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A B S T R A C T   

Teleoperation in an environment with latency is difficult and highly stressful for human operators, resulting in 
high cognitive workload and decreased human performance. This work investigates if a simple predictive display 
can increase performance and lower subjective workload for the human operator when teleoperating a remotely 
operated vehicle (ROV). A predictive display based on image transformation was developed by applying posi-
tional and scale transformations to the video feed and tested. An experiment was designed, consisting of a simple 
navigational task (peg-in-hole game) with a ground ROV, in three distinct conditions: C1. Latency, C2. Latency 
with predictive display (PD) and C3. Baseline (no added latency). Findings from N = 57 participants show a 
statistically significant increase of 20% in human performance with the aid of the predictive display. Although 
differences in subjective workload was not statistically significant, both subjective performance and actual game 
performance did increase significantly by using the predictive display. In fact, the latter almost doubled for 
participants defining themselves as regular gamers. Lastly, A principle component analysis (PCA) was conducted 
investigating confounding factors with confirmatory results.   

1. Introduction – Predictive technology can combat the 
detrimental effects of latency in teleoperation 

Teleoperation, also called remote operation, is electronic remote 
control of machines or vehicles and it includes applications of remotely 
operated vehicles (ROVs) on ground, under water, subsea, aerial and in 
space (Draper et al., 1998). Teleoperation is a subclass of telepresence; 
“the perception of presence within a physically remote or simulated 
site” (Draper et al., 1998). Telepresence is generally viewed as being 
beneficial to mission performance and is furthermore hypothesized to 
improve efficiency and/or reduce operator workload (Draper et al., 
1998). There are multiple challenges related to teleoperation, one of 
which is latency. In this work, we are interested in latency, also called 
time delay, which refers to the delay between operator input action 
(steering commands) and visible output response of the video feed 
(Chen et al., 2007). Teleoperation in an environment with latency, 
especially basic driving, is difficult and highly stressful for the human 
operator, resulting in high cognitive workload (Matheson et al., 2013) 
and decreased human performance (Chen et al., 2007), e.g. observed as 
an increase in task completion time or reduced accuracy (Lane et al., 
2002). Approaches to overcome the detrimental effects of latency in 

teleoperation include increasing the level of automation (which ex-
cludes the human from the loop), provide information to increase the 
situational awareness of the human operator and predictive technology. 

Predictive technology spans several approaches, either categorized 
as dynamic system models or free model approaches. Model free ap-
proaches include superimposed information models, 3D graphic 
models, and video manipulation. Superimposed information and 3D 
graphics models show promising results by greatly reducing task com-
pletion times, but require advanced algorithms, potentially expensive 
equipment and extensive information regarding the environment and 
the ROV. Video manipulation can increase performance of human op-
erators’ and it is simpler in comparison, as it alters the delayed video 
feed to mimic movements and environment in real time. Simple video 
manipulation can provide time efficient and inexpensive means to en-
hance performance of human operators’ in settings where extensive 
information regarding the ROV and its environment is unavailable, or 
the opportunity to utilize expensive equipment or highly advanced al-
gorithms is not a possibility. 

With basis in existing video manipulation methods based on image 
transformation, we developed a simpler predictive display by applying 
image positional and scale transformations to the video feed. This 
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predictive display requires a few lines of code and can be applied to 
several ROV configurations. In this work, we are interested in human 
operators’ performance and their subjectively experienced workload 
while using predictive technology. The aim of this article is to in-
vestigate if a simple predictive display can increase performance and 
lower subjective workload of human operators’ during teleoperation. 
To do so an experiment was set up to investigate changes in human 
operator performance and workload when operating an ROV under 
three distinct conditions, each condition with a distinct display and 
latency. The participants were presented with a single, simple naviga-
tional task, framed as a peg-in-hole game using a ground ROV with a 
first-person camera view. The conditions were C1. Latency, 2. Latency 
with Predictive Display (w/PD) and 3. Baseline. Data collected included 
objective performance (task score), and subjective workload (RTLX), 
demographics and other variables. N=57 participants were recruited 
and the hypotheses (task performance and subjective workload) tested 
using ANOVA. A post hoc Exploratory Data Analysis (EDA), specifically 
a principal component analysis (PCA) explore influencing factors. 

Following the introduction, the article is structured as follows; the 
background second section covers challenges in teleoperation, focusing 
on latency and its detrimental effects on human performance and 
workload. Means to compensate for latency are discussed, emphasizing 
various predictive technologies. The third section describes develop-
ment and implementation of a predictive display, and the experiment 
design, including stimuli, data collection, procedure, and data analysis. 
Section four presents the results of the statistical tests before providing 
the result from the EDA. A discussion of the presented results follows in 
section five, before the conclusion. 

2. Background – Latency in teleoperation, human performance, 
and workload 

This section describes challenges in telepresence, detailing latency 
and its detrimental effects, with a focus on human operator perfor-
mance and subjectively experienced workload. Human operator per-
formance decrease and workload increase as latency is introduced in 
teleoperation. Means to compensate for latency are discussed, pre-
dictive technologies in particular. Lastly, the section provides means to 
measure human operator performance objectively and workload sub-
jectively. 

2.1. Latency in teleoperation and its related challenges 

2.1.1. Telepresence and related challenges 
Draper et al. (1998) defines telepresence as “the perception of 

presence within a physically remote or simulated site”. Teleoperation is 
one subclass of telepresence (Sheridan, 1995). Telepresence is bene-
ficial to mission performance and is furthermore hypothesized to im-
prove efficiency and/or reduce operator workload. Chen et al. (2007) 
reviewed 150 articles investigating factors in telepresence, and how 
they influence operator performance and challenges related. They 
found eight main factors; field-of-view (FOV), orientation, camera 

viewpoint, depth perception, video quality and frame rate, time delay 
(or latency) and motion. 

2.1.2. Latency challenges in telepresence 
In this work, we are interested in time delay, or latency, which will 

be used throughout this article, which refers to the delay between op-
erator input action (steering commands) and visible output response of 
the video feed (Chen et al., 2007). Latency is usually a result of in-
formation having to be conveyed over a communication network 
(Chen et al., 2007). The total latency of the teleoperation system can 
further result from a combination of a number of reasons, such as 
software design, hardware design, physical limitations such as distance 
and obstacles, signal processing, etc. Thus, total latency can be both 
fixed and variable (Lane et al., 2002). There are important distinctions 
between the two, e.g. they influence performance differently 
(Davis et al., 2010; Neumeier et al., 2019; Oboe and Fiorini, 1998). 

The causes of latency are not within the scope of this work, and we 
consider fixed delay only. We are interested in the total perceived la-
tency; i.e. the time from when the human operator issues a command 
until they visually perceive a reaction in the vehicle in the video 
feedback. 

2.1.3. Latency in teleoperation and its detrimental effects 
Latency produces a mismatch between given input commands and 

visual feedback of vehicle reactions. This creates a conflict for human 
perception. To correct for this during operation the human operator 
must remember the inputs command given until they see the desired 
output produced by the vehicle in the video feed (Matheson et al., 
2013). In addition, as new information is prompted on the video 
feedback this must be mentally connected with the commands issued 
previously (i.e. the vehicles previous state), and thereafter combined 
that with issuing new commands based on this conjunction of in-
formation (Ricks et al., 2004). Latencies as low as 10 - 20 ms can be 
detected by humans’ visual perception (Chen et al., 2007). Taken to-
gether, this can degrade human performance (Chen et al., 2007) and 
can increase subjectively experienced workload (Ricks et al., 2004). 

2.1.4. Latency in teleoperation degrades human performance 
The detrimental effect of latency on human performance can be 

seen in Table 1, which includes relevant research investigating the ef-
fect of video feed latency on human performance in a given task. 
Human performance includes course completion time, task completion 
time, task score, accuracy, etc. This table describe the task and the 
related increase factor, where a 40% increase in task completion time 
corresponds to an increase factor of 1.40. For example a needle-driving 
task at 100 ms latency had an increase factor of 1.5 (Xu et al., 2014). 
The relationship between latency and task completion time is task de-
pendent, notably it is similar for similar tasks. For example; a linear 
relationship between latency and task completion time was found in a 
mobile robot operating task (Ando et al., 1999) and a vehicle peg-in- 
hole task (Lane et al., 2002), whereas an exponential relationship was 
found in a telerobotic surgical technique task (Xu et al., 2014). 

