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Abstract. A method based on torsional vibration measurements for a system-level condition
monitoring of the drivetrain system is developed in this paper. The latter is tested by using a
10MW wind turbine drivetrain simulation model, and experimentally validated by the drivetrain
operational data obtained from a 1.75MW turbine. The method relies on the estimation of
the drivetrain torsional natural frequencies by using the torsional responses residual function
and subsequent monitoring of the variations in the eigenfrequencies and normal modes. In
other words, an abnormal deviation from the reference values of these dynamic parameters
can be translated into a meaningful interpretation on the propagation of a specific fault in the
driveline. Local sensitivity analysis is employed to establish a relationship between different
types of drivetrain faults and the system dynamic properties.

1 Introduction
Multi-megawatt offshore wind turbines are considered as a solution for the large-scale realization
of renewable power generations. Offshore wind industry still suffers from longer downtime, high
cost for repair and replacement of this system and higher risk of loss of turbine. The latter is due
to the larger components and the difficulty to access the system in offshore environments, and a
wider range of excitations due to the synergistic impacts of waves, currents and wind turbulences
which call for innovative approaches to have a better understanding about the system dynamics
and excitations. The focus of this research is proposing a system-level drivetrain condition
monitoring (CM) solution by estimation and monitoring of the system dynamic properties. The
latter is performed by developing a numerical model of the drivetrain as a dynamic system
based on its measured torsional response and the subsequent estimation of torsional frequencies.
The motivation is to reduce operational expenditure (OPEX) and subsequently levelized cost of
energy (LCOE) to make offshore wind power competitive with land-based wind turbines.

Variations in the drivetrain can be monitored by tracking the changes in the modal parameters
(resonance frequencies, damping ratios, and mode shapes) of the dominant modes of this system
[1]. Operational modal analysis (OMA) approaches are proposed for characterization of the
dynamic behavior (modal parameters) of wind turbine drivetrain in the recent literature by using
the translational vibration measurements [1], which generally suffer from a high possibility that
harmonics be misinterpreted as the eigenfrequencies [1, 2]. Drivetrain is a complex dynamical
system with different sources of external excitations and components defect frequencies,and the
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OMA techniques are still not matured enough for such a system. The latter has made OMA
technique less-efficient for condition-based maintenance.

The possibility of estimating the drivetrain torsional natural frequencies by using the angular
velocity residual function and the subsequent application for health monitoring of the drivetrain,
blades and tower is discussed in this paper. Natural frequencies appear on torsional response (e.g.
angular velocity) due to the impulsive behavior of wind which can act as a physical hammer which
excites the system torsional frequencies. In addition, some wind and wave induced structural
motions such as excited tower bending and blade in plane modes can act as torsional excitation
sources and induce some torsional vibrations on the drivetrain torsional response. The latter
makes the angular velocity measurements also applicable for health monitoring of tower and
blades. The drivetrain system torsional response and the natural frequencies are proposed in
the literature for detecting faults initiated by torsional sources. Patel et al. [3] proposes the
use of angular displacement to support the lateral response to recognise the rubbing faults
in the drivetrain, so that the excited torsional frequency and the amplitude of response in
the natural frequency and the side bands are utilized to characterize the fault. Feng et al. [4]
proposes the use of the measurements of torque instead of transverse vibration signals to diagnose
planetary gearbox local/distributed faults, because they are free from the amplitude modulation
effect caused by time variant vibration transfer paths, thus they have simpler spectral structure
than transverse signals. Lebold et al. [5] suggests monitoring the characteristic changes in
torsional natural frequencies, and claims that those changes are associated with the shaft crack
propagation. Kia et al. [6] proposes the estimated electromagnetic torque of the electrical
machine as a noninvasive torsional measurement in the drivetrain to monitor the torsional stress
on the components including shaft, bearings, and gearbox, and the method is used to detect
a gear failure. The electromagnetic torque estimation is commonly used in electrical drives to
control the electrical machine, and implementation of the method does not need any additional
sensor. Not only the drivetrain faults, but also rotor and tower excited modes can cause a
torsional oscillation observable on the drivetrain torsional response [7, 8]. The amplitude of
blade edgewise and tower bending natural frequencies can provide insights about resonances
in these components. The monitoring of the variations of these components frequencies is
also useful for some other purposes such as ice detection in blades, and health monitoring of
blades (detect root cracks within turbine blades) and tower. The idea of using angular velocity
measurements for the drivetrain fault detection is originally proposed by Nejad et al. [9]. The
input data is provided from the encoders on the drivetrain used for the turbine control, and
is normally in access in both the turbine and the farm levels. Therefore, any algorithm based
on those measurements can simply be integrated in either turbine or farm control to support
the online health monitoring of the drivetrain. Moghadam et al. [8] experimentally tests the
potential of using the encoder measurements to detect different faults initiated by the different
excitation sources, compared to a conventional method based on accelerometers.

