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ABSTRACT

This thesis is a paper collection that focuses on unconventional
methods of biometric recognition. Four new approaches are
presented and discussed. The first two introduce and explore
the concepts behind transient biometrics. Transient biometrics
relaxes the hard permanence requirement that is common to
biometric identifiers, creating a biometric signature with expi-
ration date which increases acceptability. The third approach
investigates a novel method for extracting a capable biomet-
ric identifier using Electroencephalography (EEG) and a visual
stimulus. The final approach studies the use of synthetic bio-
metric data for training a machine learning approach in the
recognition of non-collaborative subjects under the context or
person re-identification. Four new datasets have been created
for the purposes of this thesis and have been made publicly
available. Contributions are on the interface between computer
vision, biometrics and machine learning. Ethical implications
of this work are discussed, concluding that it is preferable to
perform such work in the public domain.
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Part I

RESEARCH OVERV IEW

1
INTRODUCT ION

Biometrics is a science that seeks to understand, explore, and
learn how to use the physical, chemical, and behavioral charac-
teristics of a given subject as a reliable proxy for the subject’s
identity [24]. Modern biometric authentication methods use the
aforementioned characteristics, also known as a biometric trait,
to produce biometric signatures. A biometric signature is a re-
liable and robust numeric representation for the biometric trait
that is represented by a point in a hyperspace. The compari-
son of a representative hyperspace observation (a biometric sig-
nature) with other previous observations serves as a proxy for
identity association. Therefore, one can use a distance computa-
tion between biometric signatures to perform biometric recog-
nition. In a few solutions, a binary classifier can replace the
distance computation function. A biometric system or solution
refers to a complete pipeline, consisting of acquiring and pro-
cessing the data of a biometric trait and using the generated
numeric representation towards identity association. Finally, it
is normal to use the term biometrics as an analog for the task
of biometric recognition (more details in Section 1.2.1).
An ideal biometric trait conforms to seven established princi-

ples [24]:

universality.
The trait needs to be available on all users of the biometric
system. A biometric characteristic that can only be mea-
sured for a small fraction of the subjects will have a re-
duced power of discrimination, making it a less appealing
biometric trait.

1



2 introduction

uniqueness .
The uniqueness of the biometric traits is directly related
to the potential use of such characteristics to discriminates
between individuals. Hence, to be useful for a biometric
solution, a biometric trait should be unique for every per-
son, making it possible to distinguish between identities. A
biometric feature that is identical between all subjects has
little to no application on a biometric solution.

permanence .
As per [24], "the biometric trait of an individual should be
sufficiently invariant over a period of time with respect to
the matching algorithm. A trait that changes significantly
over time is not a useful biometric". With the advent of
soft biometrics and transient biometrics, this principle may
need to be revised. Some applications do not require long-
term biometric recognition and can be based on soft/tran-
sient biometric traits. Permanence thus needs to be a func-
tion of the expected lifespan of a biometric signature. For
example, a biometric signature based on DNA will have
a more robust/longer-lived permanence than a biometric
signature based on facial traits. A biometric signature with
short relative permanence (e. g. finger-nails) can still have
a lifespan that is worthwhile for short-term authentication
tasks (e. g. hotel room authentication) or be extra-useful in
scenarios with recurrent interactions.

measurability.
The ability to acquire and measure the data of a given bio-
metric trait is fundamental towards the creation of the bio-
metric signature. A biometric characteristic that is hard to
digitize has fewer chances of being used in modern bio-
metric solutions. Moreover, the collected data also requires
to be fit for the creation of a biometric signature. Two in-
stances of a biometric trait with poor measurability could
be a biometric trait that can not be digitized, and a biomet-
ric characteristic that, once quantized, requires petabytes of
data for the representation of a single observation. There-
fore, measurability embodies two distinct points: the abil-
ity to acquire a digital representation of the biometric trait
and a data representation that can be concisely recorded
numerically (the biometric signature).
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acceptability.
The users of biometric solutions need to be comfortable
in providing the systems with the biometric data. Three
factors can influence acceptability: resistance for a specific
biometric characteristic to be measured (e. g. biometrics
based on genital images are likely to have low acceptabil-
ity); the user’s trust on the computer system performing
biometric solutions (e. g. subject might be reluctant to give
their fingerprint to hotels since they do not trust the pro-
tocols of security, data handling, and encryption); finally,
a subject might consider specific biometric traits to be too
private for the intended use: e. g. one might expect never
to share their DNA records for a biometric authentication
system while having no issue in sharing their fingerprints.

circumvention.
Biometric recognition is usually in place to control and
confirm that only selected subjects have access to a criti-
cal space or object or registry. Biometric recognition solu-
tions inherit from their inception some security implica-
tions. A biometric system needs to be resilient to adversar-
ial attacks and spoofing. Moreover, the biometric trait and
system need to take into consideration the ability of an ill-
intending actor to forge such a trait (e. g. fake fingers) or
even to adversarially exploit the system (e. g. using high-
resolution photos and videos to overcome face recognition
systems). An ideal, and probably utopic, biometric trait
should be impossible to circumvent.

performance .
Last but not least, there is the performance of the biomet-
ric trait. The trait should have sufficient recognition accu-
racy for the task as at hand. Performance can also relate to
the computational cost of executing the biometric solution
using the chosen biometric trait; it needs to be aware of
system resource limitations.

Note that universality and uniqueness are actually requirements
for a biometric system, while permanence, acceptability, measura-
bility, circumvention and performance are not binary requirements
but can be satisfied to varying degrees. The seven principles be-
hind biometric traits illustrate how involved it is to associate
a subject’s identity with the physical or behavioral attributes
of the said subject. Nevertheless, biometrics presents an attrac-



4 introduction

tive proposition to identity recognition at scale. Biometrics al-
lows agents to perform identity association at a large scale with-
out having to rely on surrogate identifications methods, which
would include what a subject knows e. g. username and pass-
words or what a subject carries e. g. access card or passport)[25].
The disadvantage of surrogate identification methods is that the
identification is not being made on a trait of the subject itself,
therefore such methods are more vulnerable to theft, copying,
and even forging.

While biometric recognition is obviously advantageous with
respect to surrogate identification methods, the uptake of bio-
metric recognition methods has been slow and fragmented. One
can argue that this is due to the degree to which established bio-
metric traits satisfy permanence, acceptability, measurability, cir-
cumvention and performance. Specifically, one needs more con-
trol of the degree of permanence, as less permanence can ac-
tually increase acceptability while greater permanence can be
exploited in some critical applications (e. g. medical records).
Major concerns with current biometric traits center at circum-
vention and performance both of which can be improved by the
use ofmultimodal biometrics† . One is thus motivated to inves-†The future of

biometric
recognition at large

scales will depend
on multimodal

biometrics.

tigate novel biometric traits which have the potential to improve
the aforementioned variables. In addition, such novel traits can
also potentially improve measurability depending on their ac-
quisition method. For example, the somatotype biometric trait
presented in this thesis (publication D [3]) has high measurabil-
ity as it is based on a simple image of a (collaborative or not)
subject; the Electro-Encephalo-Gram (EEG) biometric trait pre-
sented in this thesis (publications C [6]) should be extremely
hard to circumvent; the fingernail biometric trait presented in
this thesis (publications A and B [5, 7]) trades permanence for
increased acceptability. Finally, all these novel biometric traits
combined in a multimodal system, have the potential to boost
performance.

Thus, the main motivation behind this Ph.D. thesis was to
attempt to answer the question: Are there novel and/or uncon-
ventional biometric traits that have been underexplored by the
research community? If so, what are the strengths and weak-
nesses of these traits, and do they enable new, potentially trans-
formative, biometric solutions? This thesis presents the work
done to address these overarching questions. It considers the
pipeline from the stage of selection of new biometric traits, the
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acquisition of the corresponding biometric data, the extraction
of a biometric signature, the design of a distance function/algo-
rithm and, of course, performance assessment. Three novel/un-
conventional biometric traits were explored (Electro-Encephalo-
Gram (EEG), fingernails and somatotype) corresponding to four
different biometric solutions (two for fingernails).

1.1 research goals

The overarching theme of this thesis was the study and de-
velopment of unconventional biometrics that could potentially
bring to the research field of biometrics new biometric solu-
tions based on underexplored or novel biometrics traits as well
as the investigation of their weakness and strengths. Four re-
search goals were set.

1.1.1 Novel Biometric Identifiers

A biometric identifier is a set of data derived from biological traits
that can be employed to generate capable biometric signatures.
Different from a biometric trait, a biometric identifier may de-
rive from combining pieces of information from multiple sets
of traits (e. g. somatotype trait is explored in Publication D [3]).
A new biometric identifier can most likely be the outcome of
one of two methods. The first is to explore one or more well
established biometric traits (e. g. fingerprints) and find a better
biometric signature, with respect to the state of the art; such a
signature would typically contain more distintcive information,
increasing its uniqueness. The second, more restricted, method
involves the derivation of a biometric signature from novel bio-
metric traits, that were not commonly explored by the biomet-
rics community. The idea is that the study of under-explored
biometric traits is more likely to bring new data to the field and
can potentially establish a biometric signature that is better in
one or more of the dimensions dictated by the 7 principles of
a biometric trait described above. A novel biometric identifier
can also be beneficial in multimodal biometrics. In the sequel
we refer to this research goal as RG1.
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1.1.2 Unconventional methods of biometric recognition

Often a new, unconventional, approach in biometrics involves
an entirely different view, making biometric recognition more
feasible. A typical example is transient biometrics (publications
A and B [5, 7]) where instead of striving for the most permanent
biometric traits, one relaxes this requirement, selecting more
transient traits, in order to increase acceptability. We refer to
applying unconventional methodologies in the field of biomet-
rics as RG2.

1.1.3 Application of machine learning methods in the context of bio-
metrics

The third goal of this thesis was to explore if machine learning
methods can make a significant difference in biometric tasks,
either directly or indirectly. By indirectly we mean for example,
using machine learning methods to help segment images of
datasets in a task that would otherwise be too laborious (see for
example fingernail segmentation in Publication B [7]). Directly
means the application of machine learning methods for biomet-
ric signature extraction or comparison. It must be pointed out
that the use of machine learning was not contrived; the inten-
tion was never to force a machine learning solution just for the
sake of it. Instead, it was applied when there were no good al-
gorithmic solutions while at the same time, labelled data was
available or could be constructed. For example the constraints
of the RE-ID problem presented in [3] motivated the use of ma-
chine learning, as it was possible to create good labelled syn-
thetic data and then use fine tuning methods for transferring
that knowledge to real data. In the sequel we refer to this re-
search goal as RG3.

1.1.4 Creation of novel datasets

Much of this thesis explores new or under-explored biometric
traits and the required physical data acquisition was laborious
and slow. To reduce such strain for future researchers and of-
fer the community the means to better reproduce and improve
upon the research presented, a goal was to publish newly cre-
ated datasets. This research goal is referred to as RG4.
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1.2 biometric concepts

This section introduces some classic concepts on Biometrics as
well as established performance measurement techniques.

1.2.1 Biometric recognition

Biometric recognition aims to associate a subject’s identity with
the physical or behavioral characteristics of the afore-mentioned
subject [24]. These characteristics involve measurements of bio-
logical data and their derivatives, hence the term biometrics. It
is also common to use biometrics as a synonym for the task of
biometric recognition.

The task of biometric recognition usually takes two forms:
verification and identification which are respectively presented in
Section 1.2.1.3 and Section 1.2.1.2.

1.2.1.1 Gallery, Probe and out-of-samples (data)sets

It is typical for the biometric literature [18, 24] to use the terms
of gallery and probe set when discussing biometric protocols. A
gallery set is created to enroll biometric data of subjects who
consent to be recognized; the gallery represents a reference for
recognition tasks. The gallery is usually a database where data
from collaborative individuals are enrolled. The probe set typ-
ically refers to new samples of biometric data; this is data ac-
quired during recognition (post enrollment), which needs to be
matched to the gallery set for the purpose of recognition.

Re-identification often also employs the terms gallery and
probe; however its gallery set is normally acquired without col-
laboration from subjects. This is discussed in more detail in
Section 1.2.2

It is also common for current biometrics benchmarks to have
multiple disjoint versions of the gallery and probe sets. This
enables data-driven methods (e. g. machine learning, pattern
recognition methods) that require disjoint training and testing
data partitions. Complex protocols are often included in bench-
marking datasets [12, 31, 62].

Figure 1.1 shows the data-flow of enrollment, identification,
verification and re-identification which are further in the respec-
tive sections 1.2.1.2, 1.2.1.3 and 1.2.2.
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Figure 1.1: Data-flow of biometrics solutions. The figure shows the
operational principles behind Enrollment, Verification,
Identification and Re-identification. Biometric solutions
normally start with enrollment, which is a controlled data
collection procedure. Enrollment assesses the quality of
the data and assures only good samples are enrolled in the
gallery set. After the enrollment process, one can decide
to perform either identification or verification. Identifica-
tion is the process of identify association with no identity
claim, whereas in verification there is an identity claim.
There is no enrollment stage preceding re-identification;
in principle, RE-ID is a self-contained modality, where one
records data from non-collaborative individuals to estab-
lish a non-quality assured gallery set. Newly observed
data is referred to as data from a probe set. In the case of
verification and identification, the probe data comes from
subjects that want to use the systems (collaborative). In the
case of RE-ID newly observed datum (probe data) is from
non-collaborative subjects.
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1.2.1.2 Identification

In identification, a new biometric datum is created by a biomet-
ric sensor and presented as a query; in a benchmark the set of
these queries forms the probe set. The biometric data of all en-
rolled subjects (gallery set) are compared against the query and
often ranked in order of similarity based on a distance function.
Identification can be considered as a one-to-many distance eval-
uation.
Thus the performance of identification is often measured us-

ing a curve known as CMC (see Section 1.2.3.2). The identifica-
tion task can be used as a replacement for biometric verification,
where a given subject does not need to claim a specific identity.

1.2.1.3 Verification

In verification, a new biometric datum is created by a biometric
sensor and presented as an identity claim. The task verifies if
the new datum matches the biometric data of the claimed iden-
tity in the gallery set. This is often implemented by a threshold
decision on the output of a distance function. We thus have a
one-to-one distance evaluation. Verification can be considered
as a binary classification problem where the goal is to confirm
or deny that new biometric datum matched that of the claimed
identity. As a classification task, it is normally assessed using
the ROC curve (see Section 1.2.3.1).

1.2.2 Re-identification

An essential task of the modern video-surveillance system is
the association of observed subjects across multiple views. This
is the motivation behind the problem of person RE-ID. Person re-
identification† consists of recognizing instances of an individ- †Definition of the

re-identification
task

ual in different locations over a network of cameras with over-
lapping and non-overlapping views and with potentially ample
spatio-temporal intervals between observations [18].
As RE-ID is a surveillance provoked task, it must deal with

crowds in what is usually an uncontrolled environment. There-
fore, different from more conventional biometric tasks, RE-ID is
required to work with non-collaborative subjects, where there
is no cooperation for enrolment. Thus, proven robust biomet-
rics such as fingerprints, iris, or even facial recognition are not
ordinarily a viable option. The use of more conventional and
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proven methods is also limited by the small number of pix-
els on which a subject is represented on surveillance images.
Even with the use of high-resolution cameras, many surveil-
lance videos are set to monitor extensive areas and rely on the
use of a large field of view. Consequently, a small subset of the
available pixels might be the norm for the RE-ID task.

Different from typical biometrics solutions, the goal of re-
identification is not the verification or identification of a sub-
ject’s identity but to associate where a given subject of interest
has been previously observed. In other words, the identity of
subjects is not known in RE-ID; there is no enrolment procedure
and therefore no collaboration from the subjects is required.
Since there is no ground truth for identity, RE-ID algorithms
are often evaluated as a ranking task using the CMC (see Sec-
tion 1.2.3.2).

RE-ID algorithms typically create a short-lived visual-based
signature for each observed subject. These signatures need to
be robust to variations in pose, view-angle, partial occlusions,
lighting conditions, etc. In our work [3] we extended the poten-
tial lifespan of RE-ID signatures by making them also robust to
attire changes.

1.2.3 Performance assessment

In this section, we will go over some conventional methods for
measuring the performance of biometrics tasks. These tasks of-
ten fall under the general problems of classification and rank-
ing. First, we will present the case of binary classification.

When dealing with multi-class classification problems, it is
common to use the same performance metrics as for binary
classification but to perform a pairwise comparison of classes.
Pairwise comparison means that for each class, one does a bi-
nary classification of one class versus all other classes.

Coming back to the simpler binary classifier; It is common
practice to denote the two plausible classes as the positive and
negative classes respectively denoted here as + and −. After
a classifier is trained, one can compare its predictions with the
real (ground truth) labels. Such comparison generates four car-
dinalities: the numbers of true positives, true negatives, false
positives and false negatives. True Positive (TP) is the count of
predictions that were correctly classified as +, while True Neg-
ative (TN) is the count of predictions that were correctly classi-
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fied as −. False Positive (FP) is the count of − predictions that
were incorrectly classified as + and finally False Negative (FN)
is the count of + predictions that were incorrectly classified as
−. These cardinalities are shown in Table 1.1.

Predicted Values

Positive prediction (+) Negative Prediction (−)

Ground Truth

Positive Label (+) True Positive (TP) False Negative (FN)

Negative Label (−) False Positive (FP) True Negative (TN)

Table 1.1: Definition of common scalar metrics for binary classifica-
tion.

Using these cardinalities it is possible to compute multiple
scalar performance measures; some of the more common scalar
ones are summarized in Table 1.2, while more complex derived
ones are presented in the following sections.

Performance measure Formula Also known as

True Positive Rate (TPR) TP
TP+FN Recall

False Positive Rate (FPR) FP
FP+TN False acceptance rate

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Table 1.2: Common scalar performance measures for biometrics algo-
rithms.

In the context of biometrics, one can consider the existence of
a binary classifier for each every class (identity) in the gallery
set (see Section 1.2.1.1). Then, for every query in the probe set,
the aforementioned classifiers predict a binary (+ or −) out-
come for their class. In the context of biometric classification
FPR represents the risk of the system. It is also known as false
acceptance rate, and it measures the fraction of imposters ac-
cepted by the biometric classifier. The TPR measures the con-
venience of the system. TPR is also known as the genuine ac-
ceptance rate, or recall, and represents the fraction of accepted
individuals.
The relationship between the FPR and the TPR is often rep-

resented by a ROC, which summarizes the trade-off between
convenience and risk of a biometric method, as presented in
the following Section.
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1.2.3.1 The receiver operating characteristic curve

The ROC curve is often used to assess the performance of clas-
sification tasks. Since classifications are often based on thresh-
olding a distance (or probability) score, one can use different
thresholds and plot the points that describes the relationship
between TPR and FPR of a biometric system. By connecting these
points one generates the ROC curve. An example of ROC curves
is shown in Figure 1.2.
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Figure 1.2: Sample ROC curves. This classification problem is emu-
lated from a set of 50 identities. Notice that the FPR is
presented in log scale and it is capped at 100 which repre-
sents 100%. Note that the classification threshold becomes
stricter towards the left of the abscissa.

Figure 1.2 presents the ROC curve for three distinct classifiers.
A (theoretical) perfect classifier would always predict the cor-
rect match, even at zero FPR, thus presented as a horizontal line.
The random guessing classifier has equal FPR and TPR. Since the
presented graph has the abscissa in log scale, a parabolic curve
results. Finally we also present the performance a hyphotetical
typical classifier to illustrate a behaviour between the random
guessing and perfect classification spectrum.

1.2.3.2 The cumulative matching curve

The CMCs is one of the standard methods for evaluating rank-
ing algorithms (such as identification and RE-ID) [8]. Ranking
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algorithms produce a list of probable matches from a gallery
set and ordered by their degree of similarity to a given query
input. Therefore, by using a set of query inputs (probe set) and
a gallery set it is possible to estimate the probability that the
ranking algorithm will retrieve the correct match within the
top k most similar matches.
The matching probabilities of a given ranking algorithm are

presented by rank. The CMC graphs the probability (ordinate)
of having the correct match within the top k ranked items (ab-
scissa). Three CMCs curves are shown in Figure 1.3 illustrating
the performance of the theoretically perfect ranking solution, a
random guessing ranking solution, and a typical hypothetical
solution.
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Figure 1.3: Sample plots for CMCs. For this sample ranking a problem
the maximum rank (e. g. Number of subjects, number of
retrieval classes) is set to 50. Therefore random guessing
starts with a 2% probability of match. The typical perfor-
mance serves to illustrate a hypothetical solution.

A perfect ranking system would always retrieve the correct
match at rank 1. The random guess has a k

N chance of retriev-
ing the correct match for a given rank k and number of retrieval
classes (e. g. subjetcs) N in the gallery. The CMC is a monoton-
ically increasing function since the ranking system can not di-
minish accrued number matches as the rank increases.
For highly accurate ranking algorithms it is common to rep-

resent a sample of the lower rank values in a table [31, 62] along
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with a scalar metric, the normalized area under the CMC. The
Table 1.3 gives an example.

method rank 1 rank 5 rank 10

Random guessing 2% 10% 20%

Perfect guessing 100% 100% 100%

Typical performance 63.27% 65.31% 79.59%

Table 1.3: Sample of a performance summaries for CMCs presented in
Figure 1.3. For this sample ranking problem the maximum
rank (e. g. Number of subjects, number of retrieval classes)
is set to 50. Therefore random guessing starts with a 2%
probability of a match.

The normalize area under the curve (nAUC) is a common
scalar metric used to compare CMC curves; it integrates the
are under the curve of a given ranking algorithm and divides
by the theoretical maximum given by the perfect ranking al-
gorithm. This gives a simple scalar that can compare ranking
algorithms with a different number of retrieval classes (e. g. sub-
jects) N. However, the shape of the CMC curve provides critical
insight into the workings of an algorithm. This shape informa-
tion is lost when reducing a CMC to a scalar nAUC since curves
with different shapes can have the same nAUC.

1.2.3.3 The precision-recall curve

The precision-recall curve, similar to the ROC curve, is also
commonly employed in the assessment of binary classification
tasks, such as biometric verification.
A specific threshold value on the a distance (or probability)

score of a biometric binary classifier defines specific scalar pre-
cision and recall values, see Table 1.2. The precision-recall curve
is formed by defining different thresholds. It serves to illustrate
the trade-off that a binary classifier makes. Precision tells what
fraction of the predicted + values are correct while recall mea-
sures what fraction of the ground truth + labels are correctly
classified. Therefore, a system with high recall and low preci-
sion would return most of the ground truth + labels data points,
but the proportion of data points that is correctly classified as
+ is small.
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A perfect theoretical classifier has zero FP. Thus the precision
simplifies to TP

TP+0 , and is always one. In this hypothetical classi-
fier, no matter the threshold, the fraction of ground truth + labels
is one. Therefore, a perfect classifier is portrayed as a parallel
line to the abscissa where precision equals one.
Suppose that a random classifier has equal chances to classify

a data point as + or −. This classifier should, in theory, have
constant precision, and would be represented by a horizontal
line. In this case, precision will be defined by the proportion
of ground truth + labels to ground truth − labels. This is because
the random classifier is essentially an unbiased sampler. So TP

should be half the number of ground truth + labels , and FP

should be half of the ground truth − labels. For example, if there
is one ground truth + label for every nine ground truth − labels,
the precision should be 0.5

0.5+4.5 = 0.1. Figure 1.4 shows examples
of precision-recall curves for a theoretically perfect classifier, a
rendom classifier and a simulated typical classifier response.
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Figure 1.4: Sample plots for precision-recall curves. The illustration
of three binary classification tasks are shown. The random
guessing classifier has average precision of 0.30 because
there are 3 ground truth + labels for every seven ground
truth − labels on this hypothetical classification task. It is
important to notice that the behaviour of a typical classi-
fier is not necessarily smooth or linear.

A typical classifier that has good performance should have
high precision and high recall. This is represented by the point
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on the top right corner of the precision recall diagram. Fig-
ure 1.4 presents the precision-recall curve for thee distinct clas-
sifiers.
The area under a precision-recall curve represents a perfor-

mance scalar known as average precision (AP).The mean value
of different average precision scalars (for different classifiers)
is a base metric in recent RE-ID tasks. In this case, multiple
observations (e. g. images) of a given class (e. g. subject iden-
tity) need to be available. The mean average precision mAP

has been proposed as an alternative performance measure for
re-identification benchmarks [62].



2
CONTR IBUT IONS AND PUBL ICAT IONS
SUMMARIES

This chapter lists the thesis elected publications and highlights
its research contributions. The publication listing follows the
chronological order, explaining the evolution of this research
on unconventional biometrics. The publication listing covers
key contributions furthermore the reasoning and decisions that
drove its publications/research.

2.1 publication a

Igor Barros Barbosa, Theoharis Theoharis, Christian Schelle-
wald, and Cham Athwal. “Transient biometrics using finger
nails.” In: 2013 IEEE Sixth International Conference on Biometrics:
Theory, Applications and Systems (BTAS). Sept. 2013, pp. 1–6. doi:
10.1109/BTAS.2013.6712730.

2.1.1 Motivation

Our initial goal was to find better alternatives to the prevalent
biometric traits. A major concern at the time was that usual bio-
metric traits were not compatible with the right to be forgotten
[43] and newer privacy concerns that today have manifested
themselves in regulations like General Data Protection Regula-
tion (GDPR) [41]. The intended solution was to study transient
biometrics. Instead of recording time-invariant data, transient
biometrics uses ephemeral data, i.e., data that does change over
time and are thus canceled by nature.
Transient biometrics also makes it easier to comply with data

life-span requirements, since old data are useless by definition.
Transient biometrics has the added benefit of acceptability. A

subject is likely to be more willing to offer their biometric data
if they know that such data has a natural expiration.

17
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Figure 2.1: First proposal for a transient biometric identifier, pre-
sented in [5]. The biometric identifier is derived from Lo-
cal Binary Patterns (LBP) which are represented by the 200
main components (computed using Principal Component
Analysis (PCA)).

2.1.2 Research contributions

This publication addressed all four Ph.D. research goals.

2.1.2.1 RG1: Novel Biometric Identifier

The results of this publication (as well as of [7]) indicate that fin-
gernail images are indeed a valid transient biometric identifier,
since their useful lifespan is up to six months [59].
This biometric identifier utilizes texture features, extracted

from fingernail images using Local Binary Patterns (LBP)[38].
The process starts by registering fingernail images, and then
uniform LBP histograms are used to extract a 954 dimension
vector. Finally, Principal Component Analysis (PCA) is used to
reduce the vector to 200 dimensions; thus arriving at a numeri-
cal representation of the transient biometric identifier. This pro-
cess is presented in the signature extraction pipeline shown in
Figure 2.1.

2.1.2.2 RG2: Unconventional methods of biometric recognition

The introduction of the idea of transient biometrics in addition
to the novel biometric trait of the fingernail image constitutes
a novel method of biometric recognition, which is very uncon-
ventional due to its transient nature. The proposed approach
and the collected dataset influenced several subsequent publi-
cations by the research community, such as [7, 14, 29].

2.1.2.3 RG3: Application of machine learning methods in the con-
text of biometrics

A naive Bayes classifier was used to establish a baseline metric
on the identification task. The combined usage of a baseline
classifier and dataset created at different points in time allowed
us to asses the transitive nature of our approach. The results
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Figure 2.2: Active shape model input and segmented output.

allowed us to the argue that the proposed methodology indeed
extracts a transient biometric signature from fingernail images.

