
Submitted 3 April 2020
Accepted 1 July 2020
Published 27 July 2020

Corresponding author
Ferhat Ozgur Catak,
ferhat.o.catak@ntnu.no,
ozgur.catak@tubitak.gov.tr

Academic editor
Lerina Aversano

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.285

Copyright
2020 Catak et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Deep learning based Sequential model for
malware analysis using Windows exe API
Calls
Ferhat Ozgur Catak1,3, Ahmet Faruk Yazı2, Ogerta Elezaj1 and Javed Ahmed1

1Department of Information Security and Communication Technology, NTNU Norwegian University of
Science and Technology, Gjøvik, Norway

2Cyber Security Engineering, Istanbul Sehir University, Istanbul, Turkey
3TUBITAK Bilgem Cyber Security Institute, Kocaeli, Turkey

ABSTRACT
Malware development has seen diversity in terms of architecture and features. This
advancement in the competencies of malware poses a severe threat and opens new
research dimensions in malware detection. This study is focused on metamorphic
malware, which is the most advanced member of the malware family. It is quite
impossible for anti-virus applications using traditional signature-based methods to
detect metamorphic malware, which makes it difficult to classify this type of malware
accordingly. Recent research literature about malware detection and classification
discusses this issue related tomalware behavior. Themain goal of this paper is to develop
a classification method according to malware types by taking into consideration the
behavior of malware. We started this research by developing a new dataset containing
API calls made on the windows operating system, which represents the behavior of
malicious software. The types of malicious malware included in the dataset are Adware,
Backdoor, Downloader, Dropper, spyware, Trojan, Virus, andWorm. The classification
method used in this study is LSTM (Long Short-Term Memory), which is a widely
used classification method in sequential data. The results obtained by the classifier
demonstrate accuracy up to 95% with 0.83 F_1-score, which is quite satisfactory.
We also run our experiments with binary and multi-class malware datasets to show
the classification performance of the LSTM model. Another significant contribution
of this research paper is the development of a new dataset for Windows operating
systems based on API calls. To the best of our knowledge, there is no such dataset
available before our research. The availability of our dataset on GitHub facilitates the
research community in the domain of malware detection to benefit and make a further
contribution to this domain.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Security and Privacy
Keywords Malware analysis, Sequential models, Network security, Long-short-term memory,
Malware dataset

INTRODUCTION
Malicious software, commonly known as malware, is any software intentionally designed
to cause damage to computer systems and compromise user security. An application or
code is considered malware if it secretly acts against the interests of the computer user and
performs malicious activities. Malware targets various platforms such as servers, personal

How to cite this article Catak FO, Yazı AF, Elezaj O, Ahmed J. 2020. Deep learning based Sequential model for malware analysis using
Windows exe API Calls. PeerJ Comput. Sci. 6:e285 http://doi.org/10.7717/peerj-cs.285

https://peerj.com/computer-science
mailto:ferhat.o.catak@ntnu.no
mailto:ozgur.catak@tubitak.gov.tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.285
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.285

computers, mobile phones, and cameras to gain unauthorized access, steal personal
data, and disrupt the normal function of the system. Malware has been notorious for its
malicious activities and attack for decades. Malware development has become a serious
activity lately as the number of target platforms increases day by day, which significantly
raises the importance of developing adequate techniques to detect them. Dynamic analysis
of malware in different platforms is an evolving and challenging task. According to recent
statistics, 40 million new malware has been infecting systems in the first 4 months of
2018 (https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-jun-
2018.pdf). This is evidence that malware is a significant threat in the systems and most of
the time they are surpassing the capacities of malware analysts. Accordingly, great efforts
are needed to protect against malware attacks.

One approach to deal with malware protection problem is by identifying the malicious
software and evaluating its behavior. Usually, this problem is solved through the analysis
of malware behavior. This field closely follows the model of malicious software family,
which also reflects the pattern of malicious behavior. There are very few studies that have
demonstrated the methods of classification according to the malware families. Proper
malware labeling is a challenging issue in this domain. An anti-virus application can detect
malware as a trojan, whereas, the same malware is labeled as a worm by another anti-virus
application. With the advent of sophisticated malware framework, it is difficult to handle
these problems. The main practical challenge faced by researchers is that malware has
achieved a very complicated level of competence and effectiveness.

This allows for constant change of the code signatures (Rad, Masrom & Ibrahim, 2012).
Consequently, anti-virus applications that use conventional signature-based detection
methods can not detect such malware. Although a metamorphic malware that manifests
itself with different code sequences in different environments, it must adopt the same
behavior in all settings. Since they developed this malicious software to conduct a specific
malicious activity, using this information, nearly all the methods used for the detection
and classification of metamorphic malware tackle the behavioral characteristic and not the
malware’s structural features. Data such as Windows API calls, DNS resolution, registry
read/write operations are used in such methods to reflect malicious software behavior.

All operating system API calls made to act by any software show the overall of this
program. Whether this program is alware or not can be learned by examining these actions
in-depth. If it is malware, then what is its malware family. The malware-made operating
system API call is a data attribute, and the sequence in which those API calls are generated
is also critical the malware family Performing specific API calls is a order that represents
a behavior. One of the deep learning methods LSTM (long-short term memory) has been
commonly used in the processing of such time-sequential data (Shamshirband, Rabczuk &
Chau, 2019).

Our research is based on the analysis of API calls made by malware on the Windows
Operating System. We analyze the API calls made by different types of malware on the
system to build a collection of malware-based API calls. This dataset the development
of a method that can be useful for the identification of malware based on its behavior.
We also construct malware detection models based on this dataset using the LSTM

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 2/23

https://peerj.com
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-jun-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-jun-2018.pdf
http://dx.doi.org/10.7717/peerj-cs.285

algorithm. This model classifies malware even though it has undergone structural changes,
i.e., metamorphic malware, but in the operating system behaves like a type of malware
(Shamshirband & Chronopoulos, 2019).

In our previous work, (Yazi, Catak & Gul, 2019) we applied a single layer LSTM model
to detect the malware classes. In another work, (Çatak & Yazi, 2019), we describe our
publicly available dataset in detail.

Our research has made the following major contribution:

• A new dataset has been developed formalware detection onWindows OS. Such a dataset
does not exist in this domain.
• Malware was analyzed, and API calls were recorded by running in an isolated sandbox
environment.
• Using the LSTM algorithm, which is commonly used for text classification, malware
detection was modeled as a text classification problem, and the detection model for the
malware type was developed.