Table 1 
Task completion time for a variety of tasks and latencies.        

Author Task Participants Latency [ms] and increase factor    

100 – 300 ms 400 – 700 ms 800 – 1500 ms  

(Fabrizio et al., 2000) Pin transfer N = 6 1.04 - 1.21* 1.17 - 1.41* 1.11 - 1.58* 
(Xu et al., 2014) Energy dissection N = 16 1.4 - 1.8 2.7 - 4.3  
(Xu et al., 2014) Needle-driving N = 16 1.5 - 2.1 2.5 - 6.2  
(Perez et al., 2016) Surgical simulator N = 37 0.75 1.5  
(Lum et al., 2009) Block transfer N = 14 1.45 2.04  
(MacKenzie and Ware, 1993) Target acquisition N = 8 1.64   

* Estimated from graph.  
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2.1.5. Latency in teleoperation increase workload 
The notion of workload or cognitive load is argued to be predictive 

of both performance in human-machine interactions as well as the 
mental state of the operator. Workload is described as a relation be-
tween the mental resources a task demands and the resources available 
from the human operator (Parasuraman et al., 2008). It is a multi-
dimensional construct emerging from the interaction between task, 
context, operator capabilities, behavior, perceptions and (mental and 
physical) state (Hart and Staveland, 1988a; Parasuraman et al., 2008). 
This mental load posed on a human operator by latency in teleoperation 
negatively affects their ability to control a vehicle in an efficient 
manner (Ricks et al., 2004). The human operator's subjectively experi-
enced workload is important (Hart and Staveland, 1988a), since this 
might alter behavior. Should an operator experience a situation as high 
workload, the operator might adopt strategies to mitigate workload. In 
the specific case of teleoperation human operators tend to perform 
steering commands correcting for the mismatch in given input and vi-
sually perceived output, causing the vehicle to oscillate and limiting top 
speed (Appelqvist et al., 2007). Teleoperation in an environment with 
time delay, in particular basic driving, is difficult and highly stressful 
for the human operator, resulting in high cognitive workload 
(Matheson et al., 2013). Extended exposure to such an environment can 
create cognitive overload leading to mental fatigue (Lim et al., 2010;  
Matheson et al., 2013). 

2.1.6. Latency compensation 
There are multiple approaches to reduce the detrimental effects of 

latency. First, increasing the level of automation (LOA) reduces the 
operator workload and improve safety (Dorais et al., 1999;  
ENDSLEY, 1999; Goodrich et al., 2001; Luck et al., 2006;  
Schutte, 2017). A second option is providing the human operator with 
information and/or previously given input commands, increasing si-
tuational awareness and leading to higher performance and/or de-
creasing subjective workload (Chen et al., 2007; Miller and 
Machulis, 2005; Nielsen et al., 2007). A third option is predictive 
technology, which can be displays, control algorithms and graphical 
models attempting to predict the state of the ROV based on the vehicles 
current state and commands issued by the operator. Chen et al. (2007) 
conclude it is the most promising solution if eliminating latency from 
the system is impossible, and highlight that predictive displays has been 
shown to reduce task performance time by up to 150%. 

2.1.7. Predictive technology 
A range of experiments where predictive technology has been used 

are shown in Table 2, illustrating a wide variety of experimental tasks, 

robot configurations and predictive method. Exact robot configuration 
can be known, including examples such as robot-arm manipulators 
fixed to a user defined reference frame, or not known, such as vehicles 
subjective to external forces or floating freely. The unknown robot 
configuration challenges the predictive technology as it must account 
for unknown and changing external factors. Common for the experi-
ments in Table 2 is that they involve lateral movement in an alignment 
or aiming task, which are particularly exposed to detrimental effects of 
latency in video feedback. Correctional behavior commonly occurs, 
causing operators to overshoot a target or employ a wait-and-move 
strategy. This behavioral strategy increases task completion time and 
occurs around one second latency (Lane et al., 2002). 

In general, predictive technology calculates a future predicted state 
of the robot based on different variables and methods. Methods can rely 
on dynamic system equations, such as Zhang and Li. (2016) who used a 
spacecraft's state equations and its dynamic properties to calculate the 
predicted state. An image of the predicted state is provided to the op-
erator which can issue commands accordingly. In contrast, a model free 
approach, which excludes dynamics, is often used in contexts where 
accurate modeling of external forces isn't a possibility, such as in space 
applications. Predictive technology within model free approaches in-
cludes superimposed predictive information, 3D graphic models and 
video manipulation. 

The first category superimposes (or overlays) information on a de-
layed video feed, providing the operator with an estimate of the ve-
hicles future state. Superimposed predictive information is often vi-
sualized as vector graphics where lines of dots follow a path. For 
example, Mathan et al. (1996) superimposed directional velocity in-
formation of a lunar rover on a video display. Further, airplane and 
helicopter displays have a tunnel in the sky showing where the aircraft 
should be going and a cross indicating the predicted trajectory (Grun-
wald et al., 1981). In cases with large amounts of lateral movement this 
approach might not be applicable as the predicted heading can come off 
screen. 

3D graphics model (or virtual reality (VR) based predictive display) 
use sensor technology input such as Monocular Simultaneous Location 
and Mapping (SLAM), stereo imagery, vision-based structure from 
motion (SFM), light detection and ranging (LiDAR), or radio detection 
and ranging (radar), etc., to construct a three-dimensional world, 
wherein images from ordinary cameras are rendered on the surface of 
the virtual world. 

Then, a virtual camera is placed inside the virtual world in the 
predicted position of the real camera and operators’ are presented with 
the virtual video feed as virtual reality (VR) or augmented reality (AR). 
This method is particularly popular in combination with robot arm 

Table 2 
Predictive technology with task completion time reduction.       

Author Robot system Predictive technology Participants Reduction in task completion time 
Task Camera Latency  

(Lu et al., 2018) Car simulator 
Driving 

Model-free framework 
Simulated human 

N = 12 
Not reported 

8% 

(Hu et al., 2016) 2-6 DOF manipulator 
Camera alignment 

Simulated 3D 
Virtual 

N = 15 
300 ms, 500 ms, 1000 ms 

33%, 58%, 65%* 

(Zheng et al., 2016) Car simulator 
Driving 

Model-free framework 
Simulated human 

N = 5 
900 ms 

35% 

(Lovi et al., 2010) Robot arm on Segway 
Object alignment 

Vision-based monocular modelling 
At end effector 

N = 5 
300 ms 

33%* 

(Matheson et al., 2013) Rover 
Driving 

Projected field of view 
Fixed to car 

N = 12 
3000 ms 

48% - 64%* 

(Rachmielowski et al., 2010) Virtual with Phantom OMNI 
Alignment 

Reconstructed 3D environment 
At end effector 

N = 12 
300 ms 

29% - 30%* 

(Mathan et al., 1996) Lunar vehicle 
Manoeuvring 

Superimposed directional information 
Fixed to car 

N = 8 
5000 ms 

24% - 30% 

(Bejczy et al., 1990) 6DOF PUMA robot 
Tapping 

Superimposed phantom robot 
Fixed 

N = 2 
1000 ms, 4000 ms 

13% - 34%, 40% - 56% 

* Estimated from graph.  
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manipulators. The 3D environment can be constructed a priori, and 
exact location of the robot arm is known (Ricks et al., 2004). A lim-
itation arises when tasks are performed in unknown and unstructured 
areas, and since environment geometry is unknown real time mapping 
and rendering can be difficult. Additional hardware may be required 
and calculations can become computationally intensive. Moreover, 
additional challenges, such as oscillopsia occur when latency is in-
troduced in VR head-mounted displays (Allison et al., 2001). 

