
ISBN 978-82-326-4922-8 (printed ver.)
ISBN 978-82-326-4923-5 (electronic ver.)

ISSN 1503-8181

Doctoral theses at NTNU, 2020:287

Fenglin Han

MODEL-DRIVEN ENGINEERING
OF COMPLEX SYSTEMS

Supporting the Design of Reactive Systems
with Augmented Modeling and Verification
Mechanisms

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2020:287
Fenglin H

an

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

Thesis for the Degree of Philosophiae Doctor

Trondheim, October 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Fenglin Han

MODEL-DRIVEN ENGINEERING OF
COMPLEX SYSTEMS

Supporting the Design of Reactive Systems with
Augmented Modeling and Verification
Mechanisms

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

© Fenglin Han

ISBN 978-82-326-4922-8 (printed ver.)
ISBN 978-82-326-4923-5 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2020:287

Printed by NTNU Grafisk senter

Abstract

This thesis motivates the need for the Reactive Blocks approach for model-driven Complex Sys-
tems Engineering (CSE). With the booming of the Internet economy and development of the Internet
of Things (IoT), interconnected applications have penetrated into areas including manufacturing, man-
agement, and all aspects of human life. Embedded devices and internet-based services are increasingly
inter-connected, and as the applications and services grow, the devices are intertwined into a complex
system. This approach comprises a core process that constitutes the practice of model-driven devel-
opment, component-based distributed system synthesis and derivation, software verification, modeling
and verification augmentation for a variety of properties, such as real-time, probabilistic properties of
complex systems.

We constrain CSE to distributed and concurrent reactive software systems that are prevalent in many
application domains, such as avionics, consumer electronics, robotics and new emerging sensor net-
works. These domains need to address a variety of properties in software and hardware. The efforts
involved in implementing a system correctly, consume the majority of the development time and cost of
complex systems; thus, many design and verification methods have been devised and applied to software
development to ensure correct implementation. The Reactive Blocks approach, initiated by the network
systems group in the Department of Information Security and Communication Technology, Norwegian
University of Science and Technology, is designed to use reusable building blocks to build systems with
significantly reduced development time and cost while at the same time guaranteeing the functional accu-
racy and transparency. Reactive Blocks takes the UML activity and state machine diagrams as the main
design unit and provides a visual programming interface, while the implementation details are hidden
in the diagrams. Reactive Blocks allows more than specifying just functional properties, but also QoS
properties like real-time and performance. To empower Reactive Blocks with QoS properties analysis
in our approach, we imported and analyzed a graph representation of our approach. Based on the graph
representation, we extended the verification of Reactive Blocks with augmented extensions and applied
rich formal method based analysis.

In the first part of the thesis, we analyze the graph representation in Reactive Blocks. To analyze the
graph representation, we imported graph transformation rules for automatically analyzing the decompo-
sition and automatic remedy of design errors in the system specification. This part involves two papers
with one addressing the choreography model transformation via graph transformation rules and the other
automatic system design error detection and remedy.

Second, the modeling capabilities of Reactive Blocks are augmented and extended to include new for-
malisms. New system requirements are addressed using extended state transition diagrams. To describe
the real-time constraints in building blocks, we extend and augment the external state machine (ESM)
to a real-time ESM (RTESM) with clock variables and guard notations. Further, the augmentation ca-
pabilities consider possibilities and formalize the probabilistic RTESM (PRTESM). This part involves
three papers addressing real-time modeling and verification, a performance index for building blocks,
and probabilistic modeling and verification of reactive systems respectively.

iv MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Third, with its extended modeling capabilities, the Reactive Blocks approach can be used in the mod-
eling and verification of probabilistic real-time systems which are typical in cyber-physical systems, such
as robots and aviation control systems. This is discussed in two papers. In one of them, we summarize a
tool chain for the formal development of controllers for hybrid systems that need to fulfill both real-time
and spatial behavior properties. In the other one, we depict a hybrid control system background and com-
bine the simulation tool JEmula with our reactive system design and analysis. We also use the BeSpaceD
tool for the 802.11 WLAN wireless signal strength and coverage area analysis, which facilitates the safe
control of robots.

Our CSE approach has a strong focus on formal methods. We use timed automata and probabilistic
timed automata for interpreting the extended specification. In particular, we apply Timed Computa-
tion Tree Logic (TCTL) and Probabilistic Timed Computation Tree Logic (PTCTL) to verify timed
probabilistic properties of the specification, and such formalisms (RTESM, PRTESM) inherit the com-
positional and incremental verification characteristics of our Reactive Blocks paradigm. We integrated
several tools to support our approach, including AGG and HENSHIN for graph based model transforma-
tion, and we used the popular real-time verification tools UPPAAL and PRISM for time and probabilistic
properties verification. These tools were integrated using self-developed software facilities that auto-
matically migrate the syntax of different formalisms. The spatial properties simulation and verification
were achieved by integrating Reactive Blocks with the spatial property verification tool BeSpaceD. We
built the control function building blocks of robot controllers and simulation environments that generate
output for the BeSpaceD tool. The embedded robot control system addresses the real-time and proba-
bilistic properties of hybrid system. Traces of robot movements were analyzed, and certain spatial safety
properties were verified by the BeSpaceD tool.

Keywords: Reactive Blocks, concurrent distributed system, software verification, model-driven soft-
ware development

Preface

This thesis is submitted in fulfilment of the requirements for the degree of the philosophiæ doctor
(Ph.D) at Norges Teknisk-Naturvitenskapelige Universitet (NTNU). The work for the thesis was done at
the former Department of Telematics of NTNU, which was merged into the Department of Information
Security and Communication Technology, and under the supervision of Professor Peter Herrmann and
co-supervised by Professor Rolv Bræk.

The thesis work was performed within the context of the Research Council of Norway (RCN) spon-
sored project ”Infrastructure for Integrated Service” (ISIS), which was a multidisciplinary effort of the
Telenor Research, TellU, the Department of Information Security and Communication Technology of
NTNU and the University of Agder. The ISIS project aimed at providing a real model-driven process
from requirements capturing via design synthesis and analysis to code generation and service execu-
tion. The approach is supported with tools and service execution platforms that substantially improve
industrial service engineering on a seamless infrastructure.

While in the writing process of this thesis, the science-fiction novel ’The Three-Body Problem’ has
won the Hugo award in 2015. Here, I like to congratulate the Chinese writer Liu Cixin for his achieve-
ment. ’The Three-Body Problem’ is the only novel I read during my PhD study and it has been long time
since I last read science fiction novels. I like to thank Liu Cixin for the joyness he brought to me during
the thesis work in Trondheim and piles of papers in front of my desktop. In an interview, Liu said: “The
future in the people’s eyes is full of attractions, temptations and hope. But at the same time, it is also full
of threats and challenges. That makes for very fertile soil.” The Ph.D experience has increased my desire
for knowing as much as possible about computer science. Further, it helped me to understand how can I
devote my life into a career.

For the moment, I have to thank many people for this dissertation coming into existence. At the very
first, I must thank Professor Peter Herrmann, my main supervisor, for his guidance and many useful
discussions of my research topic; I’d like to thank him for guiding me to think in a systematic and global
view in the engineering of software systems; I also appreciate that he has given me freedom for choosing
my interested directions during the research. Appreciation also goes to my co-supervisor Professor Rolv
Bræk, for his patience and discussion on writing papers with a more general view in the research domain.
Looking back to years earlier, when I was a master student and working at SINTEF IKT in Oslo, my
thankful gratitude goes to Professor, Chief scientist Arne J. Berre, who supervised my master work and
research. He led me to the academic domain, which opened a gorgeous model-driven world to me, and
he also showed his concerns for my Ph.D study during the last few years by E-mail contact. The three
people influenced my career during the past seven years, and also will influence my future.

The submission of the dissertation is also at the same time when my daughter Mona Eryue was born
to this planet. I would like to express my thankfulness for the almighty Lord to give me such a precious
creature to my life.

My wife, Weiwei, thank you for your support such that I could concentrate on the research work and
thank you for your company such that i don’t feel lonely while staying in Trondheim. To my beloved

vi MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

daughter, Eryue, Mona, hope you and your spirit will grow happily from the moment you land on this
planet. Hope you have patience, kindness in your personality, and have a great desire for new knowledge.

Moreover, I like to thank Professor Heinz Schmidt at RMIT and Professor Jan Olaf Blech at Aalto
University in Finland for their cooperation in the last few of publications of my P.h.D work.

i

Although our capabilities and technology have been expending geometrically, unfortunately, our abil-
ity to model their long-term behavior, which has also been increasing, has been increasing only arith-
metically.

- Edward Tenner

ii MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Contents

Abstract iii

Preface v

List of Figures xi

List of Tables 1

List of Papers 3

Part I Overview

Introduction 7

1 The Reactive Blocks Approach for Complex System Engineering 7

2 Specification and Verification in Reactive Blocks 10

3 Approaches to Model-Based Analysis 12
Pattern Discovery 12
Restructuring 12
CPS and Networked Control System 12
New Formalism and Domain Specific Requirements 13

4 Formal Methods Applied in Reactive Blocks 13
Basic Semantics of Reactive Blocks 14

5 Real-Time System Modeling and Analysis 14

6 Research Method 15

7 Research Questions 15

Modeling 17

1 Choreography Model 17

2 Reactive Blocks 18

3 Reactive Blocks for encapsulating IoT protocols 18
AMQP Libraries 19

4 Architecture of IoT Solutions 20
A token distribution component in IoT 20

Background 23

1 Model and Model Transformation Techniques 23
Attributed Graph Grammar (AGG) 23
Henshin 24
ATL Transformation Language 24

2 Timed Automata and Probabilistic Timed Automata 26
Timed Automata 26
Probabilistic Timed automata 27

3 Modeling and Verification Architecture 27

4 Theorem Proving 28

5 Model Checking 29

vi MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

TLA and cTLA 29
Real-time Model Checking and Timed Computation Tree Logic (TCTL) 29
UPPAAL Tool 30
Probabilistic Model Checking and PTCTL 31
PRISM Tool 31

6 Trends in Formal Analysis of Cyber-physical Systems 32

Modeling and Analysis for Reactive Real-Time Systems 33

1 Preliminary 33
Reactive Blocks 33
Real-time Requirement Modeling 33
Real-time Verification 34

2 Extended External State Machines with Time and Probability 34

3 Translation Procedures 36
Mapping internal behavior, ESM to Timed automata 36

4 Translation Example 37
Component Modeling via UML Activities 38
Model Checking Real-time properties of a Reactive Block 41
Model Checking of Real-time system for Human Machine Collaboration 42

5 Simulation-based analysis and Verification for Cyber-physical Systems 43

Related Work 45

1 Synthesis Reactive Blocks for Complex System Engineering 45

2 Model Transformation for Model-based Analysis 46

3 Rule-based Model Transformation and Verification 47

4 Real-Time Modeling and Verification 47

5 Probabilistic Model Verification 49

6 Performance Modelling and Analysis 49
Stochastic Petri Net Models 49
Other Extensions of Petri Net (PNs) Based Model 50
Performance Evaluation for Real-Time Java 50
Simulation and Emulation Tool for Networked Reactive Systems 50

7 Cyber-physical Systems 50
Cyber-physical System Safety 51

Summary of the Papers 53

1 Paper A 53

2 Paper B 54

3 Paper C 54

4 Paper D 55

5 Paper E 56

6 Paper F 57

7 Paper G 57

Future Work 59

1 Modeling and Approach Validation 59

2 Taking Hardware into Consideration 59

3 Supporting Mechanisms for Real-Time 60
PERC 60
LJRT 60
Jamaica Virtual Machine 61

4 New Emerging Modeling Trends 61

5 Conclusion 61

Bibliography 63

Part II Included Papers

Contents vii

PAPER A: Choreography Model Transformation 79
Fenglin Han, Surya Bahadur Kathayat, Hien Le, Rolv Braek, Peter Herrmann

1 INTRODUCTION 79

2 ARCHITECTURE AND CHOREOGRAPHY 81
2.1 Collaboration 82
2.2 Flow-global choreography models 82
2.3 Flow-localized choreography models 83

3 FLOW LOCALIZATION 83
3.1 Causality relationship 83
3.2 Localization policy 83

4 Graph-based Model Transformation 85
4.1 Graph model definition 85
4.2 Graph models of the transformation rules 86
Graph models of the pin localization rule 86
Graph models of direct flow localization rules 87
4.3 Implementation 87

5 RELATED WORK 87

6 CONCLUDING REMARKS 87

Bibliography 89

PAPER B: Remedy Mixed Initiative Conflicts 93
Fenglin Han, Peter Herrmann

1 Introduction 93

2 Mixed Initiatives 94
2.1 Arctis 94
2.2 A Mixed Initiative Error 96

3 Mixed Initiative Detection 96

4 Mixed Initiative Remedy 97
4.1 Arctis Blocks handling Mixed Initiatives 97
4.2 Adding the Arctis Blocks 98

5 Graph Transformation Rules 100

6 Related work 101

7 Concluding Remarks 101

Bibliography 103

PAPAER C: Modeling and Verifying Real-Time Properties 107
Fenglin Han, Peter Herrmann, Hien Le

1 Introduction 107

2 Arctis Building Block Model 108
2.1 Interface of the SLS Building Block 109
2.2 Behavior of the SLS Component 111

3 Real-Time Extension 112
3.1 Timed-Automata and UPPAAL 112
3.2 Real Time External State Machines 113
3.3 Mapping from SPACE to UPPAAL 113

4 Compositional Verification of Real-Time Behavior 115
4.1 Proving the Real-time Property of the SLS Block 117

5 Correctness of the Compositional Verification 118

6 Related work 120

7 Conclusion and Future Work 120

Bibliography 123

PAPAER D: Modeling Real-Time System Performance 127
Fenglin Han, Peter Herrmann

1 Introduction 127

viii MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

2 Real-Time External State Machines 128

3 Extending Component Models with Analysis Meta-Classes 130

4 RTESM-Based Component Evaluation 131
4.1 Component Utilization 133
4.2 Service Execution Time 133

5 Schedulability Analysis 134
5.1 Verification Result 136

6 Related work 137

7 Conclusion and Future Work 137

Bibliography 139

PAPAER E: Verifying Safety Properties 145
Fenglin Han, Jan Olaf Blech, Peter Herrmann, Heinz Schmidt

1 Introduction 145
1.1 Guiding Example 147
1.2 Overview 147

2 Modeling Control Functions 147
2.1 Probability Assumptions and Temporal Safety 150

3 Probabilistic Real-Time Extended State Machines 151

4 Probabilistic Spatial Property Verification 153

5 Probability Distributions as Verification Results 155

6 Related Work 156

7 Conclusion 156

Bibliography 157

PAPER F: Tool Chain for Spatial Behavior of CyberPhysical Systems 161
Peter Herrmann, Jan Olaf Blech, Fenglin Han, Heinz Schmidt

1 Introduction 161

2 Modeling Controllers and Continuous Behavior 163

3 Proving Spatial Properties with BeSpaceD 166

4 Composing Reactive Blocks and BeSpaceD 167

5 Verifying Real-time Properties 168

6 Related Work 169

7 Conclusion 170

Bibliography 171

PAPER G: Model-based Development Framework for Space-aware Systems 175
Fenglin Han, Jan Olaf Blech, Peter Herrmann, Heinz Schmidt

1 Introduction 175

2 Background 176
2.1 Reactive Blocks 177
2.2 BeSpaceD 178
2.3 IEEE 802.11 WLAN Delay Analysis 178

3 Motivating Scenario 179
3.1 A Warehouse Robot System 180
3.2 WLAN topology and environment 181

4 Modeling the Controller in Reactive Blocks 181

5 Communication Access Ranges 183

6 Simulation Results 184

7 Combining the Results 186

8 Related Work 186

9 Conclusion and Future Work 187

Contents ix

Bibliography 189

Part III Thesis Appendix

List of Figures

1.1 Reactive Blocks approach for Complex System Engineering 8

1.2 A system pattern that acquire analysis techniques. 11

1.3 Graph Transformation Rule based automatic System analysis and Remedy 13

2.1 The train control service global choreography model: the choreography model
models collaborative services using UML activities connecting actions and flows.
The diagram contains three collaborative services of the two participants. 18

2.2 Advanced Messaging Queue Protocol (AMQP) from BitReactive 19

2.3 Brokered AMQP Client Activities 20

2.4 IoT architecture 21

2.5 Access control 21

2.6 Animation of main executions for the Token Distribution Component 22

3.1 Rule-based graph transformation for model transformation from Paper A 24

3.2 Henshin transformation rule [61] 25

3.3 Model transformation-based analysis process 25

3.4 Timed automaton [196] 26

3.5 Probabilistic Timed automata that models a probabilistic Protocol [123] 27

3.6 A simple timed automaton with one clock 30

4.1 Approach for creating time-constraints correctness preserved block 35

4.2 Mapping between the Activity Behavior and TAs 36

4.3 UML activity of building block SpeedController 37

4.4 ESMs of the block Mode and SpeedController 38

4.5 Simplified (RT)ESM of block SLS 39

4.6 Network of timed automate in UPPAAL obtained by translating the SpeedCon-
troller block 40

4.7 UML activity of building block ControlTwoElements 42

A1 Overall Approach. 80

A2 Structure Model of the Train Control System. 80

A3 Flow-Global model and Flow-Localized model (derived as Arctis model). 81

A4 Meta-model for the choreography graph models. 84

A5 Graph model of the part of choreography graph model of Train control scenario 86

A6 Pin localization rule graphs. 86

A7 Direct flow localization rule. 86

B1 Arctis building block Button Game and its ESM 94

B2 Activity steps of Button Game 95

B3 State spaces of the original and the modified block Button Game 96

xii MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

B4 The Arctis block Mixed Initiative 2 97

B5 Pattern of a system to be adapted with building block Mixed Initiative 2 98

B6 The building block Button Game after the transformation 100

B7 Rule inserting the block Mixed Initiative 2 101

C1 The External State Machine (ESM) of the SLS block 109

C2 Activity of Secure Limited Speed (SLS) Building Block 110

C3 Real-Time External State Machine (RTESM) of block Timer 5 113

C4 Mapping between the Activity Behavior and TAs 114

C5 Several pins in an RTESM transition 115

C6 External block TA of building block Timer 5 116

C7 Internal TA of building block Timer 5 116

C8 Internal timed automaton of SLS building block 118

D1 RTESM of Secure Limited Speed Building Block 129

D2 Building Block Performance Profile 130

D3 SAN model of building block Periodic Timer 132

D4 Building block Periodic Timer and its ESM 132

D5 Secure Limited Speed Building Block with annotations 132

D6 Monitor block for testing the response time and round-trip time for SLS 133

D7 Task execution time distribution described by a density distribution function. 134

D8 the Timer 5 Building Block 135

D9 Translated automaton of Timer 5 building block 135

D10 The Task Template from [27] 136

E1 Layout of the moving robot 147

E2 UML activity of building block Control Unit 148

E3 ESMs of building blocks Control Unit and Robot Operation 149

E4 UML activity of building block Robot Operation 150

E5 PRTESM for the ControlUnit block 152

E6 PRTESM for RobotOperation block 152

E7 Excerpt of PTA codes corresponds to Figure E5. 153

E8 Possible space occupation induced by unknown speed 153

E9 Space occupation and probability 154

E10 Probability density function for the system 155

F1 Layout of the moving robot 163

F2 UML activity of building block ControlTwoElements 164

F3 The RTESM (ESM) of building block ControlTwoElements 165

F4 Timed automata of RTESM for block ControlTwoElement 169

G1 Summary of the Approach. 177

G2 Animation of the Warehouse Robot System with 50 Robots. 179

G3 Communication Infrastructure in the Storage Hall. 180

G4 Multi-session Building Block Robot. 182

G5 Spatial Arrangement of Access Points. 183

G6 MSDU Delivery Delay Simulation. 185

G7 Communication Delay Distribution. 185

List of Tables

1 A comparison of Reactive Block paradigm and VHDL language 60

A1 Localization priority order and policy matrix for control node. 85

D1 Annotation Attributes 131

E1 Accumulative probability distribution of the execution times for the different tasks 151

F1 Maximum and minimum execution times of different tasks of the robot control system 168

List of Papers

Publications Included in the Thesis

PAPER A:
Fenglin Han, Surya Bahadur Kathayat, Hien Le, Rolv Braek and Peter Herrmann. Towards Chore-
ography Model Transformation via Graph Transformation. Proceedings of the 2nd IEEE Interna-
tional Conference on Software Engineering and Service Sciences (ICSESS 2011). Beijing, July
15-17, 2011.

PAPER B:
Fenglin Han and Peter Herrmann. Remedy of Mixed Initiative Conflicts in Model-based System
Engineering. Proceedings of the 11th International Workshop on Graph Transformation and Vi-
sual Modeling Techniques (GTVMT 2012), Volume 47 of the Electronic Communications of the
EASST, 2012. Tallinn, 2012.

PAPER C:
Fenglin Han, Peter Herrmann and Hien Le. Modeling and Verifying Real-time Properties of Re-
active Systems. Proceedings of the 18th International Conference on Engineering of Complex
Computer Systems (ICECCS 2013). Singapore, 2013.

PAPER D:
Fenglin Han and Peter Herrmann. Modeling Real-Time System Performance with Respect to
Scheduling Analysis. Proceedings of the 2013 International Joint Conference on Awareness Sci-
ence and Technology and Ubi-Media Computing (iCAST 2013 & UMEDIA 2013). Aizu city,
Japan, 2013.

PAPER E:
Fenglin Han, Jan Olaf Blech, Peter Herrmann and Heinz Schmidt. Towards Verifying Safety Prop-
erties of Real-Time Probabilistic Systems. Proceedings of the 11th International Workshop on
Formal Engineering approaches to Software Components and Architectures (FESCA 2014), Elec-
tronic Proceedings in Theoretical Computer Science 147, Grenoble, France. April 12, 2014.

PAPER F:
Peter Herrmann , Jan Olaf Blech, Fenglin Han and Heinz Schmidt. A Model-based Toolchain
to Verify Spatial Behavior of Cyber-Physical Systems. International Journal of Web Services Re-
search (IJWSR), 13(2016)1, pages 40-52, IGI Global.

A previous version of this paper was awarded the Best-Track Paper Award of the Special Track
on Reliability Technologies and Tools for Services-Based Systems at the 2014 Asia-Pacific Ser-
vices Computing Conference (APSCC), Dec. 4-6, 2014, Fuzhou, China.

4 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

PAPER G:
Fenglin Han , Peter Herrmann , Jan Olaf Blech and Heinz Schmidt,Model-based Engineering and
Analysis of Space-aware Systems Communicating via IEEE 802.11. 39th Annual International
Computers, Software & Applications Conference (COMPSAC 2015). pages 638-646, Taichung,
Taiwan, July 2015, IEEE Computer.

I

OVERVIEW

1
INTRODUCTION

In recent years, software developers have observed the growing importance of applying Model-Driven
Development (MDD) to software projects, MDD takes models as the most important artifact in software
development which better reflects the problem structure and better solves the problems of software reuse
and decomposition [156]. With recent advances in hardware and network technologies, software systems
have grown to provide pervasive services to humans and society. A software system usually operates on
a distributed and embedded computing environment consisting of diverse devices. The growing com-
plexity of software systems requires a systematic engineering method. MDD promises to cope with the
complexity of software development and introducing more automation in the process [185]. MDD has
promised to be especially well-suited for the development of complex, heterogeneous, and large software
systems [93]. Not only do complex systems rely on models as an important planning, structuring and
development tool, but models can also provide measurability and evolvability for complex systems.

In order to provide modeling of different levels of abstraction and introduce automation to software
development, we introduced the Reactive Blocks approach to Complex System Engineering (CSE) since
the Reactive Blocks approach solves a number of CSE problems including model evolution, abstraction,
automatic code generation, and tracing.

The basis of our work is the engineering technique Reactive Blocks that is introduced in Sect. 1.1.
A particular property of Reactive Blocks is its ability to specify and verify software flows which we
discuss in Sect. 1.2. An important solution for the verification of systems is model-based analysis which
is described in Sect. 1.3. In Sect. 1.4., we sketch how formal methods are used in Reactive Blocks.
For particular importance of our work is the modelling and analysis of real-time systems that we discuss
shortly in Sect. 1.5. Finally, we present our research methodology in Sect. 1.6 and the research question
leading our Ph.D. project in Sect. 1.7.

1 The Reactive Blocks Approach for Complex System Engineering

The Reactive Blocks approach (formerly called Arctis) [110, 118] is a method aiming at developing
reactive distributed software systems. It maintains a library of blocks with maximized modularity and
reusability (on average about 70% of the code of a system can be reused from the library, see [114, 116]).
The system behaviors in Reactive Blocks are modelled with UML activity diagrams. An Activity can
be hierarchically composed by others activities. Interactions between activities are modelled by UML
pins and flows through which data or control signals can be transferred from one activity to the other.
The visible behaviour of a decomposed activity (called a block) is modelled by contracts in the form of
so-called External State Machines (ESMs, [114]). The activities have formal semantics based on their
token-flow nature (similar to Petri-nets) [115, 151], the activities are facilitated with formal semantics
[115], which enables verification of relevant properties, e.g., the correct integration of building blocks
into activities, by the model checker included in the tool-support Arctis [118].

A good example of Reactive Blocks and the advantages for combing Reactive Blocks with a popular
industrial architecture will be given in Chapter 2, in which we will also give a more detailed introduction
of Reactive Blocks.

8 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Domain

library

Security

library, security

infrustracture

Fault-

tolerance

library

Requirement

specification

simulation

...

Cyber physical

environment

Collaborative

Services

Problem

domain
user

leader
grpqs.Question

user grpsg.Sugg

user

leader
grp

ss.Show
sugg

grpsb.Submitleader

submitsugg

Group quizact

{leader}{user}

Automation

Support AS1

Real-Time

extended

infrustracture
AS3

Artefact A1

AS4

AS2

Figure 1.1. Reactive Blocks approach for Complex System Engineering

Model driven development (MDD) is seen as a way to handle complex systems. The model-based
approach shows its advantage in describing domain specific problems. We summarise the work steps for
model-based CSE into a procedure that corresponds to the core work steps of MDD. The core of MDD is
a series of activities including requirements modelling, functional modelling, model based development
and testing, code generation, system synthesis and system generation. In our procedure, we solve domain
specific problems in terms of MDD. Additional properties need to be measured and evaluated, e.g.,
system performance, real-time limitations, system safety and robustness.

The extended steps for CSE require extended MDD approaches and facilities to support the system
development according to the end-user requirement. We designed a development process shown in Figure
1.1 and described the Reactive Blocks approach for CSE:

System requirements are initially described by abstract models that capture main activities or ar-
tifacts in a user-centric manner. The requirements models primarily contain collaborative service
models and UML activities. System level behaviour are described by so called choreography mod-
els (Artifact 1 in Figure 1.1). Since Reactive Blocks are used as design time modelling technique,
a more abstract model is needed for capturing functional specifications.

The system level behaviour can be mapped into Reactive Blocks models, and functional specifica-
tions are captured by such decomposition analysis. In this step, we introduce the rule-based model
transformation for automation support (AS1 in Figure 1.1).

Functional components are described as building blocks using reactive blocks. Existing functional
blocks can be reused from a library where we maintain a repository of domain specific building
blocks (Domain library in Figure 1.1).

In the following steps, non-functional properties of specific functional building blocks are analysed
and relevant complement mechanisms are amended to the building blocks. For example, fault-

Introduction 9

tolerance mechanisms can be amended to the building blocks by formal analysis based on built-
in fault detection mechanisms [182] (fault-tolerance library in Figure 1.1); Reactive blocks also
maintain a security library and built-in security mechanisms, such as encryption and integrity
measures to protect the system against untrusted communication channels or malicious attacks
[81] (Security library and security infrastructure in Figure 1.1).

We preserve a transformation rule library to support the automatic remedy of typical error patterns
on distributed concurrent systems. This aids the automation support for system fault detection and
repair (Automation Support AS2 in Figure 1.1).

For more sophisticated requirements at system level like soft real-time (implemented by software)
or safety requirements (related to probabilistic real-time requirements), we analyse the synthesized
system and abstract the real-time behavior into corresponding analysis artifacts. For example,
augmented real-time annotations and building blocks can be transformed into timed automata for
real-time properties. In [179], Slåtten addressed fault tolerance mechanisms for reactive embedded
systems to improve the system reliability and avoid side effect. We extended the system to be able
to model safety properties such that reliability is extended to a cyber-physical context.

For these kinds of analysis capabilities we imported the real-time extended infrastructure, which
contains primarily real-time analysis tools such as UPPAAL and PRISM. This kind of analysis
and infrastructure is supported with automatic model transformation and automatic generation of
reasoning formulas (Automation Support AS3 in Figure 1.1).

Real-time related properties of embedded systems are hard to verify since they encompass ex-
tremely tight integration of and coordination between information world and physical resources.
Because of the uncertainty and uncontrollable conditions of the physical world [98], we have
to compromise with respect to the verification of real-time software systems in a cyber-physical
environment. To carry out such kind of research, we analyse the real-time related properties of au-
tonomous systems in concrete scenarios and strictly defined physical environments. A case study
is an automatic transportation robot running under a remote control system which are coordinated
using 802.11 wireless protocols. We imported automation support in this phase for supporting the
translation of software models into the verification language and automatic generation of a proof
theorem (automation support AS4 in Figure 1.1).

In the functional development phases and simulation in the cyber-physical environment as shown in
the central part of of Figure 1.1, analysis work is done together with development work in a model-centric
manner. We use the model as an essential abstraction of functional behaviour and apply analysis tools to
carry out the analysis work.

By taking advantage of the graph nature of Reactive Blocks and importing the model transformation,
our approach is flexible and extensible for various properties’ analysis. When applying system level
analysis, we first have a functional correctness preserved building block for input to a system level
property analysis. Such analysis usually needs to take advantage of the graph nature of the building block,
make a mapping to the target analysis language, and then transform the model to the target language. The
model transformation can assist in providing automation in this procedure. The analysis result from the
target language is feedback to the reactive blocks describing whether or to what extent the building block
has fulfilled the required system level property. The ? in Figure 1.1 represents potential possibilities like
fuzz testing [175] or machine learning based software fault detection [145].

The main contribution of this thesis is marked as AS1 to AS4 as indicated in Figure 1.1. They represent:
AS1: Automation support for transforming requirement to design time model; AS2: Automation support
for system fault detection and remedy; AS3: Automation support for real-time behavior modeling and
verification, especially expressing time constraints on safety-critical systems; AS4: Automation support
for safety analysis of cyber-physical systems. The contributions with its corresponding analysis work are
presented in seven papers and attached to the end of this thesis.

MDD has been a research hot-spot for many years, and several challenges have already been solved
while many others are still open [185]. The challenges include many aspects including requirement

10 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

modeling, domain-specific modeling, model verification and validation, etc. The Reactive Blocks ap-
proach is a built upon the diligent work of many researchers. A detailed summary of the research works
contributed to Reactive Blocks approach by others is summarized in Chapter 6 Sect 1.

We will talk in detail about the contribution of this thesis to the Reactive Blocks approach for Model-
driven development in the rest of this chapter and in Chapter 6.

2 Specification and Verification in Reactive Blocks

In this section, we review four aspects of the SPACE specification method [110] on which Reactive
Blocks is based: structural, transformational, compositional and analytical. We briefly mention our
contributions to the four specification aspects in this thesis and their novelty.

Structural: This aspect is concerned with the description of distributed reactive systems. From
a software point of view, this relates to how the software system organizes its codes and how the
software modules map to the topology of the distributed system, including its processes, compo-
nents, and connections. The SPACE method provides Reactive Blocks as basic specification and
composition units for reactive systems. In a building block, system behavior is modeled by UML
2.0 activities that, in a Petri net manner, express behavior by tokens flowing via the edges of a
graph. Also, an activity may contain a call behavior action referring to another activity. Such
structures can be reused hierarchically and compositionally in a way such that each building block
composes a part of the whole system graph. The partial system described by a building block is
translated into a set of state machines, the possible execution of an event system can be analysed
and simulated, by extends its state space, see [115]. This thesis extends the structure of the SPACE
specification method by new annotations and labels helping to extend the state space of a reactive
block. The annotations and labels, which contain count down clocks and guide conditions, allows
us also to model QoS properties such as real-time constraints and probabilistic behaviors. In effect
we extend the semantics of Reactive Blocks such that it is possible to use other analysis tools.

Transformational: A central feature of the SPACE method is the transformation of UML activ-
ities into petri-net based state-transition graphs, such that, the UML activity diagram becomes a
software model with formal semantics [113]. In this thesis, we contribute to the SPACE method by
applying model transformation in two ways. At the beginning, we introduce a rule-based model
transformation approach for model decomposition and pattern recognition. We describe the sys-
tem patterns using sub-graphs and apply model transformation to the recognized pattern for cer-
tain purposes including system derivation or erroneous pattern remedies. Both the pattern and the
transformation are formatted in graph transformation rules. A graph transformation rule contains
a pre-graph and a post-graph, in which the former describes a recognition and the latter makes
a mark or evolution. The graph transformation rules and their compositions for transformation
enhance the SPACE method so that more automated software development can be achieved.

Then, we extend the transformation into general purpose: use model transformation to transform
an extended structure of a reactive block to formal languages. We transform the annotated reactive
block with its state space into timed automata (see Paper C) and probabilistic timed automata (see
Paper E), the annotations are maintained in a performance profile (see Paper D). The transforma-
tions consider both, the Reactive Blocks’ state space, which is generated by the Reactive Blocks
tool-set, and the additional annotations, that are attached to the blocks by plugins. This automatic
transformation can generate models in analysis languages like the query language in UPPAAL,
which is a subset of CTL (computation tree logic) [87, 6]. Alternatively, we can create models in
the PRISM language [120], which supports a rich set of probabilistic models, and we apply the
analysis based on Probabilistic Timed automata (PTAs, see [102]).

Compositional: That is another fundamental aspect of modeling concurrent distributed software
systems. The compositional aspect concerns how the software system is composed and how the
systems is finally derived. The SPACE method uses an External State Machine (ESM, [114]) for
system composition, and the ESM performs three key functions: First, an ESM is an abstraction

Introduction 11

C
o

lla
b

o
ra

ti
ve

 s
er

vi
ce

s A pattern in a distributed
system is usually hard to
describe since it involves
physically distributed compo-
nents and interacted
collaborations.

Distributed Components

Figure 1.2. A system pattern that acquire analysis techniques.

of building block behaviour and also a communication interface between a building block and
its environment; second, the ESM contract strictly defines the inputs and outputs of each block
and their causality; third, large building blocks are composed using sub-blocks and UML activ-
ities such that the ESM becomes the composition contract between internal and external blocks.
In this thesis, we first align such verification techniques to rule based analysis. Through model
verification, we discover erroneous patterns to which we can apply automatic system detection
and correction. Model transformation rules can automatically compose domain specific blocks to
solve an erroneous scenario identified by graph patterns and verification results. Second, we de-
fined several new extensions of ESMs to produce the Real-Time External State Machine (RTESM)
and Probabilistic Real-Time External State Machine (PRTESM) for more building block behavior
formalization and verification. RTESM and PRTESM define real-time and probabilistic real-time
behavior of the system. Thus, our specification methods are enriched to describe more complicated
system level behaviors in a compositional manner.

Analytical: The analysis ability is a highly desirable feature and focus of research over the past
decades for distributed software systems. This is due to the increasing complexity and chaos of
large software systems. Since reactive systems can have parallel or concurrent behaviors, the
correctness of the ESM becomes very important. In particular, the ESM defines the interaction
of internal and external behaviors around a building block. SPACE applies the compositional
Temporal Logic of Actions (cTLA, see [95, 94]) for the semantics of the ESM. The analysis and
verification techniques in SPACE is based primarily on cTLA [111], which is a compositional
variant of Lamport’s Temporal Logic of Actions (TLA) [127]. In this thesis, we provide the SPACE
method with an extended ESM and apply formal verification also for real-time and probabilistic
behavior by importing timed automata and computation tree logic, including timed computation
tree logic (TCTL) and probabilistic TCTL (PTCTL). We enable the compositional verification of
real-time (probabilistic) behavior by flattening the hierarchical structure of building blocks to a
network of timed automata.

To summarize, this thesis utilizes the graph nature of the Reactive Blocks approach and introduces
model transformation as an artifact for automation in designing reactive systems. Also, the model trans-
formation supports extended modeling capabilities so that real-time and probabilistic behaviors can also
be captured. Based on the extended modeling capabilities, we can formally prove safety and spatiotem-
poral properties of some real-time and safety-critical systems. More details on the contributions of this
thesis work are presented in Chapter 6.

12 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

3 Approaches to Model-Based Analysis

Component analysis is a central activity in software engineering. Many approaches have been inves-
tigated and published by researchers and industrial practitioners (see Chapter 6). In our model-based
approach for software component analysis, we pursue a path that can customize fundamental theories
and facilities to the needs of reactive systems. Due to the common structure of software systems, which
includes concurrent process communication and a state-transition-based model specified as a graph in
Reactive Blocks, we choose an approach that specifies system components by modeling local behaviors
in functionally separated building blocks. The composed system can be decomposed by its functional
nature and some common types of system properties can be analyzed and even automatically corrected.

Figure 1.2 shows a system pattern that requires analysis. We can evaluate existing Reactive Block
models and discover the cross-cutting nature of erroneous scenarios of a reactive system. Traditional
analysis techniques which include most software testing approaches, are usually simulation based. Our
approach combines formal verification for error discovery with graph transformation for correction. The
patterns relate to erroneous behavior and to graph transformation rules that are combined to analysis
patterns [70]. The analysis patterns can be used for various Reactive Blocks-based models.

Other purposes of analysis include testing system performance under certain loads or evaluating sys-
tem delay. We combine this type of simulation-based analysis with our approach at the end of Chapter 4.
To summarize, the analysis of a component-centered software system, under our model-driven method,
includes the following purposes:

Pattern Discovery

A common definition for a pattern is a solution to a problem in a context [72]. In our approach, we
discover two types of patterns: one pertaining to software system derivation and decomposition, and the
other is common bug patterns due to the nature of reactive distributed systems. We formalize the two
patterns using graph transformation rules.

Restructuring

Chikofsky and Cross define refactoring as follows: restructuring is the transformation from one rep-
resentation form to another at the same relative abstraction level, while preserving the subject system’s
external behavior (functionality and semantics) [46].

For the erroneous pattern we discovered, we are able to apply automatic refactoring using graph
transformation rules. This is achieved by incrementally applying a set of graph grammar rules. Such
transformations maintain the old system behavior while importing new behaviors that can remedy the
erroneous pattern.

Figure 1.3 shows the architecture of applying model transformation rules to building blocks for au-
tomatic system remedy. In the transformation, we preserve the semantics of the building blocks, and
the transformation rules are divided into different phases. On the left, early rules detect inconsistencies
and add labels, so as to form the pattern for later phase rules for operations and remedy. On the right,
new behaviors are added to systems such that the functional behavior is not altered, but remedy logic
is inserted into the system. The case studied in this approach is a mixed initiative conflict problem that
commonly occurs in distributed reactive systems. The overall approach provides a quick fix and auto-
matic remedy for SPACE domain specific modeling . On the top, we use UML meta-models to carry out
the transformation, thus preserving the correctness of the transformation and its production.

CPS and Networked Control System

Cyber-physical systems (CPS) impose great need for system level property analysis. One typical
CPS is the networked control systems that poses several challenges related to time and event-driven
computing, software, variable time delays, and failures [161]. One important cornerstone for the analysis
of CPS is a modular design and development of cyber-physical systems. Based on the Reactive Blocks
approach, we reinforce the models with labeled transformations and annotated variables which provide
an architecture for CPS.

Introduction 13

Preserved Arctis
semantics

UML meta-model

Operation,remedy rules

LHS RHS

Inconsistance detection,
Labelling rules

LHS RHS

Quick fix, automatic remedy for DSML

Figure 1.3. Graph Transformation Rule based automatic System analysis and Remedy

New Formalism and Domain Specific Requirements

Reactive systems contain more specific features that need new formalism support and verification.
Especially when the reactive systems constantly contact with environmental resources and exchange
information. The vast growing application of cyber-physical systems presents new analysis needs for
properties like reliability, safety and security [169]. Real-time formalization and analysis is a critical
property related with safety and performance of CPS. Thus, there is a need to extend reactive blocks to
formalize and analyze real-time related properties. This thesis gives special attention to real-time issues
for reactive systems modelling, analysis and verification. We extended the external visible behaviour
abstract (ESMs) to present abstracted real-time and probabilistic behaviors. With extended system ab-
straction, we are able to carry out real-time and probabilistic analysis for reactive systems.

4 Formal Methods Applied in Reactive Blocks

In this section, we briefly summarize the formal verification applied to Reactive Blocks. Model check-
ing is a technique applied to finite-state concurrent systems, where a specification about the system is
expressed by temporal logic formulas, and efficient algorithms are used to traverse the model 1 defined
by the system and check if a specification holds or not. Amir Pnueli ([159]) and Leslie Lamport (
[125]) introduced temporal logic to strictly define the semantics of software systems. Large complex and
seemingly chaotic system behaviors have become meaningful and understandable (see [4]). Amir Pnueli
points out that ”We should concentrate on an engineering approach assembling many tools and methods
among which Formal Verification should be a major player”. Therefore, this thesis intends to expend
Reactive Blocks approach in this direction.

The introduction of additional formal methods to the Reactive Blocks approach gives building blocks
a number of significant benefits. For example, since the Reactive Blocks approach calls for building a
reusable library of software components, the formal method can guarantee the building blocks are free of
certain anomalies. Moreover, formal methods can prove the building blocks will behave as they are de-
signed. Also, formal methods can check the appropriateness of the building blocks for their environment
if the environment is fully defined. Once the verification work is done for a building block, the block is
universal reusable everywhere [95].

Finally, the model checking introduced in Reactive Blocks allows for automatically generating formal
specifications in TLA+ [127] and certain theorems that can verify the common properties of reactive
systems such as dead-lock and infinite loops [177]. Thus the formal reasoning discharges interactive
proofs that requires deeper understanding of theorem proving.

1This model definition is different from the model concept we commonly used in this dissertation. Here, the model is the specification language
that abstract certain building block behavior and input to a verification tool.

14 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Formal reasoning is often highly complex and can usually only be carried out by specialists; thus, it is
expensive [83]. Also, formal reasoning needs to be done if the properties needs to be defined manually
or with interactive tools like certain theorem provers. By creating reusable libraries of building blocks,
we separate the complex work of formal reasoning with common development work [95]. We also avoid
the increased project expense stemming from the application of formal verification since the reusable
building blocks are reusable everywhere once they are created.

Basic Semantics of Reactive Blocks

The Reactive Blocks approach takes the UML activities as the artifact for modelling of system be-
haviours, and such behaviors are translated directly into executable state machines [113]. In [111],
Kraemer and Herrmann formalized the precise semantics of Reactive Blocks which gives the founda-
tion for model checking an automatic synthesis of component-based implementation. The Semantics of
Reactive Blocks is built upon cTLA [95] which is an extension of Leslie Lamport’s Temporal Logic of
Actions (TLA, [127]). Compositional cTLA processes specify systems and subsystems as composition
of simple cTLA process instances which cooperate by means of synchronously executed process actions.
The transformational mapping of the behavior from the activities to that of the state machines is proved
by refinement mappings [2].

With the formalization, a specification is automatically transformed into TLA+ and theorem on spec-
ification can be proved automatically by the TLC checker [201].

Normally, formal verification needs the following working steps to support the formal reasoning of a
software system:

Transformation into a formal language: The system implementation needs to be abstracted and
specified using a formal language that is feasible for specifying a theorem and the language should
be a refinement of the original implementation. In Reactive Blocks, the original activity based
system model is translated into TLA+ formula using inbuilt formulator [177].

Using the formal checker to verify theorems against specification: In a second step, the system
properties are specified using formal language. Thus formal checkers can be used to verify the
specification against the theorems. If no theorem is violated, the analysis ends successfully. Oth-
erwise, the formal checker provides a counterexample in which a formula is violated.

Post processing for tracing of counterexamples: If a counterexample is generated, a trace is usually
presented on the original specification to show the errors such that the developers can be assisted
to correct the error and thus such processes is repeated until a correct model is finally achieved.
In the assisting tool, Reactive Blocks, a diagnosis is provided for a violated theorem and in some
cases, automatic fix can be provided. This is done by Slåtten in [178].

Many language and verification tools are designed for formal reasoning with different areas of emphasis,
for example, UPPAAL [19] supporting timed automata is the tool for real-time verification with Timed
Computational Tree Logic (TCTL) [130, 6]; PRISM [120] is the tool for probabilistic symbolic model
checking based on Probabilistic Computational Tree Logic (PCTL) [120]. More tools and approaches
can be found in [59, 195].

Given these tools, we propose an approach that extends formal verification of Reactive Blocks with
the supporting power of model transformation. The extensions is targeted at the application of Reactive
Blocks to more complex systems development in cyber-physical system that needs to consider real-time
and probabilistic behaviors of systems and of the systems that are affected by communication protocols
and interactions with environment.

5 Real-Time System Modeling and Analysis

Real-time Systems are complex and error-prone since they need additional mechanisms to support
timed behaviors. Real-time reactive systems are a set of software systems in which correct functioning
depends not only on values of the results produced but also on the physical time within which the results
are produced. Also the time constraints can be varied according to the strictness of the time requirement.

Introduction 15

A hard real-time system requires the time limit to be always met, while a soft real-time system needs
the time limit to be often met [41]. Important application domains for real-time systems include, for
example, embedded systems including micro-controllers that are connected to complete systems via
sensors, actors, operator controls, and communication devices.

Traditionally the verification of control software for hard real-time systems is based on low level
approaches, such as programmable timers, direct handling of devices, and assembly languages which
aim at optimizing predictable execution time of code on embedded systems. The drawbacks of these
approaches are obvious in that the verification results do not give an over view of the whole system in that
aspect. We aim to enable real-time system analysis at the modeling level, then the system characteristics,
such as performance and real-time constraints, can be analyzed in a structural view and from the top
level.

6 Research Method

The main research challenge resides in the modeling and design of transformations for domain-specific
models. A constrained case-study based research method is applied throughout each research phase; that
is, we carry out case studies in applying model transformation and verification in concrete scenarios of
model-based reactive system development. In the initial phase, a detailed list of possible domain-specific
features for distributed reactive systems must be surveyed. Among the possible features, a careful se-
lection of features is studied and modeled to see what problems can be solved by model transformation
and what analysis can be carried out. So the research is designed in several phases, including survey,
modeling, transformation, analysis, and verification. Case studies are the central work during the re-
search. During each case study, the survey, modeling, transformation, analysis, and verification phrases
are carried out in a spiral manner:

Survey: That includes massive paper reading including the survey of domain features of distributed
systems, modeling capabilities for such features, transformation method, as well as the analysis
and verification method.

Modeling: After picking up candidate features, we first need to give a domain specific model for
the software system and discover the dynamic aspects of the model that can be captured in the
transformation model. Since our research method is centered on software verification, we also
need to consider what formal properties, which are usually expressed as temporal logic formulas,
can be captured in the new formalism, and whether such formal properties can be applied to formal
verification to support our modeling and transformation purpose.

Transformation: With the given model and the chosen transformation method, the transformation
experiment is carried out to test the designed model and transformation rules.

Analysis and verification: After transforming the model into a formal language that can be ac-
cepted by domain-specific analysis tools, we carry out typical analysis and verification of our
models. During this phase, the model also needs to be revised to see whether the problem pattern
has been correctly modeled and whether the analysis and verification result is to our expectation.

7 Research Questions

In a review and forecast for software engineering in the 20th and 21st centuries [32], in 2020s and
beyond, with the increasing computational plenty, the software engineering tools should be able to pro-
vide more capabilities in specifying behaviors, generating resulting applications, verifying and validating
capabilities, performance and dependabilities, and integrating them into even more complex systems of
systems. With such richness in mind, we need to expend the Reactive Blocks approach in dimension and
depth, both in academic and engineering practice. With the firm established foundation for the Reactive
Blocks approach for visual programming of concurrent reactive systems, challenges and opportunities
coexists in the research work. I researched in different directions and promoted research questions that
will be discussed in the following:

16 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

RQ.1 How can model transformation be used in a specification language? What purpose can it
achieve? (corresponds to automation support AS1 in figure 1.1)

At the beginning of the research work, model transformation was the main approach we considered
for the SPACE method. A list of surveyed features in automatic software engineering has been
found for the application of model transformation. We picked up typical application cases, such as
model decomposition and refinement and automatic error remedies in software models.

We have the Reactive Blocks method and tool-set as a foundation aiming at extending the model-
driven compositional development of reactive systems to the more complicated scenarios. During the
process, more questions with the modeling capabilities and formal back-end that meet the challenge
of new complex application scenarios. Specially, when considering cyber-physical systems, Reactive
Blocks needs to support, e.g., time and performance issues. We arise a more general question with
respect to extending Reactive Blocks:

RQ.2 How can Reactive Blocks sufficiently support the modeling and formal back-end of real-time
and performance issues? (corresponds to automation support AS2 and AS3 in figure 1.1)

This research question can be further divided into three sub-questions:

SubRQ.2.1 How can Reactive Blocks support the compositional modelling of real-time properties
for reactive systems?

SubRQ.2.2 How can formal reasoning for timed properties be appended to Reactive Blocks?

SubRQ.2.3 Since Reactive Blocks is closely related to networked systems, how can we integrate a
mechanism to measure the performance of Reactive Blocks?

Following the research of model-based reactive engineering, we seek to extend the modeling capabilities
of the Reactive Blocks method.

Since we aim to extend the Reactive Blocks approach for CSE and more domains like cyber-physical
systems, real-time systems. We not only consider the formal aspects of complex system, but also the
non-trivial aspects like how the new appended mechanisms can contribute some non-functional aspects
of complex system engineering. We ask the following question:

RQ.3 Can those extended capabilities be used in emerging needs of software engineering? For
instance, how can it help to improve the reliability or robustness of the software? (corresponds to
automation support AS4 in figure 1.1)

After the research, we need to find a practical approach for synthesising the Reactive Block approach
to common software engineering practices. We describe a feasible architecture that applies industrial
practices of Reactive Blocks with common API programming in Chapter 2.

2
MODELING

In this chapter, we will have a brief introduction on the two levels of models we applied in our research.
First, is the choreography model for service engineering; then is the reactive building blocks, its basic
concepts, composition and application in a IoT system scenario.

