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Abstract: Computer-aided detection and diagnosis (CAD) systems have the potential to improve 

robustness and efficiency compared to traditional radiological reading of magnetic resonance 

imaging (MRI). Fully automated segmentation of the prostate is a crucial step of CAD for prostate 

cancer, but visual inspection is still required to detect poorly segmented cases. The aim of this work 

was therefore to establish a fully automated quality control (QC) system for prostate segmentation 

based on T2-weighted MRI. Four different deep learning-based segmentation methods were used 

to segment the prostate for 585 patients. First order, shape and textural radiomics features were 

extracted from the segmented prostate masks. A reference quality score (QS) was calculated for each 

automated segmentation in comparison to a manual segmentation. A least absolute shrinkage and 

selection operator (LASSO) was trained and optimized on a randomly assigned training dataset (N 

= 1756, 439 cases from each segmentation method) to build a generalizable linear regression model 

based on the radiomics features that best estimated the reference QS. Subsequently, the model was 

used to estimate the QSs for an independent testing dataset (N = 584, 146 cases from each 

segmentation method). The mean ± standard deviation absolute error between the estimated and 

reference QSs was 5.47 ± 6.33 on a scale from 0 to 100. In addition, we found a strong correlation 

between the estimated and reference QSs (rho = 0.70). In conclusion, we developed an automated 

QC system that may be helpful for evaluating the quality of automated prostate segmentations. 

Keywords: prostate; segmentation; deep learning; radiomics; quality control; computer-aided 

detection and diagnosis; MRI; machine learning 

 

1. Introduction 

Prostate cancer is one of the most commonly diagnosed cancers among men worldwide [1]. 

Precise diagnosis is essential for management of the disease, where early detection and staging can 

increase the survival rate [2]. The current diagnostic process includes measuring elevated prostate-

specific antigen (PSA) in the blood followed by prostate biopsy sampling and histopathology 

analysis. The addition of multiparametric magnetic resonance imaging (mpMRI) and the 

establishment of international guidelines for the image acquisition and interpretation have improved 

the diagnostic precision for prostate cancer [3,4]. However, the traditional, qualitative radiological 

interpretation of the images has a number of limitations, such as high inter-observer variability [5], 
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its time-consuming nature and a lack of scalability of the manual data handling approach with 

increasing demand [6,7]. 

Automated computer-aided detection and diagnosis (CAD) systems, which exploit the 

quantitative information in MR images, are providing promising solutions to overcome these 

limitations of qualitative image interpretation and support clinical decision making [6,8]. Typically, 

the segmentation of the organ of interest, in this case the prostate gland, constitutes one of the first 

important steps in a CAD system workflow [7,9]. This step helps remove irrelevant image 

information and facilitates subsequent extraction of quantitative image features (radiomics) from 

sub-regions/volumes such as tumors for further analysis or diagnosis. However, manual 

segmentation of the prostate, which is traditionally performed on T2-weighted (T2W) MR images by 

radiologists, is a time-consuming task. Fortunately, recently developed segmentation algorithms 

have shown great promise to fully automate this step [10–15], which would save valuable time and 

could facilitate the integration of CAD systems in clinical practice. 

Deep learning-based methods seem to be the most promising for this purpose, as they 

outperform the more traditional methods in the PROMISE12 prostate segmentation grand challenge 

[16] (https://promise12.grand-challenge.org/evaluation/results). Interestingly, the top-performing 

methods in this challenge scored better—on average—than a non-expert second reader. Nevertheless, 

none of the proposed methods is perfect. Occasionally, each of the proposed segmentation methods 

results in a few cases with unpredictable, suboptimal contours. Time-consuming manual verification 

of the contours by radiologists is thus still a necessary step, which limits the implementation of 

automated prostate segmentation algorithms in clinical practice. A quality control (QC) system that 

automatically provides an assessment of the segmentation quality could help overcome this 

limitation and standardize decisions about segmentation quality. 