2.1.2.4 RG4: Creation of novel datasets

A new dataset called Transient Biometrics Nails Dataset (TBND)
containing fingernails images was made publicly available. The
motivation was to provide a platform for verifying our results
in transient biometrics and to give a boost to further research
on the topic. This public dataset can be found at https://www.
kaggle.com/vicolab/tbnd-v1 . As of 03.12.2019 one hundred
and thirty-three downloads have been made by third parties
and multiple publications have referenced our paper.

2.1.3 Technical contributions

An Active Shape Model (ASM)[53] was used to segment the nail
bed from a fingernail image. The segmented region defines a
Region of Interest (ROI) that can be registered in order to facil-
itate the computation of a distance measure between such ob-
jects. (Registration is the task of transforming an input image
to a universal and reproducible coordinate system.)

ASM segmentation had one major issue: it needs manual in-
put to specify two landmarks, as shown in Figure 2.2. It was
initially believed that segmentation needed to be very accurate
by removing every pixel from the image that was not from the
nail bed. This hard requirement proved not to be needed in the
development of this publication due to the selected descriptor.
Thus, a more robust (and coarse) segmentation algorithm that
does not require manual input was seen as a requirement for
future work.
All fingernails beds have a unique pattern, like a fingerprint,

which influences the texture detected on the fingernail plate
[27]. Combined with the day-to-day environment interactions
that the fingernail sustains, gives a rich but temporal quality to
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the detected texture. The objective of the first publications was
to explore the temporal traits of these textures in order to create
a transient biometric descriptor.

LBP was used as the texture descriptor because of its previous
success in describing texture in general [37, 38] as well as facial
biometric texture in particular [2].

Temporal performance of the fingernail texture as a biometric
descriptor was assessed based on the identification task using
a dataset collected at different points in time. This dataset was
made publicly available to aid reproducibility and stimulate
further research.

2.2 publication b

Igor Barros Barbosa, Theoharis Theoharis, and Ali E. Abdallah.
“On the use of fingernail images as transient biometric identi-
fiers.” In: Machine Vision and Applications 27.1 (Jan. 2016), pp. 65–
76. issn: 1432-1769. doi: 10.1007/s00138- 015- 0721- y. url:
https://doi.org/10.1007/s00138-015-0721-y

2.2.1 Motivation

The motivation behind this work is to mature methods behind
transient biometrics using fingernails and to address the short-
comings of Publication A.

The first concern was scalability of transient biometrics be-
yond a handful of participants.

The second concern was to reduce the possibility of injected
bias in the evaluation of the transient biometrics features. There-
fore for this publication, we opted out of the use of machine
learning methods which can inject bias from the training dataset
and the machine learning approach used. A direct approach
was opted for.

The third concern was to mature the computational methods
used to extract and match the transient biometric signatures.
The extended number of participants and the direct approach
meant that better supporting tools and matching algorithms
become a requirement.
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2.2.2 Research contributions

This publication addressed three of the Ph.D. research goals.
Since it constitutes a continuation of the work described in Pub-
lication A [5], some overlap of the research goals exists.

2.2.2.1 RG1: Novel Biometric Identifier

In the work described in Publication A, a small dataset of 17
subjects was used to evaluate the temporal identification rate
of fingernails. LBP was used as the feature extractor.
The present work exploits both texture features and descriptor-

based information extracted from discriminant fingernail key-
points. Texture information is extracted using LBP on the three
color channels of the image. Binary Robust Invariant Scalable
Keypoints (BRISK)[30] and Scale-Invariant Feature Transform
(SIFT)[33] are used to compute features on keypoints determined
by Good Features To Track (GFTT) [46].
This work focused on the fusion of matching scores instead of

fusion of features to avoid the curse of dimensionality. Texture-
based descriptors are matched using the average of cosine sim-
ilarities while keypoint descriptors are matched using Fast Ap-
proximate Nearest Neighbor Search[36] where inliers are fil-
tered using the Random sample consensus (RANSAC)[15] algo-
rithm.
Figure 2.3 illustrates the signature extraction process. These

innovations in both the matching procedure and feature repre-
sentation produced a new transient biometric identifier which
constitutes a contribution to research goal 1.

2.2.2.2 RG2: Unconventional methods of biometric recognition

This publication extends the research on unconventional meth-
ods of biometric recognition beyond Publication A. Assessment
of unconventional biometrics is extended to a group of 93 sub-
jects. The use of fingernails as a source of information for bio-
metric trait still remains unusual, with a handful of papers,
such as [5, 26, 28, 52], exploring it.

2.2.2.3 RG4: Creation of novel datasets

A new version of TBND containing fingernail images was made
publicly available. This time pre-segmented fingernail images
are provided instead of full finger pictures, making the new
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Figure 2.3: Pipeline for the transient biometric identifier, presented in
[7]. A segmented fingernail image is split by color chan-
nel to allow extraction of signatures per channel. A Local
Binary Patterns (LBP) signature is derived using a Gaus-
sian pyramid and a 4 × 4 grid. A Binary Robust Invari-
ant Scalable Keypoints (BRISK) and a Scale-Invariant Fea-
ture Transform (SIFT) based signature are computed using
Good Features To Track (GFTT) keypoints. Finally a new al-
gorithm for signature fusion merges the three signatures
into the biometric identifier.
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dataset easier to use in classification tasks. The dataset is a
available at https://www.kaggle.com/vicolab/tbnd-v2. As of
20.8.2019 one hundred forty-two downloads have been made by
different research groups and multiple publications have refer-
enced our paper.

2.2.3 Technical contributions

The dataset extension to ninety-three subject made the manual
selection of keypoints for ASM segmentation infeasible. As it
turned out that a pixel-accurate segmentation was not needed,
the fingernail was detected and segmented using the ROI de-
fined by the Haar feature-based object detector proposed in [32,
55].

The idea behind this work was to use well-established fea-
tures descriptors combined with a pre-determined set of fea-
ture fusion techniques to achieve a direct and unbiased feasibil-
ity evaluation. The direct approach would avoid dataset selec-
tion bias, and remove any influence of specific machine learn-
ing methods.

Feature description begins by expanding the LBP feature ex-
traction presented in publication A. The goal was a more robust
solution that could operate in RGB space. The process starts by
dividing the segmented fingernail images into a four by four
grid. Each one of the sixteen sub-images was submitted to three
stages of Gaussian smoothing, creating a total of 48 sub-images.
The final LBP features are extracted by color channel, giving us
a total of 144 LBP signatures per fingernail image. Each LBP
signature is a 59 bin histogram. A final texture matching score
between two fingernail images is computed by averaging the
cosine similarity between pairs of such histogram sets.

Further technical contributions arose from the fusion of tex-
ture features (LBP) and descriptor-based features extracted at
discriminant fingernail keypoints. The typical approach might
have been to create a combined feature set representation of the
different features. We opted to match each feature individually
and have a final matching metric based on the combination of
matching scores. A small contribution involves the discussion
of how scores based on RANSAC inliers are biased towards a
low value and how cosine similarity score from LBP features
have the opposite behavior. Consequently, the geometric mean
is a fitting solution to compute a final matching score; the ge-
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ometric mean does not weigh the LBP and descriptor-based
features differently.

2.3 publication c

Igor Barros Barbosa, Kenneth Vilhelmsen, Audrey van der Meer,
Ruud van der Weel, and Theoharis Theoharis. “EEG Biomet-
rics: On the Use of Occipital Cortex Based Features from Vi-
sual Evoked Potentials.” In: 28th Norsk Informatikkonferanse, NIK
2015, Høgskolen i Ålesund. Bibsys Open Journal Systems, Nor-
way, Nov. 2015. url: http://ojs.bibsys.no/index.php/NIK/
article/view/243.

2.3.1 Motivation

Our original intention was to assess if the new generation of
cheap non-invasive Brain-Computer Interfaces† could be use-†The selected brain-

computer-interface
was the Emotiv

Epoc.

ful in a biometric verification system and thus explore if ’brain-
waves’ can be used as a biometric trait. The concept was to ask
different subjects to select a pass-phrase of their choosing. The
selected pass-phrase was then silently repeated by the subject
with closed eyes. Such a process is known as the recitation task.
The rationale was that the recitation task would cause patterns
on Electro-Encephalo-Gram (EEG) recordings that would be use-
ful for biometric recognition. After a few trials and assessment
of data, it was evident that data acquisition was an obstacle. The
results lead us to discuss with a research group with domain-
knowledge on EEG acquisition, specifically the NTNU Devel-
opmental Neuroscience Laboratory. Given their experience and
available data, the project goal pivoted to the re-use of already
collected EEG on infants. The work then concentrated on VEP.
VEPs are electrical potentials, recorded by EEG, reflecting activ-
ity excited by visual stimuli. The objective was set to assess the
possibility of extracting biometrically capable features from the
recorded EEG.

2.3.2 Research contributions

This publication addressed four Ph.D. research goals.
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Figure 2.4: First proposal for a looming Visual Evoked Potentials
(VEP) biometric identifier, presented in [6]. A looming stim-
ulus (simulation of objects moving in the direction of the
observer) is presented to a subject. Such a stimulus results
in Visual Evoked Potentials (VEP) which are recorded as
Electro-Encephalo-Gram (EEG) signals. Signal processing
techniques are employed to segment the VEP response and
define a Region of Interest (ROI). The biometric identifier is
a numerical representation of the ROI using normalization
and edge detection on the EEG signal.

2.3.2.1 RG1: Novel Biometric Identifier

The work introduces a methodology for computing a 200-dimensional
feature vector that can be used to represent biometric features
from brain activity recorded as EEG signals. The experimental
results indicate that the extracted features are beneficial for bio-
metric recognition of a small set of subjects.Figure 2.4 outlines
the process behind the creation of the biometric identifier.

Biometric recognition from VEP is a niche field within bio-
metrics. This work proposed feature extraction methods from
EEG signals as well as initial experimental evidence that these
features are useful for biometric recognition.
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2.3.2.2 RG2: Unconventional methods of biometric recognition

This publication was the first study to assesses looming stimuli
for the creation of biometrically useful VEP, i.e. EEG responses
due to visual stimuli. Although the results from our initial ac-
quisitions on recitation task were disappointing, the process-
ing of the data from the Developmental Neuroscience Labora-
tory showed that indeed VEP can be used as an unconventional
method of biometric recognition with limited success. In any
case, the key to biometric recognition accuracy is the combina-
tion of multiple biometrics and, as such, it can be considered. It
has the distinctive advantage of being very hard to spoof.

2.3.2.3 RG3: Application of machine learning methods in the con-
text of biometrics

This publication makes use of a Multilayer perceptron (MLP) on
a two-fold cross-validation task, since the EEG is a multidimen-
sional signal which has been well handled by such classifiers in
the past [40].

2.3.2.4 RG4: Novel datasets for Unconventional Biometrics

A new dataset of EEG responses to looming stimuli was made
available at https://www.kaggle.com/vicolab/eeg-looming. This
is to the best of our knowledge one of the largest public datasets
on Brain activity that concentrates on VEP from healthy indi-
viduals. The introduction of this dataset is important since the
largest previously published dataset [61] can be considered bi-
ased as the data was acquired from alcoholic individuals [13].

2.4 publication d

Igor Barros Barbosa, Marco Cristani, Barbara Caputo, Aleksander
Rognhaugen, and Theoharis Theoharis. “Looking beyond ap-
pearances: Synthetic training data for deep CNNs in re-identification.”
In: Computer Vision and Image Understanding 167 (2018), pp. 50
–62. issn: 1077-3142. doi: https://doi.org/10.1016/j.cviu.
2017.12.002. url: http://www.sciencedirect.com/science/
article/pii/S1077314217302254
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2.4.1 Motivation

Publications A,B, and C [5–7] focused on brand new or very
niche biometrics, thus limiting benchmarking possibilities and
potential collaboration with the biometrics research commu-
nity.
We thus decided to address the RE-ID problem which, being

more established, has large benchmarking possibilities and an
established research community.
Still, the RE-ID task is unconventional. First, it does not fo-

cus on the common biometric problem of identification/veri-
fication of personal identity. Instead, it deals with the task of
recognizing if an individual has been previously observed.
Second, RE-ID deals with a number of challenges uncommon

to more established biometrics (such as 2D facial and finger-
print biometrics): these include non-collaborative subjects, re-
duced camera resolution, varying illumination, backgrounds
and camera position. We decided to also include varying sub-
ject apparel in our problem statement in order to address a
RE-ID scenario across multiple days. This adds a significant new
challenge to the RE-ID problem, making short-lived visual-based
signatures based on apparel obsolete.
The above challenges would be difficult to address with a di-

rect approach, so we decided that a machine learning method,
such as ANN would be more appropriate. At the time the train- † Domain

knowledge in the
RE-ID scenario can
be extended by
changing the
subjects’ apparel

ing of ANNs required copious amount of labelled data and we
wanted to investigate whether real training data could be re-
placed (or aided) by synthetic data. Synthetic labelled data has
the advantages of being cheaper and faster to acquire, having
no subject privacy issues, be well controlled in terms of the pa-
rameters involved and having its size limited only by the mod-
eling capabilities. For example, the classes of a synthetic dataset
can be perfectly balanced and specific domain knowledge† can
be inserted.

2.4.2 Research Contributions

This publication addressed all four Ph.D. research goals.

2.4.2.1 RG1: Novel Biometric Identifier

The majority of re-id approaches focus on modeling the appear-
ance of people in terms of their apparel. At the time, the deep
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Figure 2.5: Novel Re-identification (RE-ID) based biometric identifier,
presented in [3]. A Convolutional neural network (CNN) is
first trained on a classification task using synthetic data.
The ‘knowledge‘ (weights and new normalized learning
rate) from the first CNN is then transferred to another CNN

which is subsequently trained on real-data. Finally a bio-
metric identifier is extracted from the numerical output of
the penultimate layer (before the classification layer).

learning methods approached the task by designing siamese
ANNs which were usually a Convolutional neural network (CNN).
Such CNNs receive two input images at once and are trained to
return a boolean value indicating if both images are from the
same subject. Therefore, siamese networks provided a match-
ing score, but no biometrics signature; potentially limiting the
fusion of such biometric systems with other biometric modali-
ties.

Publication D diverges from these typical solutions by focus-
ing on the creation of a re-usable biometric identifier that is
extractable from a single image. The publication indicates that
the output of the penultimate layer of a CNN trained to classify
subjects could be used as a numerical representation for a bio-
metric signature. Experimental results showed that RE-ID was
possible even for subjects that were never seen by the network
(during training). The proposed methodology was comparable
to human performance on the re-id task for subjects that were
observed in different days and with apparel changes. It was
thus concluded that, with the proposed approach, we had cre-
ated a rather robust descriptor for the RE-ID and possibly other
biometric tasks. Figure 2.5 shows the steps needed to achieved
the proposed biometric identifier.
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2.4.2.2 RG2: Unconventional methods of biometric recognition

Compared to the leading biometric methods based on the fin-
gerprint, face or iris, RE-ID is a niche area. The debut of a syn-
thetic dataset to aid and inject domain knowledge to re-identification
biometrics was a new unconventional method of training a ma-
chine learning algorithm for a biometric problem.
When coupled with the departure from the dominant siamese

networks, this work significantly contributes to research goal
two.

2.4.2.3 RG3: Application of machine learning methods in the con-
text of biometrics

The work proposes to use a variation of the inception-V3 net-
work [50] to tackle the RE-ID problem. The results indicate that
a non-siamese CNN trained on synthetic data can achieve com-
parable performance to the siamese networks proposed at the
time of publication. The divergence from the siamese struc-
ture simplifies the training process. A direct approach, differ-
ent from siamese networks, does not require pairs of images to
be trained. Therefore, the proposed direct method removes the
chance of injecting bias through the selection of sample-pairs
for the training dataset.
This work also made a contribution to the more general field

by demonstrating, back in 2017, how a synthetic dataset could
be used to train deep learning methods in visual tasks that can
then be domain adapted and applied to real tasks. Such practice
has become quite popular since, and has been used in further
research in RE-ID [48, 54, 63].

2.4.2.4 RG4: Novel datasets for Unconventional Biometrics

A new dataset called SOMAset has been introduced by this pub-
lication. SOMAset is composed of 100 thousand images, which
are synthetic renderings of 25 female and 25 male body pro-
totypes. The 50 human prototypes resulted from a mixture of
the three main somatotypes: ectomorph, mesomorph, and en-
domorph. Thus, the rendered subjects can represent mixtures
of long and lean bodies, athletics bodies, and obese bodies. The
synthetic dataset accounts for ethnicity by rendering subjects
with different skin colors. From the 50 body prototypes, 18 have
beige skin tones, two model Asian , and the remainder 32 pro-
totypes are equally divided between caucasian and darker skin
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Figure 2.6: SOMAset [3] rendering of 50 humans prototypes.

tones. SOMAset can be considered as a re-identification boot-
straping dataset† of 50 body prototypes (identities) that are in-
stantiated by pose and appearance as described below.†SOMAset is

meant to be a
bootstrapping

mechanism to be
used in conjunction
with fine-tuning on

the training
partition of a

re-identification
dataset. It was

designed to provide
a better

initialization of the
weights and thus

achieve better
priors.

The 50 body prototypes, shown in Figure 2.6, are rendered in
250 distinct poses each, using a different viewpoint. The dataset
is further enlarged by generalising the re-id problem across ap-
pearance, by rendering the prototypes using 8 sets of clothes.
5 unisex sets of clothes are shared across all prototypes. Three
sets of clothes are exclusive to female prototypes and Three ex-
clusive to male ones. The enlargements of the initial dataset
with different poses and different clothes introduces domain
knowledge; the re-identification task can occur across different
poses, different subjects that wear the same clothes (uniform
simulation) and across different dates where a given subject is
more likely to wear different clothes.

SOMAset can be publicly downloaded from https://www.kaggle.

com/vicolab/somaset . As of 20.8.2019 two hundred and eighty-
four downloads have been made by third parties and multiple
publications have referenced our paper.

2.4.3 Technical contributions

The proposed methodology showed the potential of our neural
network which could respond to non-appearance features of
the human silhouette — capturing structural aspects of the hu-
man body- which boosted re-identification performance. The
following specific technical contributions were made in the ap-
plication of machine learning on visual data:

a modification on the inception network .
The work presents a reduction of the inception network
that generates a 256 latent vector as the penultimate layer.
The result is one of the few networks that could be trained
from scratch and achieve competitive performance [22].

a transfer learning methodology.
The presented methodology allows for a more aggressive
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gradient update on the final layers, while the rest of the net-
work has a reduced gradient update rule. The experimen-
tal results are evidence that the transfer learning method
is successful in transferring knowledge from the synthetic
dataset to the real dataset.

a method for probing specialized neurons
Given two small subsets of data, where a given property
is part of the first subset but missing in the second subset,
this work presents a method to find a group of neurons
that are discerning towards the property that is unique to
the first subset. Thus a new method for finding discerning
neurons, in line with the distributed representation theory,
is presented. This solution gives new insights on where
and what the networking has learned to represent/detect.



3
DISCUSS ION AND FUTURE WORK

3.1 discussion on transient biometrics

The use of fingernail images for the extraction of a transient
biometric signature is a topic of both publication A [5] and
publication B [7]. The assessment of possible degradation of
the biometric signature, and thus working evidence of its tran-
sitive nature, is done using datasets acquired at three differ-
ent points in time. The first dataset works as a reference point.
The second dataset is acquired shortly after the first and shows
what performance one can expect when the signature does not
have enough time to degrade. The third dataset acquisition hap-
pens after a significant amount of time passes; long enough so
that the fingernail can accrue significant temporal changes. The
third dataset can help quantify the degradation of the biomet-
ric signature. Both publications A and B use the identification
task to assess performance; in this task, one measures the prob-
ability of matching a signature from the reference dataset (first
dataset) within the first P-ranked signatures (subjects) from the
second or third dataset. Table 3.1 integrates the identification
performance from Publication A and Publication B .

The results of publication A [5] show the potential of a fin-
gernail transient biometric signature. Out of the subjects that
were present on Day 1, 24 subjects returned on Day 8 and, out
of those, 17 subjects returned on day 70. On the 17 subjects,
a massive reduction of 58.82% in rank 1 matching probability
was observed across Day 1 and Day 70. This substantial per-
formance degradation agrees with the biological literature that
indicates the lifespan of fingernails to be up to six months [59].
The reduced set of 17 subjects is sadly not large enough to mea-
sure scalability and also limits the potential of assessing dif-
ferent signature extraction techniques. The proposed method-

32
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dataset acquisition day rank 1 rank 2

17 Subjects [5]
Day 8 100% 100%

Day 70 41.18% 88.24%

24 Subjects [5] Day 8 91.66% 100%

93 Subjects [7]
Day 2 86.02% 94.62%

Day 30 56.98% 69.89%

Table 3.1: Integrated fingernail identification performance from [5, 7].
The reference datasets were acquired on day 1 in each case,
while the test datasets were acquired on the future dates
indicated by the Acquisition Day column.

ology achieved perfect re-identification in the short time frame
for 17 subjects and nearly perfect for 24 subjects.

Publication B [7] is based on a significantly larger dataset of
93 subjects, allowing to answer questions of scalability and sig-
nature extraction robustness better. The enlarged dataset also
carries new data acquisition challenges. It is considerably harder
to get a bigger group of subjects to provide data for a prolonged
period. To avoid the pitfalls observed on the first dataset acqui-
sition, we had to limit the dataset acquisition period to one
month. The initial exploration showed that the LBP signature
extraction technique presented in [5] was not robust enough.
Publication B thus proposes an extension of the LBP signa-
ture that can work in RGB colorspace. Subjects were ranked
using the cosine similarity. The classification results give a true-
positive-rate of 0.581 for a false-positive-rate of 0.01 for finger-
nail images across Day 1 and Day 2. That practically means
that 58.1% of subjects were correctly matched while one in
a hundred imposter attempts were wrongly accepted. How-
ever, even better performence was achieved by a combination
of LBP, BRISK, and SIFT for signature extraction; this gave us a
true-positive-rate of 0.774 for a false-positive-rate of 0.01 across
Day 1 and Day 2. The new, more robust, signature extraction
technique still observes the temporal degradation of the fin-
gernail biometric signature; a true-positive-rate of 0.247 for a
false-positive-rate of 0.01 is achieved when matching fingernail
images across Day 1 and Day 30.

Transient biometrics were initially motivated to address pri-
vacy concerns in biometric systems. The fingernail has a rela-
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tively fast temporal degradation and is thus suitable as a tran-
sient biometric trait valid for days. Any transient biometric sys-
tem needs to be designed with the concept of a biometric signa-
ture lifespan; old transient signatures should either be deleted
or updated regularly.
The fingernail is a trait the subjects have control over them.

The subject can assert control over the fingernail shape through
clipping, and determine the fingernail texture through the use
of file or nail polish. Therefore, the proposed solutions give any
subject the chance of forcing the annulment of their temporal
biometrics. Consequentially transient biometrics using finger-
nails can be canceled in two way. One way is through natural
degradation by time, and a second way by giving the subject
the freedom to control the validity of their biometric.

3.1.1 Future Work

Transient biometrics is a new and open research field, with var-
ious possibilities for further exploration and exploitation:

exploration of other transient biometric traits .
It is an open question whether fingernails are the best
source of information for a transient biometric. Our work
has shown the temporal potential of fingernails, but we
hope to see transient biometrics being derived from other
biometric traits.

new signature extraction techniques .
The present work introduced transient biometrics using
the fingernail as the transient biometric trait. Therefore
only a small set of techniques, from the multitude that are
available in the computer vision armoury, were explored
for this problem.

further scalability studies .
As new methodologies for signature extraction push per-
formance boundaries, new research should also push the
limits of scalability. Fingernail biometric signatures, given
their new status, have a long way until performance allows
to scale to the level seen in other well-established biomet-
rics. To this end, much larger datasets must be acquired.

data privacy and gdpr compliance .
Data privacy is a concern that will only increase as our so-
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ciety becomes more and more data-centric. We believe that
transient biometrics is a step in the right direction: helping
in both the temporal validity and acceptability of biomet-
rics. Transient biometrics might be one of the solutions that
could help achieve better privacy-acceptable biometrics. It
also has the potential to be more easily made GDPR compli-
ant; the acquired data already has a validity lifespan and
can be removed as useless from archives after expiration.
The removal of expired data should have no impact on the
performance of the transient biometric system.

synthethic data .
Novel transient biometric signature extractors could be trained
using synthetic data. Their knowledge can then be trans-
ferred onto real data. We envision two main approaches
for creating such synthetic fingernail data. The first is to
use computer graphics rendering. In this case we would
algorithmically generate fingernail images along with mi-
cro patterns on those to define the nail textures. The sec-
ond approach is to use a Generative Adversarial Network
(GAN)[19]. See also Section 3.4 for more details on synthetic
data.

3.2 discussion on eeg

The concept of EEG based biometrics is appealing because it rep-
resents a potential solution robust to biometric circumvention.
One can create fake fingerprints or spoofing attacks for visual-
based methods of biometric recognition. However, to spoof an
EEG pattern would require more effort from potential fraud-
sters. However, the main problem with EEG is that measuring
a reliable and reproducible signal is arduous. The rationale for
publication C [6] was that the new generation of cheap non-
invasive Brain-Computer Interfaces could be a reliable hard-
ware solution to the data acquisition problem. However, this
did not prove to be the case. The failure to extract a reliable
EEG signal is most likely due to compound errors, which were
not trivial to diagnose. There could have been methodologi-
cal problems in our acquisition procedures or lack of domain-
knowledge in EEG acquisition and processing.
The above acquisition failures prompted us to use readily

available data from the NTNU Developmental Neuroscience
Laboratory. The biometric identifier would be defined by the
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behaviour of the Occipital electrodes, that measure a VEP re-
sponse. We attempted to automate the process of detecting the
VEP response within the EEG signal.

Previous literature points to the fact that VEP occurs in fre-
quencies higher then 1.8Hz [1, 35, 57]. Our work estimated that
looming VEP occur in frequencies lower than 20Hz. We thus
opted for three infinite impulse response filters to refine the
data. The first filter is a high pass filter with a cutoff frequency
of 1.6Hz. The second is a low pass filter at 20Hz, and the third
is a notch filter to clean the influence of alternating currents at
50Hz. After this filtering, an edge detection algorithm was ap-
plied to detect the peak of the VEP response in the EEG signal.
Motivated by the sequence of operations in the classic Canny
edge detector [10], we applied the following sequence of signal
processing techniques: moving average, finite derivation and
Gaussian Filtering.

The biometric identifier depends on extracting capable bio-
metric information from the segmented VEP response, done by
a feature extraction step. For feature extraction, our work pro-
poses a ROI that is 200ms long, where the VEP occurs at the 80ms
mark of that ROI. The biometrics signature is composed of two
signals per ROI: the first is the normalised EEG readings and the
second consists of the output of the proposed edge detector.

This data is finally fed to a MLP classifier. The results indi-
cate that the proposed feature extraction can produce biomet-
rically capable EEG based features. The performance was, how-
ever, quite a bit lower than that achieved by classical biometrics
methodologies. Nevertheless, one can argue that it helped to
produce biometric signatures based on EEG that requires fewer
samples (VEP trials) per subject when compared to competing
methodologies.

3.2.1 Future Work

Reliable data acquisition seems to be a big issue with EEG based
biometrics. A possible line of future work for acquiring VEP re-
sponses would be to use Functional near-infrared spectroscopy
(fNIRS) signals. fNIRS uses infrared light to measure the change
of oxygenation level in hemoglobin in the brain. It might realise
an engaging alternative for VEP acquisition.
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Without a better and very reliable acquisition process, a per-
sonal recommendation would be not to spend time and effort
on EEG or VEP based biometrics.

