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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Mesh data is extensively used in CAD/CAM applications to approximate three-dimensional (3D) solid models. The STL file format is one of the 
key file formats for 3D data transfer in modern manufacturing systems. STL files, however, retain no topological information, which would have 
been beneficial for subsequent file analysis and manipulation. The ability to extract geometric features from mesh data enables automation and 
facilitates process planning. This paper describes how geometric primitives may be reconstructed from mesh data by simple heuristics. A case 
study is presented, and a discussion is made on possible applications. 
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1. Introduction 

Computer-aided technologies such as computer-aided 
design (CAD), computer-aided manufacturing (CAM) and 
computer automated process planning (CAPP) have had a 
drastic influence on manufacturing systems over the last forty 
years. The CAD models of components are central in modern 
manufacturing systems and holds important information with 
regards to intellectual property, manufacturing processes and 
capabilities, and quality control and assurance. Because of the 
widespread use of digital models, a large number of file formats 
for the representation of part geometries and related properties 
exist both in open format and software specific formatting. 

The STL file format was originally developed to 
accommodate the specific process planning needs of early 
additive manufacturing technology with the computational 
capabilities at that time [1]. The format was made accessible to 
all and was soon utilized for transferring 3D data between 
platforms across the computer-aided processes [2]. While the 
original CAD model retains information about the geometric 
features of the design which would be useful in subsequent 
processing stages, this information is not explicit in the STL 

file [3]. Regaining the lost information about the nominal 
geometry is necessary whenever the CAD model is 
unavailable, and the design is needed for operations such as 
optimizing build preparation in additive manufacturing. 

While tessellating a computer model to create an STL file is 
simple enough, the reverse engineering of shape features from 
STL data is a much more difficult task. Existing solutions make 
use of complex mathematical analysis and metaheuristics for 
mesh segmentation and feature classification, both of which are 
computationally expensive. As an alternative of low 
computational complexity, we demonstrate how geometric 
reasoning may be applied to identify shape features from a 
triangle mesh as described in the STL file format in four steps: 

1. Establish connections to neighboring triangles 
2. Identify coplanar facets 
3. Identify curved segments 
4. Merge curved features to create double-curved surfaces 

The important difference from the existing body of 
knowledge is the deduction of regional geometry based on local 
topology without engaging in computationally extensive 
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mathematical analysis. The method described herein assumes 
that the STL file is valid and free from noise, preferably 
originating from CAD software. 

First, a literature review is presented before the 
fundamentals of the STL file format and relevant geometric 
methods are provided. Next, the method for extracting shape 
features using geometric reasoning is described and an example 
implementation demonstrates the application. Finally, a 
discussion is made on the prospects of the method before a 
summary and future work. 

2. Literature review 

The gap from design to manufacturing operations was 
recognized at an early stage, hence a number of research efforts 
have been directed at problems such as the CAD/CAM gap. 
The work of Henderson and Anderson [4] constitutes an early 
approach to the problem where machining features such as 
slots, holes, and pockets were automatically extracted from 
CAD data and a feature graph was created. Marefat and 
Kashyap [5] introduced a cavity graph approach to the same 
problem where prismatic depressions were identified through 
geometric reasoning. Both [4] and [5] took the CAD model as 
input and therefore cannot be directly applied to STL files. 

Krysl and Ortiz [6] describe a set of algorithms for 
converting a tessellated surface into boundary representation 
(B-Rep) where the geometry is described by patches defining 
the boundary between the interior and the exterior with the use 
of faces, edges, and vertices. While the STL file is exclusively 
composed of triangular planar faces, the patches of a B-Rep 
model are represented by splines and may, therefore, take any 
form [7]. The authors, however, provide no means to identify 
any shape features of the part, merely to describe its boundary. 
A B-Rep model was also created by Chappuis, et al. [8] who 
demonstrated a diffuse integration method for recognizing 
features in a surface mesh by calculating the local curvature. 
More recently, Bénière, et al. [9] proposed a method to 
reconstruct B-Rep models by fitting primitives based on 
curvature characteristics of the area around vertices.  

Moroni, et al. [10] sliced the STL model with three 
orthogonal planes and identified cylinders by analyzing closed 
loops in the resulting contour. The same goal was achieved by 
Qu and Stucker [11] who presented a method based on the 
edges between facets to construct closed loops which, after an 
elimination procedure, constitutes the drilled holes of the part. 