The aim of this study was to develop a fully automated QC system that generates a quality score 

for assessing the accuracy of automated prostate segmentations on T2W MR images. We trained, 

optimized and tested the proposed QC system using two data cohorts and four different deep 

learning-based segmentation algorithms. We explored the importance of the radiomics features the 

system is based on and compared a generalizable model with models trained on specific 

combinations of dataset and segmentation algorithm. Finally, we show that the quality of the 

segmentations can be successfully estimated by our QC system.  

2. Materials and Methods 

We propose a novel QC system, which is designed to automatically score the quality of prostate 

segmentations on T2W MR images. Briefly, the inputs to the QC system are the T2W MR image and 

the corresponding deep learning-based prostate segmentation. Radiomics features are extracted from 

the segmented prostate image volume and fed into a least absolute shrinkage and selection operator 

(LASSO) to build a linear regression model [17], which is trained to generate an estimated quality 

score (eQS). Reference quality scores (rQSs) based on manual segmentations from experts are then 

used to assess the performance of the QC system. 

2.1. Dataset 

In this study, the PROMISE12 grand challenge [16] training dataset (N = 50) was only used to 

train and validate four different deep learning-based networks to segment three-dimensional (3D) 

prostate volumes on T2W MR images. This dataset consists of multi-center and multi-vendor 

transverse T2W MR images obtained with different acquisition protocols, field strengths and coils. 

Each of the trained networks was subsequently used to segment T2W MR images from the 

PROSTATEx challenges [18] (N = 346; seven cases excluded due to technical errors) and a dataset of 

in-house collected T2W MR images (N = 246), resulting in a combined dataset (N = 585). The 

combined dataset was shuffled and randomly split, in a controlled way, to ensure similar data 

distribution, into a training dataset (75%, N = 439) and a testing dataset (25%, N = 146) to respectively 

train/optimize and test the proposed QC system.  
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The in-house collected dataset was obtained from St. Olavs Hospital, Trondheim University 

Hospital, Trondheim, Norway between March 2015 and December 2017. It consists of pre-biopsy 3T 

images from 246 patients (median age = 65; range: 44–76 years). T2W imaging was performed on a 

Magnetom Skyra 3T MRI system (Siemens Healthineers, Erlangen, Germany) with a turbo spin-echo 

sequence (repetition time/echo time = 4450–9520/101–108 ms, 320 × 320–384 × 384 matrix size, 26–36 

slices, 3 mm slice thickness and 0.5 × 0.5–0.6 × 0.6 mm2 in plane resolution). 

The Regional Committee for Medical and Health Research Ethics (REC Mid Norway) approved 

the use of the in-house collected dataset (identifier 2017/576; 5 May 2017) and granted permission for 

passive consent to be used. The two other datasets (PROMISE12 and PROSTATEx) were publicly 

available and details can be found in [16,18]. 

2.2. Prostate Segmentation 

For each dataset, manual segmentations of the prostate gland without seminal vesicles were 

used as the gold standard. The PROMISE12 training dataset segmentations, used for training the 

segmentation algorithms, were publicly available [16]. The segmentation for the PROSTATEx dataset 

was performed by imaging experts with more than 25 years′ combined expertise in prostate imaging 

and reviewed by radiation oncologists at Miller School of Medicine, Miami, FL, USA. The in-house 

collected dataset segmentation was performed by a radiology resident (E.S.) at St. Olavs Hospital, 

Trondheim University Hospital, Trondheim, Norway, under the supervision of a radiologist with 

more than 10 years′ experience in prostate imaging. The manual segmentations of the PROSTATEx 

and in-house collected dataset were used to calculate the rQSs (see 2.3. Reference Quality Scores). 

The deep learning-based prostate segmentation was performed using four different 

convolutional neural networks (CNNs), which are all variants of the famous U-Net with skip 

connections [15], here further referred to as U-Net [19], V-Net [10], nnU-Net-2D [11] and nnU-Net-

3D [11]. U-Net and nnU-Net-2D perform the segmentation on a 2D slice-by-slice basis, whereas V-

Net and nnU-Net-3D perform the segmentation on a 3D volume basis. Prior to segmentation, all 

images were pre-processed in accordance with the corresponding segmentation method. The 

segmentation pre-processing and the network training, validation and testing were performed on a 

single NVIDIA Tesla P100 PCIe 16 GB GPU in Ubuntu 16.04.6 LTS system. U-Net was implemented 

with the Keras API (version 2.3.0; https://keras.io) backboned with TensorFlow (version 1.9.0; 

https://www.tensorflow.org) using Python (version 2.7.12; Python Software Foundation, 

Wilmington, DE, USA). V-Net, nnU-Net-2D and nnU-Net-3D were implemented with PyTorch 

(version 1.4.0; https://pytorch.org) using Python (version 3.6.9). 