1 Choreography Model

Choreography model [66] is used by service engineers to capture behaviours in the collaboration of
distributed reactive systems. In a choreography model, collaborations can be defined by UML activities
connecting actions by flows. Actions may either specify the behaviour of a collaboration or a local
activity. Collaborative actions contain references to their participants in the form of roles. Flows may
contain intermediate control nodes (e.g. start, stop, choice, merge, fork and join) defining the ordering
and causality among the actions. We take a Train Control Service scenario as an example and show how
choreography can be used to model the global behavior of the services with its sub-collaborations.

The TrainControlService system has two main participants,Train and radio block center (RBC), rep-
resented as roles. The train and the RBC participate in three collaborative sub-services: PositionReport,
MoveAuthority, and HandoverSupervision which perform the following activities:

PositionReport reports the current train position to the RBC.

MoveAuthority sends the safe travel distance from the RBC to the train.

HandoverSupervision transfers the train control supervision to the new RBC if the train travels to
a different region.

Feature 2.1 shows the global behaviour of a train control service using a choreography model. A train
on its journey reports its current position in intervals to the RBC which is responsible for the region the
train operates in. This operation is specified by the collaboration PositionReport. Thereafter, the RBC
validates the received position information of the train via the local activity SupervisionLogic. If the
information about the location of the train is correct, the RBC issues successive movement authorities
(MA) to the train which is modeled by the collaboration MoveAuthority. Finally, if the train crosses the
border between two regions, the collaboration HandoverSupervision is invoked. There flows between the
four collaborations show the casual relationships of the activity and common syntax like the merge node,
fork and decision nodes, are also applied in the diagram to connect the flows. Merge node M1 joins the
casual relations from collaborations MoveAuthority and handoverSupervision to PositionReport, while
decision node D1 signifies that either MoveAuthority authorises the hand over or a flow final of the current
activity.

The Train Control Service choreography model is a global behaviour that can be captured by service
engineers as close to the problem domains as possible. In our research, we applied graph transformation
rules to it and contribute to how can we add automation to the generalisation from service models to a
step further down to actual component definition.

18 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure 2.1. The train control service global choreography model: the choreography model models collaborative services
using UML activities connecting actions and flows. The diagram contains three collaborative services of the two participants.

2 Reactive Blocks

As the number of sensor devices and actuators grows and billions of devices need to connect to the
internet, an emerging large complex networked software system connecting physical world and internet,
which is known as the Internet of Things (IoT), is expending geometrically. IoT is on track to connect 50
billion “smart” things by 2020, and forecasts say that the number of the IoT devices will reach 1 trillion
sensors soon after. An IoT system aggregates sensor data, translates between sensors protocols, process
sensor data and usually contains multiple programming APIs and communication protocols. Usually the
protocol programming occupies the most of an IoT system. This part will give an example of Reactive
Blocks for a protocol block picked up from the public Bitreactive1 repository and its applications scenario
in a IoT solution.

Reactive Blocks is an approach that synthesizes the adapted UML activity diagram as its representation
syntax, encapsulate model transformation, code generation and formal methods as its supporting back-
end, with a full stack tool developed in the Eclipse environment, and professional for building reactive
concurrent systems. Bitreactive AS is a company established based on the Reactive Blocks paradigm
for providing solutions for IoT industry; It provides a global repository of highly reusable and robust
software components aiming at shorten the development time for IoT solutions.

3 Reactive Blocks for encapsulating IoT protocols

The most benefits of Reactive Blocks for IoT system development is to shorten the learning time for
uses of new protocols and to maximise the reuse of code, while at the same time to guarantee that the
blocks can be reused in other Java based projects and interact with normal API-based programming. In
this section, we will give an Advanced Message Queue Protocol (AMQP) example and its application in
an IoT solution.

1Bitreactive AS: http://bitreactive.com

Modeling 19

Brokered	AMQP	Client

ready addSubscriptions:Set

received:AmqpMessagestopped

stop

publish:AmqpMessage

published:AmqpMessage

error:AmqpError

failed:String

initializing

/error

start/ stop/stopped

active

/published
/received
/error
publish/
addSubscriptions/

/ready stop/stopped/failed

stop/stopped

start
start:Parameter

Figure 2.2. Advanced Messaging Queue Protocol (AMQP) from BitReactive

AMQP Libraries

The Advanced Message Queue Protocol (AMQP) protocol is an open standard application layer pro-
tocol for asynchronous message queuing. It permits almost any form of messaging, and Bitreactive
provides an off-the-shelf building blocks library for AMQP. The AMQP library contains five building
blocks supporting point-to-point messages via brokers. Figure 2.2 shows the Brokered AMQP Client
block which can publish and receive AMQP messages to/from an AMQP broker. An AMQP broker can
be embedded into any software component that sends or receives AMQP messages.

A building block is composed of two parts: The implementation is a UML activities diagram with
parameter pins as shown on the left side of Figure 2.2, which encapsulates Java method calls inside via
block references or action calls; and the External State Machine (ESM) as shown on right side of Figure
2.2. The UML activities (now shown on the picture) give the implementation of the behaviors of the
block and only gives the input/output control or parameter flows. The ESM, which is also called the
External Contract between the building block and the environment, defines the causality behavior of the
block.

As the external contract shows, the Brokered AMQP Client block is started via a token arriving at the
start pin. Thereafter, the component arrives at the initializing state. If the broker is connected to the
AMQP broker server successfully, the block will go to the active state, and notifies the environment via
the ready stream output pin, else it will send out a AmqpError object through the error pin after which it
continues to stay in initializing state. If the connections fails, it will terminate the component via failed
pin. The component can publish or receive AMQP messages via the publish and received parameter
pins, when a message is published successfully, a notification will be given to the environment via the
published streaming output pin 2. Both the start and the addSubscriptions can be used for adding new
broker addresses. They include the host address, port, and queue names. If we look into the Brokered
AMQP Client block (Figure 2.3), it contains two blocks called Brokered Receiver and Sender, which
separates the main send and receive functional codes. This hierarchical composed system guarantees
that a block is functionally isolated, complete and reusable, and the blocks can be composed together to
form a large powerful block. While at the same time the formal backend can guarantee the composition
is functioning as it is designed and pitfall free for concurrent execution. The library contains all the
needed functions for AMQP protocol and can be reused in any client for receiving, publishing AMQP
messages, and add subscription addresses.

2A streaming output pin can pass data from a block when the block is active. More pin types can be found at http://reference.
bitreactive.com/reference/state-machine-blocks.html

20 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure 2.3. Brokered AMQP Client Activities

4 Architecture of IoT Solutions

Figure 2.4 describes an architecture where reactive building blocks can be massively reused in indus-
trial solutions. In the delineated solution, an IoT system is a distributed hardware and software system,
where sensors, controllers and actuators communicate with the local gateway and data aggregator, the
sensors and controllers are the bottom layer hardwares that each other has a virtual representation (usu-
ally the gateways) in an IoT system. The hardware, on which the system runs, communicates with the
IoT system using LAN and IoT protocols, e.g., Bluetooth Low Energy, ZigBee, LoRaWAN protocols,
and the gateways are developed as a set of spiderwebs. The middleware (gateways, micro-components)
can interact with external, internal using Restful APIs such that a wide area network can retrieve data
from such systems. Below, we first describe the the home health care system, then give a core component
example.

Figure 2.4 shows a architecture of an IoT solution which describes a home-care (HCS) IoT system
scenario. The system needs to provide various sensor data, e.g., for the health, safety of habitats and
monitoring of habitat environment. Further, the system has to offer various UIs including immutable
terminals like PC, smart TV, mobile terminals like smart phones and smart wearable devices, web and
remote monitoring UIs, e.g., for hospitals. The system should be able to encapsulate various protocols,
e.g., Bluetooth Low Energy (BLE), ZigBee, LoRaWAN or many other proprietary wired protocols as its
infrastructure. Thus a multitude of software components serving the various protocols can be envisaged.
The complex set of interactions and their permutations leads to a diverse set of APIs.

A token distribution component in IoT

A key issue for IoT system is how to secure the communication and data access of the decoupled
services. At present, a common way for security is by using a generated token [146] to securely share
authentication information between services and clients. Such mechanisms can encode authentication
information directly in the token instead of needing to be required from a central location on every
service call. A common way for acquiring such tokens is the Single Sign-on (SSO) [184] technique,
such that the authentication service can create a Json Web Token (JWT) using a private RSA key to sign
the token, and this JWT is return to the client. The client can then use this JWT on subsequent calls, and
the integrity of this token can be checked against the public RSA key of the authentication service.

Modeling 21

Micro	services	of	a	IoT	System

Mobile,	
wearable	
devices

Web	

Research	
agencies,
hospitals

proxy

Rest	API	 AMQP	
subscriber

Security

Sensor

Controller

AMQP	
subscriber

AMQP	
publisher

Filter	

Encryptor

Firewall

….

….

….

encryption

Security

Aggregator

immutable
devices

Figure 2.4. IoT architecture

Rest	API	 AMQP	
subscriber

AccessControl

Figure 2.5. Access control

We give a core building block based component for the distribution of access tokens for the solution
as shown in Figure 2.5. In this component, we reused two blocks Read Java Properties File and Bro-
kered AMQP Client to create a new block SSO Client. The SSO Client block can retrieve a JWT access
token from an SSO authentication server (here we use the Telia Identity service 3), and distribute the
token via the AMQP protocol. In the service initiation, the Read Java Proeprties File block is started.
Here, properties like AMQP host address, port, queue name, Oauth service configurations like the base
URL, authentication URL, redirection URL, token URL, client ID and client secret are retrieved from a
configuration file. The configuration properties are verified in the verifyConfig function. If the verifica-
tion is successful, the SSO Client and the Brokered AMQP Client blocks are initiated by forked tokens

3https://developer.telia.io/

22 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Read	configuration	
properties	ready.

AMQP	initialization	ready	
and	notify	SSO	Client.

JWT	token	distribution	via	
AMQP	protocol.

Figure 2.6. Animation of main executions for the Token Distribution Component

arriving at each other’s start pins. If the AMQP block finishes its initialisation, it will emit a token via
the ready parameter out pin to notify the SSO Client block via the ready parameter in pin. The SSO
Client implemented the client side of Oauth service of Telia IoT’s identity and consent services, where
users can apply their telephone number as their identity and get an access token for the access control.
When the system is initialised and ready, the SSO Client block can constantly receive or update the JWT
access token, and forward it to the token parameter out pin. After formatting the token into an AMQP
message, the token is sent out to any subscribers of the AMQP message queue via publish parameter in
pin. The application of AMQP blocks in a IoT solution is universal since it can contain any application
messages and data, and the communication is secured by the token contained in the AMQP message
since the client can use the public RSA key to examine the validation of the token. Figure 2.6 shows the
main execution steps of the token distribution service.

3
BACKGROUND

In this chapter, we examine the use of model-based system analysis and synthesis applied to software
engineering. These methods include model transformation, real-time and probabilistic modeling and
verification, and formal trends for cyber-physical system analysis, including the spatiotemporal pattern
of typical cyber-physical systems, such as remote control systems or automation systems. At the end, we
briefly mention the combination of simulation techniques for our verification of real-time probabilistic
systems as a compliment for system safety properties.

1 Model and Model Transformation Techniques

The motivation behind model-driven software development is to move the focus of work from pro-
gramming to solution modeling (see [171]). The Unified Modeling Language (UML, [153]) is the prod-
uct of many years of standardizing visual modeling notations. UML unifies scores of notations that
were proposed earlier and gained significant industry support and became an Object Management Group
(OMG) standard in 1997. Model transformation is one of the core activities of model-driven software
development. Its main effects include providing a handling mechanism for describing important aspects
of a solution with templates to increase productivity and quality. In our practice, we involved model
transformation in every part of our research work.

The following paragraphs introduce some typical model transformation techniques that we use in our
work.

Attributed Graph Grammar (AGG)

The Attributed Graph Grammar (AGG) [189] approach has been developed starting from 1997 and
supports the model transformation approach based on attributed graph transformations.

Supporting language: Java.

Latest Version: 2.0.6.

Download link: http://user.cs.tu-berlin.de/˜gragra/agg/.

Developer: Technical University of Berlin.

AGG based transformation can support pre-pattern to post-pattern transformation in any Java based
object or facilities. A transformation example of a rule-based graph transformation in AGG can be seen
in Figure 3.1. In Figure 3.1, The left hand side graph is a condition pattern denotes the cases where
this rule can be applied. Here it describes a ownership relation that a pin type vertex belongs to a role
type vertex. In the middle of Figure 3.1, the pre-graph describes the initial state before transforming
the graph, describing the ownership relation between collaboration vertex and pin/role vertices in a
flow-global choreography model (a choreography model is used for describing a distributed systems
where multiple roles and multiple components participant in a service, see Paper A). The flow-global
choreography model omits the details of flows involved in collaborative services, while the localizing

24 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

collaboration

role

collaboration

pre-graph pattern post-graph pattern

role

pin

Condition

own

own
own

own

own

role

pinType = "OUTPUT"
pin

inPartition = roleName
pin

role

pin

pin
roleType = "INITIATING"
name = roleName

Figure 3.1. Rule-based graph transformation for model transformation from Paper A

policies need to put the flows into certain roles of a collaborative service. The post-graph pattern assigns
the ownership of a pin vertex to a role vertex if the property roleType of the role vertex is ”INITIATING”,
and the post-graph pattern also assigns the inPartition property to variable roleName. More details the
localization policies of a choreography graph can be found in Paper A.

AGG has been used in several successful projects that are researching applications of graph grammar
rules in UML meta-model transformation [92] and agent oriented software engineering [36, 58].

Henshin

Henshin [14] is an Eclipse project that provides in-depth visual modeling and execution of rule-based
EMF (Eclipse Modeling Framework) transformations. Similar to AGG, Henshin considers directed at-
tributed graphs transformation with declarative transformation rules and procedural transformation units.
The application of a transformation rule considers recognition of vertices and edges and also conditions
and calculations on attributed values. Meta-types of vertices and edges can include all UML meta-
classes. In contract to the AGG transformation rule, Henshin uses a single graph to depict and edit a rule.
A simple transformation rule in Henshin can be found in Figure 3.2 [61], The application conditions and
creating of new vertices are actions with different stereotypes. The stereotypes for a transformation rule
include preserve, delete, create, require, and forbid. Applying a rule consists of finding a match of the
rule in the host graph and performing the operations indicated by the stereotypes. The require stereotype
acts as a Positive Application Condition (PACs) and forbid stereotype acts as a Negative Application
Condition (NACs), while other stereotypes act as actions such as delete, create, preserve.

Supporting language: Java.

Latest Version: 1.0.0 (released 16-08-2014).

Download link:

https://github.com/de-tu-berlin-tfs/Henshin-Editor/.

Developer: Technique University of Berlin.

ATL Transformation Language

The ATL transformation language [39] is a model transformation language and toolkit developed and
maintained by OBEO and AtlanMod. It is the INRIA submitted implementation of model to model
transformation (M2M) for the OMG standard of Model-driven Engineering (MDE).

Supporting language: Specialized transformation language for cross platform model transforma-
tion.

Latest Version: 3.2.0.

Download link: http://www.eclipse.org/atl.

Developer: OBEO, INRIA.

Background 25

Figure 3.2. Henshin transformation rule [61]

CTL formula

UPPAAL,
PRISM
model

checker

results

Domain
specific
reactive
blocks

Real-time,
probabilistic
annotations

transformation

Timed
atomata,

Probabilistic
timed

automata

RTESM,
PRTESM

Figure 3.3. Model transformation-based analysis process

AGG and Henshin are two typical visual model transformation tools that are based on graph transforma-
tion and category theory in mathematics.

In our work presented in this thesis, we take a rule-based model transformation approach that applies
graph grammar rules to model transformation for component derivation and automatically deduces pat-
tern recognition and remedies. To meet our need for enabling the modeling capabilities we imported
the AGG java API for model transformation which makes our Reactive Blocks model transformation
customizable.

We also built customized tools as eclipse plug-ins that can be integrated into our model-driven de-
velopment platform, to translate Reactive Blocks models and additional labels and notations into timed
automata or probabilistic timed automata that are recognized by verification tools like UPPAAL and
PRISM. As shown in Figure 3.3, the translation includes several steps as follows:

Sample the meta-elements of the target languages (timed automata or probabilistic timed automata)
in the language supported by the corresponding tools.

Make a one-to-one mapping or composite mapping of the source language to the target language.

Build the Eclipse plugins for the transformation.

26 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure 3.4. Timed automaton [196]

2 Timed Automata and Probabilistic Timed Automata

We extended our modeling and verification capabilities to real-time and probabilistic systems by ex-
tending Reactive Blocks with two new formalisms, i.e., Real-Time External State Machines (RTESM)
which are based on the timed automata [20] and Probabilistic RTESM (PRTESM) which is based on
probabilistic timed automata [104, 121]. By such a translation, the semantics of our building blocks is
extended to timed automata (TA) and probabilistic timed automata (PTA), which form the foundation for
real-time verification based on Timed Computation Tree Logic (TCTL, [130]) and probabilistic real-time
verification based on Probabilistic Computation Tree Logic (PTCTL, [121]). Here we briefly introduce
the two formalisms of TA and PTA.

Timed Automata

Following the purpose of modeling real-time properties of reactive systems, we considered a set of
formalisms for real-time and finally chose timed automata. A timed automaton [20] is a finite state Büchi
automaton [190] extended with a set of real-valued variables modeling clocks. We assume real-valued
variables x, y of a set C standing for clocks and a, b of a finite alphabet Σ standing for actions.

A clock constraint is a conjunctive formula of atomic constraints of the form x ∼ n or x− y ∈ C, ∼∈
{ <, ≤, >, ≥} and n ∈ N. Clock constraints can be used as guards of transitions for timed automata.

Definition A Timed Automaton (TA) is a tuple < N, l0, E, I > where

N is a finite set of locations.

l0 ∈ N is the initial location.

E ⊆ N × Σ× 2C ×N is the set of edges.

I : N → B(C) assigns invariants to locations.

In the definition, B(C) denotes the set of clock constraints.
Figure 3.4 shows a simple timed automaton modeling a rail-car door [196]. In the automaton, Close,

ToOpen, Open form the location set (N). Open (car door open event), Conf (event notifying the envi-
ronment, e.g., a car handler about the door opening, such that some configurations of the service can
be removed), and Close (car door close event) form the event set E representing the transitions (edges)
between states with respective actions (e.g., resetting variable x). The railcar door control system starts
at a state called Close (l0), indicated by the double-lined circle. The transition is fired once event open
occurs, then the system goes to state ToOpen, and clock x is reset. Within 2 time units (constrained by
the state invariant), the system goes to state Open. Event conf takes place along with the transition. The
system remains at state Open for at most 10 time units before goes to state Close.

Timed automata are the well accepted modelling and verification artifact for time-related properties
of reactive concurrent systems. The timed automata model can be easily verified against many proper-
ties, e.g., reachability conditions [3], temporal logic [135], and so on. In our research, we applied the
most common as well as most important properties like the reachability, that is, whether a system in

Background 27

Figure 3.5. Probabilistic Timed automata that models a probabilistic Protocol [123]

timed automata eventually reaches a certain state. The temporal logic properties are expressed in Timed
Computation Tree Logic (TCTL, [6]), which is an extension of computational tree logic with time.

Probabilistic Timed automata

Probabilistic Timed automata (PTA) [121] are an extension of TA with probabilities. The formal syn-
tax of a probabilistic timed automaton is defined as follows: Let X be a finite set of real-valued variables
called clocks, the values of which increase at the same rate as real-time. The set CC(X) of clock con-
straints over X is defined as the set of conjunctions over the atomic formula of the form x ∼ c, where
x, y ∈ X , ∼∈ { <, ≤, >, ≥}, and c ∈ N (N is the set of natural numbers).

Definition A probabilistic timed Automaton (PTA) P= (L, l,X, inv, prob) is a tuple consisting of the
following components:

A finite set L of locations with the initial location l ∈ L.

A finite set X of clocks.

A function inv : L→ CC(X) associating an invariant condition with each location.

A finite set prob ⊆ L×CC(X)×Dist(2X ×L) which is a probabilistic edge relations. Or can be
called probabilistic edges which yields the probability of moving from l to l

′
, and reset specified

clocks.

Here, Dist(Q) is the set of functions µ : Q → [0, 1], such that support(µ) is a countable set and µ
restricted to support(µ) is a (discrete) probability distribution.

An example of a Probabilistic Timed Automata is shown in Figure 3.5 [123]. In this simple prob-
abilistic protocol, vertex di (belongs to the location set (di, sr, si) denotes a state in which sender has
data, receiver is idling; si denotes the state that the sender sent data, however, did not reach the receiver;
vertex sr denotes the state that the sender has sent data which was correctly received by the receiver.
The automaton starts at vertex di and after between 1 and 2 time units, the protocol makes a transition
either to sr with probability 0.9 (data received), or to si with probability 0.1 (data lost). In si after 2 to
3 time units, the protocol will attempt to resend the data, which again can be lost with probability 0.05.
Transitions di

0.9,x:=0−−−−−→ sr, di
0.1,x:=0−−−−−→ si, are examples of probabilistic edges (prob) with clock reset

and probability. In this way, one can, for instance, compute that data will reach the receiver after at most
three time missing with a probability of 99.975%.

3 Modeling and Verification Architecture

The formal verification of models is an important aspect of the model driven development (MDD)
paradigm. Many verification methods and tools are designed based on model checking, but there is

28 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

still a gap between model driven architecture and model verification methods. The main reason is that
modeling formalisms need to be translated into formal analysis formalisms for domain specific needs,
such that modeling features can be supported by domain specific analyzing tools. However, the modeling
infrastructure needs to be extended to support domain specific modeling features, and this requires an
extensible modeling infrastructure.

The extensibility of the SPACE approach has been exemplified by previous work and our work in
this thesis. Remember, in Chapter 2, we explained the role of the External State Machine (ESM) which
is the formalism for constrain the behavior of the building block with its external environment. The
ESM summarises the functional behaviors of the building block and various extension are provided for
non-functional behaviors. The modeling and analysis of software reliability of Reactive Blocks are done
through Extended External State Machines (EESM) [180] and External Reliability Contracts (ERCs)
[182]. In continuation to this, our work declares a model transformation approach for the extension
and scalability of modeling and analysis capabilities for our modeling architecture. We proposed and
demonstrated a modeling annotation and model transformation framework for domain specific model
analysis and verification. This approach is illustrated in Figure 3.3. We defined a performance profile
for Reactive Blocks in Paper D in which a rich set of concepts for performance modeling is described.
The set of concepts includes scheduling mechanisms, modeling of real-time/probabilistic properties by
clock variables and guide conditions. By the profiling mechanism, we extend the ESM of Reactive
blocks to a Real-Time ESM (RTESM) (in Paper C) and Probabilistic RTESM (PRTESM) (in Paper E).
By extending the domain specific building blocks in Reactive Blocks, we endow the building blocks with
new semantics based on timed automata [20] and probabilistic timed automata [104].

Thus, we can use the UPPAAL model verification tool for the verification of reachability properties
and translate models from the extended Reactive Blocks mechanism into the verification language of
UPPAAL, which is a subset of TCTL. An example of the verification formula can be seen in Section 5.

Further, the modeling capabilities of real-time Reactive Blocks are extended with probabilities by im-
porting the Probabilistic Timed automata. The PRTESM models software system that exhibits stochastic
behaviors such as time delays of a safety-critical control action. The PRTESM and fundamental verifica-
tion mechanism are supported by model transformation and the PRISM verification tool [121]. And an
example of PTCTL model checking formula with PRISM can be found in the PRISM of Section 5.

4 Theorem Proving

Before talking about model checking, we will mention briefly the theorem proving techniques since
they are related. Theorem proving is, in general, used for solving the general validity of a formula, or a
problem of whether a formula F holds in a mathematical system:

� F

Theorem proving utilises the proof inference techniques in some proof system for solving the problem.
First, the problem itself is transformed into a sequent, a working representation for the theorem proving
problem. A proof system is a collection of inference rules of the form:

P1...Pn
C

The meaning of an inference rule is that if all the premises Pi are true, then the conclusionC is guaranteed
to hold as well.

An axiom is an inference rule that does not have premises. In this case, the conclusion automatically
holds. A proof of a sequent is a derivation tree whose nodes are sequents, the root being the sequent
to be proved, and for each sequent in the tree, all of its children are premises of some inference rule in
which that sequent is a conclusion. The building of a derivation tree (proof tree) can either be bottom-up
or top-down. In the first case, one starts with the axioms from which the original theorem is inferred; In
the second case one starts from the theorem as a current subgoal, and then applies inference rules to the
current subgoals in order to generate new goals. If the theorems are provable, then the theorem can be
expended into such a derivation tree by the inference rules system, and all the leaf nodes of the tree are
known axioms or global inferences.

Background 29

The combination of model checking and theorem proving is therefore often used as the solution for
software engineering and verify properties of domain specific models (see [21]).

5 Model Checking

Model checking is an automatic method for guaranteeing that a model of a system satisfies a formally
described property [49]. This verification technique has become one of the core research domains for
software engineering and theoretical computer science. It covers every specific field of the software
development domain and all of the attributes a software system can exhibit, from fundamental properties
that a system needs to guarantee (for example, a system should be deadlock-free) to real-time constraints,
adaptive behavior, and probabilistic behavior. In this section, we examine the verification techniques we
have studied, and applied to our software engineering method.

TLA and cTLA

The SPACE method has applied the Temporal Logic of Actions (TLA) [127], which is a form of
Linear Temporal Logic (LTL), and its verification language TLA+ as the formal background for reactive
component based system verification. TLA has been famous for verifying distributed computing systems,
and its author Leslie Lamport was awarded the ACM Turing Award for his advances in reliability and
consistency of computing systems. In the motivation, ACM mentions TLA as especially useful for
imposing clear, well-defined coherence on seemingly chaotic behavior of distributed computing systems
1.

The SPACE method models software components as state machines and distributed services as the
communication of state machines. The state machine and communication fits with the semantics of
TLA, which models system behavior as a set of infinitely long state sequences < s0, s1, s2, ... >, and
starts with initial state s0. To fit with the compositional and incremental specification style, the SPACE
method chose an variation of TLA, which is called compositional TLA (cTLA) [95]. cTLA introduces
the notion of processes, which can be compositional and describes systems as a combination of other
process instances, with specifying a sub-functionality of the system [116].

Real-time Model Checking and Timed Computation Tree Logic (TCTL)

TCTL is a branching-time temporal logic, which extends the classical untimed branching-time Logic
CTL [6] with time constraints on modalities.

In our practice of real-time model checking, e.g., we explored several usages of TCTL state duration
analysis, worst case execution time analysis. These two typical scenarios can be checked by the common
reachability checking using TCTL formulas [3]. The modeling artifacts will be introduced in Section 4
of Chapter 4, and details of those verifications and results can be found in Paper F and Paper C.

One typical property for a real-time state machine is to measure the elapsed time when some state is
reached, especially when we have defined the time duration of the set of actions that build a path to that
state. Figure 3.6 shows a simple timed automaton with states s0 and s1 and one clock c. The transition
from the initial state s0 to state s1 consumes a maximum of 5 time units, and the state s1 is timeless,
meaning the duration that the system stays at this state is zero. The TCTL formula for checking whether
s1 can be reached within 5 time units can be stated as shown in the following formula:

A✷(s1 imply c <= 5) (1)

We do not support all the grammars that a TCTL can express, but mainly the subset of TCTL grammars
that are covered by the supporting tools . In addition, we facilitate some extra features that are discussed
in Section 3.6.

1http://amturing.acm.org/

30 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure 3.6. A simple timed automaton with one clock

UPPAAL Tool

During the application of real-time extension and verification of real-time properties, we applied the
UPPAAL tool [19] for model checking. UPPAAL was developed by the universities in Uppsala and
Aalborg for academic use in the verification of real-time systems. It is based on automata with extended
modeling capabilities. For instance, it supports data structures of integer variables and C code. Con-
currency of real-time systems can be modeled by a network of timed automata with synchronization
semaphores. UPPAAL also supports extra features such as committed locations and urgent locations.

Committed locations are labelled with “C” where tokens are not allowed to rest in such locations
and no time elapse is allowed.

Urgent locations are labelled with “U” where time may not pass, but can interleave with normal
locations. Thus, urgent locations are less strict variants than committed ones.

In our translation, we used a lot of urgent locations to synchronize different automata translated from
UML activities and external state machines, the usage of urgent locations are visible in the examples in
Chapter 4.

Further, UPPAAL supports the model verification using a subset of timed computation tree logic
(TCTL) [6], and traces counterexamples by simulation. In our research, we use the formalism to extend
our Reactive Blocks modeling capabilities and as a tool to aid in verification of properties. For example,
in Paper C, we used a case study of an electrical motor controller system to add modeling notations
and model transformation from Reactive Blocks to a network of timed automata. Here, we use the
UPPAAL supported format to express a subset of TCTL grammars, that is, the verification formulas that
are supported by UPPAAL [20]:

Let TA be a timed automaton with clock set c and location set Loc. For a TCTL-state-formula φ, the
following operators are used:

A✷φ: Invariantly φ, which expresses that along all computation (A) and for all points of time (✷),
the sub-formula φ has to hold. This formula is used to express safety properties.

E � φ: Possibly φ, which expresses that some state satisfying φ. The path formula E�φ should be
used to check reachable state and is the typical formula for expressing reachability properties in
temporal logic.

A � φ: Always eventually φ, which expresses that along all computation (A), the sub-formula φ
eventually hold.

E✷φ: Potentially always φ, which expresses that for all points of time (✷), there exists a compu-
tation (E), the sub-formula φ has to hold.

φ→ψ: φ always leads to ψ. This is shorthand for A✷(φ⇒ A � ψ).

Here φ, ψ are local properties that can be checked locally on a state and are boolean expressions over
predicates on locations Loc, integer variables, and clock constraints c.

Background 31

UPPAAL supports networks of timed automata that are synchronized by so-called synchronization
channels. This feature greatly extended the compositional modelling capabilities and thus reduce the
state space for real-time automata models. A synchronization channel with a synchronization initiation
automaton and one receiving automaton (binary synchronization channel) or multiple receiving automata
(broadcast synchronization channel). A transition in a UPPAAL network of timed automata can have
guides (boolean conditions for the transitions to be executed), synchronization (synchronization label that
can synchronize different processes), updates (updating variables like a clock) and even more features.
A complete list of languare reference for the model can be seen at [193].

Probabilistic Model Checking and PTCTL

Many real-life systems, such as multimedia equipment, communication protocols, networks, and fault-
tolerant systems, exhibit probabilistic behavior. This leads to the study of model checking of probabilistic
models based on Markov chains or Markov decision processes. Probabilistic Timed Computation Tree
Logic (PTCTL) can be used to specify properties of probabilistic timed automata. As an extension of
TCTL [6] and PCTL [84], PTCTL can consider the computation of reachability probabilities [123],
which is a combination of the algorithms developed for verifying finite-state probabilistic systems [55]
and the algorithm for computing the existence of a path satisfying a temporal logic formula in non-
probabilistic timed automata [90]. We use the expressiveness of PTCTL to present system reliability
properties, and give a few examples of the expressiveness power of PTCTL that are currently supported
by the verification tool in the following section.

PRISM Tool

PRISM [120] is the tool for formal modeling and analysis of systems that exhibits random or prob-
abilistic behavior. The input language of PRISM is a formal modular specification language based on
the Reactive Modules Formalism [7] which is similar to I/O automata [73]. To provide probabilistic
descriptions, PRISM supports discrete probabilities. Each set of state machines extended with clocks
and probabilities is modeled in a module and synchronized using synchronization semaphores. It mainly
supports symbolic model checking of backward [53] or forward [124] reachability, and the digital clocks
approach [122] at present. Probabilistic Timed Automata (PTAs) [102] is the formal formalism with a
finite-state automata style, and the discrete probabilistic choice is of Markov decision processes (MDPs)
style. We choose PTA as the formalism since it is a natural extension of TA that we use for timed behavior
verification in Reactive Blocks.

Besides Figure 3.5, an excerpt of PTAs can be found and is described in Paper E, Section 3.

Calculating the probabilistic reachability: To specify the probabilistic timed logic of PTA, PTCTL
employs both quantifiers from Timed Computation Tree Logic (TCTL) [5], which includes a set Z of
formula clocks; and quantifier P∼λ[.] in Probabilistic Computation Tree Logic (PCTL) [84]. Let’s
explain the quantifiers from TCTL and PCTL and their combinations:

Formula clocks are assigned values by a formula clock valuation ε ∈ RZ. Timing constraints can be
expressed using such clocks. In the probabilistic quantifier, P∼λ[.], the brackets can have normal TCTL
formulas that express a reachability property, and the quantifier ∼ is one of the operators <,<=, >,>=
and =. λ is a real possibility value and λ ∈ [0,1]. Below we give an example of a PTCTL formula:

P<0.01 [✷ error]

This formula can be literally expressed as ’with probability of less than 0.01, an error state is reached’.
Or we can check a formula against the PTA model to get a possibility value.

P=?[F<=4600 error]

This formula can calculate the possibility that the error state is reached within 4600 time unit. The F
operator means eventually and also called future operator in PTCTL.

In our work, we use the PRISM model checker for probabilistic system behavior verification. In some
embedded software system analysis, verification techniques need to consider various software and hard-
ware aspects of the system including communication protocols, digital circuits and controllers. These

32 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

aspects usually present real-time probabilistic behavior, for instance, a robot may be required to process
a task in a predefined amount of time with a probability of 99.999999% to prevent expensive main-
tenance operations. To address the real-time probabilistic behavior verification so that we can provide
safety-critical assumption analysis, we provide a translation of Reactive Blocks with annotations to PTAs,
which is the input language for the PRISM model checker. We applied PTCTL to verify against ques-
tions, such as can an action of a software controller module be performed within a certain time limit with
99.999999% possibility? We also perform quantitative analyses and answer questions like: What is the
probability of a controller fulfilling a time limit in a process?

More details of the case-study and probabilistic system behavior analysis can be found in Chapter 6
and Paper E.

6 Trends in Formal Analysis of Cyber-physical Systems

Model checking for cyber-physical systems and their properties is a complex task since cyber-physical
systems comprise software, hardware and environmental factors and compound heterogeneous behav-
iors. In [30], Blech and Schmidt describe a framework for checking the spatial-temporal behaviors of
autonomous cyber-physical systems, such as large distributed remote control systems, including robotics
and manufacturing facilities. One approach is to model the systems with distinct synchronization points
between different components, where the component is the physically distributed element. The modeling
approach includes the following:

First, a topological or geospatial coordination system is built to interpret or govern the cyber-
physical system’s overall working geographical environment.

Second, the static components and their interconnections are modeled.

Third, the mobile components are modeled and their moving routines are planned in the form of
grid-like units.

Using the above modeling infrastructure, the behavioral properties of a system can be analyzed and
patterned in relation to the control software of such systems. A spatiotemporal algebra is designed for
such analysis purpose [26]. With our real-time and probabilistic modeling and verification capabilities
for reactive control software components, we are able to combine the spatiotemporal algebra for the
behavioral pattern and safety property analysis of cyber-physical systems [31].

In Paper G we delineate a wireless control system for an automatic transportation robot control sys-
tem. We are able to analyze the spatial safety controls of such system, such as the system’s ability to
avoid collisions. The analysis contains modeling and analysis of real-time reactive systems, simula-
tion of communication delays in an IEEE 802.11 WLAN environment, and spatial behaviors of remote
control transportation robotics. The spatial constraints are verified by the BeSpaceD tool [29], and the
simulations are performed by the Jemula802 tool [4].

4
MODELING AND ANALYSIS FOR REACTIVE REAL-TIME

SYSTEMS

In this chapter we summarize the modeling and analysis for reactive real-time systems based on the
Reactive Blocks paradigm. In Section 1, we present the preliminaries for modeling time and response
constrained systems and the novel modeling and analysis requirements in the Reactive Blocks approach.
Since we introduced the timed automata and CTL as a pre-condition in Section 3.4 and 3.5, here we
only describe the real-time requirement for the Reactive Blocks formalism. Section 2 summarises how
the new approach is synthesized with existing functional modelling with Reactive Blocks. In Section 3,
we define the translation rules for transforming Reactive Blocks into timed automata, and provide basic
translation patterns. In Section 4, we present a case study carried out for transforming Reactive Blocks
into timed automata and real-time property verification, and particularly address when a property needs
to be modelled by two collaborative blocks working in a system. In Section 5, we will have a glance on
simulation based response speed analysis of reactive systems. The simulation results support the formal
modeling of real-time constraints.

1 Preliminary

In our work, we need to understand three preliminaries: Reactive Blocks, real-time requirement mod-
eling and real-time verification. In this section, we elaborate on those aspects.

Reactive Blocks

As mentioned before, the Reactive Blocks approach uses UML 2.x activity diagrams for the modeling
of behavior of building blocks. Such behaviors are encapsulated by Extended Communicating Finite
State Machines (ECFSM) [141, 142], a kind of finite state machines [116]. Reactive Blocks allows the
modelling of distributed communication by token exchange. Since activities have semantic similarities
to a Petri net, the translated behavior can be understood as tokens passing places and transitions [113].
When tokens pass places, vertices, and nodes, the corresponding actions, such as Java method calls, are
executed. Each transition is strictly triggered by certain events, such as the expiration of a timer or the
reception of a signal. The Reactive Blocks approach aims at using the external state machine (ESM) as a
strict contract between the software module and its execution environment. The contract is the paradigm
for component-based software development as we ideally want to wisely decouple the system behaviors
and build complex systems step by step. As the behavioral aspect of systems can be modelled, integrated,
and tested against given input and output, a generalisation of such mechanism is to extend modelling,
integration and verification to time related systems.

Real-time Requirement Modeling

The modeling and validation of timing constraints for real-time system is introduced in [6] and [1]. In
[52], Dasarathy categorizes real-time constraints into two types: behavioral and performance. The first
type is a reaction time constraint imposed on system actions or users, and the second type is a constraint

34 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

imposed on the response speed of systems. Both types of constraints can be modeled using formal
language with combinations of timer variables. We also address the modeling of real-time constraints
by extending reactive system formalism with timer variables, and giving assumptions and hypotheses
on network, traffic protocols, and circuit performance. Dasarathy describes that real-time constraints in
a real-time system can be specified with finite-state machines (FSMs), in which a response is always
completely determined by the system’s present state and the stimulus that has arrived [52].

Since the essence of Reactive Blocks follows an extended finite state machine formalism, the infras-
tructure provides us with basic elements for modeling time-related features: i.e., the states, transitions,
and token resting positions. There are basically three types of constraints we need to capture for time
related behavior:

Maximum time: No more than t time units may elapse between two events.

Minimum time: No less than t time units may elapse between two events.

Durational time: In case of a hard real-time system, an event must occur for t time units; for a
soft real-time system, durational time bounds of an event can be settled by maximum time and
minimum time.

Providing the above basic ingredients and requirements, we need to extend building blocks with time
variables and transition guards following the timed-automata semantics, also since we are following
the model transformation approach, it is better to provide translation rules and patterns for the target
requirement. Since with real-time modeling, system behaviors need to meet not only the functional
correctness requirements, but also the time constraints (see Section 3.5). The challenges exist in how
we facilitate an existing compositional specification language to adopt new features while keeping the
compositional correctness and guaranteeing the new compositional features.

Real-time Verification

Due to the complexity and computational richness of real-time verification, there are dazzling tech-
niques for verifying real-time properties and many important problems are undecidable [76]. In addition
to Timed Computation Tree Logic (TCTL [130]), probabilistic timed computation tree logic (PTCTL
[121]) in our work, there are also MTL [160], and RTGIL [144]. Recent trends tend to add observa-
tion patterns to real-time models and real-time properties such as reachability can be verified but with a
minimised state space [74].

In our work, we extend the external contract with time requirements expressed as clock variables with
constraints, guides, and invariant condition on states according to the timed automata paradigm; The
internal implementation are labelled with clocks constraints that expresses the protocol assumptions or
operating system supported real-time features, e.g., the worst case execution time (WCET). After extend-
ing the external contract and label the internal behavior, we need to check if the internal implementation
fulfil the contract, then the component is contract fulfilled component, and we say the behavior of the
component can meet the required real-time need. This requires formal verification to be applied to the
component. Further, we think carefully about the real-time property propagation in the compositional
manner, i.e., can a real-time property be properly modelled and abstracted in an external contract? More-
over we considered the translation of multiple components to timed automata when verifying real-time
properties.

We answered the above questions in Section 2 and Section 3. In Section 4, we exemplify a comple-
mentary translation when the properties needs to consider real-time properties that are expressed with
two collaborative building blocks together. Alltogether, we mainly carried out worst case execution time
(WCET) analysis, probability analysis for real-time verification and real-time probabilistic verification
of Reactive Blocks.

2 Extended External State Machines with Time and Probability

External state machines (ESM) have served their purpose in Reactive Blocks and we found it ex-
tremely extensible. Existing extensions for the ESM include [179] in which Slåtten introduced the Ex-

Modeling and Analysis for Reactive Real-Time Systems 35

Functional Modelling

 RTESM, PRTESM
Probability,
time constraints
annotating

Abstraction and
transformation

 Model checking

 Building blocks library,
 Building block model checking

 Timed automata,
 probabilistic

 timed automata

UPPAAL, PRISM verification

+

Self build Arctis
utility

Figure 4.1. Approach for creating time-constraints correctness preserved block

tended ESM (EESM) and External Reliability Contract (ERC) for specifying reliability properties of
Reactive Blocks.

To achieve real-time and probabilistic property modeling and verification, we also extended ESMs, but
with real-time and probabilistic annotations. The extensions are developed by a series of activities that
involve modeling, annotation, transformation and verification. We describe our approach for creating
correctness-preserved real-time reactive system components as delineated in Figure 4.1:

Functional modeling: First and foremost, we use Reactive Blocks to model the behavior of em-
bedded real-time systems that are typical in robotics and embedded automation systems. Here,
the control state can be usually modeled using ESMs, and detailed behaviors can be implemented
within a building block. Software engineers who are familiar with software development and
embedded control systems are qualified to perform this step.

Probability, time constraints annotation: Next, we analyze the real-time constrained behavior
and extend the ESM to an RTESM with clock variable evaluation statements, guard notations, and
state invariants. This can be done, for example, by engineers with knowledge of real-time system
modeling and embedded device real-time standards. Of course, a 100% guarantee that a hard real-
time threshold is always kept, can never be given since the control system itself can fail with a
certain likelihood. To handle probabilities for real-time constraints, we provide the PRTESMs in
which the engineers can annotate the real-time constraints with probabilities.

Abstraction and transformation: With our self-built tools for connecting our modeling frame-
work to verifiers of different kinds, the time-constrained control behavior described in the RTESMs
and PRTESMs are translated into input to UPPAAL and PRISM for timed and probabilistic behav-
ior verification. Properties such as the constraints of a series of durational actions can be checked
by the UPPAAL tool; For probabilistic behaviors, we seek to verify the maximum (or minimum)
probability that an unsafe action may exceed its designated maximum time. The probabilistic
properties can be described by Probabilistic Timed CTL (PTCTL) (see Section 3.5).

Model checking: We analysed the fulfillment of the Reative Blocks against the extended contracts
by asking whether the abstracted behavior described in RTESMs and PRTESMs are fulfilled by
the implementation; Further the contract has to be a correct abstraction of the real-time properties.

36 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

a) Arctis Models

b) UPPAAL Models

parameter in

p1 p1

Synchronization signal

parameter out time out restart

activity
final node

initial
node

Synchronization signal time out restart

_reset!

_reset?

p1?

p1!

internal

external

t1

p1?

p1! t1< valuet1=0

Figure 4.2. Mapping between the Activity Behavior and TAs

Through the analysis process we proved the correctness of the abstraction of real-time behavior,
and we provide a way for describing real-time and probabilistic aspect of system behaviors.

3 Translation Procedures

The translation between the extended Reactive Blocks formalism and the real-time verification for-
malism is the critical link of the chain for the real-time extension of Reactive Blocks. In order to endow
the additional annotations with a real-time relevant semantics, we carefully designed the translation. For
model checking purpose, we first consider formalizing Reactive Blocks with time variables and con-
straints into network of timed automata to check the fulfilment of the internal behavior to its RTESM;
Second, we considered translating a more complex case in which more than one reference block had to
be analyzed for their real-time properties.

Mapping internal behavior, ESM to Timed automata

In the mapping between the building blocks and the network of timed automata in the UPPAAL tool,
the ESM and the activities are mapped to two automata, that we call internal TA (timed automaton)
and external TA. The two automata are synchronized using synchronization channel. The mappings are
shown in Figure 4.2:

In general, a building blocks behavior is represented as an internal TA, while its ESM are repre-
sented as an external TA.

A token arriving at an activity via pin p1 is translated to a binary synchronization channel in which
the external TA executes a send signal (p1!) modelling the input from the environment while the
internal TA carries out a receive signal (p1?).

A token leaving an activity via pin p1 is mapped to a binary synchronization channel in which the
internal TA executes a send signal (p1!), and the external TA a receive signal (p1?).

A timer t1 in an activity is transferred to a node of the internal TA, which is provided with an
environment clock variable that is set to 0 by the upstream edge to this node. Further, a clock

Modeling and Analysis for Reactive Real-Time Systems 37

Figure 4.3. UML activity of building block SpeedController

invariant states that the TA may be in the state only if the upper bound limit of the clock is not yet
reached (expressed as t1 < duration).

A terminated building block, e.g., by a token reaching an Activity Final Node (•©), may be
restarted at any time. To model this property in the TAs, we add special reset transitions from
the final node to the initial node using a broadcast channel reset.

The most important part of the translation is that we flattened the compositional specification of Re-
active Blocks into a networked timed automata that can be formally verified in UPPAAL as a network
of Timed Automata. The flattening includes the internal behavior of the block (internal TA) and ESM
(external TA). The synchronization of the two TAs is done with sending and receiving signals which
are the synchronization channels in UPPAAL. Notice, that in some scenarios, we need to translate more
than just internal and external TAs, e.g., when analysing a reference block, i.e., call behaviors from an
third block, we need to synchronize the ESM of the reference block and its containing block’s internal
behavior and external visible interface (ESM). In such cases we need to import the so called broadcast
synchronization channel to synchronise more than two TAs.

4 Translation Example

We carried out several case studies in automation control and robotic control systems, e.g., the safety
motor controller block in Paper C and the ControlTwoElements block in a transportation robot in Paper
F. In the following discussion, we introduce the translation through a case study of Speed Controller. In
this example, we give a transformation in which we consider the transformation of two reference blocks
with their behaviors synchronized with a container block.

38 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure 4.4. ESMs of the block Mode and SpeedController

Component Modeling via UML Activities

Figure 4.3 shows a building block for a simple speed controller1. The UML activity diagram shows the
behavior of the building block SpeedController that we use to specify the speed controller. This block
contains two reference blocks Mode and SLS. The activity of speedcontroller is started via the token
arriving at the pin start initiating the two reference blocks. Thereafter it waits until a token arrives at the
pin mode which effectively activates the two reference blocks. When active, the block SpeedController
can receive tokens from speedLimit (set the speed limit), speed (receive speed report) and activateS
(activate the safe emergent stop) pins, and emit tokens out via de, ac (decelerating resp. accelerating
speed) and command (send command to the environment) pins; finally the block is stopped via a token
arriving at the stop pin after which a token is sent to the environment via stopped pin. Note, that there is
a timer t0 in SpeedController which separates the actions between the two reference blocks. The Mode
block specifies three different controlling modes of an electronic motor, which are normal, sports and
economic 2. The mode is set via a integer value and default to be normal. The external behavior of
the Mode block is simple and depicted by its ESM in Figure 4.4. The Mode block is started by a token
passing pin start and reaches the state initiating. After the block is fed with a token from the setMode
input pin, the block reaches the active state in which it can constantly emit tokens out via deCelerate and

1The Simple speed Controller was originally developed by Hien and Braek for an European traffic controller system [108].
2This building block is inspired by the state refinement example in [27]

Modeling and Analysis for Reactive Real-Time Systems 39

start/status

stop/stopped

powerUp
status/

runningMode
speed/

activateS/status

puCompleted/status

speedExceed
setSLS/status+slsCommand

speed/

activateSSE
speed/

activateS/slsCommand

setSLS/status+slsCommand
c1=0

stop/stopped

c1<=1000

Figure 4.5. Simplified (RT)ESM of block SLS

accelerate. During the life-cycle of building block Mode, it can always receive report information from
the SLS block via the pin status.

The block SLS is a simplified Safe Limited Speed Controller (A more complete version of the SLS can
be found in Paper C). We extend the ESM of SLS with clock variable c1 and annotate the ESM with
clock reset and guide notations so as to format the RTESM of SLS. The RTESM of SLS block is shown
in Figure 4.5. This network of timed automata shows the composition of the two sub-blocks and their
synchronization with the system. The four states are of the RTESM are explained below:

powerUp The motor control system is starting.

runningMode The motor is running normally and below limited speed.

speedExceed The motor runs above its permitted speed limit but did not yet exceed the maximum
time period after which it has to be shut down by executing the Safe Stop Emergency (SSE)
handler. On the incoming edge towards the state speedExceed, the clock variable c1 is reset to
zero (in red color) for counting down the actions to trigger the state activateSSE. Assuming the
maximum time for the speed exceeding safe speed limit is 1000 time unit. To give such constrains
to this action, at the outgoing edge from speedExceed, a guide condition c1 <= 1000 is labeled.

activateSSE The SSE handler is triggered and the motor is shut down.

The parameter pins of the SLS block are listed blow:

start The building block is started via a token passing in the initiating pin start. Then the SLS
block goes to the powerUp state.

status The SLS can constantly emit tokens out via the status pin, in the speed controller system,
and the status is reported to the mode block.

puCompleted After the speed controller system set the operation mode, a token is fed to puCom-
pleted parameter pin to notify SLS block that the preparation is ready and SLS block goes to the
state runningMode.

setSLS By tokens passing this pin, the maximum speed limit may be altered.

40 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure 4.6. Network of timed automate in UPPAAL obtained by translating the SpeedController block

Modeling and Analysis for Reactive Real-Time Systems 41

slsCommand The transition from state runningMode to speedExceed specifies that whenever a
setSLS incoming token is received, a token will be emitted out from slsCommand pin.

speed When the SLS block is in states runningMode, speedExceed or activateSSE, it can receive a
speed report from the environment.

activateS A token passing this pin activates the Safe Stop Emergency (SSE) function which can
stop the motor.

stop Flows passing this pin switch off the SLS block.

stopped This pin is a notification that the SLS block is terminated. In the SpeedController block,
the token will be forked with one token to terminate the mode block, and the other notify the
outside environment.