Video manipulation does not require 3D information about the en-
vironment. It alters the delayed video feed to mimic movements and 
environment in real time. A simple example would be to zoom into the 
image if the robot is moving forward. Matheson et al. (2013) halved 
task completion time at a latency of three seconds in an ROV experi-
ment using this method, by cropping and projecting the image. A si-
milar result is obtained by capturing a wide FOV video, possibly 360 
degrees, and then only displaying a section of that image to the op-
erator. The section can be moved around in the video as a response to 
steering commands and thus provide fluid and seemingly real time 
feedback (Baldwin et al., 1999). Advantageous to video manipulation 
techniques are low cost, ease of implementation and not requiring a 
structured environment. Furthermore, prediction error propagation 
cannot occur since the presented video feed consists only of alterations 
to the latest image. However, it cannot recreate parallax movement 
(such as passing an object or corner) which 3D graphics models can 
achieve. 

3. Method - Experiment investigating a predictive display under 
three conditions 

An experiment was set up to investigate changes in human operator 
performance and workload when operating an ROV under three distinct 
conditions, each condition with a distinct display and latency. The 
participants were presented with a single, simple navigational task, 
framed as a peg-in-hole game which was the same for all three condi-
tions. The conditions were C1. Latency, C2. Latency with Predictive 
Display (w/PD) and C3. Baseline, and they are described in detail in this 
section. First, this section describes development and implementation 
of a predictive display Then, the experiment design follow, which in-
cludes research objective, hypotheses, stimuli (description of task and 
conditions), data collection (objective performance and subjective 
workload), setup, experimental procedure, and data analysis. 

3.1. Predictive display development 

Predictive technology that reconstructs a 3D environment based on 

sensory data requires advanced algorithms, potentially expensive 
equipment, and extensive information regarding environment and 
ROV. In cases where this is not a possibility video manipulation pro-
vides simple and inexpensive means to increase human operators’ 
performance. 

The projected display by Matheson et al. (2013) is the simpler video 
manipulation method of the ones considered in Table 2, while retaining 
a great increase in human operator performance. However, information 
on the vehicles’ ground trajectory is required to calculate changes in 
perspective. By disregarding the effects of change in perspective and 
applying positional and scale transformations to the video feed we 
obtain an even simpler approach. As such, by applying positional and 
scale transformations to the video feed we developed a predictive dis-
play based on image transformation. The predictive display can be 
applied to several robot configurations though it was developed for 
ROVs initially; It is appropriate only for screen-based systems and other 
alternatives are needed for predictive head-mounted display systems. 

3.1.1. Predictive display implementation in detail 
The developed predictive display repositions the delayed video feed 

on the monitor so objects in the video feed appear in correct size and 
position on the screen as if there was no latency (see Figs. 1 and 2). It 
uses user input (i.e. steering commands) and predefined ROV speed to 
predict how the FOV would move in the scene, repositioning and 
scaling the video feed accordingly. 

The positional transformation can be explained by considering an 
ROV with an onboard camera rotating about its center of mass, turning 
with an angular velocity of ω°/s. The camera FOV is φ°, with horizontal 
resolution Rh pixels. A counterclockwise rotation for ∆t s moves the 
ROV ∆θ°. Objects in the video feed moves (Rh⋅ω/φ)⋅∆t=η⋅∆t=∆Ph 

pixels to the right. η = pixel turn rate, which depends on screen re-
solution, angular velocity and camera FOV. The pixel turn rate, user 
input and total system delay td is used to create the predictive display. 
The video feeds’ position on the monitor is calculated at a set interval dt 
(preferably at a minimum video frame rate (FPS)). If the ROV moves to 
the left, time since last update dt multiplies with pixel turn rate to find 
change in horizontal video position ∆Ph. The video feed then moves ∆Ph 

to the right on the monitor. When a time td has passed (system delay has 
caught up), the video feed is moved back. 

For backward and forward translation, similarly as for pixel turn 
rate, a pixel scale rate can be found and used to scale the video feed. For 
backwards and forwards ROV translation, scaling of objects depends on 
how close they are to the camera. An average distance is used as an 

Fig. 1. Monitor for the human operator. The outer box is total screen size, 
whereas the inner box is the video feed. 

Fig. 2. Predictive display visualization. The operator has recently turned the 
ROV to the right, and as a result the video has moved to the left. The red arrow 
has not moved and works as an indication of where the ROV will be heading 
when the video feed has caught up with the time delay. 
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approximation. The video feed scale transformation works as the 
aforementioned positional transformation. 

Finally, the predictive display uses a red arrow to visualize the fu-
ture position as illustrated in Fig. 2. 

3.2. Research objective and hypotheses 

Research objective: Investigate if such a simple predictive display 
still increase human operators’ performance and reduce workload. 

Based on the research objective, we sought to test the following 
hypotheses:  

• A simple predictive display significantly increases human operators’ 
performance (objectively measured by task score performance, - i.e. 
the number of hits achieved in 90s by the participant).  

• A simple predictive display significantly decreases human operators’ 
subjective workload (subjectively measured by RTLX's six dimen-
sions, mental demand, physical demand, temporal demand, perfor-
mance, effort and frustration, evaluated on eleven-point scales 
(Hart, 2006)). 

3.3. Stimuli – Peg-in-hole-game under three conditions 

The experiment encompassed a single, navigational task, in which 
we measured operator performance by means of an achieved score over 
a fixed time period. 

3.3.1. Rationale behind task selection 
Chen et al. (2007) reports benefits of predictive technology to be 

very task dependent. A peg in hole task was selected due to its ap-
plicability in teleoperation (Lane et al., 2002). A task encompassing as 
much lateral navigation as possible was selected, as this is where the 
predictive display can provide the most help, in contrast to for example 
navigational tasks with longer stretches of forward motion (and the 
maximal velocity of the ROV would create a ceiling effect). A short 
timeframe of 90 seconds was chosen to reduce any learning effect that 
might accompany a longer maneuvering course. A fixed time period 
made total experiment length predictable, participants used 10 min and 
56 s on average (SD 1 min and 12 s). This aided in recruiting new 
participants. Furthermore, time pressure in combination with score 
achievement made participants fully devoted to the task at hand, and 
we argue this led to participants performing close to the best of their 
ability. We further argue that a single, simple task will minimize the 
effect of other factors on performance, e.g. trouble understanding the 
task, or being highly experienced in related tasks such as gaming, 
driving, or other navigational tasks. 

3.3.2. Task 
Participants were given a modified ‘peg-in-hole’ task. The peg was 

mounted on a remotely controlled ground vehicle, and there were three 
rectangular holes in three rectangular boxes with accompanying LEDs. 
One LED would light up at a time, in random order, to which the 
participant was instructed to perform as many ‘hits’ as possible by in-
serting the peg in the hole within the given timeframe. Task and time 
given (90s) was the same for three distinct conditions. During the task, 
a red timer indicating remaining time was constantly visible in the 
screens’ upper right corner. 

3.3.3. Three conditions 
All participants repeated the task three times, under three distinct 

conditions. The display provided to the participants would differ in 
each condition. The conditions, latency and displays were as follows:   

Condition 1. Latency: 700 ms delay (250 ms inherent system 
delay + 450 added delay). No predictive display.   
Condition 2. Latency with Predictive Display (PD): 700 ms delay 

(250 ms inherent system delay + 450 added delay). With predictive 
display.   
Condition 3. Baseline: 250 ms inherent system delay.1 No predictive 
display. 

Throughout the paper we refer to the conditions as:   

C1. Latency   
C2. Latency w/PD   
C3. Baseline 

3.3.4. 3 × 3 Latin Square Design 
The sequence of the conditions was randomized according to a 

3 × 3 Latin Square Design to avoid potential order and/or learning 
effects. All six combinations were used. Each participant was auto-
matically assigned to one of the combinations, ensuring equal group 
sizes across conditions as far as possible. Due to the number of parti-
cipants recruited; three of the combinations had 10 participants, and 
three combinations had 9 participants. 

3.4. Data collection – Performance measured objectively and workload 
measured subjectively 

N = 58 participants were recruited to test the predictive display. 
We collected objective measures of human performance and subjective 
measures of workload. Demographic data were also collected. 

3.4.1. Participants 
Participants were voluntary selected from NTNU, Department of 

Mechanical and Industrial Engineering. Our aim was to recruit as many 
participants as possible within the time constraint we were working 
with. A total of 58 participants performed the experiment, one parti-
cipant was excluded in the analysis due to incomplete information. The 
remaining N = 57 participants received the same information and were 
included in the analysis. Age ranged from 23 to 30 years (24.7 ± 1.5). 
There were 19 female and 38 men. We gathered level of education, how 
often they played video games, how often they use a computer and eye 
health information, which can be found in Table 3. 