3.3 discussion on re-id

Publication D [3] focused on a topic of great current interest,
which is the re-identification of people using deep ANNs. What
makes the paper unique in the re-identification literature is
the way that the network is trained from scratch using a syn-
thetically generated dataset. So far, collecting datasets for re-
identification has been a costly operation, and our approach
solves this issue. Besides, our framework allowed us to break
the traditional barrier of re-id, that is, that people are not al-
lowed to change their clothes between camera acquisitions. The
work also presented a network, which at the time departed
from the commonly used siamese architectures in the re-id task.

SOMAset is the name of the synthetic dataset, which is to the
best of our knowledge the first synthetic dataset designed to
aid in the re-identification task The use of synthethic dataset A more in-depth

discussion on
synthetic data
happens at Section
3.4.

to aid in the Re-id task is now an approach explored by other
solutions [48, 54, 63]. SOMAset was created to bootstrap the
training of machine learning methods such as ANN. The idea is
that domain-knowledge is injected during the synthesis of data.
The injected knowledge gives the machine learning methods
better prior ( represented as network weight parameters in our
case) for tackling real problems.

The work paired the presentation of SOMAset to the proposal
of SOMAnet. SOMAnet is a modification on the Inception v3
[50] network designed to produce a small descriptor based on
subjects appearance and somatotypical traits.

At the time of publication, the work showed that using syn-
thetic data could achieve state-of-the-art performance on four
public re-identification datasets: CUHK03 [31], Market-1501 [62],
RAiD [12] and RGBD-ID [4]. The experiments with CUHK03
and Market-1501 show that the proposed network and syn-
thetic dataset could perform comparably to the state of the art
methods from that time; even when large dataset are already
available for training. We achieved those results with a simple
network and the novel idea of synthetic data while others used
complex networks. The results also indicate that the synthetic
data can aid established datasets and networks.
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The experiments with the RGBD-ID and RAiD datasets showed
that synthetic data is vital for training machine learning meth-
ods that are constrained by small datasets. The proposed method
shows excellent performance on both datasets, even though
they pose troublesome challenges. The RAiD dataset presents
images of 41 subjects collected by both indoor and outdoor cam-
eras resulting in a minute dataset with challenging illumina-
tion properties on which one would not expect a deep ANN to
be trainable at that time. The proposed solutions established a
new state-of-the-art for all proposed tasks on this dataset.

The RGBD-ID dataset presents 79 subjects that are observed
on different days and with different apparel. The dataset presents
both subjects with different clothes, and in some cases, subjects
are using the same attire (Uniform simulation). Thus, RGBD-ID
is characterized for breaking the appearance constraint that is
common in the re-identification task. The proposed biometric
framework using both SOMAset and SOMAnet achieves excel-
lent performance on the RGBD-ID task. When using SOMAset
to bootstrap SOMAnet, the achieved rank-1 re-id performance
of the network was 63.29%, while the average human perfor-
mance is 65%. If no synthetic data is used, the rank 1 per-
formance is 22.78%. The achieved performance results using
hand-crafted features set by the previous state of the art [23]
was 17.72% at rank 1.

The achieved performance in the RGBD-ID dataset paired
with the new method for probing specialized neurons gives
substantial evidence that this biometric solution can see beyond
appearance. For example, as is shown in Figure 7 of the paper,
specialised neurons (see Section 3.3.1) were found which re-
spond for ectomorph subjects. The results indicate that the net-
work is capturing structural aspects of the human body, such
as the somatotype. The retrieval results presented in Figure 3.1
serve as an illustration of re-id beyond appearance. Arguably,
the presented approach has pushed re-id performance in this
area by dissociating structural body cues from clothing cues.
Therefore, it is now conceivable that the re-id concept can be
included within the realm of person recognition technologies
and, we feel, that our paper is a step in this direction.

This work proposed a method to assess the impact of illumi-
nation, pose and camera viewpoints on the training of the ANN.
Experimental results allow the determination of the influence
of these variables when modeling a synthetic dataset for re-id.



3.3 discussion on re-id 39

Figure 3.1: Ranking results of RGBD-ID[3]. Probe images are shown
in the left column. The top 10 ranked gallery images
are shown on the right. The ground-truth match is high-
lighted with a green frame
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The presented solution gives the research community quantifi-
able clues on the influence of these variables in other datasets. It
turns out that pose has the highest impact out of the three vari-
ables, making it attractive to include a large number of poses.
The impacts of camera viewpoint and illumination are smaller
and comparable to each other.

A further assessment was done on the effect of the number
of rendered poses vs the number of rendered subjects. The re-
sults indicate that the number of subjects is more critical for
performance. One can thus conclude that the order of impor-
tance of the variables tested is: subject variation, pose variation
and finally illumination and viewpoint variation. One should
therefore expend more effort in injecting variation by modeling
and rendering the variables in that order.

The re-identification task presents a set of motivating chal-
lenges to the biometrics community. Non-collaborative subjects,
reduced image quality, lack of control during acquisition, cam-
era variation and unconstrained illumination are some of these
challenges that are not found in most biometrics systems. The
ground truth and labeling of re-identification datasets is also
a challenge. The solution for labeling and generating such a
dataset is either programmed/posed as in [5] or most likely de-
rived from tracking individuals on video streams. The tracking
solutions can generate label data by cross-matching two frames
of a tracked subject. As soon as video tracking solutions identi-
fies a subject observed by two cameras, a "ground-truth" label is
produced. Nevertheless, most of the systems do not have a solu-
tion in place for detecting when the same individual might be
re-observed with different apparel. Therefore, for observation
over many days where the same subject is likely to return using
different clothes (work, university, supermarket, public square);
There is a disconnect between ground truth the provided data
labels. Nevertheless, RE-ID can also be an attractive task for the
biometrics community. Data acquisition for re-identification is
cheap; it has almost no impediment by user behaviors; it can be
acquired and assessed at a vast scale. As RE-ID methods evolve
and break away from the matching of appearance, one can talk
about non-collaborative person recognition at a distance, with
a strong potential for fusion with other biometrics modalities.
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3.3.1 Understanding a neural network through visualization

Given the importance of specialised neurons as discussed above,
in this section, we would like to discuss unpublished work
and our findings that led to the development of our proposed
methodology to find specialized neurons as presented in Sec-
tion 5.2.2 of Publication D [3].
We apply a new visualization technique (see Appendix I) in

order to explore different layers of an ANN that we constructed
based on Google inception V1 [49]. Specifically, we have chosen
to concentrate on a shallow, middle and deep layer, as indicated
by the red, blue and green stars respectively in Figure 3.2. We
expect that deeper layers will encode features with higher ab-
straction power.

3.3.1.1 Visualizing neurons in a shallow layer

The first probed layer is the max-pooling indicated by the red
star in Figure 3.2. This pooling layer follows the first convo-
lution layer. While the convolution layer works as a filter bank,
max-pooling will eliminate non-maximum values and add some
spatial translation invariance to data from filter bank. Probing
this layer shall give an understanding of how the first filter bank
is processing images.
To probe this layer using our visualization technique (see Ap-

pendix I for more details on the visualization methodology), it
was selected a random image from a pre-soma dataset. Pre-soma
is the first versions of our synthetic dataset, and it differs from
the published version of SOMAset[3] for rendering images with
a large field of view. The large field of view is not ideal for re-
identifications tasks because most of the information from the
pixels are non-descriptive for the subject identity. This finding
that is now obvious was made clear by our study covering the
visualization of different layers of this network, motivating to
change the rendering field of view that yielded SOMAset. The
image from the Pre-soma dataset is shown in Figure 3.3a, while
Figure 3.3b uses our visualization technique to probe which
pixels of the input image influence activations of the first max
pooling layer
The visualizations of Figure 3.3b indicate what has been learned

by the first convolution layer. For most of the activation im-
ages, the rendered subject has discerning activation values. It is
also clear that some of the images have different activations for
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Figure 3.2: Our first trained ANN for RE-ID using syhntehtic data.
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(a) Sample Input image. (b) Probing images - First max
pooling.

Figure 3.3: Images generated by probing a shallow layer.

different parts of the subject body. Some activations are high
for the torso, some others for the shoulder lines, some for the
arms and so on. The surprising effect is that although the same
background was rendered for different subjects, the filter banks
learned by this network still generate discerning activations for
the surroundings. The images highlighted with color contours
in Figure 3.3b are visible with more detail in Figure 3.4. The
results seem to indicate that the network uses a filter bank spe-
cialized in relating the background to the user, presumably to
have a better description of the subject.
The selected vizualizations of Figure 3.4 illustrate discern-

ing segmentation behaviour. The white pixels indicate image
regions that do not activate the probed neuron. Colored pixels
indicate image regions that are important for the neuron acti-
vation, the transparency value giving the degree of importance.
The first image is segmenting out background and skin (head
and arm), the second and third images are from neurons seg-
menting the blue color. The fourth image shows segmentation
of background features (shadows). These segmentations seem
like simple filters for edges, brightness and color.

3.3.1.2 Visualizing neurons in a middle layer

An analysis of a second and third layer from the ANN should
give us an intuition of what are the intermediate and deep fea-
tures selected for this task. For a middle layer we will analyse
activations inside the second inception module, more specifi-
cally we will look at the activations of the 1x1 convolution in-
dicated in Figure 3.2 by a blue star. This layer does a sparse
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Figure 3.4: Selected visualization from shallow ANN layer.

dimensionality reduction of the previous convolution windows.
Therefore the probing of this layer shows the high correlation
clusters identified as discriminative. A few images computed
by probing this layer are shown in Figure 3.5.

These image from Figure 3.5 show what the network learned
to be discriminative clusters of information. The images on the
first row are showing the full subject or most of it. The third
image shows torso and legs and exemplify a neurons that fires
for a subject body’s parts. The final image show that the net-
work found the horizon line informative/discriminative. It is
also possible to notice that neurons might have higher activa-
tions for specific body parts. On the first image is visible that
the selected neuron has the biggest activation from the all the
four presented neurons. These results give us a few indications
on the middle level features. For most of the images with visible
activations, the rendered subject has the highest values, indicat-
ing that ANN has learned to detect subjects and that they are
key to define the class. Again some neurons have activations
for the background, if the background did not carry helpful
information for defining the subject identify (the class of the
image), we would expect to not so many activations images for
it. The behaviour to look for hints in the background to iden-



3.3 discussion on re-id 45

Figure 3.5: Images rendered by probing four random neurons. The
selected neuron are from the layer indicated a blue star in
Figure 3.2.
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tify the subject is probably a reflection of the way the synthethic
dataset was rendered.

3.3.1.3 Visualizing neurons in a deep layer

A striking fact when visualizing this deep layer (see green star
in Figure 3.2) is that, in contrast to shallow and middle layers,
the images generated (activated pixels) are, at first hand, re-
markably similar semantically. Whenever neurons of this layer
are probed, they seem to always focus on the same pixel re-
gions. Typical responses are shown in Figs. 3.6a and 3.6b. The
responses have activation peaks around the shoulder lines/-
head and the floor. The high activation for head region and
floor seems to agree with the results of [4] where it was found
that head and floor regions were the source of the most de-
scriptive set of features. Although different neurons respond in
similar image regions, we believe that they are describing a dif-
ferent semantic property. Hence, probing a deep layer solely by
generating neuron activation images may not be sufficient. This
motivated us to develop the a method for finding specialized
presented in Sec.5.2.2 of [3]. Using such methods allowed us to
easily find specialized neurons. For example, Figure 3.6b shows
the result of probing neurons that respond to the obese/non-
obese subjects. We were also able to find neurons at the deep
layer that were responding to gender, as shown in Figure 3.6a
The first row of Figure 3.6b shows three different synthethic

input images from non obese female, non obese male and obese
female subjects respectively. Columns represent subjects. The
second row shows the resulting probe images for a neuron
specialized in obese subjects. The third row shows the result-
ing probe images of a neuron specialized in not-responding to
obese subjects.
The first row of Figure 3.6a shows three different SOMAset

input images from female, male and female subjects respec-
tively. Columns represent subjects. The second row shows the
resulting probe images for a neuron specialized in female sub-
jects. The third row shows the resulting probe images of a neu-
ron specialized in not-responding to female subjects.
The results of specialized neurons for gender and weight are

indicative that this layer has neurons which represent a higher
level of abstraction. We also found that fine-tunning the trained
ANN to a real dataset also elected similar responses for obesity,
as show in Figure 3.7
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(a) Visualization of two neurons
responding to female/male
subjects.

(b) Visualization of two neurons
responding to obese/non-
obese subjects.

Figure 3.6: Visualization of neurons responding to gender and obe-
sity.

Figure 3.7: Visualization of a neurons responding to obese subject on
non-synthethic images.
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Figure 3.7 shows different RGBD-ID[4] input images from
obese male and non obese male, respectively. The second col-
umn shows the resulting probe images for a neuron specialized
in obese subjects.
The sparsity of the pixel activation observed in both shallow,

middle and deep layers also motivated us to change the render-
ing pipeline. The change came because a large part of the pix-
els, showcasing the 3d surrounding, was not electing responses
from neurons of a deep layer. Thus, it was decided to have ren-
dering with a narrow lens, where most of the rendered pixels
would show the rendered synthetic subject. Figure 3.8 shows
the difference between dataset rendering.

Figure 3.8: Difference from pre-soma and SOMAset [3]. Top row shows
images of different subjects from pre-soma dataset while
bottom row shows sample images from SOMAset.

3.3.2 Future Work

more advanced networks and bechmarks .
Publication D [3] used what was at the time a state-of-
the-art artificial neural network [50]. However, the develop-
ment of efficient ANN’s is moving quickly, and new topolo-
gies and configurations are continuously presented at an
increasing rate. A possible lineup of future work is to ex-
plore the use of more modern ANN topologies like Resnet
[21], U-Net [42] and attention-based [56] to cite a few. One
can also assess which topology is better suited to transfer-
ring knowledge from synthetic to real data.
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RE-ID benchmarks, which are crucial for research, could sig-
nificantly improve by including computational cost and its
growth rate with respect to dataset size. A neural network
that performs a one-to-one match, such as a siamese net-
work, will not scale up well with dataset size. The scaling
issue arises because every query image needs to be veri-
fied/matched against every image in the gallery set. It is
not easy to propose a standard way to measure the scalabil-
ity of proposed approaches. But such a benchmark would
create incentives for coming up with ANN topologies that
are computationally efficient while maintaining accuracy.
One possibility for such a benchmark would be to assess
RE-ID using only pre-computed embeddings along with
their computational cost.

explore re-identification in multimodal solutions .
Re-identification is a very interesting biometric approach,
as it eliminates the need for subject collaboration while
current solutions achieve very respectable ranking perfor-
mance on very large datasets. Nevertheless, the lack of
quality assessment in the dataset maintenance process cre-
ates challenges. A very large dataset is not immune to la-
belling errors and is not easy to maintain. One line of work
can be to exploit re-identification techniques in scenarios
where subject collaboration is available. This means using
re-identification based signatures in multimodal fused bio-
metrics. In that case of course we would be talking about
classic recognition tasks instead of RE-ID.

non-collaborative person recognition at a dis-
tance .
The indication that RE-ID solutions can associate identity
despite changes in apparel can lead to interesting future
work in non-collaborative person recognition at a distance.
Such solutions would need to perform identity association
over extended periods of time and they could borrow a lot
from current RE-ID benchmarks and solutions. A difference
would be the necessity to provide ground truth on identity
across time. Therefore, data acquisition would be more ex-
pensive. Based on our experience ([3, 4]), we expect that
such solutions could perform close or above humans.
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3.4 discussion on synthetic data

Publication D [3] presents a synthetic dataset named SOMAset.
SOMAset was designed to work as a bootstrapping mechanism
for deep learning and ANN that depend on large amounts of
labeled training data. Thus, a significant contribution of this
work was the demonstration that a synthetic dataset can be
used to provide better priors for a Neural Network. The work
also shows that domain knowledge can be injected and mod-
eled in the synthetic dataset, helping machine learning algo-
rithms perform better on harder tasks.
The approach used in publication D was computer graph-

ics rendering; for that we need to have a model of the object
that we want to generate (in the case of publication D, human
objects). However, in many cases, no such computer graphics
model exists.
An alternative possibility for synthetic image generation could

be based on the use of a GAN[19]. A GAN is usually composed of
two ANNs. The first network is a generator that transforms sam-
ples of latent variables (a random seed) into samples of a prob-
ability distribution that we would like to learn. The second net-
work is a classifier that attempts to discriminate samples from
the generator network and real samples from a training dataset.
The two ANNs of a GAN are trained in an adversarial setting,
competing with each other. Therefore a GAN converges when
the discriminator can no longer differentiate between real data
and samples generated by the generator. GANs have been suc-
cessfully used in vision-based classification tasks [17, 45] and
can be employed as a solution for synthetic data.



4
CONCLUS IONS

4.1 conclusions

4.1.1 A Race for peanuts?

The massive proliferation of machine learning methods based
on deep learning has created a hype evidenced by the vol-
ume of scientific publication activity in this area. This hype has
partly proven useful for the research communities in machine
learning. New tools driven by the hype are being developed at
a fast pace; such tools are now becoming a scientific commodity
and have spread to areas outside of deep learning. For example
parallelism in scientific computing based on Graphics process-
ing units (GPUs) has become very accessible as a result of the
investment of major companies in open source projects like Ten-
sorFlow and Pytorch. Such projects have given users access to
ultra-fast processing (typically tens of teraflops) for a fraction
of the cost of yesteryear. The hype in deep learning methods
has also been accompanied by the proliferation of learning ma-
terials that constantly brings new users to the exciting field of
machine learning, statistics, and pattern recognition.

However, a downside of the hype is the creation of a scientific
publication engine that feeds off an avalanche of publications
in this field. An engine that does not scale well. For example,
in CVPR 2019 (one of the major conferences in the field), ac-
cording to the official statistics [16], 5160 paper submissions
were registered. With an average of 3 reviews per paper, one
would expect in excess of 15 thousand reviews. It has proved
extremely difficult to find qualified reviewers and of the 2887
reviewers registered, over 700 were students where the minimal
qualification was to have authored two papers.

Another downside of the hype and the resulting ’mechan-
ical’ reviewing process that has resulted, is that a large por-
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tion of publications in machine learning are focusing on beat-
ing performance on benchmarks. One can thus observe that a
large part of the contributions are ephemeral, where publica-
tions demonstrate methods that apply an overfitting solution
which achieves an incremental performance gain on a partic-
ular benchmark. This craze sends wrong messages to novice
reviewers who get biased to expect that a new contribution
solely means to outperform previous methods on a benchmark.
Is such a race for peanuts worth it?

4.1.2 The Challenges of Novel Biometrics

This race for incremental performance gains on benchmarks,
which is based on the exploitation of the reviewing system,
essentially discourages the exploration of potentially ground-
breaking new avenues.

The first research goal (and a major part of the effort) of
this Ph.D. was the investigation of new biometric identifiers.
The assessment of unconventional biometric identifiers is fun-
damental for potential breakthroughs in biometric systems’ per-
formance and/or cost. First, the concept of transient biometrics
was proposed, an innovative, unconventional biometric modal-
ity. Second, a specific transient biometric trait was investigated,
the fingernail. Fingernails are not a usual source of data for†Visual

characteristics of
attire were often the
major characteristic

exploited in
previous RE-ID

works.

biometrics sytems; thus, a new set of biometric signatures for
fingernail images were proposed. Third, the EEG was explored
as a potential unconventional biometric identifier, where we
demonstrated the potential of looming visual evoked poten-
tials as biometrically discriminant data. Fourth, the somatotype
was explored as a potential new biometric identifier, based on
the RE-ID task. The proposed solution based on ANNs, achieved
state-of-the-art results while generalising beyond visual appear-
ance cues† .

Given the novelty of the above works, their publication was
challenging as one belongs, by definition, to a small non main-
stream community. These works are thus normally reviewed
by researchers working in main-stream biometrics. A bias then
arises, as such reviewers expect to see performance comparable
(at least) to established biometric identifiers. It is commonplace
to make unfair comparisons of the performance of an emerg-
ing biometric, dictating that such new methods are not suitable
replacements for established traits X, Y, or Z. These reviewers
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need to be reminded that biometrics is not a zero-sum game
where one solution needs to be found to rule them all. Rather,
novel biometric traits establish potential new sources of data,
that can potentially mature in very robust methods later. Such
novel biometric traits are also potentially ideal candidates for
biometric fusion schemes, if they provide complementarity in
failure cases to existing biometric traits. Biometric fusion is con-
sidered as a unique option to achieve 100% accuracy [51].
Another challenge of novel biometrics is related to data ac-

quisition. Data for new biometrics is not ordinarily available in
the form of established datasets and benchmarks. Thus, data
acquisition becomes a big and expensive part of such research. The publication of a

new dataset
accompanied every
paper of this Ph.D.

In doing so, the biometrics community is given access to new
data that can potentially spark a new field. Since the acquisition
cost of a new biometrics dataset is high, it should be expected
that such datasets are a fraction of the size of established ones.
This challenge motivated us to investigate the use of synthetic
datasets for biometric tasks.

4.1.3 The philosophical contrast of biometrics

Always the eyes watching you and the voice enveloping you.
Asleep or awake, working or eating, indoors or out of doors, in the bath or in bed —

no escape.

Nothing was your own except the few cubic centimetres inside your skull.

— 1984 - George Orwell [39]

As humankind developed from a small population of tribes of
hunter-gatherers into larger communities of collaborative and
interactive societies, identity recognition became a fundamental
task. Groups of hunter-gatherers had complex dynamics, and
identification of friends or foes was vital for survival; identifi-
cation was, however, efficiently performed by individuals given
that the size of the groups was small. Identification was solely
based on a personal ability to recall all known identities from
their experience and previous observation of biometric charac-
teristics (like face, voice, body shape) or context (such as loca-
tion and contacts). This is how humans still perform biometric
identity association [25].
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As hunter-gatherers evolved into more populous societies
with complex interactions between groups, it became impos-
sible to rely on an individual’s ability to identify other sub-
jects. Thus, at first, a substitute for the identification of friend-
s/foes relied on a shared belief (e. g. entity/God) or a common
exchange currency [20]. Then, as humankind started organiz-
ing in more prominent civilizations, the ability to identify a
subject and associate it with other social constructs (e. g. Na-
tionality) became fundamental. As the biometric identification
ability of humans did not scale and was not transferable, thus
evolved identity association via surrogate representations. Sur-
rogate identity representation can be based on what a subject
possesses (e. g. ID card or passport) or what they know (e. g. user-
name and password) [25].

The advent of modern automatic biometric methods , makesAutomatic
biometric methods

scale up the original
biometric

characteristics used
for identity

association by
hunter-gatherer

groups

it possible to perform identity association based on biometric
characteristics for extensive groups. We thus rely less on surro-
gate identification solutions, which can be lost, forged, copied,
shared, stolen, etc.

Robust identity association methods are crucial to modern
society as they are fundamental for law-enforcement, interna-
tional border control, access to secure sites (e. g. Nuclear power-
plants, military base) and so on. Automatic biometric methods
are a big step towards the goal of social safety.

The economies of scale that accompany the maturity of auto-
mated biometric methods have led to a significant reduction in
the cost of capable biometric sensors, enabling the possibility of
performing biometric authentication on personal devices. Cur-
rently, it is common to use fingerprints or even face recognition
as a form of access control on mobile phones and computers.
The widespread use of biometrics for access control of personal
devices appears to be motivated by convenience rather than se-
curity concerns. Biometric authentication on these devices com-
monly replaces token entry but does not add a new layer of
security (which would increase access control). In the case of
face recognition, the average user probably does not know that
information to falsify/deceive biometric authentication is pub-
licly available [11, 58] or that in some cases there is no way to
provide updates to prevent spoof attacks [9].

However, this ubiquitous adoption comes with a cultural shift:
the acceptance of biometrics is increasing throughout society as
a whole, which may lead to a new generation that accepts the
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indiscriminate use of biometrics and regards it as standard/-
common. Acceptance of hard and robust biometrics is growing.
For example, every day thousands of people volunteer their
fingerprint information to gain access to a Disney amusement
park or to purchase restricted sales items such as alcohol or to-
bacco without human interaction in places like Norway. Ques-
tioning of the necessity behind the use of selected biometrics
does not seem to grow similarly. Is it important to be given the
choice to remain anonymous? Can the loss of privacy as a result
of the use of biometrics result in the reduction of an individ-
ual’s ability to protest and demonstrate? Do modern biometric
solutions propagate biases from their training sets (e. g.against
specific ethnic groups that were not in the training set)? Do bio-
metrics in the hands of suppressive regimes result in a tool of
seggregation and crowd control?

Biometrics and its derived applications are a tool of modern
society as any other tool it is unaware of any ethical implica-
tions of its use. A simplistic argument goes that the final re-
sponsibility rests solely at the hands of the agent employing
such a tool. Nevertheless, as researchers, we need to ask our-
selves about our responsibility and intent in developing biomet-
ric methods. To this end we need to delve into the philosophical
contrasts generated by the use of biometrics.

The philosophical contrast of biometric solutions is multi-
faceted. Biometrics arose out of personal relations, and yet auto-
matic biometric methods currently promote unilateral connec-
tions between people and machines. Identity association was
in place to ensure individual and collective freedom from dan-
ger; automatic biometric methods can be used to isolate and
track minorities, potentially placing them in greater danger. Au-
tomatic biometric methods evolved to be convenient, scalable
and in some cases not even require direct collaboration; now
they can also be used by powerful entities that can forcibly ex-
tract private biometric information of those who would like to
remain anonymous[34].

As for any technology that has both positive and negative im-
plications for society, the question arises whether it is beneficial,
or not, to perform public domain research on such a technology.
Is it better to not do any research and assume that the current
state-of-art of biometric solutions will remain unchanged? I be-
lieve this is not a realistic option: biometrics is woven into our
societal fabric, and there is no control of research studies driven
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by valid or spurious motivations. Is it better to perform such re-
search only by private entities that can invest in it, or should
it be publicly driven in the hope that public knowledge is the
best tool a society can have to establish a fair system? Since
there is nothing to stop private entities to develop biometric
solutions for spurious motivations, I believe that it is better to
have similar research results in the public domain in order to
understand their capabilities and pitfalls, thus enabling society
to better understand and regulate them.



