
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 93 (2020) 544–549

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems
10.1016/j.procir.2020.02.142

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

Extracting shape features from a surface mesh using geometric reasoning
 Torbjørn Langedahl Leirmoa,*, Oleksandr Semeniutaa, Ivanna Baturynskaa, Kristian Martinsena

aDepartment of Manufacturing and Civil Engineering, NTNU – Norwegian University of Science and Technology, Teknologivegen 22, 2815 Gjøvik, Norway

* Corresponding author. Tel.: +47 480 88 390. E-mail address: torbjorn.leirmo@ntnu.no

Abstract

Mesh data is extensively used in CAD/CAM applications to approximate three-dimensional (3D) solid models. The STL file format is one of the
key file formats for 3D data transfer in modern manufacturing systems. STL files, however, retain no topological information, which would have
been beneficial for subsequent file analysis and manipulation. The ability to extract geometric features from mesh data enables automation and
facilitates process planning. This paper describes how geometric primitives may be reconstructed from mesh data by simple heuristics. A case
study is presented, and a discussion is made on possible applications.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

 Keywords: Geometric modelling; Computer-Aided Design (CAD); Feature recognition

1. Introduction

Computer-aided technologies such as computer-aided
design (CAD), computer-aided manufacturing (CAM) and
computer automated process planning (CAPP) have had a
drastic influence on manufacturing systems over the last forty
years. The CAD models of components are central in modern
manufacturing systems and holds important information with
regards to intellectual property, manufacturing processes and
capabilities, and quality control and assurance. Because of the
widespread use of digital models, a large number of file formats
for the representation of part geometries and related properties
exist both in open format and software specific formatting.

The STL file format was originally developed to
accommodate the specific process planning needs of early
additive manufacturing technology with the computational
capabilities at that time [1]. The format was made accessible to
all and was soon utilized for transferring 3D data between
platforms across the computer-aided processes [2]. While the
original CAD model retains information about the geometric
features of the design which would be useful in subsequent
processing stages, this information is not explicit in the STL

file [3]. Regaining the lost information about the nominal
geometry is necessary whenever the CAD model is
unavailable, and the design is needed for operations such as
optimizing build preparation in additive manufacturing.

While tessellating a computer model to create an STL file is
simple enough, the reverse engineering of shape features from
STL data is a much more difficult task. Existing solutions make
use of complex mathematical analysis and metaheuristics for
mesh segmentation and feature classification, both of which are
computationally expensive. As an alternative of low
computational complexity, we demonstrate how geometric
reasoning may be applied to identify shape features from a
triangle mesh as described in the STL file format in four steps:

1. Establish connections to neighboring triangles
2. Identify coplanar facets
3. Identify curved segments
4. Merge curved features to create double-curved surfaces

The important difference from the existing body of
knowledge is the deduction of regional geometry based on local
topology without engaging in computationally extensive

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

Extracting shape features from a surface mesh using geometric reasoning
 Torbjørn Langedahl Leirmoa,*, Oleksandr Semeniutaa, Ivanna Baturynskaa, Kristian Martinsena

aDepartment of Manufacturing and Civil Engineering, NTNU – Norwegian University of Science and Technology, Teknologivegen 22, 2815 Gjøvik, Norway

* Corresponding author. Tel.: +47 480 88 390. E-mail address: torbjorn.leirmo@ntnu.no

Abstract

Mesh data is extensively used in CAD/CAM applications to approximate three-dimensional (3D) solid models. The STL file format is one of the
key file formats for 3D data transfer in modern manufacturing systems. STL files, however, retain no topological information, which would have
been beneficial for subsequent file analysis and manipulation. The ability to extract geometric features from mesh data enables automation and
facilitates process planning. This paper describes how geometric primitives may be reconstructed from mesh data by simple heuristics. A case
study is presented, and a discussion is made on possible applications.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

 Keywords: Geometric modelling; Computer-Aided Design (CAD); Feature recognition

1. Introduction

Computer-aided technologies such as computer-aided
design (CAD), computer-aided manufacturing (CAM) and
computer automated process planning (CAPP) have had a
drastic influence on manufacturing systems over the last forty
years. The CAD models of components are central in modern
manufacturing systems and holds important information with
regards to intellectual property, manufacturing processes and
capabilities, and quality control and assurance. Because of the
widespread use of digital models, a large number of file formats
for the representation of part geometries and related properties
exist both in open format and software specific formatting.