In the proposed drivetrain condition monitoring approach of this paper, it is assumed that faults
in the driveline (e.g. shaft cracks, unbalance and looseness) reveal themselves by variations
in the system stiffness and moment of inertia. Therefore by monitoring the consequences of
variations of drivetrain parameters (i.e. stiffness and moment of inertia matrices) in change of
the drivetrain dynamic properties (i.e. natural frequencies, mode shapes and damping matrix),
it is possible to monitor the progress of faults. For this purpose, a sensitivity analysis helps
to realize what are the most influential parameters on the variability of the drivetrain dynamic
properties. The main contributions of this work are:

(i) Estimation of the wind turbine drivetrain torsional natural frequencies by using the system
torsional responses,

(ii) Estimation of the drivetrain damping in the torsional natural frequencies,

(iii) Proposing a method for driveline health monitoring without any additional sensor, based
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on monitoring the variations in the estimated drivetrain dynamic properties.

2 Methodology
2.1 Torsional natural frequency estimation theory
The torsional response of equivalent one-degree-of-freedom rotational system in the non-
dimensional form can be expressed by

θ =
τ0
kt√

(1− ( ω
ωn

)2)2 + (2ζt( ω
ωn

))2
, (1)

where θ is the angular position and τ0 is the amplitude of the excitation momentum. For this
case, ωn is the natural torsional frequency of the system. kt is the torsional stiffness of the
shaft, and ζt is the torsional damping ratio. An amplified frequency in the drivetrain torsional
response can be due to a significant excitation amplitude or coincidence of excitation frequency
with natural frequencies.

Natural frequencies appear on torsional responses e.g. angular velocity measurements due to
impulsive behavior of wind which excites those frequencies. An initial velocity applied on a
system as described by Thomson et al.[10] can play a role as an impact which is able to excite
the system torsional frequencies. In the wind turbine, the ceaseless variations of wind results in
continual variations in angular velocity which is physically similar to an initial velocity applied
to the system. Though these variations in speed and subsequently torque are of a very low
frequency and slow dynamics, but it introduces considerable energy in different frequencies
including the characteristic frequencies of the system. Due to the existence of damping in a
physical system, the measured natural frequencies from the torsional response are the damped
frequencies. Our observations show that the angular velocity measurements can help to measure
the drivetrain and the blade edgewise natural frequencies. By filtering the shafts revolution
frequencies, components defect frequencies and excitations (very low frequency due to wind, low
frequency due to wave tower shadow effect, and high frequency due to generator), the drivetrain
torsional natural frequencies, and some torsional induced motions due to excited edgewise rotor
blade and tower bending modes are acquired. Based on a primary knowledge on the torsional
frequencies for each power range, it is possible to separate the observed natural frequencies for
drivetrain, blades and tower. The variations in the natural frequencies and normal modes can
be used as criteria for the severity of some sorts of faults in the drivetrain. To estimate the
damped natural frequencies, angular velocity residual/error function is proposed. The input of
this method is provided by two encoders located at the high- and low-speed shafts of drivetrain,
and subsequently the residual function is constructed based on the subtraction of these two
signals. Some drivetrains are only equipped with one angular velocity measurement on the
shaft, so that the implementation of the method might require an additional moderate sampling
frequency encoder to provide the sufficient inputs. The angular velocity residual function eωtot
from the high-speed side is expressed by

