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Abstract—This paper proposes an optimal scheduling policy
for a remote estimation problem, where sensor observations of
two spatio-temporally correlated processes are broadcasted to
two remote estimators. At each time instant only a single observa-
tion can be communicated. For this purpose, a system scheduler
determines which sensor measurement is communicated. The
scheduler cannot observe measurements, and exploits age-of-
information (AoI) to calculate the expected estimation error. We
derive an optimal scheduling policy, with AoI as state-variable,
that minimizes the average mean squared error for an infinite
time horizon. The obtained policy yields a periodic scheduling
of the sensor measurements, and we show that the AoI for the
process with the largest marginal variance does not exceed one.

Index Terms—Wireless sensor networks, age-of-information,
scheduling, spatio-temporal correlation, sequential decision-
making

I. INTRODUCTION

Wireless sensor networks (WSN) provide an essential data
collecting infrastructure for environmental monitoring and
autonomous decision making. In WSN and networked control
systems, sensors observe physical processes and communicate
measurements to controllers, or remote estimators, that form
estimates and track process parameters. Communication re-
sources are often limited, and different communication pro-
tocols exist that coordinate network access and transmission
instances [1], [2]. Due to a limited number of communi-
cation channels and to avoid packet collisions, sensors are
allocated dedicated time slots for measurement transmissions.
A common task is to design scheduling schemes that assign
these time slots to minimize the overall estimation error at
the destination. Scheduling problems have been studied under
different resource constraints, e.g., limited battery [3], limited
packet size [4], or presence of eavesdroppers [5].

Finding optimal scheduling schemes commonly involve
optimization problems that are solved using dynamic program-
ming [6], [7]. In [7], authors derive an optimal policy scheme
for a system with multiple linear time-invariant sub-systems
and a single communication channel. The resulting policy
was to schedule the different measurements according to a
periodically repeating pattern. For the multiple communication
channel case, authors in [8] use deep reinforcement learning
to find an optimal policy. In [1], [9], an optimal policy
was proposed where the scheduler can observe the sensor
measurements.

Previous work regarding scheduling for remote estimation
mostly assume that observed processes are independent. Sen-

sor measurements are commonly spatio-temporally correlated,
which can be exploited to improve the accuracy at the remote
estimators. Papers [3], [10] investigate the optimal trans-
mission frequency for sensors that observe spatio-temporally
correlated measurements. In [11], the assumption is that the
scheduler can observe the measurements before the scheduling
decision. Although such a scheduling strategy may result in
a reduced estimation error, it has implications on the privacy
and latency of the system.

In this paper, we present an optimal scheduling policy for
two sensors that observe spatio-temporally correlated Gaussian
processes. The system model is similar to the one in [1], where
a scheduler broadcasts measurements to remote estimators
with the purpose of improving the overall estimation accuracy.
In contrast to [1], [9], [11], we assume that the scheduler
is not allowed to observe the measurements, but decides
on which measurement to broadcast based on its age-of-
information (AoI) [12]–[14]. Much of the work related to AoI
have revolved around finding optimal system configurations
to minimize the average AoI [6], [12]. Recent works have
shown that AoI can be used for optimization problems not only
concerning the timeliness of a system, but other performance
metrics that are non-linear functions of the AoI [15]–[17].

We show that for a WSN with remote estimators and
limited channel capacity, the performance can be improved
by utilizing spatio-temporal dependency, while having the
information at the scheduler restricted to the AoI. We demon-
strate that an optimal scheduling strategy takes the form of a
periodic sequence and the AoI of the process with the largest
variance never exceeds one. We also present a low-complexity
recursive numerical method to find an optimal policy.

II. PROBLEM FORMULATION

We consider a system consisting of two sensors, one
scheduler, and two remote estimators as depicted in Fig. 1.
Sensor i observes the stochastic process θi[k] ∈ R with
θi[k] ∼ N (0, σ2

i ) at time instant k ∈ N+ and i = 1, 2. The two
processes are correlated over space and time with the cross-
covariance given by a positive-definite function [18], [19]

E[θi[k]θj [l]] = σiσjρijρt(|k − l|), i, j ∈ {1, 2}, (1)

where ρij ∈ [−1, 1] represents the spatial correlation and ρt :
R+ → (0, 1] is the temporal correlation, which is a strictly
decreasing function with ρt(0) = 1 and lim|n|→∞ ρt(|n|) = 0.
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Fig. 1. Schematic of WSN scheduling problem.