The STL file format was originally developed to
accommodate the specific process planning needs of early
additive manufacturing technology with the computational
capabilities at that time [1]. The format was made accessible to
all and was soon utilized for transferring 3D data between
platforms across the computer-aided processes [2]. While the
original CAD model retains information about the geometric
features of the design which would be useful in subsequent
processing stages, this information is not explicit in the STL

file [3]. Regaining the lost information about the nominal
geometry is necessary whenever the CAD model is
unavailable, and the design is needed for operations such as
optimizing build preparation in additive manufacturing.

While tessellating a computer model to create an STL file is
simple enough, the reverse engineering of shape features from
STL data is a much more difficult task. Existing solutions make
use of complex mathematical analysis and metaheuristics for
mesh segmentation and feature classification, both of which are
computationally expensive. As an alternative of low
computational complexity, we demonstrate how geometric
reasoning may be applied to identify shape features from a
triangle mesh as described in the STL file format in four steps:

1. Establish connections to neighboring triangles
2. Identify coplanar facets
3. Identify curved segments
4. Merge curved features to create double-curved surfaces

The important difference from the existing body of
knowledge is the deduction of regional geometry based on local
topology without engaging in computationally extensive

	 Torbjørn Langedahl Leirmo et al. / Procedia CIRP 93 (2020) 544–549� 545
2 Torbjørn Langedahl Leirmo et al. / Procedia CIRP 00 (2019) 000–000

mathematical analysis. The method described herein assumes
that the STL file is valid and free from noise, preferably
originating from CAD software.

First, a literature review is presented before the
fundamentals of the STL file format and relevant geometric
methods are provided. Next, the method for extracting shape
features using geometric reasoning is described and an example
implementation demonstrates the application. Finally, a
discussion is made on the prospects of the method before a
summary and future work.

2. Literature review

The gap from design to manufacturing operations was
recognized at an early stage, hence a number of research efforts
have been directed at problems such as the CAD/CAM gap.
The work of Henderson and Anderson [4] constitutes an early
approach to the problem where machining features such as
slots, holes, and pockets were automatically extracted from
CAD data and a feature graph was created. Marefat and
Kashyap [5] introduced a cavity graph approach to the same
problem where prismatic depressions were identified through
geometric reasoning. Both [4] and [5] took the CAD model as
input and therefore cannot be directly applied to STL files.

Krysl and Ortiz [6] describe a set of algorithms for
converting a tessellated surface into boundary representation
(B-Rep) where the geometry is described by patches defining
the boundary between the interior and the exterior with the use
of faces, edges, and vertices. While the STL file is exclusively
composed of triangular planar faces, the patches of a B-Rep
model are represented by splines and may, therefore, take any
form [7]. The authors, however, provide no means to identify
any shape features of the part, merely to describe its boundary.
A B-Rep model was also created by Chappuis, et al. [8] who
demonstrated a diffuse integration method for recognizing
features in a surface mesh by calculating the local curvature.
More recently, Bénière, et al. [9] proposed a method to
reconstruct B-Rep models by fitting primitives based on
curvature characteristics of the area around vertices.

Moroni, et al. [10] sliced the STL model with three
orthogonal planes and identified cylinders by analyzing closed
loops in the resulting contour. The same goal was achieved by
Qu and Stucker [11] who presented a method based on the
edges between facets to construct closed loops which, after an
elimination procedure, constitutes the drilled holes of the part.

A somewhat similar method was proposed by Sunil and Pande
[12] who identified feature edges by calculating dihedral angles
and bounded the identified feature regions. Eight feature types
relevant for sheet metal parts could be identified by Gauss and
mean curvature calculations. Dihedral angles are widely used
in literature for mesh segmentation, and occasionally, they are
also utilized for the classification of feature types [13-16].

