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. Introduction 

The problem of shape retrieval has thus far primarily been

osed as an object based one. Many proposed algorithms aim to

nswer queries such as ‘find all chairs’, or ‘find buses similar to

his sample bus’. However, objects are not a single large shape;

hey are the sum of many small details that combined produce a

arger, more complex whole. For instance, a wheelbarrow may con-

ain shapes such as a slightly bent flat surface, a curved cylinder,

r a large disc. Individually these shapes may not be unique to that

bject, but their specific combination and arrangement makes it an

bject useful for garden work. 

It may be argued that querying of such smaller (partial) shapes

all under the existing class of partial object retrieval. Thus one

an pose retrieval queries such as ’find all objects that contain a

pout like this’, which would presumably retrieve teapots (as well

s other objects with spouts). Unfortunately, partial retrieval re-

uires the availability of the partial shape that is to be retrieved. 

However, in many cases it is useful to be able to pose more

eneral geometric queries such as ’retrieve objects containing an

-bend’ for finding bottles with that specific cross-section. This

ould be easily specified by drawing such a curve in 2D thus not

ecessitating the existence of a partial query object. 
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nitiative: http://www.replicabilitystamp.org 
∗ Corresponding author. 

E-mail addresses: bart.van.blokland@ntnu.no (B.I.v. Blokland), theotheo@ntnu.no 

T. Theoharis). 

d

2

 

s  

ttps://doi.org/10.1016/j.cag.2020.09.001 

097-8493/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
One important problem with this type of approach, which

ould have to describe shape at a very low level, is the sheer vol-

me of local descriptors that would be generated, potentially one

or every vertex. Not only would they require a large amount of

torage but it would also be quite slow to search them. 

We thus propose: 

• A robust and efficient novel local binary shape descriptor

(called QUICCI 
• An efficient novel indexing scheme called Hamming Tree for bit

strings such as QUICCI 
• A novel distance function used for retrieval of bit strings (called

Weighted Hamming distance) 

After an introduction to relevant background material in

ection 2 , each of these contributions are described in the above

isted order in Sections 3, 4 , and 5 , respectively. The various meth-

ds are evaluated in Section 6 , and some specifics are discussed in

ection 7 . 

. Background and related work 

This section is divided in two parts, corresponding to the main

ontributions of the paper: indexing bit strings and local shape

escriptors. 

.1. Indexing bit strings 

The need for indexing collections of bit strings primarily

tems from two main categories of methods; those utilising
under the CC BY-NC-ND license 
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dimensionality reduction to map higher dimensional descriptors

on to shorter binary vectors, and binary feature descriptors. 

Dimensionality reduction is often done through a method

utilising Locality-Sensitive Hashing (LSH), initially described by

Har-Peled et al. [1] . These aim to represent larger, more varied

feature vectors in shorter bit strings, where similar feature vectors

will produce similar bit strings, thereby significantly reducing the

search space for finding closest neighbours. Popular methods ap-

plying LSH include Minhash proposed by Broder et al. [2] (as well

as a more scalable variant [3] ), and Simhash [4] by Sadowski et al.

A number of binary feature descriptors have been proposed

aimed at various retrieval applications. For images, the most pop-

ular binary features proposed to date include BRIEF by Calonder

et al. [5] , a rotation invariant extension named ORB by Rublee

et al. [6] , and a both rotation and scale invariant keypoint descrip-

tor called BRISK by Leutenegger et al. [7] . An example of a binary

descriptor for 3D point matching is B-SHOT, proposed by Prakhya

et al. [8] . The lengths of these descriptors vary between 128 and

512 bits. 

While LSH derived methods are capable of significantly reduc-

ing dimensionality in the source data, large quantities of indexed

data may cause a high number of hash bins to be created. How-

ever, not all hash bins may receive a similar number of entries,

and the creation of all possible bins for a given bit string length is

not always feasible, thereby creating the need to discover the exis-

tence of nearby hash bins with relatively low Hamming distances.

This discovery process can be costly, particularly when no close

neighbours exist. Binary feature descriptors are inherently longer,

and for that reason face a similar problem. 

Retrieval from large collections of bit strings, where each bit

string is ranked by hamming distance from a query string, is

known in the literature as the n Nearest Neighbours Hamming

problem, and a variety of methods have been proposed [9–12] . 

However, these early methods are limited in their design to

the efficient retrieval of neighbours with Hamming distances of

up to 2, support for short bit sequences only, or both. More recent

methods have addressed the problem more effectively, and do not

exhibit the aforementioned problems. 

Norouzi et al. proposed the Multi-Index Hashing (MIH) algo-

rithm [13] . The method works by dividing all indexed bit strings

into equally sized disjoint substrings, and constructing a hash ta-

ble for each set of corresponding substrings. These can be queried

by subdividing the query string in a similar fashion, and querying

each hash table for all permutations of the query substring within

a given Hamming distance. The set of candidate matches can be

refined when testing subsequent hash tables, as strings which sur-

pass the Hamming distance limit can be excluded prematurely. The

authors show that MIH outperforms the most significant previ-

ous work, however, the requirement that all permutations within

a given Hamming distance must be tried on hash sets becomes a

performance bottleneck when this limit is high. 