eωtot = ωHS − a1a2a3ωLS , where ωHS and ωLS are the rotational speed in rad/s obtained from
the high- and low-speed encoders, respectively. a1, a2 and a3 are the inverse of gear ratios of the
gearbox stages. The error function main feature is cancellation of the impacts of the excitations
which are transferred to the drivetrain from the housing, from the resultant torsional response.
Angular displacement and acceleration are the other torsional responses of the drivetrain system
which could theoretically be used similar to angular velocity to obtain the system torsional
parameters. For this purpose, similar to eωtot, the angular displacement error function eθtot and
the angular acceleration error function eαtot are defined by

eθtot = θHS − a1a2a3θLS , eαtot = αHS − a1a2a3αLS .

In particular, angular acceleration is the torsional response which has a direct relation with
the applied load, and contains useful information on how the applied torque interacts with the
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system. The frequency domain analytics Fourier transform and power spectral density (PSD)
are used for analysis of the defined torsional response error functions. The Fourier series of eωtot,
eαtot and eθtot are defined by

eωtot(Ω) =
∑∞
n=−∞Cne

iknΩ, eαtot(Ω) =
∑∞
n=−∞Cn(ikn)eiknΩ, eθtot(Ω) =

∑∞
n=−∞Cn(ikn)−1eiknΩ

Differentiation and integration are linear operations that are distributive over addition. As it
can be seen, in eαtot compared to eωtot, the amplitude of the frequency components higher than
1 Hz is magnified with the gain kn, and the frequencies lower than 1 Hz are weakened with the
same proportion. In eθtot compared to eωtot, the amplitude of the frequency components lower
than 1 Hz is magnified with the gain k−1

n , and the frequencies higher than 1 Hz are weakened
with the same proportion.

The 1st natural frequency of the drivetrain systems of the same technology decreases as the rated
power increases. However, even for 10 MW wind turbine which is the highest commercially
available and even for the high-speed technologies which have lower first natural frequencies,
the first torsional frequency is higher than 1 Hz [11]. Therefore, the angular acceleration
error functions theoretically outperforms the other two approaches in highlighting the torsional
frequencies. The other benefit is weakening the frequencies lower than 1 Hz which appear in the
drivetrain torsional response mostly due to wave and wind turbulence and does not contain any
information on the natural frequencies. However, an additional derivation operation is required
to attain acceleration from the velocity measurements which increases the computational cost
of this method.

To evaluate the observability of natural frequencies on the torsional response error functions and
the subsequent application for drivetrain condition monitoring, a simplified model of drivetrain
is useful. The 1st and 2nd undamped natural frequencies (nonrigid modes) based on a simplified
three-mass spring and three degrees of freedom (DOF) torsional model of a geared drivetrain is
calculated by

ω1
n =

√√√√ kLS
2Jrot

+ kLS + kHS
2Jgear

+ kHS
2Jgen

−
√

(−kLS2Jrot
− kLS − kHS

2Jgear
+ kHS

2Jgen
)2 + kLSkHS

J2
gear

, (2a)

ω2
n =

√√√√ kLS
2Jrot

+ kLS + kHS
2Jgear

+ kHS
2Jgen

+
√

(−kLS2Jrot
− kLS − kHS

2Jgear
+ kHS

2Jgen
)2 + kLSkHS

J2
gear

, (2b)

where ω1
n and ω2

n are the 1st and 2nd natural frequencies, kLS and kHS are the torsional stiffness
of low- and high-speed shafts, and Jrot, Jgear and Jgen are the moment of inertia of rotor, gearbox
and generator, respectively.