Hao, et al. [16] demonstrates how the estimation of
curvature may be utilized for extracting feature boundaries, but
not the feature type. Zhang and Li [17] performed mesh
segmentation with regards to local convexity and identified the
feature type by analyzing the gaussian image – a technique also
applied in [9, 12] where the facet normals are projected on a
unit sphere.

3. Theoretic foundations

3.1. Triangle tessellations

Converting a prismatic surface to a triangle tessellation such
as the ones present in STL files is unproblematic with regards
to accuracy. However, as soon as a curved surface is involved,
a deviation known as a chordal error between the original
design and the STL model will arise from surface
approximations, i.e. the distance from the curved surface of the
CAD model to the plane surface of the triangle (Fig. 1) [18].
The magnitude of the chordal errors depends on the resolution
of the constructed STL file, i.e. the number of triangles used to
represent the part. Typically, the CAD software enables the
user to set tolerances for the conversion in terms of maximal
chordal error and maximum dihedral angle  used to represent
curved surfaces.

3.2. The STL file format

The STL file contains an unordered list of all the triangles
(facets) composing the part, where every facet is represented
by a unit normal vector and the coordinates of all three corners.
To unambiguously delimit the interior from the exterior, the
facet normal points outwards, and the vertices are listed in
counterclockwise order as seen from the outside as displayed
in Fig. 2 [1, 19].

All facets have three adjacent facets which are referred to as
neighbors, however, the file contains no information about
adjacency relations. In other words, we know that any given
facet must have three neighbors, but there is no straight forward
way of finding these facets in the file. The three neighbors of a

Fig. 2. Illustration of a triangular facet with normal vector and vertices
(left) and the syntax of an STL file in ASCII format (right).

Fig. 1. Illustration of chordal error from STL conversion and the dihedral
angle φ.

546	 Torbjørn Langedahl Leirmo et al. / Procedia CIRP 93 (2020) 544–549
 Torbjørn Langedahl Leirmo et al. / Procedia CIRP 00 (2019) 000–000 3

facet are collectively referred to as the neighborhood of the
facet in the remainder of this paper and is illustrated in Fig. 4.

The STL file may originate from different sources that
influence the contents of the file: (i) export from CAD software
generally produces valid files with minimal noise; and (ii)
scanned geometries often introduces noise from environmental
factors and invalid files are commonplace. Invalid files
typically contain intersecting triangles, inverted normal vectors
or holes. Moreover, processed meshes may have unpredictable
effects on the STL data due to smoothing or simplifications
which further complicates file processing.

3.3. Geometric primitives

There are five distinguishable geometric primitives as
illustrated in Fig. 3, plane, cylinder, cone, sphere and torus. In
constructive solid geometry, these basic shapes constitute the
foundation for all designs through Boolean operations such as
union and intersection. These primitives are also central in
mechanical parts for creating interfacing and functional
surfaces which is why it is desired to extract these primitives
from the triangle mesh. The orientation of a primitive surface
is defined by a feature vector that is perpendicular to plane
surfaces and parallel to the axis of single curved surfaces. Note
that some surface types are subject to ambiguous feature
vectors due to the degrees of freedom associated with the
surface type [20]. E.g. a sphere has no identifiable feature
orientation without being supplemented with additional
information or rules for determining its feature vector.

3.4. Calculating dihedral angles

In the context of a surface mesh, the dihedral angle  is
defined as the angle between the normal vectors of two adjacent
facets as illustrated in Fig. 1. The angle  between two vectors
v and p in 3 may generally be calculated as:

 arccos
 

    

p v
p v

 (1)

Because the normal vectors of STL files are unit vectors, the
denominator will always be one and therefore insignificant.
Based on Eq. 1, the dihedral angle may be calculated simply as:

  arccos  p v (2)

The dihedral angle  is positive for all normal vectors and
will not give any indication of convexity.