At time instant k, Sensor i, i = 1, 2 acquires measurement
xi[k] ∈ R, which is modeled as

xi[k] = θi[k] + wi[k], k ∈ N+, (2)

where wi[k] ∈ R denotes independent identically distributed
(iid) measurement noise with distribution wi[k] ∼ N (0, ξ2).
For each process, θi[k], i = 1, 2, there is a corresponding
remote estimator that tracks the process and forms an estimate
θ̂i[k]. The estimate θ̂i[k] is based on sensor measurements
received via the scheduler, see Figure 1.

A. Scheduler

Due to limited channel capacity, the scheduler can broadcast
only one sensor measurement at each time instant. The remote
estimators can exploit the spatio-temporal correlation to im-
prove their estimation accuracies, irrespective of broadcasted
measurement. It is, therefore, the task of the scheduler to
choose the sequence of measurements that maximize the
overall accuracy given the information at hand.

Let π[k] ∈ {1, 2} denote the index of the sensor scheduled
at time k. The AoI of Sensor i is denoted by ∆i[k] ∈ N+, i =
1, 2, and defined as the time elapsed between two measurement
transmissions, i.e.,

∆i[k] =

{
0, if π[k] = i,
∆i[k − 1] + 1, if π[k] 6= i.

(3)

The scheduler is not allowed to observe the measurements
x[k] = [x1[k], x2[k]]T, but can keep track of previous schedul-
ing decisions. Let γk denote the scheduling strategy at time
k, which provides a mapping from available information set
to scheduled measurement index, i.e.,

π[k] = γk(I[k]), (4)

where I[k] = {∆[0],∆[1], . . . ,∆[k − 1]} is the information
set at the scheduler.

We show in next section that the scheduler only needs to
store I[k] = {∆[k − 1]} to decide π[k].

B. Remote Estimators

To compute θ̂i[k] at time k, Estimator i has access to
∆[k] = [∆1[k],∆2[k]]T ∈ N2

+ and y[k] = [y1[k], y2[k]]T ∈
R2, where

yi[k] = xi[k −∆i[k]], i = 1, 2. (5)

Hence, the minimum mean square error (MMSE) estimate
θ̂i[k] given {∆[k],y[k]} is computed as

θ̂i[k] = E[θi[k]|∆[k],y[k]], i = 1, 2. (6)

C. Scheduling Policy

The scheduling policy γ is defined as the collection γ =
(γ1, γ2, . . . γT ) where T denotes the time horizon. The per-
formance measure of the estimator and scheduling policy is
the mean squared error (MSE) of the estimate (6), which is
given by

J(γ, T ) =
T∑
k=1

2∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣I[k], π[k] = γk(I[k])
]
,

(7)

where ∆[0] = [1, 0]T without loss of generality.
Our objective is to find an optimal scheduling policy γ∗ that

minimizes the average cost in (7) over an infinite time horizon

min
γ∈Γ

lim sup
T→∞

1

T
J(γ, T ), (8)

where Γ is the set of all feasible policies based on I[k]. In
the following section, we propose a method to solve (8) and
obtain an optimal policy.

III. OPTIMAL SCHEDULING POLICY

As seen in (3), the AoI at k ∆[k], is completely determined
by the scheduled sensor index π[k], and the AoI at k − 1,
∆[k − 1]. Given the scheduling policy γ and the initial AoI,
∆[0], it is possible to determine the AoI at any time k ∈ [1, T ].
We can, therefore, express the cost function as

J(γ, T ) =
T∑
k=1

2∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆γ [k]
]
, (9)

where ∆γ [k] is the AoI at time k generated by policy γ. To
evaluate (9), we need an expression for the MSE in (6) as a
function of ∆[k].