2.1.1 Simulation based validation For the simulation studies, DTU 10 MW reference wind
turbine is selected. In order to evaluate if the input torque is able to excite the drivetrain
natural frequencies and subsequently to study the possibility of observing those frequencies in the
different drivetrain torsional responses, an effective approach is involving decoupled simulation
technique [12] and engaging frequency-domain data analytics. For this purpose, the rotor torque
data of 10 MW turbine with a spar floating platform obtained from SIMA global simulation
software is used, and the impacts on the drivetrain is studied using a decoupled analysis. The
operating condition for this simulation is close to the rated operation with an average wind speed
Uw = 11 m/s, significant wave height Hs = 3.5 m and peak period Tp = 7.5 s. The natural
frequencies of the under consideration drivetrain is calculated by using a 3-DOF torsional model
and eq. (2), and validated by Simpack multi-body simulation software. In this torsional model,
rotor, gearbox and generator are modelled with equivalent moment of inertia, and the low-
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and high-speed shafts are each modelled with a constant torsional stiffness. The generator and
gearbox specifications are used from the optimized medium-speed 10 MW drivetrain system
proposed in [11]. The parameters of this model are listed in Table 1. The natural frequencies of
this model are 1.9 Hz and 73.9 Hz. The torsional responses of rotor and generator shafts are
obtained from the Simpack simulated model to investigate possibility of observing the natural
frequencies from the angular velocity, acceleration and displacement error functions.

Table 1: Model specification

Parameter Value
Equivalent rotor moment of inertia Jrot (kg.m2) 800, 000, 000
Equivalent gearbox moment of inertia Jgear (kg.m2) 1, 239, 300
Equivalent generator moment of inertia Jgen (kg.m2) 15, 716, 775
Equivalent low-speed shaft torsional stiffness Kgear

rot (N.m/rad) 2, 452, 936, 425
Equivalent high-speed shaft torsional stiffness Kgen

gear (N.m/rad) 245, 293, 642, 500

2.1.2 Experimental validation The operational data from Vestas V66-1.750MW turbine is
used for the experimental study. To test the method, an additional encoder is installed on
the low-speed shaft. In PSD of the angular velocity error function of the operational data, in
addition to the natural frequencies, some other frequency components are also expected to be
observed. However, by a prior knowledge about the defect frequencies and the other torsional
excitation sources, and by subsequently filtering those frequencies, it is possible to distinguish
the natural frequencies. The benefits with measuring the natural frequencies by this noninvasive
method are the low implementation cost, and the possibility of obtaining the precise values of
natural frequencies by including the system nonlinearities, and translational impacts on the
rotation transferred through the bed-plate and torque arm.

2.2 Estimation of damping in the drivetrain
As discussed earlier, the natural frequencies measured by the approach proposed in Section 2.1
are the damped natural frequencies ωd which have the relation ωid =

√
(1− (ζi)2)ωin with the

undamped frequency ωn, with ζi the damping coefficient (ζi = ci/cic) for the ith mode. c and
cc are actual and critical dampings. More precisely, the estimated natural frequencies are the
extreme values of the response. The response extreme values from the simplified model in eq.
(2.1), will occur at ωipeak =

√
(1− 2(ζi)2)ωin. ζi takes different values in different operating

speeds. For two different operating speeds, for each frequency mode, damping in the system
natural frequency of the two operations is related to the measured natural frequencies by eq.
(3a)

ωi,t1,ω1
peak

ωi,t2,ω2
peak

=
√

1− (ζi,t1,ω1)2

1− (ζi,t2,ω2)2 , (3a)
θi,t1,ω1
ωpeak

θi,t2,ω2
ωpeak

= τ t10
τ t20

ζi,t2,ω2

ζi,t1,ω1

√
1− (ζi,t2,ω2)2√
1− (ζi,t1,ω1)2

, (3b) (3)

with ωi,t1,ω1
peak the drivetrain eigenfrequency estimated during operation in the time period t1

and the turbine speed ω1. ωi,t2,ω2
peak is the same parameter estimated during the time period t2

and the speed ω2. According to eq. (1), there is a relationship as shown in eq.(3b) between
the amplitude of response and damping ratio at the measured natural frequencies for the two
different operations. θi,t1,ω1

ωpeak is the response amplitude in the ith frequency mode in the operating
point

[
t1
ω1

]
, and θi,t2,ω2

ωpeak is the same parameter for the operating condition
[
t2
ω2

]
. To derive eq.