The rest of the article is organized as follows: Section 1 briefly introduces some of the
earlier works related to our problem. Section 2 describes Windows API calls, Sandbox
environment and LSTM algorithm. Section 3 shows our system model. Section 4 evaluates
the proposed learning model. Section 5 concludes this paper.

RELATED WORK
Leder, Steinbock & Martini (2009) take into consideration structural changes of
metamorphic malware. Using VSA (Value Set Analysis) method, detection processes
were realized by removing the unchanging code structure found in malicious software,
concluding that if there is no behavioral change in samples of metamorphic malware,
the detection accuracy can be 100% (Leder, Steinbock & Martini, 2009). Although they
examined the metamorphic software, and they only used the operating system processes.

Vinod et al. (2010) generated malware signatures by using Windows API call sequences
of metamorphic malware. The authors proposed a method for identifying and classifying
malware families using these signatures. In this study, 80 malicious software has been
created from each NGVCK, MPCGEN, G2, and IL_SMG families by using the VX Heavens
application. A dataset is created by using software emulators in order to obtain Windows
API call sequences. A dataset was created using this data. The accuracy achieved by the
proposed method is 75%, 80%, 80%, and 75% for each family respectively (Vinod et al.,
2010). In this study, they obtained a high detection rate. However, because they use
signatures, attackers can evade this detection method.

Qiao et al. (2013) developed a detection model by considering the behavior of malware.
The API call sequences of malicious software on the Windows operating system were
obtained by using the Cuckoo Sandbox application. An analysismethod has been developed
by subtracting frequently used elements from these call sequences. The dataset used during
the analyses contains 3131 malware, and the accuracy rate obtained is 94% (Qiao et al.,
2013). This work is very close to our study because they use API calls. However, since they
do not model the API call sequences using a sequential method, they lose this information.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.285

Cheng, Tsai & Yang (2013) proposed an improved classification method of the behavior
of malware is based on the information retrieval theory. Windows API call sequences
of malware obtained from honeypots with the help of the Cuckoo Sandbox application
were preprocessed with the aim to represent malicious behavior. These documents were
analyzed using the TF-IDF weight, and the similarity measurement method was applied
and in order to extract similarity characteristics of malicious software. A classification
model was applied using these features, and the accuracy rate obtained was 97.7% (Cheng,
Tsai & Yang, 2013). This work is alose close to our research because they use API calls.
However, since they use TF-IDF representations of calls, Thus, they lose this information.

Mehra, Jain & Uppal (2015) proposed a method to classify 600 malware where 268 of
alware were created using VX Heaven. This malicious software has been extracted from the
control flow and API request graphics using the Gourmand Feature Selection algorithm
to extract the required call properties. The proposed solution was implemented using the
Weka tool, whereas the classification was made using histogram and Chi-square difference
measurement formulas according to malware families. The classification accuracy varies
between 89.00% and 99.10% for different families (Mehra, Jain & Uppal, 2015). The
number of malware contained in the dataset they use is relatively low. Also, as in other
studies, the API call sequence was not used.

Pirscoveanu et al. (2015) proposed a Supervised algorithm for the classification of
malware, such as the Random Forests algorithm. A total of 42,000 malware behaviors were
collected using the Cuckoo Sandbox application. DNS requests, Accessed Files, Mutexes
and, Registry Keys data were used for the classification of Windows API calls. In addition,
for the class labels of malicious software, the tags detected by Avast application are over the
results provided by VirusTotal service. Trojan, Potentially Unwanted Program, Adware,
and Rootkit classes are used for classification. The weighted average Area Under Curve
(AUC) value of the proposed method is 0.98 (Pirscoveanu et al., 2015). The number of
malware contained in the dataset they use is relatively high. Again, the API call sequence
was not used.

Ahmed, Nepal & Kim proposed a different approach malware detection. The detection
of malicious software in this study is not based on the characteristics of malicious software
on the effects; they have on the system. So, this method does not consider the structural and
behavioral features of malware that are not considered in the detection process. Still, it is
limited only in the detection of abnormal behavior on the system in an ordinary situation.
In this way, the authors claimed that advanced malicious software such as polymorphic,
metamorphic, zero-day malware could be detected (Ahmed, Nepal & Kim, 2018).

Sami et al. (2010) developed a framework based on mining API calls of PE for malware
detections. The framework includes a PE analyzer, feature generator, feature selector, and a
classifier. The authors generate a set of discriminative and domain interpretable features by
reading API call sets in a collection of PE files. The classifier is trained using these features.
The authors also created the first public dataset and improved existingmining APImethods
for malware detection. The accuracy and detection rate are improved by 5.24% and 2.51%,
respectively. They also reduced the false alarm rate from 19.86% to 1.51% (Sami et al.,
2010). Their approach again ignores the call sequences.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 4/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.285

Alazab, Venkataraman &Watters (2010) used a four-step methodology to extract API
call features using a fully automated method. The authors disassemble, analyze, and extract
the API function calls from the binary content of malware using static analysis tool IDAPro
disassembler to classify program executable as malicious or benign. Statistical tests were
performed on extracted calls to determine the malware class based on suspicious behavior.
The sample of 386 malware used to conduct experimental tests. The authors generated six
different categories of suspicious behavior of API call features based on these preliminary
tests (Alazab, Venkataraman &Watters, 2010). They applied static analysis techniques to
detect malware. Attackers use lots of evading techniques to bypass the analysts.

Peiravian & Zhu (2013) framework that uses permissions and API calls to detect
malicious Android applications. The permissions are extracted from Android applications
and combined with the API calls to characterize each application either as malware or
a benign. The inherent advantage of this framework is that it does not need to involve
any dynamical tracing of the system calls ut only uses simple static analysis to find
system functions involved in the application. Experiments on real-world applications
demonstrate the good performance of the framework for malware detection. Furthermore,
the framework can be generalized to all mobile applications for malware detection
(Peiravian & Zhu, 2013).

Kolosnjaji et al. (2016) proposed an approach for malware classification that uses hybrid
neural networks containing two convolutional layers and one recurrent layer o obtain the
best features for classification. The authors optimal classification results by combining
convolutional and recurrent layers in the neural network architecture. The approach
outperformed not only other simpler neural architectures, but also most widely used
hidden Markov models and support vector machines (Kolosnjaji et al., 2016).

Tian et al. (2010) proposed a scalable approach for malware vs. cleanware classification
and malware family classification by investigating behavioral features using logs of various
API calls. The authors used an automated tool running in a virtual environment to extract
API call features from executable. Later, pattern recognition algorithms and statistical
methods are applied to differentiate between files. The research benefited from a dataset of
1,368 malware and 456 cleanware to conduct experimental results. As per the result, this
approach provides an accuracy of over 97% distinguishes malware from cleanware. The
the classification of malware into different families (Tian et al., 2010).