A somewhat similar method was proposed by Sunil and Pande 
[12] who identified feature edges by calculating dihedral angles 
and bounded the identified feature regions. Eight feature types 
relevant for sheet metal parts could be identified by Gauss and 
mean curvature calculations. Dihedral angles are widely used 
in literature for mesh segmentation, and occasionally, they are 
also utilized for the classification of feature types [13-16]. 

Hao, et al. [16] demonstrates how the estimation of 
curvature may be utilized for extracting feature boundaries, but 
not the feature type. Zhang and Li [17] performed mesh 
segmentation with regards to local convexity and identified the 
feature type by analyzing the gaussian image – a technique also 
applied in [9, 12] where the facet normals are projected on a 
unit sphere. 

3. Theoretic foundations 

3.1. Triangle tessellations 

Converting a prismatic surface to a triangle tessellation such 
as the ones present in STL files is unproblematic with regards 
to accuracy. However, as soon as a curved surface is involved,  
a deviation known as a chordal error between the original 
design and the STL model will arise from surface 
approximations, i.e. the distance from the curved surface of the 
CAD model to the plane surface of the triangle (Fig. 1) [18]. 
The magnitude of the chordal errors depends on the resolution 
of the constructed STL file, i.e. the number of triangles used to 
represent the part. Typically, the CAD software enables the 
user to set tolerances for the conversion in terms of maximal 
chordal error and maximum dihedral angle   used to represent 
curved surfaces. 

3.2. The STL file format 

The STL file contains an unordered list of all the triangles 
(facets) composing the part, where every facet is represented 
by a unit normal vector and the coordinates of all three corners. 
To unambiguously delimit the interior from the exterior, the 
facet normal points outwards, and the vertices are listed in 
counterclockwise order as seen from the outside as displayed 
in Fig. 2 [1, 19]. 

All facets have three adjacent facets which are referred to as 
neighbors, however, the file contains no information about 
adjacency relations. In other words, we know that any given 
facet must have three neighbors, but there is no straight forward 
way of finding these facets in the file. The three neighbors of a 

Fig. 2. Illustration of a triangular facet with normal vector and vertices 
(left) and the syntax of an STL file in ASCII format (right). 

Fig. 1. Illustration of chordal error from STL conversion and the dihedral 
angle φ. 
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facet are collectively referred to as the neighborhood of the 
facet in the remainder of this paper and is illustrated in Fig. 4. 

The STL file may originate from different sources that 
influence the contents of the file: (i) export from CAD software 
generally produces valid files with minimal noise; and (ii) 
scanned geometries often introduces noise from environmental 
factors and invalid files are commonplace. Invalid files 
typically contain intersecting triangles, inverted normal vectors 
or holes. Moreover, processed meshes may have unpredictable 
effects on the STL data due to smoothing or simplifications 
which further complicates file processing. 

3.3. Geometric primitives 

There are five distinguishable geometric primitives as 
illustrated in Fig. 3, plane, cylinder, cone, sphere and torus. In 
constructive solid geometry, these basic shapes constitute the 
foundation for all designs through Boolean operations such as 
union and intersection. These primitives are also central in 
mechanical parts for creating interfacing and functional 
surfaces which is why it is desired to extract these primitives 
from the triangle mesh. The orientation of a primitive surface 
is defined by a feature vector that is perpendicular to plane 
surfaces and parallel to the axis of single curved surfaces. Note 
that some surface types are subject to ambiguous feature 
vectors due to the degrees of freedom associated with the 
surface type [20]. E.g. a sphere has no identifiable feature 
orientation without being supplemented with additional 
information or rules for determining its feature vector.  

3.4. Calculating dihedral angles 

In the context of a surface mesh, the dihedral angle   is 
defined as the angle between the normal vectors of two adjacent 
facets as illustrated in Fig. 1. The angle   between two vectors 
v  and p  in 3  may generally be calculated as: 

 arccos
 

    

p v
p v

 (1) 

Because the normal vectors of STL files are unit vectors, the 
denominator will always be one and therefore insignificant. 
Based on Eq. 1, the dihedral angle may be calculated simply as: 

  arccos  p v  (2) 

The dihedral angle   is positive for all normal vectors and 
will not give any indication of convexity. 

