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Abstract

In this thesis we study the topological full group of an ample groupoid, with a
particular focus on groupoids arising from directed graphs. We mainly address two
aspects of the topological full group. The first is to what extent the topological full
group is a complete invariant, namely when an ample groupoid can be recovered
from the algebraic structure of its topological full group alone. The second is
to relate the topological full group to the homology groups of the groupoid, as
formulated in Matui’s AH conjecture.

Sammendrag

I denne avhandlingen studeres den topologisk fulle gruppen til en ample gruppoide.
Det fokuseres spesielt på gruppoider konstruert fra rettede grafer. Vi studerer
hovedsakelig to aspekter ved den topologisk fulle gruppen. Det ene er i hvilken
grad den topologisk fulle gruppen er en komplett invariant, i den forstand at en
ample gruppoide kan rekonstrueres utelukkende fra den algebraiske strukturen til
dens topologisk fulle gruppe. Det andre er å relatere den topologisk fulle gruppen
til gruppoidens homologigrupper, som formulert i AH-formodningen til Matui.
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This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (PhD) in Mathematical Sciences at the Norwegian University
of Science and Technology (NTNU). The research presented here was conducted
at the Department of Mathematical Sciences at NTNU, under the supervision of
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Chapter 1

Groupoids

Let us begin by introducing the main mathematical object studied in this thesis,
namely that of a groupoid. We will first discuss (algebraic) groupoids them-
selves, before introducing topological groupoids. After that, we will introduce
étale groupoids and ample groupoids. In short, an étale groupoid is a topological
groupoid that is locally homeomorphic to its unit space, and an ample groupoid is
an étale groupoid that is zero-dimensional.

Two short notational remarks before we begin. We denote the positive integers
by N and the non-negative integers by N0. If two sets A and B are disjoint we will
denote their union by A t B if we wish to emphasize that they are disjoint. When
we write C = A t B we mean that C = A ∪ B and that A and B are disjoint sets.

1.1 Algebraic groupoids

The typical catchphrase one often encounters is that:

• “A groupoid is a small category in which all morphisms are isomorphisms”.

While this is elegant and succinct, we prefer to introduce groupoids in a different
way, which we believe gives the “working mathematician” a better feel for them.
Namely as an algebraic structure akin to that of a group, but with the very important
exception that the binary operation need not be total. In otherwords, not all elements
in a groupoid can be multiplied together. This, of course, makes groupoids quite
different from groups. In the words of Alan L. T. Paterson:

• “A groupoid is a set with a partially defined multiplication for which the
usual properties of a group hold whenever they make sense.”

Another advantage of the algebraic definition given below is that it lends itself easily
to equipping groupoids with more structure, such as a topology or a differentiable

3



Chapter 1. Groupoids

structure. However, we will soon enough return to the categorical picture of a
groupoid, and gain some useful intuition from it.

Definition 1.1.1. A groupoid is a non-empty set G together with a distinguished
subset G (2) ⊆ G × G equipped with a partial binary operation G (2) → G, denoted
(g, h) 7→ gh, and a unary operation G → G, denoted g 7→ g−1, such that the
following axioms are satisfied:

(G1): If (g, h), (h, k) ∈ G (2), then (gh, k), (g, hk) ∈ G (2) and (gh)k = g(hk).

(G2):
(
g−1

)−1
= g for all g ∈ G.

(G3): For all g ∈ G, we have (g, g−1) ∈ G (2), and if (g, h) ∈ G (2), then ghh−1 = g

and g−1gh = h.

We refer to the set G (2) as the set of composable pairs and to the operation
(g, h) 7→ gh as multiplication or composition of the elements g and h. The first
axiom above says that this multiplication is associative, whenever it is defined.
We refer to g−1 as the inverse of g. We deduce from the third axiom above that
the groupoid element g−1g serves as a right idenity for all elements h ∈ G such
that (h, g−1) is composable. Similarly, gg−1 is a left identity for all k ∈ G with
(g−1, k) ∈ G (2). In particular,

g(g−1g) = g = (gg−1)g.

As there are multiple “identities” in G—in contrast to in a group—these elements
(g−1g and gg−1) are collectively referred to as units. In the words of Aidan Sims:

• “A groupoid is a group with an identity crisis.”

The set
G (0) B

{
g−1g | g ∈ G

}
=

{
gg−1 | g ∈ G

}

is called the unit space (or the set of units if one wishes to be pedantic). Soon
enough we shall exclusively be working with topological groupoids, and then G (0)

will indeed be a topological space in its own right.
The maps s, r : G → G (0) given by s(g) = g−1g and r (g) = gg−1 are called

the source and range maps, respectively. These maps are occasionally called the
“domain” and/or “target” maps. Notation and terminology for groupoids vary
somewhat throughout the literature. What is used here aligns with much of the
literature on groupoid C∗-algebras.

Let us now consider some examples of groupoids.

4



1.1. Algebraic groupoids

Example 1.1.2. Any group Γ becomes a groupoid by declaring all elements to be
composable, i.e. Γ(2) = Γ × Γ. The unit space becomes Γ(0) = {e}, where e is the
identity element in Γ. Conversely, it can be shown that any groupoid whose unit
space is a singleton is a group.

Example 1.1.3. Sitting at the opposite extreme from groups, any set X can be
viewed as a groupoid by declaring that X (2) = X = X (0), i.e. nothing is composable,
except for an element with itself.

Example 1.1.4. In some sense mixing the former two, let X be a set and let Γx be
a group for each x ∈ X . The group bundle G B tx∈X {x} × Γx becomes a groupoid
by only allowing multiplication within each individual fiber (which, a priori, is the
only thing that makes sense). The product and inverse are (x, γ)(x, τ) = (x, γτ)
and (x, γ)−1 = (x, γ−1) for γ, τ ∈ Γx . Its unit space is G (0) = tx∈X (x, ex ), where ex
is the identity element in Γx . By identifying G (0) with X via (x, ex ) ↔ x we can
write the source and range maps as s(x, γ) = x and r (x, γ) = x.

Example 1.1.5. A less trivial example is that of an equivalence relationR ⊆ X×X
on a set X . By defining R(2) = {((x, y), (y, z)) | (x, y), (y, z) ∈ R} with product
(x, y)(y, z) = (x, z) and inverse (x, y)−1 = (y, x). The source and range maps
become s(x, y) = (y, y) and r (x, y) = (x, x), so the unit space R(0) equals the
diagonal in X . By identifying R(0) with X itself via (x, x) ↔ x we may write
s(x, y) = y and r (x, y) = x.

As a particular case we have, for each n ∈ N, the so-called matrix groupoid
Rn B {1, 2, . . . , n} × {1, 2, . . . , n}, which is simply the full equivalence relation on
a set of n elements. Here (i, j)( j, k) = (i, k) and (i, j)−1 = ( j, i), and s(i, j) = j
and r (i, j) = i, after identifyingR(0)

n with {1, 2, . . . , n}.

Example 1.1.6. Another important example is that of a group action. Let Γ be a
group with identity element e and let X be a Γ-set. Define Γ n X B Γ × X and set
(Γ n X )(2) = {((τ, γ(x)), (γ, x)) | τ, γ ∈ Γ, x ∈ X }. So the pairs (τ, y) and (γ, x)
are composable if and only if y = γ(x), i.e. γ moves x to y. The product and
inverse are given by (τ, γ(x))(γ, x) = (τγ, x) and (γ, x)−1 = (γ−1, γ(x)). We refer
to ΓnX as a transformation groupoid. Its unit space is (Γ n X )(0) = {e}×X , which
we will identify with X via (e, x) ↔ x. Then the source and range maps become
s((γ, x)) = x and r ((γ, x)) = γ(x).

In the case that the action is singly generated (meaning that Γ is a cyclic group)
by some bijection φ : X → X , we will denote the transformation groupoid by Gφ
to emphasize this.

Example 1.1.7. As a final example for now, we explain how one gets an equivalence
relation (groupoid) from a group action. If X is a Γ-set, then the orbit equivalence
relation is RΓyX B {(x, γ(x)) | x ∈ X, γ ∈ Γ} ⊆ X × X .

5



Chapter 1. Groupoids

The following rudimentary facts follow from Definition 1.1.1.

Proposition 1.1.8. Let G be a groupoid. Then:

1. G is cancellative, i.e. if (g, h), (g, k) ∈ G (2) and gh = gk, then h = k, and
vice versa.

2. If (g, h) ∈ G (2), then (h−1, g−1) ∈ G (2) and (gh)−1 = h−1g−1.

3. G (0) =
{
g ∈ G | (g, g) ∈ G (2) and g2 = g

}
.

4. gs(g) = g = r (g)g for all g ∈ G.

5. s
(
g−1

)
= r (g) and s

(
r−1

)
= s(g) for all g ∈ G.

6. s(x) = x = r (x) = x−1 for all x ∈ G (0).

7. If (g, h) ∈ G (2), then s(gh) = s(h) and r (gh) = r (g).

8. (g, h) ∈ G (2) ⇐⇒ r (h) = s(g).

Item 8. above is particularly worth noting. Namely that two groupoid ele-
ments g and h are composable (in that order) if and only if the range of h coincides
with the source of g. If we now think of a groupoid element g as an arrow (or
morphism) from s(g) to r (g), like this:

•

s(g)
•

r (g)

g

g−1

then it fits our intuiton that h may be followed by g, i.e. composing gh, precisely
when g picks up where h left off:

• •

r (h) = s(g)
•

gh

The order of multiplication reflects the order that we compose maps (which is
opposite from the way we compose arrows). We now arrive at the categorical
picture of a groupoid. Let C be a small category (the collection of objects and
morphisms both form sets) in which every morphism (or arrow) is invertible. Then
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1.1. Algebraic groupoids

it is clear that the set of morphisms in C forms a groupoid under composition and
inversion of morphisms. The unit space of C is the set of identity morphisms.
Conversely, if G is a groupoid, then we may view it as a category by formally
identifying the unit space G (0) with both the set of objects and identity morphisms
and for two units (objects) x, y ∈ G (0), the set of morphisms (or arrows) from x to
y is {g ∈ G | s(g) = x and r (g) = y}.

Picturing groupoid elements as arrows in this way aids our intuition when
working with groupoids arising from various dynamical systems, which is the kind
of groupoids studied in this thesis. In many cases (e.g. equivalence relations and
transformation groupoids) one constructs a groupoid G from a set (or space) X with
some sort of “dynamics” on it, which is then encoded in the groupoid structure in
such a way that the unit space G (0) may be identified with X . We may then refer
to G as a groupoid over X . We can think of G as a set of arrows over G (0) as follows:

•

s(g) •

r (g)

G (0)
G : g

The equivalence relation groupoidR and transformation groupoid Γn X of Exam-
ples 1.1.5 and 1.1.6 can be visualized as

•

y •

x

X
R : (x, y)

and

•

x •

γ(x)

X
Γ n X : (γ, x)

We can think of the transformation groupoid Γ n X as encoding the action by Γ
on X in the sense that the groupoid element (γ, x) tells us that γ moves x to γ(x).
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Chapter 1. Groupoids

Groupoids are quite flexible in the sense that they can be combined in many
ways to create new groupoids. Some basic constructions are:

1. If G andH are groupoids, then their disjoint union G tH is a groupoid (with
operations within each separate groupoid). For example, a group bundle is a
disjoint union of groups.

2. If G andH are groupoids, then their (Cartesian) product G ×H is a groupoid
(with coordinate-wise operations).

3. If G is a groupoid and A ⊆ G (0) is a subset of the unit space, then the
restriction G |A B {g ∈ G | s(g), r (g) ∈ A} is a subgroupoid of G with unit
space G |A(0) = A.

Let us now describe homomorphisms and isomorphisms of groupoids.

Definition 1.1.9. Let G and H be groupoids. A map Φ : G → H is a groupoid
homomorphism if (Φ(g),Φ(g′)) ∈ H(2) whenever (g, g′) ∈ G (2), and moreover,
Φ(gg′) = Φ(g)Φ(g′) in this case. If Φ is bijective, then it is an isomorphism of
groupoids.

Proposition 1.1.10. Let Φ : G → H be a groupoid homomorphism. Then:

1. Φ(g−1) = Φ(g)−1 for all g ∈ G.

2. Φ
(
G (0)

)
⊆ H(0).

3. Φ(s(g)) = s (Φ(g)) and Φ(r (g)) = r (Φ(g)) for all g ∈ G.

4. Φ (G) is a subgroupoid ofH.

Let us next introduce some more standard terminology for groupoids. For two
subsets U,V ⊆ G of a groupoid G we define their product and inverse to be

UV B
{
gh | g ∈ U, h ∈ V and (g, h) ∈ G (2)

}

and
U−1 B

{
g−1 | g ∈ U

}
.

The following terminology is inspired by similar terminology for group actions,
as we will see in an example below. Let G be a groupoid and let x ∈ G (0). Define

Gx B {g ∈ G | s(g) = x} and Gx B {g ∈ G | r (g) = x} .

The isotropy group at x is

Gx
x B Gx ∩ Gx = {g ∈ G | s(g) = r (g) = x} .

8



1.1. Algebraic groupoids

Note that Gx
x is indeed a group, whose identity element is x. The isotropy (bundle)

of G is
G ′ B

⊔
x∈G (0)

Gx
x = {g ∈ G | s(g) = r (g)} .

The isotropy bundle G ′ is a subgroupoid of G, and it is a group bundle as in
Example 1.1.4. We say that G is prinicpal if G ′ = G (0), in other words, each
isotropy group Gx

x is trivial (equalling {x}). This entails that if g, h ∈ G are such
that s(g) = s(h) and r (g) = r (h), then we must have g = h.

The G-orbit of x is

OrbG (x) B s
(
Gx) = r (Gx )

= {y ∈ X | s(g) = x and r (g) = y for some g ∈ G} .

A subset A ⊆ G (0) is G-invariant if for each g ∈ G, s(g) ∈ A if and only if
r (g) ∈ A. Any invariant subset is a union of orbits and each orbit is an invariant
set. All isotropy groups within the same orbit are mutually isomorphic, for if
s(g) = x and r (g) = y, then the mapping g′ 7→ gg′g−1 for g′ ∈ Gx

x defines a group
isomorphism Gx

x � Gy
y . We call G transitive if OrbG (x) = G (0) for some (and hence

all) x ∈ G (0), i.e. there is only one orbit. Let us illustrate these notions with some
examples.

Example 1.1.11. Let Γ be a group and let X be a Γ-set. Then the isotropy group
at x ∈ X of the associated transformation groupoid is

(Γ n X )xx = {(x, γ) | γ ∈ Γ and γ(x) = x}

which can be identified with the usual isotropy (or stabilizer) subgroup

Γx = {γ ∈ Γ | γ(x) = x}

of Γ. We see that the transformation groupoid is principal if and only if the action
is free (meaning that γ(x) = x only if γ = e). The orbit of x in the transformation
groupoid is

OrbΓnX (x) = {γ(x) ∈ X | γ ∈ Γ}

which equals the orbit of x under the action, i.e. Γx. The transformation groupoid
Γ n X is transitive if and only if the action is transitive (meaning that there is only
one orbit).

We also mention that groups (and group bundles), when viewed as groupoids,
are as far from being principal as possible, since the isotropy here equals the whole
groupoid itself.

9



Chapter 1. Groupoids

Example 1.1.12. An equivalence relation R ⊆ X × X is always a principal
groupoid. The orbits in R are precisely the equivalence classes. An equiva-
lence relation is of course a transitive relation, but R being a transitive groupoid
means something else. Namely that there is only one equivalence class, which
forces R = X × X . The matrix groupoidsRn are such examples.

We also mention that the orbits in the orbit equivalence groupoidRΓyX asso-
ciated to a group action Γy X are just the orbits of the action (which are also the
equivalence classes in RΓyX).

Example 1.1.13. Generalizing Example 1.1.7 one may also define the orbit equiv-
alence relation of a groupoid G as RG B {(s(g), r (g)) | g ∈ G} ⊆ G (0) × G (0). It
comes with a canonical surjective groupoid homomorphism ΦR : G → RG given
byΦR(g) = (s(g), r (g)). We have that G is principal if and only ifΦR is injective,
in which case G is isomorphic toRG .

The observant reader will have noticed that algebraically speaking, a principal
groupoid is the same as an equivalence relation. However, when we topologize our
groupoids in the next section there will be a distinction. A priori, an equivalence
relation inherits the subspace topology from X × X , whereas principal groupoids
may have all kinds of other (finer) topologies, but now we are getting ahead of
ourselves.

Remark 1.1.14. At this point it is worth mentioning that algebraic groupoids are
not all that interesting in their own right. Every groupoid is actually (algebraically)
isomorphic to a disjoint union of a collection of products between a group and an
(full) equivalence relation (see [Put19, Theorem 3.1.11]). However, once we throw
topology into the mix in the next section, this changes drastically. This is when
groupoids really start to shine.

1.2 Topological groupoids

Let us make our groupoids interesting again, by topologizing them. A topolog-
ical groupoid generalizes a topological group in the same way that a groupoid
generalizes a group.

Definition 1.2.1. A topological groupoid is a groupoid G equipped with a topology
under which the multiplication G (2) → G and inversion G → G are continuous
when G (2) is given the subspace topology from G × G.

Whenever we deal with a topological groupoid it is understood that the unit
spaceG (0) is given the subspace topology fromG. In order to ensure that topological
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1.3. Étale groupoids

groupoids behave well, it is common to assume that the topology is locally compact
and Hausdorff (or at least that G (0) is Hausdorff). We will do this eventually, but
for now we describe some consequences of the above definition.

Proposition 1.2.2. Let G be a topological groupoid. Then

1. The source and range maps s, r : G → G (0) are continuous.

2. The inverse map g 7→ g−1 is a homeomorphism of G.

3. The unit space G (0) is closed in G if and only if G is Hausdorff.

4. If the unit space G (0) is Hausdorff, then the set of composable pairs G (2) is
closed in G × G.

The above is one reason why it is desirable for G—or at least G (0)—to be
Hausdorff.

Examples 1.2.3. Building on Examples 1.1.2–1.1.6 we have that any topological
group and any topological space can be viewed as a topological groupoid (as can
any discrete groupoid of course). If X is a topological space andR ⊆ X × X is an
equivalence relation on X , thenR becomes a topological groupoid when equipped
with the subspace topology from X × X . If Γ is a topological group acting
continuously on the topological space X , then the transformation groupoid Γ n X
equipped with the product topology is a topological groupoid. In all of these
examples the identification of the unit space with X is compatible with the groupoid
topology (in the sense that their identification is a homeomorphism).

1.3 Étale groupoids

Before introducing étale groupoids, we quickly introduce the larger class of r-
discrete groupoids and discuss how they are related.

Definition 1.3.1. A topological groupoid G is called r-discrete if G (0) is open in G.

In an r-discrete groupoid, the range fibers Gx = r−1(x) (as well as the source
fibers Gx) are always discrete subsets of G, which explains the name.

Definition 1.3.2. A topological groupoid G is étale if the range map r is a local
homeomorphism, as a map from G to G.

11



Chapter 1. Groupoids

For convenience we recall that r : G → G is a local homeomorphism if there
for each g ∈ G, there exists an open set U ⊆ G containing g such that r (U) is open
in G, and so that r |U : U → r (U) is a homeomorphism. A local homeomorphism
is in particular an open map. Note that the source map s is a local homeomorphism
(from G to G) if and only if r is (since they are related through the inversion map,
which is a homeomorphism).

Proposition 1.3.3. Let G be an étale groupoid. Then

1. The source and range maps s and r are open maps.

2. The unit space G (0) is open in G, i.e. G is r-discrete. In particular, if G is
Hausdorff and étale, then G (0) is clopen.

3. The multiplication map G (2) → G is a local homeomorphism.

We also note that since an étale groupoid G is locally homeomorphic to its
unit space G (0), they share all local topological properties. For example, if G (0) is
locally compact Hausdorff, then G is locally compact and locally Hausdorff.

Remark 1.3.4. We emphasize that in the definition of an étale groupoid, the range
map must be a local homeomorphism from G to G, and not merely to the unit
space G (0). A subtle point is that r being a local homeomorphism into G is stronger
than it being a local homeomorphism into G (0). However, if G is an r-discrete
groupoid, then G is étale if and only if r : G → G (0) is a local homeomorphism.

To illustrate the preceding remark we provide an example of a topological
groupoid which is not étale, but for which r : G → G (0) is a local homeomorphism.

Example 1.3.5. Let T denote the unit circle and consider the antipodal equivalence
relation

R B {(z, z), (z,−z) | z ∈ T} ⊆ T × T.

Equipping R with the relative topology from T × T turns it into a topological
groupoid. Note that R is not r-discrete, and hence not étale, since the diago-
nal {(z, z) | z ∈ T} = R(0) is not open in T × T (compare with Example 1.3.7.4
below). However, the range map is a local homeomorphism fromR toR(0). To see
this, let z ∈ T be given and let A ⊆ T be a small open arc containing z. The elements
(z, z) and (z,−z) inR are respectively contained in the open subsetsR ∩ (A × A)
andR∩ (A×−A) ofR, and both of these sets are mapped homeomorphically onto
the open subset {(z, z) | z ∈ A} ⊆ R(0) by the range map r .

Let us introduce some important “dynamical” terminology (as in being inspired
by terminology for dynamical systems) for étale groupoids. Let G be an étale
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groupoid. We say that G is minimal if for each x ∈ G (0), the orbit OrbG (x) is dense
in G (0). This is equivalent to there being no non-trivial open (or closed) G-invariant
subsets in G (0).

Recall that a groupoid is called principal if G ′ = G (0), i.e. all isotropy groups
are trivial. This can be “topologically weakened” in two ways: One, we call G
effective if the interior of the isotropy G ′ equals G (0). Note that since G (0) is open, it
is always a subset of the interior of the isotropy, so a groupoid being effective means
that the interior of the isotropy is as small as possible. Two, we call G topologically
principal if the set of units with trivial isotropy group is dense in G (0).

For Hausdorff groupoids, being topologically principal is stronger than being
effective, but these notions do coincide in many cases (see Proposition 1.3.6).
As a result, these definitions are not entirely consistent throughout the literature,
so one always has to check which definition is used in a given paper. The term
“essentially principal” is also quite common, and is usually used to denote what
we here call “effective”, but sometimes used for yet another different notion (such
as in [Ren80]).

Proposition 1.3.6. Let G be an étale groupoid.

1. If G is Hausdorff, then topologically principal implies effective.

2. If G is second countable and G (0) is locally compact Hausdorff, then effective
implies topologically principal.

In particular, if G is a locally compact Hausdorff, second countable étale groupoid,
then G is topologically principal if and only if G is effective.

Proof. Follows from [Ren08, Proposition 3.1]. �

Example 1.3.7. Let us give some examples of étale groupoids.

1. Any topological space is an étale groupoid.

2. A topological group is an étale groupoid if and only if it is discrete.

3. The transformation groupoid Γ n X associated to a group action Γy X is
étale if and only if the acting group Γ is discrete. In this case ΓnX is minimal
if and only if the action is minimal. The transformation groupoid is effective
if and only if for each γ ∈ Γ \ {e}, the set {x ∈ X | γ(x) , x} is dense in X .
The transformation groupoid is topologically principal if and only if the set
{x ∈ X | γ(x) , x for all γ ∈ Γ \ {e}} is dense in X .

4. LetR ⊆ X×X be an equivalence relation on a topological space X . Equipped
with the subspace topology from X × X , R will never be étale, unless X
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is discrete (for that is the only way the diagonal can be open in X × X).
However, there are other (finer) topologies that equivalence relations can be
equipped with which may result in étale groupoids. See e.g. [GPS04].

Of course, any principal étale groupoid G can be identified with its orbit
equivalence relationRG ⊆ G (0) × G (0) from Example 1.1.13, and lettingRG
inherit the topology from G makes it étale. Examples include transformation
groupoids of free actions by discrete groups, AF-groupoids (see [Ren80,
Section III.1]) and groupoids associated to quasicrystals (see [Nek19, Sub-
section 6.3]).

Motivated by Example 1.3.7.3 above, one may think of an étale groupoid as
being part continuous (the “space part”) and part discrete (the “acting part”). It
can be helpful to think of an étale groupoid as encoding some kind of action by a
discrete object on some topological space.

A key notion for étale groupoids is that of a bisection.

Definition 1.3.8. Let G be an étale groupoid. We call U ⊆ G a bisection if U is
open and both s and r are injective when restricted to U.

When U ⊆ G is a bisection, then the restrictions s |U and r |U become home-
omorphisms from U onto s(U) and r (U), respectively. If V is another bisection,
then UV , U−1 and U ∩ V are also bisections. An important fact is that an étale
groupoid always has a basis of bisections.

Example 1.3.9. Let Γ be a discrete group acting by homeomorphisms on a topo-
logical space X . Then a basis of bisections for Γ n X is given by the sets {γ} × A,
where γ ranges over Γ and A ranges over all open subsets of X . For U = {γ} × A
as above, the homeomorphisms s |U : U → A and r |U : U → γ(A) are given by
(γ, x) 7→ x and (γ, x) 7→ γ(x), respectively, for x ∈ A.

Remark 1.3.10. We remark that our choice of making openness part of the def-
inition of a bisection is less common in the literature. However, we find it to be
convenient here since we never deal with “non-open bisections” in this thesis. This
is comparable to neighbourhoods in topology being required to be open by some
authors, but not by most. We also mention that the terms local bisection or G-set
are sometimes used instead of bisection.

Remark 1.3.11. If one works with more general topological groupoids, one should
change the definition of bisection to being an open set U such that s(U) is open
and s |U : U → s(U) is a homeomorphism, and similarly for r . With this definition
a topological groupoid is étale if and only if it admits a basis of bisections.
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Let us now say a few words on subgroupoids and homomorphisms between
étale groupoids. IfG is an étale groupoid andH is an open subgroupoid ofG, thenH
is also étale. In particular, if A ⊆ G (0) is open, then the restriction subgroupoid G |A
is again étale.

LetG andH be étale groupoids. We call a groupoid homomorphismΦ : G → H
an étale homomorphism if it is a local homeomorphism. Then the image Φ(G) is
an open étale subgroupoid of H. In fact, Φ is a local homeomorphism if and only
if its restriction to the unit spaces Φ(0) : G (0) → H(0) is. By an isomorphism of
topogical, or étale, groupoids we mean an algebraic isomorphism which is also a
homeomorphism. In other words, a bijective étale homomorphism is the same as
an isomorphism of étale groupoids.

1.4 Ample groupoids

We now arrive at the particular kind of topological groupoids that are studied in this
thesis. As is done in e.g. [KL16], [Ste19] and even [Sto37], we call a topological
space Boolean if it is Hausdorff and has a basis of compact open sets.

Definition 1.4.1. An étale groupoid G is called ample if G (0) is Boolean.

Recall that an étale groupoid is characterized by admitting a basis of bisections.
Similarly, an ample groupoid is characterized by admitting a basis of compact
bisections. More precisely, we have the following.

Lemma 1.4.2. Let G be a locally compact étale groupoid with G (0) Hausdorff.
Then the following are equivalent:

1. G is ample.

2. G admits a basis of compact bisections.

3. G (0) is totally disconnected.

Proof. We trivially have 2. =⇒ 1. =⇒ 3. The implication 3. =⇒ 1. follows
from [AT08, Proposition 3.1.7], which says that any totally disconnected locally
compact Hausdorff space is Boolean.

As for 1. =⇒ 2., assume that G is ample. Recall that any étale groupoid has a
basis of bisections. Let U ⊆ G be a bisection. The set r (U) is open in G (0), so we
maywrite r (U) = ∪iKi, where each Ki is compact open. DefineVi B (r |U )−1 (Ki).
Since r |U is a homeomorphism, each Vi is compact open, and since Vi ⊆ U each
Vi is a compact bisection. We now see that 2. holds, since U = ∪iVi. �

Note that if G is Hausdorff and ample, then G itself is Boolean as a topological
space.
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Chapter 1. Groupoids

Example 1.4.3. Prominent examples of ample groupoids include:

1. Transformation groupoids associated to Cantor minimal systems. These will
appear in both Chapter 2 and 3 as motivating examples. More generally;
transformation groupoids associated to discrete groups acting on Boolean
spaces.

2. AF-groupoids (or AF-equivalence relations), which are inductive limits of
compact principal groupoids with Cantor unit space, see e.g. [GPS04]. See
also Subsection A.11.5 and B.2.4.

3. SFT-groupoids, i.e. groupoids associated to one-sided shifts of finite type,
see Section 2.3 and Subsection 2.4.3. More generally; graph groupoids,
see e.g. [BCW17]. Graph groupoids are presented and studied in detail in
Paper A and B. Further generalizations include higher-rank graph groupoids
(see e.g. [CR19]) and ultragraph groupoids (see e.g. [dCGvW19]).

4. Spielberg’s hybrid 2-graph groupoids from [Spi07].

5. Deaconu–Renault groupoids over Boolean spaces, see e.g. [FKPS18].

6. Groupoids associated to quasicrystals, see e.g. [Kre16].

7. Groupoids of germs associated to self-similar groups, see e.g. [Nek09]. More
generally; the tight groupoid of a self-similar graph, see [EP17]. A special
case of these, namely Katsura–Exel–Pardo groupoids, are described and
studied in Paper C.

There are a number of notions of “equivalence” for étale groupoids in the
literature (see [FKPS18, Section 3]). These equivalences are weakened forms of
isomorphism which still preserve many structural aspects of the groupoid. A fitting
analogy is Morita equivalence (or stable isomorphism) of C∗-algebras. For ample
Hausdorff groupoids, many of these notions coincide, see [FKPS18, Theorem3.12].
We will present two of these equivalences, which make appearences in the papers
included in this thesis.

Let G and H be two ample Hausdorff groupoids. A subset A ⊆ G (0) is called
G-full if r

(
s−1(A)

)
= G (0), in other words A contains at least one point from each

G-orbit. Note in particular that if G is minimal, then every open subset of G (0) is
full. The two groupoids G and H are Kakutani equivalent if there exists a G-full
clopen subset A ⊆ G (0) and anH-full clopen subset B ⊆ H(0) such that G |A � H|B
(as topological groupoids). In particular, G itself is Kakutani equivalent to G |A
whenever A is full. It takes some work to show that Kakutani equivalence actually
is an equivalence relation [Mat12, Lemma 4.5].
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Remark 1.4.4. Kakutani equivalence for ample groupoids was introduced by Ma-
tui in [Mat12], taking cues from the notion of Kakutani equivalence for Cantor
minimal systems introduced in [GPS95]. The concept of Kakutani equivalence has
its roots in work of Kakutani in ergodic theory from the 40’s [Kak43]. However,
Kakutani equivalence for groupoids is slightly weaker in the sense that the trans-
formation groupoids associated with two minimal homeomorphisms φ1, φ2 on a
Cantor space are Kakutani equivalent if and only if φ1 is Kakutani equivalent (in
the sense of [GPS95]) to either φ2 or φ−1

2 . This is to be expected as the transfor-
mation groupoid construction does not see the difference between φ and its inverse
φ−1 (these are flip-conjugate), meaning that we have Gφ � Gφ−1 as topological
groupoids. See Section 2.2 for more on Cantor minimal systems.

The other notion of equivalence that we will introduce is that of stable isomor-
phism. LetR∞ B N×N be the full countable equivalence relation, equipped with
the discrete topology, whichmakes it an ample groupoid. Note thatR∞×R∞ � R∞
(as topological groupoids). We refer to the product groupoid G ×R∞ as the stabi-
lization of G. We say that G and H are stably isomorphic if G ×R∞ � H ×R∞
(as topological groupoids). This terminology is inspired by the analogous no-
tation for C∗-algebras, as we have C∗ (R∞) � K (the compact operators) and
C∗ (G ×R∞) � C∗ (G) ⊗ K.

That Kakutani equivalence is the same as stable isomorphism (for ample
groupoids with σ-compact unit spaces) was first observed in [CRS17]. Therein it
was also shown to be the same as groupoid equivalence in the sense of Renault,
which is a bit more involved to define (see [FKPS18, Definition 3.7]). To see
how these notions are related, let us explain how stable isomorphism imply Kaku-
tani equivalence (which is the easy direction). The key to this is the following
observation.

Lemma 1.4.5. Let G be an ample Hausdorff groupoid. Then G is Kakutani
equivalent to its stabilization G ×R∞.

Proof. The unit space of R∞ is identified with N and so (G ×R∞)(0) is identi-
fied with G (0) × N. First observe that G (0) × {1} is clopen in G (0) × N and that
(G ×R∞) |G (0)×{1} � G. Next, observe that G (0) × {1} is G ×R∞-full. Indeed, for
any (x,m) ∈ G (0) × N, the element (x, (1,m)) ∈ G × R∞ has source (x,m) and
range (x, 1) ∈ G (0) × {1}. �

Now, ifG andH are stably isomorphic, thenG is Kakutani equivalent toG×R∞,
which is isomorphic to H ×R∞, which in turn is Kakutani equivalent to H, so G
andH are Kakutani equivalent.
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Chapter 2

Topological full groups

In this chapter we introduce the full group and the topological full group associated
to a dynamical system, and more generally to an ample groupoid. We focus
particularly on topological full groups of Cantor minimal systems and of one-sided
shifts of finite type, as these predated and motivated the general definition for
groupoids.

2.1 Full groups of measurable transformations

The full group of a measurable dynamical system was introduced and studied by
Dye in [Dye59] and [Dye63]. Let (X, µ) be a measure space and let T : X → X be
an invertible measure preserving transformation. The full group of T is

[T] B {S ∈ Aut(X ) | S(x) ∈ OrbT (x) for a.e. x ∈ X } ,

where Aut(X ) is the group of invertible measure preserving transformations of X .
Two measure preserving transformations T : X → X and T ′ : X ′ → X ′ are orbit
equivalent if there exists a (almost everywhere defined)measure space isomorphism
F : X → X ′ which preserves the orbits, i.e. F (OrbT (x)) = OrbT ′ (F (x)) for almost
every x ∈ X . We see that two transformations T,T ′ ∈ Aut(X ) on the same measure
space have the same orbits, i.e. are orbit equivalent via the identity map, if and only
if T ∈ [T ′] and T ′ ∈ [T].

Dye showed that any two invertible ergodicmeasure preserving transformations
on a non-atomic standard probability space are orbit equivalent. This is a celebrated
result within von Neumann algebras and ergodic theory, and it is now referred
to as Dye’s Theorem. Moreover, Dye considered countable group actions and
showed that for ergodic measure preserving group actions on non-atomic standard
probability spaces, the abstract isomorphism class of the full group completely
classifies the orbit equivalence class of the action.
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Chapter 2. Topological full groups

2.2 Topological full groups of Cantor minimal systems

Let us move on to (topological) full groups of topological dynamical systems. In
this setting, a fitting analogue of an ergodic measure preserving transformation on
a non-atomic standard probability space is that of a Cantor minimal system (see
Remark 2.2.1). Recall that a Cantor space is a (non-empty) totally disconnected
compact metric space X with no isolated points, of which there is only one up to
homeomorphism. A homeomorphism φ : X → X is minimal if every φ-orbit is
dense (equivalently, there are no non-trivial open φ-invariant subsets). We refer to
the pair (X, φ) as a Cantor minimal system. Two Cantor minimal systems (X1, φ1)
and (X2, φ2) are

1. conjugate if there is a homeomorphism h : X1 → X2 with h ◦ φ1 = φ2 ◦ h,

2. flip-conjugate if (X1, φ1) is conjugate to either (X2, φ2) or (X2, φ
−1
2 ),

3. (topologically) orbit equivalent if there is a homeomorphism h : X1 → X2
with h(Orbφ1 (x)) = Orbφ2 (h(x)) for all x ∈ X1.

If we widen our scope to group actions, then flip-conjugacy is the same as a
conjugacy of Z-actions. A general goal in dynamical systems theory is to classify
systems (within a given class) up to various notions of equivalence, like the three
notions above.

Remark 2.2.1. That minimality is analogous to ergodicity should be clear. Let us
give a few reasonswhy it is natural to restrict toCantor spaces in the topological con-
text. Firstly, for minimal homeomorphisms on connected compact metric spaces,
orbit equivalence actually coincide with flip-conjugacy. This follows from an old
theorem of Sierpiński [Sie18], which says that a connected compact Hausdorff
space cannot be (non-trivially) partitioned into countably many closed subsets.

Secondly, Cantor minimal systems are “universal” among minimal dynamical
systems in the following sense: If Y is a compact metric space and ψ : Y → Y is a
minimal homeomorphism, then there exists a Cantor minimal system (X, φ) which
has (Y, ψ) as a factor. This follows from the Hausdorff–Alexandroff Theorem (see
for example [Wil70, Theorem 30.7]), which says any compact metric space is a
continuous image of the Cantor set. See [GPS95, page 55] for the construction of
(X, φ) from (Y, ψ).

LetHomeo(X ) denote the group of self-homeomorphisms of X . The full group
of a Cantor minimal system (X, φ) is[

φ
]
B

{
ψ ∈ Homeo(X ) | ψ(x) ∈ Orbφ (x) for all x ∈ X

}
.
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2.2. Topological full groups of Cantor minimal systems

For eachψ ∈
[
φ
]
, there is a uniquemap nψ : X → Z (since aCantorminimal system

is necessarily a free Z-action), called the orbit cocycle, such that ψ(x) = φnψ (x) (x)
for each x ∈ X . The topological full group

�
φ
�
of (X, φ) consists of those

homeomorphisms for which this orbit cocycle map nψ is continuous, i.e.�
φ
�
B

{
ψ ∈

[
φ
]
| nψ is continuous

}
.

We remark that, despite the name, the topological full group is usually not viewed
as a topological group. In general the full group is uncountable, whereas the
topological full group is countable. To see that

�
φ
�
is countable, note that the level

sets
Xk = n−1

ψ ({k}) =
{
x ∈ X | ψ(x) = φk (x)

}

form a finite clopen partition of X , which determine ψ, and a Cantor space only
has countably many clopen subsets.

The topological full group of a Cantor minimal system appeared already
in [Put89] as a quotient of the group of unitary normalizers of C(X ) inside the
crossed productC∗-algebraC(X )oφ Z. The explicit definition given above appears
in [GW95] (in which the topological full group is called the “finite full group”),
where the authors prove variants of the results in [GPS95] using purely dynamical
arguments. In [Tom96], Tomiyama defines the topological full group for more
general topological dynamical systems and uses it to generalize one of the main
results from [GPS95].

Then in [GPS99], the full and topological full groups (of Cantor minimal
systems) themselves were given a thorough treatment, paralleling that of Dye in
the measure theoretic setting. Giordano, Putnam and Skau obtained a topological
analogue of Dye’s measure theoretic result; they showed that two Cantor minimal
systems (X1, φ1) and (X2, φ2) are (topologically) orbit equivalent if and only if their
full groups

[
φ1

]
and

[
φ2

]
are isomorphic (as abstract groups). Furthermore, they

showed that (X1, φ1) and (X2, φ2) are flip-conjugate if and only if their topological
full groups

�
φ1
�
and
�
φ2
�
are isomorphic.

Suppose that h : X1 → X2 is an orbit equivalence between two Cantor minimal
systems (X1, φ1) and (X2, φ2). Then there are unique maps k1, k2 : X1 → Z

satisfying

h (φ1(x)) = φk1 (x)
2 (h(x)) and φ2 (h(x)) = h

(
φk2 (x)

1 (x)
)

for all x ∈ X1. One calls (X1, φ1) and (X2, φ2) continuously orbit equivalent if there
exists an orbit equivalence h for which the orbit cocycles k1, k2 are continuous. We
see that a conjugacy is the same as a (continuous) orbit equivalence with orbit
cocycles constantly equal to 1, while a flip-conjugacy is to have them constantly
equal to ±1.
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Chapter 2. Topological full groups

For more general dynamical systems, continuous orbit equivalence is weaker
than (flip-)conjugacy, but for Cantor minimal systems continuous orbit equivalence
is actually equivalent to flip-conjugacy. This follows from [Boy83, Theorem 2.6]
(see also [BT98, Theorem 3.2]). This was the first example of the phenomenon
continuous orbit equivalence rigidity, whose systematic study was only recently
initiated by Li in [Li18]. Aswewill see in the next subsection, it is really continuous
orbit equivalence that the topological full group can detect in general. See also
Section 2.6.

One weakening of continuous orbit equivalence for Cantor minimal systems
is to allow the orbit cocycles k1, k2 to each have a single discontinuity. This is
called strong orbit equivalence. This is a natural weakening that accounts for
the distinguished maximal path in the Bratteli–Vershik model for Cantor minimal
systems [HPS92], [Put18]. In the same spirit as the results mentioned for the full
and the topological full group above, it was also shown in [GPS99] that a certain
subgroup (which is a locally finite ample group in the sense of Krieger [Kri80]) of
the topological full group completely determines the strong orbit equivalence class
of the Cantor minimal system.

Remark 2.2.2. The definition of the (topological) full group makes sense also for
spaces X which are not Cantor, but it will no longer contain much “dynamical
information”. Indeed, if the space X is connected, then the (topological) full group
of (X, φ) reduces to {φk | k ∈ Z} [GPS99, Proposition 1.3], which is isomorphic
to Z. So then the (topological) full group can certainly not be used to distinguish
any such systems from each other.

2.3 Topological full groups of one-sided SFT’s

Let us next look at another type of dynamical systems on Cantor spaces, which is
of a different nature from Cantor minimal systems, namely that of one-sided shifts
of finite type (SFT for short) [LM95], [Kit98]. Let N ∈ N and let A be an N × N
matrix with entries in {0, 1}. We call a matrix A essential if no row nor column
consist entirely of 0’s. Assume henceforth that A is essential. Define the one-sided
shift space

XA B
{
x1x2x3 . . . ∈ {1, 2, . . . , N }N | Axi,xi+1 = 1 for all i ∈ N

}
, (2.3.1)

which is equipped with the subspace topology from {1, 2, . . . , N }N. This makes XA

a totally disconnected compact metrizable space. We call a word µ = x1x2 . . . xn,
where xi ∈ {1, 2, . . . , N }, admissible if Axi,xi+1 = 1 for 1 ≤ i < n. The cylinder set
of µ is

Z (µ) B {x ∈ XA | x = µz for some z ∈ XA} .
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2.3. Topological full groups of one-sided SFT’s

The collection of cylinder sets forms a countable basis of compact open sets for XA.
In particular, the complement of a cylinder set is a finite disjoint union of cylinder
sets.

A matrix A as above is irreducible if there for each 1 ≤ I, J ≤ N is some n ∈ N
for which (An)I,J > 0. This means that there exists an admissible word x1x2 . . . xn
with x1 = I and xn = J. If A is irreducible and not a permutation matrix, then XA

has no isolated points, and is therefore aCantor space. The shift mapσA : XA → XA

is given by σA ((xi)) = (xi+1), i.e.

σA (x1x2x3 . . .) = x2x3x4 . . .

The pair (XA, σA) is called a one-sided shift of finite type (or topological Markov
shift/chain). One can think of the set {1, 2, . . . , N } as the set of possible states of
a system, and the matrix A as specifying the possible transitions between these
states. An admissible word is then a possible sequence of states.

Remark 2.3.1. Generally speaking, a shift space (over a finite alphabet) is of finite
type if there is some finite list of forbidden words such that the shift space consists
precisely of all sequences which do not contain any of these forbidden words. In
the setting above, the alphabet is {1, 2, . . . , N } and the list of forbidden words are
all words I J where AI,J = 0. Up to conjugacy, all shifts of finite type can be
described by a matrix A as above. See [LM95] for details.