Alazab et al. (2010) proposed an approach to detect obfuscated malware by investigating
the structural and behavioral features of API calls. The authors sed n-gram statistical
analysis for API calls to analyze the similarities and distance of unknown malware with
known behavior so that obfuscated malware could be detected efficiently. The authors used
a dataset of 242 malware and 72 benign files to obtain experimental results. The approach
demonstrates the accuracy of 96.5% for the unigram model (Alazab et al., 2010).

As far as the suggested studies are examined, it is generally seen that sequential data loss
methods such as TF-IDF are preferred in the, or traditional machine learning methods
are applied. Although deep learning are not algorithmically new, they have become in the
field of machine learning today, as they are easy to implement technologically and can be

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 5/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.285

trained with high-performance computation on systems such as GPUs. For this reason,
our study differs from other studies.

PRELIMINARIES
In this section, we briefly introduce Windows API calls, cuckoo sandbox environment,
VirusTotal service, and LSTM algorithm used for our proposed malware classification
model.

Windows API Calls
The Windows API is an interface to application developers for developing applications
on the Windows operating system (Hampton, Baig & Zeadally, 2018), designed mostly for
the interaction between developers and the operating system. Therefore, the operating
system offers many services as API (https://docs.microsoft.com/en-us/windows/desktop/
apiindex/windows-api-list).

An application developed to run on the Windows operating system must call the
interfaces presented as APIs to use a function offered by the operating system. When an
application is running on any operating system, it calls several API to complete an action.
For example, when an application is requested to create a file, CreateFileA Windows API
(https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-createfilea) is
called. All API calls made by an application on the system can show the overall behavior
of that application. Therefore, API calls-based approach is widely applied in the dynamic
malware analysis showing how malware can behave accurately.

In this study, we extract Windows API calls made by malware on the operating system,
and generate a feature set. Later, we use these features to train the classifier in order to
detect malware.

Cuckoo Sandbox
TheCuckoo Sandbox app is a free and public sandbox application compatible with different
operating systems (Ali et al., 2019). A detailed analysis report of the files considered as
suspicious (Noor, Abbas & Shahid, 2018) can be produced as part of malware analyses
using this application.

With the Cuckoo Sandbox application, it is possible to prepare and run malicious
software in an environment similar to a real working environment. It’s used to analyze
files and collect comprehensive analysis results about the behavior and structural features
of malicious software, such as API calls of malware, network traffic, memory dump, etc.
The collected data are saved in a MongoDB database in JSON format.

Cuckoo Sandbox has two main components. The first component is the management
machine used to start the analysis of malware, to store the results in the database, and to
start the web service provided for the users. The other component is the analysis machine,
virtual or physical machine, on which the malicious software is run, the actual analysis is
performed, similar to the real working environment of the malicious software.

In our study, the Windows API call sequences representing the behavior of malware are
collected using this application.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 6/23

https://peerj.com
https://docs.microsoft.com/en-us/windows/desktop/apiindex/windows-api-list
https://docs.microsoft.com/en-us/windows/desktop/apiindex/windows-api-list
https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-createfilea
http://dx.doi.org/10.7717/peerj-cs.285

VirusTotal Service
VirusTotal is an online service that analyzes suspicious files or URLs (Shiel &
O’Shaughnessy, 2019). Different antivirus application engines and website browsers execute
suspicious files/URLs for malicious activities. Each antivirus application engine provides a
detailed report, including registry access, DNS resolutions, etc. VirusTotal service provides
analysis reports from antivirus applications with an interface without any interpretation,
because this service includes an extensive analysis archive, users can perform a new analysis
as well as other analysis reports of other users.

VirusTotal provides an interface for receiving services without using a web browser
(VirusTotal Public API v2.0), giving the possibility to application developers to nalyze files
and URLs (Martn, Hernndez & de los Santos, 2019) automatically.

The body of the response is usually a JSON object containing the analysis results of
antivirus application engines or web browsers separately.

We have identified the families of malware by processing the results we obtain from the
API, and we have assigned labels to each malware.

Long-Short Term Memory
LSTM is a Recurrent Neural Network (RNN) based deep learning method (Muzaffar &
Afshari, 2019). LSTM was developed because RNN not successful enough in long-term
learning. LSTMhas an architecture that can remember and learn any long-termdependency
at random intervals. It is considered a successful method to analyze data or events that
have a specific relationship, especially in order of time (Hochreiter & Schmidhuber, 1997).
For example, if the time series data are x={x1,...,xT }, h={h1,...,hT } is the hidden vector
sequence and y={y1,...,yT } shows an output vector sequence, then T iteration is defined
as follows:

ht =H(Wxhxt +Whhht−1+bh) (1)

yt =F(Whyht +by)

where Wxh, Whh, and Why are the computation time connection weight matrices and F is
the activation function.

System architecture
This research has two main objectives; first, we created a relevant dataset, and then, using
this dataset, we did a comparative study using various machine learning to detect and
classify malware automatically based on their types.

Dataset creation
One of the most important contributions of this work is the new Windows PE Malware
API sequence dataset, which contains malware analysis information. are 7107 malware
from different classes in this dataset. The Cuckoo Sandbox application, as explained above,
is used to obtain the Windows API call sequences of malicious software, and VirusTotal
Service is used to detect the classes of malware.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 7/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.285

Figure 1 General system architecture. Architecture consists of 3 parts; data collection, Data pre-
processing, and Data classification.

Full-size DOI: 10.7717/peerjcs.285/fig-1

Figure 1 illustrates the system architecture used to collect the data and to classify them
using LSTM algorithms.

Our system consists of three main parts, data collection, data pre-processing and
analyses, and data classification.

The following steps were followed when creating the dataset.
Cuckoo Sandbox application is installed on a computer running Ubuntu Linux

distribution. The analysis machine was run as a virtual server to run and analyze malware.
The Windows operating system is installed on this server. The firewall has been turned off,
and no operating system updates have been made to prevent any malware from running.
The tools versions are; Ubuntu 17.10, Cuckoo 2.0.4, Windows 7 Analysis OS, VirtualBox
5.1.30, Python 3.6.5.