Part II

APPENDIX

I
NEURAL NETWORK ACT IVAT ION
V I SUAL IZAT ION

Loss function optimization can lead to local minima that rep-
resent the path of least resistance to the optimization function.
Therefore, image based ANNs can learn classification based on a
biased representation. One example is a CNN that learns that ev-
ery image with snow is from the category of skiing (because the
dataset only has images of snow when dealing with the class
skiing - dataset representation bias). One way to investigate the
representation learned by an ANN is to identify which neurons
respond to properties of interest and visualize which pixels of
the source image are responsible for such response in different
layers. For example, is the ANN responding to the parameters
that we assume (somatotype, identity) or is it rather responding
to other parameters, such as apparel? Is the network respond-
ing to variations in gender or obesity? For Publication D [3],
the ability to probe the neural network for specialized neurons
and to verify expected behavior allowed us to tune the data
generation pipeline.
Our focus is neuron activation for a given pixel Xi of an in-

put image X where {X ∈ Nw×h×3 | 0 � Xi � 255}. Thus the es-
tablished visualization techniques that provide a class model
visualization [47], or select which input image would activate a
neuron the most, or direct visualization activation [60] are not
suitable solutions. The most suitable alternatives were based on
image saliency visualization [47].
Saliency visualization is a guided gradient backpropagation

visualization technique, which relies on the backpropagation of
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a neuron activation all the way to the input image. We imple-
mented a variation of this technique that allowed us to distill
a better-localized response for our data. Previous visualization
techniques had too many high-frequency artifacts or hid im-
portant details by not showing the activation on the original
colorspace. These issues motivated our novel neuron visualiza-
tion approach.
Our first synthetic dataset, named pre-soma which is unpub-

lished (see more details in Section 3.3.1.3 and in Figure 3.8), had
a higher out-of-class similarity when compared to the normally
visualized ILSVRC-2013 dataset[44], Figure I.1.
The proposed visualization uses an input image X and shows

by how much, and which pixels, affect any given neuron. We
propose modifications to the saliency map visualization of [47]
that are less affected by high-frequency artifacts. We present the
saliency maps in the original image colorspace. The result is a
more straightforward neuron visualization.
Given the input image X and the activation of a probed neu-

ron AL,N, where L denotes the neuron layer and N denotes the
neuron index within the layer. One can calculate the derivative
of AL,N with respect to the image X using backpropagation al-
gorithms. The magnitude of the derivative in the input space
can be used to indicate which pixels contribute the most for the
given activation.
Equation I.1 shows how the Saliency map S is derived: the

gradient of the activation AL,N, with respect to the image X, is
computed; the gradient is then projected from the three RGB
channels to a single channel input space by the function φ(·),
which computes the L2 norm of the three color channels for
each pixel. The salience S is finally computed after φ(·) is con-
volved with a Gaussian kernel N with a square window of size
W. This convolution operation works as a further regularization
tool [60].

S = φ

(
∂AL,N(X)

∂X

)
∗N(W) (I.1)

Ideally, one would perform regularization for every derived
layer inside the backpropagation chain, but this comes at a very
high implementation cost. Instead, [60] proposes to convolve
φ(·) with a Gaussian kernel N, using a large size W, directly in
the input space. We have taken an approach that tries to give
better localization using a small window and less aggressive
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Figure I.1: Sample images showing out-of-class variance. The first col-
umn shows three classes from ILSVRC-2013 dataset [44].
These are radiator, container-ship and leopard—the sec-
ond column shows three classes from the pre-soma dataset.
One can notice that there is sizeable outer-class variance in
ILSVRC-2013 compared to data from the pre-soma dataset.
Small out-of-class similarity holds for any vision-based
biometric classification
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regularization (previously performed by Gaussian kernel con-
volution). The proposed approach consists of three steps:

step 1 : compute S using a small window size W .
The first step of the proposed visualization approach is im-
plemented by Eq. I.1 with a small window size. The win-
dow size W was defined to be the same as the largest con-
volution window used in the network. The smaller W is,
the sharper the response.

step 2 : layer based contrast enhancement.
Do contrast enhancement based on the ratio of activation
values in the probed layer L. For the implementation of this
step we compute a mask M ∈ Nw×h, where w,h are the in-
put image width and height respectively, according to Eq.
I.2. The mask performs a contrast enhancement operation
that depends on the ratio of the maximum activation value
of the probed neuron (AL,N) to the maximum activation
value across all neurons of its layer, max(AL). M also de-
pends on γ, a user-defined parameter that can be tuned to
ensure visualization of very deep networks. The γ param-
eter is tunable by observing the resulting visualization of
the final layer. One should increase γ from zero upwards
until the neuron with the highest activation produces a vis-
ible effect in the final visualization. Tunning of γ is crucial
because the saliency maps for deep layers of well-trained
ANNs can have very small values; values higher than 255

are clamped.

step 3 : filter out high-frequency noise .
The third step is accomplished by a median filter opera-
tion
med(◦,W) where W is the previously defined filter win-
dow size. This operation removes single-pixel activations
(noise) and further reduces the high-frequency components
in the computed mask.

M = med

(
min

([
S · γ · e

max(AL,N)

max(AL) −1
]
, 255

)
,W

)
(I.2)

The final visualization is achieved by setting values of the
mask M as the alpha (transparency) channel for the the input
image X. Areas with zero alpha are represented as white pixels.
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This visualization encodes two pieces of information: it shows
which pixels of X influence the activation of the probed neuron
AL,P the most; the contrast of the color components allows the
comparison of the activation values across the neurons of layer
L. Visualization results are shown in Section 3.3.1.
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Abstract

Transient biometrics, a new concept for biometric recog-
nition, is introduced in this paper. A traditional perspective
of biometric recognition systems concentrates on biometric
characteristics that are as constant as possible (such as the
eye retina), giving accuracy over time but at the same time
resulting in resistance to their use for non-critical appli-
cations due to the possibility of misuse. In contrast, tran-
sient biometrics is based on biometric characteristics that
do change over time aiming at increased acceptance in non-
critical applications. We show that the fingernail is a tran-
sient biometric with a lifetime of approximately two months.
Our evaluation datasets are available to the research com-
munity.

1. Introduction

Biometric recognition systems offer unique advantage
when compared to conventional recognition systems, such
as smart cards or passwords. By using a biometric recogni-
tion system, the subject does not need to carry or remember
any id or password, and there is less risk of loss or dis-
closure of the recognition token. Biometric recognition is
thus gaining support and acceptance in critical recognition
situations supported by governments or other large organi-
zations.

Despite the advantages of biometric recognition systems,
a major concern of individuals is the possibility of misuse
of their biometric data. A card or password can be canceled,
but what happens if your biometric data falls into the wrong
hands? An individual’s privacy may be compromised (e.g.
through their use for unauthorized recognition purposes) or
discrimination may be enabled (e.g. through unauthorized
use by insurance agents).

Cancelable biometrics [7,8] attempts to answer this con-
cern by pre-transforming (distorting) the biometric data be-

fore the biometric signature is extracted. The transforma-
tion is non-reversible. Thus, the potential for misuse is lim-
ited by the fact that the misuser cannot retrieve the original
biometric data, and the transformation can be changed at
any time. However, cancelable biometrics requires that the
subject trusts the biometrics capture point and also that the
misuse is detected in order to activate a transform change.

There is plenty of scope for biometric recognition sys-
tems to become more socially acceptable, in the sense that
society could accept and use such systems in day-to-day
scenarios. The acceptability issue remains particularly open
when dealing with non-critical scenarios and collaborative
subjects. For instance, individuals will not happily offer
their fingerprints just to have access to their hotel room. The
points raised above limits the use of biometric technologies
in a multitude of noncritical situations.

In this paper we introduce transient biometrics. Tran-
sient biometrics is defined as biometric recognition tech-
nologies which rely on biometric characteristics that are
proven to change over time. Thus, they automatically can-
cel themselves out after a known period of time. A transient
biometric approach for the verification task is shown in Fig.
1. In contrast to cancelable biometrics, it is the actual bio-
metric data that are naturally changing over time. As a con-
sequence it will presumptively help in the creation of more
sociable acceptable recognitions systems. We show that im-
ages of the finger nail constitute a transient biometric with
a lifetime of two months.

The remaining of the paper is organised as follows. Sec-
tion 2 briefly presents the biometric literature which em-
ploys finger nails. Section 3 details our approach followed
by Section 4 that shows experimental results. Finally, Sec-
tion 5 concludes the paper, envisaging some future perspec-
tives.
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Figure 1. Example of a verification task employing transient bio-
metrics.

2. Previous Work

The use of finger nails in biometrics applications has
been the topic of a few different lines of research. A com-
plex acquisition system employing tailored lighting equip-
ment has been designed to acquire images of the nail bed,
which is the skin under the nail plate [9]. Such images are
then used for individual authentication by exploring fea-
tures from the nail bed grooves. This is possible because
the nail bed is unique to each individual [3].

Recently, a cancelable biometric approach has devel-
oped stickers, which can be placed over finger nails for an
identification process [4]. In the presented paper, thumb im-
ages were acquired against a black background, for it made
it easier to compute the boundaries of the thumb. The stick-
ers glued over the fingernails provide two landmarks which
are used in the feature extraction process. The finger outline
is pursued, and the distance from the outline to the land-
marks creates a distance profile. The final matching proce-
dure is done by computing correlation coefficients between
distance profiles. Whenever such sticker is removed or re-
positioned over the finger nail, the distance profile changes.
Therefore, it is possible to cancel the biometric by replacing
the landmarks or by shifting the sticker position. The finger
nail would only play a role in the recognition system if the
nail outgrew the finger. Although it is a valid cancelable
biometric approach, this work does not truly explore finger
nails for biometric recognition.

The information of the nail surface has been explored by
a biometric authentication system proposed in [2]. This ap-
proach uses images of hands in order to extract information
from the finger nails. First, the fingers are segmented by
a smart contour segmentation algorithm, then the nails are
segmented by grey scale thresholding. This simple segmen-
tation approach is likely to work given that the employed

dataset was biased with respect to subject’s skin tones. The
individual authentication process is built upon the hamming
distance of high frequency Haar wavelet coefficients. Ex-
perimental results show reasonable recognition rates using
three sample images per subject. The first two images are
employed in training while the last image is used for test-
ing. Despite the positive results, this work does not explore
how the recognition rate behaves with respect to the growth
of the finger nails; the authors do not provide the time dif-
ference between acquisitions, so we assume that all images
were acquired on the same date.

3. The Proposed Approach

The transient biometric approach presented in this work
addresses the identification problem. Therefore, our objec-
tive is to identify a subject by comparing a biometric sig-
nature against a dataset of previously collected samples. To
this end, the proposed solution can be divided into three
phases. The first phase deals with image segmentation and
pre-processing. The second phase extracts the biometric
signature, while the third phase addresses signature match-
ing.

3.1. Nail image pre-processing

Images of the right index finger are the source of bio-
metric information. Since the images were taken on dif-
ferent days and sometimes with different cameras, the pre-
processing of input images is a key step for the overall pro-
cess. It assures that the images delivered to the signature
extraction algorithm fulfil the requisites regarding colour
correction, nail plate registration and image size.

Pre-processing starts by segmenting the nail from the fin-
ger images. Such segmentation is done by an active shape
model (ASM) see [11]. The active shape model requires
a set of training images where the segmentation has been
manually performed (contour drawn). The algorithm em-
ploys Principal Component Analysis (PCA) to find eigen
segmentation contours, with very accurate results. The ASM
also describes the image around each control point with a
grey-level appearance model. This grey-level appearance
model is computed using lines perpendicular to each con-
trol point, and it is built using the first derivative of grey-
level images. This appearance model will be used later in
an iterative fashion to correct the position of control points
while searching for the best segmentation contour.

The ASM requires training data and for this purpose the
dataset D01 was used. This training dataset represents the
first acquisition day. It contains an image of the right index
finger for every enrolled individual, with a total of 32 im-
ages (see more information on the dataset in Sec. 4). The
ASM was trained with two main landmarks and 20 control
points between them. The first landmark is placed at the
base of the nail plate just by the intersection with the finger
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skin. Meanwhile, the other landmark is placed opposite to
it, by the end of the nail plate. An input sample is shown
as [A] in Fig. 2, and the resulting segmentation is shown as
[B].

Image pre-processing continues by computing the
bounding box. Next, the bounding box is converted to grey
scale, making the input more robust to changes. These
changes are likely to happen due to wrong white balance
or even due to the use of different cameras. The overall
pre-processed image is given by resizing the bounded box
to a width and height of 128 pixels. The resulting image is
shown as [C] in Fig. 2

Figure 2. Sample results from the image pre-processing pipeline.

To make the training process more robust each image is
used to create multiple variations. These are given through
the application of Wiener Filters, by shifting the segmented
region-of-interest by a few pixels and by the application of
histogram equalisation. When all these images modification
are combined in a chain, every input image generates 810
variations.

3.2. Signature extraction based on uniform LBP

It has been observed that a nail plate is categorised by
a unique texture which is influenced by patterns in the nail
bed [3]. The nail plate texture is also dependent on inter-
action with external factors. Hence, it is common to no-
tice white spots and marks originating from scratches or
bumps. Since the nail plate possesses such rich texture,
we have opted to base signature extraction on Local Binary
Patterns (LBP), which is a successful and robust texture de-
scriptor [5]. LBPs are known for their computational ef-
ficiency and their capacity to discriminate micro-patterns.
They have also been successfully employed in a wide va-
riety of applications, ranging from texture classification [6]
(their original purpose), to facial recognition [1]. Thus, LBP
has been selected for the signature extraction process.

LBP are computed pixel wise, relying on the pixel neigh-
bourhood information. The computation starts by defining a
neighbouring circle with a radius of R pixels and P evenly
spaced sample points. Bilinear interpolation is used to com-
pute the value of a sample point if it does not fall on a pixel
center. Fig. 3 illustrates two possible circular neighbour-
hoods. LBP is computed for the pixel gc, located in the
center of the circle, using the threshold operation of Eq. 1.

Figure 3. Sample neighbourhoods of (P,R) = (8, 1) and
(P,R) = (8, 2).In these examples gp are the sample points, where
p ranges from 1 to P .

LPBP,R =

P∑
p=1

φ (gp − gc)× 2p−1

φ (x) =

{
1 if x ≥ 0
0 if x < 0

(1)

An LBP is uniform whenever the coded value is com-
posed of zero, one or two bit-wise transitions. Thus, the pat-
terns 11111111 and 00001111 are uniform since they have
zero and two bit-wise transitions, respectively. On the other
hand, the pattern 10101010 is non-uniform since it is com-
posed of eight transitions. If a coded pixel uses eight sample
points, it is possible to generate 256 patterns, out of which
58 are called uniform LBP patterns. The work of [1,6] con-
firms that uniform Local Binary Patterns (LBPu2) account
for the vast majority of encountered patterns. Therefore,
signature extraction employs uniform LBP for describing
the nail plate texture.

The signature extraction process starts by dividing the
pre-processed nail plate image into smaller image blocks.
A 4 × 4 grid is used for the division, generating 16 blocks
of 32 × 32 pixels. A histogram of the values of LBPu2

8,2 is
then computed for each block. The histogram is composed
of 59 bins, 58 of them used for uniform patterns and the last
bin for non-uniform ones. The signature is then created by
concatenating the 16 histograms, thus forming a global de-
scriptor of the nail plate. This process is illustrated in Fig. 4
and follows the methodology proposed in [1]. A descriptor
capable of describing texture and its spatial relationships is
thus created, which is very suitable for the nail plate. How-
ever, the resulting signature has 944 features. The dimen-
sionality curse is avoided by the use of Karhunen-Loeve
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Analysis. The data from D01 (see Sec. 4), is analysed by
Karhunen-Loeve decomposition which allows us to map the
extracted signature into a subspace of 200 dimensions.

Figure 4. Signature extraction pipeline

3.3. Signature matching

Signature matching essentially identifies patterns within
a dataset. These patterns should ideally have small vari-
ation between objects of the same class (e.g. nail images
of the same subject) while they should have large vari-
ation across different classes. To identify such patterns
Bayesian classification is employed. A Bayesian classifier
estimates the boundaries between classes assuring that the
Bayes risk/error is minimal. The Bayes rule states that the
probability of a subject belonging to a class ωk given an
observation z (signature after dimensionality reduction) is
given by the posterior probability as shown in Eq. 2.

P (ωk|z) = p (z|ωk)P (ωk)

p(z)
. (2)

where P (ωk|z) is the posterior probability, p (z|ωk) is
the probability distribution of z coming from a subject with
known class ωk, P (ωk) is the prior probability of having
the class ωk and p(z) is the distribution of the observation.

If a unitary cost is assumed for every wrong classification,
the minimisation of the Bayes risk becomes equivalent to
the maximisation of posterior probability [10]. Therefore,
the classifier can be re-written as

∧
ωmap (z) = argmax

j
{p (z|ωj)P (ωj)} . (3)

Our assumption is that the conditional probability density
function, p (z|ωj), can be modelled as normal. Therefore
the observations are assumed to have an expectation vector
μk and a covariance matrix Ck, yielding to the function
shown in Eq. 4

p (z|ωj) =
1√

(2π)N |Ck|
e

(
(z μk)T C

1
k

(z μk)

2

)
(4)

Such a conditional probability density function results
in a quadratic classifier. It was determined experimentally
that if we assume that the covariance does not depend on
the class, e.g. Ck = C for all possible classes, we end up
with a linear Bayes normal classifier which outperformes
the quadratic classifier.

The linear Bayes normal classifier is them applied to ev-
ery computed z and the final classification is given by the
conjunction of the 810 images which were artificially cre-
ated. To get the final classification of each input image, a
final distance measure is created by Eq. 5.

D
(
Z810, ωk

)
=

810∑
n=1

∣∣loge c (Z810
n , ωk

)∣∣ (5)

where Z810 represents the conjunction of 810 observa-
tions derived from a single input image, c

(
Z810

n , ωk

)
repre-

sents the confidence of the nth observation of Z being from
class ωk. When this distance measure is employed, the most
probable class is given by the smallest computed distance.

4. Experiments

This section will describe the experimental dataset and
the effect of nail plate growth on identification performance.

4.1. Dataset Creation

Our dataset is composed of three different sets of data.
All three sets have followed the same acquisition process.
First the right index finger of the subject is placed over a
white sheet of paper, which is supported by a flat surface.
The finger is placed over this surface without putting pres-
sure against it, as pressure changes the colour of the finger
nail. Then a diffuse light is placed so the light source points
to the top of the finger. Therefore, the finger is virtually
pointing to the light source. Such lighting condition avoid
highlights and help achieve proper exposure. Finally the
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image is acquired by framing only the contents of the white
paper and maintaining proper focus on the finger nail plate.

Two things differentiate the three sets of data: acquisi-
tion date and number of subjects. Set D01 consists of the
collection of images from the first acquisition day. Not sur-
prisingly, this represents the largest set in terms of number
of subjects, consisting of data from 32 individuals. The sec-
ond set D08 is composed of images acquired seven days
after the initial acquisition. This set is composed of 24 indi-
viduals who were also part of D01. The third and small-
est set, D70, contains images of 17 subjects, all part of
D08. The images of this third set where acquired seventy
days after the initial acquisition day. Figure 5 shows sam-
ples of four individuals who were represented in all three
datasets. The nail dataset and its future extensions will be
made available at NTNU’s Visual Computing group website
[http://www.idi.ntnu.no/grupper/vis/].

Figure 5. Images samples from available datasets. Each Row rep-
resents a dataset while each column represents a different subject.

4.2. Identification performance analysis

In all experiments the classifier was trained using only
information from D01. The classifier was then applied to
D08 and D70 to evaluate the decay of identification perfor-
mance, as expected for a transient biometric solution. As
D70 contains only 17 subjects, the classifier K17 is trained
on D01 using only the information from subjects available
in D70. The classifier is then applied to D08 and D70. The
cumulative matching curve (CMC) is used as a standardised
evaluation graph. It assesses the classification performance
in identification problems. CMC models the probability of
a signature from a test dataset, in this case D08 and D70,
being correctly matched in the first P ranked subjects from
the training datasetD01. Such rank is derived from the com-
puted distances, as specified in Section 3.3. The CMC curve
for both D08 and D70 are plotted in Fig. 6. The perfor-
mance decay observed inD70 is evidence that the biometric
signature extracted from the nail plate biometric is of short
persistence. Thus the nail plate is a good candidate for tran-
sient biometric solutions. If the normalised area under the
curve is taken as a performance measure, the changes in the
nail plate during the 62 days between the acquisition ofD70
and D08 account for a 9.32% decay. If rank one recognition

is taken as a measure of performance, the results are even
more conclusive: the two month interval represents a decay
of 58.82% in the probability of identifying the individual in
a first guess.
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Figure 6. Cumulative matching curves for classifierK17 evaluated
on D08 and D70. The classifier was trained for 17 subjects and
then applied to images acquired 8 days later (D08) and 70 days
later (D70). The decay in performance from D08 to D70 argu-
ments in favour that finger nails are transient biometrics. There-
fore, the biometric information changes during time, making the
identification process unreliable after two months.

A second classifier K24 was trained on D01 using only
the information from subjects available in D08. This classi-
fier is composed of 24 subjects and represents a harder clas-
sification task than the oneK17 was assigned. The objective
was to show that positive identification is possible with nail
biometrics over a short period of time. The classification
results are shown as a CMC curve in Fig. 7.

Finally, Table 1 summarises the results of the three clas-
sification problems presented.

Classifier K17

Test Dataset nAUC Rank 1 Rank 2

D08 100.00 % 17/17 17/17
D70 90.657 % 7/17 11/17

Classifier K24

D08 99.479 % 22/24 23/24

Table 1. Classification performance

5. Conclusion

So far, biometrics research has produced significant re-
sults in terms of universality, distinctiveness and perma-
nence. Acceptability still remains as an important issue and
the main reason behind this is the fear of misuse of one’s
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Figure 7. Cumulative matching curves for classifierK24 evaluated
onD08. The classifier was trained for 24 subjects and then applied
to images acquired 8 days later (D08). The overall performance
achieved in D08 arguments in favour that finger nails are transient
biometrics which a week interval has little effect in the recognition
capabilities.

permanent biometric data. Individuals are thus reluctant to
volunteer their biometric characteristics where possible, and
the leap in usability that biometric technology offers (i.e.
password- and devicefree access to resources), cannot be
realised.

This work introduces a new idea to address the accept-
ability issue inherent to biometric solutions. This approach,
designed for collaborative individuals, instead of recording
permanent data, records transient data, i.e. data that do
change over time and are thus cancelled by nature. Users,
who know that the biometric data they offer is going to be
useless for recognition purposes after a certain amount of
time, are likely to be more willing to offer it, even for day-
to-day applications. This approach is termed transient bio-
metrics; the idea is to use features with a short permanence,
giving a diminutive period of recognition.

A transient biometric solution to the identification task
was presented, which exploits texture features, extracted
from finger nail images, investigating different acquisition
intervals. Identification performance was high within a
week but degraded considerable after a two month period.
This indicates that finger nail images are a valid transient
biometric solution.

In subsequent work we intend to expand our dataset with
more subjects, more realistic capture conditions and differ-
ent skin tones.
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Abstract The significant advantages that biometric recog-

nition technologies offer are in danger of being left aside in

everyday life due to concerns over the misuse of such data.

The biometric data employed so far focuses on the perma-

nence of the characteristics involved. A concept known as

’the right to be forgotten’ is gaining momentum in interna-

tional law and this should further hamper the adoption of

permanent biometric recognition technologies. However, a

multitude of common applications are short-term and there-

fore non-permanent biometric characteristics would suffice

for them. In this paper we discuss ’transient biometrics’ i.e.

recognition via biometric characteristics that will change in

the short term and show that images of the fingernail plate

can be used as a transient biometric with a useful life-span

of less than six months. A direct approach is proposed that

requires no training and a relevant evaluation dataset is made

publicly available.
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1 Introduction

Common non-biometric recognition systems confirm a sub-

ject’s identity based on what a subject knowns (e.g pass-

word) or possesses (e.g access card). Such systems have the

inherent risk of disclosure of the recognition token or theft

of the possession. Such risks are largely mitigated when bio-

metric recognition systems are employed, as they offer the

possibility of confirming a subject’s identity based on their

own biometric characteristics, rather than what they know

or carry. Biometric recognition systems thus offer protec-

tion from theft of access data, as well as convenience of use

since access data does not have to be remembered or carried.

Recent biometric research has produced compelling re-

sults in terms of distinctiveness, universality and performance.

However it has also concentrated on permanent biometric

features, such as the iris, face or fingerprint. Individuals fear-

ing the misuse of their permanent biometric data and are of-

ten unwilling to provide such data to any biometric solution,

especially so for noncritical applications. Thus, the benefits

granted by biometric technology (i.e. password and device-

free access to resources), cannot be fully exploited.

The fear of misuse of biometric data is not unfounded;

while an ID-card or password can be canceled, the same

cannot be done with one’s permanent biometric data. Com-

promised biometric information may be used for unautho-

rized recognition purposes while there is also the risk of dis-

crimination via unauthorised use of such data (e.g. by in-

surance agencies). Cryptography is a plausible solution for

the protection of biometric data, but this assumes that the

subject trusts the biometric system. Cryptographic solutions

are subject to the reliability of the entire computer system,

and not just on the cryptographic algorithm used. Further-

more, a subject’s trust on a system is not only determined

by the quality of the system, but also by the importance and

sensitivity of their biometric data. Thus, subjects may be re-
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luctant to offer their biometric information for non-critical

applications.

The social acceptability of recognition systems will be-

come increasingly relevant as the ’right to be forgotten’ gains

momentum in legal systems worldwide [17]. In broad terms,

this concept stems from the desire of the individual to deter-

mine his or her future without being stigmatized by actions

performed in the past.

Research on cancelable biometrics [22,23] concentrates

on the acceptability issue. It pre-transforms the biometric in-

formation before a biometric signature is extracted. As such

a transformation is irreversible, the possibility of exploiting

any stolen information is restricted by the fact that the ex-

ploiter has no access to the original biometric information.

An extra security layer is provided as the transformation can

be changed at any given time. Nevertheless, cancelable bio-

metrics has to identify the theft of biometric information in

order to change the transformation. Last but not least, a sub-

ject still has to entrust the biometric capture point with their

permanent biometric information.

This work takes the acceptability matter a step further by

proposing the use of biometric data that does change over

the short term (i.e. is transient). This concept was discussed

in [2] but is extensively explored here. Transient biometrics

is defined as the set of biometric recognition technologies

which depend on biometric characteristics that are proven

to change over time. Thus, such biometric data automati-

cally nullifies itself after a known period of time. In contrast

to cancelable biometrics, it is the biometric data itself that

changes over time. Transient biometrics is not proposed as

a substitute to the cryptographic techniques that should be

present in any biometric system, including a transient bio-

metrics system. However, the use of transient data should

give the user the assurance that if their data are compro-

mised, it would automatically be rendered useless in a short

period of time.

This work discusses the concept of transient biometrics

(as a complete version of our initial presentation [2]) and

advocates that fingernail plate images constitute a transient

biometric characteristic. A set of algorithms for perform-

ing biometric recognition using such data are proposed and

three methodologies for extracting transient biometric sig-

natures from fingernail plate images are given. It also uses

these methodologies in direct approaches (i.e no training or

learning phases) for both the verification and the identifi-

cation tasks. Another contribution is the discussion and se-

lection of a viable signature fusion rule. Finally, a relevant

new dataset is presented and made available to the research

community to further explore this domain.

This paper is organized as follows. Section 2 presents

the biometric literature previous work on biometric recogni-

tion based on non-permanent data as well as biometric work

embracing fingernails. Section 3 details the technical side of

the proposed approach followed by Section 4 that presents

the new publicly available fingernail dataset and the exper-

imental results of the proposed method. Finally, Section 5

concludes the paper, envisaging some future perspectives.

2 Previous Work

Transient biometrics is a new area with little previous work

to report; we shall thus focus on related fields, the nearest of

which is cancelable biometrics [22,23] (see section 1). As

mentioned there, the major difference between cancelable

biometrics and transient biometrics is that in the case of the

former technology, the biometric data are protected via an

irreversible transform, while in the case of the latter, the

biometric data itself has only temporary recognition value.

Individuals are therefore more likely to volunteer such tran-

sient data, even for non-critical applications and even when

they are not entirely confident on the integrity of the capture

point.

Person re-identification is a related transient problem aris-

ing in the surveillance area. The objective is to identify if a

person has been previously observed in a non-collaborative

subject setting using non-invasive techniques. It is therefore

usually based on images, from which appearance-based lo-

cal features are used to re-identify a given subject [3,8].