The shift map is not a homeomorphism, but rather a surjective local homeo-
morphism. Because of this, the notion of orbits looks a bit different from the case
of Cantor minimal systems. The σA-orbit of a sequence x ∈ XA is

OrbσA (x) B
∞⋃

m=0

∞⋃
n=0

σ−mA

({
σn

A(x)
})
.

Two sequences x, y ∈ XA are in the same orbit if and only if they have a common
(forward) iterate, i.e. σn

A
(x) = σm

A
(y) for some m, n ∈ N0. Explicitly, this means

that x and y are tail equivalent, in the sense that x = µz and y = νz for some
admissible words µ, ν and some sequence z ∈ XA. The one-sided SFT (XA, σA) is
called minimal if every σA-orbit (as defined above) is dense in XA. A useful fact
is that (XA, σA) is minimal if and only if A is irreducible.

For completeness, we sketch how minimality is related to irreducibility. Given
any sequence x ∈ XA and admissible word µ, irreducibility of A implies that
there exists an admissible word ν such that µνx ∈ XA. As µνx ∈ OrbσA (x) we
deduce that OrbσA (x) is dense. Conversely, assume that (XA, σA) is minimal and
let I, J ∈ {1, 2, . . . , N } be given. Since A is essential we can find two admissible
words µ = x1x2 . . . xn and ν = y1y2 . . . ym such that the words xnx1, xny1 and ymJ
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Chapter 2. Topological full groups

are admissible too. By minimality, the orbit of the sequence µµµ . . . intersects the
cylinder set Z (I). This results in a sequence of the form Iτµµ . . . ∈ XA, where Iτµ
is an admissible word. Then IτµνJ is admissible, which shows that

(
At )

I,J > 0
for some positive integer t.

Remark 2.3.2. If one in (2.3.1) instead considers bi-infinite sequences (indexed
by Z), then one gets the more common notion of a two-sided shift of finite type.
This is usually what is meant by a shift of finite type. In this case, the shift map is in
fact a homeomorphism. However, these dynamical systems are in general far from
minimal, as the set of periodic points is dense (and a minimal homeomorphism
cannot have any periodic points). So two-sided shifts of finite type are not Cantor
minimal systems. On the other hand, two-sided subshifts which are not of finite
type can of course be minimal, such as e.g. Sturmian shifts [LM95, §13.7].

It was Matsumoto who defined the topological full group of a one-sided shift
of finite type in [Mat10]. Here it was used as a tool to study continuous orbit
equivalence in relation to diagonal preserving isomorphisms of Cuntz–Krieger
algebras. In the same spirit as for Cantor systems, the full group of a one-sided
shift of finite type (XA, σA) is

[σA] B
{
ψ ∈ Homeo(X ) | ψ(x) ∈ OrbσA (x) for all x ∈ XA

}
.

Do note the peculiar fact that unlike for Cantor systems, the shift map σA itself
does not belong to [σA], for it is not a homeomorphism. If ψ ∈ [σA], then there
exists functions k, l : XA → N0 such that

σk (x)
A

(ψ(x)) = σl(x)
A

(x) for all x ∈ X . (2.3.2)

In contrast to the case of Cantor minimal systems, these maps are not unique. For
instance, the same amount may be added to both k and l. The topological full
group ~σA� of (XA, σA) consists of all ψ ∈ [σA] for which there exists continuous
maps k, l satisfying (2.3.2). Beware that in [Mat10], the topological full group is
denoted [σA]c, and that ~σA� is used to denote another group called the AF-full
group.

Let B be another square {0, 1}-matrix. As with Cantor systems, two one-sided
shifts of finite type (XA, σA) and (XB, σB) are (topologically) orbit equivalent if
there exists a homeomorphism h : XA → XB with h(OrbσA (x)) = OrbσB (h(x))
for all x ∈ XA. This means that one can find maps kA, lA : XA → N0 and
kB, lB : XB → N0 satisfying

σkA(x)
B (h (σA(x))) = σlA(x)

B (h(x)) ,

σ
kB (y)
A

(
h−1 (σB (y))

)
= σ

lB (y)
A

(
h−1(y)

)
, (2.3.3)
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2.4. Topological full groups of ample groupoids

for all x ∈ XA and y ∈ XB. The shifts (XA, σA) and (XB, σB) are continuously orbit
equivalent if there exists a homeomorphism h and continuous maps kA, lA, kB, lB
satisfying (2.3.3) [Mat10, Section 5].

In [Mat10], Matsumoto showed that if A and B are irreducible non-permutation
matrices, then the one-sided shifts of finite type (XA, σA) and (XB, σB) are contin-
uously orbit equivalent if and only if the topological full groups ~σA� and ~σB� are
spatially isomorphic, meaning that there is some homeomorphism f : XA → XB

with f ◦ ~σA� ◦ f −1 = ~σB�. Subsequently in [Mat15a], he showed that any
(abstract) group isomorphism between such topological full groups must be spa-
tial. (In that paper the topological full group is instead called the “continuous
full group” and denoted ΓA.) This means that the abstract isomorphism class of
the topological full group completely determines the continuous orbit equivalence
class of the shift. By taking into account the continuous orbit equivalence rigidity
mentioned in the previous section, we see that Matsumoto’s result is a genuine
analogue of Giordano, Putnam and Skau’s result for Cantor minimal systems.

Results of the form “every group isomorphism between two topological full
groups is spatial” for a given class of dynamical systems—such as [GPS99, Theo-
rem 4.2] and [Mat15a, Theorem 7.2]—can often be deduced from the remarkable
reconstruction results of Rubin [Rub89]. See Section A.6 for more details on
Rubin’s theorems, where they are used to prove such a result for topological full
groups of certain ample groupoids.

2.4 Topological full groups of ample groupoids

So far we have seen topological full groups associated to various topological
dynamical systems. Although the definition of the topological full group is similar
for the different types of dynamical systems, its description still very much depend
on the spesific type of dynamical system. Matui’s insight in [Mat12] was that by
encoding these dynamical systems in ample groupoids, the topological full groups
could be described using bisections. This unified the definition of the topological
full groups and also many of the results proved about them.

2.4.1 Matui’s definition of the topological full group

Beforewe presentMatui’s definition of topological full groups for ample groupoids,
let us see how bisections give rise to homeomorphisms on the unit space. Let G
be en étale groupoid and let U ⊆ G be a bisection. Recall that this means that
the source and range maps s, r are both injective—and hence homeomorphisms—
when restricted to the open set U . From the homeomorphisms s |U : U → s(U)
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Chapter 2. Topological full groups

and r |U : U → r (U) we define another homeomorphism

πU B r |U ◦ (s |U )−1 : s(U) → r (U).

For each g ∈ U, πU maps s(g) to r (g). By picturing groupoid elements as arrows
from the source to the range, we can think of a bisection as a collection of arrows
for which there is at most one arrow starting at a given point and at most one ending
at a given point. The homeomorphism πU is then given by “following the arrows”.
We call a bisection U full if s(U) = r (U) = G (0). Each full bisection gives rise
to a homeomorphism πU ∈ Homeo

(
G (0)

)
. Note that if G (0) is compact, then so

is each full bisection, as they are homeomorphic subsets of G. Now we can give
Matui’s definition of full and topological full groups of étale groupoids (adopting
the notation from [Mat15b]).

Definition 2.4.1 ([Mat12, Definition 2.3]). Let G be a Hausdorff étale groupoid
with G (0) compact.

1. The full group of G is

[G] B
{
ψ ∈ Homeo

(
G (0)

)
| ψ(x) ∈ OrbG (x) for all x ∈ G (0)

}
.

2. The topological full group of G is

~G� B {πU | U ⊆ G full bisection} ⊆ Homeo
(
G (0)

)
.

Note that ~G� is still a subgroup of [G]. Indeed, given x ∈ G (0) there is a
unique g ∈ U with x = s(g), and we have πU (x) = r (g) ∈ OrbG (x).

Remark 2.4.2. By Remark 2.2.2 one cannot expect the topological full group to
be particularly interesting unless the groupoid itself is ample (i.e. the unit space is
totally disconnected).

Remark 2.4.3. A special case of Definition 2.4.1 appears in [Mat06] for principal
ample groupoids with compact unit space, viewed as étale equivalence relations.
Let G be such a groupoid. The principality of G means that given two points
x, y ∈ G (0) in the same orbit, there is only one groupoid element g ∈ G with
s(g) = x and r (g) = y. Denote this groupoid element by g

y
x . The definition given

in [Mat06, Definition 3.1] then reads

~G� =
{
ψ ∈ [G] | G (0) 3 x 7→ g

ψ(x)
x ∈ G is a continuous map

}

This recovers the topological full group of a Cantor minimal system, but not one-
sided shifts of finite type.
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2.4. Topological full groups of ample groupoids

The group operations in the topological full group ~G� (as a group of home-
omorphisms) correspond to groupoid operations performed on the defining full
bisections. LetU,V ⊆ G be full bisections. ThenUV andU−1 are again full bisec-
tions since s(UV ) = s(V ), r (UV ) = r (U), s

(
U−1

)
= r (U) and r

(
U−1

)
= s(U).

Note that the unit space G (0) itself is also a full bisection. We have that

πU ◦ πV = πUV, (πU )−1 = πU−1 and πG (0) = idG (0) .

Remark 2.4.4. From the above we see that the set of all full bisections, denote
itF (G) for now, forms a group using the groupoid operations. We have a canonical
surjective group homomorphism Θ : F (G) → ~G� given by Θ(U) = πU . For
ample groupoids which are Hausdorff and effective, the map Θ is an isomorphism,
because the homeomorphism πU then determine the bisection U uniquely (see
Lemma A.3.1). In general, however, the group F (G) will be “larger”. Some
authors take F (G) as their definition of the topological full group, e.g. [Nek19],
[MB18],[BS19], [Sca18].

Let us present two ways of constructing full bisections, i.e. elements of the
topological full group, from smaller bisections. These simple constructions occur
in all three research papers in this thesis. Let G be an ample Hausdorff groupoid
with G (0) compact. Suppose that U ⊆ G is a compact bisection whose source and
range coincide, i.e. s(U) = r (U). Then the set A B s(U) = r (U) is compact
open and πU is a homeomorphism from A to itself. Define Ũ B U t

(
G (0) \ A

)
,

which becomes a full bisection. Its associated homeomorphism πŨ ∈ ~G� then
equals πU on A and is the identity on G (0) \ A.

As for the second construction, suppose instead that U ⊆ G is a compact
bisection with disjoint source and range, i.e. s(U) ∩ r (U) = ∅. Then we can define
a full bisection by setting

Û B U tU−1 t
(
G (0) \ (r (U) t s(U))

)
.

Its associated homeomorphism πÛ ∈ ~G� equals πU from s(U) to r (U), πU−1

from r (U) to s(U) and is the identity on the rest of G (0). Such an element of ~G�
is called a transposition, which is an apt name, seeing as it swaps s(U) with r (U)
and leaves the rest unchanged. In particular, πÛ is an involution and has order 2
in ~G�.

2.4.2 Topological full groups of Cantor minimal systems—revisited

Let us now see how the definition of the topological full group of a groupoid
recovers the ones we saw in the preceding sections.
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Chapter 2. Topological full groups

Example 2.4.5. Let (X, φ) be a Cantor minimal system and consider the associated
transformation groupoid Gφ. A basis of compact bisections for this ample groupoid
is given by the sets {k} × A for k ∈ Z and A ⊆ X compact open. Recall that
s ({k} × A) = A and r ({k} × A) = φk (A). Let U ⊆ Gφ be a full bisection and
consider πU ∈

�
Gφ
�
. Since U is compact and the intersection of two bisections is

again a bisection we can write U as a finite disjoint union U = tM
i=1{ki } × Ai of

basic bisections. Since s and r are injective on U, and U is full, we must have that

s(U) =
M⊔
i=1

Ai = X = r (U) =
M⊔
i=1

φki (Ai) ,

i.e. both the Ai’s and φki (Ai)’s form finite clopen partitions of X . For x ∈ Ai we
have x = s(ki, x) with (ki, x) ∈ U, hence πU (x) = r (ki, x) = φki (x). The orbit
cocycle is therefore given by nπU (x) = ki for x ∈ Ai. Its continuity follows from
the clopenness of the Ai’s. Hence πU ∈

�
φ
�
.

Conversely, given ψ ∈
�
φ
�
with ψ(x) = φn(x) (x) for some continuous function

n : X → Z, we can write n(X ) = {k1, k2, . . . , kM } ⊆ Z since X is compact. The
sets Ai B n−1({ki }) form a clopen partition of X . Hence so do the sets φki (Ai).
This makes U = tM

i=1{ki } × Ai a full bisection, and we have πU = ψ ∈
�
Gφ
�
.

This shows that
�
Gφ
�
=
�
φ
�
.

Example 2.4.6. Generalizing the previous example, consider the transformation
groupoid arising from a discrete group Γ acting on a compact totally disconnected
Hausdorff space X . The full bisections in Γ n X are all of the form

U =
n⊔

i=1
{γi } × Ai,

where both the Ai’s and γi (Ai)’s form clopen partitions of X . Then the homeomor-
phism πU ∈ ~Γ n X� equals γi on Ai. Hence the topological full group ~Γ n X�
consists of all homeomorphisms of X which locally look like the action by Γ. We
can also describe the topological full group in terms of a continuous orbit cocycle
as

~Γ n X� = {ψ ∈ [Γ n X] | ψ(x) = γx (x) with X 3 x 7→ γx ∈ Γ continuous} .

Remark 2.4.7. In [Kri80], Krieger studied certain locally finite subgroups of
Homeo(X ), for a Cantor space X , which he called ample groups (see also [GPS99,
Definition 2.5]). Recall that a group is locally finite if the subgroup generated by
any finite set is again finite (this is the same as being isomorphic to an inductive
limit of finite groups). Krieger showed that two such ample groups are spatially
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2.4. Topological full groups of ample groupoids

isomorphic if and only if their associated dimension groups are isomorphic. In
hindsight we recognize Krieger’s ample groups as being topological full groups of
AF-groupoids, the groupoid being the transformation groupoid associated to the
action of the ample group on X . The dimension group is the K0 group of the
associated AF-algebra. In fact, it was observed already in Renault’s thesis [Ren80]
that Krieger’s result could be viewed as a classification result for AF-groupoids.

In [GPS99] it was shown that any isomorphism between these ample groups
must be spatial, and hence an AF-groupoid is determined up to isomorphism by
the abstract isomorphism class of its topological full group. We also mention that
the topological full group of an ample groupoid with Cantor unit space satisfies
Krieger’s definition of an ample group, except for the local finiteness condition.
In fact, the topological full group is locally finite if and only if the groupoid is an
AF-groupoid [Mat06, Proposition 3.2].

2.4.3 Topological full groups of one-sided SFT’s—revisited

Let us describe how a one-sided shifts of finite type naturally gives rise to an ample
groupoid. As in Section 2.3, let A be an essential N×N matrix with entries in {0, 1}
and consider the one-sided shift space (XA, σA). The SFT-groupoid GA is defined
as

GA B
{
(x,m − n, y) | m, n ∈ N0, x, y ∈ XA, σ

m
A (x) = σn

A(y)
}
.

Two elements (x, k, y), (z, l,w) ∈ GA are composable if and only if y = z and in this
case their product is given by (x, k, y)(y, l,w) = (x, k+ l,w). The inverse is defined
by (x, k, y)−1 = (y,−k, x). Hence the unit space is G (0)

A
= {(x, 0, x) | x ∈ XA},

which we will identify with XA via (x, 0, x) ↔ x. The source and range maps then
become s(x, k, y) = y and r (x, k, y) = x. Observe that the GA-orbits are the same
as the σA-orbits described in Section 2.3.

The topology on GA is specified by the basis consisting of all sets

Z (V,m, n,W ) B
{
(x,m − n, y) | x ∈ V, y ∈ W, σm

A (x) = σn
A(y)

}
,

where m, n ∈ N0 and V,W ⊆ XA are compact open subsets such that σm
A
|V

and σn
A
|W are injective. In fact, it suffices to take the sub-collection

Z (µ, ν) B Z (Z (µ), |µ| , |ν | , Z (ν))

ranging over all admissible words µ, ν ∈ {1, 2, . . . , N }∗. This topology is com-
patible with the topology on XA. It is clear that these basic sets are compact
bisections, which makes GA a Hausdorff second countable ample groupoid. The
SFT-groupoid GA is minimal if and only if A is irreducible.

In [CK80], a {0, 1}-matrix A was said to satisfy Condition (I) if for each
J ∈ {1, 2, . . . N } there are admissible words µ = Jµ2 . . . µn, ν = ν1 . . . νm and
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Chapter 2. Topological full groups

ν′ = ν′1 . . . ν
′
m′ with µn = ν1 = ν′1 = νm = ν′m′ and where νj , ν′j for some

j ≤ max{m,m′}. The following are equivalent (see [CK80, page 254] and [BCW17,
Proposition 2.3]):

1. A satisfies Condition (I).

2. XA has no isolated points, and thus is a Cantor space.

3. GA is effective.

If A is irreducible, then Condition (I) reduces to A not being a permutation matrix.
Note, however, that GA is never principal. There is always an admissible word
µ = µ1µ2 . . . µn with µ1 = µn and n ≥ 2, and then (x, n − 1, x) ∈ (GA)xx \ G

(0)
A
,

where x B µ2 . . . µnµ2 . . . µn . . . ∈ XA.

Example 2.4.8. Let us verify thatMatui’s definition of ~GA� recoversMatsumoto’s
definition of ~σA�. The partial homeomorphism associated to a basic bisection
Z (µ, ν) is given by πZ (µ,ν) (νz) = µz for νz ∈ Z (ν). Let now U ⊆ GA be a full
bisection. Then we can write U = tM

i=1Z (µi, νi). It follows that

s(U) =
M⊔
i=1

Z (νi) = XA = r (U) =
M⊔
i=1

Z (µi).

For x = νi z ∈ Z (νi), we have πU (x) = πU (νi z) = µi z and so we see that
σ
|µi |
A

(πU (x)) = σ |νi |
A

(x). Now define the continuous maps k, l : XA → N0 by
k (x) = |µi | for x ∈ Z (µi) and l (x) = |νi | for x ∈ Z (νi). These satisfy (2.3.2),
hence πU ∈ ~σA�.

Conversely, let ψ ∈ ~σA� with σk (x)
A

(ψ(x)) = σl(x)
A

(x) for some continuous
maps k, l : XA → N0 be given. Let L be the maximum value of l. By adding
L − l (x) to both k and l we have

σn(x)
A

(ψ(x)) = σL
A(x)

for n(x) = k (x) + L − l (x). Let ν1, . . . , νM be all admissible words of length L.
Then σL

A is injective on each cylinder set Z (νi) and XA = t
M
i=1Z (νi). The sets

ψ (Z (νi)) also form a clopen partition of XA and we may refine it to a clopen
partition Vj with 1 ≤ j ≤ J such that the function n is constantly equal to a
non-negative integer n j on Vj . Moreover, since each Vj is a finite disjoint union of
cylinder sets Z (µ), wemay by splitting these cylinder sets into cylinder sets ofwords
longer than n j also assume that σn j

A
is injective on Vj . Now set Wj = ψ

−1(Vj ), each
of which is a subset of some Z (νi), hence σL

A is injective on each Wj . Define the
full bisection U = tJ

j=1Z
(
Vj, n j, L,Wj

)
. We claim that πU = ψ ∈ ~σA�. Indeed,
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given x ∈ X we have x ∈ Wj for some j. Then ψ(x) ∈ Vj andσ
n j

A
(ψ(x)) = σL

A(x).
We therefore have (ψ(x), n j − L, x) ∈ Z

(
Vj, n j, L,Wj

)
⊆ U and the source and

range of this element is x and ψ(x), respectively, which means that πU (x) = ψ(x).
This shows that ~GA� = ~σA�.

Remark 2.4.9. We remark that the definition of SFT-groupoids given in this sub-
section differs slightly from what is used in the research papers in this thesis, albeit
only cosmetically. The use of {0, 1}-matrices in this chapter is consistent with Mat-
sumoto’s papers [Mat10], [Mat15a] and [MM14], while the SFT-groupoids that
appear in the research papers allow formatriceswith entries inN0, as in [Mat17, Ex-
ample 2.5]. However, up to isomorphism, one obtains the same class of groupoids
(see e.g. [LM95, Proposition 2.3.9]).

2.5 Topological full groups as novel examples in group
theory

We would like to mention a notable application of topological full groups to
(geometric) group theory. Until roughly a decade ago, there were no known
examples of finitely generated simple groups that were amenable (and infinite).
This was a major open problem. Below we will briefly describe how topological
full groups provided the first examples of such groups.

Let (X, φ) be a Cantor minimal system. Denote the commutator subgroup of
the topological full group

�
φ
�
by D

(�
φ
�)
. In [Mat06], Matui proved that D

(�
φ
�)

is a simple group. Moreover, he showed that D
(�
φ
�)

is finitely generated if and
only if (X, φ) is conjugate to a minimal subshift. Matui also proved that the
commutator subgroup D

(�
φ
�)

is never finitely presented. Then Grigorchuk and
Medynets conjectured the amenability of the topological full group

�
φ
�
(for any

Cantor minimal system) in the preprint version of [GM14] (see [GM11]). This was
subsequently verified by Juschenko and Monod in [JM13]. It follows that D

(�
φ
�)

is amenable, by virtue of being a subgroup of
�
φ
�
.

In a similar spirit as [GPS99], Bezuglyi and Medynets proved in [BM08]
that also the commutator D

(�
φ
�)

completely determine the flip-conjugacy class
of (X, φ). (They also showed that the commutator subgroup of the full group,
D

( [
φ
] )
, determine the orbit equivalence class.) Since (topological) entropy is

a flip-conjugacy invariant and minimal subshifts exhaust all possible (finite) en-
tropies, the commutator subgroups of topological full groups of minimal subshifts
thus produced uncountably many non-isomorphic infinite, finitely generated, sim-
ple, amenable groups.

A similar open problem—posed by Grigorchuk in the 80’s—was whether there
existed a finitely generated simple group of intermediate growth. Such groups were
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recently exhibited by Nekrashevych in [Nek18b], in the form of a certain “alter-
nating” subgroup of the topological full group of an ample groupoid, introduced
in [Nek19].

Remark 2.5.1. The first (of two) example of a finitely presented simple infinite
group was Thompson’s group V (see [CFP96]). Later on, Higman [Hig74] con-
structed a countable family of groups Vn,r for n ≥ 2 and r ≥ 1 whose commutator
subgroups D

(
Vn,r

)
were all finitely presented and simple (and infinite). We remark

that these groups are non-amenable, however. One has that V � V2,1 = D
(
V2,1

)
.

In [Mat15b, Section 6], Matui describes irreducible non-permutation matrices An,r

such that Vn,r �
�
GAn,r

�
. For example,

A2,1 =

[
1 1
1 1

]

and

A3,5 =



0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


In that same paper, Matui proves that the commutator group D (~GA�) is finitely
presented and simple for any irreducible non-permutation matrix A. So one can
think of the topological full groups ~GA� of SFT-groupoids as generalizedHigman–
Thompson groups.

2.6 Connectingdynamical systems, topological full groups
and operator algebras via groupoids

In this section we present a selection of seminal results that illustrate how the
following four concepts are interrelated:

• (Continuous) orbit equivalence

• (Topological) full groups

• Operator algebras

• Groupoids
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Many of these results have since been generalized further. We refer the reader to
the books [Ren80] and [Pat99], or the lecture notes [Sim17] and [Put19], for an
introduction to (étale) groupoid C∗-algebras. To put the results below in context
we recall the following here:

• For a Cantor (minimal) system (X, φ) the C∗-algebra C∗r
(
Gφ

)
is canonically

isomorphic to the crossed product C(X ) oφ Z (and this isomorphism maps
C

(
G (0)
φ

)
onto C(X )).

• For a one-sided shift of finite type (XA, σA) theC∗-algebraC∗r (GA) is canon-
ically isomorphic to the Cuntz–Krieger algebra OA (and this isomorphism
maps C

(
G (0)
A

)
onto the diagonal subalgebra DA).

The first result is measure theoretic, and was the first of this kind.

Theorem 2.6.1 ([Sin55], [Dye63]). Let Γ y (X, µ) and Λ y (Y, ν) be essen-
tially free ergodic measure preserving actions by countable groups on non-atomic
standard probability spaces. Then the following are equivalent:

1. The actions Γy X and Λy Y are orbit equivalent.

2. The full groups [Γy X] and [Λy Y ] are isomorphic.

3. There is an isomorphism of the von Neumann algebras L∞(X ) o Γ and
L∞(Y ) o Λ that maps L∞(X ) onto L∞(Y ).

We emphasize that when wewrite that two ample groupoids are isomorphic, we
mean that they are isomorphic as topological groupoids (see the end of Section 1.3).
When we write that two (topological) full groups are isomorphic we mean as
abstract groups. The next result is a topological analogue of the former, which was
mentioned in Section 2.2.

Theorem 2.6.2 ([GPS95], [GPS99]). Let (X, φ) and (Y, ψ) be Cantor minimal
systems. Then the following are equivalent:

1. The systems (X, φ) and (Y, ψ) are flip-conjugate.

2. The systems (X, φ) and (Y, ψ) are continuously orbit equivalent.

3. The topological full groups
�
φ
�
and
�
ψ
�
are isomorphic.

4. There is an isomorphism of the C∗-algebras C(X ) oφ Z and C(Y ) oψ Z that
maps C(X ) onto C(Y ).

The following result of Matsumoto was mentioned in Section 2.3.
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Theorem 2.6.3 ([Mat10], [Mat15a]). Let A and B be irreducible non-permutation
{0, 1}-matrices. Then the following are equivalent:

1. The one-sided shift spaces (XA, σA) and (XB, σB) are continuously orbit
equivalent.

2. The topological full groups ~σA� and ~σB� are isomorphic.

3. There is an isomorphism of the C∗-algebras OA and OB that maps DA

onto DB.

These first three results did not use or include groupoids in any way, but
groupoids enter the stage in the remaining results. The following reconstruction
theorem due to Renault shows that effective étale groupoids can be recovered from
their (reduced) groupoidC∗-algebras together with the position of the diagonal sub-
algebra. This generalized earlierwork ofKumjian for principal groupoids [Kum86].
Renault’s theorem holds more generally for twisted groupoids, but we will not go
into that here.

Theorem 2.6.4 ([Ren08]). Let G and H be effective locally compact Hausdorff
second countable étale groupoids. Then the following are equivalent:

1. The topological groupoids G and H are isomorphic.

2. There is an isomorphism of the C∗-algebras C∗r (G) and C∗r (H) that maps
C0

(
G (0)

)
onto C0

(
H(0)

)
.

By Renault’s reconstruction theorem, we may add the equivalent condition

• The transformation groupoids Gφ and Gψ are isomorphic

to Theorem 2.6.2 and

• The SFT-groupoids GA and GB are isomorphic

to Theorem 2.6.3, respectively.

Remark 2.6.5. There is even a two-sided version of Theorem 2.6.3, which was
proved in [MM14]. Let A and B be irreducible non-permutation {0, 1}-matrices and
denote their associated two-sided shifts of finite type by

(
X A, σA

)
and

(
XB, σB

)
.

Then the following are equivalent:

1. The two-sided shift spaces
(
X A, σA

)
and

(
XB, σB

)
are flow equivalent.

2. There is an isomorphism of the C∗-algebras OA ⊗ K and OB ⊗ K that maps
DA ⊗ C onto DB ⊗ C.
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The implication “1. =⇒ 2.” appeared almost 35 years earlier in [CK80]. Mat-
sumoto and Matui proves the converse by an elegant use of groupoid techniques,
utilizing—among other things—Renault’s reconstruction theorem, Matsumoto’s
theorem from above and the classification of two-sided shifts of finite type up to
flow equivalence [Fra84], [Hua94]. Note that we may also add the equivalent
conditions

• The stabilized SFT-groupoids GA ×R∞ and GB ×R∞ are isomorphic

• The SFT-groupoids GA and GB are Kakutani equivalent

to the list above.

The next result is Matui’s Isomorphism Theorem, which shows that certain
ample groupoids can be recovered from the algebraic structure of their topological
full group alone.

Theorem 2.6.6 ([Mat15b]). Let G and H be effective minimal Hausdorff second
countable ample groupoids with G (0) and H(0) Cantor spaces. Then the following
are equivalent:

1. The topological groupoids G and H are isomorphic.

2. The topological full groups ~G� and ~H� are isomorphic.

Remark 2.6.7. In Theorem 2.6.6 one may equivalently replace the topological full
group with one of several of its distinguished subgroups, such as the commutator
subgroup or the kernel of the index map (the index map is defined in the next
section). See [Mat15b, Theorem 3.10] and [Nek19, Theorem 3.11].

The final result of this section cements the fact that a transformation groupoid
“remembers” precisely the continuous orbit equivalence class of the underlying
action (see [Li18] for the definition of continuous orbit equivalence for general
group actions).

Theorem 2.6.8 ([Li18]). Let Γy X and Λy Y be topologically free actions by
countable groups on locally compact second countable Hausdorff spaces. Then
the following are equivalent:

1. The actions Γy X and Λy Y are continuously orbit equivalent.

2. The transformation groupoids Γ n X and Λ n Y are isomorphic.
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Chapter 3

Homology of ample groupoids

In this chapter we will introduce the homology groups of an ample groupoid. The
homology theory is illustrated by several examples before we go on to describing
Matui’s two conjectures pertaining groupoid homology.

3.1 The homology theory of Crainic–Moerdijk–Matui

A fairly general homology theory for Hausdorff étale groupoids was developed
by Crainic and Moerdijk in [CM00]. In [Mat12], Matui restricted this homology
theory to the case of constant coefficients in an abelian group (as opposed to a sheaf)
for ample groupoids. This resulted in an elementary and accessible presentation of
the theory, which has become somewhat of a standard reference in the literature.
We also refer to the paper of Farsi, Kumjian, Pask and Sims [FKPS18] for an
excellent exposition, as well as comparisons between [Mat12] and [CM00]. In this
section, we will describe groupoid homology with coefficients in a discrete abelian
group, largely following [Mat12] and [FKPS18].

Assumption 3.1.1. Throughout this whole section all groupoids are assumed to be
Hausdorff, ample and second countable (cf. [FKPS18, Section 4]).

3.1.1 The definition of Hn(G, A)

Fix a discrete abelian group A. For a locally compact Hausdorff space X , let
Cc (X, A) denote the compactly supported continuous A-valued functions on X .
We view Cc (X, A) as an abelian group under pointwise addition. A local homeo-
morphism ψ : X → Y between locally compact Hausdorff spaces induces a group
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homomorphism ψ∗ : Cc (X, A) → Cc (Y, A) by setting

ψ∗( f )(y) =
∑

x∈ψ−1 (y)

f (x) (3.1.1)

for f ∈ Cc (X, A). Note that all but finitely many terms are zero in this sum, as f
is compactly supported.

For each n ≥ 1, let G (n) denote the set of composable n-tuples in G, that is

G (n) =
{
(g1, g2, . . . , gn) ∈ Gn | r (gi) = s(gi−1) for 2 ≤ i ≤ n

}
.

Equip G (n) with the subspace topology from Gn. This makes each G (n) a Boolean
space. In particular, G (2) is the set of composable pairs, G (1) = G is the groupoid
itself, and for n = 0 we have the unit space G (0). We will construct a chain complex
where the abelian groups involved are the Cc

(
G (n), A

)
’s.

To obtain the differentials, we first define the following maps

d (n)
i : G (n) → G (n−1)

for n ≥ 2 and i = 0, . . . , n by

d (n)
i (g1, g2, . . . , gn) =




(g2, g3, . . . , gn) if i = 0,
(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn) if 1 ≤ i ≤ n − 1,
(g1, g2, . . . , gn−1) if i = n.

Observe that each d (n)
i is a local homeomorphism. This follows from G having a

basis of compact bisections and that multiplication in an étale groupoid is a local
homeomorphism (Proposition 1.3.3). We illustrate this in a particular case. For
n = 2 for example, given a composable pair (g, h) ∈ G (2) we can find compact
bisections U,V ⊆ G satisfying g ∈ U , h ∈ V and s(U) = r (V ). Restricting d (2)

i

(which maps (g, h) to h) to (U × V ) ∩ G (2) produces a homeomorphism onto V .
The differentials

δn : Cc

(
G (n), A

)
→ Cc

(
G (n−1), A

)
are defined, using Equation (3.1.1), as

δn B
n∑
i=0

(−1)i
(
d (n)
i

)
∗

for n ≥ 2. For n = 1 we define δ1 : Cc (G, A) → Cc

(
G (0), A

)
, using the source and

range maps, as follows:
δ1 B s∗ − r∗.
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Formally, there is also the trival differential δ0 : Cc

(
G (0), A

)
→ 0. A standard

calculation shows that δn ◦ δn+1 = 0. Thus we have a chain complex

0 Cc

(
G (0), A

)
Cc (G, A) Cc

(
G (2), A

)
· · ·

δ0 δ1 δ2 δ3

and the homology groups of G with coefficients in A are defined as the homology
of this complex. To be more precise:

Hn(G, A) B ker δn/ im δn+1.

We write [ f ] ∈ Hn(G, A) for the equivalence class of f ∈ ker(δn) ⊆ Cc

(
G (n), A

)
.

In the case that A = Z (the “standard” coefficients), we write Hn(G) B Hn(G,Z)
for brevity.

Readers familiar with group homology may have noticed the similarity to
the so-called non-homogenous description of the chain complex arising from the
standard resolution (see [Bro82, Chapter II]). See Example 3.2.1 and 3.2.2 below
for comparisons with group homology.

3.1.2 Functoriality and Kakutani equivalence

This homology theory is functorial in the following sense. Suppose Φ : G → H
is an étale homomorphism (that is, a groupoid homomorphism which is also local
homeomorphism). For n ≥ 0, let Φ(n) : G (n) → H(n) denote the map given by
applying Φ in each coordinate. Each Φ(n) is a local homeomorphism, so we get
the group homomorphisms

Φ
(n)
∗ : Cc

(
G (n), A

)
→ Cc

(
H(n), A

)
from (3.1.1). The Φ(n)

∗ ’s satisfy δn ◦Φ(n)
∗ = Φ

(n−1)
∗ ◦ δn. Hence they induce group

homomorphisms
Hn(Φ) : Hn (G, A) → Hn (H, A)

between the homology groups of G andH given by

Hn(Φ)([ f ]) =
[
Φ

(n)
∗ ( f )

]
for f ∈ ker(δn) ⊆ Cc

(
G (n), A

)
.

It is clear that Hn(idG ) = idHn (G,A) and that Hn(Ψ ◦Φ) = Hn(Ψ) ◦ Hn(Φ) for two
étale homomorphisms Φ : G → H and Ψ : H→ K.

In particular, if H ⊆ G is an open subgroupoid, then the inclusion ι : H ↪→ G
induces group homomorphisms Hn(ι) : Hn(G, A) → Hn(H, A). Moreover, if
H = G |Y for some G-full clopen set Y ⊆ G (0), then the inclusion of the restriction
G |Y ⊆ G in fact induces isomorphisms

Hn(ι) : Hn(G |Y, A)
�
−−→ Hn(G, A)
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for all n ≥ 0 [Mat12, Theorem 4.8], [FKPS18, Lemma 4.3]. It follows that
Kakutani equivalent groupoids have isomorphic homology groups.

3.1.3 Describing H0(G) and H1(G)

In this thesis, we will for the most part be working only with the lower homology
groups, more precisely, with H0(G) and H1(G) (with coefficients in Z). This is
because these are the ones that go into Matui’s AH conjecure—together with the
abelianization of the topological full group (see Section 3.4). Another reason is that
in many interesting examples, the higher homology groups vanish (see Section 3.2).
Let us therefore describe H0(G) and H1(G) in more detail.

Describing H0(G)

The zeroth homology group is H0(G) = Cc

(
G (0),Z

)
/ im(δ1). Recall that the

differential δ1 : Cc (G,Z) → Cc

(
G (0),Z

)
is given by δ1 = s∗ − r∗. The homomor-

phisms s∗ and r∗ are in turn given by

s∗( f )(x) =
∑
g∈Gx

f (g) and r∗( f )(x) =
∑
g∈Gx

f (g)

for f ∈ Cc (G,Z) and x ∈ G (0). Since G (0) is Boolean, each function in Cc

(
G (0),Z

)
is a finite sum of indicator functions of compact open subsets of G (0). It follows
that

H0(G) = span
{
[1A] | A ⊆ G (0) compact open

}
,

where we by span mean linear combinations over Z. A key fact about H0(G)
is that compact bisections implement homological equivalence between indicator
functions. Indeed, for any compact bisection U ⊆ G we have

δ1(1U ) = s∗(1U ) − r∗(1U ) = 1s(U ) − 1r (U ), (3.1.2)

which implies that [
1s(U )

]
=

[
1r (U )

]
∈ H0(G).

In fact, the image im(δ1) ⊆ Cc

(
G (0),Z

)
is generated by all differences 1s(U )−1r (U )

as above, since G has a basis of compact bisections.

Describing H1(G)

Next up, the first homology group is H1(G) = ker(δ1)/ im(δ2). Note that each
function f ∈ Cc (G,Z) can be written as f =

∑n
i=1 ki1Ui where ki ∈ Z and Ui ⊆ G
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are compact bisections. From Equation (3.1.2) we see that

f ∈ ker(δ1) ⇐⇒
n∑
i=1

ki1s(Ui ) =

n∑
i=1

ki1r (Ui ) .

In particular, ifU ⊆ G is a compact bisection with s(U) = r (U), then 1U ∈ ker(δ1)
and we obtain an element [1U ] ∈ H1(G).

Let us describe the relations imposed by dividing out with im(δ2). The differ-
ential δ2 : Cc (G (2),Z) → Cc (G,Z) is given by

δ2 =
(
d (2)

0

)
∗
−

(
d (2)

1

)
∗
+

(
d (2)

2

)
∗
,

where each of these summands are given by(
d (2)

0

)
∗

(ψ)(g) =
∑

h∈G, s(h)=r (g)

ψ(h, g)

(
d (2)

1

)
∗

(ψ)(g) =
∑

(h1,h2)∈G (2), h1h2=g

ψ(h1, h2)

(
d (2)

2

)
∗

(ψ)(g) =
∑

h∈G, r (h)=s(g)

ψ(g, h)

for ψ ∈ Cc (G (2),Z) and g ∈ G. Suppose thatU,V ⊆ G are compact bisections with
s(U) = r (V ). Define the set

U ◦ V B (U × V ) ∩ G (2) =
{
(g, h) ∈ G (2) | g ∈ U, h ∈ V

}
.

Then U ◦ V is a compact open subset of G (2) and the collection of these sets form
a basis for G (2). Observe that(

d (2)
0

)
∗

(1U◦V ) = 1U,
(
d (2)

1

)
∗

(1U◦V ) = 1UV,
(
d (2)

2

)
∗

(1U◦V ) = 1V,

hence
δ2 (1U◦V ) = 1U − 1UV + 1V . (3.1.3)

In particular, if r (U) = s(U) = r (V ) = s(V ), then

[1UV ] = [1U ] + [1V ] ∈ H1 (G) . (3.1.4)

A consequence of (3.1.4) is that for any compact open subset A ⊆ G (0) of the unit
space, setting U = V = A gives [1A] = [1A] + [1A], hence

[1A] = 0 ∈ H1 (G) . (3.1.5)

Next, ifU ⊆ G is any compact bisection, then 1U+1U−1 ∈ ker(δ1), s(U) = r
(
U−1

)
and UU−1 = r (U) ⊆ G (0), so[

1U + 1U−1
]
= 0 ∈ H1 (G) . (3.1.6)

The preceding four equations amount to [Mat12, Lemma 7.3].
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3.2 Examples

We now list a few examples of groupoids for which the homology groups have
been computed (or described). In several of them we will also list the K-groups of
the associated groupoid C∗-algebras as reference for Matui’s HK conjecture, which
is presented in Section 3.4. An introduction to K-theory for C∗-algebras may be
found in Rørdam, Larsen and Laustsen’s book of the same name [RLL00]. Do note
how groupoid homology generalizes group homology in the first two examples.

Example 3.2.1. If Γ is a discrete group and we view G = Γ as an ample groupoid,
then

Hn(G) � Hn(Γ),

where the latter is the group homology of Γ (with coefficients in Z) as in [Bro82,
Chapter II]. Recall that H0(Γ) = Z and H1(Γ) = Γab, in particular.

Example 3.2.2. Next, if the group Γ acts on a locally compact Hausdorff space X ,
then it is folklore ([Mat12, page 31]) that the homology of the associated transfor-
mation groupoid is

Hn (Γ n X ) � Hn (Γ,Cc (X,Z)) ,

where the latter is the group homology of Γ with coefficients in Cc (X,Z) as
in [Bro82, Chapter III] (where the Γ-module structure on Cc (X,Z) is given by
(γ · f )(x) = f (γ−1(x)) for γ ∈ Γ, f ∈ Cc (X,Z), x ∈ X).

Example 3.2.3. If we view a locally compact Hausdorff space X as a trivial ample
groupoid, that is G = G (0) = X , then its groupoid homology is

H0(G) = Cc (X,Z),

Hn(G) = 0 for n ≥ 1.

Whenever we write Hn(X ) in this thesis we will mean the above homology groups
(and not singular homology for example, which of course is quite different).

Example 3.2.4. We next consider AF-groupoids (see Subsection A.11.5). Let
(V, E) be a Bratteli diagram (see for example [GPS04, Example 2.7.(ii)]). By
Theorems 4.10 and 4.11 in [Mat12] the homology of the AF-groupoid G(V,E ) is

H0(G(V,E )) � K0(V, E) � K0(C∗(V, E)),

Hn
(
G(V,E )

)
= 0 for n ≥ 1.

Here, K0(V, E) is the dimension group determined by the Bratteli diagram (V, E)
(see for example [HPS92, Section 5]) and C∗(V, E) is the AF-algebra determined
by (V, E).
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In fact, the above isomorphisms for n = 0 are order isomorphisms which
preserve the distinguished order units. For an AF-groupoid G the positive cone in
H0(G) is

H0(G)+ =
{
[ f ] ∈ H0(G) | f (x) ≥ 0 for all x ∈ G (0)

}

and the order unit is [1G (0) ] [Mat12]. However, if G is not an AF-groupoid, then(
H0(G), H0(G)+

)
need not be an ordered abelian group.

Example 3.2.5. Let A be an N × N essential {0, 1}-matrix. Matui [Mat12, Theo-
rem 4.14] computed the homology of the SFT-groupoid GA to be

H0 (GA) � coker (IN − A) � K0 (OA) ,

H1 (GA) � ker (IN − A) � K1 (OA) ,

Hn (GA) = 0 for n ≥ 2,

where IN is the N × N identity matrix and IN − A is viewed as an endomorphism
of ZN via left multiplication.

Example 3.2.6. Let GA,B be the Katsura–Exel–Pardo groupoid associated with two
N × N integer matrices A and B (see Section C.3). Under some mild assumptions
on A and B, Ortega [Ort18] computed the homology of GA,B to be

H0
(
GA,B

)
� coker (IN − A) ,

H1
(
GA,B

)
� ker (IN − A) ⊕ coker (IN − B) ,

H2
(
GA,B

)
� ker (IN − B) ,

Hn
(
GA,B

)
= 0, n ≥ 3.