3.5. Analysis of a triangle neighborhood

The relationship between two neighboring facets may be
categorized with respect to the dihedral angle  based on
assumptions regarding the tessellation process. Firstly, it is
assumed that any round off errors present in the STL file may
be contained within a relatively narrow margin of error denoted
as  . Secondly, it is assumed that a limit  exists for the
maximum dihedral angle  for curved surfaces regardless of
which geometric primitive it represents. Finally, it is assumed
that  is small enough to avoid confusion with curved
surfaces. These values enable classification of the angular
relationship between the facets as displayed in Table 1. We
denote the three angular ranges case A, B and C for the
remainder of this paper.

Table 1. Ranges of dihedral angles with edge descriptions.
Case Dihedral angle  Description

A   The facets are coplanar

B     The edge represents a curved surface

C   The facets are members of separate features

Because each triangle has three neighbors, all of which may

represent any of the cases in Table 1, the number of possible
combinations constitutes a problem of k-combinations with
repetition [21]. This can be expressed as a multiset coefficient
as:

1 3 3 1 5 5 4 10

3 3 2 1
n n k
k k

             
                     

 (3)

where n is the number of neighbors and k is the number of
possible relations (n multichoose k).

The ten possible combinations of neighborhood relations
calculated in Eq. 3 correspond to certain local characteristics
and may be used in the identification of shape features as
tabulated in Table 2. The order of N1, N2, and N3 is irrelevant
for this purpose as the number of neighbors corresponding to a
surface type is the only information of interest in this regard.

Fig. 3. Illustration of the five geometric primitives: plane (green), cylinder
(blue), cone (orange), sphere (red) and torus (yellow).

Fig. 4. A facet with vertices v1, v2 and v3 and its neighborhood (N1, N2, N3).

	 Torbjørn Langedahl Leirmo et al. / Procedia CIRP 93 (2020) 544–549� 547
4 Torbjørn Langedahl Leirmo et al. / Procedia CIRP 00 (2019) 000–000

Table 2. Possible combinations of neighborhood relations.
N1 N2 N3 Description

1 A A A All neighbors are part of a single large plane

2 A A B All but one neighbor are coplanar

3 A A C All but one neighbor are coplanar

4 A B B One coplanar neighbor and two curved edges

5 A B C One of each category

6 A C C One coplanar facet and two irrelevant neighbors

7 B B B All three edges are curved

8 B B C Two curved edges and one irrelevant neighbor

9 B C C Only one curved edge and two irrelevant neighbors

10 C C C No relevant neighbors (triangular plane detected)

4. Proposed method applying geometric reasoning

The proposed method involves the following four steps:

1. Establish connections to neighboring triangles
2. Identify coplanar facets
3. Identify curved segments
4. Merge curved features to create double-curved surfaces

Establishing the connection between triangles is pivotal for
the efficient handling of the triangles in subsequent operations.
The details of the data structure created in the first step are not
central in the current work and are outside the scope of this
paper. The interested reader is referred to [7, 22] for details on
possible data structures. The remaining steps are however
explained in detail in the following subsections.

4.1. Identifying planes

The first step of feature recognition is to identify all plane
surfaces composed of more than one facet. In practice, each
facet must be evaluated with respect to the dihedral angles to
its neighbors. From Table 2 this would cover all combinations
1–6. Additionally, case 10 indicates a triangular plane surface
that needs only a single facet for its representation and hence
requires no further processing.

If two facets are found to be coplanar, a recursive
neighborhood search is conducted to identify other facets
potentially belonging to the same plane. This region-growing
continues until the entire plane is identified. If more than two
connected facets are coplanar, the feature type may be
confirmed as a plane because no other feature type would yield
more than two coplanar connected facets.

4.2. Identifying curved surfaces

Curved surfaces appear in many forms in STL files and
require a much more thorough analysis compared to the planar
surfaces. The candidate list for curved surfaces includes all
single facets remaining after step 1 except those subject to case
10. Additionally, all plane surfaces composed of only two
facets must be considered because pairs of coplanar triangles
are sometimes present on curved surfaces (see Fig. 5).

Another useful piece of information for guiding the
identification of curved surfaces is that they are often

represented by triangles of roughly the same dimensions.
Consequently, if a neighboring triangle is much larger or
smaller than the facet of interest, the chance of the neighbor
belonging to a different feature is substantial. However, the
area of facets should only be used to guide the feature growing,
not to determine membership. This is because facets may be of
similar size without necessarily belonging to the same feature.