Chappell et al. proposed a system for approximate nearest-

neighbour search of bit strings [14] aimed at locating such near-

est neighbour hashes by creating inverted lists of smaller bit string

“slices”, similar to the divisions done in MIH. However, for larger

collections of longer bit strings, such as binary descriptors, the

method does not scale due to each slice list increasing in size

linearly. 

Reina et al. [15] presented an improved variation of MIH. This is

a hybrid indexing scheme, where a trie (prefix tree) is used to store

the index tree itself, and a separate hash table is exploited to prune

tree branches during a query by checking a specific bit string’s

existence in the index when the tree node’s common prefix has

reached a given Hamming distance limit. In similar fashion to MIH,

bit strings are divided into substrings, and from each correspond-

ing substring a separate index is constructed. While the method is
hown to outperform MIH, it is hampered by the fact that for its

fficiency (the pruning of branches which are known not to contain

atches) it relies on the existence of a fixed Hamming distance

imit. Constructing a querying algorithm which does not contain

his optimisation is possible, but as the authors themselves state,

his would significantly degrade querying performance. Moreover,

reating one index for each subdivision in the input string, as

ell as the corresponding hash table and trie that each of these

ncludes, adds significant storage overhead. 

The Hamming Tree data structure proposed in this paper com-

ands a significantly lower overhead, as only a single indexing

tructure is created. The proposed querying algorithm can dynam-

cally cut off the querying process and does not necessarily require

 Hamming distance limit to be set. 

.2. Local 3D shape descriptors 

Local approaches to 3D object retrieval are advantageous to

lobal methods due to their inherent resistance to clutter and

hape variations. The field is well developed, and numerous de-

criptors have been proposed to date, e.g. [16–19] . 

One popular descriptor is the Fast Point Feature Histogram

FPFH) [20] . It is constructed in two phases. First, a Simplified Point

eature Histogram (SPFH) is computed for each point in the scene,

y constructing a Darboux frame to each neighbour in the point’s

icinity, and accumulate its components over a fixed number of

ins. Next, the FPFH descriptor of a point is constructed by adding

he average SPFH histogram of the point’s neighbours (albeit also

eighted by distance to the point itself) to the point’s own SPFH. 

While many such descriptors have been shown to perform well

t recognition tasks, one of their primary challenges is the pres-

nce of geometry unrelated to the queried shapes within the sup-

ort volume of a descriptor, referred to as “clutter” [21] . Not every

escriptor is equally resistant to the negative effects of clutter on

atching performance. 

One example of a descriptor that has been shown to resist

lutter is the classic Spin Image (SI) proposed by Johnson et al.

22] . An SI is generated by projecting points uniformly sampled

rom a surface on to a rotating square plane whose side is on the

xis of rotation. The plane is divided into square bins, which count

he number of point samples projecting onto them, thus creating

 2D histogram. Similar surfaces will result in a high correlation

etween their Spin Images. 

An extension to the Spin Image which is related to the descrip-

or proposed in this paper, is the Spin Contour descriptor proposed

y Liang et al [23] . The authors post-process high resolution Spin

mages by detecting edges between zero and nonzero histogram

ins. The resulting outlines, called “Spin Contours”, are used for

hape detection. However, the Spin Contour can only be used to

epresent an object in its entirety, due to its inability to detect

dges within a Spin Image. Moreover, due to the method’s reliance

n outlines, its clutter resistance is not expected to be good. 

Another descriptor shown to be resistant to clutter is the 3D

hape Context (3DSC) proposed by Lowe et al [24] . 3DSC has a

pherical support volume, which is subdivided into bins through

orizontal and vertical cuts, as well as spheres placed within it.

oint samples of the surrounding region intersecting each bin are

ubsequently accumulated, creating a histogram. 3DSC descriptors

re compared using a Euclidean distance function. 

The Radial Intersection Count Image (RICI) [25] is a descriptor

imed at shape matching in highly cluttered scenes. A set of three

imensional circles are defined with centers along the normal

o a vertex and with varying radii. The number of intersections

etween each circle and the mesh surface is counted, resulting in

 2D histogram. This is similar to the arrangement of circles seen

n Fig. 1 . Comparing exact changes in intersection counts from a
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Fig. 1. Visualisation of the “layers of circles” used for the construction of a 4x4 RICI, 

or a 3x4 QUICCI descriptor (pairs of circles are used, thus the effective width is one 

less than the number of circles per layer). The 4 layers containing 4 circles each can 

be seen in the image, some of which intersect with the object surface towards the 

right side. The circles combined form a cylindrical support volume. 
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Nearby Mesh

0 0 2 2 4 2 2 0 Intersection counts

QUICCI bit sequence

Fig. 2. Visualisation of the construction of a single row of a QUICCI descriptor. First, 

intersections between circles with increasing radii and a mesh surface are counted 

(intersection points are indicated in red). Next, neighbouring intersection counts are 

compared. If they are different, the corresponding bit in the QUICCI image is set to 

1 (white), otherwise to 0 (black). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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ircle to its neighbour can be used to determine correspondence

etween RICI descriptors. The authors also propose a distance

unction that is capable of largely disregarding clutter within the

upport region, and show that this results in better matching

erformance in heavily cluttered scenes. 

. Quick intersection count change image (QUICCI) 

In contrast to the previously proposed RICI descriptor, which

tores integers representing intersection counts, the QUICCI de-

criptor stores booleans representing changes in intersection

ounts. The differences between the two descriptors also propagate

o their distance functions, which due to the different representa-

ions require them to be tailored specifically to each method. 