For comparison, the K-theory of the Katsura algebraOA,B (which is theC∗-algebra
of GA,B) was in [Kat08b] found to be given by

K0
(
OA,B

)
� coker (IN − A) ⊕ ker (IN − B) ,

K1
(
OA,B

)
� ker (IN − A) ⊕ coker (IN − B) .

Finally, let us spend some time describing the homology groups of transfor-
mation groupoids associated to Cantor minimal systems. This will serve several
purposes. One, to illustrate Example 3.2.2 further. Two, to compare Matui’s gen-
eral index map to the one introduced by Giordano, Putnam and Skau for Cantor
minimal systems, see Subsection 3.3.1. Three, to illustrate how a certain long exact
sequence in homology can be used to describe the homology groups, a technique
which is employed in both Paper B and C.
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Example 3.2.7. Let (X, φ) be a Cantor minimal system and consider the associated
transformation groupoid Gφ. Example III.1.1 in [Bro82] describes the group ho-
mology of Γ = Z with coefficients. Combining this with Example 3.2.2 we obtain
the following descriptions of Hn

(
Gφ

)
. The zeroth homology group is

H0
(
Gφ

)
�

C(X,Z)
〈 f ◦ φk − f | f ∈ C(X,Z), k ∈ Z〉

=
C(X,Z)

{ f − f ◦ φ | f ∈ C(X,Z)}
.

This is precisely the K0-group of the dynamical system, which is denoted by
K0(X, φ) [GPS95, Definition 1.11]. As for the K0-group of the crossed product
one also has K0

(
C(X ) oφ Z

)
� K0(X, φ) [Put89], [HPS92]. (These isomorphisms

are even order and order unit preserving.) Next, the first homology group is

H1
(
Gφ

)
� H1 (Z,C(X,Z) �

{
f ∈ C(X,Z) | f ◦ φk = f ∀ k ∈ Z

}

= { f ∈ C(X,Z) | f constant} � Z,

where the equality is due to theminimality of φ. See Proposition 3.3.1 for an explicit
isomorphism between H1

(
Gφ

)
and Z. It is well known that K1

(
C(X ) oφ Z

)
� Z

also. Finally, we have Hn

(
Gφ

)
= 0 for n ≥ 2.

Example 3.2.8. In both Paper B and C we rely on a long exact sequence in
homology (Proposition B.6.1) to get a useful description of the homology groups
of the groupoids under study. This long exact sequence is an analogue of the
Pimsner–Voiculescu 6-term exact sequence in K-theory for crossed products by Z
(see for example [Bla98, Section 10]), but for ample groupoids equipped with a
Z-valued cocycle. Let us, to illustrate this, show how this long exact sequence can
be used for an alternative computation of the homology groups of Gφ for a Cantor
minimal system (X, φ), without appealing to group homology with coefficients.

We define a cocycle c : Gφ → Z by simply setting c(k, x) = k for (k, x) ∈ Gφ.
As we do in Paper B and C, let us denote the kernel of this cocycle byHφ B ker(c).
The kernel is particularly simple in this case sinceHφ = {0} × X = G (0)

φ , which we
have identified with X . Let Gφ ×c Z denote the associated skew product groupoid
(see Subsection B.2.5) whose unit space is identified with X × Z (viewing Z as a
discrete space), which then is only locally compact. We have

X � Hφ �
(
Gφ ×c Z

)
|X×{0}

as ample groupoids.
Let us demonstrate that the subset X × {0} ⊆

(
Gφ ×c Z

) (0)
is

(
Gφ ×c Z

)
-full.

Let (x, l) ∈ X × Z be given. The element g = ((−l, φl (x)), l) ∈ Gφ ×c Z satisfies
s(g) = (φl (x), 0) ∈ X × {0} and r (g) = (x, l), and the fullness follows. This
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makes X—viewed as a trivial ample groupoid—Kakutani equivalent to the skew
product Gφ ×c Z. It follows from Example 3.2.3 that

Hn

(
Gφ ×c Z

)
� Hn(X ) =




C(X,Z) for n = 0,
0 for n ≥ 1.

The isomorphism C(X,Z) � H0
(
Gφ ×c Z

)
is given by f 7→

[
f × 0

]
, where

f × 0 ∈ Cc (X × Z,Z) is given by

( f × 0)(x, l) =



f (x) if l = 0,
0 otherwise.

Since Hn

(
Gφ ×c Z

)
vanish for all n ≥ 1 the long exact sequence from Proposi-

tion B.6.1 collapses to

0 H1(Gφ) H0(Gφ ×c Z) H0(Gφ ×c Z) H0(Gφ) 0.id−H0 (ρ)

and we may immediately conclude that

Hn

(
Gφ

)
= 0 for n ≥ 2.

The homomorphism H0(ρ) is described in Equation (3.2.1) below (see Section B.6
for a description of the map ρ itself). By identifying H0(Gφ ×c Z) with C(X,Z)
the exact sequence above turns into

0 H1(Gφ) C(X,Z) C(X,Z) H0(Gφ) 0,Φ

where Φ is the unique map making the following diagram commute:

C(X,Z) C(X,Z)

H0(Gφ ×c Z) H0(Gφ ×c Z)

Φ

[( ·)×0]� [( ·)×0]�

id−H0 (ρ)

We claim that Φ( f ) = f − f ◦ φ−1 for f ∈ C(X,Z). Taking this at face value for
now, we obtain

H1
(
Gφ

)
� ker(Φ) =

{
f ∈ C(X,Z) | f ◦ φ−1 = f

}

= { f ∈ C(X,Z) | f constant} � Z
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and

H0
(
Gφ

)
� coker(Φ) =

C(X,Z){
f − f ◦ φ−1 | f ∈ C(X,Z)

}
=

C(X,Z)
{ f − f ◦ φ | f ∈ C(X,Z)}

as before.
Let us verify the formula for Φ claimed above. The map H0(ρ) is given by

H0(ρ)
( [

1A×{i }
] )
=

[
1A×{i+1}

]
(3.2.1)

for A ⊆ X clopen and i ∈ Z. Using this we compute

C(X,Z) 3 1A 7−→ [1A × 0] =
[
1A×{0}

] H0 (ρ)
7−−−−−→

[
1A×{1}

]
=

[
1φ(A)×{0}

]
7−→ 1φ(A) = 1A ◦ φ

−1,

where the equality
[
1A×{1}

]
=

[
1φ(A)×{0}

]
∈ H0(Gφ×cZ) follows from considering

the source and range of the bisection ({1} × A) × {0} ⊆ Gφ ×c Z; these being equal
to A × {1} and φ(A) × {0}, respectively. The claim follows.

The reader is invited to compare this computation with a computation of the
K-groups of the crossed product C(X ) oφ Z using the Pimsner–Voiculescu exact
sequence.

3.3 The index map

The index map is a group homomorphism from the topological full group into
the first homology group. The index map was introduced in the setting of Cantor
minimal systems in [GPS99] and later generalized to étale groupoids over Cantor
spaces in [Mat12] (see Subsection 3.3.1).

Let G be a Hausdorff effective ample groupoid with compact unit space. The
index map

I : ~G� → H1(G)

is the homomorphism given by πU 7→ [1U ], for U a full bisection in G. Recall that
since G is effective, the homeomorphism πU uniquely determines U. This makes I
well-defined (as 1U ∈ ker(δ1)). That the index map is a group homomorphism
follows readily from Equation (3.1.4). Indeed, let U,V ⊆ G be full bisections, then

I (πU ◦ πV ) = I (πUV ) = [1UV ] = [1U ] + [1V ] = I (πU ) + I (πV ) ∈ H1(G).
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We denote the induced map on the abelianization ~G�ab by

Iab : ~G�ab → H1(G).

Note that I is surjective if and only if Iab is surjective. Let us also observe that
any transposition in ~G� is in the kernel of the index map. Indeed, let U ⊆ G be a
compact bisection with s(U) ∩ r (U) = ∅. Then using (3.1.5) and (3.1.6) we have

I
(
πÛ

)
= [1Û ] =

[
1UtU−1t(G (0)\(s(U )tr (U ))

]

=
[
1U + 1U−1

]
+

[
1G (0)\(s(U )tr (U ))

]
= 0 ∈ H1(G). (3.3.1)

In Paper B we explain how to extend the index map to ample groupoids whose
unit spaces are not compact.

3.3.1 The index map of a Cantor minimal system

As mentioned above, the index map first appeared in the setting of Cantor minimal
systems. There it is the unique surjective homomorphism from the topological full
group onto Z. Let us explain this version of the index map and show how Matui’s
definition generalizes it.

Let (X, φ) be a Cantor minimal system. Lemma 5.3 in [GPS99] shows that
each element ψ ∈

�
φ
�
can be written as

ψ = γ1φ
lγ2, (3.3.2)

where l ∈ Z and γ1, γ2 both have finite order. An immediate consequence is that
if Θ :

�
φ
�
→ R is a group homomorphism, then it is determined by its value on φ

alone, since Θ(ψ) = lΘ(φ) for ψ as above.
Let µ be a φ-invariant probability measure on X (which always exists [Wal82,

Corollary 6.9.1]). By integrating the orbit cocycle against this measure we obtain
a map Iµ :

�
φ
�
→ R given by

Iµ (ψ) =
∫
X

nψ dµ

for ψ ∈
�
φ
�
. Observe that Iµ is a homomorphism, since nψ1◦ψ2 = nψ1 + nψ2 .

Moreover, we have Iµ (φ) = 1 as nφ ≡ 1. It follows from (3.3.2) that Iµ
(�
φ
�)
= Z,

so Iµ :
�
φ
�
→ Z is a surjective group homomorphism. This is independent of

which φ-invariant probability measure µ is chosen at the outset. In fact, Iµ is the
only homorphism from

�
φ
�
to Z up to scaling. In [GPS99], the integer Iµ (ψ)

is called the index of ψ. See the paragraph following [GPS99, Remark 5.6] for
a justification of this terminology, in terms of the Fredholm index of a certain
Fredholm operator that can be constructed from ψ.
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3.3.2 ComparingMatui’s indexmap to that of Giordano, Putnam and
Skau

Recall from Example 3.2.7 that H1
(
Gφ

)
� Z. To see that Matui’s index map

I :
�
Gφ
�
→ H1

(
Gφ

)
in the case of a transformation groupoid of a Cantor minimal

system can be identifiedwith Iµ :
�
φ
�
→ Zweneed to verify that I maps φ = π{1}×X

to the element in H1
(
Gφ

)
that corresponds to 1 ∈ Z. The following explicit

isomorphism between H1
(
Gφ

)
and Z was found in collaboration with Eduardo

Scarparo.

Proposition 3.3.1. Let (X, φ) be aCantorminimal system and let µ be a φ-invariant
probability measure on X . Then the map ∆ : H1

(
Gφ

)
→ Z given by

∆([ f ]) =
∑
k∈Z

k
∫
X

f (k, x) dµ(x)

for f ∈ ker(δ1) is an isomorphism.

Proof. Abusing notation somewhat, we begin by defining a group homomorphism
∆ : Cc

(
Gφ,Z

)
→ R by f 7→

∑
k∈Z k

∫
X

f (k, x) dµ(x). Note that the outer sum
is finite, since f (k, x) = 0 for all but finitely many values of k. Recall from
Subsection 3.1.3 that H1

(
Gφ

)
= ker(δ1)/ im(δ2) and that im(δ2) is spanned by

elements of the form 1U − 1UV + 1V , where U,V ⊆ Gφ are compact bisections
satisfying s(U) = r (V ).

We claim that im(δ2) ⊆ ker(∆). Without loss of generality we consider the
basic bisections U = {k} × φl (A) and V = {l} × A, where k, l ∈ Z and A ⊆ X
is clopen. For these we have ∆ (1U ) = kµ

(
φl (A)

)
= kµ(A) (by φ-invariance

of µ) and ∆ (1V ) = lµ(A). Moreover, we have that UV = {k + l} × A and
∆ (1UV ) = (k + l)µ(A) = ∆ (1U ) + ∆ (1V ). This proves the claim, making ∆ a
well-defined homomorphism from Cc

(
Gφ,Z

)
/ im(δ2) to R.

Our next goal is to show that ∆([ f ]) ∈ Z when f ∈ ker(δ1). Each function in
Cc

(
Gφ,Z

)
is of the form

N∑
j=−N

Mj∑
i=1

mi, j1{ j }×Ai, j ,

where mi, j ∈ Z and Ai, j ⊆ X is clopen. By Equations (3.1.5) and (3.1.6) we have[
1{0}×A

]
= 0 and

[
1{−j }×A

]
=

[
1{ j }×φ− j (A)

]
,

respectively, in Cc

(
Gφ,Z

)
/ im(δ2). Similarly, by Equation (3.1.4) we have

[
1{ j }×A

]
=

[
1{1}×φ j−1 (A)

]
+

[
1{ j−1}×A

]
.
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It follows that the equivalence classes [ f ] with f of the form

f =
M∑
i=1

mi1{1}×Ai

exhausts Cc

(
Gφ,Z

)
/ im(δ2). For such an f we have ∆([ f ]) =

∑M
i=1 miµ(Ai). De-

fine g B s∗( f ) =
∑M

i=1 mi1Ai ∈ C(X,Z) and observe that ∆([ f ]) =
∫
X
g dµ. As-

sume now that f ∈ ker(δ1). This means that g = s∗( f ) = r∗( f ) =
∑M

i=1 mi1φ(Ai ).
Then g ◦ φ−1 =

∑M
i=1 mi1φ(Ai ) = g, which forces g to be constant (since φ, and

hence φ−1, is minimal). Since µ is a probability measure it readily follows that
∆([ f ]) ∈ Z. This makes ∆ : H1

(
Gφ

)
→ Z well-defined.

Finally, we demonstrate that ∆ is surjective as well as injective. For surjec-
tivity it suffices to observe that ∆

( [
1{1}×X

] )
= 1. As for injectivity, suppose that

∆([ f ]) = 0. Since {1} × Ai is the set on which f takes the value mi we may
assume that all the mi’s are distinct and that all the Ai’s are disjoint. We have
∆([ f ]) =

∫
X
g dµ = 0 with g constant. This forces g =

∑M
i=1 mi1Ai = 0, but then

we must have f = 0 too. This finishes the proof. �

Returning to the comparison between the two index maps I and Iµ, we have
that I (φ) = I

(
π{1}×X

)
=

[
1{1}×X

]
and therefore∆ (I (φ)) = 1, as desired. It follows

that the following diagram commutes:

~Gφ� H1
(
Gφ

)
~φ� Z.

I

∆�

Iµ

From this we see that Matui’s index map is indeed a generalization.

3.4 Matui’s HK and AH conjectures

In this section we describe two conjectures regarding homology of ample groupoids
stated by Matui in [Mat16]. We will first state the conjectures and then describe
the discoveries that inspired them.

The first conjecture relates the homology of a groupoid to the K-theory of its
reduced groupoid C∗-algebra.
Matui’s HK Conjecture ([Mat16, Conjecture 2.6]). Let G be an effective minimal
second countable Hausdorff ample groupoid whose unit space G (0) is a Cantor
space. Then there exists isomorphisms

K0
(
C∗r (G)

)
�

∞⊕
n=0

H2n(G) and K1
(
C∗r (G)

)
�

∞⊕
n=0

H2n+1(G).
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The second conjecture relates the first two homology groups to (the abelian-
ization of) the topological full group.

Matui’s AH Conjecture ([Mat16, Conjecture 2.9]). Let G be an effective minimal
second countable Hausdorff ample groupoid whose unit space G (0) is a Cantor
space. Then the following sequence is exact:

H0(G) ⊗ Z2 ~G�ab H1(G) 0.j Iab (3.4.1)

In the sequence above, the map Iab is the abelianization of the index map and
the map j is described in Section 3.5.

Remark 3.4.1. We remark that there now exists counterexamples to the HK con-
jecture, see Example 3.4.2. The AH conjecture, however, is still open.

Let us describe some of the results that lead up to the conjectures, beginning
with results relevant to the AH conjecture. In [Mat06], Matui essentially showed
that �

φ
�
ab � Z ⊕

(
K0(X, φ) ⊗ Z2

)
� H1

(
Gφ

)
⊕

(
H0

(
Gφ

)
⊗ Z2

)
for any Cantor minimal system (X, φ). Similarly, it was shown that for any AF-
groupoid (for which each orbit contains at least two points) one has�

G(V,E )
�
ab � K0(V, E) ⊗ Z2 � H1

(
G(V,E )

)
⊕

(
H0

(
G(V,E )

)
⊗ Z2

)
.

Then in [Mat15b] it was shown that

~GA�ab � H1 (GA) ⊕ (H0 (GA) ⊗ Z2)

for anyminimal effective SFT-groupoid GA. These results can be interpreted as say-
ing that the sequence (3.4.1) is short exact, i.e. that j is additionally injective. When
this is the case, the groupoid is said to have the strong AH property. In [Mat16]
it was shown that products of such SFT-groupoids also satisfy the AH conjecture,
but that the map j may fail to be injective. It was also shown that almost finite
groupoids (see [Mat12, Definition 6.2]) that are principal and minimal satisfy the
AH conjecture. This class includes transformation groupoids of free minimal Zn

actions on Cantor spaces.
As for results relevant to the HK conjecture it was observed byMatui in [Mat12]

that transformation groupoids of Cantor minimal systems, AF-groupoids and SFT-
groupoids all satisfy the HK conjecture (recall Example 3.2.4, 3.2.5 and 3.2.7).
In [Mat16], Matui observed that satisfying the HK conjecture is preserved under
Kakutani equivalence. It is also clear that satisfying the HK conjecture is preserved
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under disjoint unions of groupoids. Matui proved a Künneth theorem for groupoid
homology, which says that

Hn(G ×H) � *.
,

⊕
i+j=n

Hi (G) ⊗ Hj (H)+/
-

⊕ *.
,

⊕
i+j=n−1

Tor
(
Hi (G), Hj (H)

)+/
-
.

As a consequence, if G and H are amenable (see e.g. [Sim17, Chapter 4]) ample
groupoids with Cantor unit spaces which both satisfy the HK conjecture, then so
does G×H. This then applies to products of all three kinds of groupoids mentioned
above.

We refer to Section B.1 and B.4 for further developments by other authors on
Matui’s conjectures. We also mention the recent preprint [PY20] that sheds new
light on Matui’s HK conjecture, and on groupoid homology in general. We end
this section by briefly describing Scarparo’s counterexample to the HK conjecture.

Example 3.4.2 ([Sca18]). There is a topologically free and minimal action by
the infinite dihedral group D∞ on a Cantor space X such that the homology of
the associated transformation groupoid is related to the K-theory of the crossed
product C∗-algebra as follows:

K0 (C(X ) o D∞) � H0 (D∞ n X ) ⊕ Z, K1 (C(X ) o D∞) = 0,
H2n (D∞ n X ) = 0 for n ≥ 1, H2n+1 (D∞ n X ) � Z2 for n ≥ 0.

It is still a possibility that a restricted version of the HK conjecture is true,
namely if one restricts to principal groupoids (as opposed to effective ones). For
example, for transformation groupoids of free and minimal actions by Zn on Cantor
spaces it is known that the isomorphisms in the HK conjecture hold modulo torsion
(i.e. after tensoringwithQ), but it is unknownwhether they hold on the nose [Mat12,
page 31].

3.5 The map j in the AH conjecture

Let us next describe the second map in the AH conjecture, namely the map

j : H0(G) ⊗ Z2 → ~G�ab.

To be clear, by Z2 we mean the group with two elements and we write Z2 = {0, 1}.
For f ∈ C(G (0),Z) we define O f B

{
x ∈ G (0) | f (x) is odd

}
. Then we have

f − 1O f ∈ 2C(G (0),Z). We are going to freely identify H0(G) ⊗ Z2 with H0(G,Z2)
via [ f ] ⊗ 1 7−→

[
1O f

]
(recall that H0(G) = H0(G,Z)). Note in particular that each

element in H0(G,Z2) is of the form [1A] for some clopen set A ⊆ G (0).
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Given a compact bisection U ⊆ G with s(U) ∩ r (U) = ∅ we obtain a trans-
position πÛ ∈ ~G� (as in Section 2.4). If G satisfies the assumptions in the
AH conjecture and U is as above, then the assignment

j
( [

1s(U )
] )
B

[
πÛ

]
ab
∈ ~G� ab (3.5.1)

induces a well-defined homomorphism j : H0(G,Z2) → ~G�ab. See [Nek19, Sec-
tion 7] for a proof of this for effective ample Hausdorff groupoids G for which every
G-orbit has at least 3 elements and where G (0) is a Cantor space. Alternatively, see
the proofs of Theorem 3.6 and 4.4 in [Mat16] for the almost finite case and how that
same proof can be adapted to purely infinite groupoids (in the sense of [Mat15b,
Definition 4.9]), respectively. It follows readily from Equation (3.3.1) that

Iab ◦ j = 0.

As long as every G-orbit has at least 2 elements, one can easily show that the
elements

[
1s(U )

]
as above generate H0(G,Z2) (using Lemma A.3.9). Furthermore,

if G is purely infinite and minimal, then these elements even exhaust H0(G), that is

H0(G) =
{ [

1s(U )
]
| U ⊆ G compact bisection with s(U) ∩ r (U) = ∅

}
.

Let us briefly explain why. Lemma 5.3 in [Mat15b] shows that every element
in H0(G) is of the form [1A] for some clopen set A ⊆ G (0). Now pick any compact
bisection V with s(V ) ∩ r (V ) = ∅ (which exists by e.g. A.3.9). By [Mat15b,
Proposition 4.11] there is some bisection W with s(W ) = A and r (W ) ⊆ s(V ). Set
U B (s |V )−1 (r (W )) ⊆ V . Then U is a compact bisection with s(U) ∩ r (U) = ∅
and [1A] =

[
1r (W )

]
=

[
1s(U )

]
.
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Chapter 4

Summary of papers

4.1 PaperA:Topological FullGroups ofAmpleGroupoids
with Applications to Graph Algebras

The first paper revolves aroundMatui’s Isomorphism Theorem (Theorem 2.6.6), or
more precisely, around generalizing it. This theorem requires the ample groupoids
to be minimal, second countable and have a compact unit space.

In the first part of the paper we provide two generalizations of Matui’s Iso-
morphism Theorem; one that relaxes the minimality assumption and another that
relaxes the second countability assumption. Both relax the compactness assump-
tion on the unit space. In the process we have to extend the definition of the
topological full group to ample groupoids with non-compact unit spaces.

In the second part of the paper we specialize to graph groupoids. This is a class
of ample groupoids that are built from directed graphs, and they generalize SFT-
groupoids in the sense that any SFT-groupoid can be viewed as the graph groupoid
of a finite graph. By interpreting the general isomorphism theorems from the
first part of the paper for the class of graph groupoids we obtain generalizations of
Matsumoto’s Theorem 2.6.3. In fact, we are able to sharpen one of the isomorphism
theorems further for graph groupoids by analyzing its proof separately.

We also obtain a novel embedding result for ample groupoids. We show that a
family of ample groupoids, which include graph groupoids and AF-groupoids, all
embed into the fixed SFT-groupoid GA2,1 , where

A2,1 =

[
1 1
1 1

]
.

We remark that the groupoid C∗-algebra of GA2,1 is (isomorphic to) the Cuntz alge-
braO2. This embedding on the level of the groupoids induces diagonal preserving
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embeddings of the associated graph C∗-algebras and Leavitt path algebras, which
relate to (a special case of) Kirchberg’s Embedding Theorem for C∗-algebras and
an embedding theorem of Brownlowe and Sørensen for Leavitt path algebras. An-
other consequence of our embedding result is that all these topological full groups
have the Haagerup property.

Finally, we remark that the results in this paper have been utilized in the
recent preprint [dCGvW19] to obtain similar isomorphism theorems for ultragraph
groupoids.

4.2 PaperB:Matui’sAHConjecture forGraphGroupoids

In the second paper, we continue to study the topological full groups of graph
groupoids, but we now shift focus towards Matui’s AH conjecture. Since Matui
has established the AH conjecture for minimal SFT-groupoids (as mentioned in
Section 3.4), the novelty lies in dealing with infinite graphs. In particular, dealing
with infinite emitters (i.e. vertices that emit infinitely many edges).

By combining existing results in the literature, we observe that the identification
between the homology groups of a graph groupoid with the K-groups of the
associated graph C∗-algebra—as in Example 3.2.5—is valid for all (countable)
graphs. This means that the AH conjecture relates the topological full group of a
graph groupoid with the K-theory of its graph C∗-algebra. Moreover, it follows
that the homology groups are easy to compute.

As our main result, we prove that the AH conjecture holds for all graph
groupoids that satisfy the assumptions of the conjecture (which we also char-
acterize precisely in terms of the underlying graphs). In fact, the AH conjecture is
shown to hold for any ample groupoid that is Kakutani equivalent to such a graph
groupoid.

We are not able to decide whether graph groupoids of infinite graphs have
the strong AH property or not (recall that SFT-groupoids do). However, we give
a partial description of the abelianization of the topological full group and we
show that if a graph has an infinite emitter, then the strong AH property rules out
simplicity of the topological full group. Furthermore, we show that the topological
full group is not finitely generated.

In the proof of the main result we need the fact that general AF-groupoids
have cancellation (see [Mat16, Definition 2.11]). We provide a proof of this fact,
which may be of independent interest. We also remark that the description of the
topological full group from Paper A is used in this paper too, since the skew product
groupoid, which appear frequently, has non-compact unit space.
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4.3 Paper C: Katsura–Exel–PardoGroupoids and the AH
Conjecture

The third paper also concerns Matui’s AH conjecture. Here we consider a different
class of groupoids, namely Katsura–Exel–Pardo groupoids. This is a class of
ample groupoids that arise from certain self-similar actions by Z on finite graphs.
In the case that the action is trivial, the groupoid is an SFT-groupoid. As our main
result, we establish that the AH conjecture is true for (almost) all Katsura–Exel–
Pardo groupoids that satisfy the assumptions of the AH conjecture (we additionally
assume that the underlying graph has no sources).

We also investigate whether the topological full group of a Katsura–Exel–
Pardo groupoid is finitely generated. By extending Nekrashevych’s notion of
contractivity for self-similar groups to self-similar graphs, we are able to give a
sufficient condition for the topological full group to be finitely generated.
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Paper A

Topological Full Groups of
Ample Groupoids with
Applications to Graph Algebras

Abstract
We study the topological full group of ample groupoids over locally compact
spaces. We extend Matui’s definition of the topological full group from the
compact, to the locally compact case. We provide two general classes of
étale groupoids for which the topological full group, as an abstract group, is
a complete isomorphism invariant. Hereby extending Matui’s Isomorphism
Theorem. As an application, we study graph groupoids and their topolog-
ical full groups, and obtain sharper results for this class. The machinery
developed in this process is used to prove an embedding theorem for ample
groupoids, akin to Kirchberg’s Embedding Theorem for C∗-algebras. Con-
sequences for graph C∗-algebras and Leavitt path algebras are also spelled
out. In particular, we improve on a recent embedding theorem of Brownlowe
and Sørensen for Leavitt path algebras.

A.1 Introduction

A.1.1 Background

The study of (topological) full groups in the setting of topological dynamics was
initiated by Giordano, Putnam and Skau [GPS99]. This was inspired by the work of
Dye [Dye63] in the measurable setting, and by Krieger’s study of so-called ample
groups on the Cantor space [Kri80]. For Cantor minimal systems, Giordano,
Putnam and Skau showed that certain distinguished subgroups of the full group
determine completely the orbit equivalence class, the strong orbit equivalence class,
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and the flip conjugacy class, respectively, of the system. The full group of a Cantor
system (i.e. a Z-action on a Cantor space) consists of all homeomorphisms of the
Cantor space which leave the orbits invariant. Roughly speaking, the topological
full group is the subgroup of the full group consisting of those homeomorphisms
which additionally preserve the orbits in a continuous manner. Giordano, Putnam
and Skau also connected the dynamics with the theory of C∗-algebras, via the
crossed product construction and its K-theory [GPS95]. Thus, they exhibited a
strong relationship between these, a priori, quite different mathematical structures.

This is but one example of the rich interplay between the theory of dynamical
systems and C∗-algebras. (This interplay essentially goes all the way back to the
inception of the field by Murray and von Neumann [MvN43].) Another prominent
example of this interplay is the connection between shifts of finite type and Cuntz-
Krieger algebras; discovered by Cuntz and Krieger in the early eighties [CK80].
In the setting of irreducible one-sided shifts of finite type, Matsumoto defined
the topological full group of such a dynamical system and proved that this group
determines the shift up to continuous orbit equivalence, and also the associated
Cuntz-Krieger algebra up to diagonal preserving isomorphism [Mat10], [Mat15a].
This parallelled Giordano, Putnam and Skau’s results, although the dynamical
systems were quite different. For instance, the former has no periodic points
whereas the latter has a dense set of periodic points.

Using topological groupoids to model dynamical systems has unified many of
these seemingly different connections between dynamics and C∗-algebras. When-
ever one has a dynamical system of some sort, one may typically associate to
it a topological groupoid, and from the groupoid one can construct its groupoid
C∗-algebra. In many cases, isomorphism of such groupoids correspond to some
suitable notion of continuous orbit equivalence of the dynamical systems, and
also to diagonal preserving isomorphism of the groupoid C∗-algebras [MM14],
[BCW17], [Li17], [Li18]. That groupoid isomorphism corresponds to diagonal
preserving isomorphism of the C∗-algebras (in the topologically principal case)
is due to the pioneering work of Renault [Ren08]. This reconstruction result has
recently been generalized in e.g. [CRST17]; wherein it is also shown that by adding
more structure on the groupoids, such as gradings, one can recover stronger types
of equivalence of the dynamical systems.

In [Mat12], Matui defined the topological full group of an étale groupoid with
compact unit space. His definition generalized virtually all the previously given
definitions for different kinds of dynamical systems at one fell swoop. Matui
realized that homeomorphisms which preserve orbits in a continuous manner are
always given by full bisections from the associated groupoid. In the subsequent
paper [Mat15b], Matui proved (among other things) a remarkable isomorphism
theorem. Supressing some assumptions, this theorem says that any two minimal
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étale groupoids over a Cantor space are isomorphic, as topological groupoids, if and
only if their topological full groups are isomorphic, as abstract groups.1 Matui’s
Isomorphism Theorem generalized the results of Giordano, Putnam and Skau, and
Matsumoto, and others.

The study of topological full groups has also found interesting applications
to group theory. Matui’s isomorphism theorem means that one can classify the
groupoids (and therefore any underlying dynamics, and the C∗-algebras) in terms
of the topological full group. However, by going the other direction, one can use
étale groupoids to distinguish certain discrete groups. Given two discrete groups,
say in terms of their generators and relations, it can be hard to tell whether they are
isomorphic or not. But if one can realize these groups as topological full groups (or
distinguished subgroups) of somegroupoids, then one can use the groupoids (i.e. the
dynamics) to tell the groups apart—as one often has much dynamical information
about the groupoids. For instance, this was the strategy used by Brin to show that
Thompson’s group V is not isomorphic to its two-dimensional analog 2V [Bri04]
(although he did not consider the groupoid explicitly). A more recent application
of this form is by Matte Bon [MB18] who showed that the higher dimensional
Thompson group nV embeds into mV if and only if n ≤ m.2 Matte Bon’s paper
also includes a novel approach to Matui’s Isomorphism Theorem in terms of a
certain dichotomy for such groupoids. Another application is that topological full
groups have provided new examples of groups with exotic properties. Most notably,
topological full groups (or more precisely, their commutator subgroups) of Cantor
minimal systems provided the first examples of finitely generated simple groups
that are amenable (and infinite) [JM13]. On another note, topological full groups
arising from non-amenable groups acting minimally and topologically free on the
Cantor space were recently shown to be C∗-simple [BS19].

Topological full groups have also found their way into Lawson’s program of
non-commutative Stone duality [Law10]. In [Law17], the topological full group
of an étale groupoid is shown to coincide with the group of units of the so-called
Tarski monoid to which the groupoid corresponds under non-commutative Stone
duality.

A.1.2 Our results

The main motivation for the present paper was Matsumoto and Matui’s work on
irreducible one-sided shifts of finite type mentioned above. If we rephrase their
work in terms of (directed) graphs, then they showed that for two strongly connected

1Actually, the same is true for several distinguished subgroups of the topological full group as
well, such as its commutator subgroup. See [Mat15b] and [Nek19] for details.

2It is known that the groups nV are all non-isomorphic [BL10].
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finite graphs E and F the following are equivalent:

1. The shifts (E∞, σE ) and (F∞, σF ) are continuously orbit equivalent.

2. The graph groupoids GE and GF are isomorphic as topological groupoids.

3. There is an isomorphism of the graph C∗-algebras C∗(E) and C∗(F) which
maps the diagonal D(E) onto D(F).

4. The topological full groups ~GE� and ~GF� are isomorphic as abstract
groups.

The equivalence of (1), (2) and (3) above have since been generalized to more
general graphs which need neither be finite nor strongly connected [CEOR19],
[BCW17]. Our initial goal was to study the topological full group ~GE� of general
graph groupoids GE and see if we could also add statement (4) to said equivalence.

Matui’s Isomorphism Theorem [Mat15b, Theorem 3.10] gives the equivalence
of (2) and (4) above for the general class of ample effective Hausdorff minimal
second countable groupoids over (compact) Cantor spaces (see Subsection A.2.3
for definitions). This covers in particular graph groupoids of strongly connected
finite graphs. In light of this we attempted to extendMatui’s Isomorphism Theorem
a little further in order to cover graph groupoids of more general graphs. To do
this it is necessary to relax both the compactness assumption of the unit space
(which corresponds to the graph having finitely many vertices) and the minimality
assumption (which corresponds to strong connectedness of the graph).

As our main findings we first describe two modest extensions of Matui’s Iso-
morphism Theorem that apply to general ample groupoids. Then we describe two
(sharper) isomorphism theorems for the class of graph groupoids. Finally, we
present a novel embedding theorem for ample groupoids. First of all we have to
extend the definition of the topological full group to the locally compact setting.
This is done in Definition A.3.2, where we stipulate that the homeomorphisms
in the topological full group should be compactly supported (in addition to being
induced by bisections). This seems a natural choice, as we then retain the “finitary”
nature of the elements in the topological full group, as well as the countability of
the topological full group (for second countable groupoids). Additionally, most of
the arguments from [Mat15b] still work with suitable modifications. For an ample
groupoid G we denote its unit space by G (0). The topological full group of G is
denoted by ~G�. And the commutator subgroup of ~G� is denoted by D(~G�).
The first of these isomorphism theorems is a straightforward extension of Matui’s
Isomorphism Theorem which relaxes the compactness assumption on G (0) and the
second countability assumption on G.
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TheoremA.1.1 (see TheoremA.7.2, [Mat15b, Theorem 3.10]). SupposeG1 andG2
are effective ample minimal Hausdorff groupoids whose unit spaces have no iso-
lated points. Then following are equivalent:

1. G1 � G2 as topological groupoids.

2. ~G1� � ~G2� as abstract groups.

3. D(~G1�) � D(~G2�) as abstract groups.

We mention that when restricting to the class of graph groupoids we are also
able to relax the minimality assumption in Theorem A.1.1 substantially (see The-
orem A.1.3 below). The second isomorphism theorem replaces the minimality as-
sumptionwith a significantly weaker “mixing property” that we call non-wandering
(see Definition A.7.8). However, the result does not apply to the commutator sub-
groups. And we also require the unit spaces to be second countable. (By a locally
compact Cantor spacewemean either the compactCantor space or the locally com-
pact non-compact Cantor space (up to homeomorphism), see Subsection A.2.1.)

TheoremA.1.2 (see Theorem A.7.10). Let G1 and G2 be effective ample Hausdorff
groupoids over locally compact Cantor spaces. If, for i = 1, 2, Gi is non-wandering
and each Gi-orbit has length at least 3, then the following are equivalent:

1. G1 � G2 as topological groupoids.

2. ~G1� � ~G2� as abstract groups.

Let us say a few words about the proofs. As the implications (1) ⇒ (2) ⇒ (3)
in Theorem A.1.1 and (1) ⇒ (2) in Theorem A.1.2 are trivial, there is only one
direction to prove. The proof strategy is similar in both cases and is summarized
in Figure A.1. The first step is showing that for certain classes of homeomorphism
groups, any (abstract) group isomorphism is induced by a homeomorphism of the
underlying spaces.3 We call this a spatial realization result. In [Mat15b], Matui
proves a spatial realization result that applies to any Γwith D(~G�) ≤ Γ ≤ ~G� (for
minimalG). And from a spatial isomorphism he directly constructs an isomorphism
of the groupoids and obtains his Isomorphism Theorem. In this paper we have
chosen to break this direct step into two more parts in order to also study when
the groupoid can be recovered from the action of (subgroups of) the topological
full group on the unit space, as the groupoid of germs of this action. We find that
such a groupoid of germs always embed into the groupoid we started with, and that

3If Γ ≤ Homeo(X ) and Λ ≤ Homeo(Y ) are groups of homeomorphisms, then a spatial isomor-
phism between them is a homeomorphism φ : X → Y such that γ 7→ φ ◦ γ ◦ φ−1 for γ ∈ Γ is a group
isomorphism.
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Γ1 � Γ2

��

(abstract isomorphism)

(
Γ1,G (0)

1

)
�

(
Γ2,G (0)

2

)
Functoriality
��

(spatial isomorphism)

Germ
(
Γ1,G (0)

1

)
� Germ

(
Γ2,G (0)

2

)
Γi covers Gi

��

G1 � Germ
(
Γ1,G (0)

1

)
� Germ

(
Γ2,G (0)

2

)
� G2

Figure A.1: Proof strategy for Theorem A.1.1 and A.1.2. Here Γi is a subgroup
of Homeo

(
G (0)
i

)
.

they are isomorphic if and only if the subgroup in question is generated by enough
bisections to cover the groupoid (Proposition A.4.10, Corollary A.4.13). We also
show that for a natural choice of maps, the assignment of the groupoid of germs is
functorial (Proposition A.5.4).

Having this machinery in place, proving Theorem A.1.1 is then just a matter
of checking that Matui’s spatial realization result also holds in the locally compact
setting (Theorem A.6.6). Although this is but a small extension of Matui’s result
we have chosen to include it as a theorem since it is applicable to a larger class
of groupoids. Regarding our initial motivation, namely the graph groupoids, we
are able to characterize exactly when the aforementioned spatial realization result
applies, and it turns out that we can get away with much weaker mixing properties
than minimality when we restrict to graph groupoids—see Theorem A.1.3 below.

For the proof of Theorem A.1.2 we employ a spatial realization result (Theo-
rem A.6.19) based on Rubin’s work in [Rub89] in the first step. We mention that
Medynets has previously obtained a similar spatial realization result [Med11, Re-
mark 3] for (topological) full groups arising from group actions on theCantor space,
building on Fremlins work in [Fre04, Section 384]. After somemodifications, The-
orem A.1.2 could also be deduced from this result. However, Theorem A.6.19 is
more general as it can potentially be applied to other groups than topological full
groups, e.g. homeomorphism groups of zero-dimensional linearly ordered spaces.
See Remark A.6.20 for a more detailed discussion on the differences and similari-
ties of these approaches. Although Theorems A.1.1 and A.1.2 can be deduced by
employing arguments along the lines of [Mat15b] and [Med11], we believe that the
way we trisect the proofs does add some new insight. In particular, this was how
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we discovered the embedding result given below in Theorem A.1.5.
Let us now describe the isomorphism theorem we obtain for graph groupoids,

when starting with the spatial reconstruction result à laMatui. Asmentioned above,
it turns out that we can replace minimality (strong connectedness of the graphs)
with some weaker “exit and return”-conditions. Each of these three conditions (see
Definition A.10.1) can be considered strengthenings of the three conditions that
characterize when the boundary path space ∂E has no isolated points (Proposi-
tion A.8.1). Condition (K) means that every cycle can be exited, and then returned
to. Condition (W) means that every wandering path can be exited, and then re-
turned to. And Condition (∞) means that every singular vertex can be exited (i.e.
is an infinite emitter), and then returned to (along infinitely many of the emitted
edges).

Theorem A.1.3 (see Theorem A.10.10). Let E and F be graphs with no sinks,
and suppose they both satisfy Condition (K), (W) and (∞). Then the following are
equivalent:

1. GE � GF as topological groupoids.

2. ~GE� � ~GF� as abstract groups.

3. D(~GE�) � D(~GF�) as abstract groups.

By interpreting the assumptions in Theorem A.1.2 for graph groupoids we
obtain Theorem A.1.4 below. Therein, Condition (L) is the well known exit
condition of Kumjian, Pask and Raeburn [KPR98], namely, that every cycle should
have an exit. Condition (T) (see Definition A.10.5) essentially means that the
graph does not have a component which is a tree. Finally, what we call degenerate
vertices (see Definition A.10.6) are the ones giving GE -orbits of length 1 or 2.
This theorem may be considered a generalization of Matsumoto’s result in the case
of irreducible one-sided shifts of finite type [Mat15a] (which correspond to finite
strongly connected graphs).

Theorem A.1.4 (see Theorem A.10.11). Let E and F be countable graphs satisfy-
ing Condition (L) and (T), and having no degenerate vertices. Then the following
are equivalent:

1. GE � GF as topological groupoids.

2. ~GE� � ~GF� as abstract groups.

Hence we establish the equivalence of (1)–(4) mentioned in the beginning
of this subsection for graphs satisfying the assumptions of Theorem A.1.4. In
Corollary A.10.13, we spell out this rigidity result for the associated graph algebras.
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Our final main result is an embedding theorem for ample groupoids—inspired
by embedding theorems for C∗-algebras and Leavitt path algebras. The seminal
embedding theorem of Kirchberg [KP00] states that any separable exact (uni-
tal) C∗-algebra embeds (unitally) into the Cuntz algebra O2. In particular, this
means that any graph C∗-algebra C∗(E), where E is a countable graph, embeds
into O2. The latter, being the universal C∗-algebra generated by two orthogonal
isometries, can be canonically identified with a graph C∗-algebra. Namely, the
graph C∗-algebra of the graph E2 which consists of a single vertex with two loops.
In [BS16], Brownlowe and Sørensen show that the Leavitt path algebra LR (E),
where E is any countable graph and R any commutative unital ring, embeds into
LR (E2)—the algebraic analog ofO2. An inspection of their proof reveals that this
embedding also maps the canonical diagonal subalgebra DR (E) into DR (E2). As
a consequence, Kirchberg’s embedding for the graph C∗-algebras may then also be
taken to be diagonal preserving—with respect to the diagonal4 inO2 coming from
its identification with C∗(E2). At this point, it starts smelling a bit like groupoids
might be lurking about. Indeed, using the properties of the Germ-functor (see Sec-
tion A.5), we are able to prove that the underlying graph groupoid GE embeds into
the Cuntz groupoid GE2 (modulo topological obstructions in the sense of isolated
points). Thus, the known embeddings of the graph algebras actually occur at the
level of the underlying groupoid models. We were also able to extend this embed-
ding result to all groupoids which are groupoid equivalent (or stably isomorphic) to
a graph groupoid. To the best of the authors’ knowledge, this is the first embedding
result of its kind for ample groupoids.