Such biometric systems produce a transient identification

solution since it is only possible to identify a subject until

this subject changes clothes or other major appearance char-

acteristics. Appearance is one of the few options to use in

re-identification within a surveillance setting where the im-

ages are often taken from a distance using a video camera;

however it is questionable whether it can be regarded as a

biometric trait, since it is rather easy to spoof by knowledge-

able subjects.

The Bioelectrical characteristics of a fingernail are used

as a biometric signature in [4]. This patent work presents

a RFID chip glued over the fingernail. This embedded sys-

tem measures the subjects’ capacitance, which is claimed to

be unique, thus creating a biometric solution based over the

fingernail region.

The use of fingernail images as biometric data has been

the topic of few different lines of research. The skin under

a nail plate, called nail bed, is unique for each individual

[11]. A special acquisition system has been designed to ac-

quire images of the nail bed. Such images use the grooves

of the nail bed for recognition purposes [26]. The finger-

nail surface has also been explored for a biometric authen-

tication system [12]. This work segments the five finger-

nails as regions-of-interest (ROI) from a hand image using a

contour segmentation algorithm. The hand is photographed

while resting on a white surface. This segmentation method-

ology works but the employed dataset was biased with re-

spect to the subjects’ skin tones. Haar wavelet and Inde-
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pendent Component Analysis (ICA) are used to create a

biometric signature. From the five fingernail images, three

are used for training and two for testing. The methodology

yields high recognition rates, yet the paper does not evaluate

the effect of the growth of the fingernails on the recognition

rates (i.e. no longitudinal analysis is performed). The work

of [10] combines biometric information from fingernails and

finger knuckles to create a multi-modal biometric system.

Mel Frequency cepstral coefficients (MFCC) is employed to

create a finger knuckle biometric signature. The fingernail

signature is created by using both approximation and detail

coefficients of a second level wavelet image decomposition.

The final classification is done by a Multilayer Percptron

(MLP). Similar to the work of [12], a high classification

performance is achieved. Nevertheless, the work does not

assess the behaviour of the information over time. In both

[10,12] the final signatures are composed from information

of three fingers. There is no special fusion methodology to

keep transient characteristics of the data. It is thus likely that

the proposed solution learns hard biometric characteristics

from the subject’s fingers instead of transient information.

Thus, none of the above works involving fingernails focus

on their transient nature.

The work of [25] shows that the green camera channel

and a 3D model of the fingertip can be used for measur-

ing the force exerted by the fingertip. This work explores

changes in coloration of the fingernail images to detect the

magnitude of the force being applied to/by a specific region.

A Bayesian classifier is then used to deduce the relation be-

tween force and coloration changes. In their latest work [7],

the authors presented an automated calibration for a setup

using an adjustable camera, controlled lighting and a mag-

netic levitation haptic device. Thus they are able to measure

forces using only the camera image with higher accuracy.

The work also presents three approaches to fingernail regis-

tration. The registration results achieved are impressive but

depend on a controlled lighting setup.

The work of [6] presents a color based fingernail seg-

mentation. The work found that the third principal compo-

nent of the RGB color-space can be used to differentiate fin-

gernails from images of skin patches. The work is assessed

on a small dataset of five subjects

Our previous work assesses the use of fingernail im-

ages to create a transient biometric solution [2]. There, a

small dataset was used to evaluate the longitudinal identi-

fication rate of fingernails. It was shown that recognition

performance decreases to unusable rates after two months

. These results are in line with physiological studies show-

ing that healthy fingernails are replaced within three to six

months [28]. In the present work we extend and complete

the evaluation of fingernail images as transient biometrics

by comprehensive testing in terms of algorithms and dataset.

3 Proposed Approach

The transient biometric solution presented in this work is a

direct approach to the verification and identification tasks.

No training is employed in the task of matching a biometric

signature against a database of previously collected signa-

tures.

An image of the right index fingernail is used for the

extraction of the biometric signature. The approach will be

divided into three parts. The first part outlines the image pre-

processing which is necessary in order to make the image

suitable for biometric signature extraction. The second part

details the extraction of the biometric signature from a fin-

gernail image. The third part describes how signatures are

compared and matched.

3.1 Fingernail Plate Image Preprocessing

Image preprocessing ensures that the data delivered to the

signature extraction phase fulfills some basic requirements.

This should be a square image composed mainly of the fin-

gernail and it eliminates the possibility of using potentially

hard biometric information form finger-joints or finger shape
1.

To automatically segment fingernail images, an object

detector as proposed in [27] and extended in [15] is em-

ployed. In this object detector, a classifier is trained with

sample images of manually segmented fingernails, that match

the requirements of the signature extractor, generating the so

called positive samples. Negative samples are also generated

using sample images with no fingernail.

This fingernail image classifier is composed of a cas-

cade of elementary classifiers, also called stages. A given

region of interest (ROI) is either rejected by a stage or it pro-

ceeds to the next stage. Initial stages are simpler than sub-

sequent ones and focus in rejecting non-positive ROIs, i.e.

areas where there is a low chance of detecting a fingernail.

As such areas represent larger portions of the images, the

overall detection speed is increased. When a stage approves

a ROI, this region is passed on to the next stage. If the ROI

is approved by every stage, then this region is classified as a

fingernail image. Each stage is an Adaboost classifier which

relies on haar-like features as input.

A large number of Haar-like features can be computed

for every ROI which is significantly larger than the number

of pixels of the given region. Thus feature selection is a re-

quirement. Adaboost is employed for both the selection of

such features, as well as for the training of the classifiers.

After the input image is converted to grayscale, as re-

quired by the object-detection algorithm, a ROI is defined

1 The used dataset (see Section 4.1) provides already segmented fin-
gernail images using the methodology presented in this Section.
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by a scanning window. Robustness to scale variation is due

to scaling of the detector, which can be applied at differ-

ent scales with no extra cost. As the scanning window gazes

through the input image, the cascade classifiers detect the

fingernail multiple times. To achieve a final detection, as

shown in Fig. 1, the detected ROIs are overlaid and merged

into a single detection by selecting the average of the bounded

regions.

Fig. 1 Result from the object detector proposed by [27,15] trained to
detect fingernails. Detection outlined by a white bounding box.

Given the high resolution of the input images, the final

ROI is then scaled to 300px×300px. The original color im-

age of the selected ROI is then sent to the signature extrac-

tion stage.

3.2 Signature Extraction

Every individual has a unique fingernail bed pattern, simi-

lar to a fingerprint, which influences the texture that consti-

tutes the fingernail plate [11]. This texture is also influenced

by the day-to-day interaction of the fingernail plate and the

environment. Therefore, it is common to find white spots,

marks and scratches over the fingernail plate. It is this rich

texture region of the fingernail plate that is analyzed in order

to create a texture based signature using a grid implementa-

tion of Local Binary Patterns [19]. This signature extraction

process is described in Sec. 3.2.1.

The fingernail plate boundary and the unique white spots

on it can be quite discriminative, and to exploit such char-

acteristics two feature descriptors were employed. Section

3.2.2 explains how the SIFT[16] and BRISK [14] descrip-

tors are used to create a second signature.

Notice that both the fingernail plate texture and its bound-

ary shape have a transient nature since the fingernail plate

changes completely over a period of about 6 months [28].

3.2.1 LBP Based Signature

Local Binary Patterns (LBP) was originally proposed as a

reliable texture descriptor [19] and is known for its speed,

robustness and capacity to differentiate between micro-patterns.

The signature extraction uses a GRID extension of the LBP,

based on the work of [1].

For every image pixel an LBP value can be computed by

comparing the actual pixel value to its neighborhood. The

pixel neighborhood is defined by a circle of radius R and a

set of P equally spaced sample points. The LBP value for the

central pixel is derived out of a binary comparison against

the sample points. One bit is assigned to each sample point.

The least significant bit value comes from the comparison

against the top-left sampling point. It receives 1 when the

central pixel is greater than or equal to the sampling point

and 0 otherwise. This procedure is then applied to all other

sampling points, in a clockwise manner. Therefore when 8

sampling points are used, there are a total of 256 possible

LBP values. Fig. 2 illustrates the LBP calculation with a

sample neighborhood of (P,R) = (8,2).

Fig. 2 LBP sample points are shown in red or green circles. The value
of a sample point is bilinearly interpolated for sampling points that are
not located on the center of a pixel. Dark circles denote sample points
that have a lower value than the center pixel. Bright circles denote sam-
ple points which have a greater or equal value to the center pixel. Circle
numbers indicate the index of the bit position in the LBP code.

LBP values are called uniform if the binary part is com-

posed of one or two bit-wise transitions. Uniform LBP val-

ues account for the majority of encountered patterns on nat-

ural images [20,1]. For example, in the case of eight sam-

pling points, the patterns 00010000 and 11001111 are uni-

form since they have two bit-wise transitions. For eight sam-

pling points, a total of 58 out of the 256 possible patterns are

uniform.

To extract the LBP signature the input fingernail image

is divided into 16 blocks using a 4× 4 grid. Each image

block is submitted multiple times to a Gaussian smooth-

ing function, creating a Gaussian pyramid image set. This

process generates a total of 48 smaller images from each

input image. The final signature comes from the computa-

tion of uniform LBP values with a sample neighborhood of

(P,R) = (8,2) for each color channel. For each small image,

3 histograms of 59 bins are computed, 58 bins employed for

the uniform patterns and the last bin for the non-uniform pat-

terns. Thus, for each input image the signature is composed

of 3× 48 histograms of 59 bins. Although these histograms
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sum up to 8496 bins, the curse of dimensionality is avoided

thanks to the matching technique.

Fig. 3 LBP signature extraction. Each input image generates an LBP
based signature comprised of 144 histograms, or 48 histograms per
color channel.

3.2.2 Descriptor Based Signature

The first step of the descriptor based signature is to decom-

pose the color image into three monochromatic images. Then

keypoint detection is performed on each color channel. A

keypoint detector that produces an output of low count is

fundamental to any matching technique that relies on image

descriptors. A low count of keypoints allows the solution

to compare only significant points, speeding up the process

and yielding a more robust and discriminative set of fea-

tures. A multitude of different keypoint detectors have been

proposed in computer vision while it is common for feature

descriptors to propose their own keypoint detectors as for

example in [14,16].

Given that the image pre-processing presented in Sec.

3.1 already yields an image with a decent fingernail align-

ment and unique orientation, the use of keypoint detectors

that are robust to such characteristics would be superflu-

ous. A single fast and simple keypoint detector is shared

across different descriptors. The selected keypoint detector

is Good Features To Track (GFTT) [24] and represents a

modification of the well known Harris corner detector [9].

Fig. 4 shows the result of this keypoint detector. The key-

points concentrate around the fingernail plate boundary as

well as fingernail plate scratches and white spots, which are

ideal to discriminate across subjects.

Fig. 4 Keypoints computed for the red, green and blue channels of a
fingernail plate image. The keypoints concentrate around the fingernail
plate border.

Having defined the keypoints, descriptors must next be

computed on them. Two different keypoint descriptors are

employed. The Scale Invariant Feature Transform - SIFT

[16] was chosen for its success as a robust descriptor while

the Binary Robust Invariant Scalable Keypoint - BRISK was

selected for its efficiency [14]. Thus two biometric signa-

tures are created for each input image, based on SIFT and

BRISK respectively.

The total number of keypoints is reduced since both SIFT

and BRISK prune down the keypoints by evaluating their

stability (via contrast, distance to other keypoints, neighbor-

hood noise, etc). Final monochromatic images have an av-

erage of 800 stable keypoints. Therefore, on average, a total

of 2400 keypoints compose each of the two descriptor based

signatures, one for SIFT and the other for BRISK.

3.3 Signature Matching

Signature matching defines the metrics used in order to com-

pare different signatures. Ideally there is a small variation

across signatures from the same subject, and large variation

across signatures from different subjects. It is common to

rely on machine learning techniques to discover patterns in

signatures and then use such patters for signature matching.

Previous work [2] even employed Bayesian classification

and dimensionality reduction for signature matching.

Since the proposed approach intends to employ a direct

methodology to transient biometrics, it avoids techniques

that rely on training and cannot employ dimensionality re-

duction. Signature matching is thus done in stages; the three

signature types are matched independently. This is also con-

venient for the exploration of different signatures fusion method-

ologies.
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3.3.1 LBP Based Signature Matching

Matching LBP signatures fundamentally depends on obtain-

ing a match score between two histograms, P and Q, with n
bins. For this task, Cosine similarity as stated in Eq. 1, is

employed:

Φ(P,Q) =
P ·Q

‖P‖‖Q‖ =

n
∑

b=1
Pb ×Qb√

n
∑

b=1
(Pb)2 ×

√
n
∑

b=1
(Qb)2

(1)

A single LBP signature is composed of 144 histograms.

Each histogram is derived from a small image region, and

depends on the layer of a Gaussian pyramid and on the color

channel. The final matching score is given as the mean score

of matching corresponding histograms across different in-

put images. Therefore, a histogram is only compared to its

counterpart in another image, which deals with the curse of

dimensionality while giving the signature the capability of

describing texture and spatial relationships at the same time.

If Xi represents the ith histogram of image X, then the LBP

matching score L between images A and B is given by Eq. 2:

L(A,B) =
1

144

144

∑
i=1

Φ(Ai,Bi) (2)

3.3.2 Descriptor Based Signature Matching

A Fast Approximate Nearest Neighbor Search, proposed by

[18], is first employed to evaluate the euclidean distance be-

tween keypoint combinations of the two images to be matched.

The resulting matches are evaluated by a RANSAC [5] algo-

rithm to remove bad matches and to detect a consensus set

of plausible matches.

In order to create a unique signature matching score which

can be combined with other scores, the RANSAC algorithm

is executed multiple times. Each time it returns the percent-

age ϒ of keypoints that are part of the consensus set. 2 The

descriptor matching score D of images A and B is then com-

puted as the average of the consensus keypoint percentage:

D(A,B) =
1

n

n

∑
i=1

|ϒi| (3)

When matching is performed across multiple images us-

ing a distance measure, it is usual to normalize its output

to yield a consistent matching score across images; however

this normalization is only possible after all inter-image dis-

tances have been computed. Being an average percentage

2 Ransac is run multiple times to ensure change in the seed of the
random number generator. Similar results are achieved if RANSAC is
executed once for a longer time.

value, the proposed matching score of Eq. 3 does not require

post-normalization and is thus suitable as a direct technique

to compute the score between two images.

3.3.3 Signature Fusion

LBP describes the micro-texture that comprises the finger-

nail plates and their spatial relationships. In contrast to the

descriptor based techniques LBP does not focus on discrim-

inating white spots, marks or the border between fingernail

plate and skin. A methodology for merging the different

techniques is thus necessary. The idea of signature fusion

is to generate a final matching score, which combines the

properties of LBP, BRISK and SIFT.

The work of [21] shows different methodologies to sim-

ilarity score fusion. Assuming that Sn is the nth similarity

score, it proposes five fusion functions, as shown in (Eq.

4). SA represents the arithmetic mean of the Manhattan (L1)

metric. SE computes the root mean square of similarities and

performs as a Euclidean (L2) metric. SG computes the prod-

uct of similarities and works as geometric mean metric. Smax

and Smin are simple rules to respectively select as final score

the maximum or minimum similarity score:

SA =
1

n

n

∑
f=1

S f (4)

SE =
1√
n

(
n

∑
f=1

S f
2

)1/2

(5)

SG =

(
n

∏
f=1

S f

)1/n

(6)

Smax =
n

max
f=1

(
S f
)

(7)

Smin =
n

min
f=1

(
S f
)

(8)

Since the proposed matching score functions of Eq. 2

and Eq. 3 have bounded outputs in the range [0,1], all of

the proposed methodologies of Eq. 4 could be employed as

score fusion techniques. However most of them cannot han-

dle the hidden issue of large variations in the skewing of the

distribution scores.

In the case of the Cosine similarity used in the LBP

matching technique (Eq. 2), the scores will have a propen-

sity towards high values. While correct matches will present

higher matching scores that wrong matches, given the deriva-

tion methodology and the fact that similarity is computed on

a 59 dimension vector, wrong matches are also likely to give

high matching scores.

The opposite is true in the case of descriptor match-

ing where a natural bias towards low values occurs in the

matching scores (Eq. 3). Given the low re-projection error

accepted by the RANSAC algorithm when computing the
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consensus set, the matching score technique will generally

produce lower values; of course it is still true that correct

matches are likely to yield higher results than wrong matches.

Given the aforementioned matching score value distri-

butions, Eq. 4 and 5 would give a bigger weight to the LBP

features, while Eq. 7 would ignore descriptor based features

and Eq. 8 would ignore LBP based features. Such issues can

be avoided with the normalization of the score distributions,

but such a process is unacceptable in a direct approach.

The selected fusion technique is the geometric mean (Eq.

6). Thus the final matching score does not weigh differ-

entially the LBP and descriptor based features. To explore

different combinations of features a total of three signature

fusions are computed. The first signature fusion FLS relies

on fusing LBP and SIFT features. This way the final signa-

ture will use the micro-texture capabilities of LBP combined

with SIFT’s capability of describing the fingernail border

and fingernail plate white spots.

A second signature fusion FLB is created using LBP and

BRISK, in order to evaluate how the BRISK descriptor com-

pares to the SIFT descriptor in this task. Finally a third sig-

nature FLBS is defined, fusing LBP, BRISK and SIFT into a

final matching score.

4 Experiments

This section describes the publicly available experimental

dataset of fingernail plate images as well as the verification

and identification performance of the proposed method on

this dataset.

4.1 Publicly Available Dataset of Fingernail Plate Images

An extended version of an experimental dataset called Tran-

sient Biometrics Nails Dataset (TBND) was created3. TBND

is composed of images of the right index finger. During ac-

quisition the subject was instructed to lay their finger over a

flat white surface and a simple point-and-shoot camera was

used to acquire an image without the the use of a flash. No

explicit instructions with respect to force applied were given

and thus our results incorporate arbitrary force differences

between users and capture sessions. Acquisition was thus

done in a semi-controlled environment; apart from the white

background and indirect lighting, the images present varia-

tion with respect to scale, focal plane and illumination. The

dataset consists of three subsets, each one compromising the

same 93 subjects, but varying on acquisition date.

The first subset D01 consists of images acquired on the

first acquisition day. The second subset D02 is composed

3 Thanks to Cham Athwal of the School of Digital Media Technol-
ogy, Birmingham City University

of images acquired one day later. The third subset D30 was

acquired one month after the first acquisition date. Given

acquisition restrictions, the acquisitions of D30 have up to

two days’ tolerance. This represents a massive expansion of

the originally collected dataset [2], and will also be made

available through NTNU Visual Computing lab’s website [

http://www.idi.ntnu.no/grupper/vis/TBND ].

4.2 Verification Performance

To evaluate verification performance a simple direct classi-

fier is used, which thresholds the matching score between

two images to determine if they correspond. To asses the

verification behavior across time and thus determine how

transient the explored fingernail plate biometric really is,

images from D01 are matched against D02 and D30. It is

anticipated that the fingernail plate biometric information

transforms as the fingernail grows. Therefore, higher veri-

fication rates should be expected for matches across a day

interval (D01xD02) than for matches across a month inter-

val (D01xD30). The difference in verification performance

between these two cases will determine how transient the

proposed biometric is.

Assuming that each subject represents a class, verifica-

tion can be treated as a binary classification problem where

the proposed solution verifies if a query image is from whom

it is claimed to be. This implies that the classification out-

put can yield four types of result: true positive, true nega-

tive, false negative and false positive. These outcomes are

typically computed by comparing each image from the first

dataset (called a query) against every image of the second

dataset (called a target). A true positive is the case where the

query is correctly classified as a match for the target while a

true negative is the case where the query is correctly classi-

fied as a non-match for the target. A false negative is when

the query is wrongly classified as a non-match for the target

while a false positive is when the query is wrongly classified

as a match.

Let TP, TN, FN and FP represent the cardinalities of

the sets that represent the above four possible classifica-

tion outcomes. By defining the False Positive Rate (FPR) as

shown in Eq. 9 and the True Positive Rate (TPR) as shown

in Eq. 10, it is possible to assess the verification perfor-

mance with the Receiver Operator Characteristics (ROC)

curve. This methodology evaluates how different thresholds

on FPR (i.e. the risk of the system) impact on TPR (i.e. the

convenience in the use of the system), by plotting FPR vs

TPR:

FPR =
FP

FP+FN
(9)
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T PR =
T P

T P+FN
(10)

Conventionally when a biometric methodology is evalu-

ated with a ROC curve, the False Positive Rate ranges from

10−3 to 1. Given that our datasets compromise 93 subjects

(being the first datasets of their kind), evaluating at FPR =

10−3 would produce results of low statistical significance

since the classification of a single subject would greatly al-

ter the output values. This, in conjunction with the assump-

tion that the proposed methodology is aimed at non-critical

biometric applications, led us to compute the ROCs curves

in the range 10−2 to 1.

We first compute the ROCs for each of the basic features

used separately: SIFT, BRISK and LBP. We assess the verifi-

cation rates for matches done with a day interval (D01xD02)

against matches done with a month interval (D01xD30). The

achieved results are shown in Fig. 5.

These ROC curves shows that all three features undergo

an expected performance deterioration within the course of

a month. This decay in performance shows that fingernail

plate images are a transient biometric feature with a short

lifetime.

We next present results on the fused signatures in Fig. 6.

The ROC curve for FLS shows verification performance for

a signature based on the fusion of LBP and SIFT. In theory

this signature fusion will have the capability to discriminate

subjects’ fingernails based on fingernail texture due to LBP,

as well as due to fingernail border characteristics and finger-

nail white spots due to the SIFT descriptor. The computed

ROCs are shown in Fig. 6 (a). The achieved results indicate

that the proposed signature fusion technique of Eq. 6 on the

fused signature FLS outperforms the two best performing in-

dividual features shown in Fig 5 [ (a) & (c) ]. Therefore, the

signature fusion technique was successful. This is further

demonstrated in the fusion that results in the FLB signature;

in this case the LBP signature is combined with the effi-

cient BRISK descriptor. The ROC curves for this fusion are

shown in Fig. 6 (b). The final signature fusion FLBS employs

all three features, LBP, BRISK and SIFT. The idea is similar

to before; use LBP to describe texture and SIFT/BRISK to

describe fingernail borders and discriminating points. This

time the fusion will also exploit any complementary infor-

mation hidden in the combination of BRISK and SIFT. The

results are shown in Fig. 6 (c).

Table 1 gives verification data for the proposed signa-

tures. It shows the True Positive Rates achieved at an FPR

of 0.01. The results indicate that the final signature fusion

FLBS for fingernail plate images is a transient biometric with

a lifetime of less than 6 months. This is based on the as-

sumption that the TPR of 0.247 after one month is already

at an unacceptable level for practical recognition purposes

(i.e. the biometric feature has been invalidated) and that the

(a) SIFT

(b) BRISK

(c) LBP

Fig. 5 ROC curves for SIFT (a), BRISK (b) and LBP (c). Curves la-
beled D01xD02 show the verification performance for matches done
with a day interval, while curves labeled D01xD30 show the verifi-
cation performance across an interval of a month. The performance
decay between the two intervals shows that fingernail plate images are
a transient biometric feature.

TPR value of 0.774 after one day is acceptable, at least for

non-critical applications. We sextuple the invalidation pe-

riod (from one to six months) to allow for possible future

algorithmic improvements that could improve these figures

and also taking into account physiological knowledge indi-

cating that human fingernails totally outgrow within a period

between 3 and 6 months [28].
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(a) LBP+SIFT

(b) LBP+BRISK

(c) LBP+BRISK+SIFT

Fig. 6 ROC curves for combinations of [LBP+SIFT] FLS (a),
[LBP+BRISK] FLB (b) and [LBP+BRISK+SIFT] FLS (c). The perfor-
mance improvement against the individual features of Fig. 5 indicates
that a successful feature fusion methodology was found. Curves la-
beled D01xD02 show the verification performance for matches done
with a day interval, while curves labeled D01xD30 show the perfor-
mances for a month interval. The larger performance decay between
the two intervals compared to single features, further supports the case
that fingernail plate images are a transient biometric feature.

4.3 Identification Performance

The identification task is a multi class problem, where a

query biometric signature is compared against a list of col-

lected signatures (the target set) with the objective of finding

if the query matches any of the collected signatures. To eval-

Table 1 Verification data (TPR) at 0.01 FPR across datasets captured
with a day interval (D01xD02) and a month interval (D01xD30).

True Positive Rate for different intervals

Signature One day One Month

SIFT 0.742 0.269

BRISK 0.505 0.151
LBP 0.581 0.333

FLS 0.763 0.279
FLB 0.656 0.204
FLBS 0.774 0.247

uate identification performance the cumulative match curve

(CMC) will be used. CMC gauges the probability of a sig-

nature from a query dataset, in this case D02 or D30, being

correctly matched in the first k ranked subjects from the tar-

get set, in this case D01. The subjects of the target set are

ranked using FLBS (Fusion of LBP, BRISK and SIFT by Eq.

6). The abscissa in the CMC graph shows the rank while the

ordinate shows the probability of a correct match up to that

rank.

In the identification task, a simple threshold classifier

plays no role on performance and the results show how re-

liable a computed matching score is for finding a correct

match from an entire dataset. Figure 7 shows the CMC for

FLBS and gives another evaluation of the transient nature of

the proposed biometric approach.

Fig. 7 Cumulative match curves for FLBS. The scores are computed by
comparing images from two query sets, respectively acquired within a
day interval D02 and within a month interval D30, against images of
the target set D01. The decay in performance from D02 to D30 fur-
ther supports the presumption that fingernail plate images constitute a
transient biometric characteristic.

It is interesting to compare the identification results against

our previous study which involved only 24 subjects [2]. Al-

though the present method is significantly more robust, it

achieves 86.022% Rank one identification on 93 subjects
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compared to 99.479% Rank one for the previous method on

24 subjects. 4

4.4 Matching Score Distribution

In this section the results are analyzed using two charts show-

ing matching score distributions. The score distribution charts

give us an unbiased view of the behavior of a transient bio-

metric across time that eliminates any bias introduced by

classifier selection.

A histogram is used to approximate the probability den-

sity function (PDF) for matches done within a day interval

(D01xD02) and within a month interval(D01xD30). In both

scenarios the matching scores were divided into two dif-

ferent PDFs. The first PDF, called ’Impostor’, accounts for

the cases where the matching score is computed between

a query subject and an impostor. The second PDF, named

’Correct Subject’, accounts for the cases where the match-

ing score is computed between a query subject and itself.

By separating the matching scores into these two cate-

gories, impostors and correct subjects, it is possible to ob-

serve the effect of time, and thus get an idea of the decay in

recognition performance. These matching scores are com-

puted using FLBS (Fusion of LBP, BRISK and SIFT using

Eq. 6). The abscissa represents matching score values while

the ordinate represents frequency expressed as a percentage.

5 Conclusion

Transient biometrics are introduced as a plausible solution

to the acceptability issue of biometric recognition systems.

It presents a methodology which reduces the risk of misuse

of biometric information; instead of relying on permanent

biometric data it uses biometric data that changes within the

short term and thus nullifies itself. Therefore, it is an engag-

ing solution for collaborative individuals which are reluctant

to volunteer hard biometric information (e.g. fingerprints,

retina images) for non-critical biometric recognition tasks.

Given the knowledge that the collected biometric data has

an expiration date and becomes useless for recognition after

this, individuals are more likely to volunteer such biometric

data for day-to-day recognition tasks.