Circles are arranged in layers, each layer containing circles of

ncreasing radii by a constant amount increment. The distance

etween circle layers, and the radius increment between circles

ithin a layer, are equal. One thus forms a cylindrical “grid”,

here the y-coordinate corresponds to a layer of circles, and the

-coordinate to a circle within that layer. These coordinates in turn

an be used to create an image. A visualisation of this is shown in

ig. 1 . 

The descriptor is constructed around an oriented point, consist-

ng of a vertex and a normal, referred to as the Reference Vertex

nd Reference Normal for the remainder of this paper. The oriented

oint defines a three-dimensional line, called the Central Axis. All

ircles are orthogonal to the Reference Normal, and centred around

he Central Axis. The Reference Vertex lies at the exact centre of

he support region. 

Computing a QUICCI descriptor for a Reference Vertex involves

ntersecting all circles with the mesh surface, and subsequently

ubtracting each circle’s intersection count from that of its smaller

eighbour in the same layer, as illustrated in Fig. 2 . If this differ-

nce is nonzero, the corresponding bit will be set to 1, else to

. This implies that a layer with C circles will result in a QUICCI

escriptor of C − 1 bits. 

The function for comparing two QUICCI descriptors is asym-

etric, and distinguishes between a needle image (describing the

hape that should be located) and a haystack image (describing any

ther shape to which a similarity score should be computed). In-

ersection count changes present in the needle image are charac-

eristic to the shapes being queried, and this can be exploited by

nly including those specific bits in the distance computation. Due

o the QUICCI image’s tendency to be sparse, this excludes the ma-

ority of the image’s bits from the distance computation, making it

esistant to clutter (see Section 6.2 ). An algebraic representation of
he distance function is shown in Eq. 1 . 

 QUIC C I (I n , I h ) = 

N ∑ 

r=0 

N ∑ 

c=0 

((I n [ r, c] � I h [ r, c]) ∧ I n [ r, c]) (1)

Where I n and I h are the needle and haystack images, respec-

ively, I [ r , c ] denotes the bit at row r and column c of image I , and

 denotes the QUICCI image width. A lower distance value indi-

ates that the two images are more similar. The � and ∧ operators

enote the bitwise XOR and AND functions, respectively. 

Constructing the QUICCI descriptor as a binary image has sig-

ificant advantages. Many of the previously discussed local shape

escriptors use 32-bit floating point or integer representations.

he QUICCI descriptor thus uses about an order of magnitude less

emory. This smaller size means both less disk storage and signif-

cantly faster comparison rates, mainly due to the smaller memory

andwidth requirements. 

Moreover, QUICCI descriptors can be constructed efficiently on

he GPU due to its advantageous memory access patterns and

andwidth requirements. The intersection computation between

he circles and the mesh surface is the most demanding part of

his process, which can be done using the efficient algorithm pre-

ented in [25] . 

. Hamming tree 

The Hamming Tree is introduced as a means for indexing bit

trings of arbitrary length, such as QUICCI images, for the pur-

ose of k-Nearest-Neighbour searches using the Hamming distance

unction [26] as a ranking metric. In this paper, the method is dis-

ussed and tested only on the proposed QUICCI descriptor, where

he rows of the complete 2D image are concatenated to produce a

D bit string that can be indexed and queried. However, the appli-

ation of the tree is not limited to it and can be used for indexing

rbitrary bit strings. For this reason the explanations in this section

ill use QUICCI images as an example, but the contents of the tree

eing indexed is referred to as “bit string” throughout the paper. 

The observation central to the design of the tree is that the

otal set bit count of a bit string can be used to compute a lower

ound of the Hamming distance between a given pair of bit

trings. For example, two bit strings with 3 and 5 bits set, respec-

ively, must have a Hamming distance of at least 2. This minimum

istance can subsequently be used as a heuristic for navigating

 tree, where the set bit count of consecutive, equally sized,

ubstrings determines which next branch to pick. Each branch

aken will place stricter requirements on the distribution of set

its within the string, increasing the probability a match is found. 
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205 set bits

203 set bits

197 set bits
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69 203197

Bit string list

Tree Root

Fig. 3. Visual representation of navigating a Hamming tree. On the left hand side, a 64 × 64 QUICCI image is shown, where two columns are removed at each step (128 

bits). The right hand side shows the corresponding path in the tree. 
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4.1. Hamming tree construction 

Construction of the tree is done by iteratively inserting bit

strings, dynamically expanding the tree where necessary. It con-

sists of two node types; internal nodes and leaf nodes. Internal

nodes contain references to leaf nodes and other internal nodes.

Leaf nodes in turn contain a list of bit strings. Initially, the tree

consists of one root internal node, and one leaf node for each pos-

sible bit count. When the length of all bit strings being indexed is

N , that implies the root node has N + 1 children. For levels under-

neath the root node, the branching factor is at most the number of

set bits corresponding to that node plus one. 

The tree is navigated (both during insertion and querying) by

iteratively cutting off a fixed number of bits from the front of the

bit string. After removal, the number of set bits in the remaining

string determines the next branch to take in the tree. This process

has been visualised in Fig. 3 . While this approach does not place

requirements on the exact positions of set bits, it aims to filter the

indexed bit strings by those whose distribution of bits are similar

to a given query string, thereby increasing the likelihood a relevant

match is found. 