Theorem A.1.5 (see Theorem A.11.16). Let H be an effective ample second
countable Hausdorff groupoid with H(0) a locally compact Cantor space. If H is
groupoid equivalent to GE , for some countable graph E satisfying Condition (L)
and having no sinks nor semi-tails, then H embeds into GE2 . Moreover, if H(0) is
compact, then the embedding mapsH(0) onto E∞2 .

In particular, any graph groupoid GE , with E as above, embeds into GE2 , and
any AF-groupoid (with perfect unit space) embeds into GE2 .

The main ingredient in the proof is constructing an injective local homeo-
morphism φ : ∂E → E∞2 which induces a spatial embedding of the associated
topological full groups. This construction is entirely explicit. As a consequence
we also obtain explicit embeddings of any graph C∗-algebra C∗(E) (or Leavitt path
algebra LR (E)), in terms of their canonical generators, into O2 (or LR (E2). This
embedding is diagonal preserving, and when C∗(E) is unital (i.e. E0 is finite) this
embedding is unital and maps the diagonal onto the diagonal. These embeddings

4Technically, this is a Cartan subalgebra in the sense of Renault, not a C∗-diagonal in the sense
of Kumjian. But it is common to refer to it as “the diagonal” in a graph C∗-algebra.
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are described in Corollary A.11.5 and Remark A.11.6. We also record a result on
diagonal embeddings of AF-algebras in Corollary A.11.27.

Another consequence of Theorem A.1.5 is that each topological full group
~GE�, for E as above, embeds into Thompson’s group V—since V is isomorphic
to ~GE2�. The Higman-Thompson groups Vn,r (where nV = Vn,1) can be realized
as topological full groups of graph groupoids of certain strongly connected finite
graphs (see Subsection 11.3). Hence, our embedding theorem may be considered a
generalization of the well known embedding of Vn,r into V . The embedding entails
that the topological full groups ~H�, of groupoidsH as in Theorem A.1.5, has the
Haagerup property (but they are generally not amenable). In terms of groups, our
embedding also includes all the so-called LDA-groups (see Remark A.11.24).

In [Mat16], Matui introduced two conjectures for minimal ample groupoids
over the Cantor space. TheHK-conjecture relates the groupoid homology to the K-
theory of the groupoid C∗-algebra. And the AH-conjecture relates the topological
full group to the groupoid homology. These conjectures have been verified in
several cases [Mat17], in particular for (products of) graph groupoids arising from
strongly connected finite graphs. For the more general graph groupoids studied in
the present paper, the second named author will, together with Toke Meier Carlsen,
attack these conjectures in a forthcoming paper. (In the recent preprint [Ort18],
the second named author verifies the HK-conjecture for a class of groupoids which
includes the graph groupoids of row-finite graphs.)

A.1.3 Précis

The structure of the paper is as follows. We recall some basic notions regarding
étale groupoids and (classical) Stone duality in Section A.2. This section also
serves the purpose of establishing notation and conventions. The rest of the paper
is divided into two parts. The first, sections A.3–A.7, deals with ample groupoids
in general, while the second, sections A.8–A.11, deals with graph groupoids.

In Section A.3 we give the definition of the topological full group ~G� of
an ample groupoid G with locally compact unit space G (0). We also prove some
elementary results on the existence of elements in the topological full group with
certain properties. Then wemove on to study the groupoid of germsGerm

(
Γ,G (0)

)
associated to a subgroup Γ ≤ ~G� of the topological full group, in Section A.4.
We establish that Germ

(
Γ,G (0)

)
always embeds into G, and that this embedding

is an isomorphism as long as Γ contains “enough elements”. In Section A.5 we
introduce two categories; SpatG and Gpoid. The former consists of pairs (Γ, X )
where X is a space and Γ is a subgroup of Homeo(X ). The latter consists of
certain ample groupoids. By defining suitable morphisms in these categories
and what the germ of a morphism in SpatG should be, we establish that the
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assigment (Γ, X ) 7→ Germ (Γ, X ) is functorial. We also show that monomorphisms
in SpatG induce étale embeddings of the associated groupoids of germs.

The spatial realization results needed to deduce that an abstract isomorphism
of two topological full groups always is spatially implement are provided in Sec-
tion A.6. In Section A.7 we prove the two general isomorphism theorems, The-
orem A.1.1 and Theorem A.1.2. This is now mostly a matter of interpreting
the spatial realization results from Section A.6 in terms of the groupoid and its
topological full group, and then combine this with the results of Section A.4 and
Section A.5.

In Section A.8 we begin our in-depth study of graph groupoids GE of general
graphs E. This section is devoted to a thorough introduction of graph terminology
and the dynamics that give rise to the graph groupoids. For several of the generic
properties a topological groupoid can have, we list their characterizations for graph
groupoids in terms of the graphs. We continue in Section A.9 with describing
explicitly all elements in the topological full group ~GE� of any graph groupoid.
To do this we need to specify a new (yet equivalent) basis for the topology on GE .
We then pursue specialized isomorphism theorems for the class of graph groupoids
in Section A.10. This yields Theorem A.1.3 and Theorem A.1.4. At the end of this
section we spell out the induced rigidity result for the associated graph algebras.

In the final section of the paper we employ the machinery from Sections A.4,
A.5 and A.9 to obtain our groupoid embedding result; Theorem A.1.5. We also
describe the explicit diagonal embeddings of the graph algebras that follow from
the embedding of the groupoids. Examples of these embeddings for graph al-
gebras are provided for several infinite graphs. At the end of Section A.11 we
show that any AF-groupoid is groupoid equivalent to a graph groupoid, going via
Bratteli diagrams, hence GE2-embeddable. We then spell out consequences for
diagonal embeddings of AF-algebras. Additionally, we remark that transformation
groupoids arising from locally compact (non-compact) Cantor minimal systems
are AF-groupoids, and hence GE2-embeddable as well.
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A.2 Preliminaries

We will now recall the basic notions needed throughout the paper, as well as
establish notation and conventions. We denote the positive integers by N and the
non-negative integers by N0. If two sets A and B are disjoint we will denote their
union by A t B if we wish to emphasize that they are disjoint. When we write
that C = A t B we mean that C = A ∪ B and that A and B are disjoint sets.

A.2.1 Topological notions

Following [KL16], [Ste19] we say that a topological space is Boolean if it is
Hausdorff and has a basis of compact open sets. (This is also the terminology
orginally used by Stone [Sto37].) A Stone space is then a compact Boolean space.
We say that a topological space is perfect if it has no isolated points. By a locally
compact Cantor space we mean a (non-empty) second countable perfect Boolean
space. Up to homeomorphism there are two such spaces; one compact (the Cantor
set) and one non-compact (the Cantor set with a point removed). The latter may
also be realized as any non-closed open subset of the Cantor set, or as the product
of the Cantor set and a countably infinite discrete space.

For a topological space X we denote the group of self-homeomorphisms of X
by Homeo(X ). We will occasionally denote idX simply by 1 for brevity. By an
involution we mean a homeomorphism (or more generally, a group element) φ
with φ2 = 1. For a homeomorphism φ ∈ Homeo(X ), we define the support of φ to
be the (regular) closed set {x ∈ X | φ(x) , x}, and denote it by supp(φ). We also
define

Homeoc (X ) B {φ ∈ Homeo(X ) | supp(φ) compact open}.
When Γ is a subgroup of a group Γ′ we write Γ ≤ Γ′. Beware that we will abuse
this notation when we write Γ ≤ Homeoc (X ) to mean that Γ is a subgroup of
Homeo(X ) and that Γ ⊆ Homeoc (X ). (It is not clear whether Homeoc (X ) itself
is a group.)

A.2.2 Stone duality

We will now briefly recall the basics of (classical) Stone duality needed for Sec-
tion A.6. For more details the reader may consult [Kop89], [Fre04, Chapter 31]
(or even the fountainhead [Sto37], [Doc64]). By a Boolean algebra we mean a
complemented distributive lattice with a top and bottom element. And by a gen-
eralized Boolean algebra we mean a relatively complemented distributive lattice
with a bottom element. For a topological space X , we denote the set of clopen
subsets of X by CO(X ). The set of compact open subsets of X are denoted by
CK(X ). Finally, the set of regular open subsets of X are denoted by R(X ).

71



Paper A. Topological Full Groups of Ample Groupoids

Example A.2.1. Let X be a topological space.

1. CO(X ) is a Boolean algebra under the operations of set-theorietic union,
intersection and complement by X .

2. CK(X ) is a generalized Boolean algebra in the same way as CO(X ), except
for admitting only relative (set-theoretic) complements.

3. R(X ) is a Boolean algebra with the following operations. Let A, B ∈ R(X ).
The join of A and B is

(
A ∪ B

)◦
, where ◦ denotes the interior. The meet of

A and B is A ∩ B. And the complement of A is ∼ A B (X \ A)◦.

A crude way of stating Stone duality is to say that every Boolean algebra arises
as CO(X ) for some Stone space X , and that every generalized Boolean algebra
arises as CK(Y ) for some Boolean space Y . Hence, Stone spaces correspond to
Boolean algebas and Boolean spaces correspond to generalized Boolean algebras.

More precisely, it is a duality in the following sense. Recall that a continuous
map f : X → Y between topological spaces X and Y is proper if f −1(K ) is
compact in X whenever K is a compact subset of Y . A map ψ : A → B between
generalized Boolean algebras A and B is a Boolean homomorphism if it preserves
joins, meets and relative complements. We say that ψ is proper if for each b ∈ B,
there exists a ∈ A such that ψ(a) ≥ b. Boolean spaces with proper continuous
maps form a category. So does generalized Boolean algebras with proper Boolean
homomorphisms. For a proper continuous map f : X → Y , define

CK( f )(A) B f −1(A) for A ∈ CK(Y ).

This makes CK(−) a contravariant functor from the category of Boolean spaces to
the category of generalized Boolean algebras (with maps as above).

For a generalized Boolean algebra A, let S(A) denote the set of ultrafilters
in A. For each a ∈ A, let S(a) B {α ∈ S(A) | a ∈ α}. Equipping S(A)
with the topology generated by the (compact open) cylinder sets S(a) turns it
into a Boolean space. For a proper Boolean homomorphism ψ : A → B and
an ultrafilter β ∈ S(B), let S(ψ)(β) B {ψ−1(b) | b ∈ β}. This makes S(−) a
contravariant functor in the other direction, and we refer to it as the Stone functor.
Stone duality asserts that the contravariant functors CK(−) and S(−) implement
a dual equivalence. In other words, the category of Boolean spaces is dually
equivalent to the category of generalized Boolean algebras. It is more common to
state Stone duality in terms of Stone spaces and Boolean algebras. This is just the
restriction of the duality above to the aforementioned sub-categories.

For a generalized Boolean algebra A, we let Aut(A) denote the group of
Boolean isomorphisms from A to A.
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A.2.3 Étale groupoids

Standard references for étale groupoids (and their C∗-algebras) are Renault’s the-
sis [Ren80] and Paterson’s book [Pat99]. See also the excellent lecture notes by
Sims [Sim17]. A groupoid is a small category of isomorphisms, that is, a set G (the
morphisms, or arrows in the category) equipped with a partially defined multipli-
cation (g1, g2) 7→ g1 · g2 for a distinguished subset G (2) ⊆ G × G, and everywhere
defined involution g 7→ g−1 satisfying the following axioms:

1. If g1g2 and (g1g2)g3 are defined, then g2g3 and g1(g2g3) are defined and
(g1g2)g3 = g1(g2g3),

2. The products gg−1 and g−1g are always defined. If g1g2 is defined, then
g1 = g1g2g

−1
2 and g2 = g−1

1 g1g2.

A topological groupoid is a groupoid equipped with a topology making the
operations of multiplication and taking inverse continuous. The elements of the
form gg−1 are called units. We denote the set of units of a groupoid G by G (0), and
refer to this as the unit space. We think of the unit space as a topological space
equipped with the relative topology from G. The source and range maps are

s(g) B g−1g and r (g) B gg−1

for g ∈ G. Thesemaps are necessarily continuouswhenG is a topological groupoid.
We implicitly assume that all unit spaces appearing are of infinite cardinality
(in order to avoid some degenerate cases). An étale groupoid is a topological
groupoid where the range map (and necessarily also the source map) is a local
homeomorphism (as a map from G to G). The unit space G (0) of an étale groupoid
is always an open subset of G. An ample groupoid is an étale groupoid whose unit
space is a Boolean space.

It is quite common for operator algebraists to restrict to Hausdorff groupoids.
One reason for this is that a topological groupoid is Hausdorff if and only if the
unit space is a closed subset of the groupoid. In the end our main results will only
apply to groupoids that are Hausdorff, but some of the theory applies when G is
merely ample (and effective). For as long as the unit space G (0) is Hausdorff the
groupoid will be locally Hausdorff. We shall therefore clearly indicate whenever
we actually need the groupoid to be Hausdorff for some result to hold.

Two units x, y ∈ G (0) belong to the same G-orbit if there exists g ∈ G such
that s(g) = x and r (g) = y. We denote by OrbG (x) the G-orbit of x. When
every G-orbit is dense in G (0), G is called minimal. In the special case that there
is just one orbit, we call G transitive. A subset A ⊆ G (0) is called G-full if
r (s−1(A)) = G (0), in other words if A meets every G-orbit. For an open subset
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A ⊆ G (0) the subgroupoid G |A B {g ∈ G | s(g), r (g) ∈ A} is called the restriction
of G to A. When G is étale, the restriction G |A is an open étale subgroupoid. The
isotropy group of a unit x ∈ G (0) is the group Gx

x B {g ∈ G | s(g) = r (g) = x},
and the isotropy bundle is

G ′ B {g ∈ G | s(g) = r (g)} =
⊔

x∈G (0)

Gx
x .

A groupoid G is said to be principal if G ′ = G (0), i.e. if all isotropy groups are
trivial. Any principal groupoid can be identified with an equivalence relation on its
unit space G (0), but the topology need not be the relative topology from G (0) ×G (0).
We say that G is effective if the interior of G ′ equals G (0). We call G topologically
principal if the set of points in G (0) with trivial isotropy group are dense in G (0).

Remark A.2.2. We should point out that the condition we are calling effective
often goes under the name essentially principal (or even topologically principal)
elsewhere in the literature. In general, topologically principal implies effective.
However, for most groupoids considered by operator algebraists the two notions
are in fact equivalent (see [Ren08, Proposition 3.1]), so often these names all mean
the same thing. In particular, this is the case for second countable locally compact
Hausdorff étale groupoids.

Definition A.2.3. Let G be an étale groupoid. A bisection is an open subsetU ⊆ G
such that s and r are both injective when restricted to U . A bisection U is called
full if we have s(U) = r (U) = G (0).

When U is a bisection in G, then s |U : U → s(U) is a homeomorphism,
and similarly for the range map. An étale groupoid can thus be characterized by
admitting a topological basis consisting of bisections, and an ample groupoid as
one with a basis of compact bisections. In particular, ample groupoids are locally
compact, and if G is Hausdorff and ample, then G is also a Boolean space. One of
the most basic class of examples of étale groupoids are the following, which arise
from group actions.

Example A.2.4. Let Γ be a discrete group acting by homeomorphisms on a topo-
logical space X . The associated transformation groupoid is

Γ n X B Γ × X

with product according to (τ, γ(x)) · (γ, x) = (τγ, x) (and undefined otherwise),
and inverse (γ, x)−1 = (γ−1, γ(x)). Identifying the unit space (Γ n X )(0) = {1} × X
with X in the obvious way we have s((γ, x)) = x and r ((γ, x)) = γ(x). Equipping
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Γ n X with the product topology makes it an étale groupoid (essentially because Γ
is discrete), and a basis of bisections is given by the cylinder sets

Z (γ,U) B {(γ, x) | x ∈ U }

indexed over γ ∈ Γ and open subsets U ⊆ X . The identification of X with the unit
space as above is compatible with this topology. In particular Γ n X is Hausdorff
and ample exactly when X is Boolean, and second countable when Γ is countable
and X is second countable. The transformation groupoid is effective if and only if
every non-trivial group element has support equal to X . In the second countable
setting, this coincides with the action being topologically principal (meaning that
the set of points that are fixed only by the identity element of the group form a
dense subset of X). The groupoid orbit OrbΓnX (x) of a point x ∈ X coincide with
the orbit under the action, i.e. OrbΓnX (x) = {γ(x) |γ ∈ Γ} = OrbΓyX (x).

A groupoid homomorphism is amapΦ : G → H such that (Φ(g),Φ(g′)) ∈ H(2)

whenever (g, g′) ∈ G (2), and moreover Φ(g) · Φ(g′) = Φ(g · g′). It follows that
Φ(g−1) = Φ(g)−1 for all g ∈ G, Φ commutes with the source and range maps
and Φ

(
G (0)

)
⊆ H(0). If Φ is a bijection, then Φ−1 is a groupoid homomor-

phism and we call Φ an algebraic isomorphism. For étale groupoids G and H an
étale homomorphism is a groupoid homomorphism Φ : G → H which is also a
local homeomorphism. It is a fact that a groupoid homomorphism Φ : G → H
between étale groupoids is a local homeomorphism if and only if the restriction
Φ(0) : G (0) → H(0) to the unit spaces is a local homemorphism. By an isomorphism
of topogical (or étale) groupoids we mean an algebraic isomorphism which is also
a homeomorphism. So a bijective étale homomorphism is an isomorphism of étale
groupoids. Note that if Φ : G → H is an étale homomorphism, then the image
Φ(G) is an open étale subgroupoid of H.

A.3 The topological full group

In this section we will expand Matui’s definition of the topological full group of an
ample groupoid from the compact to the locally compact case, and establish some
elementary properties. To each bisection U ⊆ G in an étale groupoid we associate
a homeomorphism

πU : s(U) → r (U)

given by r |U ◦ (s |U )−1. This means that for each g ∈ U, πU maps s(g) to r (g).
WheneverU is a full bisection, πU is a homeomorphism of G (0). We now show that
the (partial) homeomorphism πU determines the bisection U, when the groupoid
is effective and Hausdorff.
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Lemma A.3.1. Let G be an effective ample Hausdorff groupoid and let U,V ⊆ G
be bisections with s(U) = s(V ) and r (U) = r (V ). If πU = πV , then U = V .

Proof. To have πU = πV means that for each x ∈ s(U), the unique elements
g ∈ U, h ∈ V with s(g) = x = s(h) also satisfies r (g) = r (h). This in turn implies
thatV−1U ⊆ G ′. As G is Hausdorff, G (0) is closed, and thereforeV−1U∩

(
G \ G (0)

)
is an open subset of G ′ \ G (0). But since G is effective this set must be empty. This
entails that V−1U ⊆ G (0), and hence U = V . �

Definition A.3.2. Let G be an effective ample groupoid. The topological full group
of G, denoted ~G�, is the subgroup of Homeo

(
G (0)

)
consisting of all homeomor-

phisms of the form πU , where U is a full bisection in G such that supp(πU ) is
compact. We will denote by D(~G�) its commutator subgroup.

In the topological full group, composition and inversion of the homeomor-
phisms correspond to multiplication and inversion of the bisections, viz.:

• πG (0) = idG (0) = 1

• πU ◦ πV = πUV

• (πU )−1 = πU−1

Remark A.3.3. It is clear that when the unit space is compact, this definition coin-
cideswithMatui’s [Mat12, Definition 2.3]—which again generalizes the definitions
given in [GPS99] and [Mat10], for Cantor dynamical systems and one-sided shifts
of finite type, respectively, to étale groupoids. Moreover, in [Mat02] Matui defined
six different full groups associated with a minimal homeomorphism φ of a locally
compact Cantor space. The smallest one of these, denoted τ[φ]c in [Mat02], equals
the topological full group (as in Definition A.3.2) of the associated transformation
groupoid.

Remark A.3.4. After the completion of this work, we were made aware of Matte
Bon’s preprint [MB18] where he defines the topological full group of an arbitrary
étale groupoid G as the group of all full bisections U ⊆ G such that U \ G (0)

is compact. For effective groupoids, this agrees with Definition A.3.2, modulo
identifying a full bisection with its associated homeomorphism. For not necessarily
effective groupoids it is arguably better to define the topological full group in terms
of the bisections themselves, for then one does not “lose” the information contained
in the (non-trivial) isotropy (but also to separate the group from its canonical—no
longer faithful—action on the unit space). This is done in e.g. [Nek19] and [BS19]
as well. However, the approach taken in this paper—in particular in Section A.6—
is based on working with subgroups of the homeomorphism group of a space (i.e.
faithful group actions), which is why we have defined ~G� as we have.
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Remark A.3.5. We emphasize that the topological full group ~G� is viewed as a
discrete group. The term topological is historical, and refers to the fact that the
homeomorphisms in the topological full group preserves orbits in a “continuous
way”, as opposed to the full groups, which appeared first—in the measurable
setting—see [GPS99, page 2].

For descriptions of the topological full group in certain classes of examples,
see Proposition A.9.4, Remark A.11.22 and Remark A.11.28. See also [Mat17]
for a survey of about topological full groups of étale groupoids with compact unit
space.

By virtue of the groupoid being effective, the support of a homeomorphism
in the topological full group is in fact open as well. Matui’s proof of this fact for
compact unit spaces carries over verbatim to our setting.

Lemma A.3.6 (cf. [Mat15b, Lemma 2.2]). Let G be an effective ample Hausdorff
groupoid. Then supp(πU ) = s(U \ G (0)) for each πU ∈ ~G�. In particular,
supp(πU ) is a compact open subset of G (0).

We now present a few basic results on the existence of elements in the topo-
logical full group. They will be used in later sections to construct elements in the
topological full group with localized support.

Lemma A.3.7. Let G be an effective ample groupoid, and let πU ∈ ~G�. Then we
have a decomposition

U = U⊥
⊔ (

G (0) \ supp(πU )
)
,

where U⊥ is a compact bisection with s(U⊥) = r (U⊥) = supp(πU ).
Conversely, any compact bisection V ⊆ G with s(V ) = r (V ) defines an ele-

ment πṼ ∈ ~G� with supp(πṼ ) ⊆ s(V ) by setting Ṽ = V t
(
G (0) \ s(V )

)
.

Proof. It is clear that supp(πU ) is invariant under πU . Therefore we may simply
put U⊥ = s−1

|U
(supp(πU )). The second statement is obvious. �

Lemma A.3.8. Let G be an effective ample groupoid. Any compact bisection
V ⊆ G satisfying s(V ) ∩ r (V ) = ∅ defines an involutive element πV̂ ∈ ~G� with
supp(πV̂ ) ⊆ s(V ) ∪ r (V ) by setting V̂ = V t V−1 t

(
G (0) \ (s(V ) ∪ r (V ))

)
.

Proof. Immediate. �

Lemma A.3.9. Let G be an effective ample groupoid. If g ∈ G \ G ′, that is
s(g) , r (g), then there is a (nontrivial) bisection U ⊆ G containing g with
πU ∈ ~G�. Furthermore, for any open set A ⊆ G (0) containing both s(g) and
r (g), U can be chosen so that supp(πU ) ⊆ A. We may also choose πU to be an
involution.
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Proof. As G is ample there is a compact bisection W containing g. Let B1, B2 be
disjoint open neighbourhoods of s(g), r (g) respectively in G (0). By intersecting
we may take B1 ⊆ s(W ) ∩ A and B2 ⊆ r (W ) ∩ A. By continuity of s and r there
are compact open sets W1,W2 ⊆ W , both containing g, such that s(W1) ⊆ B1 and
r (W2) ⊆ B2. And then V = W1 ∩ W2 is a compact bisection containing g with
s(V ) ∩ r (V ) = ∅ and s(V ) ∪ r (V ) ⊆ A. Hence U = V̂ (as in Lemma A.3.8) is the
desired full bisection. �

Remark A.3.10. In the non-compact case we may view the topological full group
as a direct limit of topological full groups of groupoids over compact spaces as
follows. ConsiderCK

(
G (0)

)
as a directed set (ordered by inclusion). Given two sets

A, B ∈ CK
(
G (0)

)
with A ⊆ B we define a homomorphism ιA,B : ~GA� → ~GB�

by πU 7→ πŨ , where Ũ = U t (B \ A). Then we have that

~G� � lim
→

(~GA�, ι).

A.4 The groupoid of germs

We are now going to adapt the notions of [Ren08, Section 3] to the (special) case
of groups, rather than inverse semigroups, to fit the framework of the topological
full group and its subgroups, rather than the pseudogroup studied in [Ren08]. Our
goal is to reconstruct an ample groupoid G from subgroups of the topological full
group ~G� as a so-called groupoid of germs—which is a quotient of a transformation
groupoid.

Remark A.4.1. In the following three sections we will be working with subgroups
of Homeo(X ), where X is a topological space. Thus we are essentially studying
faithful actions by discrete groups on X . In the end we will have X = G (0) for
some ample groupoid G, and we will be looking at subgroups of ~G�. Yet it will
be convenient to state most results for general subgroups Γ ≤ Homeo(X ) without
reference to groupoids. Also, beware that the term faithful will be used differently
in Section A.6 (see Definition A.6.1).

Recall that two homeomorphisms γ, τ : X → X have the same germ at a
point x ∈ X if there is a neighbourhood U of x such that γ |U = τ|U .

Definition A.4.2. Let X be a locally compact Hausdorff space and let Γ be a
subgroup of Homeo(X ). The groupoid of germs of (Γ, X ) is

Germ(Γ, X ) B (Γ n X ) / ∼

where (γ, x) ∼ (τ, y) iff x = y and γ, τ have the same germ at x.
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Denote the equivalence class of (γ, x) ∈ Γ n X under ∼ by [γ, x]. It is
straightforward to check that the groupoid operations of the transformation groupoid
are well-defined on representatives of the equivalence classes in the groupoid of
germs (and that they are continuous). The bisections

Z[γ, A] B {[γ, x] | x ∈ A},

for γ ∈ Γ and A ⊆ X open, form a basis for the quotient topology. The unit space
of Germ(Γ, X ) is also identified with X in the obvious way. Hence the groupoid
Germ(Γ, X ) is étale (and ample when X is Boolean), and it is furthermore always
effective (as any group element acting identically on an open set is identified with
the identity at each point of this open set). Hausdorffness of the groupoid however,
is no longer guaranteed, but it can be characterized as follows.

LemmaA.4.3. Let X be a locally compactHausdorff space and let Γ ≤ Homeo(X ).
Then the groupoid of germsGerm(Γ, X ) is Hausdorff if and only if supp(γ) is clopen
in X for every γ ∈ Γ.

Proof. Since X isHausdorff, any twogroupoid elements [γ, x], [τ, y] ∈ Germ(Γ, X )
with distinct sources (i.e. x , y) can always be separated by open sets. We only
have to worry about separating elements in the same isotropy group, and it suffices
to be able to separate the unit from any other element. Also note that [γ, x] , [1, x]
if and only if x ∈ supp(γ).

First, assume that all the supports are clopen. If [γ, x] , [1, x], then by the
observation above, Z[γ, supp(γ)] and Z[1, supp(γ)] are disjoint open neighbour-
hoods of these elements. To separate [γ, x] from [τ, x] (when these are distinct), we
first note that [γ, x][τ, x]−1 = [γτ−1, τ(x)] , [1, τ(x)]. Hence τ(x) ∈ supp(γτ−1),
so by the argument above Z[γτ−1, A] and Z[1, A], with A = supp(γτ−1), separates
[γτ−1, τ(x)] from [1, τ(x)]. It follows that Z[γ, τ−1(A)] and Z[τ, τ−1(A)] separates
[γ, x] and [τ, x].

Conversely, suppose there is a γ ∈ Γ such that supp(γ) is not open. Let x be
any point on the boundary of supp(γ). Then γ(x) = x, but [γ, x] , [1, x], and
these two groupoid elements cannot be separated by open sets. To see this take any
two basic neighbourhoods Z[γ, A], Z[1, B] where A, B are open neighbourhoods
of x in X . They both contain the basic set Z[1,C] where C = (A ∩ B) \ supp(γ),
since γ acts identically on C. �

In the sequel we shall restrict our attention to groups of homeomorphismswhich
have open, as well as compact, support. Topological full groups are determined
by the “local behaviour” of its elements. This is made precise in the following
definition.
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Definition A.4.4. Let X be a locally compact Hausdorff space and let Γ be a
subgroup of Homeoc (X ). We say that a homeomorphism ϕ ∈ Homeoc (X ) locally
belongs to Γ if for every x ∈ X , there exists an open neighborhood U of x and
an element γ ∈ Γ such that ϕ |U = γ |U . The group Γ is called locally closed if
whenever ϕ ∈ Homeoc (X ) locally belongs to Γ, then ϕ ∈ Γ.

Proposition A.4.5. Let G be an effective ample Hausdorff groupoid. Then the
topological full group ~G� ≤ Homeoc

(
G (0)

)
is locally closed.

Proof. Let ϕ ∈ Homeoc (G (0)) locally belong to ~G�. Then, since supp(ϕ) is
compact open, we can find finitelymany open sets Ai ⊆ supp(ϕ), covering supp(ϕ),
such that ϕ |Ai = (πUi ) |Ai , where πUi ∈ ~G�. Since G (0) is Boolean we may
assume that the Ai’s are clopen and disjoint. We then have a clopen partition
supp(ϕ) = A1t A2t · · ·t An, and ϕ restricts to a self-homeomorphism of supp(ϕ)
which on each region Ai equals πUi . It follows that the set V = ∪n

i=1Vi, where
Vi =

(
s |Ui

)−1 (Ai), is a compact bisection in G with s(V ) = supp(ϕ) = r (V ). And
then ϕ = πṼ ∈ ~G�, where Ṽ is as in Lemma A.3.7. �

Given a group Γ ≤ Homeoc (X ) we denote by 〈Γ〉 the set of ϕ ∈ Homeoc (X )
which locally belong to Γ. Clearly 〈Γ〉 is a locally closed group in Homeoc (X ) and
Γ ≤ 〈Γ〉. As the groupoid of germs is defined in the same local terms as the local
closure we have a canonical isomorphism Germ(〈Γ〉, X ) � Germ(Γ, X ). From this
we obtain the analog of [Ren08, Proposition 3.2], namely that the topological full
group of a groupoid of germs equals the local closure of the group we started with.

Proposition A.4.6. Let X be a Boolean space and let Γ ≤ Homeoc (X ). Then we
have ~Germ(Γ, X )� � 〈Γ〉.

Proof. Since Germ(Γ, X ) can be identified with Germ(〈Γ〉, X ), it suffices to show
that ~Germ(〈Γ〉, X )� = 〈Γ〉. For each ϕ ∈ 〈Γ〉 the full bisection Z[ϕ, X] = Uϕ in
Germ(〈Γ〉, X ) satisfies πUϕ = ϕ. And since ϕ has compact support it belongs to
~Germ(〈Γ〉, X )�.

For the reverse inclusion, take any πU ∈ ~Germ(〈Γ〉, X )�. Recall that the
support of πU is open, as well as compact, since any groupoid of germs is effective
(Lemma A.3.6). To see that πU locally belongs to Γ take any x ∈ X , and let [ϕ, x]
be the unique element in U whose source is x. Since U is open there is a basic set
Z[ϕ, A] ⊆ U , where A is an open neighbourhood of x in X . As ϕ ∈ 〈Γ〉 there is an
open neighbourhood B of x and an element γ ∈ Γ with ϕ |B = γ |B. By intersecting
with A we may assume that B ⊆ A. Now observe that (πU ) |B = ϕ |B = γ |B, and we
are done. �

As topological full groups are locally closed (Proposition A.4.5) we obtain the
following immediate corollary.
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Corollary A.4.7. Let G be an effective ample Hausdorff groupoid. Then

~Germ(~G�,G (0))� � ~G�.

The preceding results show that a locally closed group Γ ≤ Homeoc (X ) can
be reconstructed from its associated groupoid of germs Germ

(
Γ,G (0)

)
, namely as

the topological full group of this groupoid. We now turn to the question of how an
ample groupoid G relates to the groupoid of germs, Germ

(
~G�,G (0)

)
, determined

by its topological full group. We will see that these will also be isomorphic under
some mild condition on the groupoid—namely that the groupoid can be covered
by bisections as in the following definition.

Definition A.4.8. Let G be an effective ample groupoid. We say that a subgroup
Γ ≤ ~G� covers G if there for each g ∈ G exists a πU ∈ Γ such that g ∈ U .

Note that if Γ ≤ ~G� covers G, then so does any group Γ′ in between, i.e.
Γ ≤ Γ′ ≤ ~G�, and in particular ~G� itself covers G. Sufficient conditions on the
orbits of G for ~G�, or the commutator D(~G�), to cover G is given by the following
result (which is the analog of [Mat15b, Lemma 3.7]).

Lemma A.4.9. Let G be an effective ample groupoid.

1. If |OrbG (x) | ≥ 2 for every x ∈ G (0), then ~G� covers G.

2. If |OrbG (x) | ≥ 3 for every x ∈ G (0), then D(~G�) covers G.

Proof. (1) First consider g ∈ G \ G ′. Then Lemma A.3.9 immediately gives
a πU ∈ ~G� with g ∈ U . Next, suppose s(g) = r (g) = x. By assumption there is
a point y different from x in OrbG (x). This means that there is some h ∈ G with
s(h) = x , y = r (h). And then h−1 is composable with g and gh−1 ∈ G \ G ′.
Applying Lemma A.3.9 to both gh−1 and h we get πU1, πU2 ∈ ~G� with gh−1 ∈ U1
and h ∈ U2. Since πU1U2 ∈ ~G� and g ∈ U1U2 we see that ~G� covers G.

(2) As in the previous part we first consider g ∈ G \ G ′. By assumption
there is a third (distinct) point y in the same orbit as s(g) and r (g). Therefore
there is an element h ∈ G with s(h) = y and r (h) = s(g). Lemma A.3.9 gives
involutions πU, πV ∈ ~G� such that g ∈ U and h ∈ V . We may also arrange so that
y < supp(πU ) by the second part of Lemma A.3.9. Then

[πU, πV ] = πUπV (πU )−1(πV )−1 = π(UV )2 ∈ D(~G�),

and we claim that g belongs to the associated full bisection (UV )2. Indeed, note
that y ∈ U since y < supp(πU ). Thus we have g = g · h · y · h−1 ∈ UVUV
since s(h) = y.
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Finally, for the case s(g) = r (g) we proceed similar as in part (1). We take
h ∈ G with s(h) = s(g) and r (h) , s(g) and apply the above part to gh−1 and h,
which both belong to G \ G ′. Multiplying the bisections we get gives the desired
bisection containing g. �

The conditions in LemmaA.4.9 are not necessary (see ExampleA.9.6), but they
are typically easy to check in specific examples. Note that for minimal groupoids
all orbits are in particular infinite, so the covering as above is automatic. We are
now ready to give the main result on how a groupoid G can be reconstructed from
the germs of ~G�. It is the analog of [Ren08, Proposition 3.2].

Proposition A.4.10. Let G be an effective ample Hausdorff groupoid and let Γ be
a subgroup of ~G�. Then there is an injective étale homomorphism

ι : Germ
(
Γ,G (0)

)
↪→ G

given by ι([πU, x]) = (s |U )−1(x) for [πU, x] ∈ Germ
(
Γ,G (0)

)
. Furthermore, ι is

surjective, and hence an isomorphism, if and only if Γ covers G.

Proof. We first have to verify that ι is well-defined. Let x ∈ G (0) and suppose that
πU, πV ∈ Γ have the same germ over x. Let A be an open neighbourhood of x on
which πU and πV agree. Then

πUA = (πU ) |A = (πV ) |A = πV A,

so by Lemma A.3.1 we have U A = V A. This means that the unique groupoid
elements in U and V that have source equal to x coincide, so ι is well-defined.

To see that ι is a groupoid homomorphism recall that ([πV, y], [πU, x]) is a
composable pair iff πU (x) = y. Suppose this is the case and let g ∈ U be
the element with s(g) = x, and let h ∈ V be the element with s(h) = y. As
r (g) = πU (x) = y = s(h) we have (h, g) ∈ G (2) and

ι([πV, y] · [πU, x]) = ι([πVU, x]) = hg,

since hg ∈ VU and s(hg) = x.
Now note that ι(x) = x for x ∈ G (0) (under the identification of the unit space

of the groupoid of germs). So ι(0) = idG (0) is a (local) homeomorphism, hence ι is
an étale homomorphism.

To see that ι is injective note first that ι([πU, x]) , ι([πV, y]) if x , y since
ι(0) is the identity. Suppose now that ι([πU, x]) = ι([πV, x]) for some πU, πV ∈ Γ.
This means that there is a groupoid element g ∈ U ∩ V with s(g) = x. Thus
B = s(U ∩V ) is an open neighbourhood of x in G (0) and clearly (πU ) |B = (πV ) |B,
which means that [πU, x] = [πV, x].

Finally, that ι is surjective is easily seen to be the same as Γ covering G. �
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Remark A.4.11. When the map ι in the previous proposition is an isomorphism
the inverse is given by ι−1(g) = [πU, s(g)], where U is any full bisection such that
πU ∈ Γ and g ∈ U.

Remark A.4.12. Let G be an effective ample Hausdorff groupoid. Combining
Propositions A.4.10 and A.4.6 we see that for each locally closed subgroup Γ
of ~G�, there is an open étale subgroupoid HΓ ⊆ G such that ~HΓ� � Γ,
namely HΓ = Germ(Γ,G (0)).

As we really are interested in knowing when G is isomorphic to Germ
(
Γ,G (0)

)
(particularly for the case Γ = ~G�) it is natural to ask whether they could be
isomorphic even if the canonical map ι fails to be an isomorphism. We will
see shortly that this is not possible. For Γ ≤ Homeoc (X ) with X Boolean we
have seen that Γ ≤ 〈Γ〉 � ~Germ(Γ, X )�. Identifying the latter two we see
that Γ covers Germ(Γ, X ) since [γ, x] ∈ Z[γ, X] and πZ[γ,X] = γ ∈ Γ for each
[γ, x] ∈ Germ(Γ, X ).

Corollary A.4.13. Let G be an effective ample Hausdorff groupoid. Then G
andGerm

(
~G�,G (0)

)
are isomorphic as étale groupoids if and only if ~G� coversG.

Proof. SupposeΦ : G → Germ
(
~G�,G (0)

)
is an isomorphism. ThenΦ induces an

isomorphism between the topological full groups by πU 7→ πΦ(U ) for πU ∈ ~G�.
Let g ∈ G be given. As ~G� covers Germ

(
~G�,G (0)) there is a full bisection V

containing Φ(g) such that πV ∈ ~Germ(~G�,G (0))� = ~G�. And then Φ−1(V ) is
a full bisection in G containing g with πΦ−1 (V ) ∈ ~G�. Hence ~G� covers G. �

A.5 The category of spatial groups

In this section we will study the groupoid of germs from a categorical point of
view. By introducing suitable categories we will see that the assigment

(Γ, X ) 7→ Germ(Γ, X )

is functorial. We will also see that certain equivariant maps between the spaces
induce embeddings of the groupoids of germs.

Definition A.5.1. The category of spatial groups, denoted SpatG, consists of
pairs (Γ, X ), where X is a Boolean space and Γ ≤ Homeoc (X ). A morphism in
SpatG from (Γ1, X1) to (Γ2, X2) is a local homeomorphism φ : X1 → X2 satisfy-
ing φ ◦ Γ1 ⊆ Γ2 ◦ φ.
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We shall sometimes refer to a pair (Γ, X ) as a space-group pair. Observe
that an isomorphism in the category SpatG is a homeomorphism φ such that
φ ◦ Γ1 ◦ φ

−1 = Γ2. We call such an isomorphism a spatial isomorphism (as it is a
group isomorphism implemented by a homeomorphism).

Definition A.5.2. The category Gpoid consists of ample effective Hausdorff
groupoids, and the morphisms are étale homomorphisms.

RemarkA.5.3. The choice ofmorphisms in SpatG is done so that they induce étale
homomorphisms between the groupoid of germs in a natural way. As for the mor-
phisms in Gpoid, there are several reasons for stipulating that they should be étale
homomorphisms (rather than merely continuous groupoid homomorphisms). First
of all, since all the structure maps in an étale groupoid are local homeomorphisms,
it is reasonable to prescribe that maps between étale groupoids should be as well.
Moreover, the image under an étale homomorphism is always an open étale sub-
groupoid in the codomain. An important consequence of this is that an injective
étale homomorphism induce (diagonal preserving) injective ∗-homomorphisms
between both the full and reduced groupoid C∗-algebras, respectively (and also
between the Steinberg algebras), see [BNR+16, page 113] and [Phi05, Propo-
sition 1.9]. In general, however, the groupoid C∗-algebra construction is not
functorial.

It is straightforward to check that SpatG and Gpoid indeed are categories. We
will now define a functor from SpatG to Gpoid, which on objects is the groupoid
of germs. Let φ be a spatial morphism between two space-group pairs (Γ1, X1)
and (Γ2, X2) in SpatG. Given [γ, x] ∈ Germ(Γ1, X1), there is a γ′ ∈ Γ2 with
φ ◦ γ = γ′ ◦ φ. We then propose to define an étale homomorphism

Germ(φ) : Germ(Γ1, X1) → Germ(Γ2, X2)

by setting Germ(φ)([γ, x]) = [γ′, φ(x)].

Proposition A.5.4. The mapping Germ(φ) described above is a well-defined étale
homomorphism, and Germ(−) : SpatG→ Gpoid is a (covariant) functor.

Proof. Let φ : (Γ1, X1) → (Γ2, X2) be a spatial morphism. We first verify that
Germ(φ) is well-defined. Given [γ, x] ∈ Germ(Γ1, X1), suppose γ′, γ′′ ∈ Γ2
satisfy

φ ◦ γ = γ′ ◦ φ = γ′′ ◦ φ.

Then γ′ and γ′′ agree on φ(X1), which is an open neighbourhood of φ(x), hence
we have [γ′, φ(x)] = [γ′′, φ(x)]. So the choice of γ′ doesn’t matter. As for the
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choice of γ, suppose τ ∈ Γ1 has the same germ over x as γ, i.e. γ |A = τ|A for some
open neighbourhood A of x in X1. Let τ′ ∈ Γ2 satisfy φ ◦ τ = τ′ ◦ φ. Then

γ′ ◦ φ |A = φ ◦ γ |A = φ ◦ τ|A = τ
′ ◦ φ |A.

This means that γ′
|φ(A) = τ

′
|φ(A), hence [γ′, φ(x)] = [τ′, φ(x)]. This shows that

Germ(φ) is well-defined.
Observe that the restriction to the unit spaces is justGerm(φ)(0) = φ : X1 → X2.

From this we obtain

s (Germ(φ)([γ, x])) = φ(x) = Germ(φ) (s([γ, x])) ,

and

r (Germ(φ)([γ, x])) = γ′ ◦ φ(x) = φ ◦ γ(x) = Germ(φ) (r ([γ, x])) .

This means that Germ(φ) takes composable pairs to composable pairs. As for
preserving the product itself, we verify that

Germ(φ)([τ, γ(x)]) · Germ(φ)([γ, x]) = [τ′, φγ(x)] · [γ′, φ(x)] = [τ′γ′, φ(x)]
= Germ(φ)([τγ, x]), since φτγ = φτ′γ′.