2.3. Reference Quality Scores 

To assess the true quality of the automated segmentations, rQSs were calculated in accordance 

with Litjens et al. [16]. Briefly, the rQS is a combination of the dice similarity coefficient (DSC) [20], 

the absolute relative volume difference (aRVD) [21], the 95% Hausdorff distance (95HD) [22] and the 

average symmetric surface distance (ASD) [21], separately obtained from the whole prostate, apex 

and base by comparing the automated segmentations with the manual segmentations (gold 

standard). Here, we defined the apex and base of the prostate to be the inferior and superior third 

parts of the mask-containing slices, respectively. However, before these 12 metrics can be combined 

in a single rQS, they need to be transformed to a common scale [16,21]. To do this, a second observer 

(M.R.S.S., three years of experience with prostate imaging) manually segmented 50 randomly 

selected cases from the combined dataset. These cases were used to calculate, for each metric, a linear 

function that maps the metric on a scale from 0 to 100, with the average performance of the second 

observer fixed at 85. These linear functions were subsequently applied to the 12 metrics calculated 

for each automated segmentation and the resulting 12 scores were averaged to obtain a single rQS 

for each segmentation. Details are provided in Appendix A. 
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2.4. Quality Control System 

Figure 1 gives an overview of the proposed QC system. After preprocessing the T2W images, 

the LASSO model was trained and optimized on the training dataset, and tested on the independent 

testing dataset. All steps were implemented in MATLAB R2019b (MathWorks, Natick, MA, USA), 

except for the feature extraction which was performed using Python (version 3.7.3). The proposed 

system will be made available on GitHub at https://github.com/ntnu-mr-

cancer/SegmentationQualityControl. Figure 2 shows an example of how the proposed QC system can 

be integrated in the image analysis pipeline.  

 

Figure 1. The pipeline of training (a) and testing (b) the proposed quality control system. The system 

training starts from the normalized T2-weighted (T2W) image stack with its corresponding manual 

prostate segmentation and automated segmentation delivered by a deep learning-based 

segmentation method. These two segmentations are used to calculate the reference quality score and 

the automated segmentation is also overlaid on the normalized image stack to extract various 

radiomics features. The reference quality score and the features are then fed into a least absolute 

shrinkage and selection operator (LASSO) to train and optimize a linear regression model that 

predicts the quality scores based on the imaging features. During the system testing, the trained 

model uses the radiomics features extracted from the overlaid automated segmentation on the 

normalized image stack to estimate a quality score for a previously unseen case. 

 

Figure 2. An example of integrating the proposed quality control system within image analysis 

software. 
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2.4.1. Data Preparation 

All T2W images were N4 bias field corrected [23] and intensity normalized using the AutoRef 

method [24]. In an attempt to develop a generalizable QC model, the segmentations generated by the 

four CNNs were combined in one dataset, producing a system training dataset of n = 1756 images 

(439 images from each CNN) and a system testing dataset of n = 584 images (146 images from each 

CNN) with corresponding segmentations. The dataset was split on the patient level, so all four 

segmentations belonging to one patient ended up in either the system training dataset or the system 

testing dataset. 