Thus to insert a new bit string into a Hamming tree, one nav-

igates down to the leaf node corresponding to the bit string. The

new bit string is then inserted in the list of that leaf node. If after-

wards the count of that list exceeds a constant threshold, the leaf

node is replaced by an internal node and the list of bit strings is

distributed among the lists of its new child leaf nodes. 

4.2. Querying the hamming tree 

Our algorithm for querying a Hamming tree takes in a needle

bit string, a Hamming tree, and the maximum number of search

results that should be returned as input, and returns a list of bit

strings whose Hamming distance is closest to the provided needle

string. 

It first attempts to locate an exact match for the needle string

and subsequently widens the search so as to include the nearest

matches within the requested search result limit count. 

Internally, the algorithm maintains a list and a priority queue.

The list stores the best search results that have been found up

to that point and its size is limited by the search result limit
arameter. The priority queue contains unvisited internal tree

odes (initialised with the tree’s root node), sorted by the min-

mum possible distance between the needle and all possible

escriptors in the subtree rooted at a node. 

The query algorithm visits one internal node at a time, until

he node at the front of the unvisited node queue (with the low-

st minimum distance) has a greater distance than the worst entry

n the search result list, or the unvisited node queue is empty (a

imilar strategy to the one adopted by Chappell et al. [14,27] ). This

rocess is illustrated in Fig. 4 . 

Visiting an internal node involves iterating over the node’s out-

oing edges. When there is a bit string list at the end of that edge,

ompute the Hamming distance between the needle and haystack

trings contained within. Any strings which improve the list of

earch results are inserted into the search result list. When the

utgoing edge points to an internal node, the minimum distance

o that node is computed (as a function of the needle string and

he node’s position in the tree), and if that minimum distance is

ower than the current worst entry in the search result list, it is

nserted in the unvisited node queue. This condition prevents the

nvisited node queue from growing indefinitely, and excludes bit

trings that are certainly not going to be part of the search results

nyway. 

The Hamming Tree is capable of efficiently locating all bit

trings which have low distance scores relative to a needle string.

owever, as the distances get larger than a few bit flips, the num-

er of permutations, and thus nodes that need to be visited, in-

reases to such a degree that it may be necessary to visit a signif-

cant part of the tree before the algorithm can ensure that no bet-

er search results exist. It is therefore advisable to set a distance

hreshold that is used in conjunction with the worst search result

core, and set this threshold as low as possible when querying a

amming tree. 

In terms of complexity, in the worst case, a completely unbal-

nced tree is in effect equivalent to a linked list. Insertion therefore

as constant complexity ( O (1)), while search is linear ( O ( n )). 

. Weighted hamming distance 

With respect to QUICCI, for a proportion of needle images, the

reviously proposed indexing strategy is capable of locating QUICCI



B.I.v. Blokland and T. Theoharis / Computers & Graphics 92 (2020) 55–66 59 

Search Result List

tluser hcraes tsroWtluser hcraes tseB

Node Node Node Node Node Node Node Node Node Node

Unvisited node with lowest min distance

Node

Read node with lowest
minimum distance

NodeNode Node

Unvisited Node List

For each image:
Is distance to query image 
lower than worst search result?

Discard

...

Is node’s minimum distance 
lower than worst search result?

Discard

No Yes

No Yes

...

...

Insert into Unvisited Node List

Insert into Search Result List

Fig. 4. Visualisation of the Hamming tree query algorithm. At each iteration, the contents of the node with the lowest minimum distance in the unvisited node queue, which 

consists of child internal nodes and bit string lists, is inserted into the univisited node list and search result list, iff there is a possibility that they can potentially improve 

the search results. 

Query Hamming Distance

Weighted Hamming Distance

Fig. 5. Top 30 search results for the shown needle image when search results are 

ranked using Hamming distance (above) and the proposed Weighted Hamming (be- 

low) distance functions. 
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mages containing similar shapes as to the ones requested in the

eedle. However, it is not universally applicable for this task. Most

otably, needle images which are close to fully saturated with set

1) or unset (0) bits are likely to yield search results containing

rrelevant shapes. An example of such a needle image and the cor-

esponding search results can be seen in Fig. 5 . The needle image

hown in the Figure is also a good example of a local shape query

f the kind described in Section 1 . 

The cause of this problem is that the Hamming distance con-

iders each bit to be equivalent in importance. However, when the

umber of set bits in a needle image is low, for the purpose of

hape retrieval, it is more important that the bits set in the nee-

le are also set in the haystack image than unset needle bits being

nset in the haystack image. We therefore observe that the lower

he number of set bits in the needle image, the more important it

s for these bits to be set in a haystack image. The opposite also

olds true for needle images nearly saturated with set bits. 

With this observation, we propose an alternate distance func-

ion, called “Weighted Hamming”, which can be used for ranking

UICCI search results. The function broadly resembles Hamming

istance, but the distance cost for the two types of bit mismatches

incorrectly set and incorrectly unset) are weighted differently, de-

ending on the proportion of set to unset bits in the needle image.
he definition of this function is given in Eq. 2 . 