3.4.2. Objective performance measurements 
Two performance measurements are common among experiments 

on predictive technology: course completion time and task score 
(Lu et al., 2018; Mathan et al., 1996; Matheson et al., 2013; Zhang and 
Li, 2016; Zheng et al., 2016). In the former, the task is to navigate 
through a predefined pathway with the vehicle and measuring the time 
necessary to complete the course. In the latter, the task typically in-
volves aligning or aiming at a given target, assigning a score to the 
number of times the target was met. Using a task score as a performance 
measure enables a fixed time for experiments, which was desirable for 
us to be able to recruit more participants. The number of hits made by 
participants in each of the 90 s test period was used as a performance 
measure. 

Additional objective data collected included total number of hits 
made in all three test periods, and number of key presses in each of the 
test periods. 

3.4.3. Subjective workload measurements 
NASA Task Load Index (TLX) is common and highly accepted for 

remote operation and ROV applications (Hart, 2006; Hill et al., 1992;  
Hu et al., 2016; Ma and Kaber, 2006; Zhang and Li, 2016), and was 
initially developed for experimental tasks that include cognitive and 

1 The variability of inherent system delay was repeatedly quantified (10 
times) to 1 – 5 ms difference each time. The average of those 10 measurements 
was used as inherent system delay. 
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manual control tasks, and supervisory control tasks (Hart and 
Staveland, 1988b). TLX is multidimensional, provide good diagnostic 
properties for assessing underlying mechanisms of subjective workload, 
and has been shown to have high sensitivity (Hart, 2006; Hendy et al., 
1993; Hill et al., 1992; Vidulich and Tsang, 1987). A modified version 
of TLX, Raw TLX (RTLX) was chosen to assess workload. The six di-
mensions (mental demand, physical demand, temporal demand, per-
formance, effort and frustration) were rated on eleven-point scales. The 
weighting process in TLX consists of pairwise comparison of all six di-
mensions. It was not conducted, since we are not interested in the 
subjective importance of each dimension in a specific task, rather we're 
interested in comparing the subjective workload of different tasks (the 
three conditions). Furthermore, this weighing process consumes time, 
and, in this context, it was deemed more important to have a short 
survey, leaving more time for recruiting participants and conducting 
experimental runs. This modification is what is referred to as RTLX. One 
additional modification was made to the survey, as a pilot study of the 
experiment showed that a participant found it more intuitive to rate 
good performance with a high number. In the original survey a low 
value corresponds to good performance. Therefore, this metric and the 
corresponding description was reversed, such that a high value corre-
sponded to good performance. After data collection, this value was 
reversed back for conventional analysis and reporting. 

Furthermore, a question of perceived delay time was added to the 
survey, to investigate participants’ subjective experienced latency in 
each individual condition and to compare the individual conditions, the 
latter in hopes of providing a measure of effectiveness for the predictive 
display in reducing the subjectively perceived latency of the system. 

3.4.4. Data collection procedure 
Both survey data and experiment data were recorded with the ROV 

computer using an SQLite database. 

3.5. Setup 

A 17” laptop running a 2.3GHz Intel Core i7-3610QM CPU and 
Windows 10 was used. The laptop screen served as monitor and the 
keyboard's arrow keys were used to steer the ROV. The keyboard and a 
remote mouse were used to answer the surveys. The ROV was running a 
Raspberry Pi 3 Model B+, and equipped with a forward facing 
Raspberry Pi Camera V2 and a wide angle lens with horizontal FOV of 
76.5°. The robot was constructed using three wheels, two of them 
connected to a DC motor and the third a caster wheel for support (see  
Fig. 4). A wooden box with three holes and LEDs were used to register 
task performance. The distance between the holes (center to center) 
was D = 30 cm while the holes itself has a width of W = 10cm. This 
translates to a Fitts's index of difficulty of Id = log2 (2D/W) = 2.58 bits 

(Fitts, 1954). The robot ran eduROV2 software, which provided an in-
terface to control the robot, handling control commands, adding de-
sired latency to the communication, and logging data. 

3.6. Experimental procedure 

After entering the experiment room, participants were shown the 
setup to ensure that they understood the situation and what they were 
tasked to do. The participant was placed in a chair at a desk with a 
laptop, with their back to the game (see Fig. 3). The participant would 
have no visual perception of the physical setup during the experiment. 
To ensure there was no auditory perception of the ROV, participants 
wore an ear protection headset. Information was given in writing on the 
computer screen. After giving consent to participate in the experiment, 
participants filled out a demographic survey. Information describing 
the experiment was provided; How to steer the vehicle, the task and 
performance measure, and the following procedure of the experiment. 
Each participant was automatically assigned to one of the groups cor-
responding to the 3 × 3 Latin Square Design. The participant would 
then conduct a 30s practice period followed by a 90s test period. After 
each block of practice and test period the participant filled out a survey 
of mental workload and perceived delay time. The starting position 
(indicated by the black mark in Figs. 3 and 4) was identical for all 
periods. The third block concluded the experiment and the participants 
were escorted out. 

The participant was not informed of the fact that one of the conditions 
would have a predictive display, nor how it worked. To be able to take 
advantage of the predictive display is therefore dependent on the in-
dividual participants ability to intuitively understand the display. It was 
assumed that the practice period before each test would suffice in giving 
the participant the needed training in the display for the game. However, 
the questionnaire included a question of time delay, which could have 
influenced participant's attention to delay in the next conditions. 

3.7. Analysis – Classical statistics and exploratory multivariate analysis 

3.7.1. Classical statistics – Analysis of variance (ANOVA) 
Subjective measurements used for analysis were collected after each 

condition and performance measurements were collected continuously 
during each condition. An analysis of variance (ANOVA) was conducted 
to investigate the effects of the predictive display on both subjective 
and objective measurements, i.e. this statistical test investigated the 
predetermined hypotheses. The characteristics of the data was in-
spected and in the case of violations of assumptions, the non-parametric 
alternative to one-way repeated measures ANOVA, the Friedman test 
was conducted. Data distribution was visually inspected using Normal 
Q-Q Plots for all variables and conditions. ANOVA F-test is found to be 
insensitive or robust (Krishnaiah, 1980; Schmider et al., 2010) to gen-
eral nonnormality, and can for equal group sizes be used with con-
fidence in most practical situations. We consider the sample size of 57 
to be high, and we have continued with the analysis and when possible 
conducted a Friedman test for comparison purposes. Mauchly's test 
evaluates sphericity, an assumption which is considered difficult not to 
violate in practice (Weinfurt, 2000), over-detecting deviations from 
sphericity in large samples (Kesselman et al., 1980). Maxwell and 
Delaney (2003), recommend using an adjusted test, interpreting the 
result of using a Greenhouse-Geisser correction and thus ignoring the 
result of Mauchly's test. This was done here, calculating epsilon ac-
cording to Greenhouse & Geisser (1959), and using it to correct the one- 
way repeated measures ANOVA. The Bonferroni post hoc test (Maxwell, 
1980, Maxwell &Delaney 2004) was used to test all possible pairwise 
combinations of conditions. Statistical tests were performed using SPSS 
Statistics (IBM SPSS Statistics 25, 2017). 

Table 3 
Participant data.      

Variable Options Frequency Percent  

Gaming Daily 2 3.5  
Weekly 15 26.3  
Monthly 8 14.0  
Yearly 17 29.8  
Never 15 26.3 

Education Nursery school 1 1.8  
Some college credit, no degree 38 66.7  
Bachelor's degree 10 17.5  
Master's degree 8 14.0 

Eye health No visual aid 32 56.1  
Spectacles 4 7.0  
Contact lenses 10 17.5  
Both spectacle and contact lenses 11 19.3 

2 https://github.com/trolllabs/eduROV/. 
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3.7.2. Exploratory data analysis 
Furthermore, we wanted to explore and hypothesize regarding other 

potential relationships between the variables. Therefore, an exploratory 
data analysis (EDA) (Tukey, 1977), specifically a principal component 
analysis (PCA) was conducted to explore whether there were any in-
teresting patters or observations in the data collected. Here, no hy-
pothesis was determined, and all effects described emerged post-hoc. 
The PCA was conducted using scikit-learn (Pedregosa et al., 2011) and 
Jupyter Lab Notebook (Kluyver et al., 2016). 