Feature extraction from the preprocessed T2W images was performed using the automated 

prostate segmentations as the region of interest. All the features were extracted using Pyradiomics 

(version 2.2.0; an open-source Python package) [25]. Discretization of image intensity was performed 

using the fixed bin size approach, as recommended by Pyradiomics. The bin width was set to 64 in 

correspondence with the relatively large volume of interest. The features (N = 107) consisted of first-

order features (N = 18), shape features (N = 14, performed on prostate 3D volume) and texture features 

(N = 75, 24 features from the gray level co-occurrence matrix (GLCM; in 3D along 13 directions (26-

connectivity) and 1 pixel distance) [26], 16 features from the gray level run length matrix (GLRLM; in 

3D along 13 directions) [27], 16 features from the gray level size zone matrix (GLSZM; in 3D along 13 

directions) [28], 14 features from the gray level dependence matrix (GLDM; 1 pixel distance) [29] and 

5 features from the neighboring gray tone difference matrix (NGTDM; 1 pixel distance) [30]). The 

average of the GLCM, GLRLM and GLSZM features across the direction was used. A complete list of 

the extracted features is given in Table S1. The features were extracted from the 3D volume of the 

whole prostate, apex and base parts of the prostate, separately, giving a total of 321 features per case. 

2.4.2. Model Training, Optimizing and Testing 

A least absolute shrinkage and selection operator (LASSO) [17] was used to build a linear 

regression model. The model was trained using the extracted features (N = 321) as predictors and the 

rQSs as responses. The LASSO, by nature, performs feature selection to enhance the model accuracy 

and interpretability [31]. How many features are selected depends on the regularization parameter 

lambda, which needs to be optimized. We employed a 5-fold cross-validation scheme to find the 

optimal lambda, here defined as the model returning the lowest mean squared errors between the 

eQS and rQS while satisfying a non-biased distribution as visualized by Bland–Altman plots [32]. 

The optimized model was tested and evaluated on the system testing dataset, returning an eQS 

for each segmentation based on features extracted from the deep learning-based prostate 

segmentation in the T2W MR image. If the returned eQS was > 100 it was set to 100 and if it was < 0 

it was set to 0. The mean absolute error (MAE) and Spearman’s rank test between eQSs and rQSs 

were used to evaluate the performance of the QC system. This was done on all the cases of the system 

testing dataset (General model), as well as separately for each of the eight combinations of dataset 

and segmentation method (sub-results from the General model; e.g., PROSTATEx—U-Net). The sub-

results from the General model were also compared to the performance of (non-generalizable) 

models specifically trained on each combination of dataset and segmentation method. The manual 

and automated segmentations belonging to outliers of the tested General model were visually 

inspected by a researcher with three years of experience with prostate imaging (M.R.S.S.). 

3. Results 

3.1. Reference Quality Scores 

The rQSs of the system training and testing dataset segmentations are presented in Figure 3. The 

maximum, mean ± standard deviation and minimum rQS of the combined dataset were 98.65, 82.26 

± 12.19 and 34.24, respectively, for the system training dataset and 98.95, 82.51 ± 12.22 and 26.24, 

respectively, for the system testing dataset. Figure 3 shows that the distribution of rQSs varies both 
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between datasets and among the segmentation methods, indicating that the performance of 

automated prostate segmentation depends on both the dataset and the method used. 

 

Figure 3. Violin plots visualizing the distribution of the reference quality scores for the system training 

(a) and testing (b) datasets, both combined and for each combination of dataset and segmentation 

method.  

3.2. Training and Optimization 

The maximum, mean ± standard deviation and minimum eQS of the General model were 98.04, 

82.26 ± 10.71 and 28.06, respectively, for the system training dataset. 

The optimal lambda was found to be 0.01, which resulted in the selection of 142 out of 321 

radiomics features in the trained General LASSO model. Figure 4 shows the distribution of the 
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selected features. Overall, 46.30%, 76.19%, 45.83%, 20.83%, 41.67%, 33.34% and 66.67% of the 

extracted first order, shape, GLCM, GLRLM, GLSZM, GLDM and NGTDM features were selected, 

respectively. Further details of the trained model are provided in Table S2. The details of the eight 

non-generalizable models are provided in Tables S3–S10. 

 

Figure 4. The distribution of the selected features in the optimized General model. 

Figure 5 shows the overlap between the selected features in the PROSTATEx and in-house 

datasets of non-generalizable models trained on data processed with the same segmentation method. 