 W H (I n , I h ) = 

∑ N 
r=0 

∑ N 
c=0 (I n [ r, c](1 − I h [ r, c])) 

max ( 
∑ N 

r=0 

∑ N 
c=0 I n [ r, c] , 1) 

+ 

∑ N 
r=0 

∑ N 
c=0 ((1 − I n [ r, c]) I h [ r, c]) 

max (N − ∑ N 
r=0 

∑ N 
c=0 I n [ r, c] , 1) 

(2) 

Here I n and I h are respectively the needle and haystack images

eing compared, I [ r , c ] represents the bit at row r and column c

f a needle or haystack image I , and N is the width of the QUICCI

mage in bits. 

It’s worth noting that removing the denominators of the frac-

ions in the Equation makes it equivalent to the regular Hamming

istance function. Moreover, the weighted Hamming distance func-

ion is effectively a hybrid between Hamming distance and the

lutter-resistant QUICCI distance function used for locating shapes

n clutter heavy scenes shown in Eq. 1 . When the second term in

q. 2 is nullified, its ranking becomes equivalent to the clutter-

esistant distance function. However, the removal of the second

erm also means there is a possibility for false positives, where a

igh variation in intersection counts may cause the desired needle

its to be set accidentally in a given haystack image, even though

he surroundings of the corresponding haystack point does not ac-

ually contain the shapes requested by the query. We therefore

onsider the function given in Eq. 2 to be more suitable for re-

rieval purposes. An in-depth evaluation of this claim is done in

ection 6.5 . 

.1. Indexing for weighted hamming 

The remainder of this section is dedicated to the construction of

n index that allows querying using the presented weighted Ham-

ing distance function, and a discussion of insights and some neg-

tive results that were obtained in the process. It is assumed that

eedle images will generally have a low number of bits set, other-

ise a regular Hamming tree is likely a more suitable solution. 

A good indexing strategy is closely tied to the distance function

sed. For weighted Hamming, this means that since the function

rimarily looks for the bits which are set in the needle image, the

ndexing structure should focus on discovering those in haystack
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Fig. 6. All 21 possible sequences of consecutively set bits in a single column of a 6 bit high image. White represents unset bits, whereas those marked green are set. A single 

column may contain multiple (albeit non-overlapping and separated by at least one unset bit) such sequences. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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images. One observation that can be made for QUICCI images is

that edges of 3D geometry tend to create line or curve responses

in QUICCIs. Thus, groups of bits that are in close proximity to one

another in a QUICCI image are likely to be related. 

There are a number of ways in which this can be exploited,

however, a problem is the exponential increase of permutations in

the possible arrangements of a group of bits. However, it can be

observed that due to the image’s construction, these lines have a

tendency to be vertical. This allows a relatively simplistic approach

where permutation counts remain within reasonable limits. 

The indexing algorithm detects segments of consecutively set

bits within each column of the QUICCI image. Vertical bit se-

quences are advantageous due to their aforementioned common

occurrence, and limited number of permutations in which they can

occur within a given column. 

For every possible bit sequence, an inverted list is created of

all images which contain that exact bit sequence (with the same

starting position and length). As an example, all possible consecu-

tive bit sequences that can be found in an image that is 6 bits high

are shown in Fig. 6 . 

Querying involves combining the contents of all lists whose bit

sequence overlaps by at least 1 bit with the given needle image.

Since the total number of set bits for each image is also stored

with each entry in the inverted lists, the exact weighted Hamming

distance can be computed and used to rank results. 

Unfortunately, the major issue of this approach is also the main

advantage of the Weighted Hamming function; the value of match-

ing set bits between the needle and haystack images far outweighs

the cost of mismatched unset needle bits. The query algorithm

must therefore consider all haystack bit sequences that overlap by

at least one bit with the needle image, and cannot preemptively

disregard entries. This causes many inverted lists to be searched,

incurring long query execution times (typically resulting in a cost

similar to a sequential search). Furthermore, the storage require-

ments of this index are high due to the inverted list construction. 

6. Evaluation 

All experiments involving time measurements in this section

were executed on the same hardware. For CPU implementations,

an Intel Xeon Platinum 8168 was used, and GPU kernels were exe-

cuted on an NVidia Tesla V100 SXM3. The remainder of the results

were in part gathered on the [28] computing cluster. 

6.1. Hamming tree search acceleration 

The Hamming Tree was implemented in C++. Nodes and im-

age lists stored on disk are compressed using the LZMA2 algorithm

[29] . This was selected after empirically testing a number of state-

of-the-art compression methods; LZMA2 yielded good compression

ratios and speed for QUICCI images. 

A Hamming Tree was constructed over the first 12,500 objects

of the SHREC2017 dataset [30] , which resulted in a total of 828.5

million QUICCI images. The resolution of the QUICCI images was

set to 6 4x6 4 bits, and the support radius to 0.3 (for consistency all
bjects are translated and scaled to fit into a unit sphere prior to

UICCI generation). The number of bits removed at each level of

he Hamming tree was set to 128 bits, or 2 image columns. The

hreshold at which leaf nodes (image lists) are split was set to 256

mages, which balances index compactness with granularity. 10 0 0

ueries were executed on the constructed Hamming Tree. The nee-

le images were randomly selected from the entire SHREC2017

UICCI dataset (51,109 objects). 

While the algorithm can to some extent be parallelised, the

esting was done using a single threaded implementation. The time

rom the start of each query to when all nearest neighbours up to

ach Hamming distance were located using the Hamming Tree was

easured. These timings were averaged across the 10 0 0 queries

or every value of Hamming distance. For comparison, the cost of

erforming a linear search through the set of QUICCI images is also

eported; this has a constant time as it has to traverse the entire

ist of 828.5 million QUICCI images. The results are shown in Fig. 7 .