When two neighboring facets are candidates for a curved
surface (i.e. a relationship of case B, and roughly the same
size), the first step is to check if the facets are part of a
cylindrical surface. This is accomplished by identifying the
direction of the axis of the potential cylinder and then testing
the hypothesis on the next neighbors for validation. The
direction of the axis of the potential cylinder may be defined as
a vector perpendicular to the normal vectors of both facets as
illustrated in Fig. 5. The hypothesis is tested by simply
checking for perpendicularity between the cylinder axis and the
facet normal vectors of the next neighboring facets. Note that
because of possible numerical imprecisions in the STL file, all
calculations must consider a margin of error.

If none of the next neighbors meet the criteria for cylinders,
a similar test is performed to check for cone. This test requires
a third facet that must be acquired from the neighborhood with
a unique facet normal vector. Because the unit normal vectors
are of equal length, the endpoints of the vectors may be used to
define a plane that will have a normal vector parallel to the axis
of the cone, thus defining the direction of the cone axis as
illustrated in Fig. 6. The axis of the cone may be defined as the
normal vector of the plane defined by the endpoint of all three
facet normal vectors. The apex angle can easily be calculated
as twice the angle between the facet normals and the axis. The
hypothesis is confirmed if a fourth facet is found that is
connected to the existing members with a dihedral angle within
the range of case B and complies with the apex angle. If the
surface is confirmed as a cylinder or cone, a recursive
neighborhood search is conducted to collect all member facets.

4.3. Merging from single- to double-curved features

Because of the discretization of continuous surfaces, all
surfaces have been decomposed into planes, cylinders, and
cones after the previous section. The tessellation process turns

Fig. 5. Illustration of how all facet unit normal vectors lie in the same plane to
which the axis of the cylinder is perpendicular.

548	 Torbjørn Langedahl Leirmo et al. / Procedia CIRP 93 (2020) 544–549
 Torbjørn Langedahl Leirmo et al. / Procedia CIRP 00 (2019) 000–000 5

spherical and toric surfaces into segments of connected cones
and cylinders (Fig. 7). Hence, the identification of spheres and
tori may be accomplished by checking if adjacent cones are
coaxial and with apex angles deviating from each other with an
angle within the tolerance of curved surfaces, i.e. same as case
B for dihedral angles (Fig. 7a). Likewise, adjacent cylindrical
segments with axes deviating with an angle within the range of
case B may also be combined to form spheres or tori as
illustrated in Fig. 7b and c. To avoid the features merging into
unrelated connected surfaces, the direction of axial offset
should be constrained. One solution to this problem is to define
a plane on which the axes of potential candidate cylinders
should lie. For spheres and tori alike, an extra check for the
sizes of triangles within candidate features should be conducted
to avoid features growing out of bounds.

5. Example implementation

To demonstrate the feasibility of the proposed method, the
approach is exemplified on a ball joint which is a simple
geometry that embodies several of the geometric primitives.
Fig. 8a depicts a plain representation of the triangle mesh, and
Fig. 8b illustrates the geometric primitives comprising the ball
joint with the color scheme introduced in Fig. 3. The
component is designed in SolidWorks 2018 and exported as an
STL file with the resolution option “fine” which resulted in
8044 triangles. Due to the rounded edges of the part, no
connected triangles form dihedral angles large enough to
clearly distinguish separate features. With reference to Table 1,
this means that only cases A and B are present in the mesh
which consequently leaves only combinations 1, 2, 4 and 7
from Table 2.

After the adjacency relations have been established, the first
step is to extract coplanar adjacent facets by pairwise
comparison of facet normals. Following Table 2, no regions
correspond to neighborhood combination 1. Combination 2 is
present only in the planar sections visible in Fig. 9. Because
three connected coplanar facets may be found by investigating
the neighbors of a single facet, the sections are immediately
recognized as planar features. Combination 4 is present in most
of the mesh. In fact, apart from the planar features already
identified, all but the outermost sections of the spheres are
classified as combination 4. All instances of combination 4 are
included in the subsequent search for curved surfaces.