The overall behavior of SpeedController block is depicted in its ESM in Figure 4.4. The block is
started via a token arrive at the start pin and then receive the mode setting by the mode parameter pin. It
contains states active, safeControl and activateSSE. Figure 4.6 shows the set of TCTL models obtained
by translating SpeedController, SLS and mode. We can use UPPAAL to simulate the behavior of the
three automata together with the timer variable c1. In the figure, the automata SpeedController, mode
and SLS correspond to blocks SpeedController, mode and SLS. and the three automaton are synchronized
via multicast synchronization channels. We can see the automata are similar to the ESMs of the com-
posed blocks albeit there are temporal and urgent locations generated during the translation (for more
information about urgent location see Chapter 3 Section 5).

Model Checking Real-time properties of a Reactive Block

In the speed controller example, we demonstrated that the behavior of the system expressed as Sys-
temTA still preserve the timed properties expressed by the RTESM of the SLS block, i.e., the implemen-
tation fulfils the RTESM. This is done by rechecking the property:

A[] SpeedController.activateSSE imply (SLS.c1<=1000)

The activateSSE state in the SpeedController block corresponds to a state where the same real-time
property needs to be preserved in the TA of the global system, and this property can be literally expressed
as

When the global block SpeedController is in state activateSSE the timer c1 in SLS is always within
1000 time units.

or in an equivalent expression, it can be expressed as

the action for reaching the Safe Stop Emergent state from the moment the system enters the speed
exceed state is no more than 1000 time units.

We abstract the real-time properties of a building block into an RTESM, which is a real-time con-
tract between a block and its environment. The overall work step includes model annotation, model
transformation, model checking for real-time properties in a compositional system:

1 The real-time property is expressed using RTESMs that extend the ESMs of the block with timer
variables and guide conditions and updates.

2 We translate the internal behavior of the system block, its ESM and an environment to a network of
timed automata such that they form a network of timed automata (TAs). We use the model checker
UPPAAL to simulate the real-time behavior of a building block together with its environment.

3 We use the UPPAAL model checker to prove that, for a block S, timed constrained behaviors (ex-
pressed as timed properties in Timed-CTL (TCTL)) constrained to S’s RTESM are indeed fulfilled
by its internal design. I.e., we verified that the automaton expressing the internal behavior of S
and the RTESM automaton together with an environment automaton have expected consistency in
real-time behaviors.

42 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

wcet:290ms

Figure 4.7. UML activity of building block ControlTwoElements

Model Checking of Real-time system for Human Machine Collaboration

In the context of real-time systems, when systems are modeled as timed automata, and the state space
is infinite due to continuous clock variables, many problems are undecidable. Usually a class of models
is defined as decidable whenever checking its reachability properties is decidable [35]. Thus, reachability
checking ([3]) is one of the fundamental techniques for model checking of timed-automata. Since the
building blocks are translated into networked automata for the verification of real-time behaviors, we can
apply reachability checking for safety properties of Reactive Blocks.

In paper F, we carried out another case analysis for a control block for an automatic transportation
system in a human machine collaboration environment (so called cyber-physical system). The core
function for the control system is a block ControlTwoElement (Figure 4.7) which synchronizes inputs
from sensors for robot position and working personal distance. It is a feedback controller that polls the
sensors of the the robot and the human, and uses the sensor data to compute the correct control mode of
the robot. The activity is initiated by two simultaneously arriving data tokens via the parameter nodes
new1 and new2 containing location information about the robot and the human at system start. The
corresponding time, location and speed data is defined by the Java class TSOB which is the type of both
parameter nodes. In the same activity step, the two data tokens are stored in the variables tsob1 and
tsob2 and the two tokens are joined to one passing operation getPollingInterval. This operation refers to
a Java method that reads out a parameter and pass it to the building block Timer Periodic 2 that will issue
timeouts in periods according to the parameter. The polling is sent out via parameter out call1 and call2.

The sensor data are parameterized in through pin get1 and get2, stored in local variable tsob1 respec-
tive tsob2, and joined in a flow breaker. In a new activity step, the token leaves the flow breaker and
causes the execution of the Java method computeMode which takes the sensor data from the variables
tsob1 and tsob2 and computes the mode according to the current distance between robot and human. The
RTESM and translated timed automaton of the ControllTwoElement can be seen in Paper F.

The operation computeMode in the activity is annotated with a wcet (worst case execution time) of
290 ms since it contains the code to process the execution mode from the sensor inputs. The block has to
guarantee that a emergent stop can be carried out if the working personal is too close to the transportation
robot. In the building block, we express a typical property using TCTL as follows:

A[](external.computing imply c2 <= 310)

The safety property is expressed in the RTESM and can be literally described as

When the ESM of the building block is in the state computing, can the clock c2 be always be smaller
or equal to 310 time units?

Modeling and Analysis for Reactive Real-Time Systems 43

Since the RTESM is a real-time behavior contract of the building block, we have to guarantee that the
compositional system is indeed guaranteeing the expressed properties of a real-time behavior no matter
whether the real-time behavior is from a reference block that is inside the system building block or it is
a system behavior which is implemented by internal activities. This requires that the UPPAAL proofs to
carry out two step verification:

1 The UPPAAL proof has to be carried out verifying that the inner behavior of a block is a refinement
of the RTESM.

2 The properties P, which are guaranteed by an RTESM, have to hold together with its environment
in a composed new system. That is, P has to be guaranteed by the environment activities together
with additional clock variables, events and guide notations.

Both steps of proof can be done by the transformation and the formatted network of timed automata
approach introduced in this thesis. And since this transformation are fully automatic and extensible, the
timed / probabilistic behavior are also standardized using RTESM / PRTESM. The approach significantly
improved the efficiency for compositional development of timed / probabilistic systems. The composi-
tional verification of timed probabilistic properties are similar to real-time properties, while algorithms
for compositional verification of probabilistic timed behaviors are designed out in PRISM tool [137].

5 Simulation-based analysis and Verification for Cyber-physical Sys-
tems

Simulation of large complex network systems is the main research method for observing and analyzing
network based communication systems. In some safety-critical systems, such as Cyber-physical systems,
such methods provide an inexpensive means to reveal how the communication protocols are working
and how they affect the system performance. Examples of such systems include remotely controlled
robots, medical devices, and automated manufacturing facilities. In our safety-critical system analysis,
we included simulation-based network protocol analysis, typically analyzing the IEEE 802.11 series of
protocols in Paper G.

The BeSpaceD framework [29, 30] is a tool for verification and analyzing of special-temporal behav-
ior of component based systems. The BeSpaceD tool collects verification results from, for example, the
solvers SAT [133] and SMT [57], and allows one to verify spatiotemporal properties like range coverage
or the absence of collisions between two components. In Paper F, we present a case study for the spa-
tiotemporal behavior analysis of probabilistic timed systems. The BeSpaceD tool is integrated into our
building bock-based component development environment and the probabilistic behavior of the compo-
nent based system is analyzed using PRTESM with PRISM as a verification basis. The spatiotemporal
behavior is analyzed using BeSpaceD.

Probabilistic real-time proves are typically useful in cyber-physical systems where control software
interacts with environment via a robot or another physical component. The control system typically
presents stochastic behaviors and is heavily affected by the environment. In the case study of the prob-
abilistic real-time behavior of cyber-physical systems in Paper E, we combined simulation results with
our software control system model. The simulation provides maximum execution time of a control signal
in a safety-critical control environment, from the system side. We applied real-time constraints analysis
such that a disastrous failure can be avoided with a next to 100% probability (e.g. 99.999999%). In paper
G, we selected the simulation and emulation tool Jemula [4] to simulate a industrial control environment
under the popular IEEE 802.11 series of WLAN protocols. We use BeSpaceD to analyze spatiotemporal
safety properties in our tool chain.

5
RELATED WORK

This thesis relates to model transformation, real-time system modeling and verification, compositional
specification for real-time systems based on timed automata, performance evaluation, and complex sys-
tem engineering. In this Chapter, we first briefly summarize the Reactive Blocks approach in Section 1.
Then in the following sections, we take a brief view of the works of related domains: In Section 2 we
sketch model based analysis that needs to be assisted by model transformation mainly translating UML
based models to various mathematical formalisms, e.g., temporal logic and petri net. In Section 3 we take
a look at some basic approaches for rule based model transformation that apply automation to software
engineering process. Sections 4 and 5 explore the real-time system modeling and probabilistic system
modeling realm. In Section 6 we briefly summarise the performance modeling techniques. In Section 7
we discuss the tentative usage of modeling techniques for cyber-system safety.

1 Synthesis Reactive Blocks for Complex System Engineering

Model-Driven Design has been promoted as the means for coping with the complexity of software
systems, it provides mainly two promising approaches for solving the main problems faced by software
industry today: raising abstraction level and introducing more automation in the process [143, 185].
Here we summarize some key aspects in the Reactive Blocks approach in raising the abstraction level
and introducing more automation in the software development process. The solved key aspects include
distribution, compositionality, code generation, evaluation, reliability, and security:

Distribution: In the context of software distribution, our goal is to build and configure component-
based software systems. A way to achieve that, is to start with a high-level specification, a so-called
choreography model, that abstract the distribution aspects. The idea of such choreography model
(distinguished from the Business Process Execution Language (BPEL) [172] and Business Process
Model and Notation (BPMN) [77] choreography model) is originated from Castejon’s work on
modeling collaborations in service engineering [140] since choreographies are used to model the
service composition, i.e., the interaction protocol between several partner services. Kathayat [106]
and later Fatima [65] transform requirements into service specifications. A global choreography
model is used for high-level software system specifications. Taking the global choreography model
as a starting point, we apply rule-based decomposition policies in automatically instantiating the
global choreography model to the localized choreography model as a distributed component model
(PaperA in the thesis).

Compositionality: A core concept of MDD for complex systems is its ability to make the defini-
tion of compositional models possible. MDD allows systems to be analysed and generated incre-
mentally. In this way, one can decouple a system into a hierarchical component-based system. This
aspect is solved by Kraemer in his thesis ”Engineering Reactive Systems, A Compositional and
Model-Driven Method Based on Collaborative Building Blocks” [110]. His work also contributed
to the core Reactive Blocks approach for software engineering.

46 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Code generation: Code generation is another core activity of MDD. The Reactive Blocks approach
solves the code generation problem by automatically translating UML activities into executable
state machines from which Java code is fully automatically generated, see [116, 113].

Evaluation: Originally, the evaluation of a system meant the evaluation of source code, but the
term has been extended such that if also refers to the evaluation of models in the MDD paradigm.
The evaluation is often a task for software systems due to the complexity of large software-centric
systems and various properties to be measured [37]. The fundamental properties of a software
artifact include size, length, complexity, cohesion, and coupling, etc. MDD solves the size and
complexity issues of software systems by decoupling them into functionally separated building
blocks. By providing the components with suitable interfaces, one can then reduce the complex
evaluation of the overall system into much easier evaluations of the components. Kraemer et al.
have solved the problem of evaluating a compositional building block by defining the External
State Machines (ESMs) as behavioral interfaces, and formal reasoning to guarantee that properties
described by the individual building blocks are preserved by the composed system [117]. In [177],
a tool translating UML activities into TLA+ [201], the syntax of TLA, is presented. This allows
us to apply the tool TLC [201] to check various temporal properties that are stated in form of
theorems. The evaluation content also changes based on different system requirements. For a
large distributed system, performance can be a critical evaluation criteria when reliability, safety
and dependability of systems become important issues of a reactive system [191]. For a cyber-
physical system, real-time performance, robustness, and safety may all be very important since
such a system might be working in a human-machine cooperative environment where a failure
might have disastrous consequences. We contribute to the evaluation of safety properties related
with real-time performance of a networked system in the Papers D, E, F, and G.

Reliability: A big challenge for large software systems is the reliability of critical system compo-
nents. In his thesis [179], Vidar Slåtten helped the developers to find a way to handle reliability
issues by integrating automatic reasoning facilities to discover system pitfalls and design mech-
anisms to bury those pitfalls. The mechanisms integrate formal reasoning and Reactive Block
libraries. In particular, Slåtten introduced the Extended ESM (EESM) and External Reliability
Contract (ERC) for specifying the reliability properties of Reactive Blocks in [182].

Security: Integrated security mechanisms are important for large complex systems. Linda Gu-
nawan extended the Reactive Blocks approach to the domain of security-enhanced embedded net-
worked applications. In particular, a set of security enhanced building blocks are provided to
the block libraries, and basic security mechanisms are encapsulated into building block to support
security-aware system development, In [79], the application level security properties are expressed
also using Extended External State Machines (EESMs, see [182]), embedded system security prop-
erties can be analysed using the interface contract instead of analysing system activities which
significantly reduced the state-space when applying model checking, other related work can be
fouind in [82, 81, 80].

In general, the Reactive Blocks approach provides a method for reusing reliable and high quality soft-
ware components. This approach can be applied to Complex System Engineering by applying modular
development and incremental integration of complex systems.

2 Model Transformation for Model-based Analysis

Model transformation, especially translating and endowing formal semantics to the UML modeling
language is a core research activity in MDD and model-based analysis. The UML activity diagram, which
describes the global ordering of atomic pieces of behaviors, is popular in system behavior modeling since
it can describe complex processes that have parallelism, loops, and event-driven behaviors in a rather
comprehensible manner. In [8], Ermeson et. al. translated the UML activity diagram with MARTE
(Modeling and Analysis of Real-Time and Embedded systems) profile to a special Petri Net based model
ETPN (Time Petri Net with Energy constraints) which can be used to validate functional, timing and low

Related Work 47

power requirements in early phases of the embedded system development life-cycle. Model checking
verifies whether some given finite state machine satisfies some given properties which are specified
in temporal logic or other formal techniques. Thus model checking techniques are applied widely to
software engineering and model-based architecture. The main problem for applying model checking is
the state space explosion for real-life systems. Since the state space of a real-life system is often too large
for an efficient verification, a lot of effect is taken to reduce it. A typical technique applied to reduce the
state space is to encode it symbolically using predicates [64, 87, 120, 123, ?].

In [64], Rik Eshuis introduced the translation of UML activities to a symbolic model verifier named
NuSMV. In [113], Kraemer and Herrmann present an algorithm to translate UML activities into state
machines. In this work, collaborative services are used as the main specification style of interactive
behaviors, such that system behaviors are described compositionally.

In [136], López-Grao et. al. translate the UML activities model into a petri net based model for soft-
ware performance analysis. By translating general UML activities into a Labeled Generalized Stochastic
Petri net (LGSPN), they endow UML activities with formal semantics. A similar semantics was added
to the UML activities-based software model in our approach, such that we can directly take advantage of
such semantics and translate the formalism into other languages that can be analyzed. In their approach,
the resulting LGSPN performance model is directly imported and processed in the GreatSPN tool [47]
to perform a quantitative analysis and to obtain performance rates. In our approach, we apply a UML
profile for performance annotation directly to our building blocks, and the state space of a building block
becomes a performance analysis model that can be analyzed by model verification tools such as UPPAAL
or PRISM (see Paper C, D E, and F).

3 Rule-based Model Transformation and Verification

Nowadays, the Eclipse Modeling Framework (EMF) is a popular platform for software engineering-
based research and model driven development of architectures. We have to thank the authors of [60], who
provide a fundamental infrastructure for developers and researchers. EMF is an Eclipse plugin-based
project that provides a modeling and code generation framework for Eclipse applications based on a
structured data model. In [24], Biermann et al., provide an EMF model transformation framework (EMT)
to support the modification of EMF models based on graphical EMF model transformation rules. EMT
now consists of three components: a graphical editor for EMF model transformation rules, a compiler,
generating Java code from these rules to be used in further projects, and an interpreter for the execution
of the rules using AGG [189], a graph transformation tool environment.

The AGG (Attributed Graph Grammar) system provides a formal foundation based on the algebraic
approach to graph transformation [50, 62], and offers validation support like graph parsing, consistency
checking of graphs and graph transformation systems with conflict detection of graph transformation
rules [189]. GROOVE is the project for an integrated graph transformation and model verification envi-
ronment that supports graph transformation-based model transformation. Its main purpose is to support
the modeling of object-oriented systems with a formal foundation for dynamic semantics. GROOVE
supports the model transformation of one monolithic graph and explores the state space of a reachable
graph. Furthermore, it supports CTL and LTL-based model verification of the state space [105, 75].

New trends for model transformation address voluminous models corresponding to the big data era
(e.g., [138]). To meet the need to process large-scale graph data in increasing numbers of application
domains, Krause et al. mapped graph transformation rules and units to the Bulk Synchronous Parallel
(BSP) model and processed several applications in a distributed and parallelized environment [119].
This can be helpful in many application domains such as model management, model transformation, and
software architectures.

4 Real-Time Modeling and Verification

Real-time software systems tend to be large and complex. This time-related complexity exists in
a vast spectrum of very different types of systems ranging from purely time-driven to purely event-
driven ones. To present the common requirement to respond correctly to inputs within acceptable time
intervals, researchers studied systems ranging from telecommunication and aerospace to robotics and

48 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

many other industry domains since, over time, each of these types of systems has developed its own
idioms, design patterns, and modeling styles that collectively capture the distilled experience of many
projects. In earlier times, the ROOM method [170] was used with UML to model real-time systems in
structural and behavioral aspects. For example, they urged using a UML collaboration diagram to model
communicating entities (or actors) and use connectors to model signal-based communication channels
that interconnect two or more ports.

In [207], the author proposes an approach that reuses model verification tools and extends the UML
modeling notations to real-time (UML-RT) such that the analysis and model were brought closer to-
gether and models could be abstracted in a formal representation. We primarily concentrate on real-time
systems that are characterized as complex, event-driven, and distributed. The first effect, that needs to be
mentioned, is the general-purpose UML modeling language to define and capture this domain-specific
usage of real-time reactive systems. The UML community developed the UML profile for Modeling and
Analysis of Real-Time and Embedded Systems (MARTE) [152]. MARTE provides a common way of
modeling both hardware and software aspects of a real-time embedded system in order to improve com-
munication among developers, and also enables the interoperability between development tools used for
specification, design, verification, code generation, etc. We also enabled our approach to real-time anal-
ysis by incorporating the MARTE profile from an abstract holistic level, meaning we can abstract away
hardware details of the implemented software functional unit by applying an evaluation and verification
approach from a pure software point of view.

Based on the MARTE profile, many other applications also have been modeled for real-time embed-
ded systems. For example, in [10], Andrél et al. used UML MARTE to represent the various IP-XACT
(electronic component design standard, see [96]) figures, and through such an approach, electronic com-
ponents and designs can be integrated into further system design and further modeling of component
composition is facilitated.

The modeling and validation of timing constraints for real-time system is introduced already in the
1980s and 1990s in [6] and [1]. Abadi and Lamport imported variables for the examination of real-time
context in temporal logic [1]. A state region graph technique is introduced by Alur, Courcoubetis and
Dill in [6] for efficient automatic model-checking of real-time systems. A lot of work is devoted to
the understanding of theoretical comprehension for timed automata. Those works include determination
[165], minimization [163], power of clocks [164, 89], various extensions [56, 91, 48, 17] as well as log-
ical characterizations [199, 91]. The famous UPPAAL tool, introduced in Section 3.5, uses an extended
timed automaton for specification of real-time system, and applies the state region graph technique for
model checking. UPPAAL also solves the state explosion problem using compositional and symbolic
model checking techniques [132]. We have chosen timed automata for the modeling and verification
of real-time properties for reactive systems and use UPPAAL as the tool for real-time property verifi-
cation. Comparing other approaches, e.g., the Communicating Sequential Processes (CSP) used in [9],
UPPAAL has longer history and matured tools and open APIs. Other formalisms for real-time systems
include Petri nets, timed process algebras, and real-time logic [23, 167, 198, 206]. Meanwhile, a number
of other model checking tools for real-time systems are available including HYTECH [88] and KRONOS
[54].

In [187], the authors study the modeling and verification of real-time systems as well as composi-
tional specification for real-time systems based extensively on timed process algebra. The timed process
algebra approach provides another alternative for hierarchical real-time system verification.

In [68], the authors describe a Domain Specific Modeling (DSL) language for distributed micro-
controller applications. In particular, the model-driven approach can be applied to the exhaustive simu-
lation of system configurations such that the adaptive firmware of embedded systems can be tested for
runtime adaptation. Real-Time Maude [150] is a language and tool supporting the formal specification
and analysis of real-time and hybrid systems. It was developed and is maintained at the Precise Modeling
and Analysis (PMA) group at SINTEF ICT and University of Oslo in Norway. It has been used to model
and analyze sophisticated communication protocols and scheduling algorithms as well as a semantic
framework and formal analysis tool for a number of modeling languages for embedded systems.

In [67], Feng et al. proposed a novel approach for embedded real-time systems, i.e., a machine learning
approach to generate models of real-time embedded systems. This approach applies learning algorithms

Related Work 49

to execution traces of black box components of real-time embedded systems so that the system level
control flow model could be generated. This approach demonstrates more practical applicability for
industrial applications.

The model checking of real-time properties for compositional systems are implemented in the UP-
PAAL tool [131] and the CMC tool [129]. In [204], Jianhua et al. analyzed the linear duration properties
and designed an algorithm for model checking for real-time property of parallel composed real-time
systems.

The probabilistic real-time properties of reactive systems usually describe the system safety aspect. In
[137], Lu Feng et al. proposed a novel learning technique, based on L* [11], for generating probabilistic
assumptions for probabilistic systems.

5 Probabilistic Model Verification

In recent years, immense attention has been attracted to probabilistic timed automata (PTAs) and
probabilistic system behavior verification. The PRISM model verification tool [120] (see Section 3.5)
gains considerable popularity for the combination of probability and timed behaviors in real-time and
embedded system and networked protocols. In [85], Arnd Hartmanns and Holger Hermanns use the
digital clocks approach for model checking of probabilistic timed automata and integrated the PRISM
model checking engine into the compositional modelling language Modest [34]. As mentioned above,
we applied the reachability based checking for the model checking of probabilistic real-time behaviors of
compositional control systems modelled in Reactive Blocks. This helps to verify the probabilistic safety
properties in our application of Reactive Blocks to cyber-physical systems.

6 Performance Modelling and Analysis

Modern distributed concurrent systems present Quality of Service (QoS) as an important requirement.
Such QoS requirements, including performance, availability and reliability, are of crucial importance.
This is especially true, if modern network protocols are the communication means to coordinate embed-
ded control systems or to gather real-time data from widely distributed sensors. The analysis of systems
presenting stochastic behaviors are often based on Stochastic Petri net models and other Petri net based
models. In the following, we briefly mention some theories and tools for analyzing the QoS properties:

Stochastic Petri Net Models

Stochastic Petri nets (SPNs) [139] are widely used for performability and dependability evaluations.
The specification of SPN is similar to Petri Nets except that tokens are fired using a stochastic time
distribution. When using an SPN specification technique, one has to define a set of places P , a set of
transitions T , and a set A of arcs between transitions and places or vice versa: A ⊆ (P × T)∪ (T ×P).
Each place can contain zero or more tokens. Graphically, places are depicted as circles, transitions as
bars, tokens as dots inside circles, and arcs as arrows.

The distribution of tokens over the places is called a marking and corresponds to the notion of state in
a Markov chain [148]. Places from which arcs go to a transition are called input places of that transition.
Output places are those, to which arcs come from a particular transition. A transition is said to be enabled
when all of its input places contain at least one token. An enabled transition may fire. After firing, a
transition removes one token from all of its input places and puts one token in all of its output places.
Thus, a change of state occurs.

The firing of transitions is assumed to take an exponentially distribution time. Given the initial mark-
ing of an SPN, all the markings as well as the transition rates can be derived, and the number of tokens
in every place is bound. Thus a finite Markov chain is obtained [191]. The reward rates are described
as a function of the markings and the reward rates and the Markov chain together yield a Markov Re-
ward Model [200] which captures some performance measure of interest. A list of SPN based tools for
performance and reliability analysis is given in [192].

50 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Other Extensions of Petri Net (PNs) Based Model

Different extensions to ordinary PNs have been developed in order to increase the modeling con-
venience and/or the modeling power. Colored PNs (CPNs), introduced by Jensen [103], are one such
extension. The latter allows a type (color) to be attached to a token. A color function C assigns a set of
colors to each place, specifying the types of tokens that can reside in the place. In addition to introducing
token colors, CPNs also allow transitions to fire in different modes (transition colors). The color function
C assigns a set of modes to each transition and incidence functions are defined on a per mode basis.

Generalized Stochastic PNs (GSPNs) allow us to use two types of transitions, i.e., immediate and
timed. Once enabled, immediate transitions fire in zero time. If several immediate transitions are enabled
at the same time, the next transition to fire is chosen based on firing weights (probabilities) assigned to
the transitions [15].

Performance Evaluation for Real-Time Java

Our work supports the following approaches for real-time software performance evaluation. Since the
present platform and code generation support the Java programming language, there is a necessity to do
a survey on Java performance evaluation and prediction.

Benchmarking is an important way for evaluating performance of real-time systems. Many bench-
marking tools are applied to the evaluation of real-time embedded systems. For instance, in [51], Cor-
saro et al. applied the RTJPerf benchmarking suite to evaluate the efficiency and predictability of several
implementations of the Real-time Specification for Java (RTSJ). The results indicate that real-time Java
is maturing to the point where it can be applied to certain types of real-time applications. PACE (Per-
formance Analysis Characterization Environment) is an environment for characterizing and predicting
the performance of distributed Java applications within dynamic heterogeneous environments [149]. It
is based on a set of abstractions, formalization techniques, and the extraction of useful information from
the Java application. In particular, the PACE approach applies timing analysis on Java byte codes so
as to develop a method for predicting the performance of Java programs. The performance evaluation
and prediction is performed on the byte codes level, which can accurately predict the JVM (Java Virtual
Machine) performance. The analysis unit is referred to as the Sequential Bytecode Block.

Simulation and Emulation Tool for Networked Reactive Systems

There are plenty of network simulation tools available for the research of communication and com-
puter networks. Since our approach exemplified a network environment in an 802.11 WLAN network for
mobile embedded systems, we mainly surveyed some WLAN simulation and emulation tools for IEEE
802.11 wireless networks. Network simulators, including ns2 [99], OPNET [45], and NCTUns [197] can
describe the state of the network (nodes,routers, switches, links) and network events (data transmissions,
packet error etc.). Experimental research using these tools shows that the performance of a tele-operated
robot system is strongly influenced by the quality of the communication environment. We take advantage
of the simulation tools to analyze the saturation effect of a network, and the analysis results are used as
input to our networked device safety analysis. For example, it is shown in [188] that the position track-
ing and control of robots degrades if the available bandwidth in the communication medium is occupied
by too many stations. In [42], the benefits of the extensive use of wireless technologies in automation
and robotics are discussed. The IEEE 802.11 series of wireless protocols has several flavors that can be
applied to industrial robotics, of which IEEE 802.11a is considered to be the most suitable. An extensive
survey on wireless sensor network emulators and simulators is discussed in [97].

7 Cyber-physical Systems

A cyber-physical system is an extension of a real-time and hybrid systems. With the growing popular-
ity of CPS applications in IoT, smart cities, smart grids, industrial Internet and smart “everything”, the
research about CPS has become of great importance. In [161], Radhakisan Baheti and Helen Gill state
that for analyzing the system level properties of CPS, “Standardized abstractions and architectures that
permit modular design and development of cyber-physical systems are urgently needed”. Also, due to

Related Work 51

the lack of such kind of architectures, a serious problem is exposed in verifying the overall correctness
and safety of design of CPS at system level.

We give an answer to the cornerstone for the architecture of CPS by the Reactive Blocks approach
provided by Kraemer and Herrmann, and we searched for the solution for analyzing the properties of
CPS at system level.

Recent trends for dealing with the complexity of cyber-physical or IoT systems indicate that mod-
els should be able to capture the runtime behavior of complex systems. This requires the ability to
abstract and describe self-adaptiveness or autonomous properties of software systems. We recommend
to use Reactive Blocks for the component-based cyber-physical system development since it provides
infrastructure for developing self-adaptive and autonomous systems in a model-driven manner. In this
paradigm, we introspect Reactive Blocks as an execution model, and a dynamic component-based struc-
ture can be the dynamic model of cyber-physical systems. More details for Models@Runtime and how
the Reactive Blocks approach can be used for runtime behavior modeling are discussed in Chapter 7.

Cyber-physical System Safety

Cyber-physical system safety is now one of the most urgent required properties which is recognized
by the research community, the industry, as well as the International Society of Automation (ISA). ISA
identifies the safety standards for automation systems in ISA84 (IEC 61511, [12]), works on aligning
safety and security standards including ISA84 and ISA99 (IEC 62443, [13]). In [168], Giedre et al.
proposed an approach for aligning CPS safety and security in early development phases by synchronizing
safety and security life-cycles based on standards. The alignment is done by a unified model called
Failure-Attack-CounTermeasure graph (FACT).

In [29], Blech and Schmidt proposed a framework for the verification of the spatial behavior of dis-
tributed software systems. At present, a tool called BeSpaceD has been developed for spatial behavior
abstraction, and properties like range coverage and the absence of collisions can be studied. Ensuring
spatial safety in hybrid and embedded control systems is a new research trend in both software verifica-
tion and embedded systems. These systems are usually large and comprise many sub-systems, including
sensors, communication networks, and controllers. With growing system sizes and the combination
of independently developed systems into large systems or interplay of different subsystems, the safety
aspect of such systems becomes very important. In [26], Blech et al., extend the verification of cyber-
physical systems to a component level that describes the so called behavioral types. Further, the type of
verification techniques are extended to verify spatial behavior types and put into an infrastructure that
helps to design largely distributed collaboration parts [31]. Such kind of complex systems needs the joint
effect of simulation, validation and visualization of cyber-physical systems.

The safety specification of CPS related with time and space behavior is also analyzed in [174], which
gives another formal abstraction of spatial and time behaviors. In this paper, Spichkova et al. use the
FOCUSST language, which is an extension of the FOCUS specification language [38] to describe the
Safety-Critical System properties. The FOCUS language is a special type of timed automata that is
named Timed State Transition Diagrams (TSTDs). And the properties can be translated into a Higher-
Order Logic and can be verified by the interactive semi-automatic theorem prover Isabelle [173, 147].

6
SUMMARY OF THE PAPERS

Seven papers are included into this thesis, and this chapter presents a brief summary of each one,
including the individual contribution of each paper to the overall analysis method and Complex System
Engineering. To make an overall comparison, I labeled each paper with its contribution to each of the
four aspects in the Reactive Blocks method discussed in Chapter 1, Section 2 and to overall Complex
System Engineering as discussed in Chapter 1, Section 1.

1 Paper A

Fenglin Han, Surya Bahadur Kathayat, Hien Le, Rolv Bræk, Peter Herrmann, Towards Chore-
ography Model Transformation via Graph Transformation, Proceedings of the 2nd IEEE Interna-
tional Conference on Software Engineering and Service Sciences (ICSESS 2011). Beijing, 15−17th

July 2011.
This paper presents the first application of graph grammar techniques for system synthesis and analy-

sis. We proposed a framework for the decomposition of system specifications in two levels of abstraction.
The choreography model is a more abstract level specification for capturing the system behavior from
a service requirement requisition. It is used to describe collaborative entities that are described with
respect to their collaborative roles, and their interacting sub-services that are modeled by a customized
UML activities. Reactive Blocks is used as the design time model for implementing service systems. In
particular, these two models are characterized in the following manner:

UML collaboration diagram is used to define the structure of a collaborative service, with service
participants and sub-services are defined as collaboration uses. the ordering of collaboration uses
are defined by activity diagrams called the flow-global choreography model, which specifies high-
level global behavior including ordering and causality in the sub-services.

Reactive Blocks model is used as a flow-localized choreography model for design-level system
specification, such that systems can be directly implemented and their code can be generated.

Flow-global choreographies can be transformed into flow-localized choreographies using graph trans-
formation techniques. I defined a set of transformation rules to implement the localization policies.
The approach is highlighted by means of a case study featuring the European Rail Traffic Management
System (ERTMS).

Unique Contributions of the author of this thesis include:

Import of the graph transformation approach into the model-based system development synthesis
and composition. Specifically, I applied the attributed graph grammar (AGG) system, which au-
tomatically connects existing component models in the library with new system developments, to
system decomposition and derivation.

I contribute to the overall approach of the paper and developed the transformation rules of the case
study.

54 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

The author of the thesis contributes to 65% to this paper. This paper contributed to automation support
from requirement modeling to functional modeling and derivation of functional components in applying
Reactive Blocks approach to Complex System Engineering 1.

Structure Transformational Compositional Analysis
aspect aspect aspect aspect
? ? ? ? ? ? ? ??

Contribution to CSE: AS1

2 Paper B

Fenglin Han and Peter Herrmann, Remedy of mixed initiative conflicts in model-based system
engineering, Proceedings of the 11th International Workshop on Graph Transformation and Vi-
sual Modeling Techniques (GTVMT 2012), Volume 47 of of the Electronic Communications of the
EASST, 2012.

This paper introduces a typical application domain for graph transformation rules that can be used
for automatic pattern maintenance and weaving for model based system development. In collaborative
communication, often two participants are able to instantiate a certain cooperation. Here, a so-called
mixed initiative conflict may arise when both participants initiate communication at the same time. This
conflict may easily lead to unexpected and unwanted behavior if no precautions are taken. Using our
Reactive Blocks-based incremental system development, a logical block was formalized to coordinate
communication and prevent such conflicts. A basic policy is to have one side yielding to the other when
a conflict occurs. In this paper, an automatic application of logical building blocks between conflict-
ing participants (two communicating software entities) was proposed, by applying graph transformation
rules to automatically discover mixed-initiative conflicts between communicating parties. Further, we
apply graph transformation to automatically insert resolution policies into the relevant communications
in the form of a logical pattern block. Using such procedures, automated techniques were applied to
remedy human design errors. This paper illustrates an example of automation in software engineering,
specifically regarding how erroneous design patterns can be discovered and solved using the graph trans-
formation rule. We thank Vidar Slåtten for his button game example, which we used as an illustrative
scenario in the paper.

Unique Contributions of the author of this thesis include:

Integration of the graph transformation approach into the system analysis, to ensure that certain
erroneous patterns are automatically discovered and immediately remedied.

Contribution to the main approach of the paper and developed the transformation rules of the case
study.

The author of the thesis contributes to 80% of the paper.
Structure Transformational Compositional Analysis
aspect aspect aspect aspect
? ? ? ? ? ? ? ? ? ?

Contribution to CSE:AS1, AS2

3 Paper C

Fenglin Han, Peter Herrmann and Hien Le, Modeling and Verifying Real-time Properties of Re-
active Systems, Proceedings of the 18th International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2013). Singapore, 2013.

In this paper, our model-transformation-based model analysis and verification approach was extended
to a time-critical software system. In particular, we defined the core concept of the Real-Time External

1Related aspects are discussed in Section 2 of Chapter 1

Summary of the Papers 55

State Machine (RTESM). Based on the Reactive Blocks paradigm for incremental system development
and verification, an RTESM is an extension of the External State Machine (ESM). It is a rich-label version
containing clock labels, synchronization channels, and guard conditions. Thus, the RTESM describes
a real-time contract between the internally implemented building blocks behavior and the externally
visualized behavior. It follows the timed automata formalism and can be imported into the well-known
UPPAAL tool for time-related verification by model transformation. The properties are described by
a variation of computation tree logic called Timed Computation Tree Logic (TCTL). In this paper, we
use a component designed to protect en electrical motor controller system against excessive speed as an
introductory example.

Unique Contributions of the author of this thesis include:

Extension of the Reactive Blocks model-driven development approach by the real-time external
state machine (RTESM), to enable the real-time formalism and analysis of the Reactive Blocks
model.

Development of the infrastructure for the analysis and verification of the real-time Reactive Blocks
model.

Contribution to the development and delineation of the transformation approach, the design of the
verification property, and its implementation.

The author of the thesis contributes to 80% of the paper.
Structure Transformational Compositional Analysis
aspect aspect aspect aspect
? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ?

Contribution to CSE:AS3

4 Paper D

Fenglin Han and Peter Herrmann, Modeling Real-Time System Performance with Respect to
Scheduling Analysis, Proceedings of the 2013 International Joint Conference on Awareness Sci-
ence and Technology and Ubi-Media Computing (iCAST & UMEDIA 2013). Aizu city, Japan,
2013.

The analysis of real-time systems is complex and non-trivial, since it is highly associated with the un-
derlying hardware platforms. Thus, model-driven development requires mechanisms to associate models
with underlying implementation platforms. In this paper, we bridge the gap between the software model
and the hardware by introducing the well-known UML profiling mechanism, that is, we present a perfor-
mance profile for the Reactive Blocks paradigm. We annotated the subcomponents and actions of each
building block with labels that identify common concepts in real-time performance analysis, including
worst-case execution time (wcet), best case execution time (bcet), work load, periodic tasks, scheduling
policies, and the computation time probability density distribution function (ctddf). By introducing these
annotations, we provide a global view of real-time system performance analysis. This work also enables
the scheduling analysis of a real-time critical software system by introducing timed automata that sim-
ulate resources and scheduling policies, mechanisms that are typically hidden from software developers
and library users.

Unique Contributions of the author of this thesis include:

Introduction of performance annotations for Reactive Blocks and connection of the building blocks
to the performance issues by introducing the UML profiling mechanism.

Enabling scheduling analysis of real-time Reactive Blocks by introducing automata that simulate
resources and scheduling policies. Specifically, we made the real-time verification of the building
blocks possible.

The author of the thesis contributes to 95% of the paper.

56 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Structure Transformational Compositional Analysis
aspect aspect aspect aspect
? ? ?? ? ? ??

Contribution to CSE: AS3

5 Paper E

Fenglin Han, Jan Olaf Blech, Peter Herrmann and Heinz Schmidt. Towards Verifying Safety
Properties of Real-Time Probabilistic Systems. Proceedings of the 11th International Workshop
on Formal Engineering approaches to Software Components and Architectures (FESCA 2014),
Electronic Proceedings in Theoretical Computer Science 147, pp. 1–15. Grenoble, France. April
12th, 2014.

In this paper, I explore real-time and probabilistic properties of real-time systems. Due to mainte-
nance costs, many embedded control systems require quantitative timing constraints that may include
guaranteed probabilities for time and space. For example, a robot may be required to process a task in
a predefined amount of time with a probability of 99.999999% to prevent damage to other equipment. I
propose a framework for integrating probabilistic real-time verification and performance prediction with
system development. Using the spatiotemporal analysis tool BeSpaceD that was integrated into Reactive
Blocks, one can verify probabilistic spatial behaviors. This approach can be summarized as follows:

One models embedded control systems with Reactive Blocks. The working environment of the
embedded system, for instance the working path of a transportation robot is generated with simu-
lation blocks.

One annotates the core control function block with probabilistic real-time constraints.

In the extended formalism, probabilistic real-time behavior is represented by a probabilistic real-
time external state machine (PRTESM). It is transformed to probabilistic timed automata and im-
ported to analyzing tools such as PRISM.

Using the simulation data, one applies BeSpaceD for spatial verification. Specifically, one can
generate the traces capturing spatiotemporal behavior, and input the trace data into the BeSpaceD
tool.

The core control building blocks are extracted and used for code generation following the analysis
and simulation using the above approach, since both its functional and non-functional properties
have been verified.

This paper use a transportation robot in a storage hall as an example to illustrate this approach.

Unique Contributions of the author of this thesis include:

The author introduced of the formalism for the non-functional system property analysis, the prob-
abilistic real-time external state machine (PRTESM). Also, based on RTESM extended the mod-
eling capability to include probabilities and real-time attributes.

The author introduced the new software verification tool, the PRISM tool for probabilistic real-time
system analysis. In the new paradigm, system properties may be formalized using probabilistic
computation tree logic (PCTL).

The author of the thesis contributes to 50% of the paper.
Structure Transformational Compositional Analysis
aspect aspect aspect aspect

? ? ? ? ??

Contribution to CSE:AS3, AS4

Summary of the Papers 57

6 Paper F

Peter Herrmann , Jan Olaf Blech, Fenglin Han and Heinz Schmidt, A Model-based Tool-chain
to Verify Spatial Behavior of Cyber-Physical Systems. In International Journal of Web Services Re-
search (IJWSR), Volume 13, No. 1 (2016).

The 2014 Asia-Pacific Services Computing Conference (APSCC2014), Dec 2014, Fuzhou, China,
awarded the best track paper award to an earlier version of this paper.

In this paper, we introduce a framework to preserve safety properties in cyber-physical systems. The
proposed approach combines a Reactive Blocks model-driven development framework and spatiotempo-
ral verification techniques. First, we use Reactive Blocks to develop the control software and to simulate
the safety critical control systems. Thereafter, we examine the real-time verification techniques applied
in the Reactive Blocks model, using the BeSpaceD tool to verify the spatial properties. BeSpaceD is
combined in a way that is different to the one used in Paper E. That allows us to analyze the overall
behavior of a Reactive Blocks model for spatiotemporal properties and not only certain simulated traces.

The approach can be summarized as follows:

Step 1: Describe the physical properties of a cyber-physical component in BeSpaceD terms or
generate BeSpaceD terms from Reactive Blocks models by writing Scala programs.

Step 2: Model the control system using Reactive Blocks to simulate continuous behavior, by
importing the physical properties from Step 1. These control system building blocks are checked
against design errors by the Reactive Blocks internal model checkers.

Step 3: Using the generated BeSpaceD syntax, verify the spatial behaviors in the composed tool;
for example, verify collision avoidance.

Step 4: Using the physical properties and reactive models of the above steps, check the real-time
properties using the extended abstract model, the real-time external state machine (RTESM), as
verified by the UPPAAL tool.

Step 5: Transform the Reactive Blocks of the control systems into executable code for the con-
troller of the real-life embedded system.

Unique Contributions of the author of this thesis include: Contribution to the real-
time verification, and evaluated the real-time ESM (RTESM) for real-time property formalization and
verification. Establishment of a master project to develop the extension to the Arctis tool set, in order to
integrate the BeSpaceD and Arctis tools (supervised by Professor Peter Herrmann). The author of the
thesis contributes to 40% of the paper.

Structure Transformational Compositional Analysis
aspect aspect aspect aspect

? ? ? ??

Contribution to CSE:AS3, AS4

7 Paper G

Fenglin Han, Jan Olaf Blech, Peter Herrmann and Heinz Schmidt, Model-based Engineering and
Analysis of Space-aware Systems Communicating via IEEE 802.11, In 39th Annual International
Computers, Software & Applications Conference (COMPSAC 2015). pages 638-646, Taichung,
Taiwan, July 2015, IEEE Computer.

With our model-driven development framework and its supporting tool chain, UPPAAL and Be-
SpaceD, we completed a case study in hybrid control system development, analysis and verification.
In this paper, we target the embedded control systems of mobile fulfillment robot systems that com-
municate in a wireless environment. Specifically, we use our model-driven framework for embedded
control system modeling, and then analyze and simulate wireless network coordination. The analysis
and simulation of the wireless network supplements the verification of the spatial conditions and ranges

58 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

of the access points. We also import the simulation tool, Jemula, to generate network communication
simulation data to achieve a virtual robot fulfillment system in a storage hall.

The concrete steps of the case study are done out as follows:

First, we use constraint solutions to provide parameters for the network simulations. Spatiotem-
poral properties of a coordinated mobile fulfillment system are the first constraints established by
the BeSpaceD tool since the physical layout of the access points in a WLAN affects the control
accuracy of a robot. These constraints can drive the maximum free space distance between an
access point and the moving robot (the moving speed of the robot can also be considered).

We then use the results of the network simulations, including the failure probabilities and other
statistical properties, to input further constraints into the constraint solver.

The 802.11 WLAN protocol is used as the communication and coordination media, and we then
analyze the control system models behavior in the given environment.

Unique Contributions of the author of this thesis include: Conducting the 802.11 WLAN
analysis and simulation. Specifically, I applied an open source tool, Jemula802 [4], to configure an
802.11 WLAN network. The configuration details included free space distance, network traffic with
packets at time intervals following a negative exponential distribution, and robot numbers. I obtained the
maximum delay possibilities and provided the probabilities and maximum delay to the spatiotemporal
property analysis tool, BeSpaceD. The author of the thesis contributes to 60% of the paper.

Structure Transformational Compositional Analysis
aspect aspect aspect aspect

? ? ?

Contribution to CSE:AS3, AS4

7
FUTURE WORK

This thesis opens analysis and research topics ranging from novel software modeling and synthesis to
software verification techniques. In this section, we discuss a few ideas for future research.

1 Modeling and Approach Validation

The approach for extending the modeling capability of Reactive Blocks with annotations of clocks
and guard conditions to represent real-time requirements is still under research and evaluation. More
modeling and evaluation cases are needed to address the following issues:

Modeling capability: Currently, we are using reactive models for generating software code that
can simulate or emulate real-time behavior for application-specific needs. This approach needs
more cases, especially in robotics and embedded systems.

Analysis capability: Our work shows the extensibility of the SPACE method in more basic case
studies. The analysis capability of this extended approach needs to be explored further in order to
find out more about its scalability potentials.

Combination with reliability: Reliability of software systems is a major topic for electronic and
embedded systems. In our group, Vidar Slåtten has addressed this topic in his Ph.D. thesis for
reliability conservation and mechanism extension in [179]. However, his work does not consider
real-time issues in conjunction with software reliability due to the complexity of the problem.
Future work would integrate the real-time analysis capability of this thesis with Slåtten’s reliability
analysis for component-based software development.

2 Taking Hardware into Consideration

The automata paradigm needs more concrete assumptions for the underlying operating systems and
hardware. These hardware systems include circuit buses, cache blocks, and communication networks.
In the future, the automata-based verification should be extended with rich definitions for environmental
properties. This is the basis for more realistic software system analysis.

In addition, the best use of Reactive Blocks should be in the embedded software industry, in which
real-time and performance evaluation depends in large part on the hardware. This requires broader
platform support from our approach, including code generators for C, C++, and hardware-oriented pro-
gramming languages, such as VHSIC hardware description language (VHDL) or Verilog.

Real-Time programming languages are needed to support access to clocks, delays, timeouts, deadline
specifications, and scheduling. Hardware clocks are usually implemented by OS level services. Com-
paring the Reactive Block paradigm with VHDL leads to a lot of similarities between the two languages.
Table 1 compares the programming language concepts supported by VHDL with those supported by
Reactive Blocks. It tells us that Reactive Blocks not only supports all of the concepts that are necessary
for a low-level language, but also supports advanced formal method-based analysis of component level
properties, which are helpful ingredients in software-hardware codesign as well.

60 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Table 1. A comparison of Reactive Block paradigm and VHDL language

VHDL Reactive Blocks Description

Entity
External State Entity representing the interface

Machine (ESM) specification (I/O) of the component
ESM describes both I/O stimulus

and the casual order of I/O

Architecture Internal Behavior describes the internal
(UML activities) implementation of an entity / ESM

Configuration Block pins, Allow to specify different
Block Parameters configuration for a single component

Attributes Attribute Additional attributes
or parameter

Process Reference Block Component behavior
description

From Table 1 we see that any low-level language for implementing hardware-specific features can be
supported in Reactive Blocks.

3 Supporting Mechanisms for Real-Time

Real-time software systems belong to a special category of software and hardware that places a higher
demand on time constraints. Usually real-time systems require support from underlying hardware mech-
anisms or have optimized application-specific hardware design criteria. The first level of support is
the programming language, which includes support for interruption of actions, special scheduling algo-
rithms, real-time garbage collection, and thread execution priorities. The Java community has introduced
a specification for Real-time Java, JSR001, and a set of implementations of the resulting real-time spec-
ification have emerged, including IBM’s WebSphere Real Time and Sun Microsystem’s Java Real-Time
System. In the current reactive models, the implementation and scheduling of state machine transitions
are based on JavaFrame [86, 186] and the traditional Java programming language; yet, real-time con-
straints on Reactive Blocks requires novel underlying infrastructures, including real-time state machines,
programming languages, and operating systems. After surveying the alternatives, we suggest some ex-
tensions:

PERC

AtegoTM is an example of a commercially available real-time embedded virtual machine. Instead
of using the real- time specification for Java (RTSJ), the Atego PercTM virtual machine technology
and tool chain is built using only Java Standard Edition (JSE). Perc is not fully compliant with RTSJ
(Real-Time Specification for Java) since it targets at some specific hardware on commercial use.

LJRT

Lund Java-based Real-Time (LJRT) is a Java-to-C translator that enables the use of Java source code
for real-time execution on machines without JVM. LJRT applications run on J2SE 1.5+, but LJRT does
not constitute a JavaTM platform. Consider building a bridge between Java and C or providing direct
C code generation to building blocks brings more time preserving possibilities to Reactive Blocks, but
since the Virtual Machines are becoming more and more popular, and as programmers are more and
more accustomed to write once and run everywhere, this might not be the wise direction for extending
building blocks.

Future Work 61

Jamaica Virtual Machine

The Jamaica VM implements the Realtime Specification for Java (RTSJ) and support multiple plat-
forms.

4 New Emerging Modeling Trends

A recent trend for managing the complexity of cyber-physical or IoT systems is that models should
be able to capture the runtime behavior of complex systems. Doing this, requires the modeling of the
self-adaptive or autonomous properties of software systems [155]. We explored some models and mod-
eling approaches, especially recent emerging modeling trends like Model@Runtime [18]. Compared
with declarative modeling techniques, Models@Runtime is designed to extend the applicability of mod-
els and abstractions to the runtime environment. As its name indicates, Model@Runtime models the
runtime environment, including time, memory, energy, location, platform, etc. We discover that Reactive
Blocks and component-based cyber-physical system development provide the infrastructure for develop-
ing self-adaptive and autonomous systems in a model-driven manner, and thus further provide a way for
modeling runtime behavior. In this paradigm, we introspect about using the Reactive Blocks as an ex-
ecution model which reveals the essential logic of each modules of a distributed syber-physical system,
and an artifect built on top of a runtime plugin system can be the dynamic model of cyber-physical sys-
tems. Existing technologies, such as the OSGi Framework [154] and Kevoree environment [69], already
support the dynamic structure of runtime models. We address the relation between Reactive Blocks and
model@Runtime using the five dimensions for classification of modeling approaches that are discussed
in [18].

Runtime model: What is the runtime model? The underlying execution model of the runtime
model should be Reactive Blocks; that is, customized UML activities and state machines are the
execution model. A dynamic model should be created supporting the existing dynamic component
standard, OSGi. Thus, two levels of modeling hierarchies would be needed for model@Runtime.

Purpose: What is its purpose? The Reactive Blocks approach provides a development and compo-
nent execution model and reusable libraries for developers to maximize software reusability. The
Reactive Blocks approach also provides traceability and animates the execution trace [118].

User: Developers use Reactive Blocks for component-level development in order to guarantee
the correctness of any required component-level property analysis. With this strong analytical
capability, Reactive Blocks can guarantee the correctness, reliability, and system performance of
cyber-physical systems.