The Figure shows that, particularly for small bit distances, the

amming Tree is very effective at reducing query times. This

akes it a good candidate for neighbour discovery when using

SH-derived methods. Query execution times are highly dependent

n the presence of close neighbours to a given needle image and

he number of search results requested, but generally follow the

iming pattern shown. 

It is worth noting here that the average number of set bits per

UICCI image in the created dataset was measured to be 610.1.

hen the Hamming Tree reaches parity with a linear search at a

amming distance of about 800, the relevance of the search re-

ults is not expected to be high. Moreover, the vast majority of the

lgorithm’s execution time is spent on reading and decompressing

les stored on disk. This applies to both the sequential and the

ndexed query implementations. Chappell et al. [14] performed all

earches in memory, which complicates direct comparison of the

wo implementations. 

.2. QUICCI Descriptiveness and clutter resistance 

The descriptiveness and clutter resistance of the QUICCI de-

criptor is evaluated using the Clutterbox experiment proposed

n [25] , and used to compare the performance of QUICCI against

he RICI, SI, 3DSC, and FPFH descriptors. The RICI descriptor was

hosen due to its similarity to the QUICCI descriptor, SI and 3DSC

or being the most referenced methods known for their clutter

esistance [21] , and FPFH is an example of a popular descriptor. 

The experiment aims to quantify the clutter resistance of the

escriptors by measuring the response of a tested descriptor to in-

reasing levels of clutter. The experiment is executed a large num-

er of times by varying objects and their transformations, in order

o provide robust results independent of object type. 

The Clutterbox experiment is performed using the following

teps: 

1. Define a cube volume whose edge size is s . 

2. From a large object collection, draw n objects at random. 

3. Fit each of the randomly chosen objects in a unit sphere

centred around the origin. 
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Fig. 7. Chart showing the average time in seconds required to locate all neighbours up to a given Hamming distance for a Hamming Tree and a linear search. 

Table 1 

Parameters that were used during the evaluation of the different methods. 

Parameter Value 

Clutterbox size s = 3 

Object counts n = 1 , n = 5 , n = 10 

Support radius (all descriptors) r = 0 . 3 a 

QUICCI resolution 63 ×64 bits b 

RICI / SI resolution 64 ×64 pixels 

SI support angle 180 ◦ (disabled) c 

3DSC minimum support radius r min = 0 . 048 d 

3DSC bin dimensions J = 15 , K = 11 , L = 12 e 

FPFH bins per feature 11 f 

Mesh sampling resolution 10 point samples per triangle in mesh g 

a Note that all objects are first fit inside a unit sphere. 
b Corresponds to the equivalent RICI resolution. 
c We have not found evidence for its claimed benefits. 
d Proportionally equivalent to previous work. 
e Equivalent to previous work [21] [31] . 
f Equivalent to previous work. 
g SI, 3DSC, and FPFH require point clouds, necessitating uniform sampling. 
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o  
4. From the selected objects, select one at random to be what

is referred to as the “reference object”. 

5. Compute a descriptor for each unique vertex in the reference

object, thereby creating the set of reference descriptors { RD }.

6. Iterating over the list of chosen objects in a random order,

though always starting with the reference object, do the fol-

lowing for each: 

6.1 Place the object at a randomly chosen orientation and

position whose bounding sphere fits entirely within the

cube volume. 

6.2 Compute a descriptor for each unique vertex present in

the combined mesh present inside the cube volume. The

result is a set of cluttered descriptors { CD }. 

6.3 For each d ∈ { RD }, compute a list of distances for each

c ∈ { CD }, and sort it. Locate the corresponding cluttered

descriptor in this list, and store its rank in the list ( 0 ≤
rank ≤ |{ CD }| − 1 ). Note that lower ranks are better, and

rank 0 is the front/top of the list. 

6.4 From the computed list ranks, construct a histogram

where bin i stores the number of occurrences where the

corresponding cluttered descriptor was found at rank i . 

he procedure is repeated for each tested descriptor, where all ran-

omly selected values are kept constant. The result of the experi-

ent is therefore a list of histograms, one for each level of clutter.

hile performing the experiment, the parameters listed in Table 1

ere used. 

The clutterbox experiment was executed 1500 times on objects

rom the SHREC2017 dataset [30] , which contains a total of 51,162
riangle meshes. An exception has been made to the FPFH descrip-

or, which was only executed 500 times due to excessive execution

imes. For clarity, all curves of this descriptor have been stretched

or easier comparison against other descriptors. 

To visualise the resulting histograms, the fraction of search re-

ults correctly being ranked as the best match for each uncluttered

eference descriptor (at rank 0) was computed for each descriptor

nd clutter object count. The produced measurements exhibited a

igh degree of noise, which did not allow the data to be displayed

n a comprehensive manner. Each sequence was therefore sorted

ndividually to produce a monotonically increasing curve, for the

urpose of chart readability. The result of this is shown in Fig. 8 .

he clutterbox experiment was implemented in C++, and the tested

escriptors have been implemented on the GPU using CUDA 10.1. 