The process vector θ[k] = [θ1[k], θ2[k]]T follows a bivariate
Gaussian distribution θ[k] ∼ N (0,Cθθ) with covariance
matrix Cθθ. Likewise, substituting (2) in (5), we see that
the observation vector y[k] = [y1[k], y2[k]]T follows y[k] ∼
N (0,Cyy[k]). The covariance matrix Cyy[k] = E[y[k]y[k]T]
can be calculated using expressions (1)–(5), and is given by

[Cyy[k]]i,j = σiσjρijρt(∆ij [k]) + ξ2δ(i− j), i, j ∈ {1, 2}
(10)

where ∆ij [k] = |∆i[k] − ∆j [k]| ∈ N+ is the AoI difference
between the two processes, and δ(·) is the Dirac delta function.
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The estimate θ̂i[k], i ∈ {1, 2} is the linear MMSE estimate
given in [20]. The estimate θ̂[k] = [θ̂1[k], θ̂2[k]]T in (6), given
as a function of ∆[k] and y[k], becomes

θ̂[k] = E[θ[k]|∆[k],y[k]] = Cθy[k]C−1
yy [k]y[k], (11)

where Cθy[k] ∈ R2×2 is the cross-covariance between y[k]
and θ[k] given as

[Cθy[k]]i,j = σiσjρijρt(∆j [k]), i, j ∈ {1, 2}. (12)

The MSE can now be expressed as a function of ∆[k], i.e.,

E(∆1[k],∆2[k]) =
2∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆[k]
]

= tr
(
Cθθ −Cθy[k]C−1

yy [k]CT
θy[k]

)
, (13)

where tr(·) denotes the trace of its argument matrix. We will
herein refer to E(∆1[k],∆2[k]) as the error function. By
substituting (10) and (12) in (13), E(∆1[k],∆2[k]) can be
simplified to

E(∆1[k],∆2[k]) = (σ2
1 + σ2

2)

+ β[k]
(

2(σ1σ2ρ12)2ρt(∆1[k])ρt(∆2[k])ρt(∆12[k])(σ2
1 + σ2

2)

− ρ2
t (∆1[k])(σ2

2 + ξ2)((σ1σ2ρ12)2 + σ4
1) (14)

− ρ2
t (∆2[k])(σ2

1 + ξ2)((σ1σ2ρ12)2 + σ4
2)
)
,

withβ[k] =
(

(σ2
1 + ξ2)(σ2

2 + ξ2)− (σ1σ2ρ12)2ρ2
t (∆12[k])

)−1

.

Next we present properties of the error function
E(∆1[k],∆2[k]) and how the MSE evolves for a given
scheduling strategy and policy. This will aid the derivation
of an optimal policy γ∗.

A. Properties of the Error Function

For every time instant k, one of the two sensors are
scheduled and the AoI, ∆[k], evolves as

[∆1[k],∆2[k]]T =

{
[0,∆2[k − 1] + 1]T, if π[k] = 1,

[∆1[k − 1] + 1, 0]
T
, if π[k] = 2.

(15)
As there is no constraint on scheduling frequency in (8), the
AoI ∆i[k], i = 1, 2, can grow unbounded as k → ∞, i.e.,
one of the sensors is never scheduled. However, the error
E(∆1[k],∆2[k]) is bounded when either ∆1[k] or ∆2[k] tends
to ∞. This is because the correlation approaches zero in (14)
when AoI increases. We define the error boundaries as

E∞1 = lim
∆1[k]→∞

E(∆1[k], 0),

E∞2 = lim
∆2[k]→∞

E(0,∆2[k]). (16)

The upper limits E∞2 and E∞1 are obtained by setting
ρt(∆2[k]) = ρt(∆12[k]) = 0 and ρt(∆1[k]) = ρt(∆12[k]) =
0, respectively in (14). For σ1 ≥ σ2, the upper limit E∞2 is
the lowest average MSE the system can attain when there is
no temporal correlation in (1), i.e., ρt(|k − l|) = 0 for all

|k− l| > 0. The objective in (8) would then be minimized by
always scheduling Sensor 1.

If σ1 ≥ σ2, the error function has the following properties:

E(0,∆2[k]) ≤ E(∆1[k], 0), ∀∆2[k] ≤ ∆1[k] (17a)
E(0,∆2[k]) ≤ E(0,∆2[k] + ε) ≤ E∞2 , ε ∈ N+ (17b)
E(∆1[k], 0) ≤ E(∆1[k] + ε, 0) ≤ E∞1 , ε ∈ N+. (17c)

Inequality (17a) shows that the error is always greater or equal
for Sensor 1 than for Sensor 2 with respect to AoI. Inequal-
ities (17b) and (17c), imply that the error is monotonically
increasing with AoI but bounded by E∞i , i = 1, 2.

In the next section we show that an optimal policy γ∗ results
in a periodic scheduling sequence for an infinite scheduling
horizon.