A transient biometric feature and methodology for ver-

ification and identification tasks was presented. This builds

and completes previous work [2] and uses fingernail plate

images. A new dataset is presented and will be made pub-

licly available; it consists of a larger number of subjects,

more realistic (and challenging) capture conditions as well

as subjects with different skin tones.

4 Note that in the current study we compare day 1 to day 2 while in
the previous study the comparison was across day 1 and day 8.

(a) One Day interval

(b) One Month interval

Fig. 8 Probability Distribution Functions (PDF) for matches against
impostors and correct subjects for a one day interval (a) and a month
interval (b). The change observed in the correct subject PDF from (a)
to (b) further indicates that fingernail plate images are a plausible tran-
sient biometric. Notice that the score distribution for correct matches
changes in such a way, that in case (b) it is hard to differentiate match-
ing scores between correct subjects and impostors. This analysis elim-
inates any influence that may have been added from the choice of clas-
sifier. There is no post normalization after the matching score of Eq. 3;
as this score comes from the percentage of RANSAC inliers, using a
rather strict threshold, it is natural to have low matching scores.

The proposed methodology exploits both texture features

and (descriptor based) information extracted from discrim-

inant fingernail keypoints. No training or machine learning

techniques are employed in the computation of the biometric

signatures making this a direct approach.

Both verification and identification performance was high

within a day interval but degrades considerably after a month,

indicating that fingernail plate images are a valid transient
biometric feature. Here we consider the performance of 80%

to be high, given the novelty of the explored biometric trait.

Nevertheless, some more traditional (non-transient) biomet-

ric technologies currently offer significantly higher recog-

nition rates. It would therefore be important to explore im-

provements in the recognition rate, so that the proposed tran-

sient biometric could become commensurate with currently

’acceptable’ recognition levels. One such improvement would
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be the use multi-biometrics of the same class, by exploiting

more than one fingernail per subject. In this case it is im-

portant to adopt a suitable fusion technique and to maintain

the transient nature of the solution when extracting infor-

mation from multiple fingernails, which could potentially be

derived from a single image of the hand (that potentially also

contains non-transient data). Another possibility for improv-

ing the recognition rate would be to use machine learning

techniques instead of the current direct approach.

If one was willing to sacrifice the transient nature of the

proposed approach, e.g. in order to create a multi-biometric

solution using fingerprints and fingernails, the entire images

of the fingers could be used. This would fit well with the

works of [13], where finger knuckle images are used for

biometric identification. A multi-biometric approach would

also relate to the work of [12] where both fingernails and

finger knuckles are used as biometrics.

The current size of the dataset does not allow for a re-

alistic scalability study (e.g. it is not possible to compute a

meaningful FPR of 10−3). In further work, it would be in-

teresting to expand the size of the dataset in order to allow

for such a study.
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Abstract
The potential of using Electro-Encephalo-Gram (EEG) data as a biometric

identifier is studied. This is the first study that assesses looming stimuli

for the creation of biometrically useful Visual Evoked Potentials (VEP), i.e.

EEG responses due to visual stimuli. A novel method for the detection of

VEP responses with minimal expert interaction is introduced. The EEG data,

segmented based on the VEP, are used to create a reliable feature vector.

In contrast to previous studies, we provide a publicly available evaluation

dataset based on infants which is therefore not biased due to unhealthy

individuals. Only data from the occipital cortex are used (i.e. about 3 of the

many possible electrode positions in the scalp), making the potential EEG

biometric capture devices relatively simpler.

1 Introduction
The quest for reliable biometric identifiers has dominated biometrics research over the last

decades. Spoofing is a major concern and in this respect many biometrics fail and have

to resort to liveness testing, which further complicates matters. One biometric identifier

that is potentially very hard to spoof is the activity of a person’s brain. The question,

of course, is how reliable a biometric identifier such brain data would be and it is this

question that the present paper addresses by providing new results on an unbiased dataset

of brain activity, which will be made publicly available.

Most work on biometric recognition from brain activity concentrates on Visual

Evoked Potentials (VEPs) because of the relatively clear response and the fact that a

publicly available dataset is available [3, 18]. However, this dataset is considered biased

because the have been acquired from alcoholic individuals [5]. We addressed this issue by

creating a new dataset based on electroencephalographic (EEG) recordings from infants’

VEPs. Infants have considerably thinner skulls than adults and hardly any hair. This can

explain why we are able to identify looming-related brain electrical responses on a trial-

by-trial basis in the raw data from the EEG recordings in infants. Another aspect of our

This paper was presented at the NIK-2015 conference; see http://www.nik.no/.

publication c 91



Figure 1: Head-drawing (nose up) and 3D head-model showing scalp localization of the

standard 27 electrodes, with green circle showing electrodes O1, Oz, and O2 used in the

current study. These electrodes capture EEG activity of the human visual cortex.

method is that it uses just 3 channels (O1, Oz, and O2 as shown in Fig. 1), since we know

that VEPs reflect a response in the occipital area, elicited by visual stimuli; this would

practically allow the acquisition device for such a biometric to be a far simpler version of

the cumbersome tens of electrodes that are usually used to acquire a general brain EEG.

When a subject is exposed to specific external sensory stimulation, it is possible to

register on EEG recordings an evoked response. Visual evoked potentials (VEPs) are

electrical potentials, recorded by EEG, reflecting activity evoked by visual stimuli. In

EEG research these VEPs are elicited by any type of visual stimuli, and are often found

over visual areas (the occipital cortex). Looming stimuli in infants will elicit a negative

component in the visual cortex.

In this work we show the potential usage of visual evoked responses in biometrics,

without the averaging of EEG activity. More specifically, we show how visual evoked

potentials (VEP) evoked by looming stimuli can be employed for biometrics.

Related Work
Biometric recognition based on brain electrical activity is a developing field of research.

A recent review of existing work on the use of EEG for person recognition is [5]. As the

review shows, a substantial part of the efforts to use EEG in biometrics focus on Event

Related Potentials (ERP); VEP is the only ERP biometric analysed so far.

Most EEG-related biometrics research has been using the publicly available dataset of

[3, 18], which we shall refer to as Zhang-DDBB. This dataset consists of 125 subjects, out

of which 77 were alcoholics, and was not created for biometrics research. Palaniappan
and Raveendram started investigating the use of EEG VEPs for biometrics in [10]. In

this work 61 electrodes were used to record brain activity after a visual stimulus and

it uses information on the gamma frequency band to classify a dataset of 10 subjects

which are not made publicly available. The method achieves a classification performance

of 90.95%. The same research group published in 2007 [9] a follow-up work where a

Multiple Signal Classification Algorithm computes dominant frequencies of EEGs. The

dominant frequencies are the features used in classification. This time, a nearest neighbor

approach achieved 97.61% classification rate on 102 subjects from Zhang-DDBB. The

work of [8] uses 8 electrodes for VEP analysis, creating a large feature vector by an

ensemble of voice processing techniques. This large feature vector is reduced using

a correlation-based feature selector and a Support Vector Machine (SVM) is used for
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classification. In VEP analysis the work achieves two different classification results. The

first classification performance is 92.80% for a dataset of 20 subjects from Zhang-DDBB

and the second is 61.70% for 122 subjects from Zhang-DDBB.

As mentioned above, the problem with the Zhang-DDBB dataset is that it mainly

consists of data from unhealthy (alcoholic) subjects. To quote [5], ’the problem with this
practice is that alcohol has been proven to affect various aspects of the EEG (Begleiter &
Porjesz, 2006; Zietsch et al., 2007), including the so much used alpha rhythm (Vogel,
2000). Therefore, it is likely that such datasets were biased, overrating the systems’
performances. In order to clarify this, a statistical study probing that the parameters
used are not affect by the disorder, i.e. assuring they are uncorrelated, must be adjoined.’

The work of [4] uses Linear Discriminant Analysis (LDA) and Support Vector

Machine (SVM). VEP recordings are done by 64 electrodes placed over the scalp. The

work collected 1000 VEP trials for 20 subjects (non-public dataset). Classification

performance shows that SVM outperforms LDA for VEP analysis. On a two-fold SVM it

achieves 91.56% classification accuracy. The works of [8, 4, 9, 10] place electrodes over

the entire scalp. All the electrodes are then used for biometric recognition.

The above works assume that all recorded activity on the scalp is a result of the visual

stimulus input. This is in contrast to current VEP and ERP literature [7, 2] which focuses

on identified responses, e.g. the N2, P300, N170. The brain activation area will vary

according to the stimulus. Therefore, proper analysis of ERP responses should be carried

out by investigating clearly identified areas in the brain. The brain is divided into different

regions. Each region processes a different stimulus input and is responsible for different

ongoing activities [2]. Thus, averaging whole brain activation across multiple areas will

most likely result in a mix of signals. The research of [4] shows that occipital 1 electrodes

produce the most discriminative signals. This finding seems to enforce the methodological

points of [7, 2].

The works of [13, 14] do promising EEG VEP analyses while focusing solely on the

occipital cortex. Both methods employ checkerboard patterns to generate VEP responses.

The first work, [13], has a classification performance of 86.54% on a private dataset

composed of 13 subjects. Classification is done by a Linear Discriminant Classifier

(LDC). The classifier uses as features well-known ERP responses (P100, N75). The

work of [14] focuses on the occipital ’Oz’ electrode. The work proposes the use of

wave landmarks and a two dimensional Gaussian kernel classifier and achieves 78%
classification accuracy on a private dataset composed of 10 subjects.

Contributions
The first contribution is to assess whether a new stimulus can be used to generated VEPs

with biometric capabilities. In this work we present the first use of looming stimuli in a

biometric study.

Second, a novel method for the detection VEP responses with minimal expert

interaction is introduced. EEG data, segmented based on the VEP, are used to create a

reliable VEP feature extractor.

Third, we contribute to reproducible research by making our dataset publicly available

at http://www.idi.ntnu.no/grupper/vis/eeg/. Note that our dataset is not

biased by individuals with any known issue; instead it is based on infant subjects who

should respond to the stimuli as purely as possible. We thus expect that our dataset (and its

1 The occipital lobe is the brain region where the visual cortex is located.
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planned future extension to hundreds of subjects) could become a standard in evaluation

of biometric work using the EEG.

The rest of the paper is organized as follows. Section 2 presents the looming stimulus.

Section 3 discusses the pre-processing steps that are useful for EEG analysis. Section

4 presents the segmentation and feature extraction methods of the proposed method.

Section 5 discusses the classifier selection. Experimental results are given in Section

6 and conclusions in Section 7.

2 Looming Visual Evoked Potentials
Looming stimuli are defined as approaching (virtual) objects on a collision course with

the observer. Such stimuli can be artificially created by displaying an object looming

towards the observer, thus allowing for control over the variables and making it easier for

the data (psychophysical or behavioural) to be recorded.

Literature shows that a negative VEP component is prevalent in electrodes O1, Oz, and

O2 in the visual cortex in relation to a looming stimulus [16]. Brain activity following

impending collision of an approaching object can be seen in the visual cortex using EEG

[17].

Infants presented with a looming stimulus display VEP components in occipital areas

approximately 800 ms before loom hit [16].

In this work 16 infants were exposed to looming stimuli. The EEG recordings are then

processed for VEP segmentation and feature extraction. For more details on the dataset

see Section 6.

3 Processing of Raw EEG
This Section will present magnitude frequency responses and the reasoning behind the

selection of preprocessing filters for EEG recordings.

Digital EEG recordings are preprocessed and filtered differently depending on

acquisition procedures and purpose. The main ambition of this work is to assess the

biometric capabilities of VEPs. Thus, signal preprocessing needs to keep VEPs intact

while removing noise and unwanted data.

The first issue to address is signal corruption caused by utility/mains frequency. It

is common for EEG recordings to be dominated by the frequency of AC currents, FAC ,

which is either 50Hz or 60Hz depending on region. This signal corruption is visible in

the unprocessed EEG readings of Fig. 2. Therefore, the filtering of FAC and its harmonics

is vital for subsequent data analysis.

Another issue is artifacts generated by bio-electric flowing potentials [15]. Small body

movements, breathing and other similar behaviours can distort EEGs. These distortions

create an amplitude modulation in low frequencies. As a consequence, a high pass filter

(HPF) with a small cutoff frequency becomes essential.

Literature shows that VEPs have a concise spectrum [17, 16, 1]. This means that

information related to the signal is not spread over all frequencies. One would ideally like

to filter out frequencies carrying unwanted data. Thus, a low pass filter (LPF) must be

employed in addition to the HPF. This filter needs to have a well selected cutoff frequency

so as not to impair VEPs.

To further specify filters and respective cutoff frequencies, the present work assessed

VEP characteristics. Literature shows [17, 1, 16] that looming VEPs are found between

1.8Hz and 60Hz. To further restrain operational frequencies, we computed the time
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Figure 2: A sample of Raw EEG readings for Electrode ’O1’ and its spectrum analysis.

The EEG readings are dominated by FAC as shown in both the time and frequency

domains.

between peaks and valleys on typical VEP responses of [17]. This showed that VEP

frequencies do not exceed 20Hz. Consequently, all harmonic contributions of FAC would

be filtered out by a LPF at 20Hz, implying no need for any further filters. However, given

the high noise amplitude at 50Hz, a filter at FAC is also needed, to minimise the effect of

noise on VEP analysis.

As per the above analysis, three filters are implemented. The three filters are designed

as Infinite Impulse Response (IIR), allowing us to create digital counterparts of well

established analogs filters [12]. The filter design starts with a first order Butterworth

HPF with a cutoff frequency of 1.6Hz; this is a safe cutoff frequency as it is below the

1.8Hz lowest VEP frequency reported in the literature. The second filter used is a fourth

order Butterworth LPF. This time, the selected cutoff frequency is 20Hz as estimated

above. The third filter is a sixth order notch filter. This is a band rejection Butterworth.

The rejected band ranges from 45Hz to 55Hz. The magnitude responses of the three

designed filters are shown in Fig. 3.

The resulting filtered EEG as well as its spectral analysis are shown in Fig. 4. The

processed signal is used for feature extraction, as demonstrated in Section 4.

4 Segmentation and Feature Extraction
Research shows that looming stimuli create distinctive VEP responses. An example of

such responses is shown in Fig. 5, which shows VEP responses on ’O1’, ’Oz’ and ’O2’.

Unfortunately, VEP responses do not always take place consistently. Their timing

occurrence varies even within subjects. It is even common for a subject to produce

multiple VEPs for a single looming stimulus. We would ideally like to segment out VEP

responses before feature extraction, in order to increase the reliability of the latter. In this
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Figure 3: A combination of three filters is used to filter out noise and artifacts from Raw

EEG recordings. The magnitude responses of such filters are shown here.

Figure 4: A sample of filtered EEG data for Electrode ’O1’ and its spectrum analysis,

after the application of three filters to remove noise and artifacts from the raw signal.

section we present a reliable VEP segmentation technique followed by an inexpensive and

dependable feature extraction method.
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Figure 5: A sample of EEG looming VEP. The graph show readings for electrodes ’O1’,

’Oz’, and ’O2’. These are the electrodes over the occipital cortex.

VEP Segmentation
The potential segmentation algorithm should first list VEP candidates. This is arduous

because a single trial can have multiple VEP responses, or none at all, for a given stimulus.

Our detection technique explores characteristics of typical VEP responses. As one

can notice in Fig. 5, sharp transitions delineate VEPs. Thus, we can select potential

candidates by searching for high frequencies. For this we propose a uni-dimensional edge

detector to detect the sharp transitions. This edge detector is instantiated by Eq. 1:

E(x) =
[

δ

δxma

Φma(x, 30)

]3
(1)

where Φma(x,N) is a moving average of the input EEG signal x with N elements and

xma is the output of the moving average function. Edge detectors are sensitive to noise in

input signals. Thus, we first apply the moving average filter Φma to the input. This above

edge detector can be approximated in the discrete case by the difference Eq. 2:

E [k] = (xma[k + 1] xma[k])
3

(2)

In this discrete version, the computed edge E is one element smaller than x. This

small difference can be ignored in the following steps. We next compute a search vector

S which will allow us to circumvent issues common to looming stimuli. An initial S is

computed by Eq.3:

S(EO1 + EO2 + EOz) = G
(∣∣∣∣EO1 + EO2 + EOz

3

∣∣∣∣ , σ,N
)

(3)

where E represents a computed edge in the electrode given in the respective index.

G(x, σ,N) represents the convolution of a Gaussian filter with the signal x with standard

deviation σ and N represents the size of the convolution filter. For this work a tentative

sigma = 5 and N = 15 were employed.

No looming related activity happens in the initial 500ms. We thus replace the first half

second of the search vector by its average value. Finally the search vector S is normalized

to the interval [0, 1]. An example of a resulting search vector is shown in Fig. 6.

We can now look for VEP candidates by searching for peaks (local maxima) in S .

Peak candidates need to have a minimal distance of 200ms to each other and we only
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accept peaks higher than 0.95; if these criteria are fulfilled the VEP candidates are treated

as VEP indicators.

Figure 6: The first graph shows the EEG readings. These readings were processed with a

moving average filter. The second graph shows the search vector. In S the peaks indicate

VEP candidates.

With a list of VEP indicators it is possible to segment and extract features.

Segmentation extracts a 200ms long signal sample. The segmented signal starts 80ms

before the VEP indicator and ends 120ms after it. Thus, all information from the VEP

is represented in the segmented signal. This segmented data is next used for feature

extraction.

Feature Extraction
For feature extraction we create a signal 400ms long. Two slices of 200ms compose this

signal. The first slice is the preprocessed EEG recording and the second is the computed

edge detector E . For concise results we normalise to the range [0, 1] for each 200ms slice

independently. Fig. 7 shows the two slices that compose the feature vector.

Using the above signals, the feature extraction process is computationally inexpensive,

while it concisely inherits information on VEPs. The result is an efficient and robust

feature extractor.

5 Matching / Classification
For classification we use a simple feed-forward Neural Network. A one-hidden-layer

Multi Layer Perceptron (MLP) is trained with the standard back-propagation algorithm

[6]. This work employs stochastic gradient descent with mini batches for training,

ensuring a faster training time. The MLP uses the sigmoid function for neuron activations

and soft-max for the output neurons.

The EEG recording apparatus had a sampling frequency of 500Hz. Therefore, the

400ms feature vector is in fact a 200 dimension vector. We thus create a neural network

with 200 input neurons. These neurons are fully connected to a hidden layer with 15

neurons. These 15 neurons are connect to the output layer. The number of output neurons

98 publication c



Figure 7: The first graph shows normalized EEG readings; these 200ms signals are the

result of the proposed VEP detection and segmentation. The second graph shows edge

features computed over the EEG signals. Together these two 200ms slices compose a

Feature Vector. The Feature Vector can be computed for any electrode. Here we use

electrodes over the visual cortex: ’O1’,’Oz’, and ’Oz’.

is the same as the number of subjects in the dataset. Thus, for this experiment we use 16
output neurons. The MLP was implemented with the help of a publicly available library

[11].

As a single subject generates many feature vectors, a final classification is done by

majority voting the MLP outputs.

6 Experimental Results
This Section presents the experimental results as well as details of the acquired dataset.

Dataset and Acquisition Procedure
The data were initially acquired from 16 infants. The infants would arrive with their

parent(s) and be familiarised with the surroundings. Meanwhile, the parent(s) would be

informed about the experiment and signed a consent form. The EEG net was prepared

in electrolyte solution to ensure good impedance; the recording equipment was prepared

before the participant arrived. The net would be applied and the infants would be seated

in front of the screen; a parent would always be with the infant in the test room. The

experiment would be aborted if an infant became too fussy or started crying.

Infants were presented with a black approaching rotating circle consisting of four

smaller circles 1
3

of the size (red, green, blue, yellow) rotating within the black circle on

a white background. The loom rotated with a constant angular velocity of 300◦/s and

started at a virtual distance of 43.1 m giving a visual angle of 5◦ (6cm diameter); it then

grew to a maximum size of 131◦ (350cm diameter). The loom would approach the infants

at constant accelerations at three different speeds with a duration of 2 seconds ( 21.1m
s2

),

3 seconds ( 9.4m
s2

), and 4 seconds ( 5.3m
s2

). The looming object would move the same

distance in all three cases, as well as in reverse.

The order of the presented stimuli was randomly generated. The only constraint was

that consecutive stimuli should be different. There was a break of 1.5 seconds between
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two stimuli. In this work looming with two second durations are used for classification.

We only employ information from the occipital electrodes ’O1’, ’O2’ and ’Oz’.

In the acquired dataset we have a varying number of looming stimuli with 2 second

duration. Some infants were presented up to 20 stimuli and some just 7. The number of

trials depended on the willingness of each baby.

Classification Results
The pipeline described in this paper is followed, i.e. pre-processing the EEG recordings

as described in Section 3, segmentation of the information related to looming with a 2
second duration and feature extraction as described in Section 4. The Feature Vector is

then used in the MLP Voting classifier described in Section 5 to obtain the classification

results.

We use half of the available data for training, and the other half for testing, obtaining

a recognition (classification) accuracy of 62.50%. This result is comparable to the state

of the art occipital VEP EEG processing [13, 14]. Different from these previous works,

the dataset assessed in this paper has more subjects and is composed of a much smaller

number of trials, making it a harder evaluation scenario. This explains why the evaluation

performance achieved here is smaller than [13, 14], which used private datasets. Table 1

shows classification performance as well as details of the assessed datasets.

Method Subjects VEP trials Acc’cy N- Folds

Proposed 16 7 to 20 62.50% 2

[13] 13 120 86.54% 4

[14] 10 200 78.00% 2

Table 1: Classification accuracy

7 Conclusion
The first attempt to assess whether looming stimuli can be used to generate occipital

Visual Evoked Potential (VEP) in EEG signals with biometric capabilities, is presented.

At the same time the first public dataset of EEG responses to looming stimuli is being

made available. This dataset is based on infant subjects that should respond to the stimuli

as purely as possible. We expect that this dataset and its planned extensions can become

a standard for biometric studies of VEP.

We show that our VEP segmentation methodology, as well as our proposed feature

extraction, can produce biometrically capable EEG based features. The achieved

classification performance is comparable to the state of the art biometric studies using

occipital VEPs. However, these results were achieved using a dataset with more subjects

and with fewer samples (VEP trials) per subject.

Further work could address automatically learned features (e.g. with a deep learning

approach), but this would require at least two orders of magnitude more data. Another

possibility is to investigate other machine learning techniques capable of learning while

using a small numper of samples (VEP Trials ).
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Abstract

Re-identification is generally carried out by encoding the appearance of a subject in terms of outfit, suggesting scenarios
where people do not change their attire. In this paper we overcome this restriction, by proposing a framework based
on a deep convolutional neural network, SOMAnet, that additionally models other discriminative aspects, namely,
structural attributes of the human figure (e.g. height, obesity, gender). Our method is unique in many respects. First,
SOMAnet is based on the Inception architecture, departing from the usual siamese framework. This spares expensive
data preparation (pairing images across cameras) and allows the understanding of what the network learned. Second,
and most notably, the training data consists of a synthetic 100K instance dataset, SOMAset, created by photorealistic
human body generation software. SOMAset will be released with a open source license to enable further developments
in re-identification. Synthetic data represents a cost-effective way of acquiring semi-realistic imagery (full realism is
usually not required in re-identification since surveillance cameras capture low-resolution silhouettes), while at the same
time providing complete control of the samples in terms of ground truth. Thus it is relatively easy to customize the
data w.r.t. the surveillance scenario at-hand, e.g. ethnicity. SOMAnet, trained on SOMAset and fine-tuned on recent
re-identification benchmarks, matches subjects even with different apparel.

Keywords: Re-identification, deep learning, training set, automated training dataset generation, re-identification
photorealistic dataset

1. Introduction

Re-identification (re-id) aims at matching instances of
the same person across non-overlapping camera views in
multi-camera surveillance systems [1]. Initially a niche ap-
plication, re-id has attracted huge research interest and has
been the focus of thousands of publications in the last five
years, although current solutions are still far from what a
human can achieve [2].

Recently, deep learning approaches have been cus-
tomized for re-identification, notably with the so-called
siamese architectures [3, 4, 5, 6, 7, 8]. In a siamese net-
work, a pair of instances is fed into the network, with a
positive label when the instances refer to the same identity,
negative otherwise. This causes the network to learn per-
sistent visual aspects that are stable across camera views.
An issue with this setting is the setup of the training data:
positive and negative pairs should be prepared beforehand,
with a significant increase in complexity.
The majority of re-id approaches focuses on modeling

the appearance of people in terms of their apparel, with the
obvious limitation that changing clothes between camera
acquisitions seriously degrades recognition performance.

Email address: igor.barbosa@ntnu.no (Igor Barros Barbosa)

The RGB-D data provide significantly more information,
which explains why there has been considerable progress
in this case [9, 10], but, on the other side, current RGB-
D sensors cannot operate at the same distance as typical
surveillance cameras; therefore, focusing on RGB does re-
main an important challenge.

In this paper, we present a re-identification framework
based on a convolutional neural network, with the aim of
facing the above issues. The framework exhibits several
advantageous characteristics.

First, the structure of the network is simpler than a
siamese setup. It is based on the Inception architec-
ture [11], and is used as a feature extractor. This is similar
to a recent approach proposed by [12], which also opted for
an Inception-based network architecture. As a by-product,
probing inner neurons of deep layers to understand what
is learnt by the network is easier than in siamese-like de-
signs. In particular, we show that the network is able to
capture structural aspects of the human body, related to
the somatotype (gender, being fat or lean, etc.), in addi-
tion to clothing information. For this reason, we dubbed
the network SOMAnet.

The second unique characteristic of our framework is the
data used to train SOMAnet: for the first time we employ
a completely synthetic dataset, SOMAset, to train our net-
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Figure 1: Renderings of the 50 human prototypes in SOMAset, each one of them wearing one of the 8 sets of clothing available. The top row
shows the 25 female subjects and the bottom row the 25 male subjects.

work from scratch. SOMAset consists of 100K 2D images
of 50 human prototypes (25 female and 25 male, Fig. 1),
created by mixing three somatotypical “seeds” [13]: ecto-
morph (long and lean), mesomorph (athletic, small waist)
and endomorph (soft and round body, large frame), and
accounting for different ethnicities. Each of these pro-
totypes wears 11 sets of clothes and assumes 250 differ-
ent poses, over an outdoor background scene, ray-traced
for lifelike illumination. Training networks with synthetic
data is not a totally new concept, with pioneering works
in 3D object recognition such as [14, 15, 16]. However,
rendering images of human avatars as a proxy for dealing
with real images of people has no precedent in the re-
identification literature. We show in our experiments that
this choice is effective: when SOMAnet is trained with
SOMAset and fine-tuned with other datasets, it achieves
state-of-the-art performance on four popular benchmarks:
CUHK03 [3], Market-1501 [17], RAiD [18] and RGBD-
ID [10].
Third, on the RGBD-ID dataset, we are able to show

the capability of SOMAnet in recognizing people indepen-
dently of their clothing, based only on RGB data. This is
the first such attempt in the literature, surpassing previous
approaches that additionally used depth features.
The rest of the paper is organized as follows: after re-

viewing relevant previous work (Sec. 2), we describe SO-
MAset (Sec. 3) and the SOMAnet architecture (Sec. 4).
Sec. 5.2.2 describes our strategy for probing the inner neu-
rons of the deep layers. Sec. 5 reports on an exhaustive set
of experiments, illustrating the power of the SOMA frame-
work. Sec. 6 concludes with a summary and by sketching
future work.

2. Related literature

In this section we review the recent literature on re-
identification, focusing in particular on deep learning tech-
niques. We also discuss the recent trend of creating train-
ing sets for recognition, with emphasis on the re-id task.