Fig. 3. Experiment setup. The participant can only see the robot through the 
display provided on the laptop screen, which is a first-person camera view. 

Fig. 4. Experiment setup. The three wheeled ROV with the peg mounted and 
the wooden box. 

Fig. 5. Descriptive statistics of performance (objective). Original data reported. 
Statistically significant differences at p<0.01 are indicated by p**. 
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4. Results 

The following section presents the results of the statistical tests 
before providing the result from the EDA. 

4.1. Performance (objective) 

A one-way repeated measures ANOVA was conducted to determine 
whether differences in human performance (the number of hits, an ob-
jective measure) between the three conditions were statistically sig-
nificant. Descriptive statistics of performance data are illustrated in Fig. 5, 
and Table 5 shows all pairwise comparisons of the conditions. Table 4 
contains the ANOVA F-test statistic, data characteristics and pretests. 

Performance was statistically significant different in the three con-
ditions, with a performance increase of 20% from C1. Latency to C2. 
Latency w/PD. Performance increased from M = 6.2 hits in C1. Latency, 
to M = 7.5 hits in C2. Latency w/PD, to M = 16 hits in C3. Baseline. 
There was a statistically significant increase in performance of M = 1.3 
hits (SD = 0.26) from C1. Latency to C2. Latency w/PD. In summary, 
there was a statistically significant difference between means and, 
therefore, we accept the alternative hypothesis; The predictive display 
significantly increases performance of the human operator. 

4.2. Subjective workload 

This section presents the results from statistical analysis of sub-
jective workload measures. Overall Subjective Workload is presented 
first, before also presenting the individual workload dimensions. 

Since we conducted RTLX, the values of the individual workload di-
mensions (mental, physical, temporal, performance, effort and frustration) 
were averaged to obtain an estimate of the overall workload (Hart, 2006). 
This averaged score is addressed as Subjective Overall Workload in the 
following. Separate one-way repeated measures ANOVA was conducted 
for overall workload and the six individual workload dimensions to de-
termine the effects of the predictive display on lowering subjective 
workload in the three conditions. The results from the ANOVA F-test, in-
cluding pretests for all variables can be found in Table A2, 

Appendix A, whereas descriptive statistics and pairwise 

comparisons can be found in Table A1, 
Appendix A, and Table 6, respectively. The following paragraphs 

describe individual results before providing an overall explanation. 

4.2.1. Subjective overall workload 
Subjective Overall Workload was statistically significant different 

under the three conditions. There was a decreased subjective workload 
from M = 5.3 (SD = 0.2) in C1. Latency, to M = 4.9 (SD = 0.2) in C2. 
Latency w/PD, to M = 3.5 (SD = 0.2) in C3. Baseline. Pairwise com-
parisons of the three conditions was carried out using the Bonferroni 
post hoc test, which revealed that the mean decrease in subjective 
workload from C1. Latency to C2. Latency w/PD was not statistically 
significant (M = 0.35, SD = 0.16, p = 0.133). There was a statistically 
significant mean decrease in subjective workload from C2. Latency w/ 
PD to C3. Baseline (M = 1.44, SD = 0.18, p < 0.001), and from C1. 
Latency to C3. Baseline (M = 1.775, SD = 0.14 p < 0.001). A Friedman 
test produced corroborating results. Therefore, we cannot reject the null 
hypothesis and cannot accept the alternative hypothesis. The predictive 
display does not decrease human operators’ subjective overall work-
load. 

4.2.2. Mental demand (individual workload dimension) 
Mental demand was statistically significantly different in the three 

conditions, however, post hoc analysis with a Bonferroni adjustment 
revealed that mental demand did not significantly decrease from C1. 
Latency to C2. Latency w/PD. There was a statistically significant de-
crease in mental demand from C1. Latency to C3. Baseline and from C2. 
Latency w/PD to C3. Baseline. The predictive display did not reduce 
participants’ mental demand. 

4.2.3. Physical demand (individual workload dimension) 
Physical demand was statistically significantly different in the three 

conditions, however, post hoc analysis with a Bonferroni adjustment 
revealed that physical demand did not significantly decrease from C1. 
Latency to C2. Latency w/PD. A Friedman test with pairwise compar-
isons using a Bonferroni correction for multiple comparisons was car-
ried out for comparison purposes, which gave the same result. There 
was a statistically significant decrease in physical demand from C1. 

Table 5 
Pairwise comparisons of performance (objective).            

Variable C1. Latency – C2. Latency w/PD C1. Latency – C3. Baseline C2. Latency w/PD – C3. Baseline 

Mean Diff. SD Sig.b Mean Diff. SD Sig.b Mean Diff. SD Sig.b 

Performance 
[number of hits] 

-1.298 0.264 p < 0.0001⁎⁎ -9.754 0.491 p < 0.0001⁎⁎ -8.456 .471 p < 0.0001⁎⁎ 

b: Adjustment for multiple comparisons: Bonferroni. 
*: p < 0.05, **: p < 0.01.  

Table 6 
Pairwise comparisons subjective variables.            

Variable C1. Latency – C2. Latency w/PD C1. Latency – C3. Baseline C2. Latency w/PD –C3. Baseline 

Mean Diff. SD Sig.b Mean Diff. SD Sig.b Mean Diff. SD Sig.b  

Subjective Overall Workload 0.336 0.163 p = 0.133 1.775 0.141 p = 0.000** 1.439* 0.177 p = 0.000** 
Mental Demand 0-10 0.158 0.235 p = 1.000 2.105 0.226 p = 0.000 1.947* 0.306 p = 0.000** 
Physical Demand 0-10f 0.035 0.221 p = 1.000 0.702 0.227 p = 0.009 .667* 0.211 p = 0.008** 
Temporal Demand 0-10 0.175 0.221 p = 1.000 0.456 0.236 p = 0.176 .281 0.288 p = 1.00 
Subjective Performance 0-10 0.789 0.244 p = 0.006* 2.825 0.240 p = 0.000 2.035 0.212 p = 0.000** 
Effort 0-10f 0.246 0.234 p = 0.894 1.351 0.213 p = 0.000 1.105 0.241 p = 0.000** 
Frustration 0-10 0.679 0.283 p = 0.059 3.179 0.304 p = 0.000 2.500 0.306 p = 0.000** 

b) Host hoc Pairwise comparisons were adjusted for Bonferroni. 
f) A Friedman test with pairwise comparisons using a Bonferroni correction for multiple comparisons was carried out for comparison purposes. Results were 
corroborated. 
*: p < 0.05, **: p < 0.01.  
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Latency to C3. Baseline, and from C2. Latency w/PD to C3. Baseline. 
The predictive display did not reduce participants’ physical demand. 

4.2.4. Temporal demand (individual workload dimension) 
Temporal demand was not statistically significantly different in the 

three conditions, according to both ANOVA and Friedman test. The 
predictive display did not reduce participants’ temporal demand. 

4.2.5. Subjective performance (individual workload dimension) 
Subjective Performance was statistically significantly different in 

the three conditions. Subjective Performance was evaluated at 
M = 5.53 in C1. Latency, M = 4.74 in C2. Latency w/PD, and M = 2.70 
in C3. Baseline, with a low value corresponding to a performance closer 
to perfect. There was a statistically significant decrease of M = 0.79 
(SD = 0.24, p = 0.006) between C1. Latency and C2. Latency w/PD, a 
statistically significant decrease of M = 2.83 (SD = 0.24, p < 0.001) 
between C1. Latency to C3. Baseline, and a statistically significant de-
crease of M = 2.04 (SD = 0.21, p < 0.001) between C2. Latency w/PD 
to C3. Baseline. A Friedman test with a Bonferroni correction for mul-
tiple comparisons was carried out for comparison purposes, corrobor-
ating result at p < 0.001. The median of Subjective Performance was 
statistically significant different between C1. Latency (Mdn = 5) and 
C3. Baseline (Mdn = 2) (p < 0.001), statistically significant between 
C2. Latency w/PD (Mdn = 5) and C3. Baseline (p < 0.001), but not 
statistically significant different between C1. Latency condition and C2. 
Latency w/PD (p < 0.132). In addition to a statistically significant 
decrease from both latency conditions (C1. Latency and C2. Latency w/ 
PD) to C3. Baseline, it is also noteworthy that the mean decrease to-
wards C3. Baseline is greater from C1. Latency than the decrease from 
C2. Latency w/PD; Which means participants thought they performed 
better with the predictive display than without it, given different la-
tencies, and given equal latency. In summary, the predictive display 
increased participants subjective performance, i.e. participants thought 
their performance was better with the predictive display. 