Properties: What are its properties? Reactive Blocks provides an execution model for component-
level system behavior and at the same time provides a strong back-end for component functional
correctness, reliability, and extended formalism. It can even provide a system level safety analysis.

Reflection: Is the runtime model used for reflection? Reactive Blocks can provide causal connec-
tion between models and systems.

In existing works, e.g., in [25], Blech defined a framework for the modeling of behavioral specification
for OSGi [154] bundles. The behavioral specification can be used to check compatibility of bundles and
desired interacting protocols in a finite state machine-based manner.

5 Conclusion

The development of internet and networked systems are inevitably towards a more and more au-
tonomous, environment-aware, ubiquitous direction. During this process, great challenges are brought
in front of software engineers and industrial practitioners. Reactive Blocks brought a visual way of pre-
senting the complexity of reactive systems and further extending the complexities along as the system
grows. This thesis takes a glance of those complexities and try to have some tentative attempts. The
future is promising and can be fruitful in various aspects.

Bibliography

[1] Abadi M, Lamport L. An old-fashioned recipe for real time. Real-Time: Theory in Practice: REX Workshop
Mook, The Netherlands, June 3–7, 1991 Proceedings. Springer Berlin Heidelberg. pages 1-27, 1992.

[2] Abadi M, Lamport L. The Existence of Refinement Mappings. Theoretical Computer Science, 82(2):253-
284, May 1991.

[3] Aceto L, Bouyer P, Burguño A, and Larsen, K G. The power of reachability testing for timed automata.
Theoretical Computer Science, 300(1-3):411-475, 2003.

[4] ACM. ACM TURING AWARD GOES TO PIONEER WHO ADVANCED RELIABILITY AND CONSIS-
TENCY OF COMPUTING SYSTEMS. ACM news release addressing the Turing Award for 2013. link:
http://www.acm.org/press-room/news-releases/2014/pdfs/turing-award-lt-13a.pdf

[5] Alur R, Courcoubetis C, and Dill D. Model checking in dense real time. Information and Computation,
1993.

[6] Alur R, Courcoubetis C, and Dill D L. Model-Checking for Real-Time Systems, In 5th Symposium on Logic
in Computer Science (LICS90), 1990, pp. 414–425.

[7] Alur R and Henzinger T. Reactive modules. Formal Methods in System Design, 15(1):7–48, 1999.

[8] Andrade E, Maciel P, Callou G and Nogueira B. A Methodology for Mapping SysML Activity Diagram to
Time Petri Net for Requirement Validation of Embedded Real-Time Systems with Energy Constraints. In
proceeding of 2009 Third International Conference on Digital Society. pages 266-271. 2009.

[9] André A, Liu Y, Sun J, Dong J S. Parameter synthesis for hierarchical concurrent real-time systems. Journal
of Real-Time Systems, pages 620–679. Nov. 01, 2014.

[10] Andrél C, Mallet F, Khan A M, and Simone R D. Modeling spirit ip-xact with uml marte.

[11] Angluin D, Learning regular sets from queries and counterexamples, Information and Computation, vol. 75,
no. 2, pp. 87–106, 1987.

[12] ANSI/ISA 84.00.01-2004, Application of Safety Instrumented Systems for the Process Industries. The
Instrumentation, Systems, and Automation Society, Research Triangle Park, NC (2004).

[13] ANSI/ISA-99-00-01-2007. Security for Industrial Automation and Control Systems. Part 1: Terminology,
Concepts, and Models. The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC
(2007)

[14] Arendt T, Biermann E, Jurack S, Krause C, and Taentzer G. (2010) Henshin: Advanced concepts and tools
for in-place emf model transformations. In Petriu, D., Rouquette, N., and Haugen, y., editors, Model Driven
Engineering Languages and Systems, volume 6394 of Lecture Notes in Computer Science, pages 121–135.
Springer Berlin Heidelberg.

[15] Bause F and Kritzinger F. Stochastic Petri Nets—An Introduction to the Theory, second ed. Vieweg Verlag,
2002.

64 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

[16] Beetz K and Böhm W. Challenges in engineering for software-intensive embedded systems. In Pohl, K.,
Hönninger, H., Achatz, R., and Broy, M., editors, Model-Based Engineering of Embedded Systems, pages
3–14. Springer Berlin Heidelberg (2012).

[17] Behrmann G, Fehnker A, Hune T, Larsen K G, Pettersson P, Romijn J, and Vaandrager F. Minimum-cost
reachability for priced timed automata. In Proc. 4th International Workshop on Hybrid Systems: Computa-
tion and Control (HSCC’01), volume 2034 of Lecture Notes in Computer Science, pages 147–161. Springer,
2001.

[18] Bencomo N, France R, Götz S, Rumpe B. Summary on the 8th International Workshop on Mod-
els@run.time. In: Proceedings of the 8th Workshop on Models @ Run.time. Colocted with MODELS 2013,
Miami, USA, pg 1-8, CEUR Workshop Proceedings, Vol-1079, September, 2013.

[19] Bengtsson J, Larsson F, Pettersson P, Wang Y, Christensen P, Jensen J, Jensen P, Larsen K, and Sorensen T.
UPPAAL: A Tool Suite for Validation and Verification of Real-Time Systems, In Hybrid Systems III, LNCS
1066, pages 232–243, Springer-Verlag, 1996.

[20] Bengtsson J, and Wang Y. Timed automata: Semantics, algorithms and tools. In Desel, J., Reisig, W., and
Rozenberg, G., editors, Lectures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 87–124. Springer Berlin Heidelberg (2004).

[21] Berezin S. Model Checking and Theorem Proving:a Unified Framework, PhD thesis at School of Computer
Science Carnegie Mellon University Pittsburgh, PA 15213.

[22] Berlemann L, and Mangold S. Appendix A: Jemula802. Cognitive Radio and Dynamic Spectrum Access,
John Wiley & Sons, 2009.

[23] Berthomieu B and Diaz M. Modeling and verification of timed dependent systems using timed petri nets.
IEEE Transactions on Software Engineering, 17(3):259–273. 1991.

[24] Biermann E, Ehrig K, Ermel C, Köhler C, and Taentzer G. The EMF Model Transformation Framework, A.
Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 566–567, 2008.

[25] Blech J O. Towards a Framework for Behavioral Specifications of OSGi Components. Formal Engineering
Approaches to Software Components and Architectures 2013 (FESCA’13) EPTCS 108, 2013, pp. 79–93.

[26] Blech J O, Herrmann P. Behavioral Types for Component-based Development of Cyber-Physical Systems.
Workshop on Human-Oriented Formal Methods, 2015.

[27] Blech J O, Schätz B. Towards a Formal Foundation of Behavioral Types for UML State-Machines, ACM
SIGSOFT Software Engineering Notes, Volume 37 Number 4. July 2012.

[28] Functional safety of electrical/electronic/ programmable electronic safety-related systems, 1998. Interna-
tional Electrotechnical Commission.

[29] Blech J O and Schmidt H W. BeSpaceD: Towards a Tool Framework and Methodology for the Specification
and Verification of Spatial Behavior of Distributed Software Component Systems, Journal of CoRR, 2014.

[30] Blech J O, Schmidt H W. Towards modeling and checking the spatial and interaction behavior of widely
distributed systems, Improving In Journal of Improving Systems and Software Engineering Conference,
Melbourne, 2013

[31] Blech JO, Spichkova M, Peake I, Schmidt H W. Cyber-virtual systems: Simulation, validation & visualiza-
tion 2014 International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE),
2014.

[32] Boehm B. A View of 20th and 21st Century Software Engineering. Proceedings of the 28th International
Conference on Software Engineering, (ICSE06), pages 12–29, 2006, Shanghai, China.

[33] Boehm, B. Some Future Trends and Implications for Systems and Software Engineering Processes, Systems
Engineering, vol. 9, No. 1, 2006, pp 1–19.

[34] Bohnenkamp H C, D’Argenio P R, Hermanns H, and Katoen J P. ”MoDeST: A compositional modeling
formalism for hard and softly timed systems,” IEEE Trans. Softw. Eng., vol. 32, no. 10, pp. 812–830, 2006

[35] Bouyer P. Timed Automata-From Theory to Implementation. LSV- CNRS & ENS de Cachan France. 2003.

[36] Bresciani P, and Giorgini P. The tropos analysis process as graph transformation system. In In Proceedings
of the Workshop on Agent-oriented methodologies, at OOPSLA 2002, pages 1–12.

BIBLIOGRAPHY 65

[37] Briand L, Morasca S, and Basili V. ”Property-based software engineering measurement,” in IEEE Trans-
actions on Software Engineering, vol. 22, no. 1, pp. 68-86, Jan 1996.

[38] Broy M, and Stølen K. Specification and Development of Interactive Systems: Focus on Streams, Interfaces,
and Refinement. Springer, 2001.

[39] Bruel, J M. Transforming Models with ATL. Satellite Events at the MoDELS 2005 Conference: MoDELS
2005 International Workshops Doctoral Symposium, Educators Symposium Montego Bay, Jamaica, October
2-7, 2005 Revised Selected Papers, 2006, Springer Berlin Heidelberg.

[40] Bruno B, Samuel B, Cornes C, Judicaël C, and Filliâtre JC, Eduardo G, Hugo H, et al. The Coq Proof
Assistant Reference Manual : Version 6.1. Web link:https://hal.inria.fr/inria-00069968/file/RT-0203.pdf

[41] Bruno B, Sifakis J. Embedded Systems Design: The Artist Roadmap for Research and Development.
Springer-Verlag Berlin Heidelberg, 2005. DOI:10.1007/b106761.

[42] Calcagno R, Rusina F, Deregibus F, Vincentelli A S , and Bonivento A. Application of Wireless Technologies
in Automotive Production Systems. VDI Berichte, 1956:57–58, 2006.

[43] Castejon H, Braek R, and Von Bochmann G. Realizability of collaboration-based service specifications. In
Software Engineering Conference, 2007. APSEC 2007. 14th Asia-Pacific, pages 73 –80.

[44] CESAR (2010). http://www.cesarproject.eu/ Accessed Jan 2011.

[45] Chang X. Network simulations with OPNET. In Proc. 31st Conference on Winter Simulation: Simulation
— a Bridge to the Future (WSC’99), vol. 1, ACM, pages 307–314.

[46] Chikofsky E J, and J H. Cross. Reverse engineering and design recovery - a taxonomy. IEEE Software,
pages 13–17, January 1990.

[47] Chiola G, Franceschinis G, Gaeta R, and Ribaudo M. GreatSPN 1.7: Graphical Editor and Analyzer for
Timed and Stochastic Petri Nets. Performance Evaluation, special issue on Performance Modeling Tools,
24(1 and 2):47–68, November 1995.

[48] Choffrut C and Goldwurm M. Timed automata with periodic clock constraints. Journal of Automata,
Languages and Combinatorics (JALC), 5(4):371–404, 2000.

[49] Clarke E M, Grumberg O, and Peled D. Model checking. MIT Press, 1999.

[50] Corradini A, Montanari U, Rossi F, Ehrig H, Heckel R, Löwe M. Algebraic approaches to graph transfor-
mation part I: Basic concepts and double pushout approach. In G. Rozenberg, editor, Handbook of Graph
Grammars and Computing by Graph transformation, Volume 1: Foundations, pages 163–246. World Scien-
tific, 1997. 447, 448

[51] Corsaro A, Schmidt D C. In Proceedings of 8th Real-Time and Embedded Technology and Applications
Symposium, 2002. pages 90-100.

[52] Dasarathy B. (1985). Timing constraints of real-time systems: Constructs for expressing them, methods of
validating them. Software Engineering, IEEE Transactions on, SE-11(1):80–86.

[53] Daws C, Kwiatkowska M Z, and Norman G. ”Automatic verification of the IEEE 1394 root contention
protocol with KRONOS and PRISM,” STTT, vol. 5, no. 2-3, pp. 221–236, 2004.

[54] Daws C, Olivero A, Tripakis S, and Yovine S. The tool KRONOS. In Proc. Hybrid Systems III: Verification
and Control (1995), volume 1066 of Lecture Notes in Computer Science, pages 208–219. Springer, 1996.

[55] De Alfaro L. Formal verification of probabilistic systems, Ph.D. thesis, Stanford University (1997).

[56] Demichelis F and Zielonka W. Controlled timed automata. In Proc. 9th International Conference on Con-
currency Theory (CONCUR’98), volume 1466 of Lecture Notes in Computer Science, pages 455–469.
Springer, 1998.

[57] De Moura L, Bjørner N. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction and
Analysis of Systems (pp. 337-340). Springer, 2008.

[58] Depke R, Heckel R, and Malte Küster J. (2001). Agent-oriented modeling with graph transformation. In
Ciancarini, P. and Wooldridge, M., editors, Agent-Oriented Software Engineering, volume 1957 of Lecture
Notes in Computer Science, pages 105–119. Springer Berlin Heidelberg.

66 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

[59] D’Silva V, Kroening D, and Weissenbacher G. (2008). A survey of automated techniques for formal software
verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
27(7):1165–1178.

[60] Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 2.2.0 (2006), DOI:
http://www.eclipse.org/emf

[61] Eclipse Foundation. Henshin/ Graphical/ Editor, https://wiki.eclipse.org/Henshin Graphical Editor.

[62] Ehrig H, Heckel R, Korff M, Löwe M, Ribeiro L, Wagner A, and Corradini A. Algebraic approaches to
graph transformation II: Single pushout approach and comparison with double pushout approach. In G.
Rozenberg, editor, The Handbook of Graph Grammars and Computing by Graph Transformations, Volume
1: Foundations, pages 247–312. World Scientific, 1996. 447, 448

[63] Elmansouri R, Hamrouche H, Chaoui A. From UML Activity Diagrams to communication sequential pro-
cesses (CSP) Expressions: A Graph Transformation Approach using Atom3 Tool. International Journal of
Computer Science, 8(2), 2011.

[64] Eshuis R. Symbolic Model Checking of UML Activity Diagrams Journal ACM Transactions on Software
Engineering and Methodology (TOSEM) TOSEM Homepage archive Volume 15 Issue 1, January 2006.
Pages 1-38

[65] Fatima U. A Modular Method for High- Level Service Specification and Component Design Derivation,
Norwegian University of Science and Technology. 2017.

[66] Fatima U, Braek R. ”Modelling multiplicity in choreography models,” 2013 3rd International Workshop on
Model-Driven Requirements Engineering (MoDRE), Rio de Janeiro, 2013, pp. 74-78.

[67] Feng T, Wang L, Zheng W, Kanajan S, and Seshia S. (2007). Automatic model generation for black box
real-time systems. In Design, Automation Test in Europe Conference Exhibition, 2007. DATE ’07, pages
1–6.

[68] Fleurey F, Morin B, and Solberg A. (2011). A model-driven approach to develop adaptive firmwares. In
Proceedings of the 6th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’11, pages 168–177, New York, NY, USA. ACM.

[69] Fouquet F, Morin B, Fleurey F, et al. A dynamic component model for cyber physical systems. In Proceed-
ings of the 15th ACM SIGSOFT symposium on Component Based Software Engineering, pages 135–144.
ACM, 2012.

[70] Fowler M. (1996-11-27). Analysis Patterns: Reusable Object Models. Addison-Wesley. ISBN 0-201-89542-
0.

[71] France R and Bernhard R. Model-driven Development of Complex Software: A Research Roadmap, 2007
Future of Software Engineering. page. 37–54. IEEE Computer Society, Washington, DC, USA.

[72] Gamma E, Helm R, Johnson R and Vlissides J. DesignPatterns: Abstraction and Reuse of Object-Oriented
Design. In:Nierstrasz,O.M. (Editor):7th European Conference on Object-Oriented Programming, Kaiser-
slautern,1993. Springer-Verlag.

[73] Garland S J and Lynch N. Using I/O Automata for Developing Distributed Systems. In Foundations of
component-based systems, Gary T. Leavens and Murali Sitaraman (Eds.). Cambridge University Press, New
York, NY, USA 285-312.

[74] Ge N, Pantel M and Zilio S D. Formal Verification of User-Level Real-Time Property Pat-
terns. Eleventh International Symposium on Theoretical Aspects of Software Engineering. DOI:
10.1109/TASE.2017.8285630

[75] Ghamarian A H, de Mol M J, Rensink A, Zambon E, and Zimakova M V. (2010). Modelling and anal-
ysis using groove. Technical Report TR-CTIT-10-18, Centre for Telematics and Information Technology
University of Twente, Enschede.

[76] Goranko V, Undecidability and Temporal Logic: Some Landmarks from Turing to the Present. Proceedings
- 2012 19th International Symposium on Temporal Representation and Reasoning, TIME 2012.

[77] Grosskopf D and Weske. (Feb 28, 2009). The Process: Business Process Modeling using BPMN. Meghan
Kiffer Press. ISBN 978-0-929652-26-9.

BIBLIOGRAPHY 67

[78] Guellati S, Kitouni I, Saidouni D E. Verification of Durational Action Timed Automata using UPPAAL,
International Journal of Computer Applications, pp. 33-41, LNCS 5596, Published by Foundation of Com-
puter Science, New York, USA,October 2012.

[79] Gunawan, L A, Herrmann P. (2013) Compositional Verification of Application-Level Security Properties.
Lecture Notes in Computer Science. vol. 7781.

[80] Gunawan L A, Herrmann P, Kraemer F A. (2009) Towards the Integration of Security Aspects into Sys-
tem Development Using Collaboration-Oriented Models. Communications in Computer and Information
Science. vol. 58.

[81] Gunawan, L A, Kraemer F A, Herrmann P. A Tool-Supported Method for the Design and Implementation of
Secure Distributed Applications. In Lecture Notes in Computer Science 6542, Springer Berlin Heidelberg.
pages 142-155.

[82] Gunawan, L A, Kraemer F A, Herrmann P. (2012) Behavioral Singletons to Consistently Handle Global
States of Security Patterns. Lecture Notes in Computer Science. vol. 7272.

[83] Hall A. Seven Myths of Formal Methods. IEEE Computer Society Press. IEEE Software, volume 7 pages
11-19. September 1990.

[84] Hansson H, and Jonsson B. A logic for reasoning about time and reliability. Formal Aspects of Computing,
6(4):512–535, 1994.

[85] Hartmanns A and Hermanns H. A Modest Approach to Checking Probabilistic Timed Automata, In Proc.
Sixth International Conference on Quantitative Evaluation of Systems (QEST 2009), 13-16 September 2009,
Budapest, Hungary, pages 187-196. September 2009.

[86] Haugen Ø, Møller-Pedersen B. JavaFrame – framework for java enabled modelling. In: Proceedings of
Ericsson Conference on Software Engineering, (September). 2000.

[87] Henzinger T A. Symbolic model checking for real-time systems. Information and Computation,
111:193–244, 1994.

[88] Henzinger T A, Ho P H, and Howard W T. HYTECH: A model-checker for hybrid systems. Journal on
Software Tools for Technology Transfer (STTT), 1(1–2):110–122, 1997

[89] Henzinger T A, Kopke P W, and Howard W T. The expressive power of clocks. In Proc. 22nd Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’95), volume 944 of Lecture Notes
in Computer Science, pages 417–428. Springer, 1995.

[90] Henzinger T, Nicollin X, Sifakis J, Yovine S. Symbolic model checking for real-time systems, Information
and Computation 111 (2) (1994) 193–244.

[91] Henzinger T A, Raskin J F and Schobbens P Y. The regular realtime languages. In Proc. 25th International
Colloquium on Automata, Languages and Programming (ICALP’98), volume 1443 of Lecture Notes in
Computer Science, pages 580–591. Springer, 1998.

[92] Hermann F, Ehrig H, and Taentzer G. (2008). A typed attributed graph grammar with inheritance for the
abstract syntax of uml class and sequence diagrams. Electron. Notes Theor. Comput. Sci., 211:261–269.

[93] Herrmann C, Krahn H, Rumpe B, Schindler M, Völkel S. Scaling-Up Model-Based-Development for Large
Heterogeneous Systems with Compositional Modeling. In: Proceedings of the 2009 International Confer-
ence on Software Engineeering in Research and Practice, Vol. 1. Ed.: H. Arabnia, H. Reza. July 13-16. Las
Vegas, Nevada, USA.

[94] Herrmann P. Problemnaher korrektheitssichernder Entwurf von Hochleistungsprotokollen. Deutscher Uni-
versitätsverlag, 1998 (in German).

[95] Herrmann P, Krumm H. A Framework for Modeling Transfer Protocols. Computer Networks, 34(2) (2000)
317–337.

[96] IEEE Standard 1685-2014. IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and
Reusing IP within Tool Flows. 2014. doi:10.1109/IEEESTD.2014.6898803. ISBN 978-0-7381-9226-0.

[97] Imran M, Said A M and Hasbullah H. A Survey of Simulators, Emulators and Testbeds for Wireless Sensor
Networks. In International Symposium in Information Technology (ITSim), vol. 2, pages 897–902, 2010.

68 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

[98] Ingeol Chun, Kim J, Kim WT, Lee E. Self-Managed System Development Method for Cyber-Physical Sys-
tems. Control and Automation, and Energy System Engineering. Volume 256 of the series Communications
in Computer and Information Science pp 191-194.

[99] Issaryakul T and Hossain E. Introduction to Network Simulator NS2. 2nd Edition, Springer-Verlag, 2012.

[100] Jagenberg T and Hunt J J. Real-time Blocks, Integrating Reactive Blocks with JamaicaVM. link:
http://www.bitreactive.com/wp-content/uploads/2016/09/RealtimeBlocks-Integrating-Reactive-Blocks-
with-JamaicaVM-2016-09.pdf, pages 94-103, Vienna, Austria, 2007.

[101] Jayaraman, P., Whittle, J., Elkhodary, A., and Gomaa, H. (2007). Model composition in product lines and
feature interaction detection using critical pair analysis. In Engels, G., Opdyke, B., Schmidt, D., and Weil,
F., editors, Model Driven Engineering Languages and Systems, volume 4735 of Lecture Notes in Computer
Science, pages 151–165. Springer Berlin / Heidelberg.

[102] Jensen H E. Model checking probabilistic real time systems. In: Proc. 7th Nordic Workshop on Programming
Theory. pp. 247–261 (1996)

[103] Jensen K. Coloured Petri Nets and the Invariant Method, pp. 327-338. Math. Foundations on Computer
Science, 1981.

[104] Jurdzinski M, Laroussinie F, and Sproston J. (2008). Model checking probabilistic timed automata with one
or two clocks. CoRR, abs/0809.0060.

[105] Kastenberg H. (2008). PhD thesis, University of Twente, Enschede.

[106] Kathayat S B, On the Development of Situated Collaborative Services, PhD thesis, Norwegian University
of Science and Technology (2012).

[107] Kathayat S B and Bræk R. (2010). From flow-global choreography to component types. In System Analysis
and Modeling (SAM), volume 6598 of Lecture Notes in Computer Science. Springer - Verlag.

[108] Kathayat S B, Hien N L and Bræk R. A Model-Driven Framework for Component-Based Development,
SDL 2011: Integrating System and Software Modeling: 15th International SDL Forum Toulouse, France,
July 5-7, 2011.

[109] Kerkouchea E, Chaouib A, Bourennanec E, Labbanic O. A UML and Colored Petri Nets Integrated Model-
ing and Analysis Approach using Graph Transformation. In: Journal of Object Technology, vol. 9, no. 4, pp.
25-43. JOT (2010)

[110] Kraemer F A. Engineering Reactive Systems: A Compositional and Model-Driven Method Based on Col-
laborative Building Blocks. Norwegian University of Science and Technology. August, 2008.

[111]

[112] Kraemer F A, Bræk R, and Herrmann P. Compositional Service Engineering with Arctis. Telektronikk,
105(2009)1.

[113] Kraemer F A, Herrmann P. Transforming Collaborative Service Specifications into Efficiently Executable
State Machines. ECEASST 6, 2007.

Kraemer F A, Herrmann P, Formalizing Collaboration-Oriented Service Specifications using Temporal
Logic. In Proceedings of the Networking and Electronic Commerce Research Conference 2007 (NAEC),
pages 194–220, Riva del Garda, ATSMA, October 2007.

[114] Kraemer F A, Herrmann P. Automated Encapsulation of UML Activities for Incremental Development and
Verification In I nternational Conference on Model Driven Engineering, Languages and Systems. Springer.

[115] Kraemer F A, Herrmann P. Reactive Semantics for Distributed UML Activities. In J. Hatcliff, E. Zucca,
Formal Techniques for Distributed Systems, Proceedings of the Joint 12th IFIP WG 6.1 International Con-
ference (FMOODS 2010) and 30th IFIP WG 6.1 International Conference (FORTE 2010), Amsterdam,
LNCS 6117, pages 17-31, Springer-Verlag, June 2010.

[116] Kraemer F A, Herrmann P, and Braek R. (2006b). Aligning UML 2.0 State Machines and Temporal Logic
for the Efficient Execution of Services. In Meersman, R. and Tari, Z., editors, On the Move to Meaningful
Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, volume 4276 of Lecture Notes in Computer
Science, pages 1613–1632. Springer Berlin Heidelberg.

BIBLIOGRAPHY 69

[117] Kraemer F A, Slåtten V, Herrmann P. Engineering Support for UML Activities by Automated Model-
Checking - An Example. In Proceedings of the 4th International Workshop on Rapid Integration of Software
Engineering Techniques (RISE 2007), Luxemburg, November 2007.

[118] Kraemer F A, Slåtten V, and Herrmann P. Tool support for the rapid composition, analysis and implementa-
tion of reactive services. Journal of Systems and Software, 82(12):2068 – 2080 (2009).

[119] Krause C, Tichy M, and Giese H. (2014). Implementing graph transformations in the bulk synchronous
parallel model. In Gnesi, S. and Rensink, A., editors, Fundamental Approaches to Software Engineering,
volume 8411 of Lecture Notes in Computer Science, pages 325–339. Springer Berlin Heidelberg.

[120] Kwiatkowska M, Norman G, Parker D, PRISM: probabilistic symbolic model-checker, in Lecture Notes
in Computer Science, Computer Performance Evaluation. Heidelberg, Germany:Springer-Verlag, 2002, vol.
2324, pp. 200–204.

[121] Kwiatkowska M, Norman G, Parker D. PRISM 4.0: Verification of Probabilistic Real-time Systems. Proc.
23rd International Conference on Computer Aided Verification (CAV’11), pp. 585–591, 2011.

[122] Kwiatkowska M Z, Norman G, Parker D and Sproston J, ”Performance analysis of probabilistic timed
automata using digital clocks,” Formal Methods in System Design, vol. 29, no. 1, pp. 33–78, 2006.

[123] Kwiatkowska M, Norman G, Sproston J and Wang F. Symbolic Model Checking for Probabilistic Timed
Automata. In Y. Lakhnech and S. Yovine (editors), Proceeding of FORMATS/FTRTFT’04, volume 3253 of
Lecture Notes in Computer Science, pages 293-308, Springer. September 2004.

[124] Kwiatkowska M Z, Norman G, Sproston J, and Wang F, Symbolic Model Checking for Probabilistic Timed
Automata, Information and Computation, vol. 205, no. 7, pp. 1027–1077, 2007.

[125] Lamport L. ”Sometimes” is sometimes ”not ever”: A Tutorial on the Temporal Logic of Programs. In
Proceedings of the Seventh Annual Symposium on Principles of Programming Languages (POPL), pages
174-185, ACM SIGSOFT-SIGPLAN, ACM, January 1980.

[126] Lamport L. (1994). The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872–923.

[127] Lamport L. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.
Addison-Wesley, (2002).

[128] Lara J and Vangheluwe H. (2002). Atom3: A tool for multi-formalism and meta-modelling. In Kutsche,
R.-D. and Weber, H., editors, Fundamental Approaches to Software Engineering, volume 2306 of Lecture
Notes in Computer Science, pages 174–188. Springer Berlin / Heidelberg.

[129] Laroussinie F, Larsen K G. CMC: A Tool for Compositional Model-Checking of Real-Time Systems.
Formal Description Techniques and Protocol Specification, Testing and Verification: FORTE XI/PSTV
XVIII’98 IFIP TC6 WG6.1 Joint International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE XI) and Protocol Specification, Testing and Verification
(PSTV XVIII) 3–6 November 1998, Paris, France. Springer US, 1998. In Meersmann, R. and Tari, Z.,
editors, Proceedings of the 8th International Symposium on Distributed Objects and Applications (DOA),
2006, Montpellier, France, volume 4276 of Lecture Notes in Computer Science, pages 1613–1632. Springer–
Verlag Heidelberg.

[130] Laroussinie F, Markey N, and Schnoebelen Ph. Model Checking Timed Automata with One or Two Clocks.
In Concurrency Theory (CONCUR), LNCS 3170, pages 387–401, Springer-Verlag, 2004.

[131] Larsen K G, Pettersson P and Wang Y. Compositional and Symbolic Model-Checking of Real-Time systems.
In Proc. of the 16th IEEE Real-Time Systems Symposium, pages 76-87, December 1995.

[132] Larsen K G, Pettersson P and Wang Yi. Model-Checking for Real-Time Systems. In Proceedings of the
10th International Symposium on Fundamentals of Computation Theory (FCT ’95), Horst Reichel (Ed.).
Springer-Verlag, London, UK, page, 62-88.

[133] Le Berre D and Parrain A. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and
Computation, Volume 7 (2010), system description, pages 59-64.

[134] Lengyel L, Levendovszky T, Mezei G and Charaf H. Model transformation with a visual control flow
language. International Journal of Computer Science (IJCS), 1(1):45–53.

[135] Lichtenstein O, Pnueli A. Checking that finite-state concurrent programs satisfy their linear specification. In
Proceedings of the 12th Annual Symposium on Principles of Programming Languages, pages 97-107. ACM
Press, 1985.

70 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

[136] López-Grao J P, Merseguer J, and Campos J. (2004). From uml activity diagrams to stochastic petri nets:
Application to software performance engineering. In Proceedings of the 4th International Workshop on
Software and Performance, WOSP ’04, pages 25–36, New York, NY, USA. ACM.

[137] Lu F, Kwiatkowska M and Parker D. Compositional Verification of Probabilistic Systems using Learning.
In Proc. 7th International Conference on Quantitative Evaluation of Systems (QEST’10), pages 133-142,
IEEE CS Press. September 2010.

[138] Malewicz G, Austern M H, Bik A J, Dehnert J C, Horn I, Leiser N, Czajkowski G. Pregel: a system for large-
scale graph processing. In: Proc. SIGMOD 2010, pp. 135–146. ACM (2010), doi:10.1145/1807167.1807184

[139] Marsan M. A. 1990. Stochastic Petri nets: an elementary introduction. In Advances in Petri nets 1989,
Grzegorz Rozenberg (Ed.). Lecture Notes In Computer Science, Vol. 424. Springer-Verlag New York, Inc.,
New York, NY, USA 1-29.

[140] Martinez H N C. Collaborations in service engineering: modeling, analysis and execution. Norwegian
University of Science and Technology. 2008.

[141] Merlin P M. A Methodology for the Design and Implementation of Communication Protocols. IEEE
Transactions on Communications, 24(6):614-621, 1976.

[142] Merlin P M. Specification and Validation of Protocols. IEEE Transactions on Communications,
27(11):1671-1680, 1979.

[143] Mohagheghi P, Fernandez M, Martell J, Fritzsche M, Giliani W. MDE adoption in industry: Challenges
and success criteria. In: ChaMDE 2008 Workshop Proceedings: International Workshop on Challenges in
Model-Driven Software Engineering. (2008)

[144] Moser L E, Ramakrishna Y, Kutty G, Melliar-Smit P M and Dillon L K, A graphical environment for
the design of concurrent real-time systems, ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 6, no. 1, pp. 31 79, 1997.

[145] Murphey Y L, Masrur M A, Chen ZH and Zhang B. Model-based fault diagnosis in electric drives using
machine learning, In Journal of IEEE/ASME Transactions on Mechatronics, volume 11, pages 290-303,
June, 2006.

[146] Nickel, J (2016). Mastering Identity and Access Management with Microsoft Azure. p. 84. ISBN
9781785887888. Retrieved July 20, 2018.

[147] Nipkow T, Paulso L C and Wenzel M. Isabelle/HOL — A Proof Assistant for Higher-Order Logic. LNCS
2283, Springer, 2002

[148] Norris, J R. (1998). Markov chains. Cambridge University Press. Retrieved 2016-03-04.

[149] Nudd G R, Kerbyson D J, Papaefstathiou E, Perry S C, Harper J S, Wilcox D V. PACE—A toolset for the
performance prediction of parallel and distributed systems. The International Journal of High Performance
Computing Applications, Volume 14, No. 3, Fall 2000, pp. 228-251

[150] Ölveczky P C, Meseguer J. Semantics and pragmatics of Real-Time Maude. Higher-Order and Symbolic
Computation, 20(1-2):161–196 (2007).

[151] OMG. Unified Modeling Language: Superstructure, Version 2.3, 2010

[152] OMG. OMG Marte Web site, http://www.omgmarte.org/.

[153] OMG Unified Modeling Language Revision Task Force. “OMG Unified Modeling Language Specification”.
Version 1.5, March 2003. link:http://www.omg.org/technology/documents/formal/uml.htm

[154] OSGi Alliance. OSGi Service Platform Core Specification, Release 5.0, June 2012.
http://www.osgi.org/Specifications/

[155] Padilla, Javier F, Frederic W, and Johann B. Towards a Model@Runtime Middleware for Cyber Physical
Systems. In Proceedings of the 9th Workshop on Middleware for Next Generation Internet Computing,
ACM, 2014. pages 6:1–6:6.

[156] Pastor O, España S, Panach J I, Aquino N, España S, Panach J Ignacio P, Aquino N. Model-Driven Devel-
opment. Journal of Informatik-Spektrum Volume 31, Issue 5 , pp 394-407. 2008-10.

BIBLIOGRAPHY 71

[157] Perera C, Liu C H, Jayawardena S and Chen M. A Survey on Internet of Things From Industrial Mar-
ket Perspective. In the Journal of IEEE Access 2014, volume 2, pages 1660-1679. DOI: 10.1109/AC-
CESS.2015.2389854

[158] Pinet F, Kang M A and Vigier F. (2005). Spatial constraint modelling with a gis extension of uml and
ocl: Application to agricultural information systems. In Wiil, U., editor, Metainformatics, volume 3511 of
Lecture Notes in Computer Science, pages 160–178. Springer Berlin Heidelberg.

[159] Pnueli A. The Temporal Logic of Programs. In Proceedings of the 18th IEEE Symposium on Foundations
of Computer Science, pages 46-57, 1977.

[160] Quaas K. MTL-Model Checking of One-Clock Parametric Timed Automata is Undecidable. Proceedings
1st International Workshop on Synthesis of Continuous Parameters, SynCoP 2014, Grenoble, France, 6th
April 2014.

[161] Radhakisan B and Gill H, “Cyber-physical systems”, The Impact of Control Technology, IEEE, pp. 161-166,
2011.

[162] Rafe V and Rahmani A. Towards automated software model checking using graph transformation systems
and bogor. Journal of Zhejiang University - Science A, 10:1093–1105. 10.1631/jzus.A0820415 (2009).

[163] Rajeev A, Courcoubetis C, Dill D, Halbwachs N, Howard W T. An implementation of three algorithms
for timing verification based on automata emptiness. In Proc. 13th IEEE Real-Time Systems Symposium
(RTSS’92), pages 157–166. IEEE Computer Society Press, 1992.

[164] Rajeev A, Courcoubetis C, Henzinger T A. The observational power of clocks. In Proc. 5th International
Conference on Concurrency Theory (CONCUR’94), volume 836 of Lecture Notes in Computer Science,
pages 162–177. Springer, 1994.

[165] Rajeev A, Fix L and Henzinger T A. A determinizable class of timed automata. In Proc. 6th International
Conference on Computer Aided Verification (CAV’94), volume 818 of Lecture Notes in Computer Science,
pages 1–13. Springer, 1994.

[166] Rana, R., Staron, M., Hansson, J., Nilsson, M., Meding, W. A framework for adoption of machine learning
in industry for software defect prediction. In: 9th International Conference on Software Engineering and
Applications, pp. 383–392. IEEE (2014)

[167] Reed G M and Roscoe A W. A timed model for communicating sequential processes. Theoretical Computer
Science, 58(1-3):249–261. 1988.

[168] Sabaliauskaite G and Mathur A P. Aligning Cyber-Physical System Safety and Security, In Complex Sys-
tems Design & Management Asia: Designing Smart Cities: Proceedings of the First Asia - Pacific Confer-
ence on Complex Systems Design & Management, CSD& M Asia 2014. Springer International Publishing,
2015. pages 41-53.

[169] Schmittner C, Ma ZD and Gruber T. Combining Safety and Security Engineering for Trustworthy Cyber-
Physical Systems. the European Research Consortium for Informatics and Mathematics (ERCIM) news
online edition. link: http://ercim-news.ercim.eu/en102/special/combining-safety-and-security-engineering-
for-trustworthy-cyber-physical-systems

[170] Selic B. (1998). Using UML for modeling complex real-time systems. In Mueller, F. and Bestavros, A., ed-
itors, Languages, Compilers, and Tools for Embedded Systems, volume 1474 of Lecture Notes in Computer
Science, pages 250–260. Springer Berlin Heidelberg.

[171] Sendall S and Kozaczynski W. Model Transformation: The Heart and Soul of Model-Driven Software
Development. IEEE Softw. 20, 5 (September 2003), 42-45.

[172] SOA for the Business Developer: Concepts, BPEL, and SCA. ISBN 978-1-58347-065-7

[173] Spichkova M. Stream Processing Components: Isabelle/HOL Formalisation and Case Studies. In Archive
of Formal Proofs, ISSN 2150-914x, 2013.

[174] Spichkova M, Blech J O, Herrmann P and Schmidt H. 11th Workshop on Model Driven Engineering,
Verification and Validation (MoDeVVa 2014 @ MODELS). 2014.

[175] Shu G and Hsu Y and Lee D, Realtime Garbage Collection in the JamaicaVM 3.0, in Proceedings of
Formal Techniques for Networked and Distributed Systems – FORTE 2008, 28th IFIP WG 6.1 International
Conference Tokyo, Japan, June 10-13, 2008.

72 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

[176] Siebert F. Realtime Garbage Collection in the JamaicaVM 3.0, in Proceedings of the 5th International
Workshop on Java Technologies for Real-time and Embedded Systems (JTRES ’07), pages 94-103, Vienna,
Austria, 2007.

[177] Slåtten V. Model Checking Collaborative Service Specifications in TLA with TLC. Project Thesis (2007)
Norwegian University of Science and Technology

[178] Slåtten V. Automatic Detection and Correction of Flaws in Service Specifications. Master’s thesis, Norwe-
gian University of Science and Technology, June 2008.

[179] Slåtten V. Towards Model-Driven Engineering of Reliable Systems - Developing Fault-Tolerant Systems
using Scalable Verification. PhD thesis, Norwegian University of Science and Technology (2014).

[180] Slåtten V, Herrmann P. (2011). Contracts for multi-instance uml activities. In Bruni, R. and Dingel, J.,
editors, Formal Techniques for Distributed Systems, volume 6722 of Lecture Notes in Computer Science,
pages 304–318. Springer Berlin Heidelberg.

[181] Slåtten V, Herrmann P, Kraemer F A. Chapter 4 — Model-Driven Engineering of Reliable Fault-Tolerant
Systems—A State-of-the-Art Survey. In Advances in Computers, Elsevier. Volume 91, pages 119-205.

[182] Slåtten V, Kraemer F A, Herrmann P. Towards Automatic Generation of Formal Specifications to Validate
and Verify Reliable Distributed Systems: A Method Exemplified by an Industrial Case Study. In Proceedings
of the 10th ACM International Conference on Generative Programming and Component Engineering, ACM.
pages 147–156.

[183] Song S, Zhang J, Liu Y, Auguston M, Sun J, Dong J and Chen T.

Formalizing and verifying stochastic system architectures using monterey phoenix. Software and Systems
Modeling, pages 1–19 (2014).

[184] SSO and LDAP Authentication. Authenticationworld.com. Archived from the original on 2014-05-23. Re-
trieved 2014-05-23.

[185] Straeten R V D, Mens T, Baelen S V. Challenges in Model-Driven Software Engineering. In Models in
Software Engineering, vol. 5421, Lecture Notes in Computer Science, pages 35–47. 2009.

[186] Støyle A K. Service Engineering Environment for AMIGOS Master’s thesis, Norwegian University of
Science and Technology, 2004.

[187] Sun J, Liu Y, Dong J S, Liu Y, Shi L and André É. Network simulations with OPNET. In Journal of ACM
Transition. Software. Engineering. Methodology, vol. 22, ACM, pages 3:1–3:29, 2013.

[188] Szanto Z, Marton L, Haller P and GyorgyS. Performance Analysis of WLAN based Mobile Robot Teleop-
eration. In IEEE International Conference on Intelligent Computer Communication and Processing (ICCP),
pages 299–305, IEEE Computer, 2013.

[189] Taentzer, G. AGG: A graph transformation environment for modeling and validation of software. In Pfaltz,
J L, Nagl M and Böhlen, B., editors, Applications of Graph Transformations with Industrial Relevance,
volume 3062 of Lecture Notes in Computer Science, pages 446–453. Springer Berlin / Heidelberg (2004).

[190] Thomas W, ”Automata on infinite objects”. In Van Leeuwen. Handbook of Theoretical Computer Science.
Elsevier. pp. 133-164.

[191] Trivedi K S, Haverkort B R, Rindos A, Mainkar V. Techniques and tools for reliability and performance eval-
uation: Problems and perspectives. Proceeding of 7th International Conference on Computer Performance
Evaluation Modelling Techniques and Tools (TOOLS), Vienna, Austria, May 3–6, 1994

[192] Universität Hamburg. Petri Nets Tools Database Quick Overview, https://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/quick.html.

[193] UP4ALL. UPPAAL language reference, Web link:http://www.uppaal.com/index.php?sida=217&rubrik=101

[194] Varró D, Asztalos M, Bisztray D, Boronat A, Dang D, GeißR, Greenyer J, Pieter V, Kniemeyer O, Narayanan
A, Rencis E, Weinell E. Transformation of UML Models to CSP: A Case Study for Graph Transformation
Tools. in: Applications of Graph Transformations with Industrial Relevance, pp. 540–565. Springer-Verlag
(2011).

BIBLIOGRAPHY 73

[195] Wang, F. Formal Verification of Timed Systems: A Survey and Perspective. Proceedings of the IEEE, Vol.
92, No. 8, August 2004. pp. 1283-1305.

[196] Wang J. January 1, 2012. Handbook of Finite State Based Models and Applications. published by Chapman
& Hall/CRC.

[197] Wang, S Y and Lin C C. Modeling and Verifying Hierarchical Real-time Systems Using Stateful Timed
CSP In 68th IEEE Vehicular Technology Conference, pages 1–2, IEEE Computer, 2008.

[198] Wang Y. CCS + time = an interleaving model for real time systems. In Proceedings, Eighteenth International
Colloquium on Automata, Languages and Programming, volume 510 of Lecture Notes in Computer Science.,
Springer-Verlag, 1991.

[199] Wilke T. Specifying timed state sequences in powerful decidable logics and timed automata. In Proc. 3rd
International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’94),
volume 863 of Lecture Notes in Computer Science, pages 694–715. Springer, 1994.

[200] Yashkov, S. F.. Processor-sharing queues: Some progress in analysis. Queueing Systems, 2:1-17, 1987.

[201] Yu Y, Manolios P, Lamport L. Model Checking TLA+ Specifications. In Pierre, L., Kropf, T., eds.: Proc.
10th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification
Methods (CHARME’99). LNCS 1703, Springer-Verlag (1999) 54–66

[202] Zhang, D., Tsai, J.J. Machine Learning and Software Engineering. Software Quality Journal 11, 87–119
(2003). https://doi.org/10.1023/A:1023760326768

[203] Zhang J, Lin Y and Gray J. Generic and domain-specific model refactoring using a model transformation
engine. In Volume II of Research and Practice in Software Engineering, pages 199–218. Springer (2005).

[204] Zhao J and Dang H. On checking parallel real-time systems for linear duration properties. In Proceedings
of Formal Techniques in Real-Time and Fault-Tolerant Systems: 5th International Symposium, FTRTFT’98
Lyngby, Denmark, pages 241–250, September 14–18, 1998 .

[205] Zhou C, Hoare C A R and Ravn A P. A Calculus of Durations, Information Processing Letters,
40(5):269–276, December 1991.

[206] Zhou C C. Duration calculus, a logical approach to real-time systems. Lecture Notes in Computer Science,
1548:1–7, 1999.

[207] Zurowska K. Domain specific analysis of statemachine models of reactive systems. In Demos/Posters/Stu-
dentResearch@MoDELS’13, pages 81–86 (2013).

II

INCLUDED PAPERS

PAPER A

Towards Choreography Model Transformation via Graph Transforma-
tion

Fenglin Han, Surya Bahadur Kathayat, Hien Le, Rolv Braek and Peter Herrmann

Proceedings of the 2nd IEEE International Conference on Software Engineering and Service Sciences
(ICSESS 2011). Beijing, 15-17 July 2011.

TOWARDS CHOREOGRAPHY MODEL TRANS-
FORMATION VIA GRAPH TRANSFORMATION

Fenglin Han
Norwegian University of Science and Technology,

Trondheim, Norway

sih@item.ntnu.no

Surya Bahadur Kathayat
Norwegian University of Science and Technology,

Trondheim, Norway

surya@item.ntnu.no

Hien Le
Norwegian University of Science and Technology,

Trondheim, Norway

hiennam@item.ntnu.no

Rolv Braek
Norwegian University of Science and Technology,

Trondheim, Norway

rolv.braek@item.ntnu.no

Peter Herrmann
Norwegian University of Science and Technology,

Trondheim, Norway

herrmann@item.ntnu.no

Abstract We present a Model-Driven method to develop collaborative systems. In our method, we use UML collabora-
tions to capture the requirements and architecture of such a system. The system behavior is specified by two
choreography models: an abstract flow-global and a more detailed flow-localized choreography. These choreog-
raphy models are both described by UML activity diagrams. A graph-based transformation approach carrying
out the transformation from the flow-global to the flow-local choreography is the core contribution of this paper.
Our approach is illustrated using a case study of the European Rail Traffic Management System (ERTMS).

Keywords: Choreography Model, Model Transformation, Graph Transformation, Collaborative Service.

1 INTRODUCTION

Model-Driven Development (MDD) is an approach supporting the software development process by
creating models on different levels of abstraction and platform independence. First, one develops more

80 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

flow-global chor. model

host-graph (pre graph) Graph transformation
engine

transformed graph (post-graph)

Arctis
Model

111fdfdsffsdfsfsfdsafs
afsafafafafafafafafafaf
afafafafafafafafafafaf

dfdsfsf
fsdfsdfsfsfsfsfsfsfsfsfs

fsfsfsfsf

fsfsdfsfsfsfsfsfsfsfsfsfs
fsf

fsfsdfsffsdfdsfsfsfsdfsf
afafafafafas

flow-localized chor. model

rules

1

2

3

4

5
localization

policies

Figure A1. Overall Approach.

(a) Train control scenario

Train Control Service

train

train
rbc

rbc

train control serviceact

«elementary»
ma:MoveAuthority

«elementary»
h:Handover
Supervision

«elementary»
pr:PositionReporttrain

rbc

(b) Structural model

:Train :RBC

Figure A2. Structure Model of the Train Control System.

abstract models specifying the pure functionality of a particular solution or an application domain but
hiding aspects of the later realization. These models can be transformed into models incorporating more
implementation details. Based on the refined models, application code can be generated ranging from
system skeletons to complete, deployable products for different platforms. MDD is considered effective
when the transformation from the abstract to the detailed models can be done with a high degree of
automation. This makes it easy to keep consistency between the two model levels. In addition, the
developer can utilize the comprehensibility and the generality of the platform-independent more abstract
model as well as the fine-grained semantics and the mature structuring mechanisms of the more detailed
one.

In this paper we discuss a model-driven development method for distributed, reactive and collabora-
tive services. A collaborative service is defined as a partial system functionality in which two or more
components collaborate to achieve a common goal [4, 11]. UML 2.x collaborations are used to describe
the structure of participants cooperating with each other, while UML activities specify the corresponding
behavior. According to the objectives of MDD, we consider the behavior models (called choreography
models in the following) at two levels of detail and use graph-based model transformation to derive
detailed implementable models from more global abstract ones.

Figure A1 delineates the overall MDD approach:

A flow-global choreography model (label 1 in Figure A1) seeks to specify the desired global be-
havior in terms as close to the problem domain as possible. It is intended to be understandable
by end-users and experts of a specific domain. Thus, the flow-global choreography focuses on
the global interaction while the details and resolutions of coordination problems that may occur at
the level of a distributed realization are not modeled. We express flow-global choreographies by a
special kind of UML 2.x activities [7].

A flow-localized choreography (label 5 in Figure A1) is used to define global behavior in sufficient
detail that coordination problems arising in a distributed system can be resolved. Further, the level
of detail shall allow extensive analysis, synthesis of the behavior in the distributed system parts,
and automatic generation of the application code. In particular, we apply the system engineering

PAPER A: Choreography Model Transformation 81

RBC[1]

TrainRBC
«elementary»

pr.PositionReport

RBC Train«elementary»
ma.MoveAuthority

«local»
s.Supervision

Logic

act

[n]

RBC Train
«elementary»
h.Handover
Supervision

[y]

hov?

train control service

(a) Flow-global choreography model

Train [*]

train control service

h: Handover Supervision

ma: Move Authority

pr: Position Report

end

start

start
end

s.Supervision Logic

start

end

start

end

ma

(b) Flow-localized choreography model

[y] [n]

M1

F1
D1

D1

M1

af

init

ff

init

af

Figure A3. Flow-Global model and Flow-Localized model (derived as Arctis model).

approach SPACE [17] and the corresponding tool-set Arctis [2] that also uses UML 2.x activities
to model behavior. The models created in Arctis can fully automatically transformed to Java code
running on several platforms [11].

Flow-global choreographies can be transformed to flow-localized choreographies using graph
transformation techniques. The localization policies are implemented by applying graph trans-
formation rules (label 3 in Figure A1) to a host-graph representing a flow-global choreography
model (label 2) to derive a post-graph of a flow-localized choreography specification (label 4).

The focus of this paper is on the model transformation using a graph transformation engine. This
provides for the following advantages: First, the flow-global models, which can be re-used in different
system scenarios, are stored in domain-specific repositories [7]. In a similar way, we can predefine graph
transformation rules for certain refinements which are stored in repositories as well and can be used
for different kinds of transformations. Second, it is not necessary that the full flow-global model must
already be available in order to be transformed to a flow-localized model. This is due to the possibility
to transform partial flow-global choreography models.