(3b), it is assumed that the two operating points are close enough so that the stiffness and
moment of inertia stay constant. As a result, the undamped natural frequency does not change.
By using eqs (3a) and (3b), the absolute values of the damping coefficient of the system in the
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natural frequency in different operating conditions can be estimated. The latter can be used
to monitor damping in different operating speeds and helps to track the variations of damping
over the system lifetime, which provides the input for retuning active dampers and helps to
improve the system dynamic response. It is worth noting that the estimated damping by this
methods also includes the effects of the rotor aerodynamic damping and active electric damping
introduced by the generator control. Therefore, the resultant of damping of shafts, components,
coupling and active dampers in the system natural frequencies can be observed which gives
a good feedback for drivetrain design and also the operator for calibration of active damper
parameters.

As it is shown in Section 2.3, the 1st and 2nd modes are affected to a great extent by the torsional
stiffness of the low- and high-speed shafts, respectively. The damping of the first and second
modes is also mostly dominated by the damping introduced by low- and high-speed shafts,
respectively. Therefore, the estimated damping coefficients can be used to estimate the actual
damping of the related shafts in the reduced order model of drivetrain.

The different damping behaviors in the system natural frequency compared to the harmonics in
the torsional response is the criterion suggested for validating the natural frequencies estimated
by the proposed method in Section 2.1. Based on eq. (1), damping is more significantly reducing
the amplitude of response in the natural frequency compared to the harmonics, which helps
to distinguish the natural frequency from the other harmonics. In other words, the ratio of
amplitude of response at natural frequency in two different operating speeds is higher/lower
(depended on if the speed drops or rises) than this ratio at harmonics.

2.3 Sensitivity analysis
A shaft crack results in reduction of the torsional stiffness of the shaft [13]. A change in the
stiffness of the shafts also influences on the drivetrain system frequency modes. Therefore, by
obtaining the mathematical relation between the stiffness of different shafts and the system
natural frequencies, it is possible to monitor their conditions by monitoring variations in
the natural frequencies. The other parameter which can influence on the drivetrain natural
frequencies is the moment of inertia of the drivetrain components. Variations in the moment of
inertia matrix represents the other category of faults in the driveline with the unbalance and
looseness as the foremost. This category of faults are characterized by the increase of moment of
inertia due to an additional force that is generated in those conditions and based on the parallel
axis theorem. The mathematical relation between the drivetrain torsional natural frequencies
and the moment of inertia of components can help to detect and localize these faults.

The variations in stiffness and moment of inertia can result in similar natural frequency variation
patterns. Therefore, to distinguish between variations in the natural frequencies because of
variations in the shafts’ stiffness with those due to variations in moment of inertia matrix (source
of fault), determining the correlation between the system parameters and the normalized mode
shapes can provide a useful direction to find the source of fault. To check how the variations in
stiffness and moment of inertia influence on the variability of system natural torsional frequencies
and mode shapes, a sensitivity analysis is performed. There are two classes of sensitivity analysis
methods, namely local and global sensitivity analysis. Morio et al.[14] has reported the same kind
of results by using these two method for simple models. Local sensitivity determines how a small
perturbation near an input parameter value influences the value of the output. In this Section, in
order to find the parameters with the greatest impact on the drivetrain dynamic characteristics
local sensitivity analysis is employed due to two main reasons. First, the motivation of this
work is detecting faults in early stages for predictive maintenance purposes so that variations
in the drivetrain system parameters happen with a slight change around the set point values.
Second, local sensitivity analysis derives a closed form expression for the sensitivity value which
makes the result more reliable and easier to implement. Local sensitivity is defined as the partial
derivative of the output function with respect to the input parameters [15] as
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SLoci,j = δyi
δxj
, yi ∈ {y1, ..., yp} and xj ∈ {x1, ..., xq}, where yi is the ith output and xj is the

jth input. To neutralize the impact of large/small inputs and small/large outputs, the local
sensitivity can be normalized by the nominal values of inputs and outputs by