4.2.6. Effort (individual workload dimension) 
Effort was statistically significant different in the three conditions, 

however, post hoc tests with a Bonferroni adjustment revealed that 
there was not a statistically significant difference between C1. Latency 
and C2. Latency w/PD. There was a statistically significant decrease 
from C3. Baseline to the two latency conditions (C1. Latency and C2. 
Latency w/PD). A Freidman test with a Bonferroni correction for mul-
tiple comparisons corroborated these results. The predictive display did 
not reduce participants’ effort. 

4.2.7. Frustration (individual workload dimension) 
Frustration was statistically significantly different in the three 

conditions and post hoc tests with a Bonferroni adjustment revealed 
that there was a statistically significant decrease in frustration from C1. 
Latency to C3. Baseline, as well as from C2. Latency w/PD to C3. 
Baseline, though not from C1. Latency to C2. Latency w/PD. The pre-
dictive display did not reduce participants’ frustration. 

4.2.8. Overall result for workload 
The analysis of Subjective Overall Workload and the individual 

workload dimensions did not show a statistically significant difference 
between C1. Latency and C2. Latency w/PD, with the exception of the 
individual variable Subjective Performance, in which participants re-
ported a statistically significant mean increase of 0.789. 

The predictive display does not reduce participants’ mental demand, 
physical demand, temporal demand, effort, nor frustration; However, 
the predictive display increased participants’ subjective performance, 
i.e. participants’ thought they performed better with the predictive 
display. In summary for subjective workload, we cannot reject the null 
hypothesis, i.e. the predictive display does not reduce participants 
subjective workload. Ta
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4.3. Subjective latency 

A one-way repeated measures ANOVA was conducted on Subjective 
Latency to determine if there was a statistically significant reduction from 
C1. Latency – to C2. Latency w/PD condition. Subjective latency (eval-
uated in ms by the participants) was statistically significantly different in 
the three conditions. Post hoc tests with a Bonferroni adjustment revealed 
that there was a statistically significant decrease in Subjective Latency 
from C1. Latency to C3. Baseline condition as well as from C2. Latency w/ 
PD to C3. Baseline condition, but not from C1. Latency to C2. Latency w/ 
PD. A Friedman test corroborated these results, (Tables 7 and 8). 

There were multiple outliers for this measure, and we reran the 
analysis with the extreme outliers removed, which only slightly in-
creased effect size, however it did not change the overall result. The 
predictive display did not reduce participants’ estimation of latency 
when comparing C1. Latency and C2. Latency w/PD, see Fig. 6. 

4.4. Gamers 

Those who play games weekly or more often were defined as ga-
mers. The potential increased performance gain, measured objectively, 
by gamers is investigated here. A two-way mixed ANOVA was con-
ducted, comparing the mean differences of performance (objective) 
between two independent groups, Gamers and Non-Gamers, under the 
three conditions. Descriptive statistics can be found in Table 9 and  

Table 8 
Pairwise comparisons subjective latency.            

Variable C1. Latency – C2. Latency w/PD C1. Latency – C3. Baseline C2. Latency w/PD – C3. Baseline 

Mean Diff. SD Sig.b Mean Diff. SD Sig.b Mean Diff. SD Sig.b  

Subjective Latency 
[ms] 

78.33 68.42 p = 0.771 582.21 73.14 p = 0.000** 503.88 55.37 p = 0.000** 

b) Host hoc Pairwise comparisons were adjusted for Bonferroni. 
*p < 0.05, **: p < 0.01.  

Fig. 6. Descriptive Statistics Subjective Latency. Original data reported. 
Statistically significant differences at p<0.01 are indicated by p**. 

Table 9 
Descriptive statistics gamer vs non-gamer. Original data reported.           

Variable Group N C1. Latency C2. Latency w/PD C3. Baseline  

Mean SD Mean SD Mean SD  

Performance 
[number of hits] 

Gamer 17 6.47 0.42 8.41 0.46 17.71 0.92 
Non-Gamer 40 6.08 0.27 7.10 0.30 15.20 0.60 

Fig. 7. Performance of Gamers vs. Non-gamer. Original data reported. Statistically significant differences at p<0.01 are indicated by p**.  
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Fig. 7. The ANOVA F-test can be found in Table 10. 
The interaction between gaming experience and conditions on 

performance had a level of significance of p = 0.088. Univariate post 
hoc tests indicated that there was not a statistically significant differ-
ence between gamers (M = 6.5 hits) and non-gamers (M = 6.1 hits) in 
C1. Latency (F(1,55) = 0.622, p = 0.43, sample effect size η2 = 0.01). 
However, there was a significant increase in performance for gamers in 
C2. Latency w/PD (F(1,55) = 5.71, p = 0.02, sample effect size 
η2 = 0.094), in which gamers had M = 8.4 hits, whereas non-gamers 
had M = 7.1 hits. Furthermore, there was a significant increase in 
performance for gamers in C3. Baseline (F(1,55) = 5.203, p = 0.026, 
sample effect size η2 = 0.086), in which gamers had M = 17.7 hits, 
whereas non-gamers had M = 15.2 hits, (Tables 10 and 11). 

When considering the two independent groups (Gamer, Non- 
Gamer), there was a significant main effect of gaming (F 
(1,55) = 6.311, p = 0.015, sample size effect η2 = 0.103), with gamers 
performing better than non-gamers. Gamers performed on average 
M = 10.9 hits, which is M =1.4 hits (SD = 0.6) above the performance 
of non-games with M = 9.5 hits. 

The analysis was also conducted without outliers (see Table 11), which 
yielded more than a doubling of effect size (sample effect size η2 = 0.102 
and population effect size ω2 = 0.057), and a lower p value (p = 0.009), 
which means that the interaction between gaming experience and condi-
tions on objective performance reached statistical significance. Univariate 
post hoc tests (on the pruned dataset) indicated a statistically insignificant 
difference between gamers (M = 6.3 hits) and non-gamers (M = 6.0 hits) 
in C1. Latency (F(1,51) = 0.240, p = 0.63, sample effect size η2 = 0.005), 
and a statistically insignificant difference increase in performance for ga-
mers in C2. Latency w/PD (F(1,51) = 3.52, p = 0.066, sample effect size 
η2 = 0.065), in which gamers had a M = 7.9 hits, whereas non-gamers 
had M = 6.0 hits. There was a significant increase in performance for 
gamers in C3. Baseline (F(1,51) = 8.249, p = 0.006, sample effect size 
η2 = 0.1.39), in which gamers achieved M = 18.4 hits, whereas non- 
gamers had M = 15.1 hits. When considering the two independent groups 
(Gamer, Non-Gamer), there was a significant main effect of gaming (F 
(1,51) = 6.929, p = 0.011, sample size effect η2 = 0.12), with gamers 
performing better than non-gamers. Gamers performed on average 
M = 10.9 hits, which is M =1.5 hits (SD = 0.6) above the performance of 
non-games with M = 9.4 hits. 

Gamers performed better than non-gamers on average. 

4.5. Exploratory data analysis - PCA 

A principal component analysis (PCA) was conducted to explore 
whether there were any interesting patters or observations in the data 
collected. We had no predetermined hypothesis, and all effects de-
scribed in this section emerged post-hoc. 