B. Optimal Scheduling Policy

For σ1 ≥ σ2, the properties in (17) imply that scheduling
Sensor 2 more frequently than Sensor 1 results in a higher
average MSE over time. Expressions in (17) give that when
π[k − 1] = 2, the error at time k will be smaller if Sensor 1
is scheduled, i.e., π[k] = 1, instead of Sensor 2 because

E(0, 1) < E(∆1[k − 1] + 1, 0), ∀∆1[k − 1] ∈ N+. (18)

We define a scheduling strategy γmk , k ∈ N+ as

π[k] = γmk (I[k]) =

{
1, if ∆2[k − 1] + 1 < m,
2, if ∆2[k − 1] + 1 ≥ m, (19)

where m ∈ N+ and m ≥ 2. Let γm be a policy γm =
(γm1 , γ

m
2 , . . . , γ

m
T ). For a finite m, the policy γm gives that

Sensor 2 will be scheduled at every mth time instant. For
m = ∞, only Sensor 1 is consistently scheduled. The policy
will, therefore, render a periodic scheduling sequence with
period m for a finite m and with period 1 if m =∞.

We define the average error Ēγm as

Ēγm = lim sup
T→∞

1

T
J(γm, T ), (20)

which represents the average error per time instant for policy
γm over an infinite time-horizon. Since γm is periodic, Ēγm

will converge to the average error per decision over its period
and Ēγm in (20) reduces to

Ēγm=


∑m−1
i=1 E(0, i) + E(1, 0)

m
, if 2 ≤ m <∞,

E∞2 , if m =∞.
(21)

Theorem 1. If σ1 ≥ σ2, policy γm
∗

with m∗ given by

m∗ = arg min
m≥2

Ēγm (22)

is an optimal scheduling policy.

Proof. For σ1 ≥ σ2, the properties in (17) and inequality in
(18) imply that for an optimal policy γ∗, Sensor 1 is always
scheduled at a time instant k if ∆1[k−1] = 1. Let us, therefore,
define a scheduling policy γm that satisfies this condition.
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Let γm be a policy expressed as

γm = (γm1
1 , . . . , γm1

m1︸ ︷︷ ︸
m1

, γm2
m1+1, . . . , γ

m2
m1+m2︸ ︷︷ ︸

m2

, . . . , γmN

T ), (23)

where m = [m1,m2, . . . ,mN ]T and mj ∈ [2, 3, . . . ,∞), j =
1, 2, . . . , N and N ≤ T . For example, if N ≥ 2, the policy
would generate a scheduling sequence that follows

(π[1], π[2], . . . , ) = (1, 1, . . . , 1, 2,︸ ︷︷ ︸
m1

1, 1, . . . , 1, 2︸ ︷︷ ︸
m2

).

There exist a combination m∗ such that γm
∗

is an optimal
scheduling policy γ∗ that minimizes (8)

lim sup
T→∞

1

T
J(γm

∗
, T ) = min

γ∈Γ
lim sup
T→∞

1

T
J(γ, T ). (24)

To find an optimal m∗ in (24), we first define the average
error as

Ēγm = lim sup
T→∞

1

T
J(γm, T ), (25)

and minimize (25) to get

m∗ = arg min
m

Ēγm . (26)

The average error Ēγm can be calculated as a time-weighted
average of each mj , j = 1, ..., N , which represents choosing
scheduling strategy γ

mj

k over a time interval of length mj .
Expression Ēγmj given in (21), equals the average error per
time instant for using strategy γ

mj

k over a time interval of
length mj . The optimization problem in (26) can be recast as

min
{αj≥0}Nj=1

N∑
i=1

αjĒγmj ,

s.t.
N∑
i=1

αj = 1, (27)

where αj =
mj∑N

j=1mj
and Ēγmj ,∀mj , is given in (21). The

optimal solution for (27) is given by

α∗j =

{
1, for j = arg min

{mi}Ni=1

Ēγmi ,

0, for all other j,
(28)

which shows that for any combination m the average error is
lower bounded by

min
{mj}Nj=1

Ēγmj ≤ Ēγm . (29)

Since m belongs to m ∈ [2, 3, . . . ,∞)N , we have

min
m≥2

Ēγm = min
m

Ēγm , (30)

and that m∗ = [m∗,m∗, . . . ,m∗]T is the solution to the
optimization in (24) with m∗ given by

m∗ = arg min
m≥2

Ēγm .