SNormi,j = xref
j

yref
i

δyi
δxj
, with xrefj and yrefi as the nominal values of xj and yi. For the 3-DOF

torsional model described in Section 2.1, the input and output vectors for sensitivity analysis
are x = {kLS, kHS, Jrot, Jgear, Jgen} and y = {f tor1 , f tor2 }. By applying normalized local
sensitivity theory on eq. (2) we will have

Snorm
1,1 = kLS

4

( 1
Jgear

+ 1
Jrot

)A− kHS
J2

gear√
A2+ kLS kHS

J2
gear

+ 1
Jgear

+ 1
Jrot

−
√
A2 + kLSkHS

J2
gear

+B
, Snorm

2,1 = kLS

4

( 1
Jgear

−
( 1

Jgear
+ 1

Jrot
)A− kHS

J2
gear√

A2+ kLS kHS
J2

gear

+ 1
Jrot

)

√
A2 + kLSkHS

J2
gear

+B
,

(4a)

Snorm
1,2 = kHS

4

1
Jgen
−

( 1
Jgear

+ 1
Jrot

)A+ kLS
J2

gear√
A2+ kLS kHS

J2
gear

+ 1
Jgear

−
√
A2 + kLSkHS

J2
gear

+B
, Snorm

2,2 = kHS

4

( 1
Jgen

+ 1
Jgear

)A+ kLS
J2

gear√
A2+ kLS kHS

J2
gear

+ 1
Jgen

+ 1
Jgear√

A2 + kLSkHS

J2
gear

+B
,

(4b)

Snorm
1,3 = −Jrot

4

kLS

J2
rot

+ kLSA

J2
rot

√
A2+ kLS kHS

J2
gear

−
√
A2 + kLSkHS

J2
gear

+B
, Snorm

2,3 = −Jrot

4

kLS

J2
rot
− kLSA

J2
rot

√
A2+ kLS kHS

J2
gear

)

√
A2 + kLSkHS

J2
gear

+B
, (4c)

Snorm
1,4 = −Jgear

4

kHS+kLS

J2
gear

−
2kLS kHS

J3
gear

+ (kHS −kLS )A

J2
gear√

A2+ kLS kHS
J2

gear

−
√
A2 + kLSkHS

J2
gear

+B
, Snorm

2,4 = −Jgear

4

2kLS kHS
J3

gear
+ (kHS −kLS )A

J2
gear√

A2+ kLS kHS
J2

gear

+ kHS+kLS

J2
gear√

A2 + kLSkHS

J2
gear

+B
,

(4d)

Snorm
1,5 = −Jgen

4

kHS

J2
gen
− kHSA

J2
gen

√
A2+ kLS kHS

J2
gear

−
√
A2 + kLSkHS

J2
gear

+B
, Snorm

2,5 = −Jgen

4

kHS

J2
gen

+ kHSA

J2
gen

√
A2+ kLS kHS

J2
gear√

A2 + kLSkHS

J2
gear

+B
, (4e)

where A = kHS
2Jgen

− kLS
2Jrot

+ kHS−kLS
2Jgear

and B = kHS
2Jgen

+ kLS
2Jrot

+ kHS+kLS
2Jgear

.

A schematic figure representing the proposed driveline condition monitoring method is illustrated
in Fig. 1. EN1 and EN2 in this figure are the angular velocity measurement sensors placed
on the low- and high-speed shafts, respectively. The algorithm which summarizes the proposed
approach is depicted in Fig. 2. ϕ1,m and ϕ2,m are the normal modes related to the 1st and
2nd natural frequencies, respectively. m varies from 1 up to the degree of the model. τ and
τϕm are the low-limit threshold natural frequency and normal mode for normal operations. It
is worth noting that the natural frequencies estimated and subsequently used in the condition
monitoring algorithm are the damped natural frequencies which are directly estimated from the
operational measurements of system torsional response. In order to eliminate the influence of
different damping values as a result of different turbine operational speeds, the estimated natural
frequencies and the associated thresholds are engaged in the proposed algorithm based on the
operational speed.