A total of 35 variables collected during the experiment were standar-
dized (removing the mean and scaling to unit variance) and used in the 
PCA. Fig. 8 shows a Scree plot of the Principal Components (PCs) eigen-
values. The first 10 eigenvalues are larger than 1, the first 5 have an ei-
genvalue above 2, the first two are greater than 4 and the first eigenvalue 
is greater than 7. Fig. 9 shows the cumulative sum of explained variance, 
which did not have a clear ‘elbow-shape’, however the first 7-10 PCs re-
tains 72.1% – 82.8%3 of the variance of the original data. 

A Score plot, and a Loading plot of the two first Principal Components 
(PCs) can be found in Figs. 10 and 11, and 12 respectively. The first two 
PCs explains 22.6% and 13.6% of the total variance. The following result 
emerged post-hoc, and thus interpretations made accordingly. 

4.5.1. Interpreting the Score plot 
Fig. 11. Score Plot of the first two principal components with gaming 
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experience.Fig. 10. shows the Score Plot of PC1 and PC2 with legends in-
dicating gender, from which we can see that PC2 tend to separate woman 
and men quite accurately. The woman cluster in the positive range of PC2 
and the men in the negative range, with only a few datapoints crossing zero.  
Fig. 11 show the Score plot with gaming experience, in which we observe 
subtle trends in the scatterplot based on gaming experience; Those who 
never gamed predominantly resides in the positive range of PC2; Further-
more those who games more often tended to cluster in the negative range of 
PC2. When viewing Figs. 10 and 11 simultaneously we observe that the 
women in this experiment typically gamed yearly or never, with two ex-
ceptions of woman gaming on a monthly basis. Men gamed most often, 
typically yearly, monthly, weekly and two participants daily. 

4.5.2. Interpreting the Loading plot 
From the loading plot in Fig. 11, we see that the total hits in each of the 

conditions seem to be correlated as they cluster together. Total hits in each 
condition (Total hits C1 – C3) and total hits for all conditions combined 

(Total hits C1 + C2 + C3) cluster together, as does subjective perfor-
mance (Performance C1 – C3). We observe that eye health and computer 
usage have a loading close to zero, thus not contributing to the definition 
of the principal components, and unimportant for defining the direction of 
some underlying latent variable. All participants used a computer daily, 
thus this variable had the same value across the participant population. 
The eye health, level of education, key strokes in C1. Latency (Key strokes 
C1) and C2. Latency w/PD (Key strokes C2), and age also have a loading 

Table 11 
Pairwise comparisons of differences in performance (objective) for gamer vs. non-gamer.             

Variable C1. Latency C2. Latency w/PD C3. Baseline 

Performance [number of hits] Mean Diff. SD Sig.b Mean Diff. SD Sig.b Mean Diff. SD Sig.b   

Gamer – Non-Gamer (outliers removed) 57 .396 .501 p = 0.434 1.312 .549 p = 0.020* 2.506 1.099 p = 0.026* 
53 0.260 0.53 p = 0.626 0.954 0.509 p = 0.066 3.300 1.149 p = 0.006** 

* p < 0.05, **: p < 0.01. 
a) outliers removed. 
b) Host hoc Pairwise comparisons were adjusted for Bonferroni.  

Fig. 8. Scree plot.  

Fig. 9. Cumulative sum of variance explained.  

Fig. 10. Score Plot of the first two principal components gender.  

Fig. 11. Score Plot of the first two principal components with gaming experience.  
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close to zero and are less important for the model. 
The subjective performance is negatively correlated with the other TLX 

dimensions, especially noteworthy is the opposite positions of subjective 
performance (Performance C1 – C3) and frustration (Frustration C1 – C3). 
The hits in each condition, and the total hits for all three conditions are 
clustered together and are therefore correlated. Furthermore, we see that 
gender and gaming experience have a high loading on PC2, thus con-
tributing greatly to defining PC2 (that gender contributed to PC2 we also 
knew from the scores plot), and that they are positioned quite close to-
gether in comparison to the other variables and therefore are correlated. 
Among these participants men tended to game more than woman, which 
is also reflected when looking at the raw data. 

5. Discussion 

5.1. Performance 

The results show that there is a statistical difference in performance 
when controlling the ROV without and with the help of the predictive 
display. Subjects performed on average 20% better with a sample effect 
size η2 = 0.850, and population effect size of ω2 = 0.787. This can be 
categorized as a medium to large effect (Kirk, 2013), especially when 
considering the simplicity and low cost of implementing the predictive 
display. Previous research describes a wide range (8% to 65%) of task time 
reduction from predictive technology. A direct comparison to any specific 

Fig. 12. Loadings plot.  
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experiment is challenging, however a performance increase of 20% in this 
experiment is probably in the lower range of what was found in the other 
experiments in Table 1. The task time reduction measure is considered to 
be comparable to the performance gain measured in this experiment. 
However, the predictive method used here is the simplest solution to im-
plement at the lowest cost. Moreover, the participants only had 30 seconds 
to intuitively learn and train in using the predictive display, since none of 
the participants were told that there would be a predictive display nor how 
it worked. Some immediately understood what the predictive display was 
trying to tell them, others did not understand that there had been a pre-
dictive display until the experiment was over. The ones who tried to use the 
predictive display the way it was intended typically performed better than 
those who did not use it. It may be that performance could have been 
improved more if participants were informed about the predictive display's 
functionality. 

As expected, participants performed significantly better in the baseline 
condition, in which there was only 250 ms latency. This latency is well 
above what human perception is able to pick up on, which most partici-
pants did. As discussed under 5.4, most participant underestimated the 
latency in the third condition reporting barely above 0 ms. 

5.2. Subjective workload 

Subjects reported minimal differences between C3. Baseline, C1. 
Latency and C2. Latency w/PD. There was a statistically significant 
difference in subjective overall workload between the three conditions, 
however Bonferroni post hoc tests revealed that differences between 
C1. Latency and C2. Latency w/PD was not statistically significant. 
Therefore, we cannot say that the predictive display reduces subjective 
workload. The only significant difference was found in subjective per-
formance, in which participants felt that they on average performed 
14% better when using the predictive display. The actual performance 
increase was 20%. They also reported that they felt 11% less frustrated 
using the PD, though this is not statistically significant. Participants also 
stated that C3. Baseline was better in all metrics, with an exception of 
temporal demand where the difference was not significant. 

Participants reported no significant difference in mental, physical and 
temporal demand between C1. Latency and C2. Latency w/PD. We con-
sider these three metrics to be a good description of the total subjective 
workload in this experiment setup. Some participants, especially those 
who did not understand what the predictive display was trying to tell 
them, even reported it as distracting. Due to the predictive display's 
functionality, the video feed is constantly moving around and scaling up 
and down. This can understandably be distracting. Some participants 
immediately understood how the predictive display worked, and they 
typically reported the predictive display as helpful. To the experimenter 
they also seemed to be more relaxed, however there are no recorded data 
illustrating this. During the task, a red timer indicating the remaining time 
was constantly visible for participants to see in the upper right corner. In 
addition, the ROV had rapid acceleration and was able move fast if the 
operator managed to do so. Overall, this made for a hectic and exiting 
experience for the subjects. This may explain why there is no significant 
change in the temporal demand, even compared to C3. Baseline. The fact 
that the participants reported a better value (smaller) in the other five 
metrics for the no delay condition, is as expected. The experimenter also 
observed a tendency of participants performing correcting steering com-
mands, causing the ROV to oscillate greatly before hitting or missing the 
target, which corroborates prior research (Appelqvist et al., 2007). This 
was particularly prominent in the C1. Latency condition, again illustrating 
the detrimental effect of latency on both human performance and beha-
vior. These findings support earlier research describing how video latency 
negatively affects the user experience in teleoperation. 