3.5. Analysis of a triangle neighborhood 

The relationship between two neighboring facets may be 
categorized with respect to the dihedral angle   based on 
assumptions regarding the tessellation process. Firstly, it is 
assumed that any round off errors present in the STL file may 
be contained within a relatively narrow margin of error denoted 
as  . Secondly, it is assumed that a limit   exists for the 
maximum dihedral angle   for curved surfaces regardless of 
which geometric primitive it represents. Finally, it is assumed 
that   is small enough to avoid confusion with curved 
surfaces. These values enable classification of the angular 
relationship between the facets as displayed in Table 1. We 
denote the three angular ranges case A, B and C for the 
remainder of this paper. 

Table 1. Ranges of dihedral angles with edge descriptions. 
Case Dihedral angle   Description 

A    The facets are coplanar 

B      The edge represents a curved surface 

C    The facets are members of separate features 

 
Because each triangle has three neighbors, all of which may 

represent any of the cases in Table 1, the number of possible 
combinations constitutes a problem of k-combinations with 
repetition [21]. This can be expressed as a multiset coefficient 
as: 

 
1 3 3 1 5 5 4 10

3 3 2 1
n n k
k k

             
                     

 (3) 

where n  is the number of neighbors and k  is the number of 
possible relations (n multichoose k). 

The ten possible combinations of neighborhood relations 
calculated in Eq. 3 correspond to certain local characteristics 
and may be used in the identification of shape features as 
tabulated in Table 2. The order of N1, N2, and N3 is irrelevant 
for this purpose as the number of neighbors corresponding to a 
surface type is the only information of interest in this regard. 

Fig. 3. Illustration of the five geometric primitives: plane (green), cylinder 
(blue), cone (orange), sphere (red) and torus (yellow). 

Fig. 4. A facet with vertices v1, v2 and v3 and its neighborhood (N1, N2, N3). 
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Table 2. Possible combinations of neighborhood relations. 
# N1 N2 N3 Description 

1 A A A All neighbors are part of a single large plane 

2 A A B All but one neighbor are coplanar 

3 A A C All but one neighbor are coplanar 

4 A B B One coplanar neighbor and two curved edges 

5 A B C One of each category 

6 A C C One coplanar facet and two irrelevant neighbors 

7 B B B All three edges are curved 

8 B B C Two curved edges and one irrelevant neighbor 

9 B C C Only one curved edge and two irrelevant neighbors 

10 C C C No relevant neighbors (triangular plane detected) 

4. Proposed method applying geometric reasoning 

The proposed method involves the following four steps: 

1. Establish connections to neighboring triangles 
2. Identify coplanar facets 
3. Identify curved segments 
4. Merge curved features to create double-curved surfaces 

Establishing the connection between triangles is pivotal for 
the efficient handling of the triangles in subsequent operations. 
The details of the data structure created in the first step are not 
central in the current work and are outside the scope of this 
paper. The interested reader is referred to [7, 22] for details on 
possible data structures. The remaining steps are however 
explained in detail in the following subsections. 

4.1. Identifying planes 

The first step of feature recognition is to identify all plane 
surfaces composed of more than one facet. In practice, each 
facet must be evaluated with respect to the dihedral angles to 
its neighbors. From Table 2 this would cover all combinations 
1–6. Additionally, case 10 indicates a triangular plane surface 
that needs only a single facet for its representation and hence 
requires no further processing. 

If two facets are found to be coplanar, a recursive 
neighborhood search is conducted to identify other facets 
potentially belonging to the same plane. This region-growing 
continues until the entire plane is identified. If more than two 
connected facets are coplanar, the feature type may be 
confirmed as a plane because no other feature type would yield 
more than two coplanar connected facets. 

4.2. Identifying curved surfaces 

Curved surfaces appear in many forms in STL files and 
require a much more thorough analysis compared to the planar 
surfaces. The candidate list for curved surfaces includes all 
single facets remaining after step 1 except those subject to case 
10. Additionally, all plane surfaces composed of only two 
facets must be considered because pairs of coplanar triangles 
are sometimes present on curved surfaces (see Fig. 5). 