3 Results
3.1 Simulation results
The PSD spectrum of angular velocity error function obtained from 10 MW drivetrain model
in Simpack and its capability in highlighting the torsional natural frequencies is shown in Fig.
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Figure 2: Flowchart of the proposed algorithm for driveline condition monitoring.

3. In this figure, the performance of angular velocity error function in extracting the 1st and
2nd torsional natural frequencies of the drivetrain is compared with angular displacement and
angular acceleration error functions. As it can be seen, acceleration error function outperforms
in revealing the higher frequency modes (the 2nd mode). The higher modes have usually a lower
impact on the response, which impedes disclosure of those frequencies. The PSD spectrum of
input torque obtained from the global simulation and applied on the Simpack drivetrain model
is shown in Fig. 3a. This input contains the majority of frequency components and can excite
the drivetrain natural frequencies. In this simulation study, the model is undamped. Therefore,
the estimated frequencies are the undamped frequencies. As discussed in Section 2.2, for a
damped system, the estimated frequencies are the peak frequencies which can be translated to
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Figure 3: Simulation results based on 10 MW floating wind turbine model.

the undamped natural frequencies by using the estimated damping coefficients from the theory
elaborated in the same Section. ωn can also be approximated with ωpeak if ζ << 1 which may
not be an unrealistic assumption for multi-megawatt wind turbine drivetrain systems.

3.2 Experimental results
The PSD spectrum of angular velocity error function of the Vestas drivetrain operational data
for a rated operation is shown in Fig. 4, which shows the observability of both the drivetrain and
blade natural frequencies. The results are validated by comparing with the 1st drivetrain and
1st blade edgewise natural frequencies of another turbine with the same drivetrain technology
and a similar power range reported in [16]. The performance of angular velocity error function is
compared with angular displacement and acceleration error functions. As it can be seen, angular
acceleration shows a slightly higher performance in amplification and extraction of characteristic
frequencies of higher values.

A comparison between the angular velocity error function PSD in two different operating speeds
is shown in Fig. 4d. As it can be seen, the higher damping coefficient in lower speeds results in
a lower damped natural frequency as discussed in Section 2.2. Furthermore, at the drivetrain
natural frequency, the amplitude reacts more significantly to the variation in damping. In other
words, the amplitude of response at the natural frequency reduces more compared with other
harmonics, for a lower rotor speed which corresponds to a higher damping.

3.3 Sensitivity analysis results
The results of the normalized local sensitivity analyses with natural frequencies (f tor1 , f tor2 ) and
normal modes (φ1, φ2) as the outputs and shaft stiffnesses (KLS,KHS) as the inputs are shown
in Table 2. The reported numbers show the normalized sensitivity values and also the variations
of outputs (in %) for the input parameters changed by ±5% of their rated values. As it can be
seen, there is a direct relationship between the 1st frequency and KLS, and the 2nd frequency
and KHS. Therefore, variations in the natural frequencies can be translated into the variations
in the shaft stiffness and subsequently the defects in the drivetrain shafts. The influence of the
shafts defect (stiffness variation) on amplitude of oscillation due to the 1st mode is negligible.
However, the stiffness variation results in variations in the amplitude of oscillation in rotor due
to the 2nd mode.

The results of the sensitivity analyses with natural frequencies and normal modes as the outputs
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Figure 4: Experimental results based on 1.75 MW Vestas turbine operational data.

Table 2: Sensitivity of natural frequencies, amplitude of oscillation due to the 1st mode, and
amplitude of oscillation due to the 2nd mode to torsional stiffness.

Sensitivity
Variable

KLS(±5%) KHS(±5%) KLS and KHS (±5%)

f tor1 0.50(±2.48%) 0.00(±0.02%) 0.50(±2.50%)
f tor2 0.00(±0.02%) 0.50(±2.48%) 0.50(±2.50%)
φrot1 0.00(±0.02%) 0.00(∓0.02%) 0.00(0.00%)
φgear1 0.00(∓0.02%) 0.00(±0.02%) 0.00(0.00%)
φgen1 0.00(±0.02%) 0.00(∓0.02%) 0.00(0.00%)
φrot2 0.99(±4.96%) −0.99(∓4.97%) 0.00(0.00%)
φgear2 0.00(0.00%) 0.00(0.00%) 0.00(0.00%)
φgen2 −0.01(∓0.05%) 0.01(±0.05%) 0.00(0.00%)