5.3. Gaming 

The gamers performed 30% better with the predictive display, while 

non-gamers performed 17% better. Interestingly the gamers increased their 
score almost twice as much as non-gamers when shifting from C1. Latency 
to C2. Latency w/PD, though the exact reason for this is unclear. The arrow 
in the predictive display acts as an aiming device, which could be a more 
familiar concept for gamers. This finding could also indicate that gamers 
are more used to having to adapt to unfamiliar setting and interfaces in a 
computer competing context. Furthermore, when comparing the scores of 
gamers and non-gamers, it is interesting to note that gamers only per-
formed better than non-gamers in C2. Latency w/PD and C3. Baseline, but 
not in C1. Latency. This could indicate that the amount of experience may 
not be crucial for obtaining a high score (equal to high performance) in a 
situation with considerable latency. Thought post hoc tests on the pruned 
dataset were not statistically significant at p<0.05 in C2. Latency w/PD, 
the level of significance p = 0.066 was close to that threshold. A level of 
statistical significance may have been achieved with additional participants 
conducting the experiment, and equal group sizes, as both may have a large 
effect on p-values (Krishnaiah, 1980). In both analysis, there was a sig-
nificant main effect of gaming, meaning gamers performed better on 
average. More interesting is the population effect size, which increased 
from ω2 = 0.02, a small association to ω2 = 0.057, a medium association 
(Kirk, 2013), which means that the effect of gaming, and the ability gamers 
had to take advantage of the PD, reaches some practical significance. Taken 
together, we interpret this to mean gamers were better able to take ad-
vantage of the predictive display to increase objective performance. 

We observe that the combination of predictive display and related 
training (in the form of playing similar games at least once a week) results 
in twice a performance gain compared to only predicative display. In this 
experiment participants were not informed of the predictive display's 
functionality, which leads us to consider what the performance gain might 
have been if participants’ were aware of the functionality a priori and if 
they received training in using the predictive display. Simultaneously 
considering an increased effect size when removing outliers, i.e. a stronger 
result, leads us to believe that a greater performance gain might have been 
the result of specialized training prior to the experiment. Therefore, we 
hypothesize that the combination of predictive display and extensive 
training produces a greater increase in performance. Research corrobo-
rates this; A priori gaming experience have been found to relate to per-
formance in desktop and immersive virtual environments 
(Richardson et al., 2011), and video gaming suggested a s a training re-
gimen to increase processing speed, which contributes to increased cog-
nitive performance (Dye et al., 2009). Moreover, studies investigating 
causality supports action video gaming as a training method (Dye et al., 
2009; Green & Bavelier, 2003; Richardson et al., 2011). Generally, we 
hypothesize that assistive technology in combination with (potentially 
minimal) training produces high performance gain (output). When com-
pared to the necessary implementation of technology and training (input), 
we consider this a good trade-off between input and output. 

5.4. Subjective latency 

About 75% of the participants underestimated the latency in the third 
condition. Many of them barely reported over 0 ms, but the actual latency 
was 250 ms. These findings support previous research, which states that 
smaller latencies closer to zero is difficult to differentiate from no latency. 
Questioning participants about latency could have influenced their atten-
tion to latency in the forthcoming conditions. However, the randomized 
Latin Square Design of conditions should account for any order effects 
caused by this question. Furthermore, this question was primarily included 
to investigate whether participants experienced lower latency with the aid 
of the predictive display when comparing conditions with equal latencies, 
which was not the case. The predictive display did not decrease the sub-
jectively experienced latency for participants in this experiment. 

5.5. Exploratory data analysis discussion 

Effects discussed here emerged post hoc; Thus, is interesting to see 
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effects of gender and gaming experience show up in the PCA, since there 
are known effects of both. From the scores plots (Figs. 10 and 11) we see 
that PC2 separates women and men quite accurately with a few excep-
tions. Furthermore, PC2 tends to separate participants by their gaming 
experience, and by combining the loadings plot (Fig. 11) and scores plot 
(Figs. 10 and 11) we observe that the male participants, the exceptions in 
the upper regions of PC2, never gamed. When further investigating the 
loadings plot (Fig. 11) and scores plots (Figs. 10 and 11) simultaneously 
we see that gender and gaming both had high loadings on PC2, thus 
contributing to PC2. In the loadings plot (Fig. 11) we see participants 
objective performance (Total hits C1 – C3) having a high negative loading, 
which means it also contributes to the definition to PC2. Males are gen-
erally more experienced in gaming (Richardson et al., 2011), and in both 
studies investigated by Richardson et al. (2011) high gaming experience 
was related to higher task performance. Video gaming involves several 
spatial and cognitive abilities, and studies investigating causation show 
that gaming experience can improve mental rotation and visual attention 
(Moffat et al., 1998; Richardson et al., 2011). For instance, performance in 
visual search tasks, visual attention, visual memory, contrast sensitivity, 
and judging relative velocity have all been shown to improve with gaming 
experience (Dye et al., 2009; Moffat et al., 1998; Richardson et al., 2011). 
Performance in dynamic spatial tasks that required reasoning about 
moving stimuli (e.g. tracking objects) also improved (Richardson et al., 
2011); And all those abilities are important for a high objective perfor-
mance (Total hits C1 – C3) in this experiment. When specifically con-
sidering spatial abilities, there are known gender differences, including 
visuospatial abilities such as spatial orientation and spatial visualization 
(Moffat et al., 1998). Males outperform females in spatial performance 
tasks; In particular when it involves mental rotations, whether that task is 
paper-and-pencil (manipulations and transformations of geometric figures 
and forms) or in a virtual environment (Moffat et al., 1998;  
Richardson et al., 2011). Since males generally have more gaming ex-
perience than females and video game experience influence visuospatial 
processes, this might further contribute to gender differences in spatial 
tasks (Richardson et al., 2011), and moreover the objective performance 
(Total hits C1 – C3) in this experiment. In fact, females and males with 
similar levels of gaming experience did not differ in dynamic spatial 
ability, and gender differences were eliminated when gaming experience 
was included as a covariate (Richardson et al., 2011). Since the females in 
our experiment generally had less gaming experience, and those who did 
tended to cluster towards the male gamers, and since non-gaming males 
tended to cluster towards the females, we therefore identify an effect of 
gaming experience. We do recognize the high collinearity between gender 
and gaming experience, both had a high loading on PC2 (Fig. 11); How-
ever, further analysis is needed to examine what exactly separates the data 
here. Still, PC2 consists mainly of objective measures, e.g. gender, gaming 

experience, and objective performance (Total hits C1 – C3). For PC1, we 
have high loadings on individual workload dimensions (which are sub-
jective), in which all are correlated except for subjective performance, and 
so they contribute to the definition of PC1. In summary, PC1 consists 
mainly of subjective variables from surveys, whereas PC2 consists mainly 
of objective variables collected in the experiment. 

6. Conclusion – An increase in human performance 

This work investigated human operators’ performance and their sub-
jectively experienced workload in a teleoperation context when using a 
predictive display. Human operator performance decrease and workload 
increase as latency is introduced in teleoperation, but there exist several 
approaches to combat these detrimental effects; One of which is predictive 
technology. A predictive display based on image transformation was de-
veloped by applying positional and scale transformations to the video feed 
and tested experimentally. An experiment was set up to test the predictive 
display and investigate changes in human operator performance and 
workload when operating an ROV. N = 57 participants conducted a 
simple navigational task (peg-in-hole game), under three conditions: C1. 
Latency, C2. Latency with predictive display and C3. Baseline. ANOVAs 
showed a statistically significant increase of 20% in human performance 
with the aid of the predictive display. Differences in overall subjective 
workload was not statistically significant, except for with subjective per-
formance where participants felt they performed better with the predictive 
display. Gaming experience was advantageous, in fact gamers increased 
their score with almost twice as much as non-gamers. An exploratory data 
analysis (EDA) investigated confounding factors with confirmatory results. 
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Appendix A 

Tables A1, A2. 

Table A1 
Descriptive statistics subjective variables.         

Variable C1. Latency C2. Latency w/PD C3. Baseline 

Mean SD Mean SD Mean SD  

Subjective Overall 
Workload 

5.263 0.197 4.927 0.192 3.488 0.193 

Mental Demand 0-10 5.667 0.273 5.509 0.301 3.561 0.271 
Physical Demand 0-10 2.877 0.285 2.842 0.293 2.175 0.245 
Temporal Demand 0-10 5.842 0.277 5.667 0.280 5.386 0.307 
Subjective Performance 

0-101) 
5.526 0.307 4.737 0.274 2.702 0.214 

Effort 0-10 6.018 0.260 5.772 0.266 4.667 0.278 
Frustration 0-10 5.625 0.319 4.946 0.275 2.446 0.243 
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