We introduce the structure and choreography models by a train control system scenario in Section 2.
A survey of the task for the model transformation is provided in Section 3. Model transformation using
the graph transformation approach is presented in Section 4. Section 5 discusses the related work and is
followed by concluding remarks in Section 5.

2 ARCHITECTURE AND CHOREOGRAPHY

In this section, we discuss the related models contributing to our MDD approach:

The collaboration model that defines service participants as roles and sub-services as collaboration
uses.

The flow-global choreography model specifying the high-level global behavior including the or-
dering and causality among sub-services and service roles in a composite service.

The flow-localized choreography model defining detailed behavior so that application code can be
generated.

We present a summary of these models using an example of the European Rail Traffic Management
System (ERTMS).

82 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

2.1 Collaboration

UML collaborations are used to specify the structure (i.e., roles and interactions) of distributed collab-
orative entities and collaboration uses representing sub-collaborations. Figure A2 (a) shows an example
of a train control service which is described as following: A train must always be supervised by a radio
block center (RBC). The RBC’s responsibility is to monitor and control all train movements in a partic-
ular region. Guided by its current RBC, the train keeps on moving and sends its position reports to the
RBC and the RBC validates the received position information of the train. Moreover, the RBC issues
successive movement authorities (MA) to the train, which specifies a safe distance the train may travel.
In addition, the train may also travel across several regions covered by different RBCs. This means,
the supervision of the train movement can be handled by more than one RBC. When the train crosses a
border between two regions, the RBC of the current region will hand over the control to another one by
executing a handover process. The train control service is modelled as a UML collaboration as shown in
Figure A2 (b).

The TrainControlService system has two main participants,Train and RBC, represented as roles. In
Figure A2 (b), the Train and the RBC participate in three collaborative sub-services: PositionReport,
MoveAuthority, and HandoverSupervision which perform the following activities:

1 PositionReport reports the current train position to the RBC.

2 MoveAuthority sends the safe travel distance from the RBC to the train.

3 HandoverSupervision transfers the train control supervision to the new RBC if the train travels to
a different region.

2.2 Flow-global choreography models

The flow-global choreography shown in Figure A3 (a) is defined by UML activities connecting actions
(in particular, call behavior actions, i.e., actions including own behavioral models) by flows that are
not assigned to any particular role in the collaboration. Actions may either specify the behavior of a
collaboration or a local activity. Collaborative actions contain references to their participants in the form
of roles. Further, we indicate initiating and terminating roles by dots respective squares. Note that the
pins are not localized to the roles in this model type.

Flows may contain intermediate control nodes (e.g. start, stop, choice, merge, fork and join) defining
the ordering and causality among the actions. Like the pins, the control nodes are not assigned to any
particular component, too.

Thus, the flow-global choreography model abstracts from several design issues that need to be ad-
dressed when transforming it to a flow-localized choreography model. We believe that this is the right
level of abstraction to discuss the intended behavior with end-users and other stake holders since global
choreography models specify the global action order without describing detailed interactions as in inter-
action diagrams. They hide details needed in a distributed realization such as the location of decisions
and other control nodes, and coordination details ensuring that the global ordering is satisfied. This pure
focus on the functional behavior of a system allows to gain a better understanding of the system behav-
ior and to find potential development errors early. Further, the constriction on functionality reduces the
state space produced by model checkers verifying certain system properties which eases the use of these
automatic analysis tools also for more complex systems. All-in-all, a flow-global choreography model is
a useful first step in the formalization of the requirements of a system.

Figure A3 (a) depicts the flow-global choreography behavior of the train control service. A train on
its journey reports its current position in intervals to the RBC which is responsible for the region the
train operates in. This operation is specified by the collaboration PositionReport. Thereafter, the RBC
validates the received position information of the train via the local activity SupervisionLogic. If the
information about the location of the train is correct, the RBC issues successive movement authorities
(MA) to the train which is modeled by the collaboration MoveAuthority. Finally, if the train crosses the
border between two regions, the collaboration HandoverSupervision is invoked.

PAPER A: Choreography Model Transformation 83

2.3 Flow-localized choreography models

As already mentioned, the flow-localized choreographies are modeled in Arctis [2], our tool-set to
develop component based collaborative systems which specifies behavior using UML activities as well.
Also here, actions representing the behavior of a collaboration or a local activity are connected by flows
and intermediate control nodes. In contrast to the activities introduced above, however, all nodes and
pins are each localized to a role specifying a participating distributed entity. The roles are represented in
an activity by partitions. Flows that cross partition boundaries thereby imply communication and transfer
delays.

This location information allows to analyze the flow-localized choreography for realization problems
like for instance mixed initiatives in which two different physical components concurrently initiate co-
operations which due to the transmission lag are not properly detected and may lead to unpredicted
erroneous behavior.

In Arctis, the activities are provided with a formal semantics [20] which allows for the application
of model checkers to detect design errors [11]. Further, application code for different platforms such as
Standard Java, Android and Sun Spots can be automatically generated from the Arctis building blocks.
In the train control scenario, this is the code for the train and RBC components.

A screen shot of the Arctis model of the train control system is shown in Figure A3 (b). The collab-
orative and the local actions are represented as Arctis building blocks (the dark gray respectively blue
boxes with pins). Control nodes are localized to components represented by the Activity partitions. The
extra gray border of the collaborative actions (pr, ma and h) at the RBC part denotes that the service roles
bond to this part are multiple-session. This specifies that an RBC may cooperate with several trains at
the same time.

3 FLOW LOCALIZATION

Given the two choreography models, we outline the overall transformation process. First, we define
the causal relationship between sequential collaborative activities. Second, we introduce a localization
policy based on the causal properties.

3.1 Causality relationship

In order to localize the flows and control nodes between actions in a flow-global choreography, we
first need to classify the causality among actions that follows directly from the flow-global choreography.
As described in [4, 7], the following causal relationships between any two sequential connected actions
C1 and C2 can be:

Strong flows: The terminating role of C1 and the initiating role of C2 belong to the same system
component. In this case, the flow between C1 and C2 can be executed locally by this component.

Non-causal flows: The initiating role of C2 belongs to a component that does not participate in C1.
This means that local ordering between actions of C1 and C2 cannot be achieved by a local flow.
Here, we need communication between different components.

Weak flows: The initiating role of C2 belongs to the same component as a non-terminating role in
C1. Here, the non-terminating role of C1 and the initiating role of C2 can be ordered by a local
flow, but one has to be aware that other roles in C1 may not be finished when C2 starts, and both
collaborations run in parallel for a while.

3.2 Localization policy

In the simplest case where there are no intermediate control nodes between actions (i.e., direct-flows),
a global flow from C1 to C2 is localized as follows:

Localize strong flows to the role that initiates C2 and terminates C1.

84 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Chor

Collab Action
Flow

Connector
Local Act.

Pin Pseudo StateControl NodeRole

Msg Op
sMsg

rMsg

Join ForkDecision Merge Act FinalFlow FinalInit Node

Action

fSrc

fTar

own own

own own

own

Figure A4. Meta-model for the choreography graph models.

Non-causal flows can only be maintained using send and receive events realizing communication
between the role terminating C1 and the one initiating C2. In Arctis, this is modeled by flows
passing partition borders. We call this procedure enforced strong sequencing [7].

In the case of weak flows we have two alternatives. We can either use enforced strong sequencing
as well or add an extra streaming pin to C1 which, however, changes the internal behavior of this
action slightly. For this modification we prepared a set of transformation rules for weaving extra
behavior into building blocks without effecting the original functional design. This will not be
addressed in this paper due to the space limitation.

If there are one or more intermediate control nodes between actions C1 and C2, one must consider all
possible flow-paths passing through them. This means that each control node can be part of several paths.
We use the following notation to represent the paths and path property:

Path ::= (sourceNode)
causality→ (targetNode)

where sourceNode and targetNode are either pseudo nodes (such as an initial node or an activity final
node which are represented by ?) or collaboration role identifiers (represented by collaborationId.roleId).
The arrows show the flow direction between those collaborative activities and contains a mark for the
causality relation on top. In the flow-global choreography model in Figure A3 (a), there are in total eight
paths:

P0 : ?
na→ pr.Train;

P1 : pr.RBC
strong→ s.RBC;

P2 : s.RBC
strong→ ma.RBC;

P3 : ma.Train
strong→ pr.Train;

P4 : ma.Train
na→ ?;

P5 : ma.Train
weak→ h.RBC;

P6 : h.Train
strong→ pr.Train;

P7 : s.RBC
na→ ?;

The abbreviation na means that there is no causality relationship available since the start or end of the
flow is a pseudo node. P0, P4 and P7 are such dangling paths in which the pseudo state and the control
nodes along the path will be localized to the activity linked to the path. For instance, since the initial
node occurs only in P0, it will be localized to the role Train. In order to localize the remaining control

PAPER A: Choreography Model Transformation 85

nodes M1, D1 and F1 and paths P1, P2, P3, P5 and P6, we need to consider the path properties that each
control node is involved in:

M1: P6(strong), P3(strong);

F1: P3(strong), P5(weak);

D1: P5(weak).

M1 fulfills strong causality for both involved paths and is therefore localized to Train. In contrast, F1

and D1 contain weak causal paths such that we need to find suitable breaking points along the involved
paths, i.e., P5 containing both F1 and D1. To achieve that, we assign a breaking priority level to all the
nodes on the path. The priority level is defined by the combination of causality properties in Table A1.
Here, the columns and rows represent the causality property of a path through a node. Altogether, we
define seven breaking priority levels of which 1 refers to the lowest and 7 to the highest priority.

Table A1. Localization priority order and policy matrix for control node.

property strong weak non-causal all
strong 1 2 3 -
weak - 5 6 -

non-causal - - 7 -
all - - - 4

In the TrainControlSystem specification,D1 is involved in P5(weak) and has priority level 5 according
to Table A1. Similarly, F1 is involved in P3(strong) and P5(weak) and has priority level 2. According
to our policy, D1 is selected as breaking node as it has the higher breaking priority level. In this case D1

is broken at the incoming edge, i.e., if we decide to resolve the weak flow by enforced strong sequencing,
the communication is provided at the edge between F1 and D1. However, in the succeeding refinement
steps, we decide to add a streaming pin toma.MovementAut hority on the side of the RBC from which
the edge to D1 begins. Then, the fork F1 has only one outgoing edge remaining and will therefore be
removed. After finishing the various transformation steps, the constituted flow-localized graph model is
transferred to the Arctis specification shown in Figure A3 (b).

4 Graph-based Model Transformation

This section discusses in which way graph transformation techniques can be used for model trans-
formation from the flow-global choreography model to the flow-localized model. In the following, we
describe the definition of the graph models, the graph transformation rules and implementation aspects.

4.1 Graph model definition

The meta-model for the choreography graph model (also called type graph in the following) is shown
in Figure A4 in terms of UML class diagrams. A choreography type graph depicted by the class Chor
has three main entities: Actions, Connectors, and Flows. An action can be either a local activity per-
formed by only one specific role or a collaborative activity carried out by the cooperation of at least two
roles. Connectors represent the mechanism to connect Actions, i.e., how collaborations connect to other
collaborations or local activities. There are three types of connectors: Pin, Control Node and Pseudo
State. Pins are connection points which are associated with either Roles (in the flow-localized form) or
Actions (in the flow-global form). Control Nodes include join, fork, merge and decision nodes. Pseudo
Nodes include initial nodes, activity final nodes and flow final nodes. Connectors can also be message
operators (MSg Op), i.e., send message actions (sMsg) or receive message actions (rMsg).

Moreover, there are three types of graph edges: own specifies that one node is owned by another which
is described by aggregations in the meta-model. Further, fSrc models the source node of the flow while
fTar specifies the flow target.

86 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure A5. Graph model of the part of choreography graph model of Train control scenario

collaboration

role

collaboration

pre-graph pattern post-graph pattern

role

pin

Condition

own

own
own

own

own

role

pinType = "OUTPUT"
pin

inPartition = roleName
pin

role

pin

pin
roleType = "INITIATING"
name = roleName

Figure A6. Pin localization rule graphs.

role

pin

collaboration

role

pin

collaboration

f

role

pin

collaboration

role

pin

collaboration

f

role

pin

collaboration

pin

collaboration

f
pin

rMsg

sMsg

f

f

start
af

f

(b) post pattern - weak (c) post pattern - enforced(a) pre-pattern

role

Ci Ci Ci

Cj Cj Cj
5.role

fSrc

fTar

fSrc

fSrc

fSrc

fSrc
fSrcfTar

fTar

fTar

fTar

fTar

own

own

own

own

own
own

own

own

own
own

own

own

own own

role

own

Figure A7. Direct flow localization rule.

Based on this type graph, two kinds of graph models can be defined corresponding to the flow-global
and flow-localized choreography models. Figure A5 illustrates a flow-global graph representation of the
train control system in Figure A3 (a) without the Handover activity. Note that there are two dangling
edges in the graph model: fTar to a merge node and fSrc to a role node. These edges will eventually be
connected to the Handover activity.

4.2 Graph models of the transformation rules

Transformation rules can be visualized and are mainly composed of two graph parts: the pre-pattern
subgraph, expressing what to replace, and the post-pattern subgraph describing the replacement. A
transformation condition can also be used to define conditions or constraints describing how and under
which conditions the graph production can be applied (such as a negative application condition NAC
introduced in [Tae04]). In the following, we introduce the graph model transformation rules and the
policies through some representative rules: the pin location rule and the direct flow localization rule.

Graph models of the pin localization rule

Figure A6 depicts the graph transformation rule for pin allocation. Pins in the pre-pattern of the graph
model are owned by collaboration nodes as shown on the left side of Figure A6. They are localized, i.e.,

PAPER A: Choreography Model Transformation 87

connected to roles in the post-pattern of the graph as depicted on the center and right sides of Figure A6.
Note that attributes and their values attached to the graph nodes can be used, checked, or modified. For
example, the attributes roleType and pinType are checked in the nodes role and pin in the pre-pattern of
the graph model. Similarly, the attribute inPartition of the pin node is modified (or assigned a value) in
the post-pattern of the graph.

Graph models of direct flow localization rules

Figure A7 shows the pre-pattern and post pattern of the rules which localize the direct flow having
weak causality and non-causal causality properties. Figure A7 (a) depicts the pre-pattern graph model
of the direct flow in which pin allocation rules have been performed. If the flow is weak causal, the
corresponding post-pattern is shown in Figure A7 (b). In this case, a new output streaming pin is added
to a collaborative activity Ci. An example of this type is P5 in the case study. In the case that a direct
flow-path is non-causal, the flow-path is resolved using send and receive message nodes as shown by the
post-pattern graph model in Figure A7 (c).

4.3 Implementation

An Eclipse plug-in has been developed to create graph models of flow-global choreography models
and to import the post-graph (as a result of transformation) into Arctis. As graph transformation engine,
we use the Attributed Graph Grammar System (AGG) [Tae04]. AGG offers high flexibility in creating
the visual definition of graph models. Further, it provides Java APIs facilitating its integration to the
Arctis tool which is also Java-based. AGG has also a facility to enable the verification and correctness
of models during transformation.

The AGG graph transformation engine takes the graph model of a flow-global choreography as well
as the rules introduced in Section 4.2 as inputs and produces the post-graph model which corresponds to
a flow-localized choreography.

5 RELATED WORK

A comparison of approaches and tools that use graph transformation techniques for model transforma-
tions is provided in [2]. In [3], Kerkouchea et al. propose an approach for transforming UML state-chart
and collaboration diagrams to Colored Petri nets using graph transformation techniques. In contrast, the
authors of [1, 2] suggest to map activity diagrams into communicating sequential processes (CSP).

Unlike these approaches, both our abstract and detailed models are based on UML activity diagrams.
Moreover, our approach envisages collaborative building blocks encapsulating the interaction between
different components. UML activities can be defined hierarchically by means of call behavior actions.
We use AGG as our graph transformation engine and our post graphs can be directly imported to the
Arctis tool for further analysis, synthesis and code generation.

In contrast to [6, 15], we currently miss the formal proof that our graph-based transformation is
correctness-preserving. Due to the formal semantics of Arctis [20], however, which can also be used
for the flow-global choreography models, the correctness verification can be provided as temporal logic-
based refinement proofs [13] which is intended to be done for the close future.

Ideally, one can choose any graph transformation tool to validate or implement our approach. Some
candidates other than AGG are ATOM3 [12], VTMS [14] and C-SAW [17]. As mentioned above, we
chose AGG due to its high flexibility and its Java-compliance.

6 CONCLUDING REMARKS

In this paper, we presented a Model-Driven Development approach to support the engineering process
of distributed collaborative services. The global behavior and distributed realization are captured by two
different types of choreography models: flow-global and flow-localized, which are specified using UML
activity diagrams. The transformation between these two choreography models are performed with the
support of graph transformation techniques. The approach is used within the EU-funded project CESAR
for the cost-effective development of safety-relevant embedded systems [5]. As future work, we plan to

88 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

refine the model transformation policies and test them with larger and more complex system models. As
mentioned above, we will further prove the correctness of the graph transformation rules formally.

Graph transformation is also useful for automatic collaborative building block refinement. We cur-
rently developed a set of graph transformation rules to detect and correct mixed initiatives in distributed
systems. As mentioned earlier, in this often occurring but not corrected class of errors, two system
components may concurrently start cooperations which might lead to unpredictable system errors. Al-
together, we are convinced that graph transformation is a highly promising extension to MDD which,
essentially, consists of the stepwise refinement of graphical notations. Here, the flexibility of this rule-
based approach may facilitate the refinement steps significantly.

Bibliography

[1] Elmansouri, R., Hamrouche,H., Chaoui, A.: From UML Activity Diagrams to communication sequential processes
(CSP) Expressions: A Graph Transformation Approach using Atom3 Tool. International Journal of Computer Science,
8(2), 2011.

[2] Varró, D., Asztalos, M., Bisztray, D., Boronat, A., Dang, D., Geiß, R., Greenyer, J., Pieter, V., Kniemeyer, O.,
Narayanan, A., Rencis, E., Weinell, E.: Transformation of UML Models to CSP: A Case Study for Graph Trans-
formation Tools. in: Applications of Graph Transformations with Industrial Relevance, pp. 540–565. Springer-Verlag
(2011).

[3] Kerkouchea, E., Chaouib, A., Bourennanec, E., Labbanic, O.: A UML and Colored Petri Nets Integrated Modeling
and Analysis Approach using Graph Transformation. In: Journal of Object Technology, vol. 9, no. 4, pp. 25D43. JOT
(2010)

[4] Castejon, H., Braek, R., and von Bochmann, G. (2007). Realizability of collaboration-based service specifications. In
Software Engineering Conference, 2007. APSEC 2007. 14th Asia-Pacific, pages 73 –80.

[5] CESAR (2010). http://www.cesarproject.eu/ Accessed Jan 2011.

[6] Jayaraman, P., Whittle, J., Elkhodary, A., and Gomaa, H. (2007). Model composition in product lines and feature
interaction detection using critical pair analysis. In Engels, G., Opdyke, B., Schmidt, D., and Weil, F., editors, Model
Driven Engineering Languages and Systems, volume 4735 of Lecture Notes in Computer Science, pages 151–165.
Springer Berlin / Heidelberg.

[7] Kathayat, S. B. and Bræk, R. (2010). From flow-global choreography to component types. In System Analysis and
Modeling (SAM), volume 6598 of Lecture Notes in Computer Science. Springer - Verlag.

[8] Kraemer, F. A. (2008). Engineering Reactive Systems: A Compositional and Model-Driven Method Based on Collab-
orative Building Blocks. PhD thesis, Norwegian University of Science and Technology.

[9] Kraemer, F. A., Bræk, R., and Herrmann, P. (2009) Compositional Service Engineering with Arctis. Telektronikk,
105(2009)1.

[10] Kraemer, F. A., and Herrmann, P. (2010) Reactive Semantics for Distributed UML Activities. In Formal Techniques
for Distributed Systems, volume 6117 of LNCS, pages 17–31, 2010.

[11] Kraemer, F. A., Slåtten, V., and Herrmann, P. (2009). Tool support for the rapid composition, analysis and implemen-
tation of reactive services. Journal of Systems and Software, 82(12):2068 – 2080.

[12] Lara, J. and Vangheluwe, H. (2002). Atom3: A tool for multi-formalism and meta-modelling. In Kutsche, R.-D. and
Weber, H., editors, Fundamental Approaches to Software Engineering, volume 2306 of Lecture Notes in Computer
Science, pages 174–188. Springer Berlin / Heidelberg.

[13] Lamport, L. (1994). The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872–923.

[14] Lengyel, L., Levendovszky, T., Mezei, G., and Charaf, H. (2006). Model transformation with a visual control flow
language. International Journal of Computer Science (IJCS), 1(1):45–53.

[15] Rafe, V. and Rahmani, A. (2009). Towards automated software model checking using graph transformation systems
and bogor. Journal of Zhejiang University - Science A, 10:1093–1105. 10.1631/jzus.A0820415.

[16] Taentzer, G. (2004). AGG: A graph transformation environment for modeling and validation of software. In Pfaltz,
J. L., Nagl, M., and Böhlen, B., editors, Applications of Graph Transformations with Industrial Relevance, volume
3062 of Lecture Notes in Computer Science, pages 446–453. Springer Berlin / Heidelberg.

[17] Zhang, J., Lin, Y., and Gray, J. (2005). Generic and domain-specific model refactoring using a model transformation
engine. In Volume II of Research and Practice in Software Engineering, pages 199–218. Springer.

90 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

PAPER B

Remedy of mixed initiative conflicts in model-based system engineer-
ing

Fenglin Han and Peter Herrmann

Proceedings of the 11th International Workshop on Graph Transformation and Visual Modeling Tech-
niques (GTVMT 2012), volume 47 of of the Electronic Communications of the EASST, Tallinn, 2012.

In this paper we used a button game scenario to illustrate the overall approach, which was originally
described in Vidar Vidar Slåtten’s master thesis.

REMEDY OF MIXED INITIATIVE CONFLICTS
IN MODEL-BASED SYSTEM ENGINEERING

Fenglin Han
Norwegian University of Science and Technology,

Trondheim, Norway

sih@item.ntnu.no

Peter Herrmann
Norwegian University of Science and Technology,

Trondheim, Norway

herrmann@item.ntnu.no

Abstract SPACE is a technique for model-driven engineering of reactive distributed systems. One of the strengths of its
tool-set Arctis is that the system engineer can formally analyze the models for design errors such that these can
be corrected early in the development process. In this paper, we go a step further and introduce a technique that
refines the fault detection and, in addition, offers a highly automatic mechanism to remedy the errors. For that,
we combine model checking, the already existing analysis method of Arctis, with graph transformation. Using
graph rewriting rules, we can analyze the state space graph of a system for the exact reason of an error as well
as remove the erroneous parts of a model by changing the model description. We exemplify the approach by
envisaging the detection and remedy of mixed initiatives, a quite common cause for faulty behavior in event-
driven systems that often is overlooked in system development.

Keywords: graph transformation, model driven engineering,mixed initiative.

1 Introduction

New application domains like sensor networks, smart grids, and machine to machine cooperation call
for novel networked services and applications. To engineer these often reactive and embedded distributed
systems, we provide the development method SPACE and its tool-set Arctis [22, 18]. System behavior
is modeled by UML activities [4] that use a token semantics close to Petri nets. The activities have been
provided with a new reactive formal semantics [5] that enables to analyze the models formally [22] and
to create code automatically [17]. The technique is scalable since we can enclose partial behavior into
UML call behavior actions that we call blocks. On the one hand, a block embraces an activity and, on
the other, it can be used as an element in another one. So, it links both activities together. The static
role-binding of the blocks is modeled by UML collaborations while we use External State Machines
(ESMs, [18]) to define the interface behavior of a block. Furthermore, the block structure enables a high
degree of reuse of system models which is in average 70% in our models [18].

Arctis enables the formal analysis of desirable system properties (e.g., verifying that the activity em-
braced in a block fulfills its ESM) by model checking [22]. Since model checking can be executed in a
non-interactive way and the traces towards detected errors are animated on the UML activities, the Arctis
user does not need a deeper understanding of the formalism used. The state explosion problem of model

94 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

checking is mitigated by compositional verification since the ESMs allow to prove every activity in the
system model separately [22].

Up to now, the Arctis analysis has not supported automatic remedy of detected errors which has to
be provided manually by the system engineer. This paper describes a solution to support the Arctis
user further. In particular, we introduce a way to analyze the state graph of an erroneous model and
to correct the specification with a high degree of automation. For that, we apply graph transformation
that already proved helpful for the model transformation of flow-global choreographies, a more abstract
way to specify reactive systems, to Arctis models [HKL+11]. Graph transformation is suitable since
UML activities, collaborations and state machines all are graphical description techniques which can be
directly accessed by graph rewriting rules.

For the error detection, we align graph transformation with model checking in Arctis. In particular,
we analyze the state space of an activity generated by the model checker to find out if the detected errors
belong to a particular class. Thereafter, we use rules to correct the erroneous part of the activity. We
illustrate our approach with a mechanism for the detection and remedy of mixed initiatives between two
parties.

2 Mixed Initiatives

Mixed initiatives [GY84, BH93, SDW08] are a special form of race conditions that is often overseen
when developing reactive distributed systems. A mixed initiative conflict may occur whenever two (or
more) distributed components can trigger an interaction with each other at the same time (see [Flo03]).
Due to the asynchronous communication between the two parties, both can start own initiatives before
being notified that also the partner triggered one. Of course, this behavior can be mitigated but that often
demands for a complex new functionality. While mixed initiatives in practice are often overlooked, the
Arctis model checker detects that a system contains faulty behavior (see [9]). By the methods introduced
in this paper, we can find out if a mixed initiative is indeed the reason of an error. Further, we introduce
a graph-based approach to correct mixed initiatives between two entities. The only condition for the
remedy mechanism is that the system behavior contains an interaction between the entities before the
mixed initiative can take place.

/remoteWins2

/remoteWins1

start/

Button Game

start

remoteWins1 remoteWins2

b2:Buttonb1:Button

stop

stop

pushed

pushed

component1 component2

M1

M2

M3

localWins1

/localWins1

(a) (b)

s0

s1

Figure B1. Arctis building block Button Game and its ESM

2.1 Arctis

The Arctis block Button Game depicted in Figure B1 (a) describes a simple game with two players
which is won by the one who manages first to push a button. The players are represented by two technical
components, e.g., two Android devices. As mentioned in the introduction, we model behavior by UML
activities which are based on token flow semantics (see [5]). The activity shown in Figure B1 (a) is col-
laborative since it models the combined interaction of the two components component 1 and component
2 participating in the button game. To distinguish in which component a certain behavioral step takes
place, the activity comprises two partitions marked by the component names.

PAPER B: Remedy Mixed Initiative Conflicts 95

(1) (2)

M1

M2

(3) (4) (5) (6)

M1

M2
M3

M3

Figure B2. Activity steps of Button Game

A UML activity [4] is a directed graph and, due to the token flow semantics, behavior is modeled
as tokens walking across the nodes of the graph following its edges. The edges may either stay within
a partition, specifying local behavior of the corresponding component, or cross the partition borders
(e.g., M1, M2, M3). In the latter case, they model asynchronous interaction between two components.
Activities offer a set of general node types enabling to start, stop, or interrupt token flows as well as nodes
for routing and handling parallel flows respective for the execution of certain operations. An example
are forks of which four copies are used in Figure B1 (a). They are expressed by bold bars in right angle
to the linked edges. A fork contains one incoming edge and at least two outgoing edges and models that
an incoming token is duplicated and a copy is sent via each of the downstream edges. Thus, forks enable
to specify parallel flows.

Another node type used in the activity Button Game are call behavior actions describing the Arctis
building blocks. A block represents an own activity that is linked with the one including it by means
of pins1 which are depicted as small rectangles on the edge of a block respective an activity and filled
with in- or outgoing arrows. The interface behavior of a block is specified by External State Machines
(ESM, [18]) that are simple UML state machines describing in which order flows may pass the various
pins.

Figure B1 (a) includes the two blocks b1 and b2 of the type Button which are taken from an Arctis
library for Android devices (see [Kra11]). This block type describes the logic when pushing a certain
button of an Android device which initially is inactive. The button is armed by sending a token flow
through its pin start on the top of the block. Thereafter, pushing the button leads to a flow via the pin
pushed which, in addition, terminates and disarms the block. Further, the block can be disarmed from its
environment by a token passing pin stop, too.

The Arctis semantics [5] defines so-called activity steps describing the sub-graph passed by a token
in an atomic transition. In short, a token may rest only on nodes or edges describing places where it has
to wait for a stimulus. An example are the crossing edges. To model the asynchronous communications
between the partitions, a token passing a crossing edge has to wait on it until it is passed on in a new
activity step. After being triggered by an internal or external event, e.g., the reception of the transmitted
data, tokens pass all nodes and edges of the activity step in run-to-completion fashion until they reach
nodes and edges on which they have to wait for new triggers.

Figure B2 shows the six activity steps of the UML activity in Figure B1 (a). Activity step (1) describes
the start of the game. It is triggered by a token passing the parameter node start at the edge of the block
Button Game which is duplicated at the fork node and copies are sent to both block b1 and to the crossing
edge M1. Activity step (2) forwards the token to block b2 such that both buttons are armed. Pushing
a button leads to the activity steps (3) and (4) respective (5) and (6) which disarm the other button and
notify the environment of the button game about the winner via the parameter nodes localWins and
remoteWins.2

Figure B1 (b) shows the External State Machine (ESM, [18]) of the block Button Game. The block is
started by a token passing pin start. Thereafter, it terminates either by a token arriving at remoteWins1 or

1Formally, UML distinguishes between parameter nodes laying on the outer edge of an activity (e.g., remoteWins1) and pins on the edge of a
block included in an activity (e.g., stop).
2For simplicity, we only notify component 1, that takes the role of the game manager, fully about the result while component 2 is just informed
if it lost.

96 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

idle s0 s1

s3 s4s2

s6s5

pWi

start/ secI/

/started

/secA

primI/

/started

secI/

primI/

secI/

/primA

sWi
/secAc

/secOv

(a) State Space of Button

Game Building block before

weaving

(b) State Space of the

Button Game after adding

block Mixed Initiative 2

0 1 2

3 45

6 7 8

9 10

11

12

M1! M3!

M1?

M3?

M2!

M1?

M3!

M2!

M3?

M2?

M2?

M3?

M3!

M2?

Normal state

Conflict state

States showing

errors by Arctis

checker

Mixed-initiative

state

Figure B3. State spaces of the original and the modified block Button Game

by one at localWins1 followed by another one at remoteWins2. In the transition markings, the “/” behind
a pin designator refers to tokens heading towards the block while positioning “/” in front refers to tokens
coming from the block and going towards its environment.

2.2 A Mixed Initiative Error

It is easy to see that the system renders unexpected behavior if both buttons are pushed at the same
time. Then due to the asynchronous communication between the components, the buttons will be termi-
nated too late and tokens leave the pins pushed of both block b1 and b2. In consequence, all the activity
steps (3) to (6) are executed and the ESM in Figure B1 (b) is violated as all localWins1, remoteWins1 and
remoteWins2 are fired. This will be detected by the Arctis analyzer using model checking. Figure B3
(a) depicts the state space generated by the Arctis analyzer. To facilitate the understanding of the state
graph, we added the identifiers of the edges crossing the partition borders. One can see that the traces
towards the states 8 and 9 contain a sequence of pins violating the ESM.

3 Mixed Initiative Detection

To identify that a mixed initiative is the actual cause for property violations detected by the Arctis
model checker, we investigate the state space further using graph rewriting. According to Floch [Flo03],
a mixed initiative is indicated by so-called mixed initiative states in which a component may both send
and consume signals. The danger of a mixed initiative exists if two interacting components are both in a
mixed initiative state at the same time.

In a first step, we label the edges with send and receive labels using the technique explained in [Kra09].
In our example that are M1, M2 and M3 referring to the three partition crossing edges in the activity de-
picted in Figure B1 (a). By the “!” we describe the sending and by “?” the reception of a communication
between the two components. Since M1 and M3 show communication from component 1 to component
2 and M2 the other way around, one can see that the states 3 and 11 of the state graph refer to mixed ini-
tiative states according to the definition of Floch. In state 3, component 2 may both send M2 and receive
M3 while in state 11 component 1 may send M3 and receive M2. By executing the corresponding send
actions, both mixed initiative states lead to state 6 which expresses that the two signals forwarding the
conflicting initiatives just pass each other. We call it a conflict state.

Thereafter, we can check if the traces from the initial node towards the states violating a property
always lead via a conflict state. To avoid false positives, we only assume a mixed initiative as the source
of errors if all traces to all error states pass at least one conflict state. In our example, the violation of the
ESM is detected when reaching the states 8 or 9 and it is easy to see that all traces from the initial state
0 to them pass the conflict state 6.

Technically, we export the state graph created by the Arctis model checker and label the states using
the graph transformation tool AGG [Tae04] according to the following rules:

1 Initially, the subgraph contains the error states of the state graph.

PAPER B: Remedy Mixed Initiative Conflicts 97

mi:Mixed Initiative 2

start

secA

started

secI

secOv

primA
primI

secAc

(a) (b)

start/ secI/

/started
secI/

secI/

primI/

/started

primI/

/secA

/secOv

/secAc

/primA

Figure B4. The Arctis block Mixed Initiative 2

2 For any vertex in the subgraph that is not a conflict state, we add all its incoming edges as well as
their source states to the subgraph.

3 We terminate if we either added the initial state to the subgraph or if all states not yet treated in
step 2 are conflict states.

Thus, if the initial node is not in the resulting subgraph, we know that all traces from it to the error
states pass a conflict state which gives us advice that an improperly handled mixed initiative might be
the source of the errors. For example, in Figure B3 (a) the subgraph consists of the states 6 to 9 and the
edges linking them but not the initial state 0 showing that the mixed initiative between the crossing edges
M2 and M3 are the likely reason for the problem.

The AGG rules use the state space generated by the Arctis model checker as input and are executed
automatically without further human intervention. Thus, it is also possible to integrate the algorithm into
the Arctis model checker which would enable a seamless detection of mixed initiatives already during
the analysis. The integration is planned for one of the next revisions of the model checker.

4 Mixed Initiative Remedy

An established way to deal with errors caused by mixed initiatives is to use prioritization [GY84].
Here, the two conflicting initiatives are marked as primary respective secondary and, in the case of a
conflict, only the primary initiative will take place while the secondary is stopped during communication.
In our example, we decided that the initiative M2 leaving component 2 shall be the primary one, such
that it will always be forwarded to component 1 while M3 will be stopped in the case of a conflict. Of
course, this prioritization scheme demands a somehow complex logic which, however, can be hidden in
a reusable Arctis block as we point out in the following.

4.1 Arctis Blocks handling Mixed Initiatives

Since mixed initiatives are a recurrent phenomenon in reactive distributed software, we created two
building blocks providing remedy by prioritization (see [9]) which are available in one of the Arctis
libraries. Figure B4 (a) shows one of them. It supports two participants primary and secondary and
arranges that an initiative from the primary one is prioritized against the one of the secondary.

The five pins on the left side of the block are allocated to the secondary and the three on the right
to the primary participant. The ESM in Figure B4 (b) describes the behavior realized by the block. It
is started from the secondary component by a flow through pin start which enables this participant to
send its secondary initiative via pin secI. Eventually, the start is notified via pin started to the primary
party who is afterwards enabled to start an own initiative via pin primI as long as no secondary initiative
passes pin secA. If the secondary initiative arrives without being interfered by the primary one, the
secondary participant is notified about that via a flow leaving the block through pin secAc. If only a
primary initiative takes place, the secondary receives it via pin primA. If both participants send parallel
initiatives via primI and secI, the secondary is never delivered while the primary one is handed over to
the secondary participant via pin secOv notifying it that the own one was overridden. The other block in
the Arctis library is similar but started from the side of the primary component.

98 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

<<System>>

Secondary Primary

Source St

Target Ip

Target Is

Target St

Source Ip

Source Is

St

Ip

Is

Figure B5. Pattern of a system to be adapted with building block Mixed Initiative 2

4.2 Adding the Arctis Blocks

It is demanded that the two Arctis blocks introduced above, have to be started using the pins start and
started before they may handle a mixed initiative. Thus, the system needs a crossing edge between the
two partitions that may be redirected in order to act as a starter. To find such an edge, we first analyze the
subgraph derived by the algorithm in Sect. 3 and check if there is a crossing edge on all traces towards the
mixed initiative that can take that role. Thus, in integrating a mixed initiative block, we have to consider
three crossing edges as depicted in the pattern description in Fig. B5. This pattern for the Arctis block
Mixed Initiative 2 (and except of the partition designators also of the other available block) consists of
a crossing edge called St describing the starter while Is and Ip refer to the crossing edges which may
cause the mixed initiative error.

In order to allow an adaptation according to the needs of the system engineer, the transformation
process is started by asking the engineer for two decisions depending on which a certain group of AGG
graph rewrite rules is selected:

1 The engineer has to determine which component should take the role of the primary party in order
to identify which of the two mixed initiative blocks needs to be built in.

2 A principle decision about the strategy to handle detected mixed initiatives has to be taken. This
reflects, that the two blocks make the occurrence of a mixed initiative visible to the secondary
participant and additional functionality handling this case has to be added. Here, we see two
different strategies:

(a) Delete both signals passing each other after transmission. This strategy is sensible when the
behavior to be performed by a component is the same irrespective of which party triggered
the initiative. In this case, we only have to prevent that this behavior is carried out twice.

(b) Let the primary initiative prevail and neglect the impact of the secondary one. This solution
is useful if both initiatives lead to a different behavior of the involved components.

According to the two decisions, a particular set of AGG graph rewrite rules is selected which execute
the integration of a mixed initiative block automatically. If we decide for the strategy to let the primary
initiative prevail, however, we face the problem that we need additional functionality to neglect the
secondary initiative in case of a conflict. This, however, depends on the particular model, and it is beyond
the capabilities of a graph transformation system to decide if any operation executed before passing Is
should also be executed in case of a conflict. To elude this problem, we selected a graph transformation
mechanism that renders a correct solution for most functionalities. Nevertheless, it demands that the
system engineer looks on the system model resulting from the graph transformation since it is possible
that some of the operations have to be rearranged on the local side of the secondary participant. Thus,
the graph transformation does not create the correct solution automatically in all cases but we think that
it is nevertheless helpful since it reduces a possible manual post-processing to the purely local reordering
of single operations which is much easier than the integration of a complex distributed solution from
scratch.

At first, the crossing edges corresponding St, Is and Ip in the pattern model are removed and the
Arctis mixed initiative block mi is added to the model. The remainder of the graph transformation is the

PAPER B: Remedy Mixed Initiative Conflicts 99

connection of the sources respective targets of the removed edges with the pins of mi by new edges. For
brevity, we describe this process only for the block Mixed Initiative 2 listed in Fig. B4 as this procedure
is similar for the other block. At first Source St, i.e., the source node of edge St, will be linked with the
pin start of mi while pin started is connected to Target St.

On the primary partition, the new wiring of the two conflicting edges Ip and Is is straightforward since
the mixed initiative block disburdens the primary component from any error correction handling. Source
Ip is coupled with the pin primI and pin secA with Target Is.

The wiring of the secondary component, however, differs depending on the treatment strategy selected.
If both conflicting signals shall be deleted, Source Is is connected with pin secI and pin PrimA with Target
Ip. The pins SecOv and SecAc are not linked at all which according to the robust Arctis semantics means
that tokens passing them are deleted.

For the strategy to let the primary initiative prevail, the particular wiring affords to link the pin primA
with Target Ip since this pin reflects that there was no conflict at all. A token passing pin secOv contains
the data of the primary initiative in the case of a mixed initiative conflict. Since this initiative should pre-
vail, there has also to be made a connection from this pin to Target Ip. Actually, the graph transformation
rules link both pins primA and secOv with a newly created merge, i.e., an activity node with at least two
ingoing edges but only one outgoing edge to which all incoming tokens are routed. The merge is further
connected downstream with Target Ip.

The wiring of the vertices and edges specifying the secondary initiative Is has to consider that its
token flow may contain operations necessary for a functionally correct behavior. Operations are another
type of UML activities. In Arctis, they are carriers of Java methods which are executed when a token
passes. For instance, an operation towards a crossing edge may prepare the transfer format readable by
the primary component. After the model modification, such operations shall still be on the path leading
to the pin secI. Other actions, however, shall only take effect if a conflict does not occur3 such that they
should be linked to the pin secAc.

While, as already stated, a general solution to decide about where to place the operations resting on the
secondary component before the crossing edge Is is not possible, we can automate the case that Source
Is is a fork node. Here, it is evident that all downstream edges of the fork except for the crossing edge
are not relevant for a correct transmission of the secondary initiative. Thus, we can propose a wiring as
follows:

1 If Source Is is not a fork, it will be connected with pin secI and pin secAc will not be linked at all.

2 If Source Is is a fork with two outgoing edges in total, it will be deleted. The source node of its
incoming edge will be linked with pin secI and pin secAc will be connected with the target node
of the outgoing edge that is not the crossing edge.

3 If the source node is a fork with three or more outgoing edges, the source node of its incoming
edge will also be linked with the pin secI. Moreover, we connect the pin secAc to the fork such
that it is only passed in the case of a successful secondary initiative.

For our button game example, we selected component 1 as the secondary and component 2 as the
primary partition. Further, we decided to let the primary initiative prevail since, otherwise the pin re-
moteWins1 would not be executed in the case of conflict which would violate the ESM of block Button
Game (see Fig. B1). The result of the graph transformation is depicted in Fig. B6. The modified model
produces the state space shown in Fig. B3 (b) such that the ESM of the surrounding block Button Game
is obeyed. One should mention that the analyzer issues no error but a warning since in the case of a
mixed initiative a flow leads to the pin stop of block b1 which is already terminated. This flaw is of no
practical relevance as Arctis simply removes tokens in this case what is exactly what we want. So, we
do not need any manual re-orderings.

3In the button game example, that holds for activity step (5) in Fig. B2 leaving the overall block Button Game via the parameter node localWins1
that should only be triggered if there is no primary initiative at all.

100 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

remoteWins2

Button Game

start

remoteWins1 localWins1

b1:Button

stop

pushed

b2:Button

stop

pushed

mi:Mixed Initiative
Secondary Starter

start

secA

started

secI

secOv

primA primI

secAc

Figure B6. The building block Button Game after the transformation

5 Graph Transformation Rules

In this section, we briefly introduce the concept of graph rewriting rules used for the various mixed
initiative detection and remedy steps discussed above. As tool-set for the graph transformation we use the
Attributed Graph Grammar System4 (AGG) [Tae04] that, in a flexible way, allows the visually supported
creation of rules. Since AGG offers Java APIs, it could be easily integrated into Arctis that is also
Java-based.

The transformation rules mainly consist of two parts. A pre-pattern describes a graph pattern that
has to be replaced while the corresponding post-pattern models the result of the replacement. Moreover,
a rule may contain additional conditions to constrain when it may be applied. The input to a rule is a
so-called host-graph which, by replacing the part matching the pre-pattern by the post-pattern, will be
transformed to a post-graph.

Altogether 22 rules are used to detect mixed initiatives and to add one of the two Arctis mixed initiative
blocks to a UML activity-based system model. For the sake of brevity, we list only the different categories
of rules and provide a closer description of only one rule while the others can be looked at on the WWW.5

The rules can be structured in three groups:

1 Label the states of an Arctis state graph to detect a mixed initiative as discussed in Sect. 3.

2 Search for the pattern described in Fig. B5 of the state graph to create a subgraph with labels.
During this stage the crossing edges Ip, Is and St are marked.

3 Insert the selected Arctis mixed initiative block and wire it with its environment as described in
Sect. 4.2.

Figure B7 shows a rule of group 3 that is used to add the block Mixed Initiative 2 to an activity. On
the left side, the pre-pattern is depicted. It contains the classes 3 and 4 of type role which refer to the two
partitions of the activity. These two constructs are applied to enhance the collaboration description used
in Arctis to model the relation between blocks and particular components. The other constructs refer to
the activities to be amended. In particular, the three labeled cycles refer to the crossing edges involved
while label 1:f describes the one to be used to start the block. Label 7:f refers to the primary and 8:f
to the secondary initiative. The post-pattern is shown on the right side. The collaboration is extended
by a new collaboration use that corresponds to the added mixed initiative block as well as to the links
to the two components. The activity is supplemented by a call behavior action, i.e., an Arctis block, as
well as references to its pins. The various edges of the pre-pattern are now replaced by others linking the

4We currently replace AGG by Henshin [ABJ+10] which is more flexible and supports the Eclipse Modeling Framework (EMF) also used by
Arctis.
5http://www.item.ntnu.no/people/personalpages/phd/simon/start

PAPER B: Remedy Mixed Initiative Conflicts 101

Figure B7. Rule inserting the block Mixed Initiative 2

original source respective target nodes with the appropriate pins of the mixed initiative blocks. This rule
is used for both strategies mentioned in Sect. 4.2. It renders the final result if we want to delete both
mixed initiatives. If we like to let the primary initiative prevail and neglect the secondary one, it creates
an intermediate system model which will be further amended by other rules.

6 Related work

In visual language-based specification techniques like the UML, graph grammar techniques are more
and more utilized. For instance, in [WTEK08] Winkelmann et al. translate restricted OCL constraints
into equivalent graph constraints which enables an automatic generation of instance models from the
OCL meta-models. Gronmo and Møller-Pedersen propose so-called aspect activity diagrams that extend
activity models by aspect-oriented weaving [GM08]. Likewise, Mussbacher et al. use an extension of the
User Requirement Notation (URN) to weave in aspects [MWA10]. A difference to our approach is that
both techniques demand for explicit syntax extensions to define aspect orientation concepts like point
cuts, which makes the understanding of the models more complicated. In [HHR+11], Hegedüs et al.
use graph grammars as the fundamental technique of the framework to generate quick fixes of business
flows specified in the Business Process Model and Notation (BPMN). Like our work, this approach uses
graph transformation for the remedy of errors, albeit on a more abstract modeling level. Our work is
also similar with [LK10] who use graph transformation rules to slice UML models using transformation
rules. The difference is that Lano and Kolahdouz-Rahimi concentrate on the slicing of state machines.

Graph grammar systems are further used to support system development in specific domains. Mens et
al. [MVDJ05] use graph transformation to formalize refactorings of software. Bucchiarone et al. [BPVR09]
give a formal definition of self-adaptiveness and self repair systems based on the T-typed hyper-graph
grammar system. They also use AGG to model and verify the hyper-graphs. In [JWEG07], critical pair
analysis is used to detect the dependencies and conflicts between features of a Software Product Line
(SPL). Domain specific concerns are also addressed by particular patterns. For instance, in [JPW02]
security patterns are abstracted from model-based system development and specially treated in security-
critical systems.

7 Concluding Remarks

We introduced the use of graph transformation for the detection and remedy of mixed initiative con-
flicts, a particular kind of development errors in distributed systems. The approach is highly automatic
and promises to support the engineer significantly in error recovery and remedy. The set of rules was
also applied to a wake-up call scenario [9] as it is used in hotels. Again we received a correct result that
did not need further manual corrections.

To generalize this experience, we have also to guarantee that the model transformation does not intro-
duce new errors. In particular, we must assure that the new wiring complies with the properties of the
integrated mixed initiative block. Further, we have to prove that the transformed model is consistent with
the original one. Of course, as desired, the model transformation changes the system behavior to solve
the conflict but it should not be changed in the ordinary case that only one initiative takes place at a time.

102 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

These two questions can be verified in temporal logic which, however, cannot be shown here due to the
space limit.

There are other system layouts which might lead to mixed initiatives, e.g., three or more components
may use ring-shaped communication such that there are no conflicting crossing edges between any two of
them. We want to find out more system patterns that indicate mixed initiatives and create corresponding
graph transformation rules to alleviate them. Further, we intend to use the approach for the detection and
remedy of other kinds of errors.

Graph transformation seems also promising to add security protection against malicious attacks.
While the integration of counter-measures, in general, is complex and tedious, in some cases it can
be done with limited human guidance such that graph transformation is the appropriate means. An
example is [GKH11] introducing the structured integration of security mechanisms to protect sensible
communications against wiretapping.

The work introduced above was the second approach utilizing graph transformation in SPACE. Before,
we used this technique to transform flow-global choreographies, a more abstract modeling technique, to
Arctis models [HKL+11]. Both approaches profit from the fact that it is much easier to create and change
a set of graph rewrite rules than to develop a model transformation tool doing the same model changes
manually. This allows for an easy adaptation of engineering tools for visual languages to new challenges
arising during deployment.

A strength of Arctis is that it supports reuse of sub-models in certain application domains. In average,
70% of a system model consist of building blocks reused from previous projects (see [18]). Utilizing
the flexibility of graph rewriting, one can complement the domain-specific libraries of Arctis blocks with
sets of graph transformation rules such that an engineer is not only provided with suitable sub-models
but also with a convenient functionality to deal with them.

Acknowledgments The research was carried out under the research and development project “Infras-
tructure for Integrated Service” (ISIS) funded by the Research Council of Norway.

Bibliography

[ABJ+10] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer. Henshin: Advanced Concepts and Tools for In-Place EMF
Model Transformations. In Petriu et al. (eds.), Proceedings of the 13th Int. Conference on Model Driven Engineering,
Languages and Systems (Models). LNCS 6394, pp. 121–135. Oslo, 2010.

[BH93] R. Bræk, Ø. Haugen. Engineering Real Time Systems — An Object Oriented Methodology using SDL. Prentice Hall,
1993.

[BPVR09] A. Bucchiarone, P. Pelliccione, C. Vattani, O. Runge. Self-Repairing systems modeling and verification using. In
Software Architecture, 2009 European Conference on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/I-
FIP Conference on. Pp. 181–190. 2009.

[Flo03] J. Floch. Towards Plug-and-Play Services: Design and Validation using Roles. PhD thesis, Department of Telematics,
Norwegian University of Science and Technology (NTNU), 2003.

[GKH11] L. Gunawan, F. A. Kraemer, P. Herrmann. A Tool-Supported Method for the Design and Implementation of Secure
Distributed Applications. In Engineering Secure Software and Systems. LNCS 6542, pp. 142–155. Springer, 2011.

[GM08] R. Grønmo, B. Møller-Pedersen. Aspect Diagrams for UML Activity Models. In Schürr et al. (eds.), Applications of
Graph Transformations with Industrial Relevance. Pp. 329–344. Springer-Verlag, Berlin, Heidelberg, 2008.

[GY84] M. G. Gouda, Y.-T. Yu. Synthesis of Communicating Finite State Machines with Guaranteed Progress. IEEE Trans-
actions on Communications 32(7), July 1984.