The second step identifies cylinders and cones by
investigating the facet neighborhood. Consider the large
cylinder in the middle of the part. The curved surface is
prevented from growing into the filleted edges because of the
proportional size difference. However, the normal vectors of all
the triangles constituting the cylinder lie in the y-z-plane and
thus the axis of the cylinder must be parallel with the x-axis as
exemplified in Fig. 5). As soon as this knowledge is obtained,
the remainder of the cylinder is identified by finding the
dihedral angle of the next neighbor recursively and making sure
it is perpendicular to the axis of the cylinder. Similarly,
segments of the toric and spherical surfaces are identified in
this step. Note that depending on the particular implementation
and order of facets in the list, the exact results from this step
may vary. However, with perfectly defined threshold values
and a thorough exploration of cylinders before going forth with
identifying cones, one would end up with the cylindrical
segments displayed in Fig. 9a. A similar implementation with
an emphasis on cones would give the results in Fig. 9b.

Finally, adjacent single curved segments are compared with
respect to the orientation of their axes. Again, the relative sizes
of the facets constituting the surfaces may be used as a guide
for avoiding features growing out of bounds. If two surfaces

Fig. 9. Ball joint with a) cylindric segments, and b) segments of conic form. Fig. 7. Segmentations of double curved surfaces. a) cones of a sphere,
b) cylinders of a sphere, and c) cylinders of a torus.

Fig. 8. Ball joint represented as a) raw STL file, b) with color coded
surfaces with respect to the geometric primitives.

Fig. 6. Illustration of how the endpoints of the facet unit normal vectors may
define a plane to which the axis of the cone is perpendicular.

	 Torbjørn Langedahl Leirmo et al. / Procedia CIRP 93 (2020) 544–549� 549
6 Torbjørn Langedahl Leirmo et al. / Procedia CIRP 00 (2019) 000–000

are found to be compatible, they are joined to form the relevant
double-curved surface (sphere or torus).

6. Discussion

There are some prerequisites for the proposed method to be
feasible in an industrial setting. Firstly, the STL file must be
free from holes and intersecting triangles for the adjacency
relations to be established correctly. This is important because
the method relies on the neighboring triangles being readily
available for efficient execution. Next, the method assumes
smooth surfaces in the sense that no shape feature contains
surface areas deviating from the shape primitive more than the
errors induced by the tessellation and numerical imprecision.
In practice, this means that the method is not suitable for
processing 3D scanned surfaces without preprocessing such as
smoothing operations to reduce the inherent noise. Such
operations should, however, be used with care, especially in
automatic applications, as they can easily distort the geometry.

The presented method is geared towards STL files
originating from CAD software without any form of re-
meshing and may, therefore, be infeasible in many real-world
applications. Certain adaptations must be considered before the
method may be successfully applied to organic geometries and
alternative file origins. However, the reasoning described in the
current work constitutes a logic foundation that is viable for
extracting shape features from valid STL files. The proposed
method may provide a starting point or otherwise support more
advanced feature recognition techniques.

A current trend in manufacturing is the increasing geometric
complexity of components, motivated by sustainability in
terms of cost savings as well as environmental concerns [23].
Additive manufacturing promises complexity for free, but
despite the organic shapes created through topology
optimization, the functional surfaces are still primitive.
Naturally, the proposed method will perform poorly on
freeform surfaces because only small pieces of primitive
shapes will be recognized.

7. Summary and further work

The current work described how geometric reasoning may
be applied to extract geometric primitives from a triangle mesh.
The presented method involves four steps; (i) establishing
adjacency relations, (ii) identifying planes, (iii) recognizing
single curved segments, and (iv) joining single curved
segments to double-curved surfaces. An example
implementation was presented to demonstrate the progression
of the method. Further validation and demonstration by
application on industrial components is planned for future work
and a C++ implementation is being developed.

The current work constitutes a computationally inexpensive
framework that establishes a foundation for rule-based
geometric analysis. The logic presented may be used as a
starting point for more advanced feature recognition methods,
or as support for computer-aided operations such as process
planning, quality assessment, and design optimization. Future
work should include the integration of the method with
computer-aided technologies. Furthermore, the reverse

engineering of solid models from STL data is a possible
extension of the current work along with the identification of
solid features.