Lemma 1. The scheduling strategy γm
∗

k at time k ∈ N+ for
an optimal policy γm

∗
only depends on I[k] = {∆[k − 1]}

and is independent of {∆[0],∆[1], . . . ,∆[k − 2]}.

Proof. Theorem 1 gives that an optimal policy γ∗ is γm
∗
. As

seen in (19), only the information I[k] = {∆[k−1]} is needed
for scheduling strategy γm

∗

k at time k ∈ N+.

Lemma 1 implies that the scheduler only needs to store
the most recent AoI vector, ∆[k − 1], i.e., we have I[k] =
{∆[k − 1]}. Now that we have an optimal policy γm

∗
, for

σ1 ≥ σ2, we need to determine the optimal period m∗. The
next result shows how an optimal m∗ can be obtained.

Theorem 2. For σ1 ≥ σ2, the optimal m∗ is m∗ =∞ if
∞∑
i=1

(
E∞2 − E(0, i)

)
≤ E(1, 0)− E∞2 , (31)

else, if inequality (31) is not satisfied, the optimal m∗ is finite
and given by

m∗ = inf
{
m ≥ 2

∣∣∣∑m−1
i=1 E(0, i) + E(1, 0)

m
≤ E(0,m)

}
.

(32)

Proof. We prove that Ēγm∗ is a minimum point, i.e., Ēγm∗ ≤
Ēγm∗+l , for m∗ ≥ 2, l ∈ N and 2−m∗ ≤ l <∞.

We start with proving Ēγm∗ ≤ Ēγm∗+l for 2−m∗ ≤ l ≤ 0.
If m∗ ≥ 3, we use (21) to express Ēγm∗−1 in terms of Ēγm∗

as

Ēγm∗−1 =
m∗Ēγm∗ − E(0,m∗ − 1)

m∗ − 1
, (33)

and we can re-write the inequality Ēγm∗ ≤ Ēγm∗−1 as

E(0,m∗ − 1) ≤ Ēγm∗ . (34)

If m∗ ≥ 4, we again use (21) to express Ēγm∗−2 in terms of
Ēγm∗ as

Ēγm∗−2 =
m∗Ēγm∗ − E(0,m∗ − 1)− E(0,m∗ − 2)

m∗ − 2
, (35)

and the inequality Ēγm∗−1 ≤ Ēγm∗−2 becomes

E(0,m∗ − 1) + (m∗ − 1)E(0,m∗ − 2) ≤ m∗Ēγm∗ , (36)

which is satisfied due to (34) and E(0,m∗−2) ≤ E(0,m∗−1)
from (17b). By repeating the process for 2−m∗ ≤ l ≤ 0 we
find that

Ēγm∗ ≤ Ēγm∗−l ≤ · · · ≤ Ēγ2 . (37)

Next, we show that Ēγm∗ ≤ Ēγm∗+l for l ≥ 0. Given
expression (21), we can express Ēγm∗+1 in terms of Ēγm∗ as

Ēγm∗+1 =
m∗Ēγm∗ + E(0,m∗)

m∗ + 1
, (38)

and we can re-write the inequality Ēγm∗ ≤ Ēγm∗+1 as

Ēγm∗ ≤ E(0,m∗). (39)
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We then express Ēγm∗+2 in terms of Ēγm∗ as

Ēγm∗+2 =
m∗Ēγm∗ + E(0,m∗) + E(0,m∗ + 1)

m∗ + 2
, (40)

and the inequality Ēγm∗+1 ≤ Ēγm∗+2 becomes

m∗Ēγm∗ + E(0,m∗) ≤ (m∗ + 1)E(0,m∗ + 1). (41)

The inequality in (41) satisfied due to (39) and E(0,m∗) ≤
E(0,m∗ + 1) from (17b). If we continue the previous steps,
we find that

Ēγm∗ ≤ Ēγm∗+1 ≤ · · · ≤ Ēγ∞ . (42)

The inequalities in (37) and (42) demonstrate that Ēγm∗ is a
minimum point of the average error, i.e.,

Ēγm∗ ≤ Ēγm∗+l , 2−m∗ ≤ l <∞. (43)

The inequalities in (34) and (39) also gives that Ēγm∗ is
bounded by

E(0,m∗ − 1) ≤ Ēγm∗ ≤ E(0,m∗),

which together with (17b) and the definition of Ēγm∗ in (21),
shows that the optimal m∗ is found at

m∗ = inf
{
m ≥ 2

∣∣∣∑m−1
i=1 E(0, i) + E(1, 0)

m
≤ E(0,m)

}
.