2.1. Re-identification

Strategies for re-identification are many and diverse,
with brand new techniques being presented at a vertigi-
nous pace: at the time of writing, Google Scholar gives
more than a thousand papers published since January

2016; therefore, it is very hard to recommend an updated
survey, the most recent dating back to 2014 [19].

The early works on re-id were designed to work on single
images [20]; batches of multiple images have been consid-
ered afterwards [21]. On this input, discriminative sig-
natures are extracted as manually crafted patterns [21]
or low-dimensional discriminative embeddings [22]. While
most of the signatures focus on the appearance of the single
individuals independently on the camera setting, the study
of the inter-camera variations of color (and illumination)
gives also convincing results [23, 18, 24, 25]. Signatures
can be matched by exploiting specific similarity metrics
[26], which are learned beforehand, thus casting re-id as a
metric learning problem [27, 28, 29, 30, 31].

Traditionally, re-id assumes that people do not change
their clothes between camera acquisitions. The common
motivation is that re-id is a short-term operation, thought
to cover a time span of minutes/few hours max, that is,
the time necessary for a person to walk between cameras
in an indoor environment (an airport, a station etc.). In
reality, even in such a time-span, an individual can change
his appearance, for example taking off a jacket due to the
heating, wearing a backpack etc. Few approaches cover
the clothing-change scenario [9, 10], all of them relying on
RGB-D data. This work is the first that captures struc-
tural characteristics of the human figure, in addition to
clothing information, exploiting mere RGB data.

The very recent re-id approaches incorporate deep net-
work technology. Typically, they consider image pairs as
basic input, where each image comes from a different cam-
era view: when the two images portray the same individ-
ual, a positive label is assigned, negative otherwise. These
pairs are fed into the so-called siamese or pseudo-siamese
networks, which learn the differences of appearance be-
tween camera acquisitions [3, 4, 5, 6, 7, 8]. A very recent
alternative is the use of triplet loss, where three or more
images are compared at the same time [32, 33]. One im-
age is selected as anchor, while the remaining two images
are divided into a positive (having the same identity as
the anchor) and a negative one. The objective function
over triplets correlates the anchors and the positive images,
minimizing their distance. Conversely, the distance from
the anchors to the negative images is maximized. Triplet
loss has also been used in non-deep learning methods to
learn an ensemble of distance functions that can minimize
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the rank for perfect re-identification [34]. One disadvan-
tage of the siamese and triplet loss methods is that they
require the dataset to be prearranged in terms of labels.
This is cumbersome, may cause highly unbalanced target
class distributions and even increase computational com-
plexity.

We argue that re-identification can be carried out by
simpler network architectures combined with similarity
measurements. This idea was also successfully demon-
strated by Sun et al. in 2014 for face verification [35] where
they extract a descriptor using a single path network.

The basis of the proposed approach is to employ a simple
(single path) network to learn a descriptor, using a syn-
thetic dataset for training, before fine-tuning on the train-
ing partition of a specific dataset. In addition, a probing
approach allows the investigation of the characteristics of
the network.

2.2. Training data generation

In the last years, the design of training sets for recog-
nition has changed from a mostly human-driven operation
(crowdsearching data in the most advanced attempts [36])
to a proper research field aiming at automatically pro-
ducing samples spanning the whole visual semantics of a
category, with numbers sufficient to deal with deep learn-
ing requirements [37, 38, 39, 40]. Two main paradigms
do exist: the former assumes that good training data is
available on the Internet, and aims at creating retrieval
techniques that bridge lexical resources (as Wordnet) with
the visual realm [37, 38, 39]. The latter, most recent,
direction assumes that web data is too noisy or insuffi-
cient (particularly in the 3D domain) and relies on the
generation of photorealistic synthetic data [40]. In this
case, the trained classifiers should be adapted to the test-
ing situation by attribute learning [41], domain adapta-
tion [42] or transfer learning [43]. This direction seems
to be very promising, especially in conjuction with deep
architectures [14, 15, 16].

In the re-identification field, the only work that consid-
ers the augmentation of a training set by synthetic data
is that of [44], substituting the background scene of the
training images with different types of 2D environments.
This has been shown to help in reducing the dataset bias,
favouring cross-dataset performance. Unfortunately, illu-
mination is not natural in the synthesized samples, and
the strategy cannot easily be applied to any dataset (fore-
ground/background segmentation is necessary). Our work
goes in the opposite direction, focusing on photorealistic
images of the foreground subjects instead of the scenery
(which in our case consists in a single, large, outdoor sce-
nario).

3. The SOMAset dataset

In this section we present SOMAset1, describe the pro-
tocol followed for creating it and discuss the features that
make it unique compared to other existing re-id collections.

The human figure is normally defined as a mixture of
three main somatotypes [13]: ectomorph (long and lean),
mesomorph (athletic, small waist) and endomorph (soft
and round body, large frame). We account for these facets
using an open-source program for 3D photo-realistic hu-
man design,Makehuman, and a rendering engine, Blender .
Starting from a generic 3D human model we created 25
male and 25 female subjects, by manually varying the
height, weight and body proportions for each subject so
as to represent mixtures of the three aforementioned so-
matotypes. In order to further improve the similarity to
real acquisitions, we also slightly varied parameters like
symmetry and the size of legs and/or arms, so as to better
simulate natural body variations.

In almost all previous re-identification scenarios, it is as-
sumed that subjects do not change their clothes between
camera acquisitions. Re-identification datasets adhere to
this assumption, associating identity to appearance (a par-
ticular apparel represents a single subject). With SO-
MAset, we relax this constraint, rendering each of the 50
subjects with 8 different sets of clothing: 5 of these were
shared across the sexes while 3 each were exclusive for
males / females (thus in total there are 11 types of outfit).
In this way, we stimulate the network to focus on morpho-
logical cues, other than mere appearance. Experiments
with the RGBD-ID dataset (Sec. 5.2.3) confirm this, hav-
ing people wearing different clothing between acquisitions.

In more detail, the 3 clothing variations dedicated to
females are: T-shirt with shorts; blouse with skirt; sport
top with leggings. The 3 male clothing variations are: suit;
striped shirt with jeans; shirt with black trousers.

The shared clothing category includes the following 5
variations: white t-shirt with jeans; long sleeve shirt with
jeans; blue T-shirt with jeans; jacket over shirt with jeans;
overalls. Fig. 1 shows renderings of the 50 subjects, with
female and male subjects in the top and bottom row re-
spectively. The first 8 columns show the 8 clothing pos-
sibilities for each gender. To account for ethnicity varia-
tions, different skin colors were mapped onto the subjects.
Out of the 50 subjects, 16 received Caucasian skin, 16 have
darker skin tones, while the remaining 18 have beige skin
tones to model Asian types. We did not include further
variations (e.g. structural) of the faces and we did omit
hair styles, to bound the number of possible variations.
Notably, adopting more types of garments does not seem
to affect the performance drastically, after some prelimi-
nary experiments, not reported here for the lack of space.

Each of the 400 subject-clothing combinations as-
sumed 250 different poses. These poses are extracted

1SOMAset will be released with a open source license to enable
further developments in re-identification.
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Figure 2: Renderings of a specific subject-clothing assuming 36 out of 250 possible poses. Note the change of the orientation w.r.t. to the
camera.

from professionally-captured human motion recordings,
provided by the CMU Graphics Lab Motion Capture
Database [45]. We opted for extracting poses from a
recording titled ’navigate’, where the subject walks for-
wards, backwards and sideways. A sample of 36 poses
from a specific subject-clothing combination is shown in
Fig. 2.

Each of the resulting N = 100K subject-clothing-pose
combinations (N = 50 subjects × 8 clothing sets ×
250 poses) is placed in a realistic scene (see below) and
captured by a virtual camera with a randomly chosen view-
point, following a uniform distribution. Specifically, we
place the subject in a random location over the floor of
the scene, and we take 250 different viewpoints uniformly
spanning a hemisphere centered 8 meters away from the
subject’s initial position. This induces a distance varying
from 6 to 10 meters between the camera and the rendered
subject-clothing-pose.

The different camera viewpoints generate people with
diverse image occupancy, different lighting patterns and
relative pose w.r.t. the observer. A structured outdoor
scene was created for rendering, which covers an area of
approximately 900 m2, where each of the 100K instances
was located. The scene includes trees, buildings, pave-
ment, grass and a vehicle, giving a certain variability as
the viewpoint changes. A small collage of images from
male subjects of SOMAset is shown in Fig. 3.

Figure 3: Images sampled from SOMAset. Different male subjects
are represented in each column. The second row shows examples
where the subjects’ pose and clothing vary at the same time. We see
that the single 3D environment does yield background variability.

4. The SOMAnet architecture

SOMAnet is a deep neural network that can compute
a concise and expressive representation of high level fea-
tures of an individual, portrayed in an RGB image. This
representation enables simple yet effective similarity cal-
culations.

SOMAnet is based on the Inception V3 modules [46],
that proved to be well-suited to work on synthetic data
[47]. Experiments conducted using other frameworks such
as Alexnet [48], VGG16/VGG19 [49], Inception V1 [11]
and Inception V2 [50] confirmed this. The architecture
of SOMAnet is described in Sec. 4; the motivation for
our architectural choices are discussed in Sec. 4.1.1 and
Sec. 4.1.2. Subsequently, we present the pipeline for train-
ing SOMAnet from scratch in Sec. 4.2, and the fine-tuning
strategy to customize it to diverse testing scenarios, to-
gether with the re-identification algorithm, in Sec. 4.3.

4.1. Architecture

Our architecture follows closely the Inception V3 model
[46] (Fig. 4): the initial sequence of convolutions and max
pooling replicates the original architecture. These are fol-
lowed by two cascading Inception modules and a mod-
ified Inception module (Reduced Inception Module) that
reduces the input data size by a half by using larger strides
in the 3 × 3 convolution and in the pooling layer. More-
over, it drops the 1 × 1 convolution windows that would
be used as output of the inception module. The network
proceeds to a fourth inception module providing data to
our last layers; a max pooling layer followed by a convo-
lution layer that feeds the fully connected layer leading to
the output softmax layer.

The use of 3×3 windows is preferred over other window
sizes, because they are more computationally efficient than
larger convolutions used in previous works. A cascade of
3×3 convolution windows can provide a proxy for the anal-
ysis derived by 5×5 and 7×7, which were used in [11, 50].
The convolution layers in our network uses rectified activa-
tion units (ReLUs) [51] which have sparse activation and
efficient gradient propagation as they are less affected by
vanishing or exploding gradients. Unlike previous Incep-
tion networks [11, 50, 46] our fully connected layers employ
the hyperbolic tangent as activation unit.

We performed a toy experiment on SOMAset + SO-
MAnet to sense the complexity of a re-id task where a
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Figure 4: SOMAnet architecture; each layer has its respective acti-
vation outputs presented in blue text.

given synthetic subject (out of the gallery of the 50 dif-
ferent identities) can wear different clothes. The 100,000
images have been partitioned into training (70% of the to-
tal images), validation and testing sets (15% each); the
validation and testing sets were provided so that users of
our dataset can assess problems in training, such as over-
fitting and underfitting. The images have been sampled so
to have a proportional number of instances for each sub-
ject within each partition. The re-identification results,
following the algorithm explained in Sec. 4.3, in terms of
Cumulative Matching Characteristic (CMC) curve recog-
nition rate at predefined ranks, are reported in Table 1.
We see that this training strategy allows to get an ad-
equate descriptor for the somatotypical characteristics of
the subjects, giving 79.69% rank 1 success rate on the test-
ing set.

SOMAset

Set Rank 1 Rank 5

Validation 99.77% 100.00%
Testing 79.69% 99.75%

Table 1: SOMAnet classification performance on the rendered SO-
MAset.

4.1.1. Difference to GoogLeNet

The GoogLeNet inception network [11, 50, 46] was de-
signed for the Large Scale Visual Recognition challenge
[52]. Hence, it needed to be deep enough to learn abstract
features able to differentiate up to a thousand different
classes. Such deep architecture might be unnecessary for
more specific image recognition tasks. The original design
of GoogLeNet also presents three objective functions, con-
ceived to help with gradient propagation as the network
becomes deeper.

To assess the appropriate depth of the Inception archi-
tecture in the case of the re-id task, we used the rendered
SOMAset. We designed a classification task, where the
original GoogLeNet network must correctly classify all the
subjects’ identities. We used the experimental setting de-
scribed above.

The original GoogLeNet was trained until the validation
set reached a plateau for all its three objective functions.
Results showed that, for the specific task of re-id using SO-
MAset, there was no performance gain by using the deeper
classification stages. The network was thus re-designed to
use only four Inception V3 modules. Consequently, the
network did not need multiple outputs to help in gradient
propagation (Fig. 4).

SOMAnet also differs from previous versions of
GoogLeNet in the fully connected layer, where the hyper-
bolic tangent is used as the activation function, because
it is zero-centered and has a bounded output space. The
output of the fully connected layer of SOMAnet produces
a vector X ∈ R

256 within [−1, 1]. This enforces a new
embedding computation, with a dimensionality reduction
from 2048 to 256 dimensions.
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4.1.2. Difference to Siamese networks

Siamese networks have been successfully employed in re-
identification by reformulating the task as a binary classi-
fication problem [3, 4]. Because the input space of siamese
networks is expanded from one image to two, complex-
ity challenges arise when training such networks on large
datasets. Space requirements increase as the square of the
input images. Thus, it becomes infeasible to process the
complete set of combinations during training time and one
needs to select which image pair samples to use in order to
have a balanced training set. In the case of pseudo-siamese
networks, training resources must be spent in learning the
convolution weights of each different input branch. This
effectively makes the network wider in shallow layers.
Our architecture does not suffer from these issues

(Fig. 4). It computes a compact latent embedding space
(in our case a R

256 descriptor) and we thus use the net-
work as a feature extractor, with linear space and time
requirements. Given the descriptor, similarity distances
are setup and evaluated to perform re-id, as explained in
Sec. 4.3 .

4.2. Training Phase

SOMAnet is trained using backpropagation [53] to min-
imize the cross-entropy objective function.
Parameters are optimized using a mini-batch gradient

descent method with momentum and weight decay [54].
This type of training strategy has been shown to be ef-
fective [48, 11, 49]. Here, 32 images are used per mini-
batch. The SOMAnet model uses the Xavier initialization
of weights, which is a good starting point for deep neural
networks [55].
The cross-entropy objective function expects that both

the target and predictive outcomes are probability distri-
butions. This constraint can be achieved by encoding tar-
get outcomes as one-hot vectors, while the predictive out-
comes produced by the neural network can be transformed
into a distribution by using the softmax function as seen
in Fig. 4. The learning rate is initialised as α = 0.1 and is
reduced by a factor of 10 whenever the objective function
reaches a plateau. We can successfully use high learning
rates because the proposed model uses batch normaliza-
tion, as presented in [50]. SOMAnet was trained using the
Caffe package [56] on an NVIDIA GeForce GTX TITAN X
GPU. Training the architecture on the full SOMAset took
3 hours.

4.3. Adapting SOMAnet to Real Data and Re-
identification

To deal with testing sets made up of real people, do-
main adaptation strategies have to be included, that in
the case of deep neural networks amounts to fine-tuning
[57]. Specifically, we force the fine-tuning to focus on the
actual classification task (softmax layer). We expect this
to help avoid over-fitting of shallower layers, while at the
same time giving the chance to obtain strong results with

little target data. We also want to avoid the layer speci-
ficity problem [58]. Therefore, we allow fine-tuning to take
place in shallower layers but with smaller learning rates.
This forces the transferred SOMAnet to comply with the
new re-id task by only changing the initial layers a little.
The fine-tuning protocol is summarized here:

1. Transfer SOMAnet to a new task by replicating
all layers except for the final softmax layer.

2. Set the learning rates of all layers preceding the
softmax layer to be ten times smaller than that of the
final layer.

After fine-tuning, the output of the penultimate layer is
used as feature descriptor. This vector individuates a R

256

latent space which is bounded within [−1, 1] and represents
an embedding suitable for efficient distance computations.
To add more invariance to the descriptor, we mirror the
input image, extract another 256-dimensional feature vec-
tor and concatenate it with the original one, obtaining a
512-dimension descriptor.

To compute the distance between descriptor FQ and FG

of a query image Q and a gallery image G, we opted for the
cosine distance. In preliminary tests this distance function
was shown to be effective. The distance between descrip-
tors gives the output of the re-id, that is, the rank of the
gallery images w.r.t. the distance to the query sample.

5. Experiments

In this section we explore the potential of SOMAnet and
SOMAset, focusing on different aspects of the network and
analysing the contribution of the dataset, by performing
quantitative and qualitative experiments. After describ-
ing the benchmarks used (Sec. 5.1), we focus on SOMAnet
(Sec. 5.2), we describe experiments illustrating its perfor-
mance against other deep architectures (Sec. 5.2.1), we
show how some neurons encode specific features of humans
(Sec. 5.2.2) and how a synthetic training dataset has a pos-
itive impact on a deep architecture (Sec. 5.2.3). Then, we
consider SOMAset (Sec. 5.3), illustrating its role in in-
creasing re-id performance (Sec.5.3.1), and exploring how
different versions of SOMAset (different number of sub-
jects and poses) change the recognition scores (Sec. 5.3.2
and Sec. 5.3.3, respectively).

5.1. Datasets

We briefly present here the four datasets that we fo-
cus on, highlighting the different challenges they repre-
sent in terms of re-id. For comparative purposes, for each
dataset we consider state-of-the-art peer-reviewed meth-
ods in terms of the Cumulative Matching Characteristic
(CMC) curve, and the mean Average Precision (mAP).
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5.1.1. CUHK03

CUHK03 is the first person re-id dataset large enough
for deep learning [3], with an overall 13164 images. It
consists of 1467 identities, taken from five cameras with
different acquisition settings. Each identity is observed by
at least two disjoint cameras.

The images are obtained from a series of videos
recorded over months, thus incorporating drastic illumi-
nation changes caused by weather, sun directions, and
shadow distributions (even considering a single camera
view). As usual in the literature, we consider here the
dataset version where pedestrians in the raw images are
manually cropped to ease the re-id.

The evaluation of re-id performance on this dataset fol-
lows two protocols, one for single-shot and another for
multi-shot. In the single-shot case, we follow the protocol
of [3], commonly adopted in the literature: the dataset is
partitioned into a training set of 1367 identities and a test
set of 100 identities; during evaluation, we randomly take
one of the test set images from each identity of a camera
view as probe, using another camera for the correspond-
ing gallery set images (where there exists one image of the
same identity as the probe). In the multi-shot case, there
are multiple images of each identity in both the probe and
gallery sets. We thus compute the average distance from
all the probe images w.r.t. all images of the gallery set,
producing a ranking. All the experiments are evaluated
with 10 cross validations using random training/test set
partitions.

5.1.2. Market-1501

Market-1501 is the largest real-image dataset for re-id so
far, containing 1501 identities over a set of 32668 images,
where each image portrays a single identity [17]. Five high-
resolution and one low-resolution camera were used in the
dataset acquisition. Each identity is present in at least two
cameras. The dataset is partitioned as follows: the train-
ing set consists of 750 identities and 12936 images; these
are the images used for training/fine-tuning SOMAnet.
The remaining 751 identities are contained in a test set of
19732 images, i.e. 3368 query images which are matched
against a gallery set of 16364 images (19732− 3368).

The testing protocol has been specified in [17], and the
code for the perfomance evaluation has been provided by
the authors. In the single-shot re-id modality, each query
image is compared against the gallery images, excluding
those that refer to the subject captured by the same cam-
era view (for each query image, there are an average of
14.8 cross-camera ground truths). The mean average pre-
cision (mAP) metric is employed, since it is capable of
measuring the performance with multiple ground truths.
The dataset also contains extra sets of images for each of
the 3368 identities in order to allow testing a multi-shot
scenario.

5.1.3. RAiD

RAiD (Re-identification Across indoor-outdoor
Dataset) is a 4-camera dataset where a limited number of
identities (41) is seen in a wide area camera network [18].
The images of RAiD have large illumination variations as
they were collected using both indoor (cameras 1 and 2)
and outdoor cameras (cameras 3 and 4). The protocol for
re-id is the following: the subjects are randomly divided
in two sets, training (21 identities) and testing (20 iden-
tities). In total there are 6920 images, for an average of
around 161 images per identity. The training set (around
3300 images in total, depending on the chosen subjects)
is used to fine-tune SOMAnet; this represents a challenge
due to the small number of data, when compared to the
other, more recent, repositories.

For evaluating the multi-shot modality, 10 images for
each test identity are picked as query from a single camera
and the images associated with a different camera are used
as gallery set. Specifically, we evaluate the camera pairs 1-
2, 1-3, 1-4, where the latter two configurations have large
inter camera illumination variations Evaluation is done us-
ing five cross-validation rounds. For each round, a new
random identity partition is made for creating the train-
ing and test set, always keeping the proportion of 21/20
subjects for training/testing.

5.1.4. RGBD-ID

The RGBD-ID dataset has been originally crafted to ex-
plore depth data in a re-id scenario. It contains four differ-
ent groups of data, all from the same 79 people (identities):
14 female and 65 male. The first “Collaborative” group
has been obtained by recording, in an indoor scenario,
with a Kinect camera (RGB + depth data), a frontal view
of the people, 2 meters away from the camera, walking
slowly, avoiding occlusions and with stretched arms. The
second group (“Backwards”) consists of back-view acqui-
sitions of the people while walking away from the camera.
The third (“Walking1”) and fourth (“Walking2”) groups
of data are composed by frontal recordings of the people
walking normally while entering a room in front of the
camera. There are in average 5 frames of RGBD data per
person per group. It is important to note that people in
general changed their clothes between the acquisitions re-
lated to the four groups of data; most cloth changes occur
between groups “Walking1” and “Walking2” (59 cases out
of 79). Additionally, in the “Walking2” group 45 out of
the 79 people have the same t-shirt, in order to simulate
a work environment where people wear the same attire.

In the experiments, we use the “Collaborative” and the
“Backwards” groups for fine-tuning, keeping “Walking2”
as probe set and “Walking1” as gallery set.

Note that we introduce here a new way to use the
RGBD-ID data. Previous studies mostly focus only on
the depth data to obtain reasonable results, thereby ignor-
ing the RGB imagery. This is because the change of out-
fit between acquisitions makes the re-id problem harder.
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Preliminary studies carried out in [10] reported low perfor-
mance when using RGB data only. In contrast, we only use
the RGB data here to see whether SOMAnet can extract
structural aspects of the human silhouette from them.

5.2. Analysis of SOMAnet

5.2.1. Comparing SOMAnet to other deep architectures

The first experiments show the advantage of SOMAnet
w.r.t. other deep network architectures, such as siamese-
inspired architectures. To this aim, we use the CUHK03
and Market-1501 datasets. We train and test on the re-
spective partitions of each dataset, obtaining SOMAnet︸ ︷︷ ︸

CUHK03

and SOMAnet︸ ︷︷ ︸
Market-1501

.

Comparative results for the CUHK03 dataset against
other recent deep network architectures are reported in
Table 2.

Rank

1 2 5 10 20

FPNN [3] 20.65 32.53 50.94 67.01 83.00
JointRe-id [4] 54.74 70.04 86.50 93.88 98.10
LSTM-re-id [7] 57.30 - 80.10 88.20 -
Personnet [8] 64.80 73.55 89.40 94.92 98.20
MB-DML [5] 65.04 - - - -
Gated [6] 68.10 - 88.10 94.60 -

DGD-CNN [12] 72.60 - - - -
MTDnet [33] 74.68 - 95.99 97.47 -
SOMAnet
︸ ︷︷ ︸

CUHK03

68.90 82.10 91.00 95.60 98.30

Table 2: Analysis of the performance of SOMAnet against other
deep network architectures when trained and tested exclusively on
CUHK03, in the single-shot modality

The top three performers when trained exclusively on
CUHK03 are DGD-CNN, SOMAnet︸ ︷︷ ︸

CUHK03

and MTDnet; note

that two out of these three networks are Inception-based
while the third is a multitask network trained with triplet
loss.
With respect to the multi-shot modality, the only ap-

proach we can compare to is MB-DML [5, 59], a siamese
architecture based on bilinear convolutional neural net-
works and deep metric learning. Results are shown in Ta-
ble 3, with SOMAnet︸ ︷︷ ︸

CUHK03

achieving the best score.

Rank

1 2 5 10 20

MB-DML [5] 80.60 - - - -
SOMAnet
︸ ︷︷ ︸

CUHK03

83.60 93.40 97.50 99.20 99.70

Table 3: Analysis of the performance of SOMAnet against another
deep network architecture when trained and tested exclusively on
CUHK03, in the multi-shot modality. (Note that only rank-1 per-
formance in the multi-shot modality is provided by the MB-DML
paper [5]).

Single- and multi-shot results on the Market-1501
dataset are shown on Table 4. For the singe-shot modality,

SOMAnet surpasses the other methods in terms of CMC
ranks and mean average precision.

Single-shot
Rank

mAP

1 5 10 20 30 50

Personnet [8] 37.21 - - - - - 18.57
SSDAL [32] 39.40 - - - - - 19.60
MB-DML [5] 45.58 - - - - - 26.11
Gated [6] 65.88 - - - - - 39.55
SOMAnet
︸ ︷︷ ︸

Market-1501

70.28 87.53 91.69 94.57 95.64 96.85 45.05

Multi-shot
Rank

mAP

1 5 10 20 30 50

SSDAL [32] 49.00 - - - - - 25.80
MB-DML [5] 56.59 - - - - - 32.26

LSTM-re-id [7] 61.60 - - - - - 35.3
Gated [6] 76.04 - - - - - 48.45
SOMAnet
︸ ︷︷ ︸

Market-1501

77.49 91.81 94.69 96.56 97.27 98.25 53.50

Table 4: Analysis of the performance of SOMAnet against other
deep network architectures when trained and tested exclusively on
Market-1501, in both single-shot and multi-shot modalities.

These first experiments show that SOMAnet, indepen-
dently from the training dataset, leads to state-of-the-art
re-id results. As we will see in Sec. 5.2.3, the adoption of
SOMAset as training data gives even higher scores.

5.2.2. Probing specialized neurons in SOMAnet

Several insights have come from attempts at visualis-
ing what specific neurons respond to, for a given convolu-
tional neural network [60, 61, 62]. Some approaches pose
the problem of understanding neuron behavior as an opti-
mization problem, where images are propagated through
the network to find which image region maximizes the ac-
tivation of a particular neuron [63]. Other visualization
techniques have been used to identify neurons that respond
to specific visual stimuli; for example, [64] individuates a
neuron responsive to face patterns in a CNN trained for the
Large Scale Visual Recognition challenge [52]. Although
visualization methods can be used for finding specialized
neurons, it can be a slow task since the analysis of results
is still manual.

Here we propose a different approach: the goal is to find
a specialized neuron NS over a given set of neurons which
gives the highest response to a given stimuli or characteris-
tic (e.g. gender, obesity, a particular type of clothing) and
is unlikely to respond to other characteristics. The search
can be formulated as solving the optimization problem:

NS = argmax
N

D(C,R, N), (1)

where D is a discernibility measurement between two
sets of images C and R, given a neuron N . The first set,
C, consists of the images that carry the characteristics
that the specialized neuron NS should respond to. The
second set, R, consists of all the remaining images that
do not. The discernibility score is composed of two score
functions. The first one, called fire rate score, indicates the
tendency of a neuron to fire only for the set C. The second
score, called activation score, highlights how strong this
tendency appears to be. By averaging the two scores, D
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indicates both the tendency and the strength of a neuron
response for the set C. The score has to be applied on
each neuron under analysis; other than finding the most
involved neuron as in Eq. 1, the score can be used to sort
the neurons with respect to their sensitivity to C.

