However, there is not enough data to firmly 
conclude such a pressure dependence, and a more thorough investiga
tion on the subject could yield further insight. One possible explanation 
is that the hydrostatic pressure affects the solute-dislocation interaction 
energy differently depending on the solute, because the strain field of 
each solute atom is unique with different associated volumetric strain. 

The predicted values of are consistently lower than what has been 
found in previous studies, both experimentally [4,5] and in a numerical 
study by Bulatov et al. [12]. The experimental study by Spitzig and 
Richmond reported 58.7 TPa−1 [4]. In their MD calculations, Bu
latov et al. [12] investigated the influence of hydrostatic pressure on 
the transient dilatation generated by moving dislocations, but they did 
not consider any static dilatation, such as solute-dislocation interaction, 
dislocation–dislocation interaction or interaction with precipitates. In 
the present work, solute-dislocation interactions are included, and the 
results indicate that these interactions have a considerable contribution 
to the strength-differential effect for solute-strengthened alloys. In light 
of these observations, we propose that the solute strengthening effect is 
caused by the pressure dependence of both the static and transient di
latation of dislocations. Both effects must be considered when studying 
the mechanisms behind the SD effect. This study strengthens the hy
pothesis that the strength differential effect is a non-linear elastic effect 
as proposed by Spitzig and Richmond [4]. The results presented give a 
direct indication that pressure has a non-linear elastic effect on the 
interaction between solutes and dislocations and thus the energy barrier 
experienced by the dislocation. 

5. Conclusion 

The pressure dependence of the yield stress in solute strengthened 
Al alloys has been investigated by first principle calculations using 
density functional theory. The studied solute elements were Mg, Cu and 
Si. The results show a clear increase in yield stress as the hydrostatic 
pressure is amplified, in agreement with published experimental studies  

Fig. 7. Solute-dislocation interaction energy map for Si, at approximately zero 
hydrostatic pressure, with the energy cost of a solute calculated separately. The 
white dots represent solute placement, where individual DFT calculations have 
been conducted. The black and white crosses are the partial dislocations and the 
centre of symmetry, respectively. The interaction energy inside the black circle, 
enclosing the relaxed region of the system, was found by linear interpolation 
between the interaction energy outside the black circle, calculated from elas
ticity theory, and the white dots. 

Table 2 
Comparison between calculations and experimental results for the solute 
strengthening yield stress at 78 K.     

Solute Yield stress (MPa) 
predicted 

Yield stress (MPa) experiments  
[23]  

Mg (0.44 at.%) 15.2 20.6 
Cu (0.09 at.%) 4.3 12.3 
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[4]. A cluster model with fixed boundary conditions has successfully 
been utilised for calculating the interaction energy between solutes and 
an effective edge dislocation under varying superimposed hydrostatic 
pressure. The hydrostatic pressure has a visible effect on the solute- 
dislocation interaction energy, manifesting a pressure dependent yield 
stress for all solute elements studied. The calculated interaction energy 
between Si and the two Shockley dislocations in aluminium alloys is 
more complicated than elasticity theory would suggest. In contrast to 
Mg and Cu solutes, the solute-dislocation interaction energy map for Si 
atoms indicates that Si is more attracted to the dislocation than re
pelled. This attraction is not predicted by elasticity theory, and sug
gested here to be a chemical effect. A more thorough investigation 
could yield valuable information about the local kinetics in systems 
containing solutes and other defects. 

Data availability 

The raw data used to reproduce the presented results are available 
in the Zenodo repository, https://doi.org/10.5281/zenodo.3686913  
[24]. 
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