Another useful piece of information for guiding the 
identification of curved surfaces is that they are often 

represented by triangles of roughly the same dimensions. 
Consequently, if a neighboring triangle is much larger or 
smaller than the facet of interest, the chance of the neighbor 
belonging to a different feature is substantial. However, the 
area of facets should only be used to guide the feature growing, 
not to determine membership. This is because facets may be of 
similar size without necessarily belonging to the same feature. 

When two neighboring facets are candidates for a curved 
surface (i.e. a relationship of case B, and roughly the same 
size), the first step is to check if the facets are part of a 
cylindrical surface. This is accomplished by identifying the 
direction of the axis of the potential cylinder and then testing 
the hypothesis on the next neighbors for validation. The 
direction of the axis of the potential cylinder may be defined as 
a vector perpendicular to the normal vectors of both facets as 
illustrated in Fig. 5. The hypothesis is tested by simply 
checking for perpendicularity between the cylinder axis and the 
facet normal vectors of the next neighboring facets. Note that 
because of possible numerical imprecisions in the STL file, all 
calculations must consider a margin of error. 

If none of the next neighbors meet the criteria for cylinders, 
a similar test is performed to check for cone. This test requires 
a third facet that must be acquired from the neighborhood with 
a unique facet normal vector. Because the unit normal vectors 
are of equal length, the endpoints of the vectors may be used to 
define a plane that will have a normal vector parallel to the axis 
of the cone, thus defining the direction of the cone axis as 
illustrated in Fig. 6. The axis of the cone may be defined as the 
normal vector of the plane defined by the endpoint of all three 
facet normal vectors. The apex angle can easily be calculated 
as twice the angle between the facet normals and the axis. The 
hypothesis is confirmed if a fourth facet is found that is 
connected to the existing members with a dihedral angle within 
the range of case B and complies with the apex angle. If the 
surface is confirmed as a cylinder or cone, a recursive 
neighborhood search is conducted to collect all member facets. 

4.3. Merging from single- to double-curved features 

Because of the discretization of continuous surfaces, all 
surfaces have been decomposed into planes, cylinders, and 
cones after the previous section. The tessellation process turns 

Fig. 5. Illustration of how all facet unit normal vectors lie in the same plane to 
which the axis of the cylinder is perpendicular. 
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spherical and toric surfaces into segments of connected cones 
and cylinders (Fig. 7). Hence, the identification of spheres and 
tori may be accomplished by checking if adjacent cones are 
coaxial and with apex angles deviating from each other with an 
angle within the tolerance of curved surfaces, i.e. same as case 
B for dihedral angles (Fig. 7a). Likewise, adjacent cylindrical 
segments with axes deviating with an angle within the range of 
case B may also be combined to form spheres or tori as 
illustrated in Fig. 7b and c. To avoid the features merging into 
unrelated connected surfaces, the direction of axial offset 
should be constrained. One solution to this problem is to define 
a plane on which the axes of potential candidate cylinders 
should lie. For spheres and tori alike, an extra check for the 
sizes of triangles within candidate features should be conducted 
to avoid features growing out of bounds. 

5. Example implementation 

To demonstrate the feasibility of the proposed method, the 
approach is exemplified on a ball joint which is a simple 
geometry that embodies several of the geometric primitives. 
Fig. 8a depicts a plain representation of the triangle mesh, and 
Fig. 8b illustrates the geometric primitives comprising the ball 
joint with the color scheme introduced in Fig. 3. The 
component is designed in SolidWorks 2018 and exported as an 
STL file with the resolution option “fine” which resulted in 
8044 triangles. Due to the rounded edges of the part, no 
connected triangles form dihedral angles large enough to 
clearly distinguish separate features. With reference to Table 1, 
this means that only cases A and B are present in the mesh 
which consequently leaves only combinations 1, 2, 4 and 7 
from Table 2. 

After the adjacency relations have been established, the first 
step is to extract coplanar adjacent facets by pairwise 
comparison of facet normals. Following Table 2, no regions 
correspond to neighborhood combination 1. Combination 2 is 
present only in the planar sections visible in Fig. 9.  Because 
three connected coplanar facets may be found by investigating 
the neighbors of a single facet, the sections are immediately 
recognized as planar features. Combination 4 is present in most 
of the mesh. In fact, apart from the planar features already 
identified, all but the outermost sections of the spheres are 
classified as combination 4. All instances of combination 4 are 
included in the subsequent search for curved surfaces. 