The results show that the QUICCI descriptor outperforms previ-

us work in terms of resistance to clutter. However, it is also ad-

antageous to investigate the relationship between the degree of

lutter present in the support radius, and the resulting matching

erformance of each descriptor. To this end, a set of heatmaps was

reated from the search results of n = 5 (4 added clutter objects),

howing this relationship. This result set corresponds to a total of

0.0M needle descriptors and associated search results. These can

e seen in Fig. 9 . The vertical axis in these heatmaps represents

he rank where the correct search result was found (lower rank is

etter), and the horizontal axis denotes the fraction of clutter (the

roportion of surface area in the descriptor’s support region not

elonging to the object being queried). Higher fractions of clutter

enerally imply greater difficulty for a given descriptor to correctly

dentify the correct matching vertex. 

From these heatmaps it can be seen that the QUICCI descriptor

as similar characteristics to RICI in terms of clutter resistance, al-

eit with slightly better performance. This reflects the observations

rom the results of Fig. 8 . One possible reason why QUICCI out-

erforms RICI, is that RICI compares absolute intersection counts,

hile QUICCI only looks at differences. In the presence of clutter,

hese absolute values may become noisy, and consequently reduce

atching performance. 

The FPFH heatmap has a distinct appearance relative to the

ther methods, which can be attributed to its poor matching

erformance, particularly in cluttered scenes. The heatmap only

ounts results that appeared in the top 256 ranks, and shows that

ven in situations with low fractions of clutter, very few results

nd up within the top 256 ranks shown in the image. 

.3. QUIICI Comparison rate 

The number of QUICCI image comparisons performed per sec-

nd was also measured during the experiments and compared to
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Fig. 8. Fraction of search results that were correctly ranked at the top of the list of search results for each tested descriptor and added clutter object count. Each sequence 

has been sorted individually to create monotonically increasing curves. 

QUICCI RICI CSD3IS FPFH

Fig. 9. Heatmaps showing the relationship between varying degrees of clutter and each descriptor’s matching performance. The horizontal axis represents fraction of area 

in the support region not part of the matched object, while the vertical axis denotes ranks in the list of search results (where lower is better). 
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1 There exist various ways of generating variants of similar shapes, notably those 

utilising shape grammars [32 , 33] . However, the complexity of constructing these 
the other descriptors. In similar fashion to Fig. 8 , there was a de-

gree of noise present in the results, and sorting each shown curve

individually allowed for the best chart readability. The results are

shown in Fig. 10 . As can be seen, many billions of comparisons can

be done per second and, on average, outperforms previous work

by over an order of magnitude. This is due to the binary nature of

QUICCI. 

For the RICI measurements, two variants of the distance func-

tion are tested. When an upper distance bound is known, as is

often the case in retrieval applications, distance computation can

cease early as this value can only grow. Results with early exit

disabled serve as a baseline execution time, whereas those with

the early exit enabled represent a best case. While this early exit

could also be implemented for QUICCI images, it is not expected

to improve performance much, if at all, due to the additional in-

struction overhead. Instruction counts are more relevant for QUICCI

than RICI, as many QUICCI bits can be compared with a single bit-

wise instruction, whereas RICI compares each pixel individually. 

6.4. QUICCI Generation rate 

Finally, the rate at which the tested descriptors are computed

was measured during the performed experiments. The results are

shown in Fig. 11 . The chart shows that QUICCI and RICI descrip-
ors can be generated at similar speeds, which is about an order of

agnitude better than the next best descriptor. 

.5. Weighted hamming 

An experiment was constructed in order to quantify our claim

hat the Weighted Hamming distance function is superior for

etrieval purposes of QUICCI images over the clutter resistant

istance and Hamming distance functions. The premise of this

xperiment is to evaluate the distance values returned by each

istance function. We compare two different settings: where the

urface points being compared have distinctly different support

egions and where the support regions are quite similar. 

The values returned by the distance functions where object sur-

aces are distinctly different gives insight into the range of dis-

ances that can be expected to be returned by the distance func-

ion under “nominal” conditions. 

With that background, one can then investigate what happens

o the distance values when point pairs have varying degrees of

imilarity. In order to obtain quantitative results, it must be possi-

le to generate these varying degrees of similarity automatically 1 
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Fig. 10. Comparison of the number of descriptor pairs each method can compare per second. For readability, each sequence has been sorted individually to create monoton- 

ically increasing curves. 

Fig. 11. A plot showing the relationship between scene size measured in triangles and the rate at which descriptors are computed per second. 
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Fig. 12. A visualisation of an object on which 500 spheres have been placed (the 

highest number used in the described experiment). 

i  

d  
t is possible to simulate variations in geometric similarity through

he addition of geometry, whose shape does not necessarily mat-

er. In the devised experiment, spheres are added touching on ran-

omly sampled points on the object’s surface. An example of an

bject with spheres added to its surface in this manner is shown

n Fig. 12 . 

For computing distance values under “nominal” conditions,

wo objects were selected from the (same as previously used)

HREC2017 dataset [30] at random, and scaled to fit within a

nit sphere. For each unique vertex in each object, a QUICCI de-

criptor was computed with the same generation parameters as in

ection 6.2 . Each pair of QUICCI descriptors corresponding to ver-

ices with the same index 2 across the 2 objects (which have a ran-

om degree of similarity) was used to compute the distance value

or each of the 3 distance functions. These values were used to

onstruct the histograms of Fig. 13 a. This process was repeated for

0,0 0 0 object pairs, generating 176.2M image pairs. 