and moment of inertia (Jrot, Jgear, Jgen) as the inputs are shown in Table 3. As it can be seen,
there is an inverse relationship between the 1st frequency and Jgen, and the 2nd frequency and
Jgear, so that the reduction of natural frequencies can be due to a rise in the moment of inertia.
To distinguish between the drop in natural frequencies due to variation in stiffness and moment
of inertia, the results should be interpreted together with monitoring the variations of normal
modes. The simultaneous drop of the 1st frequency and the amplitude of oscillation at rotor
due to the 2nd mode represents a problem in low-speed shaft. The drop of the 2nd frequency
and the simultaneous rise in amplitude of oscillation at rotor due to the 2nd mode discloses the
problems in high-speed shaft. The drop of the 1st frequency, the simultaneous rise in amplitude
of oscillation at rotor due to the 1st mode and drop in amplitude of oscillation at generator
due to the 2nd mode reveal unbalances in generator side. The drop of the 2nd frequency and a
simultaneous rise in amplitude of oscillation at both rotor and generator due to the 2nd mode
can be used as the criteria to detect an unbalance in gearbox. However, unbalance in rotor
represents it self mainly by variations in normal modes with minor influence on the natural
frequencies,so that a simultaneous drop in amplitude of oscillation at rotor due to 1st and 2nd
modes are indicators of rotor unbalance.

4 Conclusions
The potentials of using drivetrain torsional responses for estimation of the drivetrain torsional
natural frequencies and heath monitoring of the driveline was discussed, and evaluated by
both experimental and simulation studies. Local sensitivity analysis was engaged to find the
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Table 3: Sensitivity of natural frequencies, amplitude of oscillation due to the 1st mode, and
amplitude of oscillation due to the 2nd mode to moment of inertia.

Sensitivity
Variable

Jrot(±5%) Jgear(±5%) Jgen(±5%) Jrot(±5%) Jgear(±5%) Jrot(±5%) Jrot(±5%)

Jgear(±5%) Jgen(±5%) Jgen(±5%) Jgear(±5%)
Jgen(±5%)

f tor1 −0.01(∓0.05%) −0.03(∓0.17%) −0.45(∓2.25%) −0.40(∓0.22%) −0.49(∓2.44%) −0.46(∓2.32%) −0.50(∓2.50%)
f tor2 0.00(0.00%) −0.45(∓2.25%) −0.04(∓0.18%) −0.45(∓2.25%) −0.49(∓2.44%) −0.04(∓0.18%) −0.49(∓2.44%)
φrot1 −1.00(∓5.01%) 0.07(±0.35%) 0.93(±4.63%) −0.93(∓4.66%) 1.00(±4.98%) −0.07(∓0.37%) 0.00(∓0.02%)
φgear1 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%)
φgen1 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%)
φrot2 −1.00(∓5.01%) 0.89(±4.47%) 0.08(±0.39%) −0.10(∓0.52%) 0.97(±4.85%) −0.92(∓4.62%) −0.03(∓0.14%)
φgear2 0.00(0.00%) −0.01(∓0.03%) 0.01(±0.03%) −0.01(∓0.03%) 0.00(0.00%) 0.01(±0.03%) 0.00(0.00%)
φgen2 0.00(0.00%) 0.96(±4.82%) −1.00(∓4.98%) 0.96(±4.82%) −0.03(∓0.15%) −1.00(∓4.98%) −0.03(∓0.15%)

mathematical relation between the variations in dynamic properties of the system and variations
in drivetrain parameters. In order to detect and localize the driveline faults, one should look
into the variations in the system natural frequencies and the amplitude of oscillation due to
the frequency modes. Future work will be focused on applying the proposed approach on more
detailed models of the drivetrain to cover more diversity of faults in the driveline, and using the
technique for prognosis of the driveline faults in various drivetrain technologies.
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