Acknowledgments

This research is funded by the Norwegian Ministry of
Research and Education and is associated with SFI
Manufacturing funded by the Norwegian Research Council.

References

[1] Hull CW, Spence ST, Albert DJ, Smally DR, et al. Cad/cam
stereolithographic data conversion. US patent no. US182830. 1989.

[2] Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies.
2nd ed. New York: Springer; 2015.

[3] Moroni G, Petrò S, Polini W. Geometrical product specification and
verification in additive manufacturing. CIRP Ann Manuf Technol.
2017;66(1):157–60.

[4] Henderson MR, Anderson DC. Computer recognition and extraction of
form features: A CAD/CAM link. Comput Ind. 1984;5(4):329–39.

[5] Marefat M, Kashyap RL. Geometric reasoning for recognition of three-
dimensional object features. IEEE Trans Pattern Anal Mach Intell.
1990;12(10):949–65.

[6] Krysl P, Ortiz M. Extraction of boundary representation from surface
triangulations. Int J Numer Methods Eng. 2001;50(7):1737–58.

[7] Bærentzen JA, Gravesen J, Anton F, Aanæs H. Guide to Computational
Geometry Processing: Foundations, Algorithms, and Methods. Springer,
London; 2012.

[8] Chappuis C, Rassineux A, Breitkopf P, Villon P. Improving surface
meshing from discrete data by feature recognition. Eng Comput.
2004;20(3):202–9.

[9] Bénière R, Subsol G, Gesquière G, Le Breton F, Puech W. A
comprehensive process of reverse engineering from 3D meshes to CAD
models. Comput Aided Des. 2013;45(11):1382–93.

[10] Moroni G, Syam WP, Petrò S. Towards Early Estimation of Part
Accuracy in Additive Manufacturing. Procedia CIRP. 2014;21:300–5.

[11] Qu X, Stucker B. Circular hole recognition for STL-based toolpath
generation. Rapid Prototyp J. 2005;11(3):132–9.

[12] Sunil VB, Pande SS. Automatic recognition of features from freeform
surface CAD models. Comput Aided Des. 2008;40(4):502–17.

[13] Yang S, Shu S. Robust Feature Extraction for the Composite Surface
Mesh from STL File. In: The 9th International Conference for Young
Computer Scientists: IEEE; 2008:1373–8.

[14] Shamir A. A survey on Mesh Segmentation Techniques. Comput Graph
Forum. 2008;27(6):1539–56.

[15] Bespalov D, Shokoufandeh A, Regli WC, Sun W. Local Feature
Extraction Using Scale-Space Decomposition. In: Computers and
Information in Engineering Conference; Salt Lake City, Utah, USA:
ASME; 2004:1–10.

[16] Hao J, Fang L, Williams RE. An efficient curvature-based partitioning of
large-scale STL models. Rapid Prototyp J. 2011;17(2):116–27.

[17] Zhang J, Li Y. Region segmentation and shape characterisation for
tessellated CAD models. Int J Comput Integr Manuf. 2016;29(8):907–15.

[18] Zha W, Anand S. Geometric approaches to input file modification for part
quality improvement in additive manufacturing. J Manuf Process.
2015;20:465–77.

[19] Szilvśi-Nagy M, Mátyási G. Analysis of STL files. Math Comput Model.
2003;38(7):945–60.

[20] Martinsen K. Vectorial tolerancing for all types of surfaces. In: Advances
in Design Automation; Albuquerque, USA: ASME; 1993.

[21] Stanley RP. Enumerative Combinatorics. Springer, Boston, MA; 1986.
[22] Guo K-B, Zhang L-C, Wang C-J, Huang S-H. Boolean operations of STL

models based on loop detection. Int J Adv Manuf Technol.
2007;33(5):627–33.

[23] Thompson MK, Moroni G, Vaneker T, Fadel G, et al. Design for Additive
Manufacturing: Trends, opportunities, considerations, and constraints.
CIRP Ann Manuf Technol. 2016;65(2):737–60.