To account for the high co-linearity between features, overlap was defined as the selection of the same 

feature or a highly correlated feature (rho > 0.9). For each segmentation method, we found a high 

number of overlapping features (directly or highly correlated), indicating that the models extracted 

similar features irrespective of dataset.  

 

Figure 5. The overlap between the features in the PROSTATEx (gray) and in-house (blue) datasets of 

the same segmentation method (e.g., overlap between the “PROSTATEx—U-Net model” and “In-

house—U-Net model”). The intersection area presents the overlapping features, whereas the areas 

out of the intersection present the set of features unique to each dataset. 
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3.3. Testing 

For the system testing dataset, the maximum, mean ± standard deviation and minimum eQS of 

the General model were 97.60, 82.03 ± 11.02 and 0.00, respectively. 

The performance of the tested models is presented in Table 1. Table 2 presents sub-results from 

the tested General model, for direct comparison with the non-generalizable models. Sub-results from 

the General model resulted in lower MAE in 7/8 cases than their non-generalizable counterparts, 

indicating that the overall performance of the General model is better than the non-generalizable 

models. Nevertheless, it should be noted that the sub-results vary considerably. This is especially 

apparent from the difference in slope (ideally 1), intercept (ideally 0) and rho (ideally 1) between 

results from the PROSTATEx and in-house datasets. 

Table 1. The performance evaluation of the separately tested models. 

Model N MAE ± SD IQR Slope Intercept Rho Correlation p-Value 

General 584 5.37 ± 11.02 9.32 0.72 22.40 0.70 <0.001 

PROSTATEx—U-Net 89 5.48 ± 9.04 7.20 0.67 27.83 0.49 <0.001 

PROSTATEx—V-Net 89 5.91 ± 8.21 6.80 0.40 50.43 0.43 <0.001 

PROSTATEx—nnU-Net-2D 89 5.14 ± 6.04 5.96 0.40 51.25 0.41 <0.001 

PROSTATEx—nnU-Net-3D 89 5.89 ± 7.79 5.64 0.47 44.97 0.40 <0.001 

In-house—U-Net 57 9.55 ± 17.24 22.95 0.86 7.92 0.70 <0.001 

In-house—V-Net 57 6.58 ± 13.01 12.33 1.07 −9.55 0.55 <0.001 

In-house—nnU-Net-2D 57 8.18 ± 14.2 21.26 0.71 21.99 0.67 <0.001 

In-house—nnU-Net-3D 57 8.35 ± 19.02 14.78 0.75 20.73 0.48 <0.001 

N: Number of segmentations; MAE: Mean absolute error; SD: Standard deviation of the absolute 

error; IQR: Interquartile range. 

Table 2. Sub-results from the tested General model performance evaluation. 

Sub-Results Combination N MAE ± SD IQR Slope Intercept Rho Correlation p-Value 

PROSTATEx—U-Net 89 5.24 ± 5.28 6.20 0.36 52.69 0.50 <0.001 

PROSTATEx—V-Net 89 5.50 ± 4.67 5.33 0.27 61.28 0.38 <0.001 

PROSTATEx—nnU-Net-2D 89 5.41 ± 4.46 5.37 0.26 62.80 0.43 <0.001 

PROSTATEx—nnU-Net-3D 89 4.85 ± 5.76 6.12 0.35 57.17 0.50 <0.001 

In-house—U-Net 57 7.27 ± 12.61 19.84 0.73 17.59 0.76 <0.001 

In-house—V-Net 57 4.39 ± 6.64 6.47 0.59 34.65 0.70 <0.001 

In-house—nnU-Net-2D 57 4.84 ± 12.4 17.78 0.78 16.90 0.87 <0.001 

In-house—nnU-Net-3D 57 5.76 ± 20.79 10.17 1.02 −3.50 0.74 <0.001 

N: Number of segmentations; MAE: Mean absolute error; SD: Standard deviation of the absolute 

error; IQR: Interquartile range. 

Figure 6a shows the linear fit of the eQSs for the General model with examples of segmentations. 