As Germ(φ)(0) = φ is a local homeomorphism, we have shown that Germ(φ)
is an étale homomorphism. Similar computations as above shows that Germ(−)
sends identity morphisms to identity morphisms and preserves composition of
morphisms. �

We record some consequences of this functoriality.

Corollary A.5.5. Let φ : (X1, Γ1) → (X2, Γ2) be a morphism in SpatG and con-
sider the induced étale homomorphismGerm(φ) : Germ(Γ1, X1) → Germ(Γ2, X2).

1. If φ is a spatial isomorphism, then Germ(φ) is an isomorphism of étale
groupoids.

2. We have Germ(φ)(0) = φ. In particular, Germ(φ) maps X1 onto X2 if and
only if φ is surjective.

3. If φ : X1 → X2 is injective, then Germ(φ) is also injective.

4. If φ : X1 → X2 is surjective and φ ◦ Γ1 = Γ2 ◦ φ, then Germ(φ) is surjective.
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Proof. Statement (1) follows immediately from functoriality, and statement (2) was
observed in the proof of Proposition A.5.4.

(3) Assume that φ : X1 → X2 is injective. Then clearlyGerm(φ) maps elements
with distinct sources to distinct elements. So suppose

[γ′, φ(x)] = Germ(φ)([γ, x]) = Germ(φ)([τ, x]) = [τ′, φ(x)].

Then γ′
|A
= τ′
|A

for some open neighbourhood A of φ(x) in X2. As φ ◦ γ = γ′ ◦ φ
and φ ◦ τ = τ′ ◦ φ we have that φ ◦ γ and φ ◦ τ agree on φ−1(A). The injectivity
of φ now implies that γ and τ agree on φ−1(A), which is an open neighbourhood
of x, hence [γ, x] = [τ, x] and Germ(φ) is injective.

(4) Suppose φ : X1 → X2 is surjective and that φ ◦ Γ1 = Γ2 ◦ φ. Given an
element [τ, y] in Germ(Γ2, X2), pick any x ∈ X1 with φ(x) = y. By assumption
there is some γ ∈ Γ1 such that φ◦γ = τ ◦φ, and then Germ(φ)([γ, x]) = [τ, y]. �

RemarkA.5.6. Onemight ask whether a spatial morphism φ : (X1, Γ1) → (X2, Γ2)
induces a (algebraic) group homomorphism from Γ1 to Γ2. This is not so clear. But
at least if φ : X1 → X2 is injective and Γ2 is locally closed, then one can define an
injective group homomorphism fφ : Γ1 → Γ2 in the following way. First observe
that given γ ∈ Γ1, there is a γ2 ∈ Γ2 with φ◦γ = γ2◦φ, and then γ2(φ(X1)) = φ(X1)
and supp((γ2) |φ(X1)) = φ(supp(γ)). Given another γ3 ∈ Γ2 with φ ◦ γ = γ3 ◦ φ we
have

(γ2) |φ(X1) = (γ3) |φ(X1) ∈ Homeoc (φ(X1)).

So we can define fφ (γ) = γ′ to be the homeomorphism γ′ on X2 given by

(γ′) |φ(X1) = (γ2) |φ(X1) and (γ′) |X2\φ(X1) = idX2\φ(X1) .

The homeomorphism γ′ belongs to Γ2 because Γ2 is locally closed. It is straight-
forward to check that fφ is an injective group homomorphism, and also that
supp( fφ (γ)) = φ(supp(γ)) for every γ ∈ Γ1. If φ is a spatial isomorphism, then
fφ is a group isomorphism and fφ satisfies fφ (γ) = φ ◦ γ ◦ φ−1 for each γ ∈ Γ1.

RemarkA.5.7. Viewing the functorGerm as a “free” functor turning a space-group
pair into an effective ample Hausdorff groupoid (in the “most efficient” way), one
could ask for a “forgetful” functor in the opposite direction. Proposition A.4.6
suggests that this functor should be

~−� : Gpoid→ SpatG assigning G 7→
(
~G�,G (0)

)
.

The natural choice of mapping on the morphisms is for an étale homomorphism
Φ : G → H to let

~Φ� B Φ(0) :
(
~G�,G (0)

)
→

(
~H�,H(0)

)
,
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i.e. restriction to the unit space. Unfortunately, this fails to be a morphism in SpatG
in general. For injective étale homomorphisms though, the restriction to the unit
spaces does yield an injective spatial morphism.

A.6 Spatial realization theorems

In this section we shall study reconstruction of topological spaces from subgroups
of their homeomorphism group in the sense of the following definition.

Definition A.6.1. A class K of space-group pairs is called faithful if every group
isomorphism Φ : Γ1 → Γ2, where (Γ1, X1), (Γ2, X2) ∈ K , is spatially implemented,
that is, there is a homeomorphism φ : X1 → X2 such that Φ(γ) = φ ◦ γ ◦ φ−1 for
every γ ∈ Γ1.

We stress the fact that the isomorphisms Φ considered in the preceding defi-
nition are, a priori, abstract group isomorphisms. They only “see” the algebraic
structure of the Γi’s, not the actions on the underlying spaces. We may rephrase
faithfulness to saying that “every group isomorphism is a spatial isomorphism”. In
relation to the previous section we obtain the following from Corollary A.5.5.

Proposition A.6.2. Suppose K is a faithful class of space-group pairs from SpatG.
If (Γ1, X1) and (Γ2, X2) belong to K and Γ1 is isomorphic to Γ2 as abstract groups,
then the groupoids of germs Germ(Γ1, X1) and Germ(Γ2, X2) are isomorphic as
topological groupoids.

In conjunction with Proposition A.4.10 this will allow us to deduce that in many
cases, the topological full group of an ample groupoid, considered as an abstract
group, is a complete invariant for the isomorphism class of the groupoid. This will
be done in the next section. The rest of this section will be devoted to proving
two faithfulness results. The first one is a straightforward extension of Matui’s
spatial realization result [Mat15b, Theorem 3.5] to our locally compact setting
(Theorem A.6.6). This result will not only apply to the topological full group, but
also to any subgroup containing the commutator. The second result we present
(Theorem A.6.19) has more relaxed assumptions on the “mixing properties” of
the action, but we were not able to apply it to the commutator subgroup of the
topological full group.

A.6.1 The class KF

We now present the main definition from [Mat15b, Section 3], adapted to our
setting.
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Definition A.6.3. We define the class KF to consist of all space-group pairs
(Γ, X ) ∈ SpatG which satisfy the following conditions:

(F1) For any x ∈ X and any clopen neighbourhood A ⊂ X of x, there exists an
involution α ∈ Γ such that x ∈ supp(α) and supp(α) ⊆ A.

(F2) For any involution α ∈ Γ \ {1}, and any non-empty clopen set A ⊆ supp(α),
there exists a β ∈ Γ \ {1} such that supp(β) ⊆ A ∪ α(A) and α(x) = β(x)
for every x ∈ supp(β).

(F3) For any non-empty clopen set A ⊆ X , there exists an α ∈ Γ such that
supp(α) ⊆ A and α2 , 1.

Remark A.6.4. In [Mat15b, Definition 3.1] there is also a condition (F0), stipulat-
ing that the support of any involution should be clopen. This is already implicit in
the definition above, since all supports of elements in Γ are assumed to be compact
and open. We also remark that Definition A.6.3 does not impose any countability
restrictions on the space X . However, condition (F1) (and also (F3)) implies that
the space X cannot have isolated points.

Remark A.6.5. The notation KF to denote a class of space-group pairs is in the
same style as Rubin uses in his paper [Rub89]. Elsewhere in the literature, in
particular [Mat15b] and [GPS99], groups Γ with (Γ, X ) ∈ KF are called groups of
class F (and X is assumed to be a (compact) Cantor space).

We now state a simple extension of Matui’s Spatial Realization Theorem.

Theorem A.6.6 (cf. [Mat15b, Theorem 3.5]). The class KF is faithful.

Proof. By closely inspecting the proof of [Mat15b, Theorem 3.5] and the three
lemmas preceding it, one finds that the compactness of the spaces is not needed
until the proof of [Mat15b, Theorem 3.5] itself. The lemmas preceding it are
completely algebraic. Furthermore, the compactness is used only to guarantee
that a certain intersection of supports become non-empty—by appealing to the
finite intersection property. However, since all supports in our setting are already
compact (by assumption) the conclusion that the intersection is non-empty still
holds. The second countability is never needed. Therefore, Matui’s proof remains
valid. �

Remark A.6.7. We remark that Matui’s proof of [Mat15b, Theorem 3.5] is similar
to the approach used by Bezuglyi and Medynets in [BM08, Section 5], wherein the
authors prove a precursor of Matui’s Isomorphism Theorem for Cantor minimal
systems. Both of these build on Fremlin’s book [Fre04, Section 384].
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A.6.2 The class K LCC

We now turn to obtaining the second spatial realization result, by providing another
faithful class of space group-pairs. In comparison with KF , we’ll impose more
restrictions on the spaces (second countability—resulting in locally compact Cantor
spaces), but the conditions on the actions will be less “localized” in some sense.
We will of course still need the groups Γ to be very “rich” in order to recover the
action on the space X , but we do not focus solely on involutive group elements, as
was the case for KF .

Some of the (many) results from Rubins remarkable paper [Rub89] will form
the backbone of this spatial realization result. In that paper, Rubin exhibits the
faithfulness of several general classes of space-group pairs. However, many of
the classes considered there required quite different proofs. Arguably, the most
commonly cited result from [Rub89] in our context is [Rub89, Corollary 3.5], but
this spatial realization result is not strong enough to prove Theorem A.1.2. We
essentially end up reprove Rubin’s result on zero-dimensional spaces, but we obtain
a slightly different statement. Also, our proof is a bit more straightforward (since
we aim for a less general setting; namely perfect unit spaces of ample groupoids).

Reconstructing the Boolean algebraR(X )

Themain theorem fromSection 2 ofRubin’s paper (given below inTheoremA.6.11)
gives general conditions for when the abstract isomorphism class of a group Γ ≤
Homeo(X ) determines the Boolean algebra R(X ), and the induced action by Γ
on it. We may view Γ as a subgroup of Aut(R(X )) by taking images of regular
open sets inR(X ) under the homeomorphisms in Γ. In [Rub89, Section 3], Rubin
defines several classes of space-group pairs and proves, in a case-by-case manner,
that the space X and the action by Γ on it, can be recovered from the induced action
of Γ onR(X ). Let us begin with some terminology (adapted from [Rub89]).

Definition A.6.8. Let (Γ, X ) be a space-group pair.

1. We say that (Γ, X ) is locally moving if for every non-empty open subset
A ⊆ X there exists γ ∈ Γ \ {1} with supp(γ) ⊆ A.

2. An open set B ⊆ X is called flexible if for every pair of open subsets
C1,C2 ⊆ B, if there exists γ ∈ Γ such that γ(C1) ∩ C2 , ∅, then there exists
τ ∈ Γ such that τ(C1) ∩ C2 , ∅ and supp(τ) ⊆ B.

3. We say that (Γ, X ) is locally flexible if every non-empty open subset A
contains a non-empty open flexible subset B ⊆ A.

Remark A.6.9. Note that if (Γ, X ) is locally moving, then the space X has no
isolated points.
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Remark A.6.10. In [Rub89], “locally moving” goes by the name “regionally
disrigid”, whilst the former terminology is from a later paper of Rubin [Rub96].

We now state a special case of the main result from [Rub89, Section 2].

Theorem A.6.11 (cf. [Rub89, Theorem 0.2, Theorem 2.14(a)]). Let (Γ1, X1) and
(Γ2, X2) be in SpatG. Assume that they are both locally moving and locally
flexible. If Φ : Γ1 → Γ2 is an isomorphism of groups, then there exists a Boolean
isomorphism ψ : R(X1) → R(X2) such that ψ(g(A)) = Φ(g)(ψ(A)) for each
A ∈ R(X1) and g ∈ Γ1.

If we think of g and Φ(g) as elements in Aut(R(X1)) and Aut(R(X2)) respec-
tively, then we can rewrite the conclusion in the preceding theorem as

Φ(g) = ψ ◦ g ◦ ψ−1.

Thus, Theorem A.6.11 says that any group isomorphism between Γ1 and Γ2 is
actually induced by an isomorphism of the Boolean algebras of regular open sets
of the underlying spaces.

Remark A.6.12. We remark that what Rubin proves in [Rub89, Theorem 2.14(a)]
is a somewhat stronger statement than the one we gave above. First of all, the
spaces need really only be Hausdorff (and perfect). Rubin shows that if (Γ, X ) is
locally moving and locally flexible, then starting with Γ alone, one can canonically
reconstruct the Boolean algebra R(X ) (up to isomorphism) using only group
theoretic constructions. Moreover, one obtains a natural action by Γ on this Boolean
algebrawhich is conjugate to the action by Γ onR(X ). The strategy of the proof is to
model a regular set A ∈ R(X ) by its rigid stabilizerQ(A) B {γ ∈ Γ | supp(γ) ⊆ A},
and then to describe the Boolean operations in R(X ) in group theoretic terms, in
terms of the subgroups Q(A). Finally one shows that there are enough regular
sets A for which subgroups of the form Q(A) can be detected inside Γ in order to
generate the whole ofR(X ).

Reconstructing the space X

We now turn to reconstructing X (and the original action by Γ) from its Boolean
algebra of regular sets. The strategy is to first impose conditions making it possible
to detect clopenness. And then characterize the compact open sets among the
clopen sets, which in turn allow us to recover X from Stone duality.

Definition A.6.13. Let (Γ, X ) be a space-group pair. A clopen set A ⊆ X is said
to be recognizable by Γ if it satisfies:
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1. For every γ ∈ Γ with γ(A) = A the homeomorphism τ given by

τ(x) =



γ(x) x ∈ A,
x otherwise,

belongs to Γ.

2. For every γ ∈ Γ with γ(A) ∩ A = ∅ the involution α given by

α(x) =




γ(x) x ∈ A,
γ−1(x) x ∈ γ(A),
x otherwise,

belongs to Γ.

We shall see later that in our setting of topological full groups, all clopen subsets
of the unit space are recognizable. And whenever this is the case, it is possible to
characterize when a regular set is closed (i.e. clopen) using the following Boolean
algebra notion.

Definition A.6.14. Let (Γ, X ) be a space-group pair, and let A ∈ R(X ) be a
regular open set. We say that A is weakly clopen if for every γ ∈ Γ satisfying
γ (A ∩ γ(A)) = A ∩ γ(A), there exists an element ρ ∈ Γ such that

1. ρ(B) = γ(B) for each B ∈ R(X ) with B ⊆ A ∩ γ(A),

2. ρ(B) = B for each B ∈ R(X ) with B ⊆ ∼ (A ∩ γ(A)).

Note that the notion of being weakly clopen is formulated solely in terms of the
action by Γ on the Boolean algebra R(X ). And as the next result shows—under
suitable hypotheses—being weakly clopen is the same as being clopen.

Lemma A.6.15. Let (Γ, X ) ∈ SpatG. Assume that every clopen subset of X is
recognizable by Γ, and that the Γ-orbit of each point contains at least 3 points.
Then a regular open set A ∈ R(X ) is clopen if and only if both A and ∼ A are
weakly clopen.

Proof. This is a special case of [Rub89, Lemma 3.45], where the dense subset R
is taken to be all of R(X ). The assumptions 3.V.1 (a), (b), (c) and 3.V.2 (a), (b)
preceding [Rub89, Lemma 3.45] follow from those above. In particular, what
Rubin calls “recognizably clopen” coincides with (2) in Definition A.6.13, and
“strongly recognizably clopen” is slightly weaker than (1) in Definition A.6.13
(together with (2)). �
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In order to invoke Stone duality for Boolean spaces we need to recover the
generalized Boolean algebra of compact open sets. The previous lemma gives us
the clopen sets, and from these we obtain the compact open ones as follows.

Lemma A.6.16. Let X be a second countable Boolean space. Then X is compact
if and only if CO(X ) is countable.

Proof. If X is compact, then CO(X ) = CK(X ), and any second countable space
has countably many compact open subsets.

Suppose X is non-compact. Let {Kn}
∞
n=1 be a countable basis for X consisting

of compact open sets. Now form the compact open sets Ck = ∪
k
n=1Kn. As X is not

compact, we must have Ck , X for each k. Also, Ck ⊆ Ck+1 and they cover X . By
passing to a subsequence, if necessary, we may assume that Ck ( Ck+1 for each k.
Finally, let Dk = Ck+1\Ck . Then the Dk’s are pairwise disjoint non-empty compact
open sets. We claim that for each subset S of the natural numbers, the set ∪k∈SDk

is clopen. And then we have produced uncountably many distinct clopen sets. The
claim follows from the fact that for each Cm, the intersection Cm ∩ (∪k∈SDk ) is a
finite intersection, hence closed, and that the Cm’s cover X . �

CorollaryA.6.17. Let X be a second countable Boolean space, and let A ∈ CO(X )
be a clopen set. Then A is compact if and only if the set {B ∈ CO(X ) | B ⊆ A} is
countable.

Proof. The set {B ∈ CO(X ) | B ⊆ A} coincides with CO(A) when viewing A as a
subspace of X . The result now follows from Lemma A.6.16. �

This shows that in the generalized Boolean algebra CO(X ) compactness is
characterized by having only countably many elements below. We are now ready
to define the class KLCC and give the second spatial realization result of this
section.

Definition A.6.18. We define the class KLCC to consist of all space-group pairs
(Γ, X ) in SpatG which satisfy the following conditions:

(K1) X is a locally compact Cantor space.

(K2) (Γ, X ) is locally moving.

(K3) (Γ, X ) is locally flexible.

(K4) Every clopen subset of X is recognizable by Γ.

(K5) The Γ-orbit of each point contains at least 3 points.

Theorem A.6.19 (cf. [Rub89, Theorem 3.50(a)]). The class KLCC is faithful.
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Proof. Suppose we have two space-group pairs (Γ1, X1), (Γ2, X2) ∈ KLCC and a
group isomorphismΦ : Γ1 → Γ2. Invoking TheoremA.6.11 yields an isomorphism
of Boolean algebras ψ : R(X1) → R(X2) such that ψ(g(A)) = Φ(g)(ψ(U)) for
each A ∈ R(X1) and g ∈ Γ1. We first argue that ψ(CO(X1)) = CO(X2), and then
that ψ(CK(X1)) = CK(X2).

First of all, note that both CO(Xi) and CK(Xi) are invariant under Γi (i = 1, 2).
Lemma A.6.15 characterizes clopenness of regular sets in Xi solely in terms of
the (induced) actions by Γi on R(Xi). Since ψ is an equivariant Boolean algebra
isomorphism, it follows that ψ(CO(X1)) = CO(X2). Next, Corollary A.6.17
characterizes compactness of a clopen set in terms of a countability condition in
the generalized Boolean algebra CO(Xi). Clearly, this is then also preserved by ψ.
Consequently, ψ restricts to an equivariant isomorphism of the generalized Boolean
algebras CK(X1) and CK(X2).

By applying the Stone functor to the generalized Boolean algebra isomorphism

ψ : CK(X1) → CK(X2)

we obtain a homeomorphism

S(ψ) : S(CK(X2)) → S(CK(X1))

of the spaces of ultrafilters. The induced actions by the groups Γi on S(CK(Xi))
is given by g · α = {g(K ) | K ∈ α} for an ultrafilter α ∈ S(CK(Xi)). Finally, let
φ : X1 → X2 be the homeomorphism given by the composition

X1
ΩX1
−−−−−→ S(CK(X1))

S(ψ)−1

−−−−−→ S(CK(X2))
Ω−1

X2
−−−−−→ X2

where ΩXi is the canonical homeomorphism mapping a point to its compact open
neighbourhood ultrafilter. It is now easy to check that the original group iso-
morphism Φ is spatially implemented by φ, i.e. that Φ(g) = φ ◦ g ◦ φ−1 for
each g ∈ Γ1. �

RemarkA.6.20. Asmentioned in the introduction,Medynets has obtained a spatial
realization result for full groups of group actions on the Cantor space [Med11]. The
arguments therein also apply to the topological full group, and could be adapted
to the topological full group of the ample groupoids over locally compact Cantor
spaces considered here. And then in turned be used to prove Theorem A.1.2
instead of using Theorem A.6.19. Medynets’ starting point is a Boolean algebra
reconstruction result of Fremlin [Fre04, Theorem 384D]. This result is very similar
to Rubin’s Boolean algebra reconstruction result; Theorem A.6.11. Rubin requires
the space-group pair to be locally moving and locally flexible, whereas Fremlin
requires it to be locally moving in terms of involutions. Yet they both apply to the
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topological full group, since it is both (globally) flexible and has enough involutions
to witness locally moving. Medynets then goes on to characterize the clopen sets
among the regular open sets in an algebraicway and use this to show that theBoolean
algebra isomorphism must preserve the Boolean subalgebra of clopen subsets and
in turn give rise to a spatial isomorphism via Stone duality. This is exactly the
same approach as we use here, via Rubin, but Medynets’ characterization of the
clopens [Med11, Lemma 2.5] looks (at least on the surface) a bit different from the
one we give here in Lemma A.6.15. Finally, we remark that Medynets’ arguments
does not seem to apply to the commutator subgroup either (see Remark A.7.11).

A.7 Isomorphism theorems for ample groupoids

In this section we shall apply the spatial realization results of the previous section to
(subgroups of) the topological full group. As corollaries we are able to reconstruct
certain ample groupoids from their topological full group. The two faithful classes
considered in the previous section allows us to lift an abstract group isomorphism
of (subgroups of) the topological full groups to a spatial one. This in turn yields
an isomorphism of the associated groupoids of germs (Corollary A.5.5). In order
to conclude that the groupoids themselves are isomorphic we need, by Proposi-
tion A.4.10 and Corollary A.4.13, to assume that the subgroups in question cover
the groupoids. As we saw in Lemma A.4.9, if every G-orbit has length at least 2, or
respectively 3, then ~G�, or respectively any Γ with D(~G�) ≤ Γ ≤ ~G�, covers G.

We first extract an isomorphism theorem from the faithfulness of the class KF .
For a general ample groupoid the only general condition we know to imply that(
~G�,G (0)

)
belong to KF is minimality. So for general groupoids we obtain only

a straightforward minor extension of Theorems 3.9 and 3.10 from [Mat15b] in
Theorem A.7.2 below. However, for the class of graph groupoids we will see in
SectionA.10 that we canweakenminimality quite a lot and still have the topological
full group (and its commutator) in KF , and thereby obtain a significantly more
general result within the class of graph groupoids. It would therefore be interesting
to find general conditions on a general ample groupoid G, weaker than minimality,
ensuring that

(
~G�,G (0)

)
and

(
D(~G�),G (0)

)
belong to KF .

Proposition A.7.1 (cf. [Mat15b, Proposition 3.6]). Let G be an effective ample
Hausdorff groupoid whose unit space has no isolated points. If G is minimal and Γ
is any subgroup of ~G� containing D(~G�), then

(
Γ,G (0)

)
∈ KF .

Proof. The proof of [Mat15b, Proposition 3.6] goes through verbatim in this
slightly more general setting. The proof makes heavy use of the minimality of G
and combine this with Lemma A.3.8 to find the desired elements in D(~G�). �
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TheoremA.7.2. Let G1,G2 be effective ample minimal Hausdorff groupoids whose
unit spaces have no isolated points. Suppose Γ1, Γ2 are subgroups satisfying
D(~Gi�) ≤ Γi ≤ ~Gi�. If Γ1 � Γ2 as abstract groups, then G1 � G2 as topological
groupoids. In particular, the following are equivalent:

1. G1 � G2 as topological groupoids.

2. ~G1� � ~G2� as abstract groups.

3. D(~G1�) � D(~G2�) as abstract groups.

Proof. Clearly every Gi-orbit is infinite, for i = 1, 2. Thus the result follows from
combining Proposition A.7.1, Theorem A.6.6, Proposition A.6.2, Lemma A.4.9
and Proposition A.4.10. �

Remark A.7.3. For transformation groupoids arising from minimal Z-actions on
locally compact Cantor spaces, a variant of this result appears in [Mat02, Theo-
rem 4.13 (vi)]. See also Remark A.3.3.

Remark A.7.4. In [Mat15b, Theorem 3.10] the kernel of the so-called index map
also appears (as ~G�0). We could equally well have included it in Theorem A.7.2
since it is a distinguished subgroup lying between ~G� and D(~G�).

Our next goal is to analyze the conditions in the definition of the class KLCC ,
when the space-group pair under consideration is the topological full group and the
unit space of an ample groupoid. Unfortunately, the commutator subgroup D(~G�)
does not seem to belong to KLCC , which is why we only consider ~G� itself (see
Remark A.7.11 below). We begin by showing that the groupoid-orbits coincide
with the orbits of the action by the topological full group on the unit space.

Lemma A.7.5. Let G be an effective ample groupoid and let x ∈ G (0). Then

OrbG (x) = Orb~G�yG (0) (x).

Proof. From the definition of the topological full group it is obvious that the
groupoid orbit OrbG (x) contains the orbit of the action Orb~G�yG (0) (x). For the
reverse inclusion, suppose y ∈ OrbG (x) is distinct from x, and let γ ∈ G be an
arrow from x to y. Applying Lemma A.3.9 to γ we obtain an element πU ∈ ~G�
with πU (x) = y. Thus y ∈ Orb~G�yG (0) (x). �

In other words, when the space group pair is (~G�,G (0)) condition (K5) of
Definition A.6.18 is equivalent to saying that every G-orbit has length at least 3
(which, incidentally, implies that ~G� covers G). Next we show that conditions
(K3) and (K4) of Definition A.6.18 are always satisfied for topological full groups.
In fact, (~G�,G (0)) is even “globally flexible”.
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Lemma A.7.6. Let G be an effective ample groupoid. Then every open subset
of G (0) is flexible with respect to ~G�. In particular,

(
~G�,G (0)) is locally flexible.

Proof. Let A be a non-empty open subset ofG (0), and let B1, B2 be two open subsets
of A. We may assume that these are disjoint, for otherwise the identity homeomor-
phism trivially witnesses flexibility. Suppose πU ∈ ~G� satisfies πU (B1)∩ B2 , ∅.
Then there is a g ∈ U with s(g) ∈ B1 and r (g) ∈ B2. Lemma A.3.9 applied to g

and B1 t B2 produces an element πV ∈ ~G� with supp(πV ) ⊆ B1 t B2 ⊆ A and
πV (B1) ∩ B2 , ∅. This shows that A is flexible. �

Lemma A.7.7. Let G be an effective ample groupoid. Then every clopen subset
of G (0) is recognizable by ~G�.

Proof. Let A ⊆ G (0) be clopen.
(1) Suppose πU ∈ ~G� satisfies πU (A) = A. Then V = s−1

|U
(A) ⊆ U is a clopen

bisection with s(V ) = r (V ) = A. Then Ṽ as in Lemma A.3.7 is a full bisection
with supp(πṼ ) ⊆ supp(πU ), hence πṼ ∈ ~G�. The homeomorphism πṼ is the one
from condition (1) of Definition A.6.13.

(2) Suppose now that πU ∈ ~G� satisfies πU (A) ∩ A = ∅. Again we set
V = s−1

|U
(A). Then s(V ) ∩ r (V ) = A ∩ πU (A) = ∅. The full bisection V̂ as

in Lemma A.3.8 also has compact support since supp(πV̂ ) ⊆ supp(πU ), and so
πV̂ ∈ ~G�. The involution πV̂ is the one fromcondition (2) ofDefinitionA.6.13. �

It remains to consider condition (K2) of DefinitionA.6.18. Inspired by [Med11,
Proposition 2.2] we introduce the the notion of a non-wandering groupoid, in order
to characterize when

(
~G�,G (0)

)
is locally moving in terms of the groupoid G.

Definition A.7.8. Let G be an ample groupoid. A subset A ⊆ G (0) is called
wandering if |A ∩ OrbG (x) | = 1 for all x ∈ A. We say that G is non-wandering
if G (0) has no non-empty clopen wandering subsets.

In words, a non-wandering groupoid is one in which every clopen subset
of the unit space meets some orbit at least twice. This may be viewed as a
“mixing condition” which is far weaker than minimality. For if G is minimal,
then in particular |A ∩ OrbG (x) | is infinite (from being dense) for each clopen
neighbourhood A of x.

Proposition A.7.9. Let G be an effective ample Hausdorff groupoid. Then the
following are equivalent:

1. The space-group pair
(
~G�,G (0)

)
is locally moving.

2. The groupoid G is non-wandering.
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Proof. Let A be a non-empty clopen subset of G (0). We will prove that A meets
some G-orbit twice (i.e. A is not wandering) if and only if there is an element
πU ∈ ~G� \ {1} with supp(πU ) ⊆ A. If ∅ , supp(πU ) ⊆ A, then, since both sets are
clopen, there is an x ∈ A with x , πU (x) ∈ A. In other words, |A∩OrbG (x) | ≥ 2.
Conversely, if |A ∩ OrbG (x) | ≥ 2 holds for some x ∈ A, then there is a g ∈ G \ G ′
such that s(g) and r (g) both belong to A. Now Lemma A.3.9 gives us a nontrivial
group element in ~G� supported on A. As the clopens form a base for the topology
on G (0) we are done. �

Putting it all together, we arrive at the second main result of this section.

Theorem A.7.10. Let G1,G2 be effective ample Hausdorff groupoids over locally
compact Cantor spaces. Suppose that, for i = 1, 2, Gi is non-wandering and that
each Gi-orbit has length at least 3. Then any isomorphism between ~G1� and ~G2�

is spatial. In particular, the following are equivalent:

1. G1 � G2 as topological groupoids.

2. ~G1� � ~G2� as abstract groups.

Remark A.7.11. It would be desirable to also obtain a spatial realization result for
the commutator subgroup D(~G�) in terms of the class KLCC . Unfortunately we
were not able to show that D(~G�) satisfies condition (K4). This is also the reason
why the arguments of [Med11] do not apply to the commutator subgroup either.
However, it might be that Theorem A.7.10 holds for the commutator subgroups as
well.

As mentioned above, non-wandering is a much weaker “mixing property” than
minimality. Below we include two other “mixing properties” that lie between
non-wandering and minimality.

Definition A.7.12 (see [Nek19, page 8]). An ample groupoid G is called locally
minimal if there exists a basis for G (0) consisting of clopen sets A such that GA is
minimal.

Definition A.7.13. An ample groupoid G is called densely minimal if for every
non-empty open subset A of G (0) there exists a non-empty clopen subset B ⊆ A
such that GB is minimal.

We clearly have the following implications for an ample groupoid:

minimal =⇒ locally minimal =⇒ densely minimal =⇒ non-wandering.

We will give examples of densely minimal groupoids which are not minimal in
the next section (Examples A.9.6 and A.9.7), as well as non-wandering groupoids
which are not densely minimal (Remark A.10.8).
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A.8 Graph groupoids

The rest of the paper will be focused on graph groupoids. This section recalls the
relevant terminology for graphs and their associated groupoids (as they appear in
the literature on graph algebras). We also record the characterizations of many
properties of a graph groupoid in terms of the graph. This is fairly standard and
may also be found in many other papers, e.g. [BCW17], [KPRR97].

A.8.1 Graph terminology

Byagraphwe shall alwaysmean a directed graph, i.e. a quadruple E = (E0, E1, r, s),
where E0, E1 are (non-empty) sets and r, s : E1 → E0 are maps. The elements
in E0 and E1 are called vertices and edges, respectively, while the maps r and s are
called the range and sourcemap, respectively.5 We say that E is finite if E0 and E1

both are finite sets, and similarly that E is countable if E0 and E1 are countable.
A path in E is a sequence of edges µ = e1e2 . . . en such that r (ei) = s(ei+1)

for 1 ≤ i ≤ n − 1. The length of µ is |µ| B n. The set of paths of length n is
denoted En. The vertices, E0, are considered trivial paths of length 0. The set of
all finite paths is denoted E∗ B

⋃∞
n=0 En. The range and source maps extend to E∗

by setting r (µ) B r (en) and s(µ) B s(e1). For v ∈ E0, we set s(v) = r (v) = v.
Given another path λ = f1 . . . fm with s(λ) = r (µ) we denote the concatenated
path e1 . . . en f1 . . . fm by µλ. In particular, we set s(µ)µ = µ = µ r (µ) for each
µ ∈ E∗. Given two paths µ, µ′ ∈ E∗ we write µ < µ′ if there exists a path λ with
|λ | ≥ 1 such that µ′ = µλ. Writing µ ≤ µ′ allows for µ = µ′. We say that µ and µ′
are disjoint if µ � µ′ and µ′ � µ, i.e. neither is a subpath of the other.

A cycle is a nontrivial path µ (i.e. |µ| ≥ 1) with r (µ) = s(µ), and we say that µ
is based at s(µ). We also say that the vertex s(µ) supports the cycle µ. By a loop
we mean a cycle of length 1. Beware that some authors use the term loop to denote
what we here call cycles. When µ is a cycle and k ∈ N, µk denotes the cycle
µµ . . . µ, where µ is repeated k times. A cycle µ = e1 . . . en is called a return path
if r (ei) , r (µ) for all i < n. This simply means that µ does not pass through s(µ)
multiple times. An exit for a path µ = e1 . . . en is an edge e such that s(e) = s(ei)
and e , ei for some 1 ≤ i ≤ n.

5Although the notation collides with the range and source maps in a groupoid, both conventions
are well established. In the sequel it will always be clear from context whether we mean the
source/range of an edge in a graph or of an element in a groupoid.
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For v,w ∈ E0 we set

vEn B {µ ∈ En | s(µ) = v},

Enw B {µ ∈ En | r (µ) = w},

vEnw B vEn ∩ Enw.

A vertex v ∈ E0 is called a sink if vE1 = ∅, and a source if E1v = ∅. Fur-
ther, v is called an infinite emitter if vE1 is an infinite set. The set of regu-
lar vertices is E0

reg B {v ∈ E0 | 0 < |vE1 | < ∞}, and the set of singular vertices
is E0

sing B E0 \ E0
reg. In otherwords, sinks and infinite emitters are singular vertices,

while all other vertices are regular. We equip the vertex set E0 with a preorder ≥
by definining v ≥ w iff vE∗w , ∅, i.e. there is a path from v to w. The graph E is
called strongly connected if for each pair of vertices v,w ∈ E0 we have v ≥ w.

To close this subsection we describe three exit conditions on graphs that appear
frequently in the graph algebra literature. They will play a central role in what
follows. A graph E is said to satisfy Condition (L) if every cycle in E has an
exit. The graph E satisfies Condition (K) if for every vertex v ∈ E0, either there
is no return path based at v or there are at least two distinct return paths based at
v. We say that E satisfies Condition (I) if for every vertex v ∈ E0, there exists
a vertex w ∈ E0 supporting at least two distinct return paths and v ≥ w. These
conditions first appeared in [KPR98], [KPRR97] and [CK80], respectively. In
general, Condition (K) and (I) both imply (L), while (K) and (I) are not comparable.
For graphs with finitely many vertices and no sinks, Condition (I) is equivalent to
Condition (L).

A.8.2 The boundary path space

An infinite path in a graph E is an infinite sequence of edges x = e1e2e3 . . . such
that r (ei) = s(ei+1) for all i ∈ N. We define s(x) B s(e1) and |x | B ∞. The
set of all infinite paths in E is denoted E∞. Given a finite path µ = f1 . . . fn
and an infinite path x = e1e2e3 . . . ∈ E∞ such that r (µ) = s(x) we denote
the infinite path f1 . . . fne1e2e3 . . . by µx. For natural numbers m < n, we set
x[m,n] B emem+1 . . . en, and we denote the infinite path emem+1em+2 . . . by x[m,∞).
Given a cycle λ ∈ E∗ we denote the infinite path λλλ . . . by λ∞. An infinite path
of the form µλ∞, where λ is a cycle with s(λ) = r (µ), is called eventually periodic.
An infinite path e1e2 . . . ∈ E∞ is wandering if the set {i ∈ N | s(ei) = v} is finite
for each v ∈ E0. Note that there are no wandering infinite paths in a graph with
finitely many vertices. We call a wandering infinite path e1e2 . . . ∈ E∞ a semi-tail6
if s(ei)E1 = {ei } for each i ∈ N. The graph E is called cofinal if for every vertex

6By comparison, a tail is a wandering path with s(ei )E1 = {ei } = E1r (ei ) for all i, see [BPRS00].
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v ∈ E0 and for every infinite path e1e2 . . . ∈ E∞, there exists n ∈ N such that
v ≥ s(en).

The boundary path space of E is

∂E B E∞ ∪ {µ ∈ E∗ | r (µ) ∈ E0
sing},

whose topology will be specified shortly. Note that if v ∈ E0 is a singular vertex,
then v belongs to ∂E. For any vertex v ∈ E0 we define v∂E B {x ∈ ∂E | s(x) = v}

and similarly vE∞ B {x ∈ E∞ | s(x) = v}. The cylinder set of a finite path
µ ∈ E∗ is Z (µ) B {µx | x ∈ r (µ)∂E}. Given a finite subset F ⊆ r (µ)E1,
we define the “punctured” cylinder set Z (µ \ F) B Z (µ) \

(⋃
e∈F Z (µe)

)
. Note

that two finite paths are disjoint if and only if their cylinder sets are disjoint
sets. A basis for the topology on the boundary path space ∂E is given by{

Z (µ \ F) | µ ∈ E∗, F ⊆finite r (µ)E1
}
([Web14]). Each basic set Z (µ \ F) is com-

pact open and these separate points, so ∂E is a Boolean space. Moreover, each
open set in ∂E is a disjoint union of basic sets Z (µ \ F) ([BCW17, Lemma 2.1]).
The boundary path space ∂E is second countable exactly when E is countable, and
it is compact if and only if E0 is finite. When it comes to (topologically) isolated
points, these are classified as follows.
Proposition A.8.1 ([CW18, Proposition 3.1]). Let E be a graph.

1. If v ∈ E0 is a sink, then any finite path µ ∈ E∗ with r (µ) = v is an isolated
point in ∂E.

2. If x = µλ∞ ∈ E∞ is eventually periodic, then x is an isolated point if and
only if the cycle λ has no exit.

3. If x = e1e2 . . . ∈ E∞ is wandering, then x is an isolated point if and only if
for some n ∈ N, enen+1 . . . is a semi-tail.

These are the only isolated points in ∂E.
For each n ∈ N we set

∂E≥n B {x ∈ ∂E | |x | ≥ n} and ∂En B {x ∈ ∂E | |x | = n}.

Each of the sets ∂E≥n is an open subset of ∂E. The shift map on E is the map
σE : ∂E≥1 → ∂E given by σE (e1e2e3 . . .) = e2e3e4 . . . for e1e2e3 . . . ∈ ∂E≥2 and
σE (e) = r (e) for e ∈ ∂E1. In other words, σE (x) = x[2,∞). We have that

σE

(
∂E≥1

)
= {x ∈ ∂E | E1s(x) , ∅} = ∂E \

(
∪E1v,∅Z (v)

)
,

which is an open set, and we see that σE is surjective if and only if E has no
sources. We let σn

E : ∂E≥n → ∂E be the n-fold composition of σE with itself, and
we set σ0

E = id∂E . Each σn
E is then a local homeomorphism between open subsets

of ∂E. Note that an infinite path x ∈ E∞ is eventually periodic if and only if there
are distinct numbers m, n ∈ N0 such that σm

E (x) = σn
E (x).
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A.8.3 Graph groupoids and their properties

The graph groupoid of a graph E is the (generalized) Renault-Deaconu groupoid
([Dea95], [Ren00]) of the dynamical system (∂E, σE ), that is

GE B {(x,m − n, y) | m, n ∈ N0, x ∈ ∂E≥m, y ∈ ∂E≥n, σm
E (x) = σn

E (y)}

as a set. The groupoid structure is given by (x, k, y) · (y, l, z) B (x, k + l, z) (and
undefined otherwise) and (x, k, y)−1 B (y,−k, x). The unit space is

G (0)
E = {(x, 0, x) | x ∈ ∂E},

which we will identify with ∂E via (x, 0, x) ↔ x. Then s(x, k, y) = y and
r (x, k, y) = x. We equip GE with the topology generated by the basic sets

Z (U,m, n,V ) B {(x,m − n, y) | x ∈ U, y ∈ V, σm
E (x) = σn

E (y)},

where U ⊆ ∂E≥m and V ⊆ ∂E≥n are open sets such that
(
σm
E

)
|U

and
(
σn
E

)
|V

are injective, and σm
E (U) = σn

E (V ). This makes GE an étale groupoid, and the
identification of the unit space with ∂E is compatible with the topology on ∂E.
Note however, that this topology on GE is finer than the relative topology induced
from ∂E × Z × ∂E. According to [BCW17, page 394] the family

{
Z (U, |µ| , |λ | ,V ) | σ |µ |E (U) = σ |λ |E (V )

}
, (A.8.1)

parametrized over all µ, λ ∈ E∗ with r (µ) = r (λ), U ⊆ Z (µ) and V ⊆ Z (λ)
compact open, is also a basis for the same topology. Each set Z (U, |µ| , |λ | ,V )
is a compact open bisection, and they separate the elements of GE , so GE is an
ample Hausdorff groupoid. The family in (A.8.1) is countable precisely when E
is countable, and so the graph groupoid GE is second countable exactly when E is
countable.

For a boundary path x ∈ ∂E, the isotropy group of (x, 0, x) ∈ G (0)
E is nontrivial

if and only if x is eventually periodic (and infinite). For graph groupoids, effec-
tiveness coincides with topological principality (even without assuming second
countability), which in turn is well known to coincide with the graph satisfying
Condition (L).

PropositionA.8.2 (cf. [BCW17, Proposition 2.3]). Let E be a graph. The following
are equivalent:

1. The groupoid GE is effective.

2. The groupoid GE is topologically principal.
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3. The set of infinite paths which are not eventually periodic form a dense subset
of the boundary path space ∂E.

4. The graph E satisfies Condition (L).

Proof. The equivalence of (2), (3) and (4) is proved in [BCW17, Proposition 2.3]
for countable graphs, but the proof does not rely on the countability of the graph.
As it is always the case that (2) implies (1) (Remark A.2.2), we only have to show
that (1) implies (4). To that end, assume that E does not satisfy Condition (L).
Then there is a cycle λ ∈ E∗ with no exit, and λ∞ is an isolated point in ∂E. But
then the bisection

Z
(
Z

(
λ2

)
, |λ |2, |λ |, Z (λ)

)
= {

(
λ∞, |λ |, λ∞

)
}

is an open subset of GE \ G (0)
E , and hence GE is not effective. �

We end this subsection by giving a characterization of minimality for graph
groupoids. Let E be a graph. Two infinite paths x, y ∈ E∞ are called tail equivalent
if there are natural numbers k, l such that x[k,∞) = y[l,∞). Similarly, two finite paths
µ, λ ∈ E∗ are tail equivalent if r (µ) = r (λ). From the definition of GE one sees
that two boundary paths belong to the same GE -orbit if and only if they are tail
equivalent. By combining [BCFS14, Theorem 5.1] with [DT05, Corollary 2.15]
we arrive at the following result—of which we provide a self-contained proof.