Once the data are collected, we start the process to analyses and pre-process the malware
using Cuckoo as a dynamic More than 20,000 malware have been run separately in the
Cuckoo Sandbox application, and the results are all stored in a MongoDB database. From
this analysis information, we obtained the behavioral data of the malware on the analysis
machine. This behavior is all Windows API call requests that the malware has made on the
Windows 7 operating system. Some of the data pre-processing activities are:

• IndexingWindows API calls: When we examined theWindows API calls in the dataset,
we found that there were 342 different API calls. These API calls are indexed from 0
to 341. As a result, each row in the dataset represents the API call sequence for alware
analysis.
• Dataset filtering: Since these malware are developed for a specific application with a
target, we filtered the API call sequence and discarded the rows that did not contain at
least 10 different API calls from the dataset.
• Analysis of malware using VirusTotal Public API: We determined the hash values of
each of malware that we analyzed and inquired these hash values with VirusTotal service.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 8/23

https://peerj.com
https://doi.org/10.7717/peerjcs.285/fig-1
http://dx.doi.org/10.7717/peerj-cs.285

0 200 400 600 800 1,000

Adware

Backdoor

Downloader

Dropper

Spyware

Trojan

Virus

Worms

379

1001

1001

891

832

1001

1001

1001

Malware class distribution

Figure 2 The number of malware in each class.
Full-size DOI: 10.7717/peerjcs.285/fig-2

We stored the analysis results from the VirusTotal service into a database. Thus, each
malware was analyzed by many different antivirus engines, and the results of the analysis
were recorded.
• Processing of analysis results: Based on the results of each analysis, we have obtained
using this service, we have labeled all the malware. During this process, we found out that
different antivirus applications give different results for the same malware, or sometimes
not every antivirus application can detect every malware. For example, when we analyze
the hash value of 06e76cf 96c7c7a3a138324516af 9fce8 in the VirusTotal service, many
of the software indicate that this file is a worm, while DrWeb says it is a trojan, and
Babable end that it is a clean file. Therefore, in determining the classes of malware, we
considered the majority class in the analyzes. If the majority of engines agree that a
particular sample is malicious, then it is as positive.
• Creating the dataset: Finally, the labeled training dataset was created by matching
the Windows API call sequences and the malware classes. This dataset contains 8
different classes of malware. Our dataset is publicly available on GitHub website
(https://github.com/ocatak/malware_api_class). The number of malware included
in these classes is shown in Fig. 2.

In this study, the malware classification method was developed by using the LSTM
algorithm. The LSTM algorithm does not require any vectorization model, such as
TF-IDF, because it works with sequential data. However, it is necessary to compare
the classification performance of the developed method with other traditional machine
learning algorithms such as support vector machine, decision tree, k-nearest neighbor.
TF-IDF model traditional classification algorithms

In ‘TF-IDF’, we describe how to transform the text with the TF-IDF method.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 9/23

https://peerj.com
https://doi.org/10.7717/peerjcs.285/fig-2
https://github.com/ocatak/malware_api_class
http://dx.doi.org/10.7717/peerj-cs.285

TF-IDF
Term frequency-inverse document frequency based text dataset vectorization is a traditional
method to create a numerical dataset. Each term t in a document d is assigned a weight
assignment according to the frequency of occurrence in that document (Manning,
Raghavan & Schütze, 2008). This process is called term frequency, tf(t ,d). The vector,
thus formed, can be considered as a digitized summary of a document. Let the term t be
represented by f (t ,d) of the raw frequency. Term frequency can be found as follow:

tf(t ,d)= f (t ,d) (2)

However, a dataset generated only by the term frequencies assigns equal importance to
each term. The of occurrence of any in a collection The inverse document frequency (IDF)
is defined as the logarithm of the division of the number of documents in the, N , to the
document frequency, dft .

idft = log
N
dft

(3)

Thus, if the dft in the documents in the collection is low, the idft value will be high, and
in the high dtf frequency the idft value will be low. To calculate the weights of the terms
contained in each document, the term frequency, tft ,d , and inverse document frequency,
idft , are combined to form the term frequency-inverse document frequency (TF-IDF)
matrix.

tf − idft = tft ,d× idft (4)

In this study, the malware classification method was developed by using the LSTM
algorithm. The LSTM algorithm does not require any vectorization model, such as TF-IDF,
because it works with sequential data. However, it is necessary to compare the classification
performance of the developed method with other traditional machine learning algorithms
such as support vector machine, decision tree, k-nearest neighbor. The TF-IDF model is
used only because classification algorithms work with numerical data only. TF-IDF is not
used in our odel.

Classifier learning
The steps 1–7 are run separately for each type of malware, creating classification models for
8 different types. The experiments are done using the Python programming language and
machine learning libraries Keras, Tensorflow, and Scikit-learn. We used the Keras library
to build LSTM networks. We have created a two-tier LSTM structure.

In Algorithm 1, we explain the general steps of our classifier building stage. Accordingly,
our algorithm’s both time and space complexity is O(n). In the algorithm, there is the main
loop to build a representative classifier for each distinct label.

Figure 3 shows the flowchart of the overall method. The process of malware classification
includes the following steps in the proposed solution:
1. We select the that we want to classify.
2. We process the dataset for the selected malware type. The model assigns label 1 to the

malware type information of interest and label 0 to other categories.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 10/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.285

Algorithm 1 Classifier learning steps
1: Inputs:

Malware API call dataset X , malware class labels Y , class set C
2: for each c ∈C do

3: Yc←

{
1, if y = c

0, otherwise
F Labels that are belongs to c will be 1, rest are 0 for binary

classifier
4: Xtrainc ,Xtestc ,Ytrainc ,Ytrainc← train_test_split (X ,Yc ,0.8) F 0.8 training data, 0.2

validation data
5: hc← LSTM_model_fit (Xtrainc ,Ytrainc) F LSTMmodel building with train dataset
6: end for
7: Outputs:

A set of classifiers set for each class C , h :X 7→Y

3. A two-tier LSTM-based classification model is defined and created.
4. The classifier is trained using 80% of the data during the training phase. Validation is

performed during training with 20% of the data allocated for training.
5. The trained classifier is tested using 20% of the data in the dataset. During this process,

API calls of a new software are shown to the classifier and a class label is assigned to
these new instances based on the voting results of the models.

6. Training and test results are recorded.
7. The classifier is trained using 80% of the data during the training phase. Validation is

performed during training with 20% of the data allocated for training.
The training process is shown in Fig. 4. The LSTM network model receives the API calls

that each malware makes on the Windows operating system and assigns the class label to
ŷ . As we apply the classifiers to each of the 8 malware classes, our classifier is binary ones.
Log loss function is used as the loss function, shown in Eq. (5).

l(y,ŷ)=
1
L

l=|L|∑
l=1

−
(
yl log(ŷl)+ (1−yl)log (1− ŷl)

)
(5)

Evaluation
Since the dataset that is used in our experiments highly imbalanced, traditional accuracy
based performance evaluation is not enough to find out an optimal classifier. We used four
different metrics, the overall prediction accuracy, average recall, average precision (Turpin
& Scholer, 2006) and F1 score, to evaluate the classification accuracy, which measurement
metrics in information retrieval (Manning, Raghavan & Schütze, 2008; Makhoul et al.,
1999).