The second step identifies cylinders and cones by 
investigating the facet neighborhood. Consider the large 
cylinder in the middle of the part. The curved surface is 
prevented from growing into the filleted edges because of the 
proportional size difference. However, the normal vectors of all 
the triangles constituting the cylinder lie in the y-z-plane and 
thus the axis of the cylinder must be parallel with the x-axis as 
exemplified in Fig. 5). As soon as this knowledge is obtained, 
the remainder of the cylinder is identified by finding the 
dihedral angle of the next neighbor recursively and making sure 
it is perpendicular to the axis of the cylinder. Similarly, 
segments of the toric and spherical surfaces are identified in 
this step. Note that depending on the particular implementation 
and order of facets in the list, the exact results from this step 
may vary. However, with perfectly defined threshold values 
and a thorough exploration of cylinders before going forth with 
identifying cones, one would end up with the cylindrical 
segments displayed in Fig. 9a. A similar implementation with 
an emphasis on cones would give the results in Fig. 9b. 

Finally, adjacent single curved segments are compared with 
respect to the orientation of their axes. Again, the relative sizes 
of the facets constituting the surfaces may be used as a guide 
for avoiding features growing out of bounds. If two surfaces 

Fig. 9. Ball joint with a) cylindric segments, and b) segments of conic form. Fig. 7. Segmentations of double curved surfaces. a) cones of a sphere, 
b) cylinders of a sphere, and c) cylinders of a torus. 

Fig. 8. Ball joint represented as a) raw STL file, b) with color coded 
surfaces with respect to the geometric primitives. 

Fig. 6. Illustration of how the endpoints of the facet unit normal vectors may 
define a plane to which the axis of the cone is perpendicular. 
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are found to be compatible, they are joined to form the relevant 
double-curved surface (sphere or torus). 

6. Discussion 

There are some prerequisites for the proposed method to be 
feasible in an industrial setting. Firstly, the STL file must be 
free from holes and intersecting triangles for the adjacency 
relations to be established correctly. This is important because 
the method relies on the neighboring triangles being readily 
available for efficient execution. Next, the method assumes 
smooth surfaces in the sense that no shape feature contains 
surface areas deviating from the shape primitive more than the 
errors induced by the tessellation and numerical imprecision. 
In practice, this means that the method is not suitable for 
processing 3D scanned surfaces without preprocessing such as 
smoothing operations to reduce the inherent noise. Such 
operations should, however, be used with care, especially in 
automatic applications, as they can easily distort the geometry. 

The presented method is geared towards STL files 
originating from CAD software without any form of re-
meshing and may, therefore, be infeasible in many real-world 
applications. Certain adaptations must be considered before the 
method may be successfully applied to organic geometries and 
alternative file origins. However, the reasoning described in the 
current work constitutes a logic foundation that is viable for 
extracting shape features from valid STL files. The proposed 
method may provide a starting point or otherwise support more 
advanced feature recognition techniques. 

A current trend in manufacturing is the increasing geometric 
complexity of components, motivated by sustainability in 
terms of cost savings as well as environmental concerns [23]. 
Additive manufacturing promises complexity for free, but 
despite the organic shapes created through topology 
optimization, the functional surfaces are still primitive. 
Naturally, the proposed method will perform poorly on 
freeform surfaces because only small pieces of primitive 
shapes will be recognized. 

7. Summary and further work 

The current work described how geometric reasoning may 
be applied to extract geometric primitives from a triangle mesh. 
The presented method involves four steps; (i) establishing 
adjacency relations, (ii) identifying planes, (iii) recognizing 
single curved segments, and (iv) joining single curved 
segments to double-curved surfaces. An example 
implementation was presented to demonstrate the progression 
of the method. Further validation and demonstration by 
application on industrial components is planned for future work 
and a C++ implementation is being developed. 

The current work constitutes a computationally inexpensive 
framework that establishes a foundation for rule-based 
geometric analysis. The logic presented may be used as a 
starting point for more advanced feature recognition methods, 
or as support for computer-aided operations such as process 
planning, quality assessment, and design optimization. Future 
work should include the integration of the method with 
computer-aided technologies. Furthermore, the reverse 

engineering of solid models from STL data is a possible 
extension of the current work along with the identification of 
solid features. 
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