[HHR+11] Á. Hegedüs, Á. Horváth, I. Ráth, M. Branco, D. Varró. Quick fix generation for DSMLs. In IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE Computer, Pittsburgh, PA, USA, 2011.

[HKL+11] F. Han, S. B. Kathayat, H. N. Le, R. Bræk, P. Herrmann. Towards Choreography Model Transformation via Graph
Transformation. In IEEE Conference on Software Engineering and Service Science, ICSESS 2011. IEEE Computer,
Beijing, 2011.

[JPW02] J. Jürjens, G. Popp, G. Wimmel. Towards Using Security Patterns in Model-based System Development. 2002.

[JWEG07] P. K. Jayaraman, J. Whittle, A. M. Elkhodary, H. Gomaa. Model Composition in Product Lines and Feature In-
teraction Detection Using Critical Pair Analysis. In Engels et al. (eds.), MoDELS. LNCS 4735, pp. 151–165. Springer,
2007.

[KH07] F. A. Kraemer, P. Herrmann. Transforming Collaborative Service Specifications into Efficiently Executable State
Machines. ECEASST 6, 2007.

[KH09] F. A. Kraemer, P. Herrmann. Automated Encapsulation of UML Activities for Incremental Development and Verifi-
cation. In Schürr and Selic (eds.), Proceedings of the 12th Int. Conference on Model Driven Engineering, Languages
and Systems (Models), Denver, Colorado, USA, October 4-9, 2009. LNCS 5795, pp. 571–585. Springer-Verlag Berlin
Heidelberg, 2009.

[KH10] F. A. Kraemer, P. Herrmann. Formal Techniques for Distributed Systems, Joint 12th IFIP WG 6.1 International Con-
ference, FMOODS 2010 and 30th IFIP WG 6.1 International Conference, FORTE 2010, Amsterdam, The Netherlands,
June 7-9, 2010. Proceedings. In Hatcliff and Zucca (eds.), Formal Techniques for Distributed Systems. LNCS 6117.
Springer, 2010.

[Kra09] F. A. Kraemer. Automatic Generation of Compatible Interfaces from Partitioned UML Activities. In Reed et al. (eds.),
SDL 2009: Design for Motes and Mobiles. LNCS 5719, pp. 182–199. Springer Berlin / Heidelberg, 2009.

[Kra11] F. A. Kraemer. Engineering Android Applications Based on UML Activities. In Whittle et al. (eds.), Model Driven
Engineering Languages and Systems. LNCS 6981, pp. 183–197. Springer Berlin / Heidelberg, 2011.

[KSH07] F. A. Kraemer, V. Slåtten, P. Herrmann. Engineering Support for UML Activities by Automated Model-Checking —
An Example. In 4th International Workshop on Rapid Integration of Software Engineering Techniques (RISE). 2007.

104 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

[KSH09] F. A. Kraemer, V. Slåtten, P. Herrmann. Tool Support for the Rapid Composition, Analysis and Implementation of
Reactive Services. Journal of Systems and Software 82(12):2068–2080, 2009.

[LK10] K. Lano, S. Kolahdouz-Rahimi. Slicing of UML Models Using Model Transformations. In Petriu et al. (eds.), Model
Driven Engineering Languages and Systems. LNCS 6395, pp. 228–242. Springer Berlin / Heidelberg, 2010.

[MVDJ05] T. Mens, N. Van Eetvelde, S. Demeyer, D. Janssens. Formalizing refactorings with graph transformations: Research
Articles. J. Softw. Maint. Evol. 17:247–276, 2005.

[MWA10] G. Mussbacher, J. Whittle, D. Amyot. Modeling and detecting semantic-based interactions in aspect-oriented sce-
narios. Requirements Engineering 15:197–214, 2010.

[Obj10] Object Management Group. Unified Modeling Language: Superstructure, Version 2.3. 2010.

[SDW08] C. Shin, A. K. Dey, W. Woo. Mixed-initiative conflict resolution for context-aware applications. In UbiComp’08.
Pp. 262–271. 2008.

[Tae04] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Validation of Software. In Pfaltz et al.
(eds.), Applications of Graph Transformations with Industrial Relevance. LNCS 3062, pp. 446–453. Springer, 2004.

[WTEK08] J. Winkelmann, G. Taentzer, K. Ehrig, J. M. Küster. Translation of Restricted OCL Constraints into Graph Con-
straints for Generating Meta Model Instances by Graph Grammars. Electronic Notes on Theoretic Computer Science
211:159–170, 2008.

PAPER C

Modeling and Verifying Real-time Properties of Reactive Systems

Fenglin Han, Peter Herrmann and Hien Le

Proceedings of the 18th International Conference on Engineering of Complex Computer Systems (ICECCS
2013). Singapore, 2013.

MODELING AND VERIFYING REAL-TIME PROP-
ERTIES OF REACTIVE SYSTEMS

Fenglin Han
Norwegian University of Science and Technology,

Trondheim, Norway

sih@item.ntnu.no

Peter Herrmann
Norwegian University of Science and Technology,

Trondheim, Norway

herrmann@item.ntnu.no

Hien Le
Norwegian University of Science and Technology,

Trondheim, Norway

hiennam@item.ntnu.no

Abstract SPACE is a model-driven engineering technique for reactive distributed systems. It enables to develop system
models from reusable building blocks, formal analysis by model checking as well as automated transformation
to executable code. In this paper, we describe an extension of the SPACE formalism which allows to model
and verify also real-time behavior. In particular, one specifies real-time constraints in the interface descriptions
of the building blocks, so-called Real-Time External State-Machines (RTESMs). The RTESMs are translated
to guards, clocks and invariants of Timed Automata which can be analyzed by means of the model checker
UPPAAL. The approach is explained by a component protecting an electrical motor controller system against
overspeed. In particular, we prove that by keeping certain maximum response times, this system guarantees that
the speed of the motor stays within certain limits.

1 Introduction

Model-based engineering is considered as practical to create high-quality distributed software since
it enables stepwise development with varying degrees of abstraction as well as simulation, verification
and evaluation. This is of particular importance for the design and verification of real-time embedded
software used in safety critical systems. For instance, Buttazzo [1] claims that real-time systems are
more vulnerable than other kinds of systems and names three aspects facilitating the design of high
quality software: The design of software before building it, complexity reduction, and the enforcement
of system compatibility within the design.

The engineering technique SPACE [2] and its tool-set Arctis [22] make a model-driven development
process supporting these three issues possible. System behavior is modeled by UML 2 activities (see [4])
that, in a Petri net-like fashion, express behavior by tokens flowing via the edges of a graph [5]. The
approach is scalable since an activity may contain building blocks that each represents an own activity.
The tokens may jump between the two activities, to which a building block refers. The building blocks

108 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

support also the reuse of sub-models since they allow to model recurrent behavior once and to use the
resulting building blocks later in various application models. As discussed in [16], in average 70% of a
system model can be developed by reusing blocks from the Arctis libraries. The easy reuse of building
blocks is supported by External State Machines (ESMs) [16] which describe the interface behavior of
the building blocks. Thus, a user who wants to integrate a building block into a system model, does
not need to understand its internal behavior, i.e., the activity it refers to, but only its ESM. Further, the
ESMs are an effective means to mitigate the state space explosion problem which may occur when model
checking that a system model fulfills certain properties [22]. They make it possible to replace most of
the activities by the more abstract ESMs in the model checker runs which reduces the state space to
be checked effectively. Besides analysis by model checking, Arctis allows to automatically translate
a system model into executable code. Currently, it supports the generation of Java code but extended
versions for C resp. C++ are under development.

Our previous work has been centered on modeling functionally correct applications without consid-
ering real-time properties. In particular, we have used a self-developed model checker to verify basic
functional properties (e.g., whether a building block complies with its ESM) while we apply the model
checker TLC [7], which is based on Lamport’s Temporal Logic of Actions [5], for more complex proofs
(see [27]).

In this paper, we discuss how the advantages of a modular specification and verification in SPACE
can be exploited for the development of real-time systems. In particular, we introduce an extension
of the ESMs to so-called Real-Time ESMs (RTESMs) that make the specification of certain real-time
constraints possible. This allows to specify the real-time constraints, a building block requires from its
environment as well as the real-time properties guaranteed by itself. Moreover, we added UPPAAL [11]
to the set of model checkers supported by Arctis and realized an automatic transformation of each build-
ing block and RTESM into timed automata [11] that models relevant time constraints like state invariants,
transition guards and clock updates. The real-time properties stated in the RTESMs are translated into
formulas of the temporal logic Timed Computation Tree Logic (TCTL) [8]. Together the building blocks
of a system model form a network of timed automata that can be analyzed by UPPAAL for meeting the
TCTL formulas.

The article is arranged as follows: Section 2 presents the SPACE method. For that, we introduce
a building block of a real-life embedded system. In Sect. 3, we sketch the Timed Automata and their
verification with UPPAAL. Further, the RTESMs are presented. Section 4 discusses the compositional
character of the real-time behavior verification and presents the results of proving the real-time aspects
in our example. We verify in Sect. 5 that the compositional model checks are sufficient to guarantee
that the real-time properties are also met by the overall system. The paper is completed by references to
related work in Sect. 6 followed by some concluding remarks.

2 Arctis Building Block Model

In this section, we introduce the model-based development approach using SPACE and Arctis by
showing a component of a control system for electrical motors which has been developed by Asea Brown
Boveri, Ltd. (ABB).

The modeling and verification includes a list of functional units and test cases of a motor controller
system, which cooperate with each other realizing the start of the control software. We ignore the big
view of system collaboration and concentrate on the Safety Limited Speed System (SLS) component.
The SLS complies with the safety standard IEC 61800-5-2 [15] in order to guarantee that the speed of a
motor stays below a configurable maximum limit. To achieve that, this component is able to reduce the
motor speed or even initiate the stopping of the motor if necessary.

PAPAER C: Modeling and Verifying Real-Time Properties 109

powerUp

runningMode

disable

/status
start/

start/

speed/activateS+puFailure+stopped

speed/
setSLS/
/status

stop/stopped

puCompleted/status

reEnable/activateS+puFailure+stopped

/status

disableit/stop/stopped

powerUp

/activateSSE
start/

start/

speedExceedSLS

speed/slsCommand
/status

speed/slsCommand

runningMode

speed/
setSLS/
/status

speed/

activateSSE

speed/slsCommand
/activateS
speed/
/status

disable

/status

/activateS disableit/

disable

/status

disableit/ stop/stopped

runningMode

speed/
setSLS/
/status

stop/stopped
start/

reEnable/status

stop/stopped

powerUp

start/
/status

Figure C1. The External State Machine (ESM) of the SLS block

2.1 Interface of the SLS Building Block

To understand the functionality of the SLS block, we look first on its External State Machine (ESM)
which is depicted in Fig. C1.1 The ESM reflects nicely that, according to standard IEC 61800-5-2, the
SLS has six different control states. Thereby, the starting (•) and termination (•©) nodes of the ESM
refer to the state idle while the other states are represented by vertices containing the corresponding state
names:

idle: The motor control system is switched off.

powerUp: The motor control system is starting.

runningMode: The motor is running normally, i.e., it is below its maximum speed limit.

speedExceedSLS: The motor runs above its permitted speed limit but did not yet exceed the maxi-
mum time period after which it has to be shut down by executing the Safe Stop Emergency (SSE)
handler, another system component, that manages the execution of emergency stops of the motor.

activateSSE: The SSE handler was triggered and the motor was shut down.

disable: The SLS block is disabled after the power for the motor was removed and it cannot
produce any torque again.

The transfer of tokens between the activity of a building block and its environment is modeled by so-
called pins. That are syntactical constructs used in both the activity modeling the behavior of the block
and the one using it. The ESM of a building block models the interface behavior of a block by linking
each ESM transition to a number the block’s pins. The activity to which the block refers, may only carry
out a sequence of token flows if the pins passed in this sequence are exactly those linked to an ESM
transition that is executable in the current ESM state. For example, the initial transition from state idle
to state powerUp must only be carried out if a token passes the pin start. Transitions not changing the
state of the ESM are listed in the state identifiers, e.g., in state powerUp two transitions caused by tokens
passing one of the pins status or start may be executed without changing the ESM state.

In the transition markings, a pin identifier before the slash symbol (e.g., start /) marks that the transi-
tion is triggered by a token flow originating from the environment of the building block. In contrast, if

1To avoid the problem of a proper vertex placement when displaying an ESM, Arctis uses the hierarchical style listed in Fig. C1.

110 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure C2. Activity of Secure Limited Speed (SLS) Building Block

there is no pin ahead of the slash (e.g., / status), the transition is initiated by the block itself which starts
a flow towards its environment.

A combination of different pins on a single transition specifies that several pins are passed by token
flows in the same transition. For instance, speed / activateS + puFailure + stopped expresses that the
transition is triggered by an incoming token passing the pin speed which in the same step leads to tokens
leaving the block via the pins activateS, puFailure and stopped.

Altogether, our block uses 12 different pins to interact with its environment. They are sketched in the
following:

start: The start sequence of this block is initiated. The token uses a long integer as parameter
which describes the maximum speed limit of the motor.

puCompleted: A token passing this pin confirms that the powering up phase of the motor is fin-
ished.

speed: The current speed of the motor is sent as a long integer value in the tokens passing this pin.

slsCommand: A token leaving the SLS block through this pin contains a string which is a command
to the motor to reduce its speed.

activateS: A token passing this pin activates the Safe Stop Emergency (SSE) function stopping the
motor.

puFailure: By this pin, the environment of the SLS is notified of a failure in the powering up phase
due to an incoming speed or re-enabling signal.

status: Tokens passing this pin send status information about the SLS block in form of integer
values.

setSLS: By tokens passing this pin, the maximum speed limit may be altered. The tokens contain
a long integer carrying the new maximum speed.

disableit: This pin is used to disable the SLS block.

reEnable: A token through this pin re-enables the SLS block.

stop: Flows passing this pin switch off the SLS block.

stopped: This pin is a notification that the SLS block is terminated.

PAPAER C: Modeling and Verifying Real-Time Properties 111

The block is started by a token passing pin start and remains in state powerUp until a notification is
received via puCompleted. Thereafter, the system is in state runningMode in which the current speed
is received periodically. If the speed exceeds the given speed limit, the SLS block switches to state
speedExceedSLS which leads to control commands via pin slsCommand. The block stays in the state
speedExceedSLS until either the speed falls below the limit again after which it is set to state running-
Mode or a timeout happens. In the latter case, a token is sent via activateS to initiate an emergency stop
and the SLS block is set to the state activateSSE. Further, the system may be disabled as indicated by to-
kens via pin disableit. Thereafter, the block will be in state disable until it is re-enabled via pin reEnable
and reaches state runningMode. In addition, the SLS notifies its environment about its status by flows
through pin status. It is terminated either by an initiative from the environment which may send tokens
via pin stop or by erroneous speed or re-enabling signals during the power up phase. In the latter case,
the environment is also notified by a failure message via pin puFailure and an emergency stop command
via activateS.

2.2 Behavior of the SLS Component

As sketched in the introduction, system and building block behavior is modeled in SPACE and Arctis
by UML 2 activities [4]. The activity of the SLS block is depicted in Fig. C2. It contains the blocks
Timer Periodic and Timer 5 which were taken from an Arctis standard library and describe two different
kinds of timers. The block SLS Filter was created by the developer of the SLS block to handle the special
treatment of speed and re-enabling messages occurring in the power up phase. SLS Filter is a so-called
shallow block for which only the pins and the ESM have to be specified while Arctis generates the block
behavior automatically.

The 12 pins introduced above are specified as parameter nodes on the edge of the activity in Fig. C2
that we will also call “pins” for simplicity. A flow passing pin start is forwarded to the operation action
startSLS that contains a Java method of the same name. In this method, the limited speed value is
stored in the long integer variable LimitedSpeed while the block status, represented by the correspondent
variable, is set to the value active. Thereafter, the token proceeds to a fork node in which it is duplicated.
One token copy reaches the block SLS Filter to enable error handling of speed and re-enabling messages
during power up. The other copy starts the block Timer Periodic. From now on, this block will, in
intervals, create tokens leaving its pin tick and being forwarded via a merge node to the get variable
action GET status. Here, the current value of variable status is stored as a token parameter. Afterwards,
the tokens are sent to the environment via pin status. The completion of the powering up phase is notified
by a token entering the block via pin puCompleted. This token is duplicated in a fork. One copy switches
the block SLS Filter into normal mode such that speed and re-enabling messages are normally treated
while the other copy adjusts the status variable and issues a status output to the environment.

Speed messages reaching pin speed are forwarded to the block SLS Filter. If the block is in the power
up phase, the token is forwarded via pin error to a fork which generates three copies forwarded to the pins
activateS via an operation adjusting the status, puFailure and stopped. The pin stopped is a terminating
pin. When it is passed by a token, all remaining tokens in the system are removed and the three inner
blocks are set to their respective idle states. Thus, the SLS building block is re-initialized. If the power
up phase is already completed, the speed message is forwarded from block SLS Filter to the set variable
action SET currentSpeed storing the parameter of the token. Thereafter the flow reaches the operation
ExceedLimitedSpeed in which the current speed is compared with the speed limit. The token leaving this
block carries a boolean value. If the motor is on overspeed, it is forwarded from the decision node via
the edge true to a fork. One of the copies is forwarded to the operation slsCommand which generates the
speed reduction command leaving the block via pin slsCommand. The other token starts block Timer 5 to
enable an activation of the SSE system if the overspeed stays for a certain period of time, i.e., 1000 ms. If
the motor runs in normal speed, the token leaves the decision via the edge false which updates the status
and stops the timer. A timeout of the timer in block Timer 5 leads to a token passing pin activateS.

Disabling the SLS block by sending a token through pin disableit switches off Timer 5 since an
activation of the SSE is not allowed in the state disable. The block can be enabled again by a flow via
pin reEnable which during power up leads to an error handling while, otherwise, the block is re-enabled

112 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

followed by a status message. Further flows enable to change the limited speed via a token passing pin
setSLS and to stop the SLS building block using the pins stop and stopped.

Using the built-in Arctis model checker [22], we could easily prove that the activity listed in Fig. C2
fulfills the ESM depicted in Fig. C1 such that the block correctly realizes its interface behavior. This
block can now be combined with similar blocks of the motor control unit and, utilizing the Arctis code
generation, program code can be created.

3 Real-Time Extension

The two key performance requirements of the Safety Limited Speed (SLS) component can be stated
as follows:

1 Except for the idle and power up phases, a reduce speed command (slsCommand) should always
be executed when a speed notification showing overspeed of the motor is detected.

2 The activation of the Safety Stop Emergency (SSE) component shall be executed not later than
1000 ms after overspeed was detected, as long as the speed does not fall back below the limit in
this period.

The first requirement holds obviously since one can easily see from the activity in Fig. C2 that every
speed input showing overspeed leads to a slsCommand. Formally, that can be verified using the model
checker TLC [7].

The second requirement describes a typical hard real-time requirement that, before now, could not be
modeled and verified directly by the tool-set Arctis. To prove properties like this one, we had to extend
the SPACE syntax and the analysis capabilities of Arctis in a way that real-time properties including
bounded response-time guarantees can be modeled and verified as well (see also [16, 15, 16]). While
the semantics of SPACE is based on Lamport’s Temporal Logic of Actions (TLA) [5], we refrained from
using the corresponding way to model real-time [17, 10]. The problem is that in this method, real-time
is specified by real numbered values which would lead to systems enclosing huge (or even infinite) num-
bers of states that exceed the ability of TLC and other model checkers. Thus, we would need to use
either manual verification or rely on theorem provers requiring a significant verification guidance such
that carrying out the proofs would be long-lasting and tedious. Therefore we decided to base the sys-
tem extension on Timed Automata [11] and the verification tool UPPAAL [11] which are sketched in
Sect. 3.1. We decided to extend the ESMs by annotations that make it possible to model real-time prop-
erties which have to be kept by both the building block to which the ESM belongs and its environment.
The resulting Real-Time External State Machines (RTESMs) are introduced in Sect. 3.2. Together with
the activities, they are transformed to Timed Automata which form the input for the UPPAAL-based
proofs. The corresponding mapping is described in Sect. 3.3.

3.1 Timed-Automata and UPPAAL

Several approaches to model real-time properties are available, e.g., IO automata [19], hybrid au-
tomata [20] and timed statecharts [21]. We decided to apply Timed Automata (TA) [11] which were
employed by Rajeev Alur and David Dill in 1990 since TAs fit excellently with SPACE and Arctis and
provide a powerful model checking environment as we will discuss below. Timed Automata are extended
finite state machines which allow to specify real-time values as environment clock variables. These vari-
ables are synchronized with the clock such that they express natural time elapsing. Each variable may be
set or reset when the state machine carries a certain transition. Further, one may define so-called clock
invariants restricting the time, a state machine may rest in a certain state of a TA.

UPPAAL [11] is a modeling and verification tool for Timed Automata which is suited to verify that
a system fulfills certain real-time properties. It enables to express systems consisting of various timed
state machines, so-called templates, which can run in parallel and interact via synchronization channels.
A TA transition can be amended by the following annotations:

Guards: A transition may only be taken if its guard is true.

PAPAER C: Modeling and Verifying Real-Time Properties 113

startOrContinue/

startOrContinue/
z=0

active z<1000

stop/stopped

/stop/stopped /timeout
urgent

Figure C3. Real-Time External State Machine (RTESM) of block Timer 5

Synchronization: Timed automata exchange signals with each other synchronously by send (!)
and receive (?) signal pairs. The synchronization supports binary transmissions from a timed
automaton to another one as well as broadcasts. In the latter case, a signal is sent by one timed
automaton and received by various others.

Updates: The environment variables are updated when a transition is carried out.

The clocks, invariants, guards, and updates of the timed automata are represented in UPPAAL as anno-
tations of the state machines using a C-like syntax. Further, timed properties to be verified are expressed
as formulas in a subset of the branching-time temporal logic Timed Computation Tree Logic (TCTL) [8].

3.2 Real Time External State Machines

We extend the ESMs in SPACE to Real-Time External State Machines (RTESMs) by introducing also
environment clock variables, clock invariants and updates. This well-arranged concept of the Timed
Automata allows to model real-time properties to be fulfilled by the interface behavior of building blocks
in an easily understandable way. Like in the TAs, the states may contain clock invariants determining
how long the RTESM may stay in a state. However, the initial and terminating states must not contain
clock invariants. The RTESM transitions may contain updates to manage the environment variables.

As an example, we depict the RTESM of the Arctis building block Timer 5 in Fig. C3. This block
realizes a persistent timer running 1000 ms after being started via a token through pin startOrContinue
until it issues a token via pin timeout. The time is expressed by the clock variable z which is set to its
initial value 0 when the transition startOrContinue is executed for the first time switching the RTESM
from the state idle to active. When further tokens pass the pin startOrContinue in state active, z is not
set to 0 which models the persistence property of the timer. The state active is provided with the clock
invariant z < 1000 stating that the RTESM may only stay less than 1000 ms in this state before it has
to be left, i.e., an urgent action (timeout) has to be taken when the timer reaches 1000 ms. Transitions
representing urgent actions are marked with the label urgent. These constructs allow to model bounded
liveness properties [16], e.g., guaranteeing that the transition timeout must be executed if it, otherwise,
will be continuously enabled. In Sect. 4, we show that the urgent transitions are used to find out whether
a clock invariant is guaranteed by the activity of the building block to which the RTESM is assigned
or by the one carrying the block identifier. To guarantee that this is unambiguously defined, each state
containing a clock invariant must have at least one downstream edge marked as urgent and all urgent
edges leaving the same source state have to be either triggered by the activity in the block or the one
modeling the environment.

The RTESM of the block Timer 5 states that, as long as the timer is not stopped (transition stop/stopped)
resp. deleted together with the block including it (transition /), a token has to pass pin timeout before the
1000 ms limit is reached. That is exactly the real-time property we like to be guaranteed by the building
block.

3.3 Mapping from SPACE to UPPAAL

The reactive SPACE semantics [5] defines the UML 2 activities as state transition systems in a run-to-
completion fashion. The states are represented by tokens resting on activity vertices and edges. A token
may stop only on activity nodes modeling system elements demanding it to wait for a certain period of

114 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

time outparameter out

t1

restart

p1

a) Arctis Models

b) UPPAAL Models

synchronization

 signal
time out

p1?
internal

external
p1!

restart

_reset?

p1

parameter in

p1!

synchronization

signal

p1?
t1<value

t1=0

Activity

FinalNode

_reset!

Initial

Node

Figure C4. Mapping between the Activity Behavior and TAs

time. Besides initial nodes describing the token setting at system start, there are receiving nodes at which
a token has to wait for a signal from an external event source. Likewise, tokens reaching timer nodes
have to wait for a fixed perioded of time. Further, a token may wait on the edge leading to a join node
which, being the complement of a fork, synchronizes various tokens, i.e., only when tokens are reaching
all of its input edges, one of them may pass the join. In analogy to Petri-nets, we call the nodes and
edges, on which tokens may rest, inner places. At most one token may wait at the same time on an inner
place.

A collaborative building block as discussed in [22] refers to various components which are represented
in its activity by different partitions. Thus, edges crossing a partition border model the interchange of
signals between the components. Since the communication is asynchronous, these edges include queue
places on which tokens rest during transfer. In contrast to the inner places, queue places may contain
various tokens at the same time. They are stored in a FIFO queue with a limited queue size.

In the SPACE semantics, a transition corresponds to a so-called activity step, in which a token starts
at an inner or queue place and moves forward on the activity graph in a run-to-completion fashion until
it reaches another place respectively a final node on which it is deleted. If the token passes an operation,
the corresponding Java method is executed. If the pass of the token goes via a fork node, on which it is
duplicated, all copies are handled within the same activity step. Likewise, the jumping of a token between
activities via the pins takes place within a single activity step. The reactive nature of the semantics is
guaranteed since any transition is triggered by the reception of a signal or a timeout. The semantics
facilitates an automatic transformation of the activities to executable UML 2 state machines [17] from
which Java code can be generated.

By our Arctis to UPPAAL mapping algorithm introduced below, an Arctis building block is trans-
formed into a network of Timed Automata (TAs). To facilitate the understanding of this transformation,
we distinguish so-called internal TAs, which are generated from the activities, from external TAs trans-
formed from the RTESMs. The states of an internal TA correspond to the different token settings on the
queue and inner places of an activity while the activity steps are mapped to the TA transitions. Some
aspects of the mapping of Arctis activities to internal TAs are highlighted in Fig. C4:

A token arriving at an activity via pin p1 is translated to a binary synchronization channel in which
the internal TA carries out a receive signal (p1?).

A token leaving an activity via pin p1 is mapped to a binary synchronization channel in which the
internal TA executes a send signal (p1!).

A timer t1 in an activity is transferred to a node of the internal TA, which is provided with an
environment clock variable that is set to 0 by the upstream edge to this node. Further, a clock
invariant states that the TA may only be in the state if the upper bound limit of the clock is not yet
reached (expressed as t1 < duration).

A terminated building block (e.g., by a token reaching an Activity Final Node (•©), may be
restarted at any time. To model this property also in the TAs, we add special reset transitions
from the final node to the initial node using a broadcast channel reset.

PAPAER C: Modeling and Verifying Real-Time Properties 115

1 2 1 c 2

c

c
b) UPPAAL Modelsa) Arctis Models expressed as

 executable SM

a/b+c a? b!
c!

c!

b!

Figure C5. Several pins in an RTESM transition

In practice, a UML activity is first transferred into an executable state machine using the Arctis transfor-
mation tool. Thereafter, this state machine is automatically transformed to the internal TA following the
mapping sketched above.

Similar to the TAs, the RTESMs are state transition systems which allow for a direct mapping of
the states including the clock invariants. The RTESM transitions are transformed to send and receive
signals of the synchronization channels representing the pins with which they are annotated. As shown
in Fig. C4, all token flows leaving a building blockB are specified in the external TAs modelingB’s own
RTESM and the ones of its inner blocks as receive signals (p1?). This is the case since, from B’s view,
the RTESMs represent the activities of its environment respectively the activities of the inner blocks
which all receive the tokens sent by B. Likewise, token flows heading towards B are modeled in the
external TAs by send signals (p1!).

An issue to be treated when mapping RTESM transitions to transitions of the external TAs, is that the
RTESM transitions may refer to various pins while TAs do not allow to combine different synchroniza-
tion channels in a single transition. We address that by sequences of TA transitions following the order
of the pins. This leads to intermediary states that are declared as committed locations, i.e., states not
modeling any passing of time. For pins which may be executed in parallel, we provide separate paths
enabling any communication order. According to our experience, the additional states do not have an
appreciable impact on the model checker performance.

An example is shown in Fig. C5. Here, due to the RTESM transition, a building block receives first
a token via pin a which, in the same activity step, leads to two tokens leaving the block via b and c in
parallel. In the corresponding external environment TA, first a receive signal via channel a is received
which leads to an interleaving of sending signals via b respective c. Finally, like in the internal TAs we
use special reset transitions from the final to the initial nodes to model that RTESMs can be restarted at
any time.

As an example of mapping an RTESM to an external TA, we use the RTESM of block Timer 5
depicted in Fig. C3 and the resulting external TA shown in Fig. C6. We see that the three states of
the RTESM. i.e., active as well as the initial and final states are mapped to three states active, initial
and final in the external TA. Further, two committed locations (©) are used to treat the two RTESM
transitions stop/stopped. Since this external TA shows the view from the block Timer 5, the transition
startOrContinue/ which is originated from the environment of this block is represented as a send signal.2

The environment variable z and the invariant on the state active are directly mapped to the external TA.
The restart of the RTESM is specified by the transition reset?.

To prove that a building blockB fulfills the real-time properties stated in its own RTESM and the ones
of its inner blocks, we use the transformations introduced above to create a network of TAs. It consists
of the inner TA representing B’s activity as well as the external TAs mapped from its RTESM and the
ones of its inner blocks. In the next section, we show how this network is used to prove with UPPAAL
that the real-time properties stated in the RTESMs are kept.

4 Compositional Verification of Real-Time Behavior

As mentioned in the introduction, an advantage of using ESMs to model the interface of building
blocks is that the number of states to be inspected by the model checkers can be kept smaller than in
monolithic proofs. This results from the fact that the ESMs represent the behavior of both the environ-
ment of a block and its inner blocks in a more abstract way. The verification of properties is provided in

2If we create the external TA of this RTESM from the viewpoint of the environment of Timer 5, e.g., block SLS in Fig. C2, startOrContinue/ is
modeled as a receive signal.

116 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure C6. External block TA of building block Timer 5

Figure C7. Internal TA of building block Timer 5

two separate steps (see [22, 27]). First, one verifies for each instance C of a building block in a SPACE
system model that C’s activity as well as the one of its environment block B fulfill C’s ESM. Thereafter,
if we want to prove that B meets certain properties, we can replace the activities of its inner blocks (e.g.,
C) with their ESMs. Since these ESMs usually contain less states than the corresponding activities as
they do not model internal behavior, this reduces the state space of the model checker runs significantly.

We aim at using this kind of compositional verification also for the UPPAAL-based real-time proofs.
As introduced in Sect. 3, we express real-time properties in form of states with clock invariants defined
in the RTESMs. Moreover, each clock invariant is guaranteed by exactly one of the two activities to
which an RTESM refers. To model which activity indeed has to guarantee a clock invariant, we use the
labels of type urgent that are assigned to transitions leaving RTESM states with clock invariants. For
instance, the clock invariant of state active in Fig. C3 has to be guaranteed by the block Timer 5 since
the transition /timeout, that is labeled urgent, is triggered from this block. Below, we describe clock
invariants guaranteed by the inner activity of the block as cib and the ones realized by the environment
activity as cie. The verification of the two types of clock invariants is conducted by proving that the
activity of a blockB fulfills all clock invariants of type cib of its RTESM as well as all the clock invariants
of type cie in the RTESMs of its inner blocks. As discussed in Sect. 5, these verifications are sufficient
to allow reducing the proof that a system Sys fulfills a real-time property P to the verification that an
activity A in Sys implies P as long as we represent the environment of A as well as its inner blocks by
the respective RTESMs.

To prove that a block B indeed fulfills the mentioned clock invariants, the transformation tool uses
the network of internal and external TAs described at the end of Sect. 3. It makes first a state space
exploration of the combined states of this network and mark all those combined states to which one of
the external TAs participate with a state containing a clock invariant that has to be guaranteed by B. For
instance, to prove that the clock invariant z < 1000 in state active of the external TA of block Timer 5
in Fig. C6 is met, we extract all combined network states in which active is the state component of this
TA. This, are altogether five states to which the internal TA of Timer 5 (see Fig. C7) participates with its
states s1 to s5.

For each state of the internal TA, that refers to a marked combined state but is not a committed location,
we create a TCTL invariant stating that in this state the clock invariant of the corresponding state in the

PAPAER C: Modeling and Verifying Real-Time Properties 117

external TA is fulfilled. In our example, s3 is the only one of the five states that is not a committed
location such that we create the following invariant specified in the TCTL subset accepted by UPPAAL:

A[](Timer5iTA.s3 imply T imer5eTA.z < 1000) (1)

Here, the designators Timer5iTA and Timer5eTA refer to the internal resp. external TA of Timer 5.
Thereafter, we verify the created TCTL invariants with UPPAAL. It accepts formula (1) since the

clock invariant of state s3 modeling a timer node guarantees that state s6 or final will be reached within
1000 time units resulting that the external TA leaves its state active within this period of time as well.

It is sufficient to prove the TCTL invariants generated by our tool since all other states s of the internal
TA fulfill at least one of the following two properties:

1 The state s is a committed location. In this case, it is per definition timeless and will be left
without any elapsing of time. By the built-in Arctis model checker, we proved that the activity
of the analyzed block is in compliance with its ESMs. This guarantees by construction that, if an
internal TA awaits a signal in a committed location, the external TA sending this signal is also in a
committed location such that the signal is immediately sent.

2 The state s does not participate in a combined state of the network of TAs to which one of the ex-
ternal TAs participates with a state carrying a clock invariant. The internal TA may rest arbitrarily
long in state s since that does not violate any real-time properties.

4.1 Proving the Real-time Property of the SLS Block

Using the method described above, we can verify the second property stated in Sect. 3, i.e., that the
motor may be permanently in overspeed for at most 1000 ms until the Safety Stop Emergency (SSE)
component is activated. For the proof of this property, we use a network containing the internal TA of
the SLS block depicted in Fig. C8 that we call iSLS below. The network includes also an external TA
representing the RTESM of the SLS block. It corresponds with the ESM shown in Fig. C1 but is amended
with an environment clock variable z and a clock invariant z < 1000 stating the RTESM does not remain
longer than 1000 time units (i.e., milliseconds) in the state speedExceedSLS. Further, the external TA of
the block Timer 5, named ebT5 in the following, is part of the network. It corresponds with the TA listed
in Fig. C6 but with permuted send and receive signals since, here, we reflect the view on the RTESM
from the environment of block Timer 5. Finally, the network contains the RTESMs of the other two inner
blocks Timer Periodic and SLS Filter.

For easier understanding, we colored the transitions of iSLS that are synchronized with the ones of
ebT5 in red. The state s14 on the right upper corner of the graph in Fig. C8 indicates the state that
overspeed was detected but the SSE not yet triggered. This state can only be reached from state s2 on the
top center if a startOrContinue signal is sent to Timer 5. Thus, ebT5 will be in state active which it has
to leave within 1000 ms according to its clock invariant. The state active is left if iSLS moves to state
s2 since it sends a c1stop (c1 is the instance name of Timer 5 in activity SLS) signal to ebT5. This path
models that the speed has fallen below the critical limit again. Likewise, c1stop is transmitted to ebT5
on the path to state s12 modeling that the SLS block was disabled. Also the pass to s22, indicating that
the SLS block was stopped, allows ebT5 to leave its state active since then the guard of the spontaneous
transition to the final state is true. If not one of these three passes are followed, iSLS remains in s14 or
one of the committed locations through which one circles back to s14 when a new overspeed notification
is handled. Due to the clock invariant in ebT5, a time-out signal will be sent within 1000 ms, after which
iSLS reaches a committed location such that it immediately sends an activateS signal to its environment
which basically guarantees the key requirement.

The states s14 and s28 are the only not committed states in iSLS which refer to state speedExceedSLS
in the RTESM of the SLS block. Therefore the transformation tool just created the following invariant
with clock sls describing the external interface time constraints of the SLS building block:

A[](SLSiTA.s14||s28 imply SLSeTA.sls < 1000) (2)

118 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure C8. Internal timed automaton of SLS building block

Due to the clock invariant of the RTESM of block Timer 5 that we proved in formula (1), UPPAAL
accepted this invariant as being correct. Running on an Windows 7 laptop system with 8 GB memory
and an Intel(R) Core(TM) 2 Duo 2.40 GHz CPU, the verification of formula (2) took 0.004 second,
27352 KB of virtual memory and 7576 KB of resident memory at peak. The proof of formula (1) needed
even less computing resources.

5 Correctness of the Compositional Verification

In Sect. 4, we pointed out that it is sufficient to prove certain TCTL invariant formulas with UPPAAL
to verify that the activity of a block B together with real-time properties fulfilled by B’s environment
and its inner blocks guarantees a certain real-time property P. To make these checks practically feasible,

PAPAER C: Modeling and Verifying Real-Time Properties 119

however, it has to be confirmed that the UPPAAL-based checks are sufficient to guarantee that P is also
met by the system Sys containing block B. In theory, Sys might contain other building blocks which
impede or delay the execution of crucial transitions leading to a violation of P. In the following proof,
we establish that our compositional concept using RTESMs as behavioral interfaces rules such real-time
hampering behavior out.

A system Sys in SPACE and Arctis can be seen as a tree structure of building blocks since any inner
block of an activity may contain inner blocks as well. For example, the block Timer 5 uses a shallow
block (see Sect. 2.2) from an Arctis library filtering out all but the first token reaching the block via
pin startOrContinue. In this tree, an activity Ab is the parent of another activity Ac if Ac is the inner
activity of block c and Ab its environment activity. If we want to prove that a system Sys modeled in
Arctis fulfills a certain invariant real-time property P, this corresponds to the verification of the following
equation: ∧

b∈Act(Sys)
Ab ⇒ P (3)

Here, Act(Sys) refers to the set consisting of all the activities specifying system Sys.
To utilize the compositional nature of our verifications, however, we want to verify that P is fulfilled by

a single activity Ab together with its RTESMs as discussed in Sect. 4. For example, the proof in Sect. 4.1
shall be sufficient to assure that the overall motor control system guarantees the real-time property stated
in Sect. 3. A UPPAAL-based proof, that a real-time property P stated as TCTL formulas is kept by a
network of TAs, corresponds to equation

Ab ∧ cib ∧
∧

c∈Chld(b)
cic ⇒ P (4)

where cib denotes that the clock invariants in the RTESM of activity Ab are met by block b or its environ-
ment. Chld(b) refers to the set of b’s children in the tree mentioned above. In consequence, we have to
justify that proving equation (4) is sufficient to guarantee equation (3). This can be achieved by verifying
the following fomula: ∧

b∈Act(Sys)
Ab ⇒ ∀b ∈ Act(Sys) : cib ∧

∧
c∈Chld(b)

cic (5)

It is evident that the conjunction of equations (4) and (5) directly implies equation (3).
For the proof that equation (5) holds, we utilize the proceeding model checkers use to verify invariants.

A model checker proves that the invariant is fulfilled by the initial states of a system and that none of the
system transitions falsifies the invariant if it holds before. In consequence, the invariant is fulfilled by
all reachable states of the system. Be Sb the set of all reachable states of activity Ab and InitSb

⊆ Sb
the set of its initial states. The SPACE approach is constraint-oriented (see [23]). That means, all state
designators (i.e., queue and inner places resp. variables) are assigned to exactly one activity. Thus,
we can define the system state space as the Cartesian product of all state sets in the activities (i.e.,
SSys , S1 × . . . × Sn if Sys = {1, . . . , n}). The set of initial system states is defined as InitSys ,
{〈s1, . . . , sn〉 : si ∈ InitSi}. By the function ls , (s : SSys, a : {1, . . . , n}) → Sa, we map a system
state s to the state component expressing the state of activity a.

Be T̂b ⊆ Sb × Sb the set of activity steps carried out in activity Ab. Then we define the transitions
of this activity as Tb = T̂b ∪ {〈s, s〉 : s ∈ Sb} allowing also stuttering steps in which the activity does
not change its state. So, we can define the set of system transitions TSys , T1 × . . . × Tn since, in a
constraint-oriented model, each component takes part by either a local transition or a stuttering step in a
system transition. Moreover, we use a mapping lt , (t : TSys, a : {1, . . . , n}) → Ta to access the local
transition of activity a carried out in the system step t. Now we can express formula (5) as the conjunct
of the two following equations:

∀s ∈ InitSys∀b ∈ Act(Sys) :
cib(ls(s, b)) ∧

∧
c∈Chld(b) cic(ls(s, c))

(6)

120 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

∀s, s′ ∈ SSys∀b ∈ Act(Sys) :
lt(〈ls(s, b), ls(s′, b)〉, b) ∈ Tb
∧cib(ls(s, b)) ∧

∧
c∈Chld(b) cic(ls(s, c))

⇒ cib(ls(s
′, b)) ∧

∧
c∈Chld(b) cic(ls(s

′, c))

(7)

Here, cib(s) states that the clock invariants of the RTESM of activity Ab hold in its state s. Equation
(6) is trivially true since in the initial system state all the RTESMs are in their idle states that must not
carry any clock invariants. Equation (7) is guaranteed by the TCTL invariant proofs discussed in Sect. 4.
There, we proved by UPPAAL for every activity Ab that the clock invariants of its own RTESM as well
as the ones of its inner blocks are guaranteed after carrying out any of its local transitions as long as they
were preserved also before. Since Ab participates in a system transition either by a local activity step or
a stuttering step, this implies formula (7) directly.

Thus, by combining the various proof steps discussed above, we verified that one can replace a com-
plex UPPAAL proof using all the internal TAs of the involved Activities, i.e., equation (3), by a number
of much simpler RTESM proofs, i.e., the verifications of the clock invariants fulfilling formula (7), as
well as a property proof using the RTESMs of the inner blocks of an activity, i.e., equation (4). In all
these proofs, a much smaller number of system states has to be checked such that the compositional
verification is a useful means to circumvent the state space explosion problem.

6 Related work

Proposing model-driven development and verification of real-time systems using UML models is not
a new idea. Similar to us, David et al. [24] extend UML statechart diagrams with real-time constructs
and translate the resulting formalism (Hierarchical Timed Automata) into networks of TAs that can also
be checked with the tool UPPAAL. In contrast to us, however, they do not utilize the structure of their
models to reduce the verification overhead as we do by applying compositional verification. In [25],
Knapp et al. describe their prototype tool HUGO/RT for the modeling of a generalized realroad crossing
(GRC) problem. The control state machines of models are translated into Timed Automata in UPPAAL
verifying the safety and utility properties of the GRC problem. In [10], Graw et al. suggest to use
cTLA, a compositional extension of the Temporal Logic of Actions TLA [5], for the formal verification
of UML models that describes real-time behaviors of a system. In [26], Furfaro and Nigro specify
the translation of models in the formal language H-CRSM, which can also be used for the modular
development of reactive real-time systems, to TAs in UPPAAL. In [27], Dong et al. summarize a series
of patterns when modeling real-time systems using timed automata and provide a translation from a real
time specification language, i.e., timed communication sequential process (CSP), to timed automata to
facilitate the verification capabilities in UPPAAL.

Abstracting program code is another way to prove real-time constraints. For instance, Chaki et al.
describe in [28] the tool MAGIC which is capable to abstract C-code into Labeled Transition Systems
(LTSs) preserving the real-time properties of the code. Similarly, Gong et al. [29] construct UPPAAL
models directly from source code in order to check various real-time, safety and liveness properties.

7 Conclusion and Future Work

In this paper, we presented an extension of our model-based engineering approach SPACE for reactive
systems to support also the description and model checker-driven verification of real-time properties. In
particular, we extended the External State Machines (ESMs) describing the interfaces of our building
blocks to Real-Time ESMs (RTESMs) which enable to specify invariant real-time properties fulfilled by
a building block and its environment. This approach allows for an automated transformation to Timed
Automata and, in consequence, verification using the model checker UPPAAL. As shown, the approach
makes it possible to use compositional verification reducing the state space to be checked significantly.

In its present state, our approach does not consider time-delays caused by executing the activity steps
and, in particular, the Java methods which are supported by our current platform. In the ongoing research,
we propose to take the execution time into consideration, and associate a building block with a task
model. For that purpose, we can apply code level benchmarking techniques to evaluate and predicate the

PAPAER C: Modeling and Verifying Real-Time Properties 121

best cast execution time (bcet) and worst case execution time (wcet). In the model level, we propose to
translate building blocks into Timed Automata as Task models (see [31]), such that the performance and
schedulability of a building block can be analyzed by such task models.

Already in its present state we consider our approach meaningful since it allows to detect real-time
flaws in system designs which can already be found and corrected in the early development phase of sys-
tem modeling. Due to the compositional verification, we can use the approach for real-life applications
like the speed control protection mechanism for motors introduced in this paper. As missing real-time
constraints are a major issue for the violation of safety properties, we consider this work as a suitable
extension to our endeavor for the creation of safe embedded systems (see, e.g., [27]). The Arctis tool
including standard libraries of building blocks is available from Bitreactive AS.3

3http://www.bitreactive.com

Bibliography

[1] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications. Kluwer Aca-
demic Publishers, 1997.

[2] F. A. Kraemer, “Engineering Reactive Systems: A Compositional and Model-Driven Method Based on Collaborative
Building Blocks,” Ph.D. dissertation, Department of Telematics, Norwegian University of Science and Technology
(NTNU), 2008.

[3] F. A. Kraemer, V. Slåtten, and P. Herrmann, “Tool Support for the Rapid Composition, Analysis and Implementation of
Reactive Services,” Journal of Systems and Software, vol. 82, no. 12, pp. 2068–2080, 2009.

[4] Object Management Group, “Unified Modeling Language: Superstructure, Version 2.3,” 2010.

[5] F. A. Kraemer and P. Herrmann, “Reactive Semantics for Distributed UML Activities,” in Formal Techniques for Dis-
tributed Systems, Joint 12th IFIP WG 6.1 Int. Conf. (FMOODS10) and 30th IFIP WG 6.1 Int. Conf. (FORTE10), ser.
Lecture Notes in Computer Science, J. Hatcliff and E. Zucca, Eds., vol. 6117. Springer, June 2010.

[6] ——, “Automated Encapsulation of UML Activities for Incremental Development and Verification,” in Proceedings of
the 12th Int. Conference on Model Driven Engineering, Languages and Systems (MoDELS), ser. LNCS, A. Schürr and
B. Selic, Eds., vol. 5795. Springer-Verlag, Oct. 2009, pp. 571–585.

[7] Y. Yu, P. Manolios, and L. Lamport, “Model Checking TLA+ Specifications,” in Proceedings of the 10th IFIP WG 10.5
Advanced Research Working Conference on Correct Hardware Design and Verification Methods (CHARME99). London:
Springer-Verlag, 1999, pp. 54–66.

[8] L. Lamport, Specifying Systems. Addison-Wesley, 2002.

[9] V. Slåtten, F. A. Kraemer, and P. Herrmann, “Towards Automatic Generation of Formal Specifications to Validate and
Verify Reliable Distributed Systems: A Method Exemplified by an Industrial Case Study,” in Proceedings of the 10th
ACM International Conference on Generative Programming and Component Engineering (GPCE11). ACM, 2011, pp.
147–156.

[10] J. Bengtsson, F. Larsson, P. Pettersson, W. Yi, P. Christensen, J. Jensen, P. Jensen, K. Larsen, and T. Sorensen, “UPPAAL:
A Tool Suite for Validation and Verification of Real-Time Systems,” 1996.

[11] R. Alur and D. Dill, “Automata for Modeling Real-Time Systems,” in Automata, Languages and Programming, ser.
Lecture Notes in Computer Science, M. Paterson, Ed. Springer Berlin / Heidelberg, 1990, vol. 443, pp. 322–335.

[12] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-Checking for Real-Time Systems,” in 5th Symposium on Logic in
Computer Science (LICS90), 1990, pp. 414–425.

[13] IEC, “International Standard 61800-5-2, Adjustable Speed Electrical Power Drive Systems — Part 5-2: Safety Require-
ments – Functional,” July 2007.

[14] L. Aceto, A. Burgueno, and K. Larsen, “Model Checking via Reachability Testing for Timed Automata,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture Notes in Computer Science, B. Steffen, Ed. Springer
Berlin / Heidelberg, 1998, vol. 1384, pp. 263–280.

[15] L. Aceto, P. Bouyer, A. Burgueno, and K. G. Larsen, “The Power of Reachability Testing for Timed Automata,” Theoret-
ical Computer Science, vol. 300, pp. 411–475, May 2003.

[16] M. Lindahl, P. Pettersson, and W. Yi, “Formal Design and Analysis of a Gear Controller,” in 4th International Workshop
on Tools and Algorithms for the Construction and Analysis of Systems, ser. Lecture Notes in Computer Science, vol. 1384.
Springer Verlag, 1998, pp. 281–297.

[17] M. Abadi and L. Lamport, “An old-fashioned recipe for real time,” ACM Transactions on Programming Languages and
Systems, vol. 16, pp. 1543–1571, 1994.

124 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

[18] G. Graw, P. Herrmann, and H. Krumm, “Verification of UML-based real-time system designs by means of cTLA,” in
Proceedings of the 3rd IEEE International Symposium on Object-oriented Real-time distributed Computing (ISORC2K).
Newport Beach: IEEE Computer Society Press, 2000, pp. 86–95.

[19] N. A. Lynch and N. Shavit, “Timing-Based Mutual Exclusion,” in IEEE Real-Time Systems Symposium. IEEE Computer
Society Press, 1992, pp. 2–11.

[20] T. A. Henzinger, “The Theory of Hybrid Automata,” in 11th Annual IEEE Symposium on Logic in Computer Science.
IEEE Computer Society Press, 1996, pp. 278–292.

[21] K. Kesten and A. Pnueli, “Timed and Hybrid Statecharts and their Textual Representation,” in Formal Techniques in
Real-Time and Fault-Tolerant Systems. Springer-Verlag, 1992, pp. 591–620.

[22] F. A. Kraemer and P. Herrmann, “Transforming Collaborative Service Specifications into Efficiently Executable State
Machines,” ECEASST, vol. 6, 2007.

[23] R. Kurki-Suonio, A Practical Theory of Reactive Systems — Incremental Modeling of Dynamic Behaviors. Springer-
Verlag, 2005.