EXPERIMENTS AND RESULTS
In this study, we performed the classification of malware belonging to different families
in the dataset described in Section 3.1 with the LSTM algorithm. All experiments were
run in a Python environment, and all algorithm codes have been modified to build a

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 11/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.285

Start

Split dataset into

Train (80% Xtrain) and

Test (20% Xtest)

foreach class c ∈ C
change corresponding label

Yc ←
{
1, if y = c

0, otherwise

Train test split for the dataset
with new label

Xtrain, Xtest, Ytrain, Ytrain ← train test split(X,Yc, 0.8)

Build classifier hc for class c
and evaluate the h using Xtest, Ytest

set of classifiers:h

Overall test of h

Model
Building

Exit classifier building loop
Validation

data

Model building loop

Figure 3 FLFlow chart of the overall system.
Full-size DOI: 10.7717/peerjcs.285/fig-3

classification model from the given data. Our codes can be accessed on our GitHub
repository (https://github.com/ocatak/malware_api_class/tree/master/src).

As we have explained in the previous sections, we can analyze the sequential data with the
LSTM algorithm that we have used within the scope of this study and create a classification
model as a result. When it is desired to a model using other classification algorithms,
the existing text data should be digitized. For this purpose, we used the TF-IDF method,
which is the most common text digitization method. We used our numerical data set with
this method with the k-Nearest Neighborhood, Decision Tree (DT), and Support Vector
Machine (SVM) algorithms. In ‘TF-IDF’, we describe how to transform the text with the
TF-IDF method.

In this section, we will share the experimental results for binary and multi-class
classification separately. We designed 2 different experiments for multi-class classification;

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 12/23

https://peerj.com
https://doi.org/10.7717/peerjcs.285/fig-3
https://github.com/ocatak/malware_api_class/tree/master/src
http://dx.doi.org/10.7717/peerj-cs.285

LSTM - 2

LSTM - 1

<Start> LZCopy CreateProcess GetPriorityClass EncryptFile OpenProcess

Malicious/Benign

LSTM Based Classification Model

Figure 4 LSTM classification model withWindows API calls.
Full-size DOI: 10.7717/peerjcs.285/fig-4

single layer LSTM and two layers LSTM. The purpose of doing this is that two-layer LSTM
models are overfitting in some cases.

Model configuration
Since we wanted to create a model for each class, we edited the class information in the
dataset. We assigned 1 for the malware class to be analyzed and 0 for the others. Since
we do this while creating each classification model, these models perform binary type
classification. For example, the result of the classification model created for the Adware
class is Adware or other.

We used tanh, relu, sigmoid, softplus, softsign, softmax and linear activation functions and
created eight different models for each malware class. We have used the same flow layers,
although there are different numbers of data analyzed at the stage of creating malware
models. An example of the flow layers of the models is the Adware classification model,
which is shown in Fig. 5.

Binary classification results
Table 1 shows the classification performance of LSTM and conventional algorithms results.
Although the accuracy rates of the traditional methods and the deep learningmethods seem
to be similar, F1 values give more meaningful information due to the lack of close class
distributions. F1 represents the balance between precision and recall values. Therefore,
the F1 values obtained by the deep learning method better than the F1 values obtained by
the traditional methods. This suggests that deep learning is better for analyzing malware
behavior.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 13/23

https://peerj.com
https://doi.org/10.7717/peerjcs.285/fig-4
http://dx.doi.org/10.7717/peerj-cs.285

embedding_2: Embedding
input:

output:

(None, 342)

(None, 342, 16)

lstm_3: LSTM
input:

output:

(None, 342, 16)

(None, 342, 100)

dropout_2: Dropout
input:

output:

(None, 342, 100)

(None, 342, 100)

lstm_4: LSTM
input:

output:

(None, 342, 100)

(None, 342, 100)

flatten_2: Flatten
input:

output:

(None, 342, 100)

(None, 34200)

dense_2: Dense
input:

output:

(None, 34200)

(None, 2)

Figure 5 The classification model layers and their neurons.
Full-size DOI: 10.7717/peerjcs.285/fig-5

As expected, based on the experimental results, the classification performance of the
models created by using traditional classification algorithms using the TF-IDF based
vectorization method, where the sequence information is not used, is lower than the
performance of the model created using the LSTM algorithm. Considering all four
classification evaluation metrics, we proposed a practical implementation of the malware
detection model using the LSTM algorithm. Our proposed method is more efficient as we
obtained better scores on all the evaluation metrics.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 14/23

https://peerj.com
https://doi.org/10.7717/peerjcs.285/fig-5
http://dx.doi.org/10.7717/peerj-cs.285

Table 1 LSTM and conventional algorithms classification results.

Adware Backdoor Downloader Dropper Spyware Trojan Virus Worm

LSTM
Accuracy 0.985 0.877 0.909 0.877 0.876 0.835 0.927 0.865
Precision 0.90 0.60 0.72 0.52 0.46 0.36 0.76 0.57
Recall 0.77 0.40 0.57 0.44 0.42 0.22 0.70 0.37
F1 0.83 0.48 0.64 0.48 0.44 0.27 0.73 0.45
Func. tanh tanh soft sign soft sign soft sign soft sign tanh soft sign

k-NN
Accuracy 0.976 0.834 0.870 0.819 0.879 0.841 0.859 0.823
Precision 0.89 0.38 0.62 0.19 0.45 0.33 0.47 0.36
Recall 0.59 0.26 0.20 0.13 0.26 0.12 0.21 0.23
F1 0.71 0.31 0.30 0.16 0.33 0.18 0.29 0.28

DT
Accuracy 0.954 0.824 0.839 0.815 0.824 0.786 0.856 0.825
Precision 0.53 0.39 0.43 0.32 0.30 0.26 0.48 0.41
Recall 0.80 0.41 0.48 0.38 0.41 0.28 0.52 0.40
F1 0.64 0.40 0.45 0.35 0.35 0.27 0.50 0.40

RBF SVM
Accuracy 0.979 0.875 0.876 0.881 0.899 0.867 0.888 0.875
Precision 1.00 0.91 1.00 0.84 0.79 0.87 1.00 0.93
Recall 0.59 0.14 0.12 0.09 0.16 0.07 0.18 0.18
F1 0.74 0.25 0.22 0.16 0.27 0.12 0.31 0.29

Sigmoid SVM
Accuracy 0.950 0.864 0.860 0.872 0.886 0.859 0.862 0.851
Precision 0 0.87 0 0 0 0 0 0
Recall 0 0.06 0 0 0 0 0 0
F1 0 0.12 0 0 0 0 0 0

Notes.
Bold values indicate the best value of each column.