Proposition A.8.3. Let E be a graph. Then the following are equivalent:

1. The groupoid GE is minimal.

2. The graph E is cofinal, and for each v ∈ E0 and w ∈ E0
sing, we have v ≥ w.

Proof. If E has a sink w ∈ E0
sing, then one immediately deduces from both state-

ments that E cannot have any other singular vertices, nor any infinite paths. Con-
sequently

∂E = OrbGE (w) = {µ ∈ E∗ | r (µ) = w},

and this entails that GE is a discrete transitive groupoid. Now, (1) and (2) are clearly
equivalent in this case.

For the remainder of the proof we assume that E has no sinks. Assume that
(2) holds. Let x ∈ E∞ and let λ ∈ E∗. By cofinality, there is a path λ ′ from r (λ)
to s(xn) for some n ∈ N. The infinite path λλ ′xnxn+1 . . . then belongs to both
Z (λ) and OrbGE (x). Hence the latter is dense in ∂E (since every open set contains
a cylinder set when there are no sinks). Next, suppose µ ∈ ∂E ∩ E∗ with r (µ)
an infinite emitter. By assumption there is a path λ ′′ from r (λ) to r (µ), and then
λλ ′′ ∈ Z (λ) ∩ OrbGE (µ). This shows that GE is minimal.
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Assume now that GE is minimal. To see that E is cofinal, let x ∈ E∞ and
v ∈ E0 be given. By minimality there is a y ∈ E∞ tail equivalent to x such that
y ∈ Z (v). This implies that v can reach x. As for the second part of (2), let
v ∈ E0 and w ∈ E0

sing be given. Again by minimality there is a λ ∈ E∗ ∩ Z (v) tail
equivalent to w, but this is just a path from v to w, so v ≥ w. �

Remark A.8.4. The notion of cofinality is slightly weaker than strong connected-
ness. But for finite graphs with no sinks and no sources, cofinality coincides with
strong connectedness. In fact, this is also true for infinite graphs which additionaly
have no semi-heads (the direction-reversed notion of a semi-tail). We also remark
that for cofinal graphs, Condition (L) is equivalent to Condition (K).

A.9 Topological full groups of graph groupoids

We are now going to describe the elements in the topological full group of a graph
groupoid. Some examples will be given at the end of the section. We begin by
specifying yet another (equivalent) basis for GE , which in turn will allow us to
describe bisections combinatorially in terms of the graph.

For two finite paths µ, λ ∈ E∗ with r (µ) = r (λ) = v we define

Z (µ, λ) B Z (Z (µ), |µ| , |λ | , Z (λ)) .

More generally, given a finite subset F ⊆ vE1 as well, we define

Z (µ, F, λ) B Z (Z (µ \ F), |µ| , |λ | , Z (λ \ F)) .

Each Z (µ, F, λ) is a compact open bisection in GE , and we will see shortly that they
also form a basis. Observe that if v ∈ E0

reg, then Z (µ, F, λ) =
⊔

e∈vE1\F Z (µe, λe),
and that this is a finite union.

Lemma A.9.1. Let E be a graph. Let µ, µ′, λ, λ ′ ∈ E∗ with r (µ) = r (λ) = v,
r (µ′) = r (λ ′) = v′ and let F ⊆finite vE1, F ′ ⊆finite v′E1. Then the intersection
Z (µ, F, λ)

⋂
Z (µ′, F ′, λ ′) equals either

1. ∅, or

2. Z (µ, F, λ), or

3. Z (µ′, F ′, λ ′), or

4. Z (µ, F ∪ F ′, λ), in which case µ = µ′, λ = λ ′ and

Z (µ, F, λ) ∪ Z (µ′, F ′, λ ′) = Z (µ, F ∩ F ′, λ).
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Proof. Suppose that Z (µ, F, λ) ∩ Z (µ′, F ′, λ ′) , ∅. Then we must have that
|µ| − |λ | = |µ′ | − |λ ′ |, Z (µ \ F) ∩ Z (µ′ \ F ′) , ∅ and Z (λ \ F) ∩ Z (λ ′ \ F ′) , ∅.
Since

Z (µ \ F)
⋂

Z (µ′ \ F ′) =




Z (µ \ (F ∪ F ′)) if µ = µ′,
Z (µ \ F) if µ′ < µ and µ |µ′ |+1 < F ′,
Z (µ′ \ F ′) if µ < µ′ and µ′

|µ |+1 < F,
∅ otherwise,

we may suppose without loss of generality that µ ≤ µ′. The equality |µ| − |λ | =
|µ′ | − |λ ′ | then forces λ ≤ λ ′ as well. If µ = µ′, then we must also have λ = λ ′
and it is easy to see that (4) holds in this case.

Next, suppose µ < µ′, which forces λ < λ ′. As the intersections above are
non-empty we have Z (µ′ \ F ′) ⊆ Z (µ \ F) and Z (λ ′ \ F ′) ⊆ Z (λ \ F). It follows
from this that Z (µ′, F ′, λ ′) ⊆ Z (µ, F, λ), and we are done. �

Lemma A.9.2. The family
{
Z (µ, F, λ) | µ, λ ∈ E∗, r (µ) = r (λ), F ⊆finite r (µ)E1

}

forms a basis for the topology on GE .

Proof. It suffices to write each basic set Z (U, |µ| , |λ | ,V ), where µ, λ ∈ E∗ with
r (µ) = r (λ), U ⊆ Z (µ), V ⊆ Z (λ) compact open and σ |µ |E (U) = σ |λ |E (V ), as
a union of Z (µ′, F ′, λ ′)’s. Given such a basic set Z (U, |µ| , |λ | ,V ), we can then
write

σ
|µ |
E (U) = σ |λ |E (V ) =

k⊔
i=1

Z (ηi \ Fi),

for some ηi ∈ E∗, Fi ⊆finite r (ηi)E1, since the former two are compact open subsets
of ∂E. It follows that

U =
k⊔

i=1
Z (µηi \ Fi) and V =

k⊔
i=1

Z (ληi \ Fi).

Hence

Z (U, |µ| , |λ | ,V ) =
k⊔

i=1
Z (µηi, Fi, ληi).

�

Using the basis above, we may concretely describe the bisections in GE as
follows.
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Lemma A.9.3. Let E be graph, and let U ⊆ GE be a compact open bisection with
s(U) = r (U). Then U is of the form

U =
k⊔

i=1
Z (µi, Fi, λi),

where µi, λi ∈ E∗ with r (µi) = r (λi), Fi ⊆finite r (µi)E1 and

s(U) =
k⊔

i=1
Z (λi \ Fi) =

k⊔
i=1

Z (µi \ Fi).

Proof. Since U is a compact open subset of GE we may, by the preceding two
lemmas, write U as a finite disjoint union of basic sets as U =

⊔k
i=1 Z (µi, Fi, λi).

As r and s are injective on U they preserve disjoint unions, so we have

s(U) = s *
,

k⊔
i=1

Z (µi, Fi, λi)+
-
=

k⊔
i=1

s (Z (µi, Fi, λi)) =
k⊔

i=1
Z (λi \ Fi)

= r (U) = r *
,

k⊔
i=1

Z (µi, Fi, λi)+
-
=

k⊔
i=1

r (Z (µi, Fi, λi)) =
k⊔

i=1
Z (µi \ Fi).

�

In conjunction with Lemma A.3.7 we get that the elements in ~GE� for an ef-
fective graph groupoid (i.e. the graph E satisfying Condition (L)) may be described
as follows, in terms of E.

Proposition A.9.4. Let E be a graph satisfying Condition (L). If πU ∈ ~GE�, then
the full bisection U can be written as

U = *
,

k⊔
i=1

Z (µi, Fi, λi)+
-

⊔ (
∂E \ supp(πU )

)
,

where µi, λi ∈ E∗ with r (µi) = r (λi), Fi (finite r (µi)E1 and

supp(πU ) =
k⊔

i=1
Z (λi \ Fi) =

k⊔
i=1

Z (µi \ Fi).

Moreover, µ1, . . . µk are pairwise disjoint, λ1, . . . λk are pairwise disjoint, and
µi , λi for each i. The associated homeomorphism πU : ∂E → ∂E is given by
x = λi z 7−→ µi z for x ∈ Z (λi \ Fi) and x 7−→ x otherwise.
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Remark A.9.5. The elements in ~GE� may alternatively be described in more
dynamical terms via the orbits by the shift map. From [BCW17, Proposition 3.3]
one deduces that a homeomorphism α ∈ Homeo(∂E) belongs to ~GE� if and only
if there are compactly supported continuous functions m, n : ∂E → N0 such that
σm(x)
E (α(x)) = σn(x)

E (x). This parallels Matui’s definition for locally compact
Cantor minimal systems mentioned in Remark A.3.3, and Matsumoto’s definition
for one-sided shifts of finite type in [Mat10].

Having completely described the topological full group of a graph groupoid,
we provide an example to show that the assumption on the orbits in Lemma A.4.9
is not a necessary condition. On the other hand, we also give an example to show
that the statement is generally false without said assumption. These examples also
provide examples of densely minimal groupoids which are not minimal.

Example A.9.6. Consider the following graph:

E
v

we
f

g2

g1

The graph E satisfies condition (L), but is not cofinal, so GE is effective, but not
minimal. We claim that GE is densely minimal. To see this, note that any non-
empty open subset of E∞ must contain a cylinder set Z (µ) where r (µ) = w. And
the restriction of GE to Z (µ) is minimal. As for covering, observe that the orbit of
e∞ ∈ ∂E has length 1, i.e. OrbGE (e∞) = {e∞}. However, the topological full group
~GE� still covers GE . For instance, the isotropy element (e∞, 1, e∞) belongs to the
full bisection

U = Z (e2, e)
⊔

Z (e f , g1g2)
⊔

Z (g1, g1g1)
⊔

Z ( f , f )
⊔

Z (g2, g2).

Similar full bisections can be found for (e∞, k, e∞) where k is any integer.

Example A.9.7. Consider the following graph:

F
v

w
ue

f

g2

g1

i

h

As in the previous example, e∞ ∈ ∂F has a singleton orbit. However, in contrast
to the previous example, ~GF� does not cover GF . For there is no full bisec-
tion containing the element (e∞, 1, e∞). Indeed, if U is a bisection containing
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(e∞, 1, e∞), then U must contain a bisection of the form Z (ek+1, ek ). Now since
Z (ek ) = Z (ek+1) t Z (ek f ), it will be impossible to enlarge U to a full bisection.
By adding disjoint Z (µ, λ)’s to write U as in Proposition A.9.4 one will always
have one more µ ending in w than λ’s. See also [BS19, Example 3.5] for the same
phenomenon in a restricted transformation groupoid.

A.10 Isomorphism theorems for graph groupoids

In this section we will pursue specialized isomorphism theorems for the class of
graph groupoids. We will determine exactly when the topological full group of a
graph groupoid belongs to KF , and the conditions for this turn out to be weaker than
minimality. We will also determine, in terms of the graph, exactly when it belongs
to KLCC . From this we obtain two isomorphism theorems for graph groupoids.

A.10.1 The class KF

We are now going to give necessary and sufficient conditions for when (Γ, ∂E)
belongs to KF—for a graph E, and a subgroup Γ ≤ ~GE� containing D(~GE�). Of
the three conditions (F1), (F2) and (F3) in Definition A.6.3, (F1) is the “hardest”
one to satisfy. This is essentially because we need to produce elements in the
topological full group with support containing a given point x ∈ ∂E, but also
contained in a given neighbourhood of x. In the other two conditions we can get
away with simply choosing a “small enough” support. As both conditions (F1) and
(F3) fails in the presence of isolated points, we will only consider graphs that have
no sinks, no semi-tails, and satisfy Condition (L). We will see that Condition (K)
will be necessary for (F1) to hold for periodic7 points. The two conditions in
Definition A.10.1 below are needed to ensure that (F1) holds for wandering infinite
paths, and for finite boundary paths, respectively. For notational convenience we
make the following ad-hoc definitions.

Definition A.10.1. Let E be a graph.

1. We say that E satisfies Condition (W) if for every wandering infinite path
x ∈ E∞, we have |s(x)E∗r (xn) | ≥ 2 for some n ∈ N.

2. We say that E satisfies Condition (∞) if for every infinite emitter v ∈ E0, the
set {e ∈ vE1 | r (e) ≥ v} is infinite.

7That is, x = λ∞ for some cycle λ ∈ E∗.
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The three conditions (K), (W) and (∞) can be thought of as strengthenings of
each of the three criteria for the boundary path space ∂E being perfect (Propo-
sition A.8.1). The latter three criteria can informally be described as “can exit”,
whereas the former three can be described as “can exit and return”. More specif-
ically, Condition (L) means that one can exit every cycle, whereas Condition (K)
means that one can also return back to the same cycle. That E has no semi-tails
means that every wandering infinite path has an exit, and Condition (W) means
that one can return to the same infinite path again. That E has no sinks can be
reformulated as saying that every singular vertex has an exit (and hence infinitely
many), whereas Condition (∞) says that one can also return to the same vertex (from
infinitely many of these exits). Note that Condition (∞) holds in particular if every
infinite emitter supports infinitely many loops. Also note that if |s(x)E∗r (xn) | ≥ 2
for some n ∈ N, then the same is true for each m ≥ n. We nowmake two elementary
observations needed in the proof of the next proposition.

Lemma A.10.2. Let E be a graph.

1. If µ ∈ E∗ is a cycle and E satisfies Condtion (K), then there are infinitely
many cycles λ1, λ2, . . . based at s(µ) such that µ, λ1, λ2, . . . are mutually
disjoint.

2. If x = x1x2 . . . ∈ E∞ is a wandering infinite path and E satisfies Condi-
tion (W), then for each N ∈ N there is an n ∈ N and paths µ1, . . . , µN from
s(x) to r (xn) such that x[1,n], µ1, . . . , µN are mutually disjoint.

Proof. For the first part, let τ1 and τ2 be two distinct return paths based at s(µ). As
distinct return paths are disjoint we must have that µ is disjoint from one of them,
say τ1. And then the cycles µ, τ1µ, τ2

1 µ, τ
3
1 µ, . . . are all disjoint.

We argue inductively for the second part. From Condition (W) we can find a
number n1 ∈ N with |s(x)E∗r (xn1 ) | ≥ 2. Set v B r (xn1 ). Since x is wandering
we can let m1 ≥ n1 be the largest index such that r (xm1 ) = v. So that x never
returns to v after the m1’th edge. Let µ be a path in s(x)E∗r (xm1 ) distinct from
x[1,m1]. If x[1,m1] and µ are disjoint, then we are done with the base case. If not,
then either x[1,m1] < µ or x[1,m1] > µ. In the former case we have that µ = x[1,m1]ρ,
where ρ is a cycle based at v. As x does not return to v again we must have that
x[m1+1,m1+ |ρ |] , ρ, and then x[1,m1+ |ρ |] is disjoint from the path

µ1 B µx[m1+1,m1+ |ρ |] = x[1,m1]ρx[m1+1,m1+ |ρ |].

If the latter is the case, then µ = x[1,k] for some k < m1 and x[k+1,m1] is a cycle.
And then the previous argument applied to x[1,m1] and µ′ = x[1,k]x[k+1,m1]x[k+1,m1]
shows that the statement holds for N = 1.
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Applying the above to the tail x[m1+1,∞), which is again a wandering infinite
path, we get an index m2 > m1 and a path µ2 from r (xm1 ) to r (xm2 ) disjoint from
x[m1+1,m2]. By concatenating x[1,m1] and µ1 with x[m1+1,m2] and µ2 we obtain three
paths from s(x) to r (xm2 ) that are mutually disjoint, as well as disjoint from x[1,m2].
By continuing in this manner one sees that the result is true for all N ∈ N. �

Proposition A.10.3. Let E be a graph with no sinks and let Γ ≤ ~GE� be a
subgroup containing D(~GE�). Then (Γ, ∂E) belongs to KF if and only if E
satisfies Condition (K), (W) and (∞).

Proof. This proof is inspired by Matui’s proof of [Mat15b, Proposition 3.6]. We
employ similar tricks in this more concrete, yet non-minimal context. We will first
show that (F2) and (F3) holds when E satisfies Condition (K) and (W). And then
we will show, in turn, that all three conditions are necessary and sufficient for (F1)
to hold at certain boundary paths.

Suppose E satisfies Condition (K) and (W) (in addition to having no sinks).
We verify (F3) first. Let A be any non-empty clopen subset of ∂E. There is
then a path η such that Z (η) ⊆ A. Now there are two possibilities. Either r (η)
connects to a cycle, or r (η)E∞ consists only of wandering paths. In the first case
we may assume, by extending η, that r (η) supports a cycle. By Lemma A.10.2 we
can find three disjoint cycles λ1, λ2, λ3 based at r (η). Define V = Z (ηλ1, ηλ2),
W = Z (ηλ2, ηλ3) and α = [πV̂, πŴ ] (as in Lemma A.3.8). Then α ∈ Γ \ {1}
has order 3 and supp(α) ⊆ Z (η) ⊆ A. In the case that r (η)E∞ consists only
of wandering paths we may find, again by Lemma A.10.2, three disjoint paths
λ1, λ2, λ3 starting at r (η), and such that r (λ1) = r (λ2) = r (λ3). Defining α as
above shows that (F3) holds in this case as well.

Next we verify (F2). To that end, let α ∈ Γ \ {1} with α2 = 1 and ∅ ( A ⊆
supp(α) a clopen be given. We have α = πU with

U = *
,

k⊔
i=1

Z (µi, Fi, λi)+
-

⊔ (
G (0)
E \ supp(πU )

)
as in Proposition A.9.4. Arguing as above, we can find a finite path η and an
index 1 ≤ j ≤ k such that Z (η) ⊆ A ∩ Z (λ j \ Fj ), as well as two disjoint paths
τ1, τ2 satisfying s(τ1) = s(τ2) = r (η) and r (τ1) = r (τ2). As λ j ≤ η we can write
η = λ j ρ for some path ρ whose first edge does not belong to Fj . Define the
bisections

V = Z (λ j ρτ1, λ j ρτ2)
⊔

Z (µ j ρτ1, µ j ρτ2)

and
W = Z (µ j ρτ1, λ j ρτ1).
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Put β = [πV̂, πŴ ]. As α is an involution we have that

α(λ j z) = µ j z for λ j z ∈ Z (λ j \ Fj )

and vice versa. Now observe that β ∈ Γ,

supp(β) = Z (λ j ρτ1) t Z (λ j ρτ2) t Z (µ j ρτ1) t Z (µ j ρτ2)

⊆ Z (η) ∪ α(Z (η)) ⊆ A ∪ α(A),

and that α and β agree on supp(β) (as they both swap the inital paths λ j and µ j).
Assume now that E merely has no sinks, no semi-tails and satisfies Condi-

tion (L). We will show that (F1) holds if and only if E satisfies Condition (K), (W)
and (∞). Let x ∈ ∂E and A a clopen neighbourhood of x be given. We further
divide this part into three cases, each one yielding the necessity of one of the three
conditions.

Condtion (K): Assume that the graph E satisfies Condtion (K), and suppose
that x = x1x2 . . . ∈ E∞ is an infinite non-wandering path. For m ∈ N large
enough, we have that Z (x[1,m]) ⊆ A. As x contains infinitely many cycles we can,
by possibly choosing m larger, assume that x[m+1,n] is a return path at r (xm) for
some n > m. Using Lemma A.10.2 we can find three mutually disjoint cycles
λ1, λ2, λ3 based at r (xm) which are also disjoint from x[m+1,n]. Let µi = x[1,m]λi
for i = 1, 2, 3 and let µ4 = x[1,n]. Define

V = Z (µ1, µ2)
⊔

Z (µ3, µ4)

and
W = Z (µ1, µ3).

Then α = [πV̂, πŴ ] ∈ Γ satisfies supp(α) =
⊔4

i=1 Z (µi) ⊆ Z (x[1,m]) ⊆ A, α2 = 1
and x ∈ Z (µ4) ⊆ supp(α) as desired.

To see that Condition (K) is necessary, suppose that E does not satisfy it. Then
there is a vertex v ∈ E0 supporting a unique return path, say τ. We may assume
that τ has an exit f with s( f ) = v. Consider x = τ∞ and its neighbourhood
A = Z (τ). We claim that (F1) fails for this pair. To see this, suppose πU ∈ ~GE�

satisfies τ∞ ∈ supp(πU ) ⊆ Z (τ). By Proposition A.9.4 we can find Z (µ, λ) ⊆ U
with r (µ) = r (λ), µ , λ and τ∞ ∈ Z (λ), which means that λ ≤ τk for some
k ≥ 1. By possibly extending µ and λ we may assume that λ = τk . We also have
Z (µ) ⊆ Z (τ), i.e. τ ≤ µ, and r (µ) = r (λ) = v. But since τ is the only return path
based at v we must have µ = τl for some l , k as µ , λ. Let z ∈ r ( f )∂E. Then
(πU )2

(
τ2k f z

)
= τ2l f z , τ2k f z, hence πU is not an involution, and therefore

(Γ, ∂E) does not satisfy (F1).
Condtion (W): Assume E satisfies Condtion (W), and let x = x1x2 . . . ∈ E∞

be an infinite wandering path. Choose m large enough so that Z (x[1,m]) ⊆ A. By
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Lemma A.10.2 there is an n ≥ m and three paths λ1, λ2, λ3 from s(x) to r (xn) such
that λ1, λ2, λ3, x[1,n] are mutually disjoint. Setting µi = x[1,m]λi for i = 1, 2, 3 and
µ4 = x[1,n], and defining α in the same way as in the case of Condition (K) above
gives the desired element in Γ.

To see that Condition (W) is necessary, suppose that there is an infinite wan-
dering path x = x1x2 . . . ∈ E∞ such that |s(x)E∗s(xn) | = 1 for all n ∈ N.
We claim that (F1) fails for A = Z (x1). Indeed, suppose πU ∈ ~GE� satisfies
x ∈ supp(πU ) ⊆ Z (x1). By Proposition A.9.4 we can find Z (µ, λ) ⊆ U with
r (µ) = r (λ), µ , λ and x ∈ Z (λ), which implies that λ = x[1,m] for some m ≥ 1.
But as Z (µ) ⊆ Z (x1) we have that s(µ) = s(x) and r (µ) = r (xm). It now follows
that µ = λ since |s(x)E∗s(xm) | = 1. This contradiction shows that there is not
even an element πU ∈ ~GE� such that x ∈ supp(πU ) ⊆ Z (x1).

Condtion (∞): Assume E satisfies Condtion (∞), and suppose x = x1 . . . xm ∈
E∗ is a finite boundary path. Then for some F ⊆finite r (x)E1 we have Z (x \F) ⊆ A.
By Condition (∞) we can find three distinct edges e1, e2, e3 ∈ r (x)E1 \F, and three
(necessarily disjoint) cycles τ1, τ2, τ3 based at r (x) such that ei ≤ τi for i = 1, 2, 3.
Let F ′ = F t {e1, e2, e3}. Now define

V = Z (xτ1, F ′, x)
⊔

Z (xτ2, F ′, xτ3)

and
W = Z (xτ1, F ′, xτ2).

Then α = [πV̂, πŴ ] ∈ Γ satisfies

supp(α) = Z (x \ F ′)
3⊔

i=1
Z (xτi \ F ′) ⊆ Z (x \ F) ⊆ A,

α2 = 1 and x ∈ Z (x \ F ′) ⊆ supp(α).
Finally, if E does not satisfy Condition (∞), then there is an infinite emit-

ter v ∈ E0 such that the set F = {e ∈ vE1 | r (e) ≥ v} is finite. And then (F1) fails
for x = v and A = Z (v \ F) as there is no element πU ∈ ~GE� whose support is
contained in Z (v \ F) and contains v. The argument for this is essentially the same
as in the necessity of Condition (W) above. �

Remark A.10.4. From Proposition A.10.3 we see that for a graph groupoid GE ,
the topological full group ~GE� (on the boundary path space ∂E) belongs to the
class KF if and only if its commutator subgroup D(~GE�) does. This is not
something one would expect in general from the definition of KF . It is clear that
(F1) and (F3) in Definition A.6.3 passes to supergroups, but (F2) need not do
so. It is even more peculiar that the properties (F1), (F2) and (F3) pass down
to the commutator from ~GE�. This phenomenon might be an artifact of the
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combinatorial nature of the topological full group of a graph groupoid, and so it
might also hold for other concrete classes of groupoids.

A.10.2 The class K LCC

Our next objective is to perform a similar analysis of when the space-group pair
(~GE�, ∂E) for a graph E belongs to KLCC . In this case the “mixing conditions”
will be weaker than for KF (see Proposition A.10.3), but we are only able to
prove membership for the topological full group itself—no proper subgroups. As
in the case of KF we need to stipulate that the boundary path space ∂E has no
isolated points (by condition (K1) in Definition A.6.18), but also that the graphs are
countable (this also for condition (K1)). By the results in Section A.7 we only have
to determine when GE is non-wandering, and when all orbits have length at least 3.
We shall soon see that the former property is characterized by excluding certain
“tree-like” components in the graph E, which we make precise in the following
defintion.

Definition A.10.5. We say that a graph E satisfies Condition (T) if for every
vertex v ∈ E0, there exists a vertex w ∈ E0 such that |vE∗w | ≥ 2.

Note that Condition (T) implies that there are no sinks and no semi-tails. It
does not, however, imply Condition (L) as one can traverse a cycle twice to get two
different paths. As long as there are no sinks, Condition (W) implies Condition (T).
Condition (T) is a fairly weak condition; it is in fact satisfied by all graphs that
have finitely many vertices and no sinks, and more generally by any graph in which
every vertex connects to a cycle. The archetypical example of graphs not satisfying
Condition (T) are trees, or more generally graphs containing such components.

As for when GE can have orbits of length 1 or 2 one finds, by merely exhausting
all possibilites, that this happens exactly if one or more of the following kinds of
vertices are present in the graph E.

Definition A.10.6. Let E be a graph. We say that a vertex v ∈ E0 is degenerate if
it is one of the following types:

1. “1-loop-source”: E1v = {e} where e is a loop.

2. “1 source to 1-loop-source”: E1v = {e, f } where e is a loop and s( f ) is a
source.

3. “2-loop-source”: There is another vertex w ∈ E0 distinct from v such that
E1v = {e} = wE1v and E1w = { f } = vE1w.

4. “Infinite source”: vE1 is infinite and E1v is empty.
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5. “1 source to singular”: v is singular and E1v = { f } where s( f ) is a source.

6. “Stranded”: vE1 and E1v are both empty.

Proposition A.10.7. Let E be a graph.

1. GE is non-wandering if and only if E satisfies Condition (L) and (T).

2. ��OrbGE (x)�� ≥ 3 for all x ∈ ∂E if and only if E has no degenerate vertices.

Proof. We prove part (1) first. We may assume that E has no sinks, as this is
implied by both of the statements in (1). Suppose E satisfies Condition (L) and (T).
Let A be a non-empty clopen subset of ∂E. Then there is a path µ ∈ E∗ such
that Z (µ) ⊆ A. Suppose first that r (µ) connects to a cycle. Let λ be such a
cycle and let ρ be a path from r (µ) to s(λ). We may assume that λ has an exit f
with s( f ) = s(λ). Let x ∈ r ( f )E∞. Then µρ f x and µρλ f x are two distinct
tail-equivalent boundary paths in A. If, on the other hand, r (µ) does not connect
to a cycle, then r (µ)E∞ consists only of wandering paths that visit each vertex at
most once. Let w ∈ E0 be a vertex such that there are two distinct paths ρ1, ρ2
from r (µ) to w. Again letting x ∈ wE∞ be arbitrary we have that µρ1x and µρ2x
are two distinct tail-equivalent boundary paths in A. Hence A is not wandering.

To see that Condition (L) and (T) are both necessary, note first that if E does
not satisfy Condition (L), then ∂E has an isolated point, and a clopen singleton
is surely wandering. Assume instead that E fails to satisfy Condition (T), and let
v ∈ E0 be a vertex such that there is either no path or a unique path from v to
any other vertex in E. We claim that the cylinder set Z (v) is wandering. We first
consider a finite boundary path µ beginning in v (if such a path exists). Then r (µ)
is a singular vertex and

OrbGE (µ) ∩ Z (v) = {λ ∈ E∗ | s(λ) = v, r (λ) = r (µ)} = vE∗r (µ) = {µ},

as desired. Similarly, if x ∈ vE∞ and y ∈ OrbGE (x) ∩ Z (v), then there are k, l ∈ N
such that x[k,∞) = y[l,∞). In particular x[1,k−1] and y[1,l−1] are finite paths from
v to s(xk ) = s(yl), hence these are equal and it follows then that x = y. Thus
OrbGE (x) ∩ Z (v) = {x}. This proves the first part of the proposition.

For part (2), simply note that an orbit of length 1 can only occur if there are
degenerate vertices of type (1), (4), or (6) as in Definition A.10.6 (the correspond-
ing orbits of length 1 being {e∞}, {v}, {v}, respectively). And that an orbit of
length 2 can only occur if there are degenerate vertices of type (2), (3), or (5)
(the corresponding orbits of length 2 being {e∞, f e∞}, {(e f )∞, ( f e)∞}, {v, f },
respectively). �

113



Paper A. Topological Full Groups of Ample Groupoids

Remark A.10.8. By an argument as in Example A.9.6 one deduces that if a
graph E satisfies Condition (I), then the graph groupoid GE is densely minimal.
However, statement (1) in Proposition A.10.7 is strictly weaker than GE being
densely minimal. It is easy to cook up examples of infinite graphs satisfying
Condition (L) and (T), but whose graph groupoids are not densely minimal. One
such example is:

E · · ·· · ·

A.10.3 Isomorphism theorems

Recall that all orbits having length at least 3 is sufficient for the commutator
subgroup of the topological full group to cover the groupoid (Lemma A.4.9). This
in turn means that the groupoid can be recovered as the groupoid of germs of any
subgroup between the topological full group and its commutator. Combined with
Propositions A.10.3 and A.10.7 we will obtain the two isomorphism results for
graph groupoids. We begin by first observing that the conditions on the graph for
membership in KF actually implies that all orbits are infinite.

Lemma A.10.9. Let E be a graph with no sinks and suppose E satisfies Condi-
tion (K) and (∞). Then OrbGE (x) is infinite for each x ∈ ∂E. In particular, E has
no degenerate vertices.

Proof. We first consider the GE -orbits of finite boundary paths. Suppose v ∈ E0

is an infinite emitter. Condition (∞) implies that there are infinitely many distinct
return paths at v, hence OrbGE (µ) is infinite for each µ ∈ ∂E ∩ E∗.

Next, let x ∈ E∞ be an infinite path. If x is eventually periodic, then x = µλ∞

for some finite path µ and some cycle λ. Lemma A.10.2 gives a sequence of mutu-
ally disjoint cycles τ1, τ2, . . . based at s(λ). And then {τ1λ∞, τ2λ∞, . . .} is an infinite
subset of OrbGE (x). If x is not eventually periodic, then {x, x[2,∞], x[3,∞], . . .} is an
infinite subset of OrbGE (x). �

In terms of the class KF we obtain the following isomorphism result, which
relaxes the assumptions in Theorem A.7.2 considerably for graph groupoids.

Theorem A.10.10. Let E and F be graphs with no sinks, and suppose they both
satisfy Condition (K), (W) and (∞). Suppose Γ,Λ are subgroups that satisfy
D(~GE�) ≤ Γ ≤ ~GE� and D(~GF�) ≤ Λ ≤ ~GF�. If Γ � Λ as abstract groups,
thenGE � GF as topological groupoids. In particular, the following are equivalent:

1. GE � GF as topological groupoids.
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2. ~GE� � ~GF� as abstract groups.

3. D(~GE�) � D(~GF�) as abstract groups.

Proof. This follows from combining Proposition A.10.3, Theorem A.6.6, Proposi-
tion A.6.2, Lemma A.10.9, Lemma A.4.9 and Proposition A.4.10. �

The preceding result covers—in particular—all finite graphs that have no sinks
and satisfy Condition (K). As for an isomorphism result in terms of KLCC , we
combine Proposition A.10.7 with Theorem A.7.10 to get the following result.

Theorem A.10.11. Let E and F be countable graphs satisfying Condition (L)
and (T), and having no degenerate vertices. Then the following are equivalent:

1. GE � GF as topological groupoids.

2. ~GE� � ~GF� as abstract groups.

This result covers—in particular—all finite graphs that have no degenerate
vertices nor sinks, and which satisfy Condition (L).

Remark A.10.12. Matsumoto established a version of Theorem A.10.11 for finite
graphs which are strongly connected (and satisfy Condition (L), or equivalently
Condition (K)) in [Mat15a]. At about the same time, Matui announced [Mat15b],
and his Isomorphism Theorem therein applies to the enlarged class of graphs which
have finitely many vertices, countably many edges, no sinks, are cofinal, satisfy
Condition (L) and for which every vertex can reach every infinite emitter.

Combining Theorem A.10.11 with [BCW17, Theorem 5.1] and [CR18, Corol-
lary 4.2]we obtain the rigidity result in CorollaryA.10.13 below, which ties inmany
of the mathematical structures associated to (directed) graphs. For background on
graph C∗-algebras, see [Rae05],8 and for Leavitt path algebras, see [AASM17].

Corollary A.10.13. Let E and F be countable graphs satisfying Condition (L)
and (T), and having no degenerate vertices. Let R be an integral domain. Then the
following are equivalent:

1. The graph groupoids GE and GF are isomorphic as topological groupoids.

2. There is an isomorphism of the graph C∗-algebras C∗(E) and C∗(F) which
maps the diagonal D(E) onto D(F).

8Beware that the convention for paths in graphs in Raeburn’s book is opposite of the one used in
this paper.
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3. There is an isomorphism of the Leavitt path algebras LR (E) and LR (F)
which maps the diagonal DR (E) onto DR (F).

4. The pseudogroups PE and PF are spatially isomorphic.

5. The graphs E and F are (continuously) orbit equivalent.

6. The topological full groups ~GE� and ~GF� are isomorphic as abstract
groups.

Remark A.10.14. Statement (5) in Corollary A.10.13 coincides with Li’s notion
of continuous orbit equivalence for the partial dynamical systems associated to the
graphs, see [Li17].

Remark A.10.15. We remark that in Corollary A.10.13, statements (1), (2) and (3)
are always equivalent, statements (4) and (5) are always equivalent and they are
implied by (1), (2) and (3). Furthermore, if the graphs satisfy Condition (L), then
statements (1)–(5) are equivalent. Additionally, the equivalence of (1) and (2) has
recently been shown in greater generality [CRST17]. The same is true for (1)
and (3) by recent work of Steinberg [Ste19], even with weaker assumptions on the
ring R.

A.11 Embedding theorems

In this final section we will show that several classes of groupoids embed into
a certain fixed graph groupoid—namely the groupoid of the graph that consists
of a single vertex and two edges. This class includes graph groupoids and AF-
groupoids. We will also discuss the induced embeddings of the associated graph
algebras and the topological full groups.

A.11.1 Embedding graph groupoids

Let E2 denote the graph with a single vertex v, and two edges a and b:

E2
v

a b
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In [BS16], Brownlowe and Sørensen proved an algebraic analog of Kirchberg’s
Embedding Theorem (see [KP00]) for Leavitt path algebras. They showed that
for any countable graph E, and for any commutative unital ring R, the Leavitt
path algebra LR (E) embeds (unitally, whenever it makes sense) into LR (E2). By
inspecting their proof one finds that this embedding is also diagonal-preserving,
i.e. that the canonical diagonal DR (E) is mapped into DR (E2). A special case
of Kirchberg’s Embedding Theorem is that any graph C∗-algebra, C∗(E), embeds
into the Cuntz algebra O2, which is canonically isomorphic to the graph C∗-
algebra C∗(E2) (and the groupoid C∗-algebra C∗r

(
GE2

)
). We denote the canonical

diagonal subalgebra in O2 by D2. A priori, Kirchberg’s embedding is of an
analytic nature, but Brownlowe and Sørensen’s results shows that in the case
of graph C∗-algebras, algebraic embeddings exist. Both graph C∗-algebras and
Leavitt path algebras have the same underlying groupoid models (being canonically
isomorphic to the groupoid C∗-algebra, and the Steinberg R-algebra (AR (GE ))
of GE , respectively). Generally, isomorphisms of the graph groupoids correspond
to diagonal preserving isomorphisms of the algebras. Thus, one could wonder
whether there is an embedding of the underlying graph groupoids. We will show
that this is indeed the case, modulo topological obstructions. Our proof is inspired
by [BS16, Proposition 5.1] (and the examples following it).

Lemma A.11.1. Let E be a countable graph with no sinks, no semi-tails, and
suppose that E satisfies Condition (L). Then there exists an injective local homeo-
morphism φ : ∂E → E∞2 such that

φ ◦ ~GE� ⊆ ~GE2� ◦ φ.

If E0 is finite, then φ is surjective (hence a homeomorphism), and if E0 is infinite,
then φ(∂E) = E∞2 \ {a

∞}. In particular, there exists an injective étale homomor-
phism

Φ : Germ(~GE�, ∂E) → GE2 .

Proof. For transparency we first treat the case when E0 is finite. The infinite case
requires only a minor tweak. Let n = |E0 |. Label the vertices and edges of E
(arbitrarily) as

E0 = {w1,w2, . . .wn} and wiE1 = {ei, j | 1 ≤ j ≤ k (i)} for each 1 ≤ i ≤ n,

where k (i) = |s−1(wi) |. When wi is an infinite emitter, k (i) = ∞, and we let j
range over N. For each pair j, i with j ∈ N, i ∈ N ∪ {∞} and j ≤ i we define a
finite path α j,i ∈ E∗2 as follows: α1,1 B v and for j ≥ 2

α j,i B



b if j = 1,
a j−1b if 1 < j < i,
a j−1 if j = i.

117



Paper A. Topological Full Groups of Ample Groupoids

Observe that for each fixed i ∈ N, the set {Z (α j,i) | 1 ≤ j ≤ i} forms a partition
of E∞2 . And for i = ∞, {Z (α j,i) | 1 ≤ j < ∞} forms a partition of E∞2 \ {a

∞}.
We now define the map φ : ∂E → E∞2 as follows. For x = ei1, j1 ei2, j2 . . . ∈ E∞

we set
φ(x) = αi1,nα j1,k (i1)α j2,k (i2) . . . .

If wi ∈ E0 is an infinite emitter, then

φ(wi) = αi,na∞.

For notational convenience, we define

φ∗(µ) B αi1,nα j1,k (i1)α j2,k (i2) . . . α jm,k (im ) ∈ E∗2

for each finite path µ = ei1, j1 ei2, j2 . . . eim, jm ∈ E∗. Finally, if µ is a finite boundary
path, then

φ(µ) = φ∗(µ)a∞.

Recall that vα = α = αv for each α ∈ E∗2 . A priori, φ(x) could be a finite
path in E2. We argue that this is not the case. For a finite path µ ∈ E∗, φ(µ) is
clearly infinite. For an infinite path x = ei1, j1 ei2, j2 . . ., φ(x) is finite if and only if
for some M ∈ N, α jm,k (im ) = v for all m > M , that is k (im) = 1 and jm = 1. This
means that eiM+1, jM+1 eiM+2, jM+2 . . . is either a semi-tail, or an eventually periodic
point whose cycle has no exit. But there are by assumption no such paths in E. So
we conclude that φ is well-defined.

Using the fact that {Z (α j,i)} for each fixed i forms a partition of E∞2 , or
E∞2 \ {a

∞}, one easily sees that φ is a bijection. As for continuity, define the sets

Fi,l B {ei,1, ei,2, . . . , ei,l } ⊆ wiE1 for 1 ≤ l < k (wi) + 1.

Let µ = ei1, j1 ei2, j2 . . . eim, jm ∈ E∗ and suppose r (µ) = wi. Observe that

φ(Z (µ)) = Z (φ∗(µ))

and
φ(Z (µ \ Fi,l)) = Z (φ∗(µ)al).

For arbitrary F = {ei, j1, . . . , ei, jm } we have

Z (µ \ F) = Z (µ \ Fi, jm+1)
⊔ ⊔

j∈JF

Z (µei, j ), (A.11.1)

where JF is the set of j’s with 1 ≤ j ≤ jm and ei, j < F. Thus φ is an open map.
Conversely, we have that for β ∈ E∗2

φ−1(Z (β)) = *.
,

⋃
β≤φ∗ (µ)

Z (µ)+/
-

⋃ *.
,

∞⋃
l=1

⋃
β≤φ∗ (λ)al

Z (λ \ Fr (λ),l)
+/
-
,
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(and these unionsmay actually be taken to be finite). Hence φ is a homeomorphism.
To see that φ ◦ ~GE� ◦ φ

−1 ⊆ ~GE2�, let µ, λ ∈ E∗ with r (µ) = r (λ) = wi be
given, and let 1 ≤ l < k (wi) + 1. Observe that

φ ◦ πZ (µ,λ) ◦ φ
−1 = πZ (φ∗ (µ),φ∗ (λ)) : Z (φ∗(λ) → Z (φ∗(µ)),

and

φ ◦ πZ (µ,Fl,λ) ◦ φ
−1 = πZ (φ∗ (µ)al,φ∗ (λ)al ) : Z (φ∗(λ)al → Z (φ∗(µ)al),

as partial homeomorphisms. By utilizing a similar decomposition as in Equa-
tion (A.11.1) for the basic set Z (µ, F, λ) for arbitrary F, together with the descrip-
tion of elements in ~GE� from Proposition A.9.4, we see that for each πU ∈ ~GE�,
the homeomorphism φ ◦ πU ◦ φ

−1 belongs to ~GE2�.
In the case that E0 is infinite, all the arguments above still go through, with the

minor adjustment that the first word in φ(x) is αi1,∞. This word always ends with
a b, so we see that φ becomes a homeomorphism from ∂E onto E∞2 \ {a

∞}.
The final statement follows from Corollary A.5.5 and Proposition A.4.10

(~GE2� covers GE2 since the groupoid is minimal). �

Remark A.11.2. The local homeomorphism φ constructed in the preceding proof
depends on the choice of labeling of the graph. And there are of course many ways
to label a graph, but each one gives a local homeomorphism φ with the desired
properties.

In order to conclude that GE embeds into GE2 it seems like we have to assume
that ~GE� covers GE (as this is not always the case). However, in the proof of
Lemma A.11.1 we are really showing that φ◦Pc (GE ) ⊆ Pc (GE2 )◦φ, wherePc (G)
denotes the inverse semigroup of partial homeomorphisms πU : s(U) → r (U)
coming from compact bisectionsU ⊆ G. It is a sub-inverse semigroup of Renault’s
pseudogroup as in [Ren08], [BCW17] (when G is effective). The constructions
in Sections A.4 and A.5 apply more or less verbatim to Pc (G). The crucial
difference is that Pc (G) always covers G, when G is ample. Thus, the analogs of
Corollary A.5.5 and Proposition A.4.10 for Pc (G) applied to φ induces the desired
embedding of the graph groupoids—which we record in the following theorem.

Theorem A.11.3. Let E be a countable graph satisfying Condition (L) and having
no sinks nor semi-tails. Then there is an embedding Φ : GE ↪→ GE2 of étale
groupoids. If E0 is finite, then Φ maps ∂E onto E∞2 .

Remark A.11.4. Theorem A.11.3 is optimal in the sense there is no embedding if
one relaxes the assumptions on E. For if ∂E has isolated points, then there is no
local homeomorphism from ∂E to E∞2 , as the latter has no isolated points. And
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if E is uncountable, then there is no embedding either, for then ∂E is not second
countable, while E∞2 is. Similarly, ∂E cannot map onto E∞2 if E0 is infinite, for
then the former is not compact.