This proves expression (32) in Theorem 2.
If m∗ =∞ is optimal, (21) and (37) give

Ēγ∞ =
mE∞2
m

≤ Ēγm =

∑m−1
i=1 E(0, i) + E(1, 0)

m
, ∀m ≥ 2,

(44)
which can be re-written as

m−1∑
i=1

(
E∞2 − E(0, i)

)
≤ E(1, 0)− E∞2 , ∀m ≥ 2. (45)

Due to (17b), the sum of the left-hand side of (45) increases
with m, which gives

∞∑
i=1

(
E∞2 − E(0, i)

)
≤ E(1, 0)− E∞2 (46)

if m∗ = ∞ else, inequality (46) is not satisfied and m∗ is
finite. This proves inequality (31) in Theorem 2.

Corollary 1. For σ1 = σ2, the optimal m∗ equals m∗ = 2.

Proof. For σ1 = σ2, we find in (14) and (17) that the error
function is lower bounded by

E(0, 1) = E(1, 0) ≤ E(∆1[k], 0) ≤ E(0,∆2[k]),

where ∆1[k],∆2[k] ∈ N+,∀k. By choosing m∗ = 2, the AoI
∆[k] ∈ {(0, 1), (1, 0)},∀k ∈ N+, and the average error equals
the lower boundary, i.e., Ēγ2 = E(1, 0) = E(0, 1).

Algorithm 1 presents a recursive method, based on Theorem
2, for finding the optimal m∗.

Algorithm 1 Finding optimal m∗

1: if Inequality (31) is satisfied then
2: set m∗ =∞
3: else
4: Initialize m = 2
5: while Ēγm > E(0,m) do

6: Ēγm+1 =
mĒγm + E(0,m)

m+ 1
7: m = m+ 1
8: end while
9: set m∗ = m

10: end if
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Fig. 2. Error function versus ∆i[k], i = 1, 2, for σ1 = 2, σ2 = 1, ρ12 =
−0.5 and ξ = 0.5.

IV. NUMERICAL EXAMPLE

We consider a system with statistical parameters σ1 =
2, σ1 = 1, ρ12 = −0.5, and ξ = 0.5. For the temporal
correlation ρt in (1), we use ρt(∆) = e−λt∆, ∆ ∈ N+, where
λt ∈ R, λt > 0 [18].

Figure 2 shows E(0,∆2[k]) and E(∆1[k], 0) versus the
AoI, ∆i[k], i = 1, 2, for λt = 0.15 and λt = 0.3.
The functions converge to the error boundaries E∞2 = 1
and E∞1 = 3.4, given by (16), as ∆i[k] increases. For a
larger decay constant λt, the MSE converges faster for both
E(0,∆2[k]) and E(∆1[k], 0).

Figure 3 shows the average error Ēγm versus m for λt =
(0.05, 0.15, 0.2, 0.3), with m∗ respectively being 4, 5, 6 and
∞. Solid lines depicts theoretical values obtained from (21)
and markers show Monte Carlo simulated estimates of Ēγm ,
based on simulating 100 sequences with T = 300 per m. We
see that the simulations matches the theory. The optimal m∗

and the average error Ēγ∗m grows for an increasing λt since
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Fig. 3. Average error Ēγm versus m for system parameters σ1 = 2, σ2 =
1, ρ12 = −0.5 and ξ = 0.5. Solid lines shows results derived from theory
and markers show simulation results.

the temporal correlation decreases. For all λt ≥ 0.25, we have
the optimal m∗ =∞ due to (32).

V. CONCLUSION

This paper studied a scheduling problem for two sensors that
observe two spatio-temporally dependent stochastic processes.
A remote estimator tracks each process by forming an estimate
based on sensor measurements transmitted by the scheduler
that cannot read the measurement and can transmit data
from only one sensor at each time. We derived an optimal
scheduling policy using the age-of-information as a state-
variable that achieves the minimum average MSE over time.
We proved that the optimal scheduling policy has a periodic
structure, and presented a recursive numerical method to find
the optimal policy. For the proposed policy, the AoI of the
process with the largest variance never exceeds one.
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