Based on the results and the classification performance shown in Table 1, we conclude
that the LSTM model is the best approach that provides the best performance for all
evaluation metrics.

Multi-class classification results
Using our data set, we created several multi-class classification models with 8 different
classes are also created. Especially by using different hyper-parameters, the most successful
models were tried to be obtained. F1 metric value will be used to compare the analysis
results. The classification_report method in the sklearn.metrics the end library was used
to calculate the F1, precision, recall, and average values of these values. The average F1

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 15/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.285

embedding_18: Embedding
input:

output:

(None, 342)

(None, 342, 32)

lstm_25: LSTM
input:

output:

(None, 342, 32)

(None, 200)

dense_18: Dense
input:

output:

(None, 200)

(None, 8)

Figure 6 Single layer LSTM classification model structure.
Full-size DOI: 10.7717/peerjcs.285/fig-6

value produced by this method takes into account the precision and recall values and class
weights in the dataset.

Single layer LSTM results
Single-layer LSTM models have been created that can classify 8 different types of malware.
These models produce an output between 0–7. These values represent malware class.
Figure 6 shows our single layer LSTM architecture.

While creating the models, it is aimed to obtain the best classification model by using
many different hyper-parameters. Table 2 shows our hyper-parameter search space.

Table 3 shows the best classification performance obtained using following hyper-
parameters.

The training history, accuracy and loss graphs of the model created by using the
best hyper-parameters are given in Figs. 7A and 7B respectively. When the graphics are
examined, it is seen that themodel education process stops at the 30th epoch. The reason for
this situation is that the model comes to the overfitting point. During the model trainings,
using the EarlyStopping parameter, it was ensured that the education was terminated
without reaching the extreme fit of the model.

TheConfusionMatrix information obtained as a result of testing the trained classification
model is given in Table 4.

The analysis results obtained by testing the trained classification model are shown in
Table 5.

Two layers LSTM results
Two-layer LSTM models have been created that can classify 8 different types of malware.
These models produce an output between 0–7.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 16/23

https://peerj.com
https://doi.org/10.7717/peerjcs.285/fig-6
http://dx.doi.org/10.7717/peerj-cs.285

Table 2 Hyper-parameter search space to tune the model.

Hyper-Parameter Search Space

Embedding layer number of units 5 - 300
LSTM layer number of units 1 - 300 Activation function: anh
Activation function tanh , relu, sigmoid, softplus, softsign, softmax, linear

kernel initializer:
kernel initializer random_uniform, glorot_uniform, lecun_uniform,

uniform Dropout:
Dropout 0.1 - 0.9 optimizer:
optimizer adam, adadelta, adamax, nadam

Table 3 Best hyper-parameters.

Hyper-Parameter Value

Embedding units 32 units:
Units 200
Activation sigmoid
Kernel_initializer glorot_uniform
Dropout 0.2
Optimizer adam

0 5 10 15 20 25 30

epoch

0.45

0.40

0.35

0.30

0.25

0.20

0.15

ac
cu

ra
cy

training
validation

(a) Accurancy (b) Loss

0 5 10 15 20 25 30

epoch

2.0

1.9

1.8

1.7

1.6

1.5

1.4

lo
ss

training
validation

Figure 7 Single layer LSTMmodel accuracy-loss graphics. (A) Accuracy; (B) Loss.
Full-size DOI: 10.7717/peerjcs.285/fig-7

Table 6 shows the best classification performance hyper-parameters.
According to Fig. 8, the model training process stops at the 16th epoch because of

overfitting limit. During the model trainings, the training was ended before the model
reached the extreme fit state by using the EarlyStopping parameter.

Confusion Matrix is given in Table 7.
Table 8 shows the two layers LSTM model classification performance results.
Multi-class classification model results obtained using different algorithms are given in

Table 9.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 17/23

https://peerj.com
https://doi.org/10.7717/peerjcs.285/fig-7
http://dx.doi.org/10.7717/peerj-cs.285

Table 4 Single Layer LSTMModel ConfusionMatrix.

49 0 8 4 1 5 4 0
1 92 6 15 22 44 6 17
6 10 124 22 6 22 4 5
3 12 6 80 21 53 6 0
2 22 7 16 41 48 17 9
3 23 13 25 25 90 15 6
7 6 1 19 8 20 131 3
2 30 6 17 19 62 20 55

Table 5 Single Layer LSTMModel Classification Results.

Precision Recall F1
Adware 0.67 0.69 0.68
Backdoor 0.47 0.45 0.46
Downloader 0.73 0.62 0.67
Dropper 0.40 0.44 0.42
Spyware 0.29 0.25 0.27
Trojan 0.26 0.45 0.33
Virus 0.65 0.67 0.66
Worm 0.58 0.26 0.36
Average 0.50 0.47 0.47

Table 6 Hyper-parameter search space to tune the model.

Hyper-Parameter Search Space

Embedding units 16 units:
units 25
LSTM-1 activation : softsign softsign
LSTM-1 kernel_initializer glorot_uniform
LSTM-2 activation : softsign softsign
LSTM-2 kernel_initializer glorot_uniform
LSTM-2 recurrent_dropout 0.2
Dense kernel_regularizer regularizers.l2(0.01)
Dense activity_regularizer regularizers.l1(0.01) optimizer: adam
Optimizer adam

Results
As expected, based on the experimental results, LSTM based malware classification than
the TF-IDF based conventional machine learning algorithms’ classification performance.
Considering all the four classification evaluation metrics, we proposed a practical
implementation of the malware classification model using sequential based Windows
OS API calls and LSTM networks. Our proposed method is more efficient as we get better
scores on evaluation metrics.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.285

0 2 4 6 8 10 12 14 16 epoch

0.35

0.30

0.25

0.20

0.15

0.40

ac
cu

ra
cy

(a) Accuracy (b) Loss

0 2 4 6 8 10 12 14 16 epoch

2.0

1.9

1.8

1.7

1.6

lo
ss

training
validation

training
validation

Figure 8 Two layers LSTMmodel accuracy-loss graphics. (A) Accuracy; (B) Loss.
Full-size DOI: 10.7717/peerjcs.285/fig-8

Table 7 Two layers LSTMModel ConfusionMatrix.