A.11.2 Diagonal embeddings of graph algebras

From Theorem A.11.3 we recover Brownlowe and Sørensen’s embedding theorem
for Leavitt path algebras (albeit for the slightly smaller class of graphs E with ∂E
having no isolated points). However, we get the additional conclusion that when E0

is finite (i.e. the algebras are unital), the embedding can be chosen to not only be
unital, but also to map the diagonal onto the diagonal.

Corollary A.11.5. Let E be a countable graph with no sinks, no semi-tails, and
satisyfing Condition (L).

1. There is an injective ∗-homomorphism ψ : C∗(E) → O2 such that ψ(D(E))
is contained in D2. If E0 is finite, then ψ is unital and ψ(D(E)) = D2.

2. For any commutative unital ring R, there is an injective ∗-algebra homomor-
phism ρ : LR (E) → LR (E2) such that ρ(DR (E)) is contained in DR (E2).
If E0 is finite, then ρ is unital and ρ(DR (E)) = DR (E2).

Remark A.11.6. For each labeling of a graph E as in the proof of Lemma A.11.1,
one obtains explicit embeddings of both the graph C∗-algebras and the Leavitt path
algebras into O2 and LR (E2), respectively, in terms of their canonical generators.
This is done by expanding the scheme in [BS16, Proposition 5.1]. The canonical
isomorphism between both C∗(E) and C∗(GE ), and LR (E) and AR (GE ) is given
by pv ↔ 1Z (v) for v ∈ E0 (vertex projections) and se ↔ 1Z (e,r (e)) for e ∈ E1

(edge partial isometries). Denote the generators in O2 and LR (E2) by sa and sb.
Given a labeling E0 = {w1,w2,w3 . . .} and E1 = {ei, j | 1 ≤ i ≤ n, 1 ≤ j ≤ k (i)},
the embedding of the algebras induced by φ as in Lemma A.11.1 is given on the
generators by

pwi 7−→ sφ∗ (wi )
(
sφ∗ (wi )

)∗
, sei, j 7−→ sφ∗ (ei, j )

(
sφ∗ (r (ei, j ))

)∗
,

where φ∗(µ) ∈ {a, b}∗ is as in the proof of Lemma A.11.1 (recall that for a finite
path µ = e1, . . . en ∈ E∗, we define sµ B se1 · · · se2).

Remark A.11.7. In the case that E has infinitely many vertices, the image of the
diagonals in Corollary A.11.5 can be described as follows:

ψ(D(E)) = span{sαs∗α | α ∈ E∗2 \ {a, a
2, a3, . . .}},

and
ρ(DR (E)) = spanR{sαs∗α | α ∈ E∗2 \ {a, a

2, a3, . . .}}.
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For examples of explicit embeddings for finite graphs satisfying Condition (L)
(possibly even having sinks), see Section 5 of [BS16]. As for infinite graphs, we
provide a few examples below.

Example A.11.8. Consider the following graph, whose graph C∗-algebra is the
Cuntz algebra O∞:

E∞
w

e j

The double arrow indicates infinitely many edges, i.e. E1 = {e1, e2, e3, . . .}. For
simplicity, we denote the edge isometries by s j for j ∈ N. We label w = w1 and
e j = e1, j . Following the recipe in Remark A.11.6 we obtain a unital embedding
of O∞ into O2 (and similarly of LR (E∞) into LR (E2)) which maps the diagonal
onto the diagonal, in terms of generators as follows:

pw = 1O∞ 7−→ 1O2 = pv, s j 7−→ sa j−1b .

Example A.11.9. Next, consider the following graph:

E
w1 w2

e j

h

f j

By labeling the edges as h = e1,1, e j = e1, j+1, f j = e2, j we get the following unital
diagonal preserving embedding of C∗(E) into O2:

pw1 7−→ sbs∗b, pw2 7−→ sas∗a,

sh 7−→ sbbs∗a, se j 7−→ sba jbs∗b, s fj 7−→ sba jbs∗a .

Example A.11.10. Finally, let us look at a graph with infinitely many vertices:

F
w1 w2 w3 w4 w5

· · ·

f1

e1 e2 e3

f3

e4 e5

f5

We label the edges as e j = e j,1 for j ∈ N, and f j = e j,2 for j odd. The induced
diagonal preserving embedding of C∗(F) into O2 is then given on the generators
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as follows:

pwi 7−→ sai−1b
(
sai−1b

)∗ , s fj 7−→ sa j−1ba
(
sa j−1b

)∗ ( j odd),

se j 7−→
{

sa j−1b
(
sa jb

)∗ j even,
sa j−1b2

(
sa jb

)∗ j odd.

A.11.3 Analytic properties of ~GE�

Before generalizing the groupoid embedding theorem to a larger class of groupoids
in the next subsection we take brief pause to discuss some analytic properties
of the topological full groups ~GE� for graphs E as in Lemma A.11.1. First of
all, ~GE� is generally not amenable, as it often contains free products [Mat15b,
Proposition 4.10].

Let En for n ≥ 2 denote the graph consisting of a single vertex and n edges.
And more generally, for r ∈ N, let En,r be the graph with r vertices w1,w2, . . . ,wr

and n + r − 1 edges e1, . . . , en, f1, . . . , fr−1 such that s(ei) = w1, r (ei) = wr for
each 1 ≤ i ≤ n and s( f i) = wi+1, r ( f i) = wi for each 1 ≤ i ≤ r − 1. According
to [Mat15b, Section 6], the topological full group ~GEn,r � is isomorphic to the
Higman-Thompson group Vn,r . In particular, ~GE2� � V2,1 = V (Thompson’s
group V ). As Lemma A.11.1 in particular induces an algebraic embedding of the
topological full groups, we have that ~GE� embeds into V for each graph E as in
Lemma A.11.1. Thus, Lemma A.11.1 may be considered a generalization of the
well known embedding of Vn,r into V . As V has the Haagerup property [Far03],
we deduce that ~GE� does as well.

Corollary A.11.11. Let E be a countable graph with no sinks, no semi-tails, and
suppose E satisfies Condition (L). Then the topological full group ~GE� has the
Haagerup property.

Remark A.11.12. For finite, strongly connected graphs, this was proved directly,
using so-called zipper actions, by Matui in [Mat15b]. Later, in [Mat16], Matui
proved that for any finite, strongly connected graph E, ~GE� embeds into ~GE2�. In
fact, he proved even more, namely that GE2 could be replaced by any groupoid with
similar properties (see [Mat16, Proposition 5.14] for the details). By our results,
one may relax the conditions on E considerably in Matui’s embedding result.

A.11.4 Embedding equivalent groupoids

We are now going to expand on the embedding theorem for graph groupoids to
include all groupoids that are merely groupoid equivalent to a graph groupoid. To
accomplish this we will make us of the fundamental results by Carlsen, Ruiz and
Sims in [CRS17]. Following their notation, let R denote the countably infinite
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discrete full equivalence relation, that is R = N × N equipped with the discrete
topology, whose product and inverse are given by (k,m) · (m, n) B (k, n) and
(m, n)−1 B (n,m). We refer to the product groupoid G ×R as the stabilization of
the groupoid G. For a graph E, let SE denote the graph obtained from E by adding
a head at every vertex—see the example below (see also [Tom04]). It is shown
in [CRS17] that GE ×R � GSE as topological groupoids for any graph E.

Example A.11.13. The stabilized graph of E2 is the following graph:

SE2
w2 w1

v· · ·
c3 c2

a

b

c1

Let us first just say a fewwords on necessary conditions for an étale groupoidH
to be embeddable into GE2 . First of all, it is clearly necessary that H is ample,
Hausdorff and second countable, since GE2 is. As we observed for the graph
groupoids, it is also necessary thatH(0) has no isolated points, and hence thatH(0)

is a locally compact Cantor space. Furthermore, since subgroupoids of effective
groupoids are effective, it is also necessary that H be effective. As a final obser-
vation in this regard, any embedding Φ : H ↪→ GE2 induces an embedding of the
isotropy bundles H′ ↪→

(
GE2

) ′, meaning that Φ restricts to an embedding of the
isotropy groupHy

y into
(
GE2

)Φ(y)
Φ(y) for each y ∈ H(0). Now recall that for any graph

groupoid GE the isotropy groups are

(GE )xx �
{
Z if x is eventually periodic,
0 otherwise.

Thus, a final necessary condition for embeddability is that the istropy bundle
of H consists only of the groups 0 and Z. This rules out for instance (most)
products of graph groupoids, since they typically have isotropy groups that are
free abelian of rank up to the number of factors in the product. Note however,
that taking the product with a principal groupoid does no harm in this regard. As
we’ll see imminently, taking the product with R (i.e. stabilizing) does not affect
embeddability into GE2 .

Proposition A.11.14. Let H be an effective ample second countable Hausdorff
groupoid with H(0) a locally compact Cantor space. Then H embeds into GE2 if
and only if the stabilized groupoidH ×R embeds into GE2 .
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Proof. The “if statement” is trivial as a groupoid always embeds into its sta-
bilization. Suppose Φ : H → GE2 is an injective étale homomorphism. Then
φ× id : H×R→ GE2 ×R is an injective étale homomorphism as well. By [CRS17,
Lemma 4.1] we have GE2 × R � GSE2 , and SE2 is a countable graph satisfying
Condition (L) with no sinks nor semi-tails. So by Theorem A.11.3, GSE2 embeds
into GE2 . Thus H ×R embeds into GE2 . �

The next lemma shows that any étale embedding of a groupoidH, with compact
unit space, into GE2 can be “twisted” into an embedding that hits the whole unit
space of GE2 .

LemmaA.11.15. LetH be an effective ample second countableHausdorff groupoid
with H(0) a Cantor space. If H embeds into GE2 , then there exists an embedding
Φ : H ↪→ GE2 such that Φ

(
H(0)

)
= E∞2 .

Proof. Let Ψ : H → GE2 be an injective étale homomorphism and define the set
Y = Ψ

(
H(0)

)
. Then Y is a compact open (hence clopen) subset of E∞2 . We

claim that there exists a compact open bisection U ⊆ GE2 such that s(U) = Y
and r (U) = E∞2 . The claim follows from [Mat15b, Theorem 6.4] and [Mat17,
Example 3.3 (3)] by identifying GE2 with the SFT-groupoid of the 1 × 1 matrix
A = [2] (see [Mat17, Example 2.5]). Now defineΦ(h) = U ·Ψ(h) ·U−1 for h ∈ H.
Then Φ is an injective étale homomorphism and

Φ
(
H(0)

)
= UYU−1 = UU−1 = r (U) = E∞2 .

�

We now state the most general version of our embedding theorem.

Theorem A.11.16. Let H be an effective ample second countable Hausdorff
groupoid whose unit space H(0) is a locally compact Cantor space. If H is
groupoid equivalent to GE , for some countable graph E satisfying Condition (L)
and having no sinks nor semi-tails, then H embeds into GE2 . Moreover, if H(0) is
compact, then the embedding mapsH(0) onto E∞2 .

Proof. SupposeH is groupoid equivalent to GE as above. Then by [CRS17, Theo-
rem 3.2] we haveH×R � GE ×R. By Theorem A.11.3 and Proposition A.11.14,
GE × R embeds into GE2 , hence so does H × R and H. The second statement
follows from Lemma A.11.15. �

Remark A.11.17. We note that for any groupoid H as in the above theorem, its
topological full group ~H� also has the Haagerup property.
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A.11.5 Embedding AF-groupoids

Awell-studied class of groupoids satisfying the hypothesis of TheoremA.11.16, yet
conceptually different from graph groupoids, are the AF-groupoids. See [GPS04]
(wherein they are dubbed AF-equivalence relations). Let G be an ample Hausdorff
second countable groupoid with G (0) a locally compact Cantor space. Then G is
called an AF-groupoid if there exists an increasing sequence K1 ⊆ K2 ⊆ . . . ⊆ G
of clopen subgroupoids such that

• Kn is principal for each n ∈ N.

• K(0)
n = G (0) for each n ∈ N.

• Kn \ G (0) is compact for each n ∈ N.

•
⋃∞

n=1 Kn = G.

This entails that G is principal.

Remark A.11.18. The terminology AF-groupoid is due to Renault [Ren80], and
is also used by Matui in [Mat12] and [Mat17]. Note however, that Matui only
considered the case of a compact unit space therein.

In the following example we explain how Bratteli diagrams give rise to AF-
groupoids.

Example A.11.19 (cf. [GPS04, Example 2.7(ii)]). A Bratteli diagram B is a di-
rected graph whose vertex set V and edge set E can be written as countable disjoint
unions of non-empty finite sets

V = V0 t V1 t V2 t . . . and E = E1 t E2 t E3 t . . . (A.11.2)

such that the source and range maps satisfy s(En) = Vn−1 and r (En) ⊆ Vn.9 In
particular, there are no sinks in B. Let SB ⊆ V denote the set of sources in B.
Then V0 ⊆ SB. We call B a standard Bratteli diagram if there is only one source
in B, i.e. SB = {v0} = V0. We say that B is simple if for every vertex v ∈ Vn, there
is an m > n such that there is a path from v to every vertex in Vm. The partitions
of the vertices and edges (into levels as in Equation (A.11.2)) is considered part of
the data of the Bratteli diagram B. We let EB denote the underlying graph where
we “forget” about the partitions.

9This notation is inconsistent with what we have been using for directed graphs so far. But since
Bratteli diagrams are very special kinds of graphs we have chosen to use the well-established notation
from the literature. In this way we can, albeit somewhat artificially, distinguish a Bratteli diagram
from its underlying graph.
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For a source v ∈ SB ∩ Vn on level n we let Xv denote the set of infinite paths
starting in v, that is

Xv B {en+1en+2en+3 . . . | s(en+1) = v, en+k ∈ En+k, s(en+k ) = r (en+k−1), k > 1}

The path space of B is
XB B

⊔
v∈SB

Xv

whose topology is given by the basis of cylinder sets

C(µ) B {en+1en+2 . . . ∈ Xs(µ) | en+1 . . . en+ |µ | = µ}

where µ is a finite path such that s(µ) = v for some source v ∈ SB ∩ Vn. The
path space XB is Boolean, and it is compact if and only if SB is finite. Further,
XB is perfect if and only if EB has no semi-tails. Two infinite paths in XB are
tail-equivalent if they agree from some level on. With this equivalence relation as
the starting point, let for each N ∈ N

PN B {(x, y) ∈ XB×XB | s(x) ∈ Vm, s(y) ∈ Vn,m, n ≤ N, xk = yk for all k > N }.

That is, PN consists of all pairs of infinite paths which start before the N’th level
and agrees from the N’th level and onwards. Equipping PN with the relative
topology from XB × XB makes PN a compact principal ample Hausdorff groupoid
whose unit space is identified with

⊔N
n=1

⊔
v∈SB∩Vn

Z (v).
We define the groupoid of the Bratteli diagram B as the increasing union

GB B
∞⋃

N=1
PN

equipped with the inductive limit topology. For any two finite paths µ, λ with
s(µ), s(λ) ∈ SB and r (µ) = r (λ) we define

C(µ, λ) B
{
(x, y) ∈ C(µ) × C(λ) | x[ |µ |+1,∞) = y[ |λ |+1,∞)

}
.

A straightforward computation shows that the family of C(µ, λ)’s form a compact
open basis for the inductive limit topology on GB. We identify G (0)

B with XB. By
setting Kn = Pn ∪ G (0)

B one sees that GB is an AF-groupoid. The groupoid GB is
minimal if and only if B is a simple Bratteli diagram.

Remark A.11.20. Although the AF-groupoid GB is defined in terms of a very
special graph, namely the Bratteli diagram B, it is generally not isomorphic to
a graph groupoid. To see this, recall that GB is always principal, while a graph
groupoid GE is principal if and only if the graph E has no cycles. If XB is compact,
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perfect and infinite (this is essentially stipulating that theBratteli diagram is standard
and “non-degenerate”), then GB cannot be isomorphic to any graph groupoid. For
any such GE would have a compact unit space, i.e. E has finitely many vertices,
and E would have no cycles and no sinks. There are clearly no such graphs.

Giordano, Putnam and Skau showed that, just as with AF-algebras [Bra72],
every AF-groupoid can be realized by a Bratteli diagram as in Example A.11.19.

Theorem A.11.21 ([GPS04, Theorem 3.9]). LetH be an AF-groupoid. Then there
exists a Bratteli diagram B such that H � GB. If H(0) is compact, then B can be
chosen to be standard.

Remark A.11.22. As another example of a concrete description of the topological
full group of an ample groupoid, we remark that Matui described the topological
full group of an AF-groupoid with compact unit space in terms of a definining
Bratteli diagram in [Mat06, Proposition 3.3]. The topological full group ~GB�,
where B is a Bratteli diagram, is the direct limit of the finite groups ΓN for N ∈ N,
where ΓN ≤ Homeo(XB) consists of all permutations of the finite set of paths from
level V0 to VN such that the permutation preserves the range of these paths (and the
action on XB is by permuting the intial segment of an infinite path). We should also
mention that these groups were originally studied by Krieger in [Kri80], without
emphasis on the underlying groupoids.

By the preceding remark it is clear that the topological full group of any
AF-groupoid is a locally finite group. And actually, this characterizes the AF-
groupoids. This is somewhat of a folklore result, but a proof is published by Matui
in the compact case, and it is not hard to see that his proof extends to locally
compact unit spaces as well.

Proposition A.11.23 (cf. [Mat06, Proposition 3.2]). Let G be an ample principal
Hausdorff second countable groupoid with G (0) a locally compact Cantor space.
Then the topological full group ~G� is locally finite if and only if G is an AF-
groupoid.

Remark A.11.24. The commutator subgroups D(G) ≤ ~G� for AF-groupoids G
are quite interesting in their own right. In fact, these exhaust10 the class of so-
called strongly diagonal limits of products of alternating groups (also called LDA-
groups, see [LN07] where these are classified using the dimension groups of their
Bratteli diagrams). These form a subclass of the locally finite simple groups. By
Corollary A.11.26 below, all the LDA-groups embed into Thompson’s group V .

10With the single exception of the infinite finitary alternating group.
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We now demonstrate that every AF-groupoid is groupoid equivalent to a graph
groupoid. This is essentially just a reformulation of themain theorem from [Dri00],
wherein it is shown that any AF-algebra can be recovered as a certain pointed graph
C∗-algebra of a defining Bratteli diagram. In contrast, in Proposition A.11.25
below we emphasize the groupoids, rather than their C∗-algebras. Also, since we
use “unlabeled” Bratteli diagrams here, as opposed to labeled Bratteli diagrams
(as in [Dri00, Section 2]), the computations are easier.

Proposition A.11.25. Let B be a Bratteli diagram. Then the AF-groupoid GB

is isomorphic to the restriction of the graph groupoid GEB to the open subset⊔
v∈SB

Z (v) ⊆ E∞B . It follows that every AF-groupoid is groupoid equivalent to a
graph groupoid.

Proof. Let A =
⊔

v∈SB
Z (v). Then(

GEB

)
|A = {(x, k, y) | s(x), s(y) ∈ SB, σEB (x)m = σEB (y)n, k = m − n}.

Due to the special structure of the graph EB, the lag k in (x, k, y) ∈
(
GEB

)
|A is

uniquely determined by x and y. In fact, k is determined by the levels on which
x and y start in the Bratteli diagram. Indeed, let m, n ∈ N be such that s(x) ∈ Vm

and s(y) ∈ Vn, then k = n − m. This means that the map Φ :
(
GEB

)
|A → GB

defined by Φ((x, k, y)) = (x, y) is a bijection. It is easy to see that Φ is also a
groupoid homomorphism. Finally, to see that Φ is a homeomorphism simply note
that the family of Z (µ, λ)’s where µ, λ are finite paths with s(µ), s(λ) ∈ SB and
r (µ) = r (λ) form a basis for

(
GEB

)
|A, and that Φ(Z (µ, λ)) = C(µ, λ). Thus(

GEB

)
|A � GB as étale groupoids.

We claim that A is a GEB -full subset of E∞B , and then the second statement
follows from [CRS17, Theorem 3.2]. To see this, let z ∈ E∞B be an infinite path
starting anywhere in the Bratteli diagram and simply note that by following s(z)
upwards in the Bratteli diagram, one eventually reaches a source v ∈ SB such that
v connects to s(z). Letting µ be any path from v to s(z) we have that z belongs to
the GEB -orbit of µz ∈ A. �

As a special case of Theorem A.11.16 we obtain the following.

Corollary A.11.26. Let G be an AF-groupoid with G (0) perfect. Then there exists
an embedding of étale groupoids G ↪→ GE2 . If G (0) is compact, then G (0) maps
onto E∞2 .

From this we obtain an analogue of Corollary A.11.5 for AF-algebras and their
diagonals. Let A be an AF-algebra. By an AF Cartan subalgebra D ⊆ A we
mean a Cartan subalgebra arising from the diagonalization method of Strătilă and
Voiculescu [SV75]. See [Dri00, Section 4] for a description of these diagonals
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for non-unital AF-algebras. Note that they are also C∗-diagonals in the sense of
Kumjian [Kum86]. According to [Ren08, Subsection 6.2] these are precisely the
Cartain pairs arising as

(
C∗r (GB) ,C0(XB)

)
for a Bratteli diagram B.

Corollary A.11.27. Let A be an infinite-dimensional AF-algebra and let D ⊆ A
be any AF Cartan subalgebra in A whose spectrum is perfect. Then there is an
injective ∗-homomorphism ψ : A ↪→ O2 such that ψ(D) ⊆ D2. If A is unital, then
so is ψ, and ψ(D) = D2.

Remark A.11.28. As a final remark, we note that certain transformation groupoids
(by virtue of actually being AF-groupoids) also embed into GE2 . Let X be a non-
compact locally compact Cantor space and let T be a minimal homeomorphism
on X . It follows from [GPS04, Theorem 4.3] that the transformation groupoid
Z nT X is an AF-groupoid, and consequently Z nT X embeds into GE2 .

An indirect way of seeing that Z nT X is an AF-groupoid is via Proposi-
tion A.11.23. By realizing the dynamical system (X,T ) as a Bratteli-Vershik
system on a (standard) almost simple orderered Bratteli diagram B = (V, E, ≥)
(see [Dan01]), one easily observes (as Matui did in [Mat02]) that ~Z nT X� is
locally finite. This is because each element of ~ZnT X� only depends on the inital
edges down to level N for some fixed N (determined by the group element), for
each infinite path in XB. This actually allows one to describe the topological full
group ~Z nT X� explicitly in terms of a conjugate Bratteli-Vershik system.

A third way of demonstrating that Z nT X is an AF-groupoid is to go from a
conjugate Bratteli-Vershik system on an ordered Bratteli diagram B = (V, E, ≥) to
an “unordered” Bratteli diagram B′ such that Z nT X � GB′ as étale groupoids.
Indeed, let e1e2e3 . . . ∈ XB denote the unique maximal and minimal path in XB

(see [Dan01]). By “forgetting” the ordering and removing each of the edges en for
all n ∈ N, and thereby introducing a source at each of the vertices s(en), one obtains
the modified Bratteli diagram B′, and it is not hard to see that the AF-groupoid GB′

is isomorphic to Z nT X .
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Paper B

Matui’s AH Conjecture for
Graph Groupoids

Abstract
We prove that Matui’s AH conjecture holds for graph groupoids of infinite
graphs. This is a conjecture that relates the topological full group of an
ample groupoid with the homology of the groupoid. Our main result com-
plements Matui’s result in the finite case, which makes the AH conjecture
true for all graph groupoids covered by the assumptions of said conjecture.
Furthermore, we observe that for arbitrary graphs, the homology of a graph
groupoid coincides with the K-theory of its groupoid C∗-algebra.

B.1 Introduction

B.1.1 Background

Building on the discoveries in the series of papers [Mat06], [Mat12] and [Mat15b]
Hiroki Matui stated two conjectures concerning effective minimal étale groupoids
over Cantor spaces in [Mat16]. The HK conjecture predicts that the K-theory of a
reduced groupoidC∗-algebra is determined by the groupoid’s homology as follows:

K0
(
C∗r (G)

)
�

∞⊕
n=0

H2n(G) and K1
(
C∗r (G)

)
�

∞⊕
n=0

H2n+1(G).

The AH conjecture predicts that the abelianization of the topological full group
of a groupoid together with its first two homology groups fit together in an exact
sequence as follows:

H0(G) ⊗ Z2 ~G�ab H1(G) 0.j I
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In several cases (including graph groupoids) the K-groups actually coincide with
the first two homology groups, which means that the AH conjecture in these cases
relates the K-theory of the groupoid C∗-algebra with the topological full group.

Topological full groups associated to dynamical systems (and more generally
to étale groupoids) are perhaps best known for being complete invariants for con-
tinuous orbit equivalence (and groupoid isomorphism), in addition to diagonal
preserving isomorphisms of associated C∗-algebras. Roughly speaking, the topo-
logical full group consists of all homeomorphisms which preserve the orbits of the
dynamical system in a continuous manner. Consult [GPS99], [Med11], [Mat15a],
[Mat15b], [NO19] and [dCGvW19] for some of these rigidity results. Topological
full groups also provide means of constructing new groups with interesting prop-
erties, most notably by providing the first examples of finitely generated simple
groups that are amenable (and infinite) [JM13].

In the works of Matui mentioned above, both conjectures were verified for key
classes of groupoids, such as AF-groupoids, transformation groupoids of minimal
Z-actions and groupoids associated to shifts of finite type (SFT-groupoids). Subse-
quently, other authors have expanded upon this. The HK conjecture has been shown
to hold for Katsura–Exel–Pardo groupoids [Ort18], Deaconu–Renault groupoids
of rank 1 and 2 [FKPS18] and groupoids of unstable equivalence relations on
one-dimensional solenoids [Yi20].

Alas, the HK conjecture is now known to be false in general. It fails to
hold for transformation groupoids associated to odometers on the infinite dihedral
group, as demonstrated in [Sca18]. Nevertheless, it is still interesting to investigate
for which groupoids the conclusion of the HK conjecture holds. We will say
that a groupoid has the HK property when this is the case. In spite of them
providing counterexamples to the HK conjecture, the AH conjecture was shown,
also in [Sca18], to hold for transformation groupoids arising from odometers.
Hence the AH conjecture remains open. A notable difference between the two
conjectures is that in the AH conjecture the maps involved are specified, whereas
in the HK conjecture it is only predicted that some isomorphisms exist.

B.1.2 Our results

The purpose of this paper is to investigate the AH conjecture for the class of graph
groupoids. As the SFT-groupoids prominently studied by Matui can be realized as
graph groupoids of finite graphs, the novelty lies in dealing with infinite (directed)
graphs, and in particular with the presence of infinite emitters, that is, vertices that
emit infinitely many edges.

Our main motivating example has been the graph E∞ which has one vertex and
infinitely many loops. The graph groupoid GE∞ is the canonical groupoid model for
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the (infinitely generated) Cuntz algebraO∞. This was a natural example to explore
as E∞ is the simplest possible graph having an infinite emitter. On the other
hand, its graph C∗-algebra O∞ has played—and continues to play—an important
role in the theory of C∗-algebras. Seeing as the topological full groups of the
canonical graph groupoid models of the other Cuntz algebras On are isomorphic
to the highly interesting Higman–Thompson groups Vn,1, we believe it worthwhile
to also investigate the topological full group ~GE∞�.

One of the assumptions in the AH conjecture is that the unit space of the
groupoid is compact, and this translates into the underlying graph having finitely
many vertices. We were indeed able to show that the AH conjecture holds for these
graph groupoids as well, so that our main result is the following.

Theorem B.1.1 (see Corollary B.9.5). Let E be a strongly connected graph with
finitely many vertices which is not a cycle graph. Then the AH conjecture holds for
the graph groupoid GE .

Let us remark that Corollary B.9.5 applies to a slightly more general family
of graphs than in the preceding theorem, as well as to all restrictions of these
graph groupoids. The conclusion is that the AH conjecture holds for all graph
groupoids covered by the assumptions in said conjecture. Additionally, it holds for
any groupoid which is Kakutani equivalent to such a graph groupoid.

It should be mentioned thatMatui in [Mat15b] not only proved that the AH con-
jecture is true for restrictions of SFT-groupoids, but that these also have the strong
AH property. This means that the map j is injective, so that one has a short ex-
act sequence. This was done by constructing a suitable finite presentation of the
topological full group. We investigate this subject in Section B.10, but we find that
when the graph has an infinite emitter, then the topological full group is not even
finitely generated.

We also observe that all graph groupoids have the HK property. The following
theorem is an extension of already existing similar results (see the paragraph
following Theorem B.4.6).

Theorem B.1.2 (see Theorem B.4.6). Let E be any graph. Then

H0(GE ) � K0(C∗(E)),

H1(GE ) � K1(C∗(E)),

Hn(GE ) = 0, n ≥ 2.

HereC∗(E) denotes the graphC∗-algebra of E, which is canonically isomorphic
to the groupoid C∗-algebra C∗r (GE ). Since the K-groups of a graph C∗-algebra are
relatively easy to compute, Theorem B.1.2 allows us to give a partial description
of the abelianization of the topological full group ~GE�ab via the AH conjecture.
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Our proof of the AH conjecture for graph groupoids of infinite graphs will in
broad strokes follow a similar strategy asMatui’s proof for finite graphs in [Mat15b].
However, we emphasize that there are several major differences which make this a
nontrivial generalization. There are steps and techniques in Matui’s proof that no
longer work—or even make sense—in the infinite setting. A couple of significant
differences are described below.

If E is a graph with infinite emitters (or sinks), then the unit space of its graph
groupoid is no longer full in the associated skew product (compare [FKPS18,
Lemma 6.1] and Remark B.7.2). This means that we cannot deduce that the kernel
of the canonical graph cocycle is Kakutani equivalent to the skew product, and in
turn we cannot identify their homologies as is done in Matui’s proof.

A key component in Matui’s proof is the reduction to mixing shifts of finite
type. This is equivalent to the adjacency matrix of the associated finite graph being
primitive. In this case, the kernel of the cocycle is aminimalAF-groupoid admitting
a unique invariant probability measure arising from the Perron eigenvalue of the
adjacency matrix. This measure can then be used to compare clopen subsets of
the unit space and produce certain bisections connecting them. When passing to
the infinite setting we lose all of this. We no longer have a shift of finite type (nor
any shift space for that matter) and no Perron–Frobenius theory. Furthermore, the
kernel of the cocycle is not minimal anymore.

We also wish to remark that even though certain parts of the paper are quite
similar to parts of [Mat15b, Section 6], such as Section B.8 and the second half
of the proof of Theorem B.9.4, we have chosen to keep the exposition mostly self-
contained. We have done this in the best interest of the reader. There are several
subtle differences, such as indices being shifted or reversed, and some steps being
done in the opposite order. This is in part due to us having to consider the inverse
of a certain map from Matui’s proof, see Remarks B.7.6 and B.8.8. We supply
several remarks along the way which compare our approach to Matui’s to signify
where they differ.

The work laid down in this paper is not done with graph groupoids alone in
mind. It is our belief that these techniques can also be applied to other groupoids
which have an underlying “graph skeleton”, such as groupoids arising from self-
similar actions by groups on graphs, as studied by Nekrashevych [Nek09] and by
Exel and Pardo [EP17]. The authors plan to explore this avenue in future work.
Groupoids associated to k-graphs and ultragraphs are also obvious candidates.

B.1.3 Summary

We begin in Section B.2 by giving the necessary background regarding étale
groupoids. This includes the topological full group, homology and skew products
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by cocycles. More background is given in Section B.3, regarding graphs and
their associated groupoids. The graph groupoid GE associated to a graph E has a
canonical Z-valued cocycle denoted cE . Both the skew product groupoid GE ×cE Z

and the kernel subgroupoidHE B ker(cE ) ⊆ GE play important roles in the rest of
the paper. We show that the graph groupoids of acyclic graphs are AF-groupoids.
From this we deduce that both GE ×cE Z andHE are AF-groupoids.

In Section B.4 we describe the AH conjecture in more detail. One of the maps
appearing in the AH conjecture is the index map I : ~G� → H1(G). We extend its
definition to groupoids with non-compact unit space. Then the assumptions in the
AH conjecture for graph groupoids are translated into properties of the underlying
graphs. These turn out to be equivalent to the graph C∗-algebra being a unital
Kirchberg algebra. We also note that all graph groupoids have the HK property by
combining known results in the row-finite case with the concept of desingulariza-
tion. This yields Theorem B.1.2. The graph groupoids satisfying the assumptions
in the AH conjecture are shown to be purely infinite. It then follows from a result
of Matui (see Remark B.4.12) that the AH conjecture is equivalent to Property TR.
Property TR means that the kernel of the index map is generated by transpositions.
Hence the rest of the paper, except for the final section, is devoted to establishing
Property TR for these graph groupoids.

Section B.5 is devoted to showing that all AF-groupoids have cancellation,
something which is needed several times in the proof of the main result. We
point out that this cancellation result may be of independent interest. Then in
Section B.6 we present two long exact sequences in ample groupoid homology.
One of them relates the homology of a groupoid equipped with a cocycle with that
of the associated skew product. The other relates the homology of restrictions to
nested invariant subsets.

Both of these long exact sequences are applied to graph groupoids in Sec-
tion B.7. This allows us to relate the homology of a graph groupoid GE with
both the skew product GE ×cE Z and the kernel HE . As the latter two are AF-
groupoids, this truncates the long exact sequences to finite exact sequences. After
some work, we obtain the embeddings H1(GE ) ↪→ H0(HE ) ↪→ H0(GE ×cE Z). In
particular, we identify H1(GE ) with ker(id−ϕ), where ϕ is an endomorphism of
H0(HE ) given by “extending paths backwards”. We have to do some extra work
here because we cannot deduce that H0(HE ) � H0(GE ×cE Z), as one can for
finite graphs. In Section B.8 we associate each element α in the topological full
group ~GE� with a finite clopen partition of the unit space G (0)

E . This partition
is then used to give a description of the value I (α) of the index map under the
correspondence H1(GE ) � ker(id−ϕ) from the previous section.

The proof of our main result, Theorem B.1.1, is given in Section B.9. We begin
the section by proving a technical lemma which plays a similar role as mixing
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of the shift space does in Matui’s proof for SFT-groupoids. The way it is used
in our proof, however, is quite different from the way mixing is used. Next we
show that the assumptions in said lemma can always be arranged, by appealing
to the geometric moves on graphs from the classification program of unital graph
C∗-algebras [ERRS16]. After that we prove that strongly connected graphs with
infinite emitters have Property TR. The proof is quite long and draws upon all of
the preceding sections. By combining Matui’s result for strongly connected finite
graphs with our result for infinite graphs, together with another geometric move on
graphs, we deduce that the AH conjecture holds for all graph groupoids satisfying
the assumptions in the AH conjecture.

We end the paper with Section B.10 where we give a couple of examples and
obtain some consequences of the AH conjecture. In particular, we consider the
canonical graph groupoid model ofO∞ and observe that either the topological full
group ~GE∞� is simple or GE∞ has the strong AH property, but not both. In fact,
these two properties are shown to be mutually exclusive whenever the graph has
an infinite emitter. This is in contrast to the case of finite graphs, where one can
have both. We also observe that when E has an infinite emitter, then ~GE� is not
finitely generated. A partial description of the abelianization ~GE�ab is also given
in terms of the first two homology groups.

B.2 Étale groupoids

In this section we will collect the basic notions regarding étale groupoids that we
will need, as well as establish notation and conventions. Two standard references for
étale groupoids (and their C∗-algebras) are Renault’s thesis [Ren80] and Paterson’s
book [Pat99]. More recent accounts are found in e.g. [Exe08] and [Sim17].

If two sets A and B are disjoint we will denote their union by A t B when we
wish to emphasize that they are disjoint. When we write C = A t B we mean that
C = A ∪ B and that A and B are disjoint sets.

B.2.1 Topological groupoids

A groupoid is a set G equipped with a partially defined product G (2) → G denoted
(g, h) 7→ gh, where G (2) ⊆ G×G is the set of composable pairs, and an everywhere
defined involutive inverse g 7→ g−1 satisfying the following axioms:

1. If (g1, g2), (g2, g3) ∈ G (2), then we have (g1g2, g3), (g1, g2g3) ∈ G (2) and
(g1g2)g3 = g1(g2g3).

2. For all g ∈ G, we have (g, g−1), (g−1, g) ∈ G (2).
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3. If (g, h) ∈ G (2), then ghh−1 = g and g−1gh = h.
The set G (0) B {gg−1 | g ∈ G} is called the unit space, and the maps r, s : G → G (0)

given by r (g) = gg−1 and s(g) = g−1g are called the range and source maps,
respectively.

If G is given a topology in which the product and inverse map are continuous
we call G a topological groupoid. A topological groupoid is étale if it has a locally
compact topology in which the unit space is open and Hausdorff, and the range and
source maps are local homeomorphisms. For the most part we will be dealing with
étale groupoids which are (globally) Hausdorff, and then G (0) is clopen in G. We
say that an étale groupoid G is ample if G (0) is zero-dimensional, i.e. admits a basis
of compact open sets. Étale groupoids are characterized by admitting a basis of
bisections (defined below), and ample groupoids by admitting a basis of compact
bisections.

For a subset A ⊆ G (0) we set

GA B {g ∈ G | r (g) ∈ A} and GA B {g ∈ G | s(g) ∈ A}.

For singleton sets A = {x} we drop the braces and write Gx and Gx , respectively.
The isotropy group of x ∈ G (0) is Gx

x B Gx ∩ Gx , and the isotropy of G is

G ′ B
⊔

x∈G (0)

Gx
x .

We say that G is principal if G ′ = G (0), and effective if the interior of G ′ equals G (0).
We remark that the literature is not entirely consistent regarding this notion. For
example in [Mat15b] the term “essentially principal” is used. The term topolog-
ically principal also appear in the literature, but this usually refers to a slightly
stronger notion.

The G-orbit of a unit x is the set OrbG (x) B s(Gx ) = r (Gx ). We call G
minimal when every G-orbit is dense in G (0). This is equivalent to there being no
nontrivial open (or closed) G-invariant subsets A ⊆ G (0), meaning that GA = GA.
The restriction of G to A is G |A B GA∩GA, and this is a subgroupoid of G with unit
space A. If A is open and G is étale, then G |A is an open étale subgroupoid of G.
We say that A is G-full if r (GA) = G (0), in other words if A intersects every G-orbit.
Two étale groupoids G andH are Kakutani equivalent if there exists a G-full clopen
subset A ⊆ G (0) and an H-full clopen subset B ⊆ H(0) such that G |A � H|B (as
topological groupoids). This notion of groupoid equivalence admits many different
descriptions, see [FKPS18, Theorem 3.12].

B.2.2 The topological full group

An open subset U ⊆ G of an étale groupoid G is called a bisection if both r and s
are injective on U . It follows then that r |U : U → r (U) is a homeomorphism, and
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similarly for s. Thus we get a homeomorphism πU B r |U ◦ (s |U )−1 from s(U) to
r (U) which maps s(g) to r (g) for each g ∈ U. We say that the bisection U is full
if r (U) = s(U) = G (0), and in this case πU is a homeomorphism of G (0). For a
homeomorphism α : X → X of a topological space X we define the support of α
to be the set supp(α) B {x ∈ X | α(x) , x}.

The topological full group of an effective étale groupoid G is

~G� B {πU | U ⊆ G full bisection with supp(πU ) is compact},

which is a subgroup of the homeomorphism group of G (0). The commutator
subgroup of ~G� is denoted by D(~G�). We remark that when G is effective and
Hausdorff, then supp(πU ) is also open for any full bisection U . If V , U are
different bisections, then πU , πV . As a notational remark, if we are given an
element α ∈ ~G� we let Uα denote the unique full bisection which gives rise to α,
i.e. the one with α = πUα .

The following construction will be used several times. Suppose U ⊆ G is a
compact bisection with r (U) ∩ s(U) = ∅. Define

Û B U tU−1 t
(
G (0) \ (r (U) ∪ s(U))

)
.

Then Û is a full bisection and its associated homeomorphism πÛ satisfies

πÛ (s(U)) = r (U), πÛ (r (U)) = s(U),

supp(πÛ ) = r (U) ∪ s(U),
(
πÛ

)2
= idG (0) .

It is clear that πÛ ∈ ~G�. If τ ∈ ~G� is an element satisfying τ2 = 1 and the
set {x ∈ G (0) | τ(x) = x} is clopen, then one can show that τ = πÛ for some
compact bisectionU as above. Following [Mat15b], [Mat16] we call these elements
transpositions. We let S (G) denote the (normal) subgroup of ~G� generated by all
transpositions, as in [Nek19].

Remark B.2.1. Some authors define the topological full group to consist of the
full bisections themselves, rather than their associated homeomorphisms, but for
effective groupoids this is merely a matter of taste. Topological full groups are
quite interesting objects in their own right and we refer to [Mat17] and [NO19] and
the references therein for more details on the subject.

B.2.3 Homology for ample groupoids

For an ample Hausdorff groupoid G, let us describe its homology with values in
Z, as popularized by Matui in [Mat12] building on the general theory of [CM00].
See also [FKPS18, Section 4] for an excellent account.
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For a locally compact Hausdorff space X , let Cc (X,Z) denote the com-
pactly supported continuous Z-valued functions on X . Suppose ψ : X → Y is
a local homeomorphism between such spaces. Then ψ induces a homomor-
phism ψ∗ : Cc (X,Z) → Cc (Y,Z) which is given by ψ∗( f )(y) =

∑
x∈ψ−1 (y) f (x)

for f ∈ Cc (X,Z). Only finitely many terms are nonzero in this sum.
For n ≥ 1, let G (n) denote the space of composable strings of n elements

from G, equipped with the relative topology induced by the product topology on n
copies of G. In particular, G (2) is the composable pairs, G (1) = G and for n = 0,
we have the unit space G (0). Define local homeomorphisms di : G (n) → G (n−1) for
n ≥ 2 and i = 0, . . . , n by

di (g1, g2, . . . , gn) =




(g2, g3, . . . , gn) if i = 0,
(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn) if 1 ≤ i ≤ n − 1,
(g1, g2, . . . , gn−1) if i = n.

From these we in turn define homomorphisms δn : Cc (G (n),Z) → Cc (G (n−1),Z)
by setting δn =

∑n
i=0(−1)i (di)∗, and for n = 1 set δ1 = s∗ − r∗. Then

0 Cc (G (0),Z) Cc (G (1),Z) Cc (G (2),Z) · · ·
δ1 δ2 δ3

(B.2.1)
becomes a chain complex and the homology groups Hn(G) is defined as the ho-
mology of this complex, i.e. Hn(G) = ker δn/ im δn+1. We will use C•(G,Z) to
denote the chain complex (B.2.1).