We first define the fire rate score F as the difference in
mean neuron activity over the sets C and R, as in Eq.
2, where #C and #R represent the cardinalities of the
aforementioned sets:

F(C,R, N) =

(
1

#C

∑
X∈C

T (AN (X))

)

−
(

1

#R

∑
X∈R

T (AN (X))

)
,

(2)

where X is the input image, AN is the activation of
neuron N in a given layer and T is a threshold function
here selected to be the Heaviside step function:

T (x) =

{
1, if x > 0

0, otherwise.
(3)

In our case, N is a neuron in the fully connected layer
preceding the softmax layer. T was set to the Heavi-
side step function because AN of the probed layer is zero-
centered.
The activation score A is the normalized difference be-

tween the mean activations of subsets C and R as defined
in Eq. 4. The normalizing factors of 1

2 are due to the use
of hyperbolic tangent as activation unit. These will ensure
a maximum activation score A of 1:

A(C,R, N) =
1

2

(
1

#C

∑
X∈C

AN (X)

)

− 1

2

(
1

#R

∑
X∈R

AN (X)

)
.

(4)

Finally, discernibility D is defined as the mean of the
fire rate and activation scores:

D(C,R, N) =
1

2
· (F(C,R, N) +A(C,R, N)) . (5)

To investigate the role that the neurons of SOMAnet
play in encoding the human figure, we use the discernabil-
ity measure defined in Sec. 5.2.2 on two datasets: the syn-
thetic SOMAset and the real RGBD-ID. Given a dataset,
we partition it into two groups, the localization L and the
exploration E. The images in L are used to localize the
specialized neurons w.r.t a structural characteristic (as be-
ing obese); in particular, the set L is manually subdivided
in C (with images of subjects with that characteristic) and
R (absence of that characteristic), in order to compute

the discernability measure (see Eq. 5) . Subsequently, the
images in E triggering the specialized neurons the most
are analyzed, looking for analogies with the images in C
. In general, we focus on visual characteristics that are
present in a sufficient number of samples of a dataset: for
SOMAset, we analyze obesity and gender, while for the
RGBD-ID we analyse ectomorphism (being long and lean)
and a particular kind of clothing, independently on color
information.

In the case of SOMAset, L contains 64,000 images from
32 randomly selected subjects, 16 female and 16 male,
while E contains 36000 images from the remaining 18 sub-
jects - 9 female and 9 male. For the obesity trait, C con-
tains 4,000 images from two obese subjects and R the re-
maining 60,000 ones from the other 30 subjects. Using
Eq. 2 and 4 we compute the fire rate F and the activation
A, averaging them to get the discernability scoreD (Eq. 5).
This process is carried out for each neuron, producing at
the end a ranking of the most responsive neurons. Heuris-
tically, we select the top 10 of them, as giving good results
when it comes to the analysis of E; their values for F , A
and D are shown in Fig. 6a. As visible, the ranking shows
the neurons reacting in a similar way, and this could mean
that they are cooperating together to explain the data, in
line with the distributed representation theory [65, 66, 67].
An automatic selection of the number of neurons required
to represent a visual characteristic is still an open topic
planned for future research.

Subsequently, on the set E, we extract those images that
cause the network to have as most discerning neurons the
same 10 found on the set L. In the majority of the cases,
obese subjects pop out. A random sampling of the images
is shown in Fig. 5.

Figure 5: The first two rows show images used to find specialized
neurons: the first row has images of obese subjects (∈ C), the sec-
ond shows subjects without such characteristic (∈ R). The third
row shows the test images ∈ E which responded to the specialized
neurons. As visible, all of them portray obese subjects.
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In the case of gender, C contains all the images from
L where the subject is female (32000 elements), and R
contains the male subjects (the other 32000). Even in this
case, the top 10 neurons in terms of discernability score
are kept (see Fig. 6b). Furthermore, D shows to decrease
more rapidly than for the obesity case; this could mean
that the gender trait is more easily detectable, requiring
less neurons to focus on it. In fact, on the exploration set
E, all the female subjects have been detected correctly.

(a) Obesity (b) Gender

Figure 6: Top 10 neurons ranked by their discernability score D.

Concerning the analysis on the real RGBD-ID dataset,
we use SOMAnet, trained on SOMAset and fine-tuned on
the RGBD-ID, called here SOMAnet︸ ︷︷ ︸

SOMAset+RGBD-ID

. We first find

neurons that respond to ectomorph (long and lean) sub-
jects and subjects with long-sleeved shirts, respectively.
In particular, the localization set L is composed of 59 sub-
jects, and the exploration set E of the remaining 20; both
partitions contain subjects that possess or not the charac-
teristic. In the same way as for the previous experiments,
we find the 10 top neurons that respond to the presence
of the characteristic (high positive D ), and subsequently
we check those images of the exploration set which trigger
the same 10 neurons. Results are shown in Fig. 7.

These experiments show that SOMAnet sees beyond the
appearance of the human silhouette, capturing structural
aspects, which are capable of boosting the re-id perfor-
mance.

5.2.3. SOMAnet + SOMAset

We next analyze the re-id performance when SOMAnet
is trained from scratch with SOMAset, and fine-tuned on
the training partition of another dataset, whose testing
partition is used to calculate the re-id figures. In this case,
we analyze the performance on all the four datasets, com-
paring against the approaches that, at the time of writing,
exhibit the best performance.
For CUHK03, results of the single- and multi-shot

modalities are reported in terms of CMC curves and mAP
in Table 5.
Here SOMAnet has been trained from scratch

on SOMAset and fine-tuned on CUHK03, labelled
SOMAnet︸ ︷︷ ︸

SOMAset+CUHK03

. The resulting classifier is competitive

(a) Ectomorph (d) Long-sleeved

(b) Not ectomorph (e) Not long-sleeved

(c) Images triggering
ectomorph neurons

(f) Images triggering long
sleeve neurons

Figure 7: The first two rows show images used to find specialized
neurons: the first row has images of subjects with the visual char-
acteristic (∈ C), the second has images that do not have it (∈ R).
The third row shows random test images ∈ E which responded to
the specialized neurons.

against the state-of-the-art. Concerning the multi-shot
modality, the only approach that operates on the CUHK03
dataset is MB-DML, which provides results just for rank
1 of the CMC curve.

We also report the scores obtained with SOMAnet,
trained from scratch on CUHK03 (these are the results
reported in Sec. 5.2.1), to show the advantage of bringing
in SOMAset into play.

Results on Market-1501 are reported in Table 6 along
with the competitive approaches. We also report
here the scores obtained with SOMAnet, trained from
scratch on Market-1501. For the single-shot evaluation

SOMAnet︸ ︷︷ ︸
SOMAset+Market-1501

provides a mAP of 47.89%.

The third dataset under analysis is RAiD, useful for
evaluating the behavior of the SOMA approach when few
data are available to fine-tune the network. The dataset
has so far just been employed for the multi-shot modality.
The CMC scores on RAiD are reported in Table 7

SOMA saturates CMC performance very soon for all
camera combinations, in several cases starting as early as
rank 2. This supports the fact that fine-tuning SOMAnet
on a small dataset worked appropriately.
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Single-shot
Rank

1 2 5 10 20

KISSME [27] 14.17 22.30 37.46 52.20 69.38
FPNN [3] 20.65 32.53 50.94 67.01 83.00

LOMO+XQDA [28] 52.20 66.74 82.23 92.14 96.25
JointRe-id [4] 54.74 70.04 86.50 93.88 98.10
LSTM-re-id [7] 57.30 - 80.10 88.20 -

LOMO+MLAPG [29] 57.96 - - - -
Ensemble [34] 62.10 76.60 89.10 94.30 97.80
Null space [31] 62.55 - 90.05 94.80 98.10
Personnet [8] 64.80 73.55 89.40 94.92 98.20
MB-DML [5] 65.04 - - - -
Gated [6] 68.10 - 88.10 94.60 -

DGD-CNN [12] 72.60 - - - -
MTDnet [33] 74.68 - 95.99 97.47 -
SOMAnet
︸ ︷︷ ︸

CUHK03

68.90 82.10 91.00 95.60 98.30

SOMAnet
︸ ︷︷ ︸

SOMAset+CUHK03

72.40 81.90 92.10 95.80 98.50

Multi-shot
Rank

1 2 5 10 20

MB-DML [5] 80.60 - - - -
SOMAnet
︸ ︷︷ ︸

CUHK03

83.60 93.40 97.50 99.20 99.70

SOMAnet
︸ ︷︷ ︸

SOMAset+CUHK03

85.90 94.00 98.10 99.30 99.60

Table 5: Analysis of the performance of SOMAnet against other
methodologies when trained on SOMAset, fine-tuned on the training
partition of the CUHK03 dataset, and tested on the test partition of
the CUHK03 dataset, in both single-shot and multi-shot modalities.

Single-shot
Rank

mAP

1 5 10 20 30 50

BoW [17] 35.84 52.40 60.33 67.64 71.88 75.80 14.75
BoW,LMNN [17] 34.00 - - - - - 15.66
BoW,ITML [17] 38.21 - - - - - 17.05
Personnet [8] 37.21 - - - - - 18.57
SSDAL [32] 39.40 - - - - - 19.60

BoW,KISSME [17] 44.42 63.90 72.18 78.95 82.51 87.05 20.76
SCSP [30] 51.90 - - - - - 26.35

Null space [31] 61.02 - - - - - 35.68
Gated [6] 65.88 - - - - - 39.55
SOMAnet
︸ ︷︷ ︸

Market-1501

70.28 87.53 91.69 94.57 95.64 96.85 45.05

SOMAnet
︸ ︷︷ ︸

SOMAset+Market-1501

73.87 88.03 92.22 95.07 96.20 97.39 47.89

Multi-shot
Rank

mAP

1 5 10 20 30 50

BoW [17] 44.36 60.24 66.48 73.25 76.19 76.69 19.42
SSDAL [32] 49.00 - - - - - 25.80

LSTM-re-id [7] 61.60 - - - - - 35.30
Null space [31] 71.56 - - - - - 46.03

Gated [6] 76.04 - - - - - 48.45
SOMAnet
︸ ︷︷ ︸

Market-1501

77.49 91.81 94.69 96.56 97.27 98.25 53.50

SOMAnet
︸ ︷︷ ︸

SOMAset+Market-1501

81.29 92.61 95.31 97.12 97.68 98.43 56.98

Table 6: Analysis of the performance of SOMAnet against other
methodologies when trained on SOMAset, fine-tuned on the training
partition of the Market-1501 dataset, and tested on the test partition
of the same dataset, in the single-shot and multi-shot modalities.

Rank

cam1-cam3 1 2 5 10 20

Double-view [24] 46.67 90.00 96.67 98.33 100.00
NCR on ICT [18] 60.00 82.00 95.00 100.00 100.00
Multi-view [24] 61.67 91.67 96.67 100.00 100.00
NCR on FT [18] 67.00 83.00 93.00 98.00 100.00

SOMAnet
︸ ︷︷ ︸

SOMAset+RAID

69.00 99.00 100.00 100.00 100.00

Rank

cam1-cam2 1 2 5 10 20

Multi-view [24] 78.33 98.33 100.00 100.00 100.00
NCR on FT [18] 86.00 97.00 100.00 100.00 100.00
Double-view [24] 88.33 100.00 100.00 100.00 100.00
NCR on ICT [18] 89.00 98.00 100.00 100.00 100.00

SOMAnet
︸ ︷︷ ︸

SOMAset+RAID

95.00 100.00 100.00 100.00 100.00

Rank

cam1-cam4 1 2 5 10 20

NCR on ICT [18] 66.00 84.00 94.00 100.00 100.00
Multi-view [24] 66.67 98.33 100.00 100.00 100.00
NCR on FT [18] 68.00 86.00 99.00 99.00 100.00
Double-view [24] 76.67 100.00 100.00 100.00 100.00

SOMAnet
︸ ︷︷ ︸

SOMAset+RAID

90.00 100.00 100.00 100.00 100.00

Table 7: Analysis of the performance of SOMAnet against other
architectures when trained from scratch with the training RAID
dataset, and tested on the test partition of the same dataset, in
the multi-shot modality.

Rank

1 5 10 20 30 50

RGBD-ID [10] 12.66 43.04 53.16 84.81 96.20 100.00
PDM [68] 17.72 36.71 40.51 59.49 77.22 91.14
SOMAnet
︸ ︷︷ ︸

SOMAset+RGBD-ID

63.29 82.28 88.61 94.94 96.23 98.73

Average Human Performance 65.00 95 - - - -

Table 8: Analysis of the performance of SOMAnet against other
architectures when trained on SOMAset, fine-tuned with the training
RGBD-ID dataset, and tested on the test partition of RGBD-ID, in
the multi-shot modality. Average human performance in Rank 1 and
Rank 5 also reported for reference.

Finally, the last dataset we take into account is RGBD-
ID. Results on the “Walking1” vs “Walking2” setting are
reported in Table 8. In order to compare against human
performance, we also conducted an experiment with 20
human annotators who were asked to select the top 5 sub-
jects to a given query image (thus producing results for
Rank 1 and Rank 5); we report the average performance
of the 20 annotators in the same Table. The annotators
complained that the task was tedious, time consuming and
challenging, especially when blurred faces were involved.
They also reported that their selection was based not only
on body shapes but also on detecting common accessories
between query and gallery.

Notably, the competing approaches work either with the
silhouette [68] or with depth images associated to the RGB
images (which are not used in the case of SOMA) [10]. As
mentioned in Sec. 5.1.4, the reason is that people change
their clothing between different camera acquisitions. In
our case, we do the opposite, discarding depth informa-
tion while retaining the RGB images only; still the results
are well above the state-of-the-art. SOMAnet︸ ︷︷ ︸

SOMAset+RGBD-ID

has
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almost the same rank 1 performance as the average human
but SOMAnet is much faster.
Fig. 8 illustrates some probe images in the left column

and the corresponding ranked gallery images provided by
our approach in the rest of the columns, where the cor-
rect match is framed in green. As visible, in most of the
cases, the correct individual is in the early ranks even if
he/she does not wear the same clothing. Interestingly, in
the second row of Fig. 8, the probe image of the woman
produced two images of women in the top 2 ranks, with
another woman in seventh position. In the case of the
other probe male subjects, no female subjects appeared in
the top ranked gallery images. In the first row, the probe
subject is wearing a jacket which is abundant on the belly.
Consequently, many of the top ranked gallery images are
of endomorph subjects. In contrast, the probe subjects on
the third and fourth rows are ectomorph and so are the
majority of the retrieved images in the top ranks.

Figure 8: Ranking results of RGBD-ID; probe images are shown in
left column. The top 10 ranked gallery images are shown on the
right. The ground-truth match is highlighted with a green frame.

5.3. Analysis of SOMAset

This section explores different characteristics of SO-
MAset, clarifying their role in the re-identification task.
First, we evaluate the importance of training SOMAnet
on SOMAset from scratch, independently of the dataset
used to perform fine-tuning and testing. To this end, we
evaluate the training from scratch with diverse datasets
(in addition to SOMAset), choosing different datasets for
the fine-tuning and testing (for example, we train SO-
MAnet from scratch on CUHK03, fine-tuning and testing
on Market-1501). Second, we evaluate the effect of reduc-
ing the number of different subjects and the number of
poses.

5.3.1. Training from scratch on different datasets

The datasets that are suitable for training deep networks
from scratch are CUHK03 and Market-1501, due to their
size (see Sec. 5.2). In particular, we calculate re-id scores
(rank 1 of CMC curve and mAP for brevity) where SO-
MAnet is trained with CUHK03, fine-tuned and tested
with Market-1501, labelled SOMAnet︸ ︷︷ ︸

CUHK03+Market-1501

; then we

consider the network trained on SOMAset, fine-tuned
and tested on Market-1501, labelled SOMAnet︸ ︷︷ ︸

SOMAset+Market-1501

.

To show the effect of this cross-dataset learning, we
also present the results where SOMAnet is trained with
Market-1501 from scratch and tested on it, labelled
SOMAnet︸ ︷︷ ︸
Market-1501

(these latter are the results already presented

in the experiments of Sec. 5.2).

We next invert the roles of CUHK03 and Market-
1501, that is, CUHK03 is employed as evaluation dataset,
giving rise to SOMAnet︸ ︷︷ ︸

Market-1501+CUHK03

, SOMAnet︸ ︷︷ ︸
SOMAset+CUHK03

and

SOMAnet︸ ︷︷ ︸
CUHK03

. All of these setups are evaluated in both the

single and multi-shot modalities. Results are reported in
Table 9 and Table 10, respectively.

Mean Average Precision

SOMAnet
︸ ︷︷ ︸

Market1501

SOMAnet
︸ ︷︷ ︸

CUHK03+Market1501

SOMAnet
︸ ︷︷ ︸

SOMAset+Market1501

Single-shot 45.05 45.97 47.89
Multi-shot 53.50 54.20 56.98

Rank 1

SOMAnet
︸ ︷︷ ︸

Market1501

SOMAnet
︸ ︷︷ ︸

CUHK03+Market1501

SOMAnet
︸ ︷︷ ︸

SOMAset+Market1501

Single-shot 70.28 73.22 73.87
Multi-shot 77.49 79.81 81.29

Table 9: Analysis of the role of SOMAset as learning data for the
training from scratch step of SOMAnet. For the same testing dataset,
Market-1501, different repositories are used for the training from
scratch, namely, Market-1501 itself, CUHK03 and SOMAset, respec-
tively.

Mean Average Precision

SOMAnet
︸ ︷︷ ︸

CUHK03

SOMAnet
︸ ︷︷ ︸

Market1501+CUHK03

SOMAnet
︸ ︷︷ ︸

SOMAset+CUHK03

Single-shot 73.92 73.91 76.65
Multi-shot 86.79 87.49 88.60

Rank 1

SOMAnet
︸ ︷︷ ︸

CUHK03

SOMAnet
︸ ︷︷ ︸

Market1501+CUHK03

SOMAnet
︸ ︷︷ ︸

SOMAset+CUHK03

Single-shot 68.90 68.90 72.40
Multi-shot 83.60 84.40 85.90

Table 10: Analysis of the role of SOMAset as training data for the
training from scratch step of SOMAnet. For the same testing dataset,
CUHK03, different datasets are used for the training from scratch,
namely, the CUHK03 itself, Market-1501 and SOMAset, respectively.

By observing the two tables, some useful facts emerge.
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First, cross-dataset learning seems to be beneficial in gen-
eral, except for the single-shot modality when testing on
the CUHK03 dataset, where the performance essentially
does not change. Notably, fine-tuning gives better results
when it is carried out with Market-1501 on the network
trained from scratch on CUHK03, than vice-versa. This
is possibly due to the larger size of Market-1501 w.r.t
CUHK03. When SOMAset is used for the training from
scratch, the improvement is systematically very significant.
This is an interesting result, since it indicates that, other

than being an economic and effective proxy for real data,
the SOMA framework appears to produce a nice general
optimization of the network, that later can be properly
specialized using the data where the classifier will be ap-
plied.

5.3.2. Changing the number of subjects

In these experiments, we analyze the effect of reducing
the number of subjects of SOMAset. We recall here that
each subject (that is, a mixture of somatotypes) gives rise
to 2000 images (250 human poses × 8 sets of clothes).
The original SOMAset has 50 subjects, and we evaluate
the effect of having 32, 16 and 8. These numbers have been
obtained by randomly removing people from the dataset,
repeating the experiments twice. When we go to fewer
than 8 subjects (in particular, we tried 4) the training of
SOMAnet produces several dead/deactivated neurons.
The evaluation of the reduced SOMAsets is carried out

with fine-tuning and testing on the Market-1501 dataset.
The results are given in terms of CMC ranks and mAP in
Table 11.

Single-shot

#Images in Dataset #Subjects in SOMAset Rank 1 mAP
100000 50 73.87 47.89
64000 32 73.13 46.70
32000 16 72.12 46.23
16000 8 71.70 45.77

Multi-shot

#Images in SOMAset #Subjects in SOMAset Rank 1 mAP
100000 50 81.29 56.98
64000 32 80.70 55.46
32000 16 80.14 55.35
16000 8 78.79 54.68

Table 11: Analysis of the role of the size of SOMAset as training
data. Here SOMAset was rendered in original and reduced versions
by changing the number of rendered subjects. The different ver-
sions of SOMAset were fine-tuned with the training partition of the
Market-1501 dataset, and tested on the test partition of the same
dataset.

As one can expect, adding subjects leads to increased
performance. The curious aspect is that the increase is
very mild, both in terms of rank 1 and mAP. A roughly
linear relation between number of subjects and the perfor-
mance seems to hold.
We should highlight two points: Market-1501 has

750 subjects in the testing set, and having just 1%
of performance increase does impact substantially the
re-identification capabilities (an increase of 7.5 subjects
matched correctly in the first rank); secondly, in the deep

network literature it is widely known that the role of fine-
tuning is absolutely crucial, much more than the role of
the training from scratch.

5.3.3. Changing the number of poses

In the final experiment, we investigate the impact of re-
ducing SOMAset by randomly removing poses from the
rendering protocol. To compare with Sec. 5.3.2, and un-
derstand if it is more important to have more poses or
more subjects into play, we select a number of poses that
result in the same number of images as in the previous
study.

Specifically, we create reduced datasets with 250, 160,
80 and 40 poses, giving rise to 100K, 64K,32K and 16K
images, corresponding to what we obtained with 50, 32,
16 and 8 subjects, respectively.

Single-shot

#Images in Dataset #Poses in SOMAset Rank 1 mAP
100000 250 73.87 47.89
64000 160 72.39 46.08
32000 80 71.44 45.18
16000 40 70.19 44.58

Multi-shot

#Images in SOMAset #Poses in SOMAset Rank 1 mAP
100000 250 81.29 56.98
64000 160 79.16 54.90
32000 80 78.65 53.72
16000 40 78.65 53.56

Table 12: Analysis of the role of the size of SOMAset as training
data. Here SOMAset was rendered in original and reduced versions
by changing the number of poses. The different versions of SO-
MAset were fine-tuned with the training partition of Market-1501,
and tested on the test partition of the same dataset.

The comparison of Tables 11 and 12 indicates that hav-
ing more subjects than poses is more auspicable, and this
is meaningful, since the intraclass variance of a dataset is
intuitively higher when having different subjects instead
of different poses, in terms of visual variability (consider
the rows starting from the second one, since the first row
shows the performance of the full SOMAset, which is the
same in both tables).

5.4. Effects of Illumination, poses and camera viewpoints

It is interesting to attempt to quantitatively assess the
individual effect of illumination, poses and camera view-
points on performance. Then one could determine which
variable to prioritize while modeling and rendering a syn-
thetic dataset for re-id. To this end, we have isolated 4
variants of SOMAset with 16000 images: the first consists
of a manual selection of 16000 images where the subject
appears dark (bad illumination), the second consists of
16000 images in which the number of rendered poses has
been reduced following the procedure of Section 5.3.3 (re-
stricted poses), the third consists of a manual selection of
16000 images where the subject is seen from the back (bad
viewpoint), while the fourth is a balanced random selection
of 16000 images called the control group, for comparison.
We have repeated the experiment with 4 similar variants
of 32000 images in order to see how the dataset size change
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influences these factors. The results can be seen in Table
13.

Multi-shot

SOMAset variant Rank 1 mAP Rank 1 mAP

Balanced Control Group 80.14 55.35 78.89 54.68
Bad Illumination 79.19 54.77 71.73 54.33
Bad Viewpoint 79.13 53.84 71.56 54.56
Restricted Poses 78.65 53.72 70.19 53.56

32000 Images 16000 Images

Table 13: Comparitve analysis of rendering factors of SOMAset on
SOMAnet performance. The effect of a balanced control group is
compared against similarly sized datasets with bad illumination, re-
stricted number of poses and bad camera viewpoints. The experi-
ment was performed for 16000 and 32000 images giving a total of 8
variants of SOMAset. All variants were fine-tuned with the training
partition of Market-1501 and tested on the test partition of the same
dataset.

As one would expect, the Balanced Control Group per-
forms best across both dataset sizes. Looking at Rank 1
performance, in both dataset sizes, the most degrading fac-
tor compared to Balanced Control Group performance is
restricting the number of poses, followed by bad viewpoint
and bad illumination. The mAP performance generally
follows the same pattern, except for the case of bad view-
point where, paradoxically, mAP performance drops when
going from 16000 to 32000 images. The Rank 1 difference
between the Balanced Control Group and the ’degraded’
variants at 16000 images is over 7% while the equivalent
figure for 32000 images is less than 2%; this is likely to be
due to the fact that overfitting to a ’degraded’ dataset is
easier the smaller its size is.

6. Conclusions

Synthetic training data can greatly help to initialise
deep networks. Tasks such as re-identification should
not be faced exclusively by siamese architectures; instead,
single-path networks can be employed as successful feature
extractors. A by-product is that these networks can be
easily probed, investigating the semantics being captured
by the neurons.
In this work, we find that such networks can see beyond

apparel, capturing structural aspects of the human body,
such as their somatotype. This can be fully exploited with
an appropriate dataset; in this respect, we introduce, for
the first time in the re-identification field, the strategy of
using synthetic data as proxy for real data. In particu-
lar, having synthetic datasets for training a network from
scratch seems to be a very effective manoeuvre, produc-
ing successive fine-tuned architectures with a very high
recognition rate. The proposed inception-based network,
SOMAnet, trained on the synthetic dataset SOMAset2 can
match people even if they change apparel between camera
acquisitions.

2SOMAset will be released with a open source license to enable
further developments in re-identification.

Various future directions are intriguing and promising.
First, the nature of the synthetic dataset needs to be ex-
plored under different respects: an obvious question is,
what is the behavior of the network when the number of
subjects contained in the dataset tends to infinity. Specif-
ically, we show a somewhat linear increase in performance
with respect to the addition of diverse subjects. Certainly,
at a given point, a plateau should be reached, and finding
this point is a key open issue.

Another question regards the importance of the back-
ground in the images: to bound the degree of freedom of
our analysis, we decided to place our synthetic pedestri-
ans in a single scene that, even if arbitrarily large, does not
offer the variability contained in other datasets. Our intu-
ition is that having a fixed background forces the network
to focus on the foreground objects. At the same time, a
single scene may help the network in understanding differ-
ences among individuals, acting as a frame of reference to
capture, for example, different sizes among individuals. In
a preliminary experiment, not reported here intentionally,
we omit the background leaving a grey homogeneous flat
area behind the subjects. Results in recognition are defi-
nitely worse, but we did not investigate this point further.
The importance of having realistic images is another ques-
tion that we would like to explore. As already mentioned,
the usual re-identification setup produces individuals at a
certain low resolution, so that fine details such as the face
cannot be processed. It could be nice to have an advanced
re-id setting, where high-resolution cameras are employed,
collecting high frequency cues. In that case it would be
reasonable to expect a difference in recognition rates, de-
pending on the realism of the training data.

Finally, a wider, conceptual question pops out: with
such a framework, capable of understanding bodily cues of
human beings, going beyond the mere appearance of the
outfit, is it still reasonable to talk about re-identification,
or does it make more sense to call for non-collaborative
person recognition at a distance? In that case, a brand
new biometric field is opening up.
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[26] S. Bak, F. Brémond, Re-identification by covariance descriptors,
in: Person Re-Identification, Springer, 2014, pp. 71–91. 2
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