[24] A. David, M. O. Müller, and W. Yi, “Formal Verification of UML Statecharts with Real-Time Extensions,” in Fundamental
Approaches to Software Engineering (FASE02), ser. Lecture Notes in Computer Science, vol. 2306. Springer-Verlag,
2002, pp. 218–232.

[25] A. Knapp, S. Merz, and C. Rauh, “Model checking - timed uml state machines and collaborations,” in Proceedings of the
7th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems: Co-sponsored by IFIP WG
2.2, ser. FTRTFT ’02. London, UK, UK: Springer-Verlag, 2002, pp. 395–416.

[26] A. Furfaro and L. Nigro, “Model Checking Hierarchical Communicating Real-Time State Machines,” in 10th IEEE Con-
ference on Emerging Technologies and Factory Automation (ETFA05), vol. 1, Sept. 2005, pp. 6 pp. –370.

[27] J. S. Dong, P. Hao, S. Qin, J. Sun, and W. Yi, “Timed automata patterns,” Software Engineering, IEEE Transactions on,
vol. 34, no. 6, pp. 844–859, 2008.

[28] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith, “Modular Verification of Software Components in C,” IEEE Trans-
actions on Software Engineering, pp. 385–395, 2003.

[29] X. Gong, J. Ma, Q. Li, and J. Zhang, “Automatic Model Building and Verification of Embedded Software with UP-
PAAL,” in 2011 IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE Computer Society Press, Nov. 2011, pp. 1118–1124.

[30] C. Norstrom, A. Wall, and W. Yi, “Timed Automata as Task Models for Event-Driven Systems,” in Real-Time Computing
Systems and Applications, 1999. RTCSA ’99. Sixth International Conference on, 1999, pp. 182 –189.

PAPER D

Modeling Real-Time System Performance with Respect to Scheduling
Analysis

Fenglin Han and Peter Herrmann

Proceedings of the 2013 International Joint Conference on Awareness Science and Technology and Ubi-
Media Computing (iCAST 2013 & UMEDIA 2013). Aizu city, Japan, 2013.

MODELING REAL-TIME SYSTEM
PERFORMANCE WITH RESPECT TO
SCHEDULING ANALYSIS

Fenglin Han
Norwegian University of Science and Technology,

Trondheim, Norway

sih@item.ntnu.no

Peter Herrmann
Norwegian University of Science and Technology,

Trondheim, Norway

herrmann@item.ntnu.no

Abstract The development and analysis of embedded real-time system is complex due to its platform and application de-
pendencies. To tackle this complexity, we amended the model-based engineering method SPACE to enable also
the modeling, simulation and verification of real-time properties of reactive systems. In this paper, we present
a further extension making performance estimations and schedulability analysis of reactive real-time building
blocks possible. First, a performance profile for evaluating real-time tasks of a building block is outlined. Sec-
ond, we present the schedulability analysis of a high level real-time system which is carried out by transforming
real-time interface descriptions to timed automata that are composed with automata simulating hardware and
scheduling policies.

Keywords: Real-time embedded systems, SPACE, performance evaluation, UML, timed automata.

1 Introduction

Developing reactive real-time systems is challenging since such systems have to maintain an ongoing
interaction with their environment in a timely way. To achieve this, the hard real-time control of a
system requires the fulfillment of stringent reliability, availability, and safety requirements. Model-based
development and analysis of real-time systems (see, e.g., [1]) is considered suitable to guarantee that
these requirements are kept. Further, model-based development also enables stepwise engineering with
varying degrees of abstraction which facilitates a better understanding of the system properties.

SPACE is a model-based engineering method for developing reactive distributed systems. Together
with its tool suite Arctis1, it is designed in order to utilize all visual modeling, software verification and
compositional system development [2, 22]. In particular, SPACE uses compositional building blocks as
specification units and integrates verification and simulation techniques for developing software systems.
According to our experience, up to 70% of a system model can be developed by reusing building blocks
from libraries [16]. The SPACE method uses UML activity diagrams to model behavior and takes advan-

1Arctis is marketed by Bitreactive AS under the name Reactive Blocks, see www.bitreactive.com.

128 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

tage of so called External State-Machines (ESM) for system abstraction and system composition [16].
The activities and ESMs use a formal semantics based on the Lamport’s Temporal Logic of Action (TLA,
a branch of LTL) [5] (see [20]).

In [7], we extended the ESMs of the compositional building blocks to so-called Real-Time External
State Machine (RTESM) with clock variables, state invariants and constraint annotations such that real-
time properties, e.g, timeliness and time constraints, can be modeled and verified. The SPACE models
can be translated into formal specifications in TLA [5] or TCTL [8] (see [9, 7]) such that software reliabil-
ity and safety can be verified for both, functional [22] and non-functional [10] aspects. Currently, Arctis
supports only the creation of Java-based systems, but extensions for C and C++ are under development.

In this paper, we first summarize the extension of SPACE to real-time embedded system design and
analysis, i.e., the RTESM and its usage of compositional specification and verification of real-time sys-
tems introduced in [7]. Thereafter, we present the main contribution of this paper, i.e., a framework for
component performance measurement and prediction. In particular, a set of non-functional attributes
for real-time software components is defined by annotations to facilitate the non-functional analysis.
Afterwards, we present a component performance measurement and schedulability analysis method.

The paper is arranged as follows: Sect. 2 summarizes the Real-Time External State Machine (RTESM)
of our specification style and discusses how compositional verification is made possible. Sect. 3 presents
the extension of the specifications with a performance annotation and a profiling mechanism. The per-
formance evaluation framework is introduced in Sect. 4 while Sect. 5 shows the schedulability analysis
with an example. Finally, related work is discussed in Sect. 6 followed by a conclusion in Sect. 7.

2 Real-Time External State Machines

As mentioned above, in [7] we extended the External State Machines (ESM) [16] to the Real-Time
ESMs (RTESM) in order to model and verify timed properties of reactive building blocks. With anno-
tations of selects, guards, synchronizations, updates and state invariants of environment clock variables,
the RTESMs allow to express real-time properties such as limited responsiveness and time constraints.
Further, the real-time properties can be automatically verified with tools such as UPPAAL [11]. Thus,
like the ESMs for function properties, the RTESMs enable the compositional verification of real-time
properties in SPACE.

The verification of real-time properties in our Arctis extension is prepared by automatically translating
the activities and RTESMs modeling Arctis building blocks into timed automata [12] which can be
recognized by UPPAAL. Then we can verify with UPPAAL whether the real-time properties are kept by
a system. The automatic transformation from a UML activity-based building block to a timed automata
contains the two following steps:

From Activity to Executable State Machine: The activities modeling a system in SPACE are
transferred to executable state machines each specifying a physical component or session [17].
The resulting framework of communicating state machines, e.g., the runtime system JavaFrame
(see [14]), follows the run-to-completion semantics. In SPACE, parameter passing along control
flows and actions in activity diagrams are similar to tokens traversing through enabled actions
which are mapped to state machine transitions while the timers and arrival signals of an activity
are translated into event triggers of the transitions.

From Executable State Machine to Timed State Machine: Facilitating the extended annotations
in RTESM which provide auxiliary clock variables, state invariants, updates and guards, we can
enrich the expressiveness of the translated executable state machine in SPACE. Internal events such
as timeouts can be constrained by auxiliary clock variables and clock invariants, such that timed
requirements can be expressed and verified by corresponding tools. Parameter passing is trans-
lated to synchronization channels coordinating the synchronization of timed automata for various
levels of abstraction in referenced building blocks. Decisions are modeled as compound states in
executable machines that are enriched by the selects, guards, and updates of the RTESMs enabling
UPPAAL to simulate each possible target state. Special transitions with global synchronization
channels are added to the generated network of timed automata in order to verify the periodic
simulation and verification of timed automata (see [7]).

PAPAER D: Modeling Real-Time System Performance 129

powerUp

runningMode

disable

/status
start/

start/

speed/activateS+puFailure+stopped

speed/
setSLS/
/status

stop/stopped

puCompleted/status

reEnable/activateS+puFailure+stopped

/status

disableit/stop/stopped

powerUp

/status
start/

start/

speedExceedSLS
z<1000

speed/slsCommand
/status

speed/slsCommand z=0

runningMode

speed/
setSLS/
/status

speed/

activateSSE

speed/slsCommand
/activateS
speed/
/status

disable

/status

/activateS urgent disableit/

disable

/status

disableit/ stop/stopped

runningMode

speed/
setSLS/
/status

stop/stopped
start/

reEnable/status

stop/stopped

powerUp

start/
/status

Figure D1. RTESM of Secure Limited Speed Building Block

We summarize the Real-Time External State Machine (RTESM) formalism by means of a control
system for electrical motors which has been developed by Asea Brown Boveri, Ltd. (ABB). A central
unit of this system is the Safety Limited Speed System component (SLS) which complies with the safety
standard IEC 61800-5-2 [15] in order to guarantee that the speed of a motor always remains below a
configurable maximum limit.2 The introduction of the RTESM for the SLS component is followed by
a performance annotation profile for the component model and a tentative discussion of an equivalent
formalism based on petri-nets.

Figure D1 shows the RTESM of the Safety Limited Speed (SLS) component. It depicts the six differ-
ent control states in the RTESM of the SLS component which are listed below:

idle (expressed by the state machine starting and termination nodes): The motor control system is
off.

powerUp: The motor control system is starting up.

runningMode: The motor is running i a normal mode not exceeding its maximum speed limit.

speedExceedSLS: The motor runs above its permitted speed limit but did not exceed the maximum
time period after which it has to be shut down.

activateSSE: The Safe Stop Emergency (SSE) handler was triggered and the motor was shut down.

disable: The SLS block is disabled after removing the power for the motor such that it cannot
produce any torque again.

As Figure D1 shows, each transition contains a trigger-effect marking that describes the input and
output parameters related to this action. Identifiers before the symbol / identify input parameters, e.g.,
speed/ while those behind the symbol / refer to parameters leaving this block and proceeding towards
the environment. Transitions with the same source and target state are listed in the boxes modeling the
state. The RTESM also shows the extra labels that append timing constraints to the transitions and states.
Label z=0 shows the reset action that updates the global clock z to zero. Label z < 1000 shows the state
invariant label presenting a time constraint on state speedExceedSLS. Label urgent defines the transition

2The SLS example is originally from the European founded project with the initiatives of creating Cost-Efficient methods and processes for
SAfety Relevant embedded systems (CESAR, http://www.cesarproject.eu/).

130 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure D2. Building Block Performance Profile

marked /activateS to be urgent, which means that if the time constraints on the source state is not satisfied
any more. This action should be executed as soon as possible emitting an output parameter activateS to
the environment. Various labels can be added to the model-based software component containing in-
variants in states, guards, actions in transitions according to the formalism of timed automata [16]. The
RTESM is translated into timed automata and real-time properties under verification are expressed as
Timed Computation Tree Logic (TCTL) [8] formulas. Both of them are fed to the corresponding veri-
fication tool UPPAAL [11] to verify the real-time properties in the RTESM. More detailed information
about the structure of the RTESM as well as the SLS example can be found in [7].

3 Extending Component Models with Analysis Meta-Classes

In order to extend our building blocks for performance analysis, we outline the performance profile
and extend the model with several annotations. In the following, we briefly introduce the extended
annotation for performance analysis in our building blocks. It is inspired from the Component Quality
Model (CQM) [17] and the UML profile for Modeling and Analysis of Real-time Embedded System
(MARTE) [18], the OMG-standard for real-time embedded system modeling. In particular, MARTE is a
hierarchical package of vocabularies and concepts provided for the communications between hardware
and software developers.

Figure D2 depicts the profile used to provide extra meta-classes for annotating Arctis building blocks.
Here, we view the UML elements that compose the building blocks as sub-structures of a task in a
directed graph-based discrete task model. An ESM is a UML StateMachine composed from the elements
state and transition annotated with stereotype behavior expressing that it is an abstract model of the
interface behavior of a building block. The UML element transition is annotated with the stereotype
step expressing that a transition is a step in a task model. Collaboration and Activity are annotated with
the stereotype resource since they model the building blocks which usually are control units of software
running on a resource in an embedded system. CallOperationAction is viewed as ServiceCall, which
calls the underlying method written in high level language, e.g., Java or C. Each step in behavior can
involve several ServiceCalls. The CallBehaviorAction call references to other building blocks which
can be composed together with the current activity behavior in an event-driven manner. We listed some
relevant properties of the elements in the profile and their explanations in table D1.

Some important performance statics of embedded systems, e.g., the deadline miss ratio, are typically
analyzed with a set of task graphs and further petri-net models. Petri-nets are more expressive than

PAPAER D: Modeling Real-Time System Performance 131

Table D1. Annotation Attributes

Annotation
Attributes

name explanation

Step

bcet Best case execution time
wcet Worst case execution time

periodic True if this task is periodic.
minPeriod Minimum interval for periodic tasks.
maxPeriod Maximum interval for periodic tasks.

priority Priority of tasks.

ctddf
The computation time probability

density distribution function.

deadline
Maximum allowable

execution time of step

Resource type
e.g., synchronous

communication channel
schedulingPolicy e.g., FIFO

WorkLoad value Integer value
workloadType e.g., cpu consumption

ServiceCall ResourceType

Behaviour
ownedStep Contained steps

ownedServiceCall Contained ServiceCall
workload Contained workLoad

task graph models, and there is a set of extended petri-net models (e.g., stochastic activity network [19]
and stochastic reward net [20]) with corresponding simulation tools. It is observable that the ESM of a
building block can be divided into interleaving or sequential tasks that can have multiple instants within
one instantiation of the block. Work that translates task graphs into stochastic petri-net models already
exists, e.g., [21]. The translation is simple such that we do not discuss it here. The execution time of
a real-time task is usually not fixed and described with a probability density distribution function like
the one shown in Figure D7. Further, due to the complexity and software intensiveness of embedded
systems, many numerical results are not achievable, thus only simulation results can be obtained. We
propose to use the stochastic petri-net simulation tool to simulate the component performance which in
our profile is expressed by the task property ctddf .

In our component specification, the ESM can act as a profile of internal behavior expressed by UML
activities. This profiling mechanism corresponds to the rule of thumb in software development: ab-
straction and step-wise development. In contrast to the work in [22] which provides a direct translation
from activities to petri-nets, our specification semantics is based on the tokens flows, which semantically
equals to petri-net-based performance modeling and prediction methods. Figure D3 gives a petri-net
model of a building block PeriodicT imer, which is shown in Figure D4. This timer is used in the
SLS block securing a motor and issues periodically time-out signals after a certain period of time. This
stochastic activity network model is equal to the ESM of building block Periodic Timer. The transfor-
mation mechanism will be discussed elsewhere.

4 RTESM-Based Component Evaluation

For the last several years, both researchers and industrial practitioners follow the component-based
software evolution approach since software components allow to develop software systems on a more
abstract and intuitive level. A survey of the application areas such as performance prediction and evalua-
tion is presented in [23]. In this section, we introduce the RTESM-based building block evaluation using
the performance profile and its annotation introduced in Sect 3.

132 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure D3. SAN model of building block Periodic Timer

Figure D4. Building block Periodic Timer and its ESM

Figure D5. Secure Limited Speed Building Block with annotations

In the domain of performance analysis of real-time systems, embedded systems are considered as task
and resource models. Applications are converted into tasks, and system hardware, e.g., buses and proces-
sors, are converted to resources. As previously introduced, the interface of an Arctis building block, i.e.,
its ESM, is a state-transition graph profile of the activity behavior which is represented by the output and
input parameters of the UML activity diagram. Figure D5 is the behavioral model of the SLS compo-
nent. The extended orange markings annotate the non-functional attributes of an Activity element, e.g.,
the worst case execution time (wcet) or the defined deadline of each method call in a CallOperationAc-
tion. Such abstraction-based analysis can sufficiently reduce the state space of a component model for
evaluation and analysis (especially for large systems).

PAPAER D: Modeling Real-Time System Performance 133

Figure D6. Monitor block for testing the response time and round-trip time for SLS

4.1 Component Utilization

Initiatively, the discrete transition time of each building block is hard to be calculated in general.
The execution time of a building block bb is determined by the execution time of each transition and
its frequency of usage. We employed the best case execution time bcetbb and worst case execution
time wcetbb for component measurement. Moreover, for periodic tasks we use the inter-arrival time
expressing the interval between two triggers of a task. Analyzing the utilization of the component for a
given processor can give an indication of schedulability. In traditional schedulability analysis of tasks
against certain processors, a utilization test is usually carried out [24]. In our approach, we apply the
utilization test to the model-based software component while the component utilization is computed
according to the following formula:

n∑
i=1

(
wi

Ti

)
6 Ubb (1)

Here, wi is the worst-case execution time of task i and Ti is the inter-arrival time of this task (for periodic
tasks) assuming n-many tasks to be handled. The formula

Ubb = n
(
2

1
n − 1

)
(2)

is the utilization bound for the building block bb. Notice that the utilization test is the lower bound of the
schedulability, and the assumption is not always true, but is often used because of its simplicity.

4.2 Service Execution Time

We sketch a framework that contains a set of functions to simulate the execution time of services
provided by a building block. The execution time for a block service is defined as C = r− rt (see [25]),

134 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Computation time (t)

P
ro

b
ab

ili
ty

 d
en

si
ty

bcet wcet

f(t)

Figure D7. Task execution time distribution described by a density distribution function.

where r is the response time and rt is the round-trip time of a service. A monitor building block (outlined
in Figure D6) is created for measuring r and rt for the SLS component. Usually, the execution time of
a task in an embedded system depends on multiple factors, e.g., application, platform, environment, and
thus distributes in a stochastic value between bcet and wcet, and is expressed with a density distribution
function (see Figure D7). The frequency of each transition in the ESM, i.e., the decision about the
next state is provided by user data and also our simulation results. As mentioned in Sec. 3, other on-
going work is trying to convert the ESMs to stochastic petri-net models and simulate the building block
execution for performance analysis. The next state decision distribution can be achieved by a simulation
which may follow a steady-state distribution or be predefined. Based on the fact that a stochastic petri-
net model’s reachability graph can be mapped directly to a Markov process, it then satisfies the Markov
property, i.e., the future states of a stochastic process depends only upon the present state, not on the
sequence of events that preceded it and there is a steady-state distribution for next state choices [26].

Figure D6 shows the testing model for the SLS block. The red rectangle packaged area describes the
behavior to monitor the SLS building block measuring the execution time of services provided by this
building block. Initially, the log service is started via the call operation action startLog. The method
logStatusRate retrieves the rate of a state information returned and calculates the time cost for retrieving
such information. We define two variables speed and overspeed to simulate the types of speed value that
trigger different behavior of the SLS block. The call operation action logSSE records the response time r
and round trip time rt for executing Secure Stop Emergency (SSE). Call operation action logSLSComm
records r and rt for action slsCommand reducing the speed of the motor. The rest of the operations
are treated similarly. Note that the testing behavior is designed according to the state machine of the
SLS building block, e.g., the incoming parameter speed is only ready after the incoming parameter
puCompleted. Thus, a join node is inserted to the control flow to enable sending the periodic speed
parameter. The rate of the parameter can be adjusted by clock values to test the pressure. Let Sr and
Srt denote two collections of measured values that contain response time and round-trip times obtained
by the monitor respectively. A building block provides a set of services (denoted as sn). A service is a
path that contains several transitions in a directed graph. The worst case execution time for a service is
calculated with the following formula:

wcetn = max(select : αy ∈ Sr − select : δz ∈ Srt) (3)

The wcetn of service n is the maximum value of the difference between too randomly selected instance
measurement of Sr and Srt. The wcet for each transition is measured in a similar way and can be the
input of the model checking-based schedulability analysis described in the following.

5 Schedulability Analysis

Below, we analyze the schedulability of building blocks using the analysis technique introduced in
[27]. In contrast to the incremental verification of the real-time building blocks (see [16, 7]), the schedu-
lability analysis is done by composing a building block with automata that simulate resources, scheduling
policies, and tasks. Figure D8 shows the building block Timer 5 which implements the emergency shut-

PAPAER D: Modeling Real-Time System Performance 135

Figure D8. the Timer 5 Building Block

Figure D9. Translated automaton of Timer 5 building block

down if the motor runs on overspeed for a certain period of time. The timer can be started via a periodic
action which receives control signal startOrContinue, and it can be finished via a control path with input
signal stop and output signal stopped. After receiving the control signal startOrContinue, the timer value
is set and stored in variable duration. Block First filters out the other signals except the first one to avoid
that the timer is reset by a signal startOrContinue. When a time out event occurs, a token is emitted out
from timeout.

The automatically generated timed-automaton of building block Timer 5 is shown in Figure D9. It
is used as synchronization automaton for each instance of tasks and resources. Each transition with its
profiled properties wcet, deadline, periodic is fed to the network of automata simulating tasks, resources
and scheduling policies. The guard values complete[i] are boolean values indicating the ending of an ex-
ecution period of the software component in the resource Electrical Motor Controller (EMC). The guard
values finished[i] are semaphores used to synchronize the running tasks on the EMC and the software
component automaton. The building block is automatically composed with a network of automata to
form an analysis framework. All other automata can be seen in [27], i.e., the resource EMC, the task
instance models of each transition in the ESM, the scheduling policies (e.g., FIFO, EDF). In the follow-
ing, we mention the task instance model and how it interacts with the building block. Thereafter we will
present our analysis results.

136 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure D10. The Task Template from [27]

Figure D10 shows the task template for the analysis framework originating from [27]. Some changes
are made to the template where the synchronization channels finished[i] are declared to broadcast chan-
nels since they need to synchronize both the building block automaton and the EMC automaton. The
task template takes the task ID as a single parameter. The properties of a task, e.g., wcet, bcet, deadline,
are stored in a data structure from which they can be easily retrieved. In this model, tasks are divided into
periodic and non-periodic ones. After initialization from the state Initial, there are the following control
states for a common task:

Waiting: The waiting state is further divided into the states WaitingOffset and WaitingDependency.
In WaitingOffset the offset time must be satisfied and WaitingDependency describes that tasks are
waiting for certain dependencies, e.g., the precedence task and resources.

Ready: The task is ready for execution, which means the precedence tasks are finished and the
execution resource is ready to be carried out.

Error: The Error simulates a state in which the task execution time, measured by clock time[i],
exceeds the task deadline, which causes this software component non-schedulable.

Done: The task is finished within its deadline. A periodic task can be restarted by adding a
transition from the location periodDone to the initiating location.

A typical resource automaton template contains the states Idle and InUse except the initiating states. The
resource model is especially useful when the software is deployed to a multi-core architecture. Other
automata can also be added to this network of automata, e.g., scheduling policies like DFS and FIFO as
well as resources like CPU and GPU.

5.1 Verification Result

A typical problem in schedulability analysis is to check whether all tasks always meet their respective
deadlines. In our simulation and verification automata, the above problem can be stated as: Does it hold
in all paths that no task is ever in the error location? The temporal operator ∀ means “for all”, while
✷ means “always”, such that the following CTL formula expresses that the error state may never been
reached from any of the possible system states:

∀✷forall(i : tid)notTask(i).Error (4)

PAPAER D: Modeling Real-Time System Performance 137

The positive verification result took 0.265 seconds and used 18848KB resident memory as well as
50688KB virtual memory with the smallest imagined deadline of each task approximately equal to two
times of wcet (deadline=12 and wcet=6).

6 Related work

The Java Optimized Processor [28] is a Java virtual machine implementation in hardware intended
for applications in embedded real-time systems. In opposite to the approach in [24] that provides an
automatic translation from Java-based safety critical hard real-time systems to an abstract time preserving
an UPPAAL model, we are taking a top-down approach which intends to migrate an existing matured
model-based component development method to suit also the engineering of real-time systems.

Paper [29] provides a survey on Java performance evaluation approaches published in the past 10 years,
and argues that more rigorous performance evaluation methodologies are needed. Moreover, statistically
rigorous data analysis is advocated. Meyerhöfer and Lauterwald describe a platform independent method
for component measurement. In their work in [30], platform independent component models take the
Java component model running on virtual machines as an example. They are divided into basic atoms as
measurement unit. In analogy, the SPACE model can be viewed as a real-world implementation of the
task model. Our building block model now provides major support for Java as a script language. Our
implementation also roots in the benchmarking technique applied in Java. In [31], the timed-automata
formalism is attached with a task model. In particular, an extended timed automaton is viewed as an
abstracted model of a running process describing the possible events that may occur during execution.
TIMES is a tool-suite for schedulability analysis and synthesis of executable code for real-time sys-
tems [1]. By taking advantage of the model checking for timed automata, it can analyze task schedula-
bility by reachability detection. Comparing the SPACE method with TIMES, we discover both methods
support cyclic precedence graphs. The wcet and deadline concepts in TIMES are supported by perfor-
mance annotation in the SPACE method, but SPACE is advanced in the respect that it is a complete graph
model-based component model with compositional development and verification mechanism. Paper [32]
gives a kernel language for component-based software performance analysis.

7 Conclusion and Future Work

In our model-based reactive real-time system development research, we translate UML activity-based
specifications to timed automata in order to specify real-time properties (see also [7]). In this paper,
we introduced a performance evaluation framework in which tasks associated with each transition are
further clarified. It associates real-time system verification with performance evaluation and analysis. As
introduced in Sect. 3, in the future we will carry out translations from our component specifications to
petri-net-based performance behavior analysis, especially using the stochastic petri-net oriented analysis
models and tools. In nature, the building block component model is very similar to any control systems
that reveals the logic of functional behavior and abstracts away code details such as condition and loop
control.

Often, an entire system cannot be analyzed due to high costs or since some required services cannot be
provided (see [33]). Thus, performance evaluation and prediction is an important but complex task in the
development of new software and hardware system development. Our purpose is to provide an integrated
environment for model-based real-time system development, verification, analysis and simulation.

In the future, we want to integrate a real-time language into our code generation platform, e.g., the
real-time Java profile developed in [28]. Furthermore, low level benchmarking techniques afford the
integration into our model-based system development platform, e.g., the Integer Linear Programming
technique in [34]. Such a translation will be provided for translating building blocks into the Stochastic
Activity Network (SAN) for performance prediction and simulation.

Acknowledgements

This work is partially funded by the Research Council of Norway, under the research and development
project “Infrastructure for Integrated Services” (ISIS).

Bibliography

[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “TIMES: A Tool for Schedulability Analysis and Code
Generation of Real-Time Systems,” in Formal Modeling and Analysis of Timed Systems, ser. Lecture Notes in Computer
Science, K. Larsen and P. Niebert, Eds. Springer-Verlag, 2004, vol. 2791, pp. 60–72. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-40903-8_6

[2] F. A. Kraemer, R. Bræk, and P. Herrmann, “Compositional Service Engineering with Arctis,” Telektronikk, vol. 105, no.
2009.1, 2009.

[3] F. A. Kraemer, V. Slåtten, and P. Herrmann, “Tool Support for the Rapid Composition, Analysis and Implementation of
Reactive Services,” Journal of Systems and Software, vol. 82, no. 12, pp. 2068–2080, December 2009.

[4] F. A. Kraemer and P. Herrmann, “Automated Encapsulation of UML Activities for Incremental Development and Verifi-
cation,” in Proceedings of the 12th Int. Conference on Model Driven Engineering, Languages and Systems (MoDELS),
ser. LNCS, A. Schürr and B. Selic, Eds., vol. 5795. Springer-Verlag, Oct. 2009, pp. 571–585.

[5] L. Lamport, Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[6] F. A. Kraemer and P. Herrmann, “Reactive semantics for distributed uml activities,” in Formal Techniques for Distributed
Systems, 2010, pp. 17–31.

[7] F. Han, P. Herrmann, and H. Le, “Modeling and Verifying Real-time Properties of Reactive Systems,” in 18th IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS2013), 2013.

[8] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-Checking for Real-Time Systems,” in 5th Symposium on Logic in
Computer Science (LICS90), 1990, pp. 414–425.

[9] F. A. Kraemer, V. Slåtten, and P. Herrmann, “Engineering Support for UML Activities by Automated Model-Checking
— An Example,” in Proceedings of the 4th International Workshop on Rapid Integration of Software Engineering Tech-
niques (RISE), November 2007.

[10] G. Graw, P. Herrmann, and H. Krumm, “Verification of UML-based real-time system designs by means of cTLA,” in
Proceedings of the 3rd IEEE International Symposium on Object-oriented Real-time distributed Computing (ISORC2K).
Newport Beach: IEEE Computer Society Press, 2000, pp. 86–95.

[11] J. Bengtsson, F. Larsson, P. Pettersson, W. Yi, P. Christensen, J. Jensen, P. Jensen, K. Larsen, and T. Sorensen, “UPPAAL:
A Tool Suite for Validation and Verification of Real-Time Systems,” 1996.

[12] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science, vol. 126, pp. 183–235, 1994.

[13] F. A. Kraemer and P. Herrmann, “Transforming Collaborative Service Specifications into Efficiently Executable State
Machines,” in Proceedings of the 6th International Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007), ser. Electronic Communications of the EASST, K. Ehring and H. Giese, Eds., vol. 7. EASST, 2007.

[14] Ø. Haugen and B. Møller-Pedersen, “B.: JavaFrame — Framework for Java Enabled Modelling,” in In: Proc. Ericsson
Conference on Software Engineering, 2000.

[15] IEC, “International Standard 61800-5-2, Adjustable Speed Electrical Power Drive Systems — Part 5-2: Safety Require-
ments – Functional,” July 2007.

[16] L. Aceto, A. Burgueno, and K. Larsen, “Model Checking via Reachability Testing for Timed Automata,” in Tools and Al-
gorithms for the Construction and Analysis of Systems, ser. Lecture Notes in Computer Science, B. Steffen, Ed. Springer
Berlin / Heidelberg, 1998, vol. 1384, pp. 263–280.

140 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

[17] V. Grassi, R. Mirandola, E. Randazzo, and A. Sabetta, “Klaper: An intermediate language for model-driven predictive
analysis of performance and reliability,” in The Common Component Modeling Example: Comparing Software Compo-
nent Models [result from the Dagstuhl research seminar for CoCoME, August 1-3, 2007], ser. Lecture Notes in Computer
Science, A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, Eds., vol. 5153. Springer, 2007, pp. 327–356.

[18] “UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems.” [Online]. Available: http:
//www.omg.org/omgmarte/Specification.htm

[19] A. Bidgoly, A. Khalili, and M. Azgomi, “Implementation of coloured stochastic activity networks within the pdetool
framework,” in Modelling Simulation, 2009. AMS ’09. Third Asia International Conference on, 2009, pp. 710–715.

[20] C. Constazltinescu and T. Trivedi, “A stochastic reward net model for dependability analysis of real-time computing
systems,” in Real-Time Applications, 1994., Proceedings of the IEEE Workshop on, 1994, pp. 142–146.

[21] A. R. McSpadden and N. Lopez-Benitez, “Stochastic petri nets applied to the performance evaluation of static task
allocations in heterogeneous computing environments,” in Proceedings of the 6th Heterogeneous Computing Workshop
(HCW ’97), ser. HCW ’97. Washington, DC, USA: IEEE Computer Society, 1997, pp. 185–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=795688.797847

[22] J. P. López-Grao, J. Merseguer, and J. Campos, “From UML activity diagrams to Stochastic Petri nets: application to
software performance engineering,” in Proceedings of the 4th international workshop on Software and performance, ser.
WOSP ’04. New York, NY, USA: ACM, 2004, pp. 25–36. [Online]. Available: http://doi.acm.org/10.1145/
974044.974048

[23] A. Alvaro, E. de Almeida, and S. Meira, “A software component quality model: A preliminary evaluation,” in Software
Engineering and Advanced Applications, 2006. SEAA ’06. 32nd EUROMICRO Conference on, 29 2006-sept. 1 2006, pp.
28 –37.

[24] T. Bøgholm, H. Kragh-Hansen, P. Olsen, B. Thomsen, and K. G. Larsen, “Model-based schedulability analysis of safety
critical hard real-time Java programs,” in Proceedings of the 6th international workshop on Java technologies for real-
time and embedded systems, ser. JTRES ’08. New York, NY, USA: ACM, 2008, pp. 106–114. [Online]. Available:
http://doi.acm.org/10.1145/1434790.1434807

[25] R. Perrone, R. Macedo, G. Lima, and V. Lima, “An approach for estimating execution time probability distributions of
component-based real-time systems,” vol. 15, no. 11, pp. 2142–2165, jun 2009, http://www.jucs.org/jucs_
15_11/an_approach_for_estimating.

[26] W. Feller, An Introduction to Probability Theory and Its Applications. Wiley, January 1968, vol. 1. [On-
line]. Available: http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{&}path=
ASIN/0471257087

[27] A. David, J. Illum, K. G. Larsen, and A. Skou, Model-Based Design for Embedded Systems. CRC Press, 2010, ch.
Model-Based Framework for Schedulability Analysis Using UPPAAL 4.1, pp. 93–119.

[28] M. Schoeberl, “JOP: A Java Optimized Processor for Embedded Real-Time Systems,” Ph.D. dissertation, Vienna Uni-
versity of Technology, 2005. [Online]. Available: http://www.jopdesign.com/thesis/thesis.pdf

[29] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java performance evaluation,” in Proceedings of the
22nd annual ACM SIGPLAN conference on Object-oriented programming systems and applications, ser. OOPSLA ’07.
New York, NY, USA: ACM, 2007, pp. 57–76. [Online]. Available: http://doi.acm.org/10.1145/1297027.
1297033

[30] M. Meyerhöfer and F. Lauterwald, “Towards platform-independent component measurement,” in in Tenth International
Workshop on Component-Oriented Programming, 2005.

[31] C. Norstrom, A. Wall, and W. Yi, “Timed automata as task models for event-driven systems,” in Real-Time Computing
Systems and Applications, 1999. RTCSA ’99. Sixth International Conference on, 1999, pp. 182 –189.

[32] V. Grassi, R. Mirandola, and A. Sabetta, “From design to analysis models: a kernel language for performance and
reliability analysis of component-based systems,” in Proceedings of the 5th international workshop on Software and
performance, ser. WOSP ’05. New York, NY, USA: ACM, 2005, pp. 25–36.

[33] M. Kuperberg and S. Becker, “Predicting software component performance: On the relevance of parameters for bench-
marking bytecode and apis,” in Proceedings of the 12th International Workshop on Component Oriented Programming
(WCOP 2007), 2007.

BIBLIOGRAPHY 141

[34] M. Schoeberl and R. Pedersen, “WCET analysis for a Java processor,” in Proceedings of the 4th international workshop
on Java technologies for real-time and embedded systems, ser. JTRES ’06. New York, NY, USA: ACM, 2006, pp.
202–211. [Online]. Available: http://doi.acm.org/10.1145/1167999.1168033

142 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

PAPER E

Towards Verifying Safety Properties of Real-Time Probabilistic Sys-
tems

Fenglin Han, Jan Olaf Blech, Peter Herrmann and Heinz Schmidt

Proceedings of the 11th International Workshop on Formal Engineering approaches to Software Com-
ponents and Architectures (FESCA 2014), Electronic Proceedings in Theoretical Computer Science 147,
pp. 1-15. Grenoble, France. April 12th, 2014.

TOWARDS VERIFYING SAFETY PROPERTIES
OF REAL-TIME PROBABILISTIC SYSTEMS

Fenglin Han
Norwegian University of Science and Technology,

Trondheim, Norway

sih@item.ntnu.no

Jan Olaf Blech
RMIT University, Melbourne, Australia

janolaf.blech@rmit.edu.au

Peter Herrmann
Norwegian University of Science and Technology,

Trondheim, Norway

herrmann@item.ntnu.no

Heinz Schmidt
RMIT University, Melbourne, Australia

heinz.schmidt@rmit.edu.au

Abstract Using probabilities in the formal-methods-based development of safety-critical software has quickened interests
in academia and industry. We address this area by our model-driven engineering method for reactive systems
SPACE and its tool-set Reactive Blocks that provide an extension to support the modeling and verification of
real-time behaviors. The approach facilitates the composition of system models from reusable building blocks
as well as the verification of functional and real-time properties and the automatic generation of Java code.

In this paper, we describe the extension of the tool-set to enable the modeling and verification of probabilistic
real-time system behavior with the focus on spatial properties that ensure system safety. In particular, we
incorporate descriptions of probabilistic behavior into our Reactive Blocks models and integrate the model
checker PRISM which allows to verify that a real-time system satisfies certain safety properties with a given
probability. Moreover, we consider the spatial implication of probabilistic system specifications by integrating
the spatial verification tool BeSpaceD and give an automatic approach to translate system specifications to the
input languages of PRISM and BeSpaceD. The approach is highlighted by an example.

1 Introduction

Modeling and verification methods for embedded control system in domains such as avionics, auto-
motive and robotics should address a variety of software and hardware aspects including real-time and
probabilistic properties, distribution of system components, communication protocols, characteristics of
digital circuits and controllers. Real-time systems can require quantitative timing constraints which may
include guaranteed probabilities for time and spatial properties. For example, a robot may be required

146 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

to process a task in a predefined amount of time with a probability of 99.999999% to prevent expensive
maintenance operations resulting from minor damage to the equipment. It must complete the task in a
slightly larger amount of time with 100% to prevent major damage.

Here, we propose a framework for integrating probabilistic real-time verification and performance
prediction with system development. This approach extends our existing model-driven engineering
framework SPACE and its tool-set Reactive Blocks1 [22] with real-time system behavior verification
and schedulability analysis [11, 12]. Reactive Blocks enables the model-based engineering of reactive
systems by composing reusable building blocks each describing a certain sub-functionality of a system.
The composed system model is automatically transformed into executable Java code [22]. Further, vari-
ous formal verification methods ensure functional correctness [22] as well as reliability [27], security [9]
and safety [11, 12] of targeted systems.

The formalism for modeling probabilistic real-time systems used in this work is based on probabilistic
timed automata (PTA) [22]. It incorporates both probabilistic and real-time characteristics. Probabilistic
properties are represented with an extension of Computational Tree Logic, i.e., PCTL [14]. PRISM [23]
is a probabilistic model checker for formal analysis of systems that exhibits stochastic behaviors. It
supports multiple-formalisms, including discrete-time Markov chains, continuous-time Markov chains,
Markov decision processes and PTA making it possible to capture the random behavior of our real-time
system model [11], for example random aspects of failure or uncertain inputs, loads or timing. We choose
PTA for the stochastic behavior since it integrates well with our existing timed-automata based real-time
system model. PTA has an equivalent descriptive power to a MDP (Markov Decision Process) [15] such
that we can use the terminology of MDP for the system descriptions. Probabilistic CTL [18] has the
capability of expressing real-time as well as probabilistic properties of a reactive system.

The tool set described in this paper involves the five engineering steps outlined below:

1 We model a system using Reactive Blocks including a simulator of its environment, in particular
the spatial conditions to be reflected. In this model, we annotate probabilities as well as real-time
behavior.

2 The model is analyzed with the model checker built into Reactive Blocks for functional errors and
transformed into an executable simulator.

3 The simulator is carried out and, during the simulation, traces capturing spatiotemporal behavior
with or without annotated probabilities are extracted for spatial verification.

4 The extracted spatiotemporal behavior is verified for possible spatial implications like collisions
using our BeSpaceD tool [4]. Here, distributions capturing the combined probabilistic time behav-
ior of the subcomponents are created from the extended Reactive Block models using the PRISM-
based analysis.

5 If all analyses are passed, the simulator sub-functionality is removed from the Reactive Blocks
model such that its core functionality can be transformed into executable code.

In this paper, we have three main contributions.

1 A novel approach for system performance predictions is introduced. In particular, we present
a probabilistic real-time state-machine for software component performance descriptions. This
so-called PRTESM is an extension of the External State Machines (ESMs) [16] used in Reactive
Blocks. It allows to express probabilistic real-time assumptions and guarantees of a building block.
That enables us to compose the PRTESMs of the various building blocks forming a system to
predict probabilities of the overall system behavior.

2 We show the integration of the model-checker PRISM [23] to the tool-set. For that, the PRTESMs
are transformed into PTAs [22] and the performance predictions of the overall system to PCTL
statements [14] which can be directly proven by PRISM.

1Until recently, Reactive Blocks was called Arctis.

PAPAER E: Verifying Safety Properties 147

robot

2x2m

120m

100m

10m

14m

30m

door

door

Figure E1. Layout of the moving robot

3 We look at spatial implications of probabilities in system behavior. The introduction of known
probabilities into system behavior allows us to calculate how likely a physical unit like a robot will
be present in a given area in space. We use the tool BeSpaceD [4] for this.

1.1 Guiding Example

We illustrate the tool set by a scenario of a moving robot in a factory hall featuring probabilistic
behavior. Figure E1 provides a spatial layout of the example scenario. The moving robot occupies a 2 x
2 meters space in the 120 x 30 meters factory hall and moves along a straight line in the center of the room
covering a distance of 100 meters. The maximum speed of the robot can reach 10 m

s and thus a collision
with a human may lead to fatal injuries. To eliminate such injuries, the hall is equipped with sensors
monitoring the robot for approximations of humans. If the robot comes close to a human, it is slowed
down or even stopped. The probabilistic aspect of this example comprises probability distributions on
the reaction time once a human is detected. In this paper, the robot controller and a simulator of the
continuous robot behavior are developed and implemented using Reactive Blocks.

1.2 Overview

The paper is arranged as follows: In Section 2, we give a description of the model of the robot
control system example in Reactive Blocks realizing the distributed control functions as well as the robot
simulation. Section 3 introduces our formalism for probabilistic time constraint and the translation into
PRISM input. Section 4 presents our approach for spatial implications of probabilistic system behaviors
and introduces the tool for probabilistic spatiotemporal property verification. We present the verification
of our properties in Section 5. Related work is discussed in Section 6 followed by a conclusion in
Section 7.

2 Modeling Control Functions

In the moving robot example sketched in Section 1.1, the three main activities are:

1 Polling of sensor data about the positions of the robot and the human2.

2 Deciding the correct operation mode of the robot based on the distance to the human.

3 Forwarding an altered operation mode to the robot controller.

All three activities together should be performed within 0.5 s at maximum.
We model these control functions as well as the simulator of the human and robot behaviors separately

from each other by different building blocks. In SPACE and Reactive Blocks, a building block consists

2For simplicity, we only consider the human closest to the robot.

148 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure E2. UML activity of building block Control Unit

of a behavioral model in the form of a UML activity [22] supplemented by an External State Machine
(ESM) [16] describing its interface behavior.

The safety controller protecting humans from collisions with the fast moving robot is specified by
the building block Control Unit. The UML activity modeling the behavior of this block is shown in
Figure E2. Similar to Petri Nets, the control and data flows are represented by the flow of tokens in
the activities. These tokens are passed by the activity edges towards vertices. Vertices can be control
elements (such as forks duplicating tokens) or operations (associated with Java methods executed when
a token arrives). Further, activities may contain call behavior actions like Controller, Position Sensor and
Person Sensor each referring to another building block. The interaction between the activity containing
a call behavior action of a building block and the one referring to its behavior is modeled by pins and
parameter nodes. Parameter nodes are the identifiers at the edge of an activity, e.g., startRobot in block
Control Unit. All parameter nodes of an activity are available as pins in the call behavior actions referring
to its building block (e.g., setRed in block Controller). The semantics defines that a token reaching a pin
of a call behavior action continues from the corresponding parameter node of the activity referring to the
behavior of the call behavior action and vice versa.

Position Sensor and Person Sensor refer to the sensors for the positions of the robot and human
which get the current position information from the simulation via their input pins sensePos. The block
Controller realizes the safety controller of the system. It polls the robot and human positions every 10ms
using the pins poll and read. From these inputs, the distance between human and robot is computed and
the correct operation mode is selected. Altogether, there are three operation modes that are defined as
follows:

Normal mode: If no human is closer than 25 meters to the robot, the robot accelerates with 5m
s2

until reaching a speed of 10m
s . When it is 11m close to its endpoint, it decelerates with 5m

s2
until

reaching a speed of 1m
s which is carried until reaching the endpoint.

PAPAER E: Verifying Safety Properties 149

(a) ESM of Control Unit. (b) ESM of Robot Operation.

Figure E3. ESMs of building blocks Control Unit and Robot Operation

Yellow mode: If a human is detected in a distance of less than 25 meters but more than 10 meters,
the robot is slowed down with a rate of 10m

s2
until reaching a speed of 2m

s (resp. 1m
s if it is closer

than 11m to its endpoint).

Red mode: If the human is within 10 meters range to the robot, the robot makes an emergency stop
with a deceleration of 15m

s2
.

The behavior of the building block Control Unit is specified by its ESM depicted in Fig. 12.3(a).
An ESM is a UML state machine describing which of its parameter nodes are passed by tokens in a
certain transition. Control Unit is initiated by parallel flows through the parameter nodes startRobot
and startPerson which contain the initial positions of robot and human. Thereafter, the building block
is in state active in which the environment (symbol / right of the parameter node identifier) may send
position data via parameter nodes senseRobot and sensePerson while from the block itself (/ left of the
parameter node identifier) the current operation mode may be sent via setNormal, setYellow and setRed.
The building block is terminated and all remaining tokens on its activity are removed if the activity
containing the call behavior action of the block is terminated as well which is described by the transition
/.

Figure E4 shows the UML activity of building block Robot Operation. It contains the building block
Mode Selector storing the current operation mode. Robot Controller models the controller of the robot,
which chooses the current robot speed according to the operation mode and the position of the robot in
the factory hall. Using the block Robot Physics we model the simulator for the robot. The continuous
behavior is specified by a difference equation which is executed every 5ms.

The ESM of block Robot Operation in Figure 12.3(b) determines that the block is started by parallel
token flows via the parameter nodes duration and initPos which refer to the execution time of the dif-
ference equation (i.e., 5 ms) and the initial position of the robot. In state active, the operation modes
normal, yellow or red may be received by the environment while by pos the current position of the robot
may be forwarded towards the sensor in block Control Unit. The block is terminated by a token coming
via parameter node stop which leads to an output via stopped. This signal leads to the termination of all
inner blocks followed by the termination of Robot Operation.

150 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Figure E4. UML activity of building block Robot Operation

The third block of the example is called Suicidal Human. This somehow odd name refers to the
simulation of a human attempting to approach the robot as fast as humanly possible. So, it describes the
worst case situation to be solved by the safety controller. Like the robot, the behavior of the human is
specified by a difference equation that is executed every 5ms. For the sake of brevity, we do neither list
this block nor the other blocks of our system in detail here.

After creating and composing all building blocks of our system, we can check them for the presence
of functional design errors like not fulfilling their ESMs (see [22]). Further, if all checks are passed,
Reactive Blocks automatically generates executable Java of our system which can be carried out to
simulate robot runs.

2.1 Probability Assumptions and Temporal Safety

As discussed above, the factory hall, in which humans and machines collaborate in close proximity,
is monitored by camera sensors for collision avoidence. A safety controller constantly monitors the
operation for the proximity of humans and then decides which operation mode to choose. Of course, to
avoid collisions when the robot is still moving, we have to guarantee maximum reaction times for the
different functions carried out in order to slow down or stop the robot. The four main sub-tasks are the
fetching of sensor data including the delay between two pollings of the sensors, the processing time of
the safety controller in order to compute the distances between human and robot and to decide about the
correct operation mode, the communication delay between the safety and the robot controller as well as
the processing time of the robot controller including delays within the robot starting to break.

For elaborating our approach, we assume that the probabilities for the reaction times associated with
the sub-tasks correspond to the percentages depicted in Table F1. They show the probability that a task is
finished within a certain time in an accumulative way. For instance, according to the table, the fetching
of the sensor data is finished within 15 ms with a probability of 10 % while the overall probability that
it is completed within 17 ms is 40 %. Thus, we guarantee that this task is carried out within 20 ms. Of
course, in practice one cannot give axiomatic guarantees of real-time properties since a control system
is always subject to external influences like a failure of the computer hardware running it. We decided
to ignore these kinds of external error in our models but are aware that, when our tool chain is used for

PAPAER E: Verifying Safety Properties 151

Table E1. Accumulative probability distribution of the execution times for the different tasks

Delay Type Maximum Time Probability Fig. E5 Fig. E6
Time to fetch sensor 15ms 10 %
data including 17ms 40 %
polling delay 18ms 85 %

19ms 99.998 %
20ms 100 %

Processing time 250ms 10 %
recognition unit 260ms 30 %

270ms 60 %
280ms 90 %
285ms 99 %
290ms 100 %

Communication time 15ms 80 % r1
recognition 16ms 98 % r2
unit to robot 16.5ms 99.5 % r3

16.9ms 99.99999995 % r4
20ms 100 % r5

Internal robot processing 150ms 5 % r1
time and 159ms 90 % r2
actuator reaction 160ms 95 % r3

165ms 99.9995 % r4
170ms 100 % r5

real hazard analysis, such faults have to be taken into account as well. The values in the table do not
correspond to an existing system, but rather represent typical values one might expect in some field-bus
based systems.

3 Probabilistic Real-Time Extended State Machines

Following the concept of Timed Automata [1], we extended our external state machines (ESM) to
Real-Time ESMs (RTESM) in [11, 12]. RTESMs allow the specification of deadlines for the time a
building block may rest in a certain RTESM state. As a new contribution in this paper, we introduce
the further extension of the RTESMs to Probabilistic Real-Time External State Machines (PRTESM).
Extending the habitual pattern in Reactive Blocks to model functional and non-functional interface prop-
erties of building blocks, the PRTESMs make the description of probabilistic real-time behavior possible
and allow to describe discrete probability distributions like the ones listed in Table F1. PRTESMs allow a
straightforward transformation into Probabilistic Timed Automata (PTA) [22] that can be model checked
by verification tools like PRISM [23, 20].

Figures E5 and E6 show the PRTESMs of the blocks Control Unit and Robot Operation. To facilitate
the transformation into PTAs, a PRTESM contains an initial state initial representing both the initial and
final states of the corresponding ESM. Moreover, the PRTESM may contain special states that express
probabilistic behavior of the concerned actions as well as the synchronization semaphores and timed
constraints used to model real-time properties. In the PRTESMs listed in Figures E5 and E6, the values
r1, r2, r3, r4, r5 represent the probabilities from the third resp. forth section in Table F1. The time
deadlines are measured in 100 microseconds.

The approach for the generation of a PTA from a PRTESM for a real-time blocks is semi-automatic.