The segmentations of the cases outside of the 95% prediction interval were visually inspected. We 

subjectively judged the eQS to be extremely overestimated in 2/9 segmentations that were over the 

95% prediction interval, and extremely underestimated in 3/18 segmentations that were under the 

95% prediction interval. The rest of the visually inspected segmentations were judged to have an eQS 

that acceptably represented the quality of the automated segmentation. All of the segmentations over 

the 95% prediction interval belonged to the PROSTATEx dataset, and all of the segmentations under 

the 95% prediction interval belonged to the in-house dataset. Interestingly, in 8/27 segmentations, the 

discrepancy between the eQS and rQS was judged to result from a sub-optimal manual segmentation. 

Examples of over- and underestimated segmentations are shown in Figure 6a. Figure 6b shows the 

difference between the eQSs and rQSs of the General model. The mean difference was −0.48, with a 

tendency for overestimating cases with a low rQS and underestimating cases with a high rQS. 
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Figure 6. (a) The linear fit of the estimated quality scores with 95% prediction interval of the General 

model with examples of segmentations. Example 1 presents a case where the model accurately 

predicted the quality score (QS) of a low-quality automated segmentation; Example 2 presents a case 

where the model extremely underestimated the QS of a low-quality automated segmentation, the 

automated segmentation here covered parts of the rectum and the bladder; Example 3 presents a case 

where the model extremely overestimated the QS of a low-quality automated segmentation, the 

manual segmentation here misses the peripheral zone; Example 4 presents a case where the model 

slightly underestimated the QS of a high-quality automated segmentation, the automated 

segmentation here was slightly over segmented; Example 5 presents a case where the model 

accurately predicted the QS of a high-quality automated segmentation; (b) the difference between the 

estimated and reference quality scores of the General model. 

The linear fits of the eight non-generalizable models and the sub-results from the General model 

are presented in Figure 7. It can be appreciated that the slopes and intercepts of the models/sub-results 

associated with the in-house dataset were better than those associated with the PROSTATEx dataset. 
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Figure 7. The linear fit of the estimated quality scores with 95% prediction interval of the eight non-

generalizable models (a) and the sub-results from the General model (b). 

4. Discussion 

Automated segmentation of the prostate is a crucial step in the CAD of prostate cancer, but 

quality control and possibly adjustment by a trained radiologist is still required. In this work, we 

present a fully automated QC system that aims to present the user with an estimated score indicative 
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of the segmentation quality. This system could function as a safety net that saves time and costs, 

standardizes the decision about the segmentation accuracy and thus facilitate the clinical 

implementation of automated prostate segmentation algorithms. The system could be specifically 

useful for clinical applications that are sensitive to errors in segmentation, such as MRI–ultrasound 

fusion for targeted prostate biopsies, which is currently becoming a clinical standard procedure [33], 

and prostate-targeted MR-guided radiotherapy, which has been implemented in the treatment of 

prostate cancer patients during the last few years [34]. 

Our results indicate that the proposed QC system could be helpful for this purpose. Overall, the 

General model had better performance than the non-generalizable models. We found a strong 

correlation between the rQSs and eQSs (rho = 0.70) and MAE values less than the standard deviation 

between the experts and the second observer segmentations (5.37 vs. 7.76), implying that errors were 

in an acceptable range. In addition, the mean of the differences between the eQSs and rQSs was low 

(mean = −0.48). Despite the overall good performance, some of the eQSs of the segmentations were 

over- or underestimated. This can be partly explained by the fact that the rQSs, used as input for 

training the model, were imbalanced and skewed towards high scores. This probably had an effect 

on the model performance, leading to a higher number of over- and underestimated segmentations 

around the low rQSs. Indeed, the non-generalizable models that had the most balanced distribution 

of rQSs in the training dataset (e.g., “In-house—U-Net” and “In-house—nnU-Net_2D”) performed 

better than the other models. 

T2W MRI clearly depicts the borders and anatomy of the prostate gland, and thus constitutes an 

excellent starting point for both prostate segmentation algorithms and the proposed QC system. In 

this work, we implemented four deep learning-based segmentation methods using two different 

T2W MRI datasets. Combining these datasets made the proposed system more generalizable and 

robust, and it is thus potentially applicable to other segmentation methods and datasets. However, 

we also showed that the model did not perform well for all combinations of dataset and segmentation 

method. Consequently, the proposed QC system should be carefully tested and evaluated on new 

data and methods before application. 