Table 6. Hyper-parameter search space to tune the model.

Hyper-Parameter Search Space
Embedding units 16
units 25
LSTM-1 activation softsign
LSTM-1 kernel initializer glorot uniform
LSTM-2 activation softsign
LSTM-2 kernel initializer glorot uniform
LSTM-2 recurrent dropout 0.2
Dense kernel regularizer regularizers.l2(0.01)
Dense activity regularizer regularizers.l1(0.01)
Optimizer adam

0 2 4 6 8 10 12 14 16

 epoch

0.35

0.30

0.25

0.20

0.15

0.40

a
c
c
u

ra
c
y

(a) Accuracy (b) Loss

0 2 4 6 8 10 12 14 16

 epoch

2.0

1.9

1.8

1.7

1.6

lo
s
s

training
validation

training
validation

Figure 8. Two Layers LSTM Model accuracy-loss graphics

Table 7. Two layers LSTM Model Confusion Matrix

0 1 2 3 4 5 6 7
predicted label

0

1

2

3

4

5

6

7

tru
e
la
be

l

53 1 2 8 4 0 2 1

2 94 7 33 21 24 7 15

4 15 122 29 10 7 8 4

12 19 14 75 19 21 8 13

4 38 11 38 31 14 13 13

4 35 18 46 29 29 25 14

6 10 7 18 8 7 133 6

2 56 11 31 13 13 43 42

Table 8 shows the two layers LSTM model classification performance results.415

Multi-class classification model results obtained using different algorithms are given in Table 9.416

4.4 Results417

As expected, based on the experimental results, LSTM based malware classification model’s performance418

is better than the TF-IDF based conventional machine learning algorithms’ classification performance.419

Considering all the four classification evaluation metrics, we proposed a practical implementation of the420

14/17PeerJ Comput. Sci. reviewing PDF | (CS-2020:03:47276:1:3:CHECK 6 Jun 2020)

Manuscript to be reviewedComputer Science

Based on the results presented in Section 4.2 and Section 4.3 the computation results
shown in Table 1, it can be concluded that LSTM is the best approach that provides best
results for all evaluation metrics.

On the other hand, if we compare the training periods, the training of LSTM models
takes longer. The features of the computer where the experiments are carried out are as
follows; Windows 7(64 bit), Intel(R) Core(TM) i7-2600 CPU@ 3.40GHZ, and 6GB RAM.
The training durations are

• Single layer LSTM: 64.78 min
• Two lyers LSTM: 42.82 min
• Decision Tree: 1.36 min
• kNN: 5.26 min

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 19/23

https://peerj.com
https://doi.org/10.7717/peerjcs.285/fig-8
http://dx.doi.org/10.7717/peerj-cs.285

Table 8 Two layers LSTMmodel classification performance results.

Precision Recall F1
Adware 0.61 0.75 0.67
Backdoor 0.35 0.46 0.40
Downloader 0.64 0.61 0.62
Dropper 0.27 0.41 0.33
Spyware 0.23 0.19 0.21
Trojan 0.25 0.14 0.18
Virus 0.56 0.68 0.61
Worm 0.39 0.20 0.26
Average 0.40 0.41 0.39

Table 9 Multi-class classificatonmodel performance results.

Precision Recall F1
LSTM 0.50 0.47 0.47
2LSTM 0.40 0.41 0.39
DT 0.40 0.41 0.40
kNN 0.35 0.35 0.34
RF 0.46 0.47 0.46
SVM 0.78 0.29 0.29

• RF: 6.8 min
• SVM: 13.62 min

Sequential data are used for LSTM While making the vectorizing process using the
TF-IDF model with conventional methods.

According to confusion matrices on Tables 4–7, we can conclude that the most
discriminating malware class is Trojan and the least discriminating class is Spyware.
From these results, we can conclude that the samples belonging to the Spyware malware
class do not follow a particular API call sequence. Although the model complexity was
increased with 2 layers of LSTM, and we did not see a significant difference when we
examined the classification performances.

CONCLUSION AND FUTURE WORKS
The purpose of this study was to create a dataset by obtaining runtime system calls made
by 7107 malicious software on Windows 7. As a result, we built a dataset that contains the
malware behavioral data at runtime and class labels to which the software was included.
classification model is proposed, and this dataset created a model for malware detection
using deep learning method LSTM.

We build separate classification models for each malware family and found that the
results of the classification of these models showed a success rate between 83.5% to
98.5%. We can say that our classification method exhibits excellent performance because

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 20/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.285

VirusTotal services malware family labeling cannot be accurate. Also we showed that single-
layer LSTM and two-tier LSTM models achieved almost the same classification results.
Thus, the complexity of the model doesn’t increase performance. Although our dataset
contains instances that belong to some malware families with unbalanced distribution, we
have shown that this problem does not affect classification performance.

Our research can be applied to other malware families as well because the behavior
demonstrated by metamorphic malware in an operating system is similar do the other
family members. As a result, the LSTM approach can be used in the classification of
metamorphic malware, and this study is a conceptual proof of this finding.

It is assumed that the malware did not detect the sandbox environment in the dataset
we used in this analysis. Some sophisticated malware the potential to identify that they
are being run in an isolated environment by using the images methods have started to
be introduced instead of running such malware in a sandbox environment to detect such
malware that changes behavior by detecting an anti-VM environment. As future work, we
intend to use malware images method to classify the correctly labeled dataset. Besides, we
want to use other sequential data classification algorithms used before deep learning.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Ferhat Ozgur Catak and Ahmet Faruk Yazı conceived and designed the experiments,
performed the experiments, analyzed the data, performed the computation work,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.
• Ogerta Elezaj and Javed Ahmed analyzed the data, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The Mal-API-2019 Dataset is available at GitHub:
https://github.com/ocatak/malware_api_class
Python source folder is also available at GitHub: https://github.com/ocatak/malware_

api_class/tree/master/src.

REFERENCES
AhmedME, Nepal S, KimH. 2018. ‘‘MEDUSA: Malware Detection Using Statistical

Analysis of System’s Behavior’’. In: IEEE 4th international conference on collaboration
and internet computing (CIC). Piscataway: IEEE.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 21/23

https://peerj.com
https://github.com/ocatak/malware_api_class
https://github.com/ocatak/malware_api_class/tree/master/src
https://github.com/ocatak/malware_api_class/tree/master/src
http://dx.doi.org/10.7717/peerj-cs.285

AlazabM, Layton R, Venkataraman S,Watters P. 2010.Malware detection based on
structural and behavioural features of API calls. In: 2010 1st international cyber
resilience conference.