First, a set of communication actions are identified in the building block concerning the under-
neath hardware or communication protocol. In our example in the building block Control Unit, the
parameter pins setNormal, setYellow, setRed and sensePerson realize the communication among
distributed agents in the moving robot scenario. The setX set of parameters realize communication

152 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

initial

active

s6

s5

[i]

r2-r1

c_c2<=150

150<=c_c2<=160

yellow

[sensePerson],
c_c2=0

green

red

r3-r2
[g] [y] [r]

[sensePerson],
c_c2=0

[sensePerson],
c_c2=0

active
s11s7

s8

s9

r1

r4-r3

r5-r4

160<=c_c2<=165

165<=c_c2<=169

169<=c_c2<=200

Figure E5. PRTESM for the ControlUnit block

initial

active

s6

s5

[i]

r2-r1

c_c2<=1500

1500<=c_c2<=1590

yellow

[g], c_c0=0

green

red

r3-r2

[g1] [y1] [r1]

[y], c_c0=0

[r], c_c0=0

active s10

Flag_c2=true

s7

s8

s9

r1

r4-r3

r5-r4

1590<=c_c2<=1600

1600<=c_c2<=1650

1650<=c_c2<=1700

Figure E6. PRTESM for RobotOperation block

between robot controller and robot actuator while the sensePerson parameter realizes the commu-
nication between camera sensor and robot controller. Thus we extract the probabilistic real-time
actions in the system to PRTESM and ignore other actions.

Second, transitions corresponding to distributed communications are transformed to new states
and transitions expressing probabilities. In our example these are: active→setNormal active,
active→setY ellow active, active→setRed active and active→sensePerson active.

The code excerpt in Figure E7 corresponds to the PRTESM in Figure E5 and illustrates the cor-
responding Probabilistic Timed Automata (PTA) of the building block Control Unit. The formalism
declaration pta demands that the following modules follow the timed automata style. Time and prob-
ability values are declared as constant values before the module declaration. c2 Control Unit prtesm

PAPAER E: Verifying Safety Properties 153

1. pta
2. const int c2_1 = 150; // time unit 0.0001 s
3. const int c2_2 = 160;
4. ...
5. const double r1 = 0.8; // probability
6. const double r2 = 0.98; // accumulative probability
7. module c2_Control_Unit_prtesm
8. s_c2 : [0..10] init 0;
9. c_c2 : clock;
10. flag_c2 : bool init false;
11. [i] s_c2=0 -> (s_c2’=1);
12. [r] s_c2=1 -> (s_c2’=2)&(c_c2’=0);
13. ...
14. [sensePerson] s_c2=1 -> (s_c2’=2)&(c_c2’=0);
15. [] s_c2=2 -> r1 : (s_c2’=5) + r2-r1 : (s_c2’=6)
16. + r3-r2 : (s_c2’=7) + r4-r3 : (s_c2’=8)
17. + r5-r4 : (s_c2’=9);
18. [y] s_c2=5&c_c2<=c2_1 -> (s_c2’=10);
19. [y] s_c2=6&c_c2>=c2_1&c_c2<=c2_2 -> (s_c2’=10);
19. ...
20. [] s_c2=10 -> (s_c2’=10) & (flag_c2’=true);
21.endmodule

Figure E7. Excerpt of PTA codes corresponds to Figure E5.

robot

2x2m

120m

100m

10m

14m

30m

door

door
3x2m 4x2m

Figure E8. Possible space occupation induced by unknown speed

is the module name. A PTA transition in PRISM is started with a pair of brackets ([]) and optional
synchronization commands in the brackets, e.g., a semaphore i initializes distributed building blocks si-
multaneously during the system initialization, and semaphores r,y are abbreviated from communication
parameter setRed, setYellow to synchronize module Control Unit (robot controller) and module Robot
Operation (robot actuator). ESM transitions which are labeled as real-time probabilistic actions are ex-
ported and extended with probabilistic description. Line 14 to 17 gives an example command in PRISM
showing the probabilities. It declares that when s c2 variable equals to 2 it has 80% possibility of going
to state 5, 98%-80% possibility of going to state 6. When state 5 is reached, guard conditions demand
that clock c c2 must be no greater than 150 (representing the system delay in 100 microseconds) and not
smaller than 160 (see also Table F1).

4 Probabilistic Spatial Property Verification

Probabilities in system models can affect the spatial behavior of systems. Depending on the specifi-
cation — as provided by Reactive Blocks — we can determine areas in time and space which a system
component is likely to occupy or interact with.

154 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

120m

100m

10m

14m

30m

door

door

80% 90% 100%

robot

Figure E9. Space occupation and probability

In our robot system the distribution of latencies for reacting to the detection of a human can result in
different areas indicating the possible positions of a robot for given time points, each one associated with
a probability. Another example is varying speed. If the speed sensors of the robot are not accurate, they
may come with a distribution of a possible error. Therefore the robot may accelerate to a speed slightly
higher or lower than the specified 10 m/s. As depicted in Fig. E8, this inaccuracy leads to a wider area,
the robot may be in at a certain point of time, and the sizes of the areas increase over the distance the
robot moves. Furthermore, one can relate the area sizes also with probabilities. Following the discrete
probability distribution in Table F1, in Fig. E9 we show the varying areas covered by the robot. With a
probability of 80 % it will be within the orange rectangle at a selected point of time, with 90 % in the
dark yellow one and with certainty in the light yellow one.

For collision analysis we may neglect probabilities that are below a certain threshold defining residual
risks that one is willing to bear. In our example, we can prove that there is indeed a situation that a
person running into the factory hall with a speed of 10m

s , may hit the robot before it completely stopped.
According to the distribution in Table F1, the risk for this, however, is not higher than 5 · 10−14. Since
we found out by simulating the situation that the speed of the robot at such an impact is 0.625m

s at most,
the collision risk is extremely low and the impact essentially not different from the human running into
a stationary object.

We implemented BeSpaceD, a tool [4] for checking spatial behavior of spatiotemporal systems as
well as an input language for such systems. The implementation is done in Scala and comprises ab-
stract datatypes that indicate spatial availability, interaction or occupation in areas in a coordinate sys-
tem for time intervals or timepoints. It is possible to give parameterized specifications describing non-
deterministic systems and their spatial behavior.

For this work, however, we restrict ourselves to the checking of scenarios generated from simulation
runs of Reactive Blocks models. Particularly, in a simulator run we stored every five milliseconds a
tuple consisting of the current time stamp and the positions of human and robot in a format readable by
BeSpaceD. Thereafter, we use BeSpaceD to detect collisions and other spatial interactions for the various
scenarios and probabilities. In this way, we found out the situation mentioned above that a human indeed
may collide with the robot before it has stopped. We are able to learn such space-related safety issues
already while modeling the system. This makes it much easier to adapt the system functionality or to
impose stricter real-time properties if non-bearable situations were detected.

The specification of each spatial entity in a scenario has the form:

time = t −→
occupied spatial area with probability p ∧ ... ∧ occupied spatial area with probability p′

time = t+ 1 −→
occupied spatial area with probability p ∧ ... ∧ occupied spatial area with probability p′

....

PAPAER E: Verifying Safety Properties 155

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Figure E10. Probability density function for the system

time = t+ n −→
occupied spatial area with probability p ∧ ... ∧ occupied spatial area with probability p′

Probabilities are treated as attributes to an occupied spatial area. Different means to check spatial prop-
erties — here collisions — formulated over these inputs are provided in BeSpaceD and are based on SAT
and SMT solving and direct Scala implementations.

5 Probability Distributions as Verification Results

We verify probabilistic properties based on the probabilistic timed temporal logic PTCTL [25]. The
probability operator P=? allows reasoning about numerical probabilistic values, and is supported by
the so called stochastic games engine [21] in the verification tool PRISM. The results of our property
verification are probability distributions. Figure E10 shows the non-accumulative probability distribution
of the overall system reaction time displayed in a histogram. The x axis represents time values with a
frequency of 0.02 s. The y axis shows the numerical probability value.

In our analysis, we verified a set of probabilities expressed in PTCTL as follows:

P=?[F≤T
′′target′′](T ∈ [0.0, ...0.5])

In the above temporal specification formula, the operator F is a path operator that equals to eventually in
LTL and can be used inside the P operator. The pattern F≤T stands for “within T time unit”. The logical
expression “target” inside the PTA models that the parallel composed real-time probabilistic actions are
indeed executed. The formula expresses the possibility that within T time units, the labeled actions are
achieved.

Important for us are questions like: Is the robot reaction time no more than a designed safe time limit of
0.46 s? Checking that a reaction time of 0.46 s is enough to avoid a collision is discovered by simulation
using Reactive Blocks and BeSpaceD. With PTCTL we check this property using the following formula:

P=?[F≤4600
′′target′′]

The result indicates that when a human enters the monitored area, the robot reacts within 0.46 s with
the probability of 99.99874114988752 %. Due to the potential severity of a collision, this number does
not seem sufficient. We discussed in Sect. 4 that the impact will not be serious with a reaction time of
0.5 s. Of course, if the robot controller reacts within 0.47 s, the maximum speed at impact will be even
lower (i.e., 0.125m

s at most according to our simulations) and the risk of injuries is seen to be remote.
Considering this fact, we assume that the layout of our example system as sufficiently safe.

156 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

6 Related Work

Here, we present related work regarding formal methods, safety analysis, probabilities and spatial
verification.

In [14] an algorithm is presented to check whether a given Markov Chain satisfies formulas of Proba-
bilistic Computation Tree Logic (PCTL). PCTL and related verification techniques are typically applied
to analyze the reliability of timed systems. The work presented in [20] presents an algorithm for the
verification of probabilistic real-time systems annotated with discrete probability distributions. This can
be seen as a starting point for our work.

Safety analysis is a critical phase in the development of the systems we are aiming at. In [24], a
solution for incorporating safety requirements in software architecture is provided. Means facilitating
Model-Driven Architecture based development and safety analysis are presented. The work presented in
[11] aims at providing a modeling framework for the hazard analysis of component-based systems. The
authors intended to include traditional hazard analysis techniques, e.g., Fault Tree Analysis (FTA), but
found its inappropriateness for component based systems. Thus, new techniques like State Event Fault
Tree (SEFT) are proposed. The new proposed model is suitable for describing stochastic behaviors with
the help of existing tools such as Matlab/Simulink. These can be extended to support such models. In [23]
an extension of concurrent Kleene algebras is provided. An axiomatisation for probabilistic, concurrent
and nondeterministic systems is presented, and the simulation and verification of probabilistic automata
can be carried out. In the past we have studied the application of probabilistic models in a theorem prover
for guaranteeing fault-tolerance of embedded systems [3].

A process algebra-like formalism for describing and reasoning about spatial behavior has been intro-
duced in [5, 6]. Process algebras come with a precise formal semantics and target the specification of
highly parallel systems. Another logic-based approach to describe spatial areas is the Region Connec-
tion Calculus (RCC) [3]. It includes spatial predicates to describe the separation and connection of areas.
The area of hybrid systems has features the development of different tools for reasoning and verification.
SpaceEx [10] allows the modeling of continuos hybrid systems based on hybrid automata. It can be
used for computing overapproximations of the space occupied by an object moving in time and space.
Additionally, it is possible to model spatial behavior in more general purpose oriented verification tools
in Hybrid systems (e.g., [25]).

7 Conclusion

In this paper, we proposed an approach for the model-driven development of probabilistic real-time
systems with highly reusable compositional building blocks that incorporate discrete probability distribu-
tions for describing stochastic time behaviors. These extensions are used to predict system performance
as well as probabilistic safety properties. In addition, we established a development tool set both for
temporal and spatial probabilistic behaviors of systems. The Probabilistic Real-Time External State Ma-
chines (PRTESM) of building blocks give a straightforward view of stochastic real-time behaviors of
component-based systems. Software architects and safety engineers can use this for verification and
analysis. The limitations of the approach is that some intral or inter components’ communications are,
instead, described as messages passed and received in UML, such that such behaviors can not be cap-
tured by ESMs. Also, whether this approach is applicable depends on the abstraction level. In the future,
we want to further study and emphasize the compositionality of probabilistic spatial behavior defini-
tions, i.e., of systems composed of appropriately logically detailed subsystems. We plan to advance the
description logic as well as the introduction of a probabilistic spatial behavioral type infrastructure that
extends previous work [4, 5].

Acknowledgments We like to express our thanks to Song Zheng Song from the National University
of Singapore (NUS) for the useful discussion during the research work.

Bibliography

[1] R. Alur, D. Dill. Automata for Modeling Real-Time Systems, in Automata, Languages and Programming, pages 322–
335, vol. 443 of LNCS, Springer-Verlag, 1990, doi:10.1007/BFb0032042.

[2] B. Bennett, A. G. Cohn, F. Wolter, M. Zakharyaschev. Multi-Dimensional Modal Logic as a Framework
for Spatio-Temporal Reasoning. Applied Intelligence, 17(3), Kluwer Academic Publishers, November 2002,
doi:10.1023/A:1020083231504.

[3] J. O. Blech. Probabilistic Compositional Reasoning for Guaranteeing Fault Tolerance Properties. 15th International
Conference On Principles Of Distributed Systems, Toulouse, France, vol. 7109 of LNCS, Springer, December 2011,
doi:10.1007/978-3-642-25873-2 16.

[4] J. O. Blech. Towards a Framework for Behavioral Specifications of OSGi Components. Formal Engineering ap-
proaches to Software Components and Architectures. Electronic Proceedings in Theoretical Computer Science, 2013,
doi:10.4204/EPTCS.108.6.

[5] J. O. Blech, Y. Falcone, H. Rueß, B. Schätz. Behavioral Specification based Runtime Monitors for OSGi Services.
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA), vol. 7609 of LNCS, Springer-Verlag,
2012, doi:10.1007/978-3-642-34026-0 30.

[6] J. O. Blech and H. Schmidt. Towards Modeling and Checking the Spatial and Interaction Behavior of Widely Distributed
Systems. Improving Systems and Software Engineering Conference, Melbourne, Sep. 2013.

[7] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information and Computation, 186(2), Nov. 2003,
doi:10.1016/S 0890-5401(03)00137-8.

[8] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). Theoretical Computer Science, 322(3), pp. 517–565,
Sep. 2004, doi:10.1016/j.tcs.2003.10.041.

[9] L.A. Gunawan, P. Herrmann. Compositional Verification of Application-Level Security Properties. Proceedings of the
International Symposium on Engineering Secure Software and Systems (ESSoS 2013), pages 75-90, Paris, vol. 7781 of
LNCS, Springer, Feb/Mar 2013, doi:doi:10.1007/978-3-642-36563-8 6.

[10] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, O. Maler. SpaceEx:
Scalable Verification of Hybrid Systems. Computer Aided Verification (CAV’11), 2011, doi:doi:10.1007/978-3-642-
22110-1 30.

[11] L. Grunske, B. Kaiser and Y. Papadopoulos. Model-driven safety evaluation with state-event-based component failure
annotations. In CBSE, pages 33–48, vol 3489 of LNCS, Springer, 2005, doi:10.1007/11424529 3.

[12] F. Han, P. Herrmann, and H. Le. Modeling and verifying real-time properties of reactive systems.’ 18th International
Conference on Engineering of Complex Computer Systems (ICECCS), 2013, doi:10.1109/ICECCS.2013.13.

[13] F. Han. P. Herrmann. Modeling real-time system performance with respect to scheduling analysis. Proceedings of the 6th
IEEE International Conference on Ubi-Media Computing, Nov 2013.

[14] H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Reliability. Formal Aspects of Computing, 6(5).
1994, doi:10.1007/BF01211866.

[15] D. Henriques, J.G. Martins, P. Zuliani, A. Platzer, E.M. Clarke. Statistical Model Checking for Markov Decision Pro-
cesses. Quantitative Evaluation of Systems (QEST), 2012 Ninth International Conference on , vol., no., pp.84,93, 17-20
Sept. 2012, doi:10.1109/QEST.2012.19.

[16] F.A. Kraemer, P. Herrmann. Automated Encapsulation of UML Activities for Incremental Development and Verification.
Proceedings of the 12th International Conference on Model Driven Engineering Languages and Systems (MODELS
2009), pages 571-585, Denver, vol. 5795 of LNCS, Springer-Verlag, Oct. 2009, doi:10.1007/978-3-642-04425-0 44.

158 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

[17] F. A. Kraemer, V. Slåtten, and P. Herrmann. Tool Support for the Rapid Composition, Analysis and Implemen-
tation of Reactive Services. Journal of Systems and Software. vol. 82, no. 12, pp. 2068–2080, December 2009,
doi:10.1016/j.jss.2009.06.057.

[18] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. Formal Methods for the Design of Computer,
Communication and Software Systems: Performance Evaluation (SFM’07), Eds. M. Bernardo and J. Hillston, pp. 220–
27, vol. 4486 of LNCS (Tutorial Volume), Springer, 2007, doi:10.1007/978-3-540-72522-0 6.

[19] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems. Proc. 23rd
International Conference on Computer Aided Verification (CAV’11), pp. 585–59, vol. 6806 of LNCS, Springer, 2011,
doi:10.1007/978-3-642-22110-1 47.

[20] M. Kwiatkowska, G. Norman, R. Segala and J. Sproston. Automatic Verification of Real-time Systems with Discrete
Probability Distributions. Theoretical Computer Science, 282, pages 101-150. June 2002, doi:10.1007/3-540-48778-6 5.

[21] M. Kwiatkowska, G. Norman and D. Parker. Stochastic Games for Verification of Probabilistic Timed Automata. Tech-
nical report RR-09-05, Oxford University Computing Laboratory. June 2009, doi:10.1007/978-3-642-04368-0 17.

[22] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking for probabilistic timed automata.
Proc. Joint Conference on Formal Modelling and Analysis of Timed Systems and Formal Techniques in Real-Time and
Fault Tolerant Systems (FORMATS/FTRTFT’04), Eds. Y. Lakhnech and S. Yovine, pp. 293–308, vol. 3253 of LNCS,
Springer, 2004, doi:10.1016/j.ic.2007.01.004.

[23] A. McIver, T. Rabehaja, and G. Struth. Probabilistic concurrent kleene algebra. Proceedings 11th International Workshop
on Quantitative Aspects of Programming Languages and Systems, Rome, 23rd-24th March 2013, Eds. L. Bortolussi
and H. Wiklicky, pp. 97–115, vol. 117 of Electronic Proceedings in Theoretical Computer Science, Open Publishing
Association, 2013, doi:10.4204/EPTCS.117.7.

[24] M.A.de Miguel, J. F. Briones, J. P. Silva, A, Alonso. Integration of safety analysis in model-driven software development.
Software, pp.260-280, vol.2, no.3, , IET, June 2008, doi:10.1049/iet-sen:20070050.

[25] D. Parker. Verification of Probabilistic Real-time Systems. Proc. 2013 Real-time Systems Summer School (ETR’13).
August 2013.

[26] A. Platzer, J-D. Quesel. KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description). International
Joint Conference on Automated Reasoning, pp. 171–178, LNCS 5195, Springer, 2008, doi:10.1007/978-3-540-71070-
7 15.

[27] V. Slåtten, F. A. Kraemer, and P. Herrmann. Towards Automatic Generation of Formal Specifications to Validate and Ver-
ify Reliable Distributed Systems: A Method Exemplified by an Industrial Case Study. Proceedings of the 10th ACM In-
ternational Conference on Generative Programming and Component Engineering (GPCE11), pp. 147–156, ACM, 2011,
doi:10.1145/2047862.2047888.

PAPER F

A Model-based Toolchain to Verify Spatial Behavior of Cyber-Physical
Systems

Peter Herrmann , Jan Olaf Blech, Fenglin Han and Heinz Schmidt

In proceedings of The 2014 Asia-Pacific Services Computing Conference (APSCC), 4-6th Dec, 2014,
Fuzhou, China.

This paper was awarded the Best-Track Paper Award of the Special Track on Reliability Technologies
and Tools for Services-Based Systems.

In International Journal of Web Services Research (IJWSR), volume 13 No. 1 (2016).

This paper is not included due to copyright
available at https://doi.org/10.4018/IJWSR.2016010103

PAPER G

Model-based Engineering and Analysis of Space-aware Systems Com-
municating via IEEE 802.11

Fenglin Han, Jan Olaf Blech, Peter Herrmann and Heinz Schmidt

In 39th Annual International Computers, Software & Applications Conference (COMPSAC 2015). pages
638-646, Taichung, Taiwan, July 2015, IEEE Computer.

A UNIFIED MODEL-BASED DEVELOPMENT
FRAMEWORK FOR SPACE-AWARE SYSTEMS
COMMUNICATING VIA IEEE 802.11

Fenglin Han
Norwegian University of Science and Technology,

Trondheim, Norway

sih@item.ntnu.no

Jan Olaf Blech
RMIT University, Melbourne, Australia

janolaf.blech@rmit.edu.au

Peter Herrmann
Norwegian University of Science and Technology,

Trondheim, Norway

herrmann@item.ntnu.no

Heinz Schmidt
RMIT University, Melbourne, Australia

heinz.schmidt@rmit.edu.au

Abstract We propose a model-driven development approach for autonomous control systems with emphasis on the phys-
ical space and the communication via wireless connections. In particular, we combine model-based engineering
with simulation and emulation techniques for mobile communication. The design and implementation is done
using our Reactive Blocks Framework. For the mobile communication we use the popular IEEE 802.11 WLAN
protocol which is simulated using simulation tools in order to get estimations of connection delays. The spa-
tial constraints are verified with our BeSpaceD tool. As an example, we present the design and verification of
autonomous robots performing services in a large factory hall and coordinating by means of wireless communi-
cation which is based on several access points.

Keywords: Model-Driven Development, IEEE 802.11 WLAN, Spatial Verification.

1 Introduction

Recent technological development leads to a growing number of systems in which various mobile
components act autonomously in a shared physical space. Examples for such systems abound in domains
such as robotics, aeronautics, and automotive manufacturing. The autonomous systems must not interfere
with each other in an undesired way which could result in accidents. Further, in many applications
they form collaborative groups in order to perform joint tasks (e.g., several robots transport a heavy
workpiece together on a construction site or coordinate their actions for warehouse automation). To

176 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

achieve such a collaborative behavior, the components need to continuously interact with each other via
wireless connections and the communication has to keep hard real-time limits. When developing such
a system, one therefore has to consider communication-related issues (e.g., bandwidth limits occurring
when many components are close together such that they are handled by a single access point). Szanto
et al. show that the performance of a teleoperated robot system is strongly influenced by the quality of
the communication environment [26].

Many industrial methods, e.g., Matlab/Simulink- and IEC 61131-based approaches, seek to build
control systems solely from a model-based software engineering point of view. Others, e.g., OPNET [9],
focus only on the communication network design and analysis.

In this paper, we propose bridging these two areas. We study and evaluate a method for real-time
control applications of wireless interconnected devices that takes both wireless network response times
and spatiotemporal properties into account. To this end, we combine network simulation using Jemula [4]
with spatial constraint solving using BeSpaceD [6, 7]. In extension of this previous work,

1 we use constraint solutions to provide parameters for network simulations;

2 the results of the network simulations including failure probabilities and other statistical properties
are then used to input further constraints into the constraint solver. For instance, if an access point
fails, the neighboring ones may take over parts of its traffic, but at the expense of heavier loads.

3 The expected communication delays can be simulated with Jemula when one or more access points
fail.

We also continue to use our model-based software engineering method Reactive Blocks1 that allows
us to specify system models by composing reusable sub-models, so-called building blocks [17].

This approach enables us to create controllers for mobile components using the combination of these
three methods. Our contribution is the combination of these methods as well as the exchange of models
and the flow of analysis results.

Moreover, we applied BeSpaceD to formally analyze whether relevant spatial safety properties (e.g.,
no accidents) are fulfilled if the system reacts within certain time limits [13].

The interaction of the three methods and tools is depicted in Fig. G1. In the current version of the
toolchain, we restrict ourselves to the popular IEEE 802.11 series of WLAN protocols as interconnection
technology and use the open source IEEE 802.11 simulator/emulator Jemula [4] to simulate WLAN
usage in various stages of a scenario getting significant predictions of the communication delay. So, if
we want to verify spatial properties with BeSpaceD and the proofs need knowledge about worst-case
or average communication delays, we first create and execute appropriate simulation-runs. The results
of the runs can thereafter be used in the BeSpaceD proofs. This combination of the tools allows us to
make useful predictions about the communication infrastructure of an embedded system already on the
modeling level. If spatial properties cannot be proven, it is usually much cheaper to adapt the system
infrastructure and the functionality of the mobile components on the modeling level than later when the
system has already been implemented.

In Sect. 2, we introduce the background of our approach. To facilitate understanding of the approach,
we describe a mobile robot system-based scenario in Sect. 3. The detailed control module description is
discussed in Sect. 4 followed by the definition of spatial properties in Sect. 5. The WLAN communication
simulation results for the scenario are introduced in Sect. 6. In Sect. 7, we explain how the simulation
can be combined with the spatial analysis. The text is completed by a discussion about related work and
a conclusion.

2 Background

The technology used in this work consists of the three tools Reactive Blocks, BeSpaceD and Jemula
mentioned above. Further, relevant characteristics of the IEEE 802.11 protocol are discussed.

1Until recently Reactive Blocks was named Arctis.

PAPER G: Model-based Development Framework for Space-aware Systems 177

Build
ing

block
s

System

System Engineering
and Composition

Time

Analysis
Model

Environment
Design

Simulation

Formal
Verification

Tools Input

library

Tr
an

sf
o

rm
at

io
nMobile

Communication
Simulation

Spatial
Constraints

Checking

Data

Modeling

Simulation

Verification

Building

 Blocks

Initial Constraints

Provides System
working Environment

Figure G1. Summary of the Approach.

2.1 Reactive Blocks

The model-driven engineering method Reactive Blocks is a tool-supported approach for developing
reactive concurrent software systems [22]. The systems are composed from models of reusable software

178 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

components, so-called building blocks. The main ingredients of a building block are a UML 2.x activity
diagram and an abstract External State Machine (ESM) [19]. Similar to a Petri net, the activity diagram
models the detailed implementation logic as a token flow. To allow formal analysis, we supplemented
the activity diagrams with a formal semantics allowing to order the token flows into reactive run-to-
completion steps (see [20]). The ESM shows the abbreviated interface behavior of the building block
as an abstract UML 2.x state machine. The concept enables to specify recurrent sub-functionality by
separate building blocks that can be specified once, stored in model libraries and reused in a drag-and-
drop fashion in models. System models can be automatically analyzed for functional errors by a built-in
model checker [22]. Further, executable Java code can be automatically generated [21]. The tool-set is
now marketed by BitReactive AS2 as Reactive Blocks and networked embedded devices is a prominent
application domain for it.

An extension of the tool supports also the analysis of probabilistic real-time performance and safety
issues. In particular, the time and probabilism properties can be formalized and analyzed using proba-
bilistic timed automata-based formal verification [11, 13]. The formal analysis and verification is based
on the two verification tools UPPAAL [3] and PRISM [23]. We established two extensions of the ESMs
called Real-Time External State Machine (RTESM) [11, 12] and Probabilistic Real-Time External State
Machine (PRTE
SM) [13] to model time-constrained behavior. This allows us to check hard real-time properties, e.g.,
proving that a system leaves a certain state within a period of time in order to carry out some safety
preserving actions.

2.2 BeSpaceD

In [6, 7], we introduce BeSpaceD as a tool framework for specifying behavior of distributed systems
and formally reasoning about them. BeSpaceD emphasizes on spatial behavior but is not restricted to
this. It allows the verification of safety properties such as the absence of physical collisions between
interacting robots and obstacles, the coverage of sensor ranges, or WLAN ranges. Specification is done
using abstract datatypes out of a development environment supporting the Scala programming language.
The abstract datatypes can be generated by Scala programs or by instantiation of other software. Check-
ing and reasoning in BeSpaceD is realized using library functions creating verification goals. Verification
goals are solved by standard tools such as SAT and SMT solvers or by specialized algorithms. For the
purpose of this paper, specifications of spatial problems are done using the BeSpaceD constructs pro-
vided in a library inside code written in the Scala programming language.

2.3 IEEE 802.11 WLAN Delay Analysis

The IEEE 802.11 wireless local area network (WLAN) protocol is widely used for enterprise, home
and public access networks. It consists of several protocol variations that define specifications for Media
Access Control (MAC) and Physical (PHY) layer specifications. In the MAC layer, there are mainly
two coordination functions, the Distributed Coordination Function (DCF) and the Point Coordination
Function (PCF) that specify the media access and collision control. DCF is a distributed medium access
scheme based on Carrier Sense Multiple Access using a Collision Avoidance (CSMA/CA) scheme with
binary slotted exponential backoff. In the basic IEEE 802.11 MAC protocol using DCF, a station deter-
mines individually when to access the media. The station service responsible for information exchange
is referred to as MAC Service Data Unit delivery (MSDU delivery). In contrast, PCF is a centralized
media access function, in which the access point grants access to the different stations by polling.

Due to the competitive media access, DCF has the greatest impact on the performance of IEEE 802.11
wireless protocols. In our simulation we use the so called Request/Clear To Send (RTS/CTS) access
mode which is the general mechanism to reserve the wireless communication channel in DCF. The
WLAN latency is mainly composed of two parts, the transmission delay and the backoff delay. The
transmission delay refers to the latency of transferring packets over the net and depends on the packet

2http://www.bitreactive.com.

PAPER G: Model-based Development Framework for Space-aware Systems 179

Figure G2. Animation of the Warehouse Robot System with 50 Robots.

size (number of bits) and the transmission rate. The backoff delay refers to the lag of time a station
needs to access the WLAN. The IEEE 802.11 MAC DCF uses the so-called binary slotted exponential
backoff [5] to estimate the backoff delay. That is an analytical model computing the saturation throughput
performance of DCF as a stochastic process. The model is easy to understand but can be hardly analyzed
by machines due to the state space explosion problem. Therefore, we use emulators to simulate the
communication collision and delay of stations to discover how the number of mobile stations can affect
the delays and, in consequence, the overall network communication.

We use Jemula802 and its kernel Jemula [4], which are open-source Java-based emulation tools to
model IEEE 802-based communication. The Jemula emulation software has an event-based architecture
and maintains an XML interface for the configuration of networks and systems. Like Reactive Blocks
and BeSpaceD, Jemula is developed under the Eclipse framework.

3 Motivating Scenario

In this section, we introduce a motivating scenario comprising a mobile distributed robot system fol-
lowed by a closer discussion of its communication infrastructure.

180 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

Moving station

Storage point

Access point

y m

Radio link

Robot trail

z m

x m

St
o

ra
ge

 h
al

l

WiFi signal

BSS zone

Figure G3. Communication Infrastructure in the Storage Hall.

3.1 A Warehouse Robot System

We created a simulator of a mobile robot fulfilment system that contains multiple robots and handles
goods in a warehouse. Our scenario is inspired by the Kiva robot system3. As depicted in Fig. G2, the
robots fetch pallets (black rectangles) and transport them to other designated positions in the warehouse.
Robots currently transporting a pallet are shown in the animation as filled colored rectangles while the
unfilled ones refer to robots not carrying a pallet. The robots run on a line grid marking the floor. Lines
are spaced 1 m apart. Whenever a robot leaves a crossing, it signals its path to the next crossing to all
the other robots in order to prevent that another robot heads towards the same crossing. When a new
crossing is reached, another message to the other robots indicates that the crossing from which the robot
left, is freed.

Due to the communication delay, nevertheless, up to four robots may be on their way to the same
crossing. As soon as a robot learns about such a conflict by receiving the respective signal from one of
the other robots, it immediately stops and moves back to the crossing from which it was coming. Due
to the physical layout of the system, the combined communication delay and reaction time leading to
an emergency stop needs to take place within a second to avoid collisions. We showed in [11, 12] how
maximum reaction times can be computed based on the system model. For our scenario, we found out
that a reaction time of 200 ms is sufficient to stop the robot such that the maximum communication delay
is 800 ms. The proof under which circumstances this maximum delay can be guaranteed by the system,
is discussed later in this paper.

3https://www.youtube.com/watch?v=lWsMdN7HMuA.

PAPER G: Model-based Development Framework for Space-aware Systems 181

3.2 WLAN topology and environment

We use a WLAN for the coordination and scheduling of the moving robots. We sketch this in Fig. G3.
The working space of the robots is modeled as a plane of width x, height y, and depth z. We assume
that several access points are installed in the ceiling. The scenario is simplified by using the following
assumptions:

1 We assume that neither the pallets and their content infer with the radio signals nor that there are
obstacles between the access points and the robots. Thus, we suppose idealized conditions for the
quality of the radio signals.

2 The access point antennas in the warehouse are arranged in a way that every robot is always in
the range of one of them. To achieve that, we partition the warehouse into access areas and each
access area is completely covered by the circular range of an access point. This will be discussed
in detail in Sect. 5.

3 Since robots can only physically interfere with each other if they are in close proximity, they will
be either covered by the same access point or are at the border between two access points. Thus,
a robot only needs to consider other robots and objects covered by the same or by neighboring
access points. We reflect that in our simulations introduced in Sect. 6.

4 Modeling the Controller in Reactive Blocks

Since the robot scenario consists of several robots of the same sort, we define the robot controller as
a multi-session building block [18] in Reactive Blocks. This allows us to model an arbitrary number of
control entities that can interact with each other as well as with their common environment. Figure G4
depicts the UML activity of the multiple-session building block that we named Robot at the top while
its ESM is found in at the bottom. Each robot has a unique identifier stored in the variable me. The
other variable data stores information such as the current position and direction of the robot, the pathes
of other robots, and the positions of the pallets in the warehouse.

Robot contains three internal building blocks that each have their own UML activities and ESMs.
TimeStampOccupyBoxManager is taken from a library and manages the handling of data types carrying
information about spatial properties and time of a robot. The building block HybridKIVASystem contains
the basic logic of the robot control. Whenever the robot either reaches its destination or a crossing from
which it can continue in various directions, a token is triggered passing pin callDecision of block Hy-
bridKIVASystem. This token is duplicated at the fork behind this pin and one copy forwards to operation
newStop in which a Java method is executed that creates a message to inform the other robots that the
crossing, from which the current one is reached, has been vacated. The token is forwarded to the param-
eter node sendNewNext enabling the environment of building block Robot to trigger a WLAN message
to all other robots. The other token copy is forwarded to the building block NextPosition which contains
the routing algorithm of the robot.

If the robot did not yet reach its destination, in NextPosition the new path is computed and forwarded
via pin nextData to block HybridKIVASystem. In parallel, a flow leaves pin sendNewNext and forwards
to a set-method for the local variable data that contains relevant data of the robot and its environment.
Thereafter, a data unit is generated to inform the other robots of the next crossing to which the robot
proceeds. The data unit is forwarded to parameter node sendNewNext in order to instantiate the according
WLAN communication. If the robot reached its destination, a flow is issued passing via parameter node
callNewDest to the system control which might assign a new task to the robot. The answer from the
system control is received via a flow through getNewDest. As indicated by the filter to all, the new
destination is sent to all robots since each one stores which pallets are currently transported by a robot.

Messages indicating the current positions and paths of other robots are received via parameter node
rcvNewNext from where they proceed to operation othersNewOccupation. In the corresponding Java
method, the received data is stored in variable data. The message is forwarded to building block NextPo-
sition to be checked if the other robot is on a collision course with the local one. In this case, a token is

182 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

init/

getPallets//callPallets
start/

start starting Idle

rcvNewNext/

active
/callNewDest

/sendNewNext

stop/stopped to all:

rcvNewNext/

to all:

getNewDest/

Figure G4. Multi-session Building Block Robot.

PAPER G: Model-based Development Framework for Space-aware Systems 183

Figure G5. Spatial Arrangement of Access Points.

sent via pin nextData to block HybridKIVASystem that causes the emergency stop of the robot as well as
the retreat to the crossing from where the robot left.

The Robot building block is the core communication function and decision making component for the
movement control of the transportation robot. Due to the saturation of network traffic, this module is
under heavy burden. In order to define the burden of the module, especially the saturation of state active
in the ESM of the Robot block (see Fig. G4), we use a Markov chain-based performance model of the
control system in our simulation.

5 Communication Access Ranges

The warehouse layout discussed in Sect. 3.2 raises a number of spatial issues that have to be addressed
by the overall system design:

1 The access points have a limited range and we have to ensure that every point in the storage hall
in which robots may act, is sufficiently covered by access points. That holds particularly, when
unlike to our assumptions in Sect. 3.2, the storage hall contains obstacles which may distort radio
signals.

2 An access point may fail with a certain probability. In this case, some robots in the coverage area
of the broken access point may be covered by the neighboring access points while other robots
may experience communication loss. In the former case, the access points taking over may get
saturated. We verify properties of saturation, spatial aspects and failure probability to foster risk
analysis. To guarantee high availability of continuous communication access for all robots, we
require this failure probability to be below a minimal threshold.

3 Robots are moving through the hall and it may be that several of them are in proximity to each
other. That does not only increase the probability of accidents between robots but might also
increase the communication delay of the access points in this zone. We have to find out if there
is sufficient bandwidth to guarantee certain maximum communication delays even if many robots
are close together.

BeSpaceD [6, 7] allows us to establish spatial models for access point ranges including probabilities
for, e.g., failures. For example, we can define a higher likelihood of a communication failure if a robot
is farer away of the nearest access point. We assume that the robots keep a perfect, error-free connection
with an access point if they are within a certain limited radius but that the QoS deteriorates when the robot
is outside this radius. Furthermore, we can formalize behavioral properties of robots like positions and

184 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

paths and also situation-dependent constraints on the channels [13]. Ranges of access points tend to have
a circular shape. But we can also partition the ranges in other shapes like the rectangular partitioning that
is shown in Figure G5. Here, a square describes an area fully covered by one access point. Particularly
the edges of a rectangle may also be covered by other access points.

For our robot scenario, we used the BeSpaceD tool to check the above mentioned consistency and
safety properties regarding the coverage. In particular, we checked consistency properties, e.g., is there
a sufficient coverage for a given number of robots and safety properties: Given a probability distribution
for communication delays, can we guarantee an upper bound for communication time between an access
point and a robot? This is closer discussed in Sect. 7.

Below, we list a small code fragment written in Scala for the specification of a simplified coverage
problem consisting of circular access point ranges for a rectangular factory hall at a given point of time
below:

def coverage =
IMPLIES (AND(Owner ("WLAN_RANGE"),
Prob(1.0)), BIGAND(

OccupyCircle(15,15,40)::
OccupyCircle(35,15,43)::
...
OccupyCircle(65,130,42)::
Nil));

def factoryhallarea =
IMPLIES (AND(Owner ("FactoryHall"),
Event("Operation")),

OccupyBox(10,10,100,150)
);

Space occupation is provided for a particular aspect (e.g., the range of an access point WLAN RANGE)
and the probability that communication is successful. Moreover, for mobile components the space oc-
cupation varies depending on the time. Thus, by using spatiotemporal models for both the access point
ranges and for robots, one can for instance prove with BeSpaceD if a robot is always covered by circles
that have probability 1.0.

6 Simulation Results

The second and third spatial properties mentioned above can only be proven if the WLAN can guar-
antee a certain maximum communication delay. We use Jemula802 [4] to simulate the IEEE 802.11a
physical layer (PHY) at the wave band of 5 GHz that allows up to a transmission rate of 54 Mb/s. Each
mobile station, i.e., each robot, uses an omnidirectional antenna to send and receive the control and data
packets. We assume that the maximum packet size of the control data is 200 bytes which corresponds
to the fact that the identifier of the robot as well as information about the reached and vacated crossings
are transported. Jemula802 emits packets at time intervals following a negative exponential distribution.
For our example, the tool generates a mean load of 0.9 Mb/s. The packet size varies by a small amount
which is uniformly distributed.

We configured a traffic generator for each mobile robot under the same access point. The generator
emits network packets in the form of MAC Service Data Unit (MSDU) deliveries [25] and the simulated
transmission time corresponds to the network communication latency for the robots. We plotted the com-
munication delays simulated for 40 s and simulated several scenarios with different numbers of robots.
Figure G6 shows the result of this simulation when an access point interconnects 50 mobile robots.
Figure G7 depicts the delay distribution histogram of the simulation results. The simulation generates
400 MSDU packets, and we used the matlab tool to get several useful indices: The maximum delay is
535.7 ms and the mean or expected value of the communication delay is 142.9 ms. Compared with the
maximum delay of 281.3 ms, and the expected value 76.7 ms when we consider only 20 robots com-
municating via the same access point, the delay shows a significant growth. Thus, while the maximum
communication delay is significant, it is sufficiently below the maximum acceptable delay time of 800 ms
necessary to avoid an accident between robots. The same result was also found in the other simulations

PAPER G: Model-based Development Framework for Space-aware Systems 185

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

0

100

200

300

400

500

600

time (ms)

de
la

y
(m

s)

Figure G6. MSDU Delivery Delay Simulation.

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

Delay (ms) of Communication (400 bins)

C
ou

nt
s

Figure G7. Communication Delay Distribution.

186 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

with different parameters, e.g., numbers of robots or size of access point ranges. Since the throughput
of a wireless channel is affected by multiple factors, e.g, size of delivered MSDUs, PHY layer modes
used, and bandwidth offered to the communication channel, the mobile stations are adjustable according
to need.

7 Combining the Results

Our underlying method combines spatial constraint specification and solving with network topology
and packet traffic simulation. On the one hand, we use spatial analysis results to parameterize the network
simulation. On the other hand, we take simulation results including failure probabilities into a further
spatial analysis.

BeSpaceD analyzes the satisfaction of spatial constraints listed in Sec. 5, such as sufficient coverage
of the warehouse by access points so that all robots are always in range. These analysis results are used
to prime the Jemula simulations. For example, we determine the topology of base stations including
the number of channels available in a certain area. This, in turn, determines the parameters for and the
number of Jemula runs necessary to cover all relevant use cases.

For further constraint analysis, BeSpaceD then takes the Jemula simulation results as input. For
instance, if an access point fails, the neighboring ones may take over parts of its traffic, but at the expense
of heavier loads. The expected communication delays can be simulated with Jemula when one or more
access points fail. In BeSpaceD, we can now use these simulation results together with the probabilities
that we assume for the failures of access points as well as spatial properties (e.g., the likelihood that a
robot in the zone of a failed access point is at a place also covered by one of its neighbors) to verify if
the overall probability that all robots can communicate with each other within a certain period of time,
is greater or equal a certain value p. The value p (e.g., 99.999% that a data exchange is completed
within 800 ms) helps to estimate the average risk of costs caused by malfunctions resulting in accidents.
BeSpaceD was used to check several scenarios based on Jemula input.

Based on the risk analysis, one can decide if other protective mechanisms are necessary, for instance
a function in the robot control logic that continuously checks if an active connection is available and
immediately stops the robot if that is not the case.

For the third property of Sect. 5, i.e., the check if there is sufficient bandwidth when several robots are
in a certain area, the Jemula simulations are also used. Particularly, we simulate up to which number of
robots the maximum communication delay is still bearable.

8 Related Work

The surveys in [16, 24] show that due to the memory and time cost, simulation-based verification is
popular in industry and software practice. It is often seen as simple and straightforward. Dill, however,
states that simulation-based verification does not cope with increasing system complexity since it is
getting more and more difficult to select suitable test cases [10]. Since formal verification is sometimes
too complex to be automatically executed by machines and highly laborious when carried out manually,
we seek an approach combining simulation and formal verification to achieve high quality software
verification results in an acceptable period of time.

For the translation from state machine-based component models to Petri net analysis, Gomes et al.
proposed a set of translation strategies from state machines using the history attribute to a class of non-
autonomous Petri nets named Input-Output Place Transition Nets (IOPT nets) [2].

There are plenty of network simulation tools available and used widely in research. Besides Jemula,
simulation and emulation tools for IEEE 802.11 wireless networks also comprise ns2 [15], OPNET [9],
and NCTUns [27]. Experimental research using these tools shows that the performance of a teleoperated
robot system is strongly influenced by the quality of the communication environment [26].

The IEEE 802.11 series of wireless protocols has several flavors in application to industrial robotics,
among which IEEE 802.11a is considered as the most suitable existing solution. An extensive survey on
wireless sensor network emulators and simulators is discussed in [14]. In [1], an experimental assessment
of indoor propagation of WiFi signals with access points as transmitters operating at a frequency of 2.4
GHz is undertaken. The power density distribution of the access point antenna is achieved by movable

PAPER G: Model-based Development Framework for Space-aware Systems 187

laptop computers comprising wifihopper software. The measured and simulated results are compared
to get a correlation coefficient factor (ρ), which indicates a good agreement between measurement and
simulation results.

9 Conclusion and Future Work

In this paper, we studied and evaluated a method for real-time control applications of wireless inter-
connected devices. Our method takes wireless network response times and spatiotemporal properties into
account. We examplified this by using mobile robots carrying out tasks in a warehouse. The ingredients
of our method comprise the modeling of the system software and the simulation and analysis of the local
access point networks integrated with spatial constraint solving.

In the next step, we seek further integration of the system development with the simulation and verifi-
cation tools. In particular, we are aiming at directly encapsulating the simulation generator into a separate
building block in our Reactive Blocks environment.

Acknowledgment We express our gratitude to Professor Yuming Jiang for his useful suggestions and
discussions during the research work.

Bibliography

[1] B. M. Abaoy and K. M. Quboa. Environmental Safety Standards and WLAN Indoor Propagation. 20th Telecommunica-
tions Forum, pp. 13–16, 2012.

[2] Pais, R. and Gomes, L. and Barros, J.-P. From UML state machines to Petri nets: History attribute translation strategies
In IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, pp. 3776-3781, Nov 2011.

[3] J. Bengtsson, F. Larsson, P. Pettersson, W. Yi, P. Christensen, J. Jensen, P. Jensen, K. Larsen, and T. Sorensen. UPPAAL:
A Tool Suite for Validation and Verification of Real-Time Systems, In Hybrid Systems III, LNCS 1066, pp. 232–243,
Springer-Verlag, 1996.

[4] L. Berlemann and S. Mangold. Appendix A: Jemula802. Cognitive Radio and Dynamic Spectrum Access, John Wiley
& Sons, 2009.

[5] G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE Journal on Selected
Areas in Communication, 18(3):535–547, 2006.

[6] J. O. Blech and H. Schmidt. BeSpaceD: Towards a Tool Framework and Methodology for the Specification and Verifi-
cation of Spatial Behavior of Distributed Software Component Systems. arXiv.org, http://arxiv.org/abs/1404.3537, 2014.

[7] J. O. Blech and H. Schmidt. Towards Modeling and Checking the Spatial and Interaction Behavior of Widely Distributed
Systems. Improving Systems and Software Engineering Conference, 2013.

[8] R. Calcagno, F. Rusina, F. Deregibus, A. S. Vincentelli, and A. Bonivento. Application of Wireless Technologies in
Automotive Production Systems. VDI Berichte, 1956:57–58, 2006.

[9] X. Chang. Network simulations with OPNET. In Proc. 31st Conference on Winter Simulation: Simulation — a Bridge
to the Future (WSC’99), vol. 1, ACM, pp. 307–314.

[10] D. L. Dill. What’s between Simulation and Formal Verification? In Proc. of Design Automation Conference, pp. 328–329,
1998.

[11] F. Han, P. Herrmann and H. Le. Modeling and Verifying Real-Time Properties of Reactive Systems. Engineering of
Complex Computer Systems (ICECCS), pp. 14–23, IEEE, 2013.

[12] F. Han and P. Herrmann. Modeling Real-Time System Performance with Respect to Scheduling Analysis. In 6th IEEE
International Conference on Ubi-Media Computing, pp. 663–671, IEEE, 2013.

[13] F. Han, J. O. Blech, P. Herrmann, and H. Schmidt. Towards Verifying Safety Properties of Real-Time Probability
Systems. Formal Engineering approaches to Software Components and Architectures (FESCA), EPTCS, 2014.

[14] M. Imran, A. M. Said and H. Hasbullah. A Survey of Simulators, Emulators and Testbeds for Wireless Sensor Networks.
International Symposium in Information Technology , vol. 2, pp. 897–902, 2010.

[15] T. Issaryakul and E. Hossain. Introduction to Network Simulator NS2. 2nd Edition, Springer-Verlag, 2012.

[16] J. Jose and S. A. Basheer A Comparison of Assertion Based Formal Verification with Coverage driven Constrained
Random Simulation, Experience on a Legacy IP. Wipro Technologies Reports.

[17] F. A. Kraemer. Engineering Reactive Systems: A Compositional and Model-Driven Method Based on Collaborative
Building Blocks. PhD thesis, Norwegian University of Science and Technology, 2008.

[18] F. A. Kraemer, R. Bræk and P. Herrmann. Synthesizing Components with Sessions from Collaboration-Oriented Service
Specifications. SDL-Forum, LNCS 4745, pp. 166–185. Springer-Verlag, 2007.

[19] F. A. Kraemer and P. Herrmann. Automated Encapsulation of UML Activities for Incremental Development and Veri-
fication. In Model Driven Engineering Languages and Systems (MoDELS), LNCS 5795, pp. 571–585. Springer-Verlag,
2009.

190 MODEL-DRIVEN ENGINEERING OF COMPLEX SYSTEMS

[20] F. A. Kraemer and P. Herrmann. Reactive Semantics for Distributed UML Activities. Joint WG6.1 International Con-
ference (FMOODS) and WG6.1 International Conference (FORTE), LNCS 6117, pp. 17–31, Springer-Verlag, 2010.

[21] F. A. Kraemer, P. Herrmann, R. Bræk. Aligning UML 2.0 State Machines and Temporal Logic for the Efficient Execution
of Services. Distributed Objects and Applications (DOA06), LNCS 4276, pp. 1613–1632, Springer-Verlag, 2006.

[22] F. A. Kraemer, V. Slåtten and P. Herrmann. Tool Support for the Rapid Composition, Analysis and Implementation of
Reactive Services. Journal of Systems and Software, 82(12):2068–2080, 2009.

[23] M. Kwiatkowska, G. Norman and D. Parker. PRISM 4.0: Verification of Probabilistic Real-Time Systems. Computer
Aided Verification (CAV’11), LNCS 6806, pp. 585–59, Springer-Verlag, 2011.

[24] William K. Lam Hardware Design Verification: Simulation and Formal Method-Based Approaches. Prentice Hall, 2005.

[25] S. Mangold, S. Choi, G.R. Hiertz, O. Klein, and B. Walke. Analysis of IEEE 802.11e for QoS Support in Wireless LANs.
Wireless Communications, IEEE, 10(6):40–50, 2003.

[26] Z. Szanto, L. Marton, P. Haller, and S. Gyorgy. Performance Analysis of WLAN based Mobile Robot Teleoperation.
Intelligent Computer Communication and Processing (ICCP), pp. 299–305, IEEE, 2013.

[27] S.-Y. Wang and C.-C. Lin. NCTUns 5.0: A Network Simulator for IEEE 802.11(p) and 1609 Wireless Vehicular Network
Researches. 68th IEEE Vehicular Technology Conference, pp. 1–2, IEEE, 2008.

III

THESIS APPENDIX

	112828_PhDCover_Fenglin_Han
	112828_PhD_Fenglin_Han_83