The next step is to check the stability of the distance functions

cross the same object vertices as the environment of the vertices
hape grammars tends to be high, while the variety of local surfaces produced is 

ften low due to the reuse of a limited set of “alphabet” shapes. 
2 The number of generated images is bounded by the object with the fewest ver- 

ices. 

v  

o  

p  

s  

l  

g  
s changed. To this end, a random object from the SHREC2017

ataset is selected and fitted within a unit sphere. For each object

ertex, a QUICCI descriptor is computed. Next, 10 random points

n the object’s surface are chosen and normal vectors are com-

uted for these points by interpolation. At each of these points, a

phere of radius 0.05 units is placed such that it touches the se-

ected sample point. This is achieved by displacing the sphere’s ori-

in by its radius along the point’s normal. After each step of adding
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(a) Distribution of measured distance value
under nominal conditions for each tested

distance function.

(b) Visualisation of all 51 distance function response histograms
produced when comparing object pairs having varying degrees

of surface similarity. Each column represents a single histogram
similar to the one shown in Figure 13a, corresponding to the
distance value distribution when the modified object has a set

number of spheres applied to its surface.

Fig. 13. Visualisation of the histograms of distance function responses that were obtained as part of the evaluation of these functions under both nominal and similar surface 

conditions. 
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10 spheres (up to a limit of 500 spheres), QUICCI descriptors are

computed for the vertices of the original object. Distance values

are then computed for each of the 3 distance functions between

corresponding vertex QUICCI descriptors of the original and mod-

ified objects. After repeating this experiment for 10 0 0 random ob-

jects from SHREC2017, histograms of the combined distance values

are computed (from a total of 26.79M QUICCI images), see Fig. 13 b.

A good distance function should clearly discriminate between

relevant and irrelevant descriptors with respect to a query. For the

presented experiment, objects with fewer spheres applied to their

surface should be considered closer to their original (unmodified)

version by a given distance function. As can be seen from Fig. 13 b,

this is indeed the case; all tested distance functions return on av-

erage lower scores for objects with fewer spheres. 

However, the performance of these distance functions varies

when it comes to their ability to discount images not relevant to

the needle. For example, when comparing results for Hamming

Distance, in Fig. 13 a (right) and 13 b (right) it can be observed

that the histograms (columns of Fig. 13 b (right)) quickly approach

the histogram of Fig. 13 a (right) for random vertices. 
s  
At a glance, the clutter resistant distance function appears to

ave the same issue. However, closer inspection of the data shows

hat the cause of this behaviour is the commonly low number

f set bits present in needle images. As the distance function is

ounded by the number of set bits present in the image (with the

xception of cases where none are set), computed distances have a

endency to be low. However, the vast majority of scores ends up

eing the highest possible score that the distance function allows

or that particular needle image. 

While this behaviour is effective at discerning close matches (as

emonstrated in Section 6.2 ), it is less advantageous for retrieval

urposes, where more granularity is desirable for the purpose of

anking search results. The Weighted Hamming distance function

s the one of the three tested functions which is the most capa-

le of this. Moreover, of the three, it is also the one which shows

he clearest separation between distances of matching surfaces rel-

tive to distances measured under ’nominal’ conditions. A signifi-

ant amount of variation can be applied before the range of com-

uted scores reaches the same territory as the one shown in the

ominal occurrence chart above. Moreover, under these circum-

tances only a small fraction of results overlaps with this nominal
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ange. For these reasons we conclude that, among the tested dis-

ance measures, the Weighted Hamming distance is most suitable

or the purposes of retrieval. 

. Issues with FPFH 

Some issues were discovered while testing the well-known

PFH descriptor. The most notable of which pertains to the equa-

ion used to construct the FPFH during the second stage of gener-

tion, listed in Equation 4 in [20] , reproduced here as Eq. 3 . 

 P F H(p) = SP F (p) + 

1 

k 

k ∑ 

i =1 

1 

ω k 

· SP F (p k ) (3)

The Equation computes an FPFH descriptor at point p , using a

et of SPF histograms that were computed for each point in a pre-

ious step, and includes all k neighbours present within the sup-

ort radius. 

Of specific interest here is the distance weighting component
1 
ω k 

, which discounts the contribution of each point neighbour’s

PF histogram by the distance to the point p for which the FPFH

istogram is computed. The issue is that, as this distance is not

ormalised, the weighting between the left ( SPF ( p )) and right

 

∑ k 
i =1 

1 
ω k 

· SP F (p k )) terms of the equation depend on the scale of

he object. 

Also worth noting is that the original FPFH paper does not give

 distance function to compare descriptors. We have used Pearson

orrelation in our implementation. 

Finally, one detail that we noted in the currently available GPU

mplementation of Point Cloud Library [34] is that the aforemen-

ioned weighted distance factor uses the squared distance as a the

alue of ω k , which deviates from the original paper. 

. Conclusion 

This paper addressed the problem of querying by local shape. A

ew binary descriptor, QUICCI, is proposed which is robust to clut-

er, highly descriptive and quite small in size. To overcome the cost

f searching the huge number of such descriptors that result from

n object collection, a binary image indexing scheme, the Ham-

ing Tree, was proposed which can significantly accelerate search-

ng, especially for small Hamming distances. The effectiveness of

n indexing structure is, however, highly dependent on the dis-

ance function used. The Weighted Hamming distance function is

lso proposed, which can be used to rank QUICCI descriptors in a

etrieval setting. 
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