Since the zeroth and first homology groups will appear frequently in this
text, by virtue of being ingredients in the AH conjecture, we describe the two
homomorphisms δ1 and δ2 that define them in more detail. The former is the
difference of the maps from Cc (G,Z) to Cc (G (0),Z) induced by the source and
range maps, and these are in turn given by

s∗( f )(x) =
∑
g∈Gx

f (g) and r∗( f )(x) =
∑
g∈Gx

f (g)

for f ∈ Cc (G,Z) and x ∈ G (0). The latter is δ2 = (d0)∗ − (d1)∗ + (d2)∗, where each
of these summands are maps from Cc (G (2),Z) to Cc (G,Z) given by

(d0)∗(ψ)(g) =
∑

h∈G, s(h)=r (g)

ψ(h, g)

(d1)∗(ψ)(g) =
∑

(h1,h2)∈G (2), h1h2=g

ψ(h1, h2)

(d2)∗(ψ)(g) =
∑

h∈G, r (h)=s(g)

ψ(g, h)
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for ψ ∈ Cc (G (2),Z) and g ∈ G.
Observe that H0 is spanned (over Z) by equivalence classes of indicator func-

tions of compact open subsets of the unit space. For any compact bisection U ⊆ G
we have

[
1s(U )

]
=

[
1r (U )

]
in H0(G), since δ1(1U ) = 1s(U ) − 1r (U ). If we view

a compact open set A ⊆ G (0) as a subset of G, then 1A ∈ ker δ1 and [1A] = 0 in
H1(G) since δ2(1∆A) = 1A, where ∆A ⊆ G (2) denotes the diagonal in A × A.

Any étale homomorphism (that is, a local homeomorphism which respects
the groupoid operations) ρ : G → H between ample Hausdorff groupoids in-
duces local homeomorphisms ρ(n) : G (n) → H(n) for n ≥ 0 by applying ρ in
each coordinate. The induced maps (ρ(n))∗ from Cc (G (n),Z) to Cc (H(n),Z) form
a chain map ρ• : C•(G,Z) → C•(H,Z) which in turn induce homomorphisms
Hn(ρ•) : Hn(G) → Hn(H). This assignment is functorial. In particular, if G ⊆ H
is an open subgroupoid, then the inclusion map ι : G ↪→ H induces homomor-
phisms Hn(ι•) : Hn(G) → Hn(H). For n = 0 the map H0(ι•) : H0(G) → H0(H)
is given by [1A] 7→ [1A] for any compact open set A ⊆ G (0) ⊆ H(0).

If Y ⊆ G (0) is a G-full clopen set, then the inclusion map ι : G |Y ↪→ G induces
isomorphisms Hn(ι•) : Hn(G |Y )

�
−−→ Hn(G) for all n ≥ 0 [FKPS18, Lemma 4.3].

From this it is clear that Kakutani equivalent groupoids have the same homol-
ogy. For n = 0 the inverse map H0(ι•)−1 : H0(G) → H0(G |Y ) can be described
as follows. Let A ⊆ G (0) be a compact open set. By fullness of Y , we can
for each x ∈ A find a compact bisection Ux ⊆ G with x ∈ s(Ux ) ⊆ A and
r (Ux ) ⊆ Y . By compactness and zero-dimensionality we can find finitely many
compact bisections U1, . . . ,Um so that the s(Ui)’s form a clopen partition of A and
so that r (Ui) ⊆ Y . Now [1A] =

∑m
i=1[1s(Ui )] =

∑m
i=1[1r (Ui )] in H0(G), and we thus

have

H0(ι•)−1([1A]) =
m∑
i=1

[1r (Ui )] ∈ H0(G |Y ). (B.2.2)

B.2.4 AF-groupoids and their homology

LetRn denote the full equivalence relation on the finite set {1, 2, . . . , n}, viewed as a
discrete groupoid. When X is a locally compact Hausdorff space, Renault [Ren80]
calls the product groupoid X×Rn an elementary groupoid of type n, where we view
X as a trivial groupoid X = X (0). We will call an étale groupoid G elementary if it
is Hausdorff, principal and G \G (0) is compact. Lemma 3.4 in [GPS04] shows that
an ample elementary groupoid is isomorphic to a finite disjoint union of elementary
groupoids of type ni. An AF-groupoid is an ample groupoid which can be written
as an increasing union of open elementary subgroupoids.

It is a well-known fact that when G is an AF-groupoid, its homology is given
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by

Hn(G) �



K0(C∗r (G)) n = 0,
0 n ≥ 1,

whereC∗r (G) denotes the reduced groupoidC∗-algebra of G, which in this case is an
AF-algebra. The H0-group (and the K0-group) coincides with the dimension group
of any defining Bratteli diagram (as an ordered abelian group with distuingished
order unit, see [Mat12, Theorem 4.10]). Stated like this it first appeared in [Mat12]
(for compact unit spaces), but it can be traced back to the earlier works [Ren80]
and [Kri80]. The case of a non-compact unit space is treated in [FKPS18].

Theorem B.2.2 ([FKPS18, Corollary 5.2]). Let G be an AF-groupoid. Then the
map

[1A]H0 7→ [1A]K0

for A ⊆ G (0) compact open induces an isomorphism H0(G) � K0(C∗r (G)).

B.2.5 Cocycles and skew products

When G is an étale groupoid and Γ is a discrete group, we call c : G → Γ a cocycle
if it is a continuous groupoid homomorphism. We shall be dealing exclusively with
Z-valued cocycles, as these are the ones that appear naturally for graph groupoids.

Definition B.2.3. Let G be an étale groupoid with a cocycle c : G → Z. The skew
product groupoid of G by c is the groupoid G ×c Z B G × Z with operations

(g,m)(h,m+ c(g)) B (gh,m) if (g, h) ∈ G (2) and (g,m)−1 B (g−1,m+ c(g)),

so that s(g,m) = (s(g), c(g) + m) and r (g,m) = (r (g),m).

The skew product groupoid becomes an étale groupoid in the product topology.
The unit space of G ×c Z can be identified with G (0) ×Z. For each bisection U ⊆ G
and m ∈ Z, the set U × {m} is a bisection in G ×c Z. We record the following
elementary lemma about the kernel of the cocycle sitting inside the skew product.

Lemma B.2.4. Let G be an étale groupoid with a cocycle c : G → Z. Then ker(c)
is a clopen subgroupoid of G, and we have (G ×c Z) |G (0)×{0} � ker(c) via the
map (g, 0) 7→ g.

Remark B.2.5. We emphasize that even though ker(c) is a clopen subgroupoid
of G, and embeds as a clopen subgroupoid of the skew product G ×c Z, we can
generally not embed G itself into G ×c Z in any way (e.g. G ×c Z can be principal
while G is not.)
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There is a canonical action ĉ by Z on G×cZ defined by ĉk · (g,m) = (g,m + k),
i.e. shifting the integer coordinate. If one then forms the semi-direct product
groupoid (G ×c Z) oĉ Z, one gets that this semi-direct product is Kakutani equiva-
lent to the groupoid G that we started with, and hence they have the same homology
groups [Mat12]. This is what Matui uses when he computes the homology groups
of GE for a finite graph E by means of a spectral sequence [Mat15b]. We shall
instead use a long exact sequence in homology from [Ort18], to be described in
Section B.6.

B.3 Graphs and their groupoids

As this paper primarily concerns graph groupoids, we spend some time in this
section recalling their definition and properties, as well as establishing notation.
We refer to [BCW17] and [NO19] for additional details.

B.3.1 Graphs

A (directed) graph E = (E0, E1, r, s) consists of two countable sets E0 and E1,
whose elements are called vertices and edges, respectively, in addition to range and
source maps r, s : E1 → E0. We say that E is finite if both E0 and E1 are finite sets.

A path is a sequence of edges µ = e1e2 . . . en such that r (ei) = s(ei+1)
for 1 ≤ i ≤ n − 1. The length of µ is |µ| B n. The set of paths of length n is
denoted En and the set of all finite paths is E∗ B

⋃∞
n=0 En. The range and source

maps extend to E∗ by setting r (µ) = r (en) and s(µ) = s(e1). For v ∈ E0, we
set s(v) = r (v) = v. If µ, ν ∈ E∗ satisfy r (µ) = s(ν), then µν ∈ E∗ denotes their
concatenation. We say that µ is a subpath of ν if ν = µλ for some path λ with
s(λ) = r (µ). Two paths are called disjoint if neither is a subpath of the other. A
graph E is called strongly connected if for each pair of vertices v,w ∈ E0 there is a
path from v to w. By a strongly connected component we mean a maximal subset
of vertices such that there is a path between any two vertices in this subset. The
strongly connected components form a partition of E0.

An edge e ∈ E1 with r (e) = s(e) is called a loop. More generally, a cycle is
a nontrivial path µ (i.e. |µ| ≥ 1) with r (µ) = s(µ), and we say that µ is based at
s(µ) or that s(µ) supports the cycle µ. By µk we mean µ concatenated k times.
A graph is called acyclic if it has no cycles. An exit for a path µ = e1 . . . en is an
edge e ∈ E1 such that s(e) = s(ei) and e , ei for some 1 ≤ i ≤ n. The graph E is
said to satisfy Condition (L) if every cycle in E has an exit.

For a vertex v ∈ E0 and n ≥ 1 we define the sets vEn B {µ ∈ En | s(µ) = v}

and Env B {µ ∈ En | r (µ) = v}. We call v a sink if vE1 = ∅ and a source if
E1v = ∅. Furthermore, v is called an infinite emitter if vE1 is an infinite set. Sinks
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and infinite emitters are collectively referred to as singular vertices and the set
of these is denoted E0

sing. Non-singular vertices are called regular. A graph is
row-finite if it has no infinite emitters, and essential if it has no sinks nor sources.

B.3.2 The boundary path space

An infinite path in a graph E is a sequence of edges x = e1e2e3 . . . such that
r (ei) = s(ei+1) for all i ∈ N. We define s(x) B s(e1) and |x | B ∞. The set of all
infinite paths is denoted E∞. We call E cofinal if for every vertex v ∈ E0 and for
every infinite path e1e2 . . . ∈ E∞, there is a path from v to s(en) for some n ∈ N.
The boundary path space of E is

∂E B E∞ ∪ {µ ∈ E∗ | r (µ) ∈ E0
sing}.

The cylinder set of a finite path µ ∈ E∗ is Z (µ) B {µx | x ∈ ∂E, s(x) = r (µ)}.
Given a finite subset F ⊆ r (µ)E1, we define the associated punctured cylinder set
to be Z (µ \ F) B Z (µ) \

(⊔
e∈F Z (µe)

)
. Note that two finite paths are disjoint if

and only if their cylinder sets are disjoint sets.
The topology on the boundary path space ∂E is specified by the countable

basis
{
Z (µ \ F) | µ ∈ E∗, F ⊆finite r (µ)E1

}
. This turns ∂E into a locally compact

Hausdorff space in which each basic set Z (µ \ F) is compact open [Web14].
Note that the boundary path space ∂E itself is compact if and only if E0 is finite.
Existence of isolated points in ∂E is characterized in [CW18, Section 3].

Define ∂E≥n B {x ∈ ∂E | |x | ≥ n} for n ∈ N, which are open subsets of ∂E.
The shift map on E is the map σE : ∂E≥1 → ∂E given by

σE (e1e2e3 . . .) = e2e3e4 . . .

for e1e2e3 . . . ∈ ∂E≥2 andσE (e) = r (e) for e ∈ ∂E∩E1. The imageσE

(
∂E≥1

)
is

also open in ∂E and the shift map is surjective precisely when E has no sources. We
also setσ0

E = id∂E . Then the iteratesσn
E : ∂E≥n → ∂E are local homeomorphisms

for each n ≥ 0.

B.3.3 Graph groupoids

The graph groupoid of a graph E is

GE B {(x,m − n, y) | m, n ≥ 0, x ∈ ∂E≥m, y ∈ ∂E≥n, σm
E (x) = σn

E (y)},

equipped with the product (x, k, y) · (y, l, z) B (x, k + l, z) (and undefined oth-
erwise), and inverse (x, k, y)−1 B (y,−k, x). In other words, a triplet (x, k, y)
in ∂E ×Z× ∂E belongs to the graph groupoid GE if and only if x = µz and y = νz
for some finite paths µ, ν ∈ E∗ and a boundary path z ∈ ∂E satisfying |µ| = |ν |+ k.
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Given two finite paths µ, ν ∈ E∗ with r (µ) = r (ν) and a finite subset
F ⊆ r (µ)E1 we define the associated punctured double cylinder set to be the
following subset of GE :

Z (µ, F, ν) B {(x, |µ| − |ν |, y) | x ∈ Z (µ \ F), y ∈ Z (ν \ F), σ |µ |E (x) = σ |ν |E (y)}.

Equipping the graph groupoid GE with the topology generated by the countable
basis {

Z (µ, F, ν) | µ, ν ∈ E∗, r (µ) = r (ν), F ⊆finite r (µ)E1
}

turns it into an ample Hausdorff groupoid, as each Z (µ, F, ν) becomes a compact
open bisection. That this indeed is the standard topology onGE , as in e.g. [BCW17],
was shown in Lemma A.9.2.

The unit space ofGE isG (0)
E = {(x, 0, x) | x ∈ ∂E}, whichwewill freely identify

with the boundary path space ∂E via the homeomorphism (x, 0, x) ↔ x. In terms
of the bases we identify Z (µ, F, µ) with Z (µ \ F). The range and source maps
of GE then become r (x, k, y) = x and s(x, k, y) = y. For a basic compact open
bisection as above we have r (Z (µ, F, ν)) = Z (µ\F) and s(Z (µ, F, ν)) = Z (ν \F).

A graph groupoid GE is effective precisely when E satisfies Condition (L)
([BCW17, Proposition 2.3]), and GE is minimal if and only if E is both cofinal and
there exists a path fromevery vertex to every singular vertex (PropositionA.8.3). On
any graph groupoid there is a canonical cocycle cE : GE → Z given by (x, k, y) 7→ k.
We define

HE B ker(cE ) = {(x, 0, y) ∈ GE },

which is a clopen subgroupoid of GE . The subgroupoid HE and the skew product
groupoid GE ×cE Z will play important roles in the proof of the AH conjecture
for GE .

The full and the reduced groupoid C∗-algebra of a graph groupoid coincide.
There is a canonical isomorphism C∗r (GE ) � C∗(E) which is given by mapping
the indicator function 1Z (v,v) ∈ Cc (GE,C) to the projection pv ∈ C∗(E) for each
v ∈ E0 and mapping 1Z (e,r (e)) ∈ Cc (GE,C) to the partial isometry se ∈ C∗(E) for
each e ∈ E1 [BCW17, Proposition 2.2]. For an introduction to graph C∗-algebras,
see [Rae05].

B.3.4 The skew graph

Let E be a graph. The skew graph of E, denoted E × Z, is the graph with vertices
(E × Z)0 = E0 × Z and edges (E × Z)1 = E1 × Z, such that s(e, i) = (s(e), i) and
r (e, i) = (r (e), i − 1). See Figure B.1 for an example.

The skew graph E × Z played a part in the computation of K-theory for graph
C∗-algebras [RS04]. A useful fact is that the skew graph is always acyclic, and
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E

v

w

E × Z · · ·

(v,−1)

(w,−1)

(v, 0)

(w, 0)

(v, 1)

(w, 1)

· · ·

Figure B.1: An example of a graph and its skew graph. A double arrow indicates
that there are infinitely many edges.

therefore its graphC∗-algebra,C∗(E×Z), is an AF-algebra [DT05, Corollary 2.13].
Thus its K1 group vanishes, which in turn allows the K-theory of C∗(E) to be
computed from a suitable six-term exact sequence which relates the K-theory of
the skew graph C∗-algebra with that of the original graph C∗-algebra. As Matui
and others have noticed, one can do something similar for graph groupoids to
compute their homology, see [Mat12], [Ort18], [FKPS18]. We will turn to this in
Section B.7. For now, let us note that the skew graph corresponds to taking the
skew product of the graph groupoid by the canonical graph cocycle.

Lemma B.3.1. For any graph E we have that GE ×cE Z � GE×Z as étale groupoids
via the map ((x, k, y),m) 7→ (x (m), k, y(m+k)), where x (m) ∈ ∂(E × Z) denotes the
boundary path whose edges correspond to those in x, but which is anchored at
level m in E × Z.

Throughout this paper it will be crucial that the skew product of any graph
groupoid is an AF-groupoid. This was observed for finite graphs in [Mat12] and
for row-finite graphs it follows from [FKPS18, Lemma 6.1]. Since we are allowing
infinite emitters in our graphs, we include an argument covering the general case.

Proposition B.3.2. Let E be an acyclic graph. Then GE is an AF-groupoid.

Proof. Recall that all graphs are assumed to be countable. Therefore we can find
an increasing sequence of finite subgraphs F1 ⊆ F2 ⊆ F3 ⊆ . . . of E such that
∪∞
n=1Fn = E. From these we define the following finite sets of pairs of paths

En B {(µ, ν) ∈ (Fn)∗ × (Fn)∗ | r (µ) = r (ν)}.
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We claim that the following subsets of GE form an exhaustive sequence of open
elementary subgroupoids:

KE,n B G (0)
E

⋃ ⋃
(µ,ν)∈En

Z (µ, ν).

A priori, it is not entirely clear that the KE,n’s are closed under multiplication
(in GE ). This relies on the acyclicity of E, and we provide an argument below.

Suppose g, h ∈ KE,n and that the product g · h is defined (i.e. the source
of h is the range of g). This means that g = (µx, k, νx) ∈ Z (µ, ν) and that
h = (ρy, l, τy) ∈ Z (ρ, τ), where µ, ν, ρ, τ are finite paths in Fn and νx = ρy. The
latter equality implies that either ν ≤ ρ or ν ≥ ρ. Assuming that ν ≤ ρ (the other
case proceeds similarly), there is a finite path γ, necessarily also in Fn, such that
ρ = νγ. Then we have x = γy, which means that g · h = (µγy, k + l, τy). Since E
is acyclic, GE is principal and therefore we must have k + l = |µγ | − |τ |. This
shows that g · h ∈ Z (µγ, τ) ⊆ KE,n, as desired.

On the other hand, it is clear that KE,n is closed under taking inverses, and
hence KE,n is a clopen subgroupoid of GE . It follows from the finiteness of En
that KE,n \ G (0)

E is compact. Finally, KE,n is principal because GE is. This shows
that GE is an AF-groupoid. �

Combining Lemma B.3.1 and Proposition B.3.2 together with the fact thatHE

embeds as a clopen subgroupoid of GE ×cE Z (Lemma B.2.4) we obtain the
following corollary.

Corollary B.3.3. For any graph E, both GE ×cE Z and HE are AF-groupoids.

We end this section by describing a consequence of Theorem B.2.2 that we
shall need in the proof of Lemma B.7.7. For an arbitrary graph E the K0-group of
its graph C∗-algebra is isomorphic to the abelian group generated by elements gv
for v ∈ E0, subject to the relations

gv =
∑

e∈vE1

gr (e)

whenever v is a regular vertex [DT02]. This isomorphism is implemented by
mapping [pv]0 to gv, where pv denotes the projection in C∗(E) associated to v.
Using the identification between K0 and H0 for AF-groupoids from TheoremB.2.2,
together with the fact that the skew product GE ×cE Z is an AF-groupoid, we deduce
the following.

Lemma B.3.4. Let E be a graph. For each w ∈ E0
sing and i ∈ Z, the element[

1Z (w)×{i }
]
generates a free summand of H0(GE ×cE Z).
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B.4 The AH conjecture

It is time to define the AH conjecture properly, as well as discuss its current status
and some aspects of how one can prove it. We will also define and discuss the
HK property.

Matui’s AH Conjecture ([Mat16]). Let G be an effective minimal second count-
able Hausdorff étale groupoid whose unit space G (0) is a Cantor space. Then the
following sequence is exact

H0(G) ⊗ Z2 ~G�ab H1(G) 0.j Iab (B.4.1)

B.4.1 The maps in the AH conjecture

Let us recall the two maps that appear in (B.4.1). The index map I : ~G� → H1(G)
is the homomorphism given by πU 7→ [1U ], where U is a full bisection in G.
We denote the induced map on the abelianization ~G�ab by Iab. The index map
was introduced in the setting of Cantor minimal systems in [GPS99] and later
generalized to étale groupoids over Cantor spaces in [Mat12].

Many of the results leading up to the main result do not require the unit space
of the groupoid to be compact. In some of these results the index map appears, but
the definition of the index map above does not make sense in the non-compact case.
Indeed, if G is an ample Hausdorff groupoid with G (0) non-compact, then any full
bisection U ⊆ G is non-compact as well, and so 1U is not compactly supported.
However, there is a straightforward way to remedy this. As shown in [NO19],
where we extended the definition of the topological full group to the non-compact
setting, each full bisection U ⊆ G can be written as

U = U⊥
⊔ (

G (0) \ supp(πU )
)
,

where U⊥ is a compact bisection with s(U⊥) = r (U⊥) = supp(πU ). We extend
the definition of the index map by setting

I (πU ) B [1U⊥] .

This agrees with the definition in the compact case because [1U ] = [1U′] if U
is a compact bisection which decomposes as U ′ t A, where A ⊆ G (0) [Mat12,
Lemma 7.3]. The first homology group only “sees” the part of the groupoid that
lies outside the unit space.

While the indexmap now is defined for all ample effective Hausdorff groupoids,
the map j : H0(G) ⊗ Z2 → ~G�ab is a priori only defined when every G-orbit has at
least 3 elements and G (0) is a Cantor space. In this case, the group H0(G) ⊗ Z2 is
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generated by elements of the form [1s(U )]⊗ 1, whereU ⊆ G is a compact bisection
with s(U) ∩ r (U) = ∅. Themap j is given by j ([1s(U )]⊗1) = [πÛ ] ∈ ~G�ab, where
πÛ ∈ ~G� is the transposition defined in Subsection B.2.2. That j is well defined
is proven in [Nek19, Section 7] (see also the proof of [Mat16, Theorem 3.6]).

B.4.2 The AH conjecture for graph groupoids

Let us determine what the assumptions in the AH conjecture mean for graph
groupoids. It follows from the results in Section A.8 that the following conditions
exactly capture these assumptions.

Definition B.4.1. We say that a graph E satisfies the AH criteria if E0 is finite, E
has no sinks, is cofinal, satisfies Condition (L) and each vertex can reach all infinite
emitters.

Proposition B.4.2. Let E be a graph. Then GE satisfies the assumptions in the
AH conjecture if and only if E satisfies the AH criteria.

Concretely, the AH criteria mean that E has exactly one nontrivial strongly
connected component, in the sense that this is the only component which contains
a cycle. In fact, there are at least two disjoint cycles based at each vertex in
this component. This component also contains all infinite emitters (if there are
any). Any vertex outside this component does not support a cycle, and any path
from such a vertex eventually ends up in the nontrivial connected component. So
if E is not strongly connected, then some of the vertices outside the nontrivial
connected component must be sources. Also note that E is either finite or has
an infinite emitter. In particular, a strongly connected graph with finitely many
vertices satisfies the AH criteria as long as it is not one of the cycle graphs Cn (i.e.
a single cycle with n vertices).

Asmentioned in the introduction, theAHconjecturewas proved for (restrictions
of) graph groupoids arising from strongly connected finite graphs (which are not
cycle graphs) in [Mat15b]. The main difficulty of extending this to all graphs
satisfying the AH criteria lies in dealing with the presence of infinite emitters.
Dealing with any sources in the graph, on the other hand, turns out to be quite easy.
Many of the results leading up to the main result applies to more general graphs
than those satisfying the AH criteria. Therefore we will not restrict to this until the
very end.

Remark B.4.3. We mention in passing that, coincidentally, a graph E satisfies the
AH criteria if and only if its graph C∗-algebra, C∗(E), is a unital Kirchberg algebra
(in the UCT class).
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B.4.3 Status of the AH conjecture

The AH conjecture has so far been verified in a number of cases. In [Mat16] it was
shown (generalizing prior results) that the AH conjecture holds for groupoids which
are almost finite and principal, and for products of SFT-groupoids. The former class
includes AF-groupoids, transformation groupoids of (free) d-dimensional Cantor
minimal systems and groupoids associated to aperiodic quasicrystals (as described
in [Nek19, Subsection 6.3]). The AH conjecture also holds for transformation
groupoids associated odometers [Sca18].

In some cases the map j can even be shown to be injective, making (B.4.1) a
short exact sequence. When this is the case the groupoid is said to have the strong
AH property [Mat16]. If, moreover, j is split-injective, so that the sequence splits,
then we say that G has the split AH property. AF-groupoids, groupoids of Cantor
minimal systems (d = 1) and SFT-groupoids all have the split AH property [Mat17,
Example 4.8]. The odometers in [Sca18] have the strong AH property, but it is
unknown whether they all split. To the best of the authors’ knowledge, there are
currently no known examples of groupoids which have the strong AH property,
but not the split AH property. There are, however, examples of groupoids for
which the AH conjecture holds, yet they do not have the strong AH property. Two
classes of such examples are groupoids arising from self-similar groups [Nek19,
Example 7.6] and products of SFT-groupoids [Mat16, Subsection 5.5].

Remark B.4.4. Note that if the AH conjecture holds for a groupoid G and the
homology groups H0(G) and H1(G) are finitely generated, then so is the abelianiza-
tion ~G�ab. In this case, the split AH property is equivalent to the strong AH prop-
erty together with having any isomorphism ~G�ab � H1(G) ⊕ (H0(G) ⊗ Z2).

We also remark that if H1(G) is free abelian (i.e. projective in the category of
abelian groups), then the split AH property is equivalent to the strong AH property.

B.4.4 The HK property

As mentioned in the introduction, the other conjecture from [Mat16], namely the
HK conjecture, has recently been refuted. In order to reflect this, we make the
following definition for groupoids satisfying its conclusion.

Definition B.4.5. We say that an ample Hausdorff groupoid G has theHK property
if there are isomorphisms

K0
(
C∗r (G)

)
�

∞⊕
n=0

H2n(G) and K1
(
C∗r (G)

)
�

∞⊕
n=0

H2n+1(G).

We remark that the assumptions in the HK conjecture were exactly the same as
in the AH conjecture. As mentioned in the introduction, the HK property has been
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established for several key classes of groupoids. Furthermore, the HK property
is preserved under Kakutani equivalence. It is also preserved under products, as
long as the factors are amenable, due to the Künneth formula from [Mat16]. Most
pertinent to the present paper, however, is the fact that all graph groupoids have the
HK property (even if they are not minimal or effective). More precisely, we have
the following.

Theorem B.4.6. Let E be any graph. Then

H0(GE ) � K0(C∗(E)), H1(GE ) � K1(C∗(E)) and Hn(GE ) = 0 for n ≥ 2.

In particular, GE has the HK property.

Theorem B.4.6 was established for finite essential graphs in [Mat12]. For row-
finite graphs with no sinks it follows both from the results in [Ort18] and [FKPS18].
In [HL18] the description of H0(GE ) was extended to arbitrary graphs. We add
the finishing touch by noting that any graph groupoid is Kakutani equivalent to the
groupoid of a row-finite graph with no sinks (namely its desingularization [DT05]).
Since Kakutani equivalent groupoids have the same homology and their reduced
groupoid C∗-algebras are Morita equivalent, the theorem follows from the afore-
mentioned results.

The K-groups of graph C∗-algebras are relatively easy to compute. They
are, roughly speaking, determined by the Smith normal form of the part of the
adjacency matrix of E which only includes edges emitted by regular vertices. The
group K0(C∗(E)) is a quotient of Z |E0 | and we have rank(K0(C∗(E))) ≥ |E0

sing |.
On the other hand, K1(C∗(E)) is free abelian and

rank(K1(C∗(E))) = rank(K0(C∗(E))) − |E0
sing |.

Consult e.g. [Tom07, Chapter 2.3.1] for more details and examples.
Once we have established the AH conjecture for graph groupoids, the fact that

we can compute the homology groups allows us to say something useful about the
abelianization ~GE�ab, also when E has infinite emitters. See Section B.10 for a
discussion of examples and consequences of the AH conjecture. For now we note
the following.

Corollary B.4.7. Let E be a graph. Then GE has the strong AH property if and
only if GE has the split AH property.

Proof. As K1(C∗(E)) is always free [DT02], the assertion follows from Theo-
rem B.4.6 and Remark B.4.4. �
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B.4.5 Aspects of proving the AH conjecture

When it comes to verifying the AH conjecture for a groupoid G, the hardest part is
arguably to establish that ker(Iab) ⊆ im( j). Indeed, the reverse inclusion Iab◦ j = 0
is always true, since all transpositions belong to ker(I). That is, S (G) ≤ ker(I).
To see this, suppose U ⊆ G is a compact bisection with disjoint source and range.
Then

I
(
πÛ

)
= [1Û ] =

[
1UtU−1t(G (0)\supp(π

Û
))

]
=

[
1U + 1U−1

]
= 0 ∈ H1(G),

using [Mat12, Lemma 7.3]. Surjectivity of the index map has already been es-
tablished for two general classes of groupoids, namely for almost finite groupoids
[Mat12, Theorem 7.5] and for purely infinite groupoids [Mat15b, Theorem 5.2].
Just as with SFT-groupoids, we will see that the more general graph groupoids
studied here also belong to the latter class.

Definition B.4.8 ([Mat15b, Definition 4.9]). An effective ample groupoid G with
compact unit space is said to be purely infinite if there for every clopen subset
A ⊆ G (0) exists compact bisections U,V ⊆ G satisfying s(U) = s(V ) = A and
r (U) t r (V ) ⊆ A.

Proposition B.4.9. Let E be a graph satisfying the AH criteria. Then the groupoid
GE |Y is purely infinite for each clopen Y ⊆ ∂E.

Proof. Although the proof of [Mat15b, Lemma 6.1] remains valid with minor
modifications in the presence of infinite emitters, we give a brief argument in
our notation for the convenience of the reader. Since pure infiniteness passes to
restrictions it suffices to consider Y = ∂E.

Let A ⊆ ∂E be given. By compactness we can express A = tm
i=1Z (µi \ Fi)

as a finite union of punctured cylinder sets. By the description following Defini-
tion B.4.1, any vertex lying outside the nontrivial strongly connected component
of E is regular. Any path from such a vertex eventually ends up in the nontrivial
connected component. This means that by partitioning the cylinder set Z (µi \ Fi)
into smaller cylinder sets, defined by paths extending µi, we may without loss of
generality assume that r (µi) lie in the nontrivial connected component for each i.
Thus we can, for each i, find two disjoint cycles νi, ν′i based at r (µi). Using these
we define bisections U = tm

i=1Z (µiνi, Fi, µi) and V = tm
i=1Z (µiν′i, Fi, µi) which

we see satisfy the conditions in Definition B.4.8. �

Remark B.4.10. Recently, more general notions of pure infiniteness for étale
groupoids have appeared in the works of Suzuki [Suz17] and Ma [Ma20]. How-
ever, for ample minimal groupoids with compact unit space, as in the setting of this
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paper, both notions agree with Matui’s. Furthermore, they imply Anantharaman-
Delaroche’s notion of locally contracting [AD97]. On a somewhat related note,
there is also the recent preprint [ADS19] in which the (not necessarily simple) pure
infiniteness of graph C∗-algebras (of row-finite graphs without sinks) is character-
ized solely in terms of the graph groupoid, by means of the paradoxicality notion
from [BL20].

The inclusion ker(Iab) ⊆ im( j) is intimately related to the kernel of the index
map being generated by transpositions, as encapsulated by the following definition.

Definition B.4.11 ([Mat16, Definition 2.11]). Let G be an effective ample Haus-
dorff groupoid. We say that G has Property TR if S (G) = ker(I).

By Proposition B.4.9 and [Mat16, Theorem 4.4] it suffices to establish Prop-
erty TR in order to verify the AH conjecture for graph groupoids. Therefore, the
rest of the paper is mostly devoted to demonstrating that graph groupoids do have
Property TR.

Remark B.4.12. In general, Property TR implies the inclusion ker(Iab) ⊆ im( j),
i.e. exactness at ~G�ab in (B.4.1). The converse holds if the commutator subgroup
D(~G�) is simple, for in that case D(~G�) = A(G), where A(G) denotes the “al-
ternating” subgroup of S (G) defined in [Nek19]. The group D(~G�) is known
to be simple for minimal groupoids which are either almost finite or purely infi-
nite [Mat15b]. So for these two classes of groupoids we see that Property TR is in
fact equivalent to the AH conjecture.

We close this section by observing, as was done in [Mat15b], that to establish
Property TR it suffices to only consider elements in the topological full group
whose support is a proper subset of the unit space. Although an easy observation,
this is needed for the proof of the main result to work.

Lemma B.4.13. Let G be an ample effective Hausdorff groupoid. If all elements
α ∈ ~G� which satisfy I (α) = 0 ∈ H1(G) and supp(α) , G (0) are products of
transpositions, then G has Property TR.

Proof. Let α ∈ ~G� \ {id} be given and suppose I (α) = 0 ∈ H1(G). As α is not
the identity, supp(α) is non-empty. Then there is some compact open set Z ⊆ G (0)

such that α(Z ) ∩ Z = ∅ . We define a transposition τ ∈ S (G) by setting τ = α
on Z , τ = α−1 on α(Z ) and τ = id elsewhere. Then supp(τ) = α(Z ) t Z and
supp(τα) ⊆ G (0) \ (α(Z ) t Z ) ( G (0). Since both α and τ (being a transposition)
are in the kernel of the index map, so is their product, and by assumption τα is then
a product of transpositions. Now α is clearly also a product of transpositions. �
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B.5 Cancellation for AF-groupoids

Cancellation for ample Hausdorff groupoids was introduced by Matui in [Mat16],
and it bears resemblance to the cancellation property (in K-theory) for C∗-algebras
(see [RLL00, Definition 7.3.1]).

Definition B.5.1. An ample Hausdorff groupoid G is said to have cancellation if
whenever one has [1A] = [1B] in H0(G) for ∅ , A, B ⊆ G (0) compact open, there
exists a bisection U ⊆ G with s(U) = A and r (U) = B.

In order to prove ourmain result we are going to need the fact that AF-groupoids
have cancellation. This might be known to experts, but we were unable to locate a
reference. Theorem 6.12 in [Mat12] covers minimal AF-groupoids with compact
unit space, but we need cancellation for the skew product GE ×cE Z, which is
generally neither minimal nor does it have compact unit space. So we provide a
proof here, which we divide into three lemmas in terms of permanence properties
of cancellation.

Lemma B.5.2. Let G be an ample Hausdorff groupoid. If G1 ⊆ G2 ⊆ G3 ⊆ . . . are
open subgroupoids of G with ∪∞

n=1Gn = G, and each Gn has cancellation, then G
has cancellation.

Proof. Let A, B ⊆ G (0) be compact open and suppose [1A] = [1B] in H0(G). This
means that 1A − 1B = δ1( f ) for some f ∈ Cc (G,Z). As the support of f is
compact we must have supp( f ) ⊆ Gn for some n ∈ N. By possibly increasing
n we may suppose that A, B ⊆ G (0)

n as well. We have f |Gn ∈ Cc (Gn,Z) and
δ1( f |Gn ) = δ1( f ) = 1A − 1B. Cancellation in Gn now provides a bisection
U ⊆ Gn ⊆ G with s(U) = A and r (U) = B. �

Lemma B.5.3. If G1 and G2 are ample Hausdorff groupoids with cancellation,
then the disjoint union groupoid G1 t G2 has cancellation.

Proof. Let A, B ⊆ (G1 t G2)(0) be compact open and suppose that [1A] = [1B]
in H0(G) � H0(G1) ⊕ H0(G2). Let f ∈ Cc (G1tG2,Z) be such that δ1( f ) = 1A−1B.
We can write (G1 t G2)(0) = G (0)

1 t G (0)
2 , A = A1 t A2, B = B1 t B2 and

f = f1 + f2 respecting this decomposition. It is now clear that δ1( f1) = 1A1 − 1B1

and δ1( f2) = 1A2 − 1B2 , so by cancellation in G1 and G2 we obtain bisections
U1 ⊆ G1 and U2 ⊆ G2 with s(U1) = A1, r (U1) = B1, s(U2) = A2 and r (U2) = B2.
Setting U = U1 tU2 does the trick. �

Lemma B.5.4. Let X be a zero-dimensional compact Hausdorff space. Then the
elementary groupoid of type n, X ×Rn, has cancellation for each n ∈ N.
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Proof. Denote K B X × Rn, and write K(0) = tn
i=1Xi, where Xi = X × {i}.

Then X1 is a K-full clopen subset of K(0) and K|X1 � X , so we have

H0(K) � H0(K|X1 ) � H0(X ) = C(X,Z).

Suppose that A, B ⊆ K(0) are clopen subsets with [1A] = [1B] in H0(K). We
partition A by writing A = tn

i=1 Ai × {i} for Ai ⊆ X clopen. Let Bi be similar
for B. The bisections Ai × {(1, i)} ⊆ K have source Ai × {i} and range Ai × {1}.
By (B.2.2) this means that under the isomorphism H0(K) � C(X,Z) above, the
element [1A] ∈ H0(K) maps to the function fA B

∑n
i=1 1Ai ∈ C(X,Z), and

similarly [1B] 7→ fB.
Since fA = fB and they are both sums of indicator functions we can find

m j ∈ N and Cj ⊆ X clopen such that fA = fB =
∑J

j=1 m j1C j . We can think of
fA (and fB) being produced by taking each of the parts Ai and “projecting” them
down and then stacking them on top of each other. The height at a point becomes
the function value of fA. For each Cj we have that Cj × {i} ⊆ Ai for precisely
m j indices i, and we have the same for the Bi’s. For fixed j denote these indices
for A by i1, . . . , im j , and denote them by i′1, . . . , i

′
m j

for B. Then define a bisection
Uj ⊆ K by Uj = t

m j

k=1Uk , where Uk B Cj × (i′
k
, ik ). Finally setting U = tJ

j=1Uj

gives a bisection with s(U) = A and r (U) = B. �

Theorem B.5.5. Any AF-groupoid has cancellation.

Proof. Let G be an AF-groupoid. Then we can write G = ∪∞
n=1Gn as an increasing

union of open elementary ample subgroupoids. By [GPS04, Lemma 3.4] each
subgroupoid decomposes as

Gn �
(
t
In
i=1Xi,n ×Rmi,n

) ⊔
Yn,

where each Xi,n is a zero-dimensional compact Hausdorff space, and where Yn
is empty if G (0) is compact and zero-dimensional, locally compact non-compact
and Hausdorff if G (0) is non-compact. Since the trivial groupoid Yn clearly has
cancellation, the result follows by combining the three lemmas above. �

We end this section by observing that in an AF-groupoid, a non-empty subset
of the unit space always gives rise to a nonzero element in homology. This is not so
for all groupoids with cancellation (e.g. the SFT-groupoid of the full 2-shift, G[2]).

Corollary B.5.6. Let G be an AF-groupoid. If A ⊆ G (0) is compact open, then
[1A] = 0 in H0(G) if and only if A = ∅.

Proof. Follows from the proofs above by considering B = ∅, i.e. 1B = 0. �

156



B.6. Two long exact sequences in homology

B.6 Two long exact sequences in homology

Let us first describe a long exact sequence in homology coming from a cocy-
cle. Let G be an ample Hausdorff groupoid with a cocycle c : G → Z. Let π
denote the canonical projection from G ×c Z onto G, i.e. π(g,m) = g. Also,
let ρ B ĉ1 : G ×c Z→ G ×c Z, i.e. ρ(g,m) = (g,m + 1). Since these are étale
homomorphisms, they induce chain maps

π• : C•(G ×c Z,Z) → C•(G,Z) and ρ• : C•(G ×c Z,Z) → C•(G ×c Z,Z)

on the chain complexes that define the homology groups. In fact, id−ρ• and π•
form a short exact sequence of complexes, which in turn induces a long exact
sequence in homology.

Proposition B.6.1 ([Ort18, Lemma 1.4]). Let G be an ample Hausdorff groupoid
and let c : G → Z be a cocycle. Then there is a long exact sequence

· · · H1(G) H0(G ×c Z) H0(G ×c Z) H0(G) 0,H1 (π•) ∂1 id−H0 (ρ•) H0 (π•)

where ∂n denotes the connecting homomorphism.

The maps on the zeroth level are given by

H0(ρ•)
( [

1A×{i }
] )
=

[
1A×{i+1}

]
and H0(π•)

( [
1A×{i }

] )
= [1A]

for A ⊆ G (0) compact open and i ∈ Z. In the case of graph groupoids, we will
see later that the first connecting homomorphism ∂1 : H1(G) → H0(G ×c Z) can
be described explicitly, and that this will allow us to describe the image of the
index map. In order to do that, we are going to need a particular part of the proof
of [Ort18, Lemma 1.4] pertaining to lifts by id−ρ0. We record this lifting in
Lemma B.6.2 below, whose proof itself is an easy calculation.

Lemma B.6.2. Let c : G → Z be a cocycle on an ample Hausdorff groupoid G.
Then for any A ⊆ G (0) compact open and k ∈ Z we have

1A×{k } − 1A×{0} =




(id−ρ0)
(
−

∑k−1
i=0 1A×{i }

)
k > 0,

0 k = 0,
(id−ρ0)

(∑−1
i=k 1A×{i }

)
k < 0.

The next long exact sequence in homology arises from open invariant subsets
of the unit space. This is akin to the six-term exact sequences arising from nested
ideals in filtered K-theory of C∗-algebras [Res06]. Let G be an ample Hausdorff
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groupoid and let Z ⊆ Y ⊆ G (0) be open sets. The inclusion ι : G |Z ↪→ G |Y induces
the chain map

ιn : Cc ((G |Z )(n),Z) → Cc ((G |Y )(n),Z)

which is given by extending functions to be 0 outside G |Z . Let

κn : Cc ((G |Y )(n),Z) → Cc ((G |(Y\Z))(n),Z)

denote the canonical restriction maps. Taking such restrictions commute with the
differentials δn, so κ• is also a chain map.

We claim that when the sets Z and Y are G-invariant, then ι• and κ• form a
short exact sequence of complexes as follows:

0 C• (G |Z,Z) C• (G |Y,Z) C•
(
G |(Y\Z),Z

)
0.ι• κ•

It is clear that κn ◦ ιn = 0. It is also clear that ιn is injective and that κn is surjective.
Suppose that we have κn( f ) = 0 for some f ∈ Cc

(
(G |Y )(n) ,Z

)
. This means that f

is identically zero on
(
G |(Y\Z)

) (n). The invariance of Z implies that there are no
groupoid elements g ∈ G for which s(g) ∈ Z while r (g) ∈ Y \Z , or vice versa. This
forces f to be supported solely on (G |Z )(n), which means that f ∈ im (ιn). The
claim follows. We therefore obtain the following long exact sequence in homology.

Proposition B.6.3. Let G be an ample Hausdorff groupoid and let Z ⊆ Y ⊆ G (0)

be open and G-invariant subsets. Then there is a long exact sequence

· · · H1
(
G |(Y\Z)

)
H0 (G |Z ) H0 (G |Y ) H0

(
G |(Y\Z)

)
0.H1 (κ•) H0 (ι•) H0 (κ•)

B.7 The homology groups of a graph groupoid

We have already seen that the homology groups of a graph groupoid coincide
with the K-groups of its groupoid C∗-algebra. We will make use of this in the
final section. However, in order to prove Property TR for the graph groupoid GE

we are going to relate the first homology group H1(GE ) to the homology groups
H0(GE ×cE Z) and H0(HE ). In this section we will use the long exact sequences
from the previous section to deduce the following embeddings:

H1(GE ) ↪→ H0(HE ) ↪→ H0(GE ×cE Z).

This will be done in three steps: first we show that H1(GE ) ↪→ H0(GE ×cE Z), then
that H0(HE ) ↪→ H0(GE ×cE Z) and finally that H1(GE ) ↪→ H0(HE