The first-order, shape and texture features were investigated because they describe distinct 

characteristics of the volume of interest. Our QC system was trained to find common features and 

assess the segmentation quality among the investigated cases. We selected the LASSO model due to 

its model interpretability advantage [31] and its good performance in multiple radiomics studies [35–

37]. To calculate the rQS, we chose to use the established PROMISE12 challenge evaluation metric 

[16] as it imparts a comprehensive overview of the segmentation accuracy, and shows interest in the 

prostate apex and base segmentations, which are the most difficult parts of the prostate gland to 

segment. It is paramount to segment these two sections correctly in some of the clinical applications 

and procedures, e.g., in MRI–ultrasound fusion for targeted prostate biopsy [33]. Similar to Litjens et 

al. [16], the average performance of the second observer was fixed at 85 during the rQS calculation 

due to the relatively good correspondence between the second observer segmentations and the gold 

standard. 

To develop a flexible system, we chose to train a regression model instead of a classifier. A 

classifier would require a fixed threshold to distinguish the good and poor rQSs, which is challenging 

and depends on the targeted clinical application. Moreover, a fixed threshold may restrict the 

system’s generalizability. Depending on the desired application and corresponding acceptable 

segmentation error margin, a threshold can be set to distinguish poor from acceptable segmentations 

(e.g., Figure 2). The QC system could thus save time for radiologists, as many of the segmentations 

can be used without further manual verification; the total computational time to generate an 

automated segmentation and corresponding eQS was less than one minute per case on the described 

computing system, which is drastically less than the time required by a radiologist to do the same 

task. In addition, the system could standardize the decision about the segmentation accuracy and 

build confidence using the deep learning-based algorithms.  

All the different types of features available in Pyradiomics were used in the trained General 

model. However, shape features were found to be the most important, since approximately 76% of 



Diagnostics 2020, 10, 714 12 of 16 

 

them were selected. This finding is in accordance with the way the CNNs work, gradually moving 

from shape-based to texture-based features through the layers [38]. Interestingly, compared to 

features extracted from the apex and the whole prostate, a higher number of features was selected 

from the base of the prostate for the model training. This potentially reflects how difficult it is to 

segment—both manually and automatically—the prostate base due to the variability between 

patients [16]. 

It could be noticed from Figure 3 that the rQS distributions are wider and more balanced in the 

case of the in-house dataset. This has a positive effect on the performance of the non-generalizable 

models as well as the General model’s sub-results associated with the in-house dataset. This is 

especially noticeable from the low eQSs, which are closer to the unity line than those associated with 

the PROSTATEx dataset. The high overlap between the features of the non-generalizable models 

trained on the PROSTATEx and the in-house datasets indicates that the performance difference is 

probably due to the input data, and not caused by differences in the selected dataset features. For 

future work, the model performance could potentially be enhanced by increasing the number of low 

rQSs by stopping the CNN training early, i.e., before finishing the recommended number of 

iterations. 

Despite the acceptable performance of the QC system General model, there were some outliers, 

here defined as the eQSs outside the 95% prediction interval limits. Visual inspection revealed that 

the eQSs of the segmentations actually accurately represented the quality of the automated 

segmentations for most of these over- and underestimated cases. It was found that 8/9 segmentations 

over the 95% prediction interval outliers belonged to the four CNN segmentations of two patients. 

The manual segmentation of one of these patients was missing the contour in some of the slices in 

the apex and the base, and not properly covering the peripheral zone in the middle part of the 

prostate gland (see Example 3 in Figure 6a). The manual segmentation of the other patient did not 

include the peripheral zone in all slices from base to middle prostate. The automated segmentations 

associated with an underestimated eQS included in many cases small areas outside of the regions of 

interest (see Example 2 in Figure 6a). The visual inspection also revealed that all of the overestimated 

cases belonged to the PROSTATEx dataset and all of the underestimated cases belonged to the in-

house dataset, which might be explained by the distribution of the rQSs used in training the system. 