AlazabM, Venkataraman S,Watters P. 2010. Towards understanding malware be-
haviour by the extraction of API calls. In: 2010 second cybercrime and trustworthy
computing workshop. 52–59 DOI 10.1109/CTC.2010.8.

Ali M, Shiaeles S, Clarke N, Kontogeorgis D. 2019. A proactive malicious software
identification approach for digital forensic examiners. Journal of Information Security
and Applications 47:139–155 DOI 10.1016/j.jisa.2019.04.013.

Çatak FÖ, Yazi AF. 2019. A Benchmark API Call Dataset for Windows PE Malware
Classification. CoRR. ArXiv preprint. arXiv:1905.01999.

Cheng JY, Tsai T, Yang C. 2013. ’’An information retrieval approach for malware
classification based on Windows API calls’’. In: International conference on machine
learning and cybernetics.

Hampton N, Baig Z, Zeadally S. 2018. Ransomware behavioural analysis on win-
dows platforms. Journal of Information Security and Applications 40:44–51
DOI 10.1016/j.jisa.2018.02.008.

Hochreiter S, Schmidhuber J. 1997. Long Short-term Memory. Neural Computation
9(81):735–780.

Kolosnjaji B, Zarras A,Webster G, Eckert C. 2016. Deep learning for classification of
malware system call sequences. Cham: Springer International Publishing, 137–149.

Leder F, Steinbock B, Martini P. 2009. ‘‘Classification and Detection of Metamorphic
Malware using Value Set Analysis’’. In: International conference on malicious and
unwanted software (MALWARE).

Makhoul J, Kubala F, Schwartz R,Weischedel R. 1999. Performance measures for
information extraction. In: Proceedings of DARPA broadcast news workshop. 249–252.

Manning CD, Raghavan P, Schütze H. 2008. Introduction to information retrieval. New
York: Cambridge University Press.

Martín I, Hernández JA, de los Santos S. 2019.Machine-learning based analysis and
classification of Android malware signatures. Future Generation Computer Systems
97:295–305 DOI 10.1016/j.future.2019.03.006.

Mehra V, Jain V, Uppal D. 2015. ‘‘DaCoMM: detection and classification of metamor-
phic malware’’. In: Fifth international conference on communication systems and
network technologies.

Muzaffar S, Afshari A. 2019. Short-term load forecasts using LSTM networks.
Energy Procedia 158:2922–2927 Innovative solutions for energy transitions
DOI 10.1016/j.egypro.2019.01.952.

NoorM, Abbas H, ShahidWB. 2018. Countering cyber threats for industrial applica-
tions: an automated approach for malware evasion detection and analysis. Journal of
Network and Computer Applications 103:249–261 DOI 10.1016/j.jnca.2017.10.004.

Peiravian N, Zhu X. 2013.Machine learning for android malware detection using
permission and API calls. In: 2013 IEEE 25th international conference on tools with
artificial intelligence. Piscataway: IEEE, 300–305 DOI 10.1109/ICTAI.2013.53.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 22/23

https://peerj.com
http://dx.doi.org/10.1109/CTC.2010.8
http://dx.doi.org/10.1016/j.jisa.2019.04.013
http://arXiv.org/abs/1905.01999
http://dx.doi.org/10.1016/j.jisa.2018.02.008
http://dx.doi.org/10.1016/j.future.2019.03.006
http://dx.doi.org/10.1016/j.egypro.2019.01.952
http://dx.doi.org/10.1016/j.jnca.2017.10.004
http://dx.doi.org/10.1109/ICTAI.2013.53
http://dx.doi.org/10.7717/peerj-cs.285

Pirscoveanu RS, Hansen SS, Larsen TMT, Stevanovic M, Pedersen JM, Czech A. 2015.
‘‘Analysis of Malware behavior: type classification using machine learning’’. In:
International conference on cyber situational awareness, data analytics and assessment
(CyberSA).

Qiao Y, Yang Y, Ji L, He J. 2013. ’’Analyzing malware by abstracting the frequent itemsets
in API call sequences’’. In: IEEE international conference on trust, security and privacy
in computing and communications. Piscataway: IEEE.

Rad BB, MasromM, Ibrahim S. 2012. Camouflage in Malware: from encryption to
metamorphism. International Journal of Computer Science and Network Security
12(8):74–83.

Sami A, Yadegari B, Rahimi H, Peiravian N, Hashemi S, Hamzeh A. 2010.Malware
detection based on mining API calls. In: SAC ’10. USA: MIT Press.

Shamshirband S, Chronopoulos AT. 2019. A new malware detection system using a
high performance-ELM method. In: IDEAS 19. Proceedings of the 23rd international
database applications & engineering symposium. New York: Association for Comput-
ing Machinery.

Shamshirband S, Rabczuk T, Chau K. 2019. A survey of deep learning techniques:
application in wind and solar energy resources. IEEE Access 7:164650–164666.

Shiel I, O’Shaughnessy S. 2019. Improving file-level fuzzy hashes for malware variant
classification. Digital Investigation 28:S88–S94 DOI 10.1016/j.diin.2019.01.018.

Tian R, Islam R, Batten L, Versteeg S. 2010. Differentiating malware from cleanware
using behavioural analysis. In: 2010 5th international conference on malicious and
unwanted software. 23–30 DOI 10.1109/MALWARE.2010.5665796.

Turpin A, Scholer F. 2006. User performance versus precision measures for simple
search tasks. In: SIGIR ’06. Proceedings of the 29th annual international ACM SIGIR
conference on research and development in information retrieval. New York: ACM,
11–18.

Vinod P, Jain H, Golecha YK, GaurMS, Laxmi V. 2010. ’’MEDUSA: MEtamorphic
malware dynamic analysis using signature from API’’. In: Proceedings of the 3rd
international conference on security of information and networks.

Yazi AF, Çatak F, Gül E. 2019. Classification of methamorphic malware with deep
learning(LSTM). In: 2019 27th signal processing and communications applications
conference (SIU). 1–4 DOI 10.1109/SIU.2019.8806571.

Catak et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.285 23/23

https://peerj.com
http://dx.doi.org/10.1016/j.diin.2019.01.018
http://dx.doi.org/10.1109/MALWARE.2010.5665796
http://dx.doi.org/10.1109/SIU.2019.8806571
http://dx.doi.org/10.7717/peerj-cs.285