In this study, we propose a QC system that estimates the quality of automated prostate 

segmentations based on the shape of the segmentation mask, and the histogram intensity and texture 

of the underlying T2W image. Another interesting approach, which requires an additional step, was 

recently proposed by Valindria et al. [39]. In their reverse classification accuracy method, a 

segmentation model was built from the segmentation mask and corresponding image of a single new 

case (lacking ground truth). Subsequently, this model was applied to all images of a database with 

corresponding expert segmentations. Under the assumption that the same segmentation model 

should work for at least one of these images, the best segmentation accuracy (DSC) is assumed to 

reflect the accuracy of the newly segmented case. Robinson et al. [40] showed that this approach 

works well for QC of segmentation of the heart in cardiovascular MRI. Yet another interesting 

approach was recently presented by Roy et al. [41], in which a structure-wise uncertainty estimate 

was intrinsically included in a CNN algorithm for brain segmentation on T1 MR images. This 

approach keeps the drop-out layers of the CNN active during test time, to produce multiple 

segmentation variants from which uncertainty measures can be calculated. One disadvantage 

compared to our system is that Roy et al.’s approach cannot be easily generalized to other 

segmentation methods. Moreover, unlike our system, both of the aforementioned approaches used 

only volume-based segmentation accuracy metrics and did not take boundary-based metrics into 

consideration. To the best of our knowledge, these methods have not yet been tested for prostate 

segmentation. Although they are more complex, it will be interesting to compare them with our system 

in future work. 

Our study has limitations. The number of cases with a low rQS was relatively small; a more 

balanced dataset would probably have led to a more robust system over all datasets and 

segmentation methods and would have given better insight into the system’s potential. In addition, 
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there are other radiomics features such as wavelet transformation-based texture features, which were 

not include in our model. These features could potentially enhance the performance of the system at 

the cost of generating a more complex model and expanding the computational time. For these 

reasons, they have not been used in this study, but their additional value will be investigated in future 

work. 

5. Conclusions 

We propose a QC system for estimating the quality of automated segmentation of the prostate 

in T2W MR images, which could be an important step towards the clinical implementation of 

computer-aided detection and diagnosis of prostate cancer. The performance of the generalizable 

model is acceptable in regard to estimating the segmentation quality scores, but varies between 

datasets and segmentation methods. The system is transparent and could save considerable time and 

standardize decision-making in clinical practice, albeit careful implementation and testing is 

required. 
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Appendix A 

The metrics we used to calculate the rQSs, as mentioned in Section 2.3. Reference Quality Scores, 

are defined in Equations (A1), (A2), (A4) and (A5). Equation (A3) was required to enable the 

calculation of Equations (A4) and (A5). The linear mapping function that we used is defined in 

Equation (A6). All calculations are in accordance with Litjens et al. [16]. 

DSC (X,Y) = 2|X∩Y|/(|X| + |Y|) (A1)

where X and Y represent the reference and automated segmentation voxels, respectively. 

aRVD (X,Y) = |(Y/X − 1) × 100| (A2)

to calculate 95HD and ASD, the Euclidean distance of the surface point sets (dH) from the reference 

(Xs) and automated (Ys) segmentations was measured using Equation (A3): 
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dH (Xs,Ys) =  (  d(x, y)�∈��

��� )�∈��

���  (A3)

where d is the Euclidean distance operator. 

95HD = max (P95 (dH (Xs,Ys)), P95 (dH (Ys,Xs))) (A4)

where P95 represents the 95th percentile of dH.  

ASD (Xs,Ys) = (∑  d(x, y)y∈Ys

min 
+ ∑  d(y, x)x∈Xs

min 
y∈Ysx∈Xs

)/(NXs + NYs) (A5)

where NXs and NYs represent the number of surface points of the reference and automated 

segmentations, respectively. 

metric score (Z) = max (aZ + b, 0) (A6)

where Z is the average unmapped metric value. The variables a and b were determined by solving 

two equations through setting the metric score to equal 85, representing the average performance of 

the second observer, and a perfect score to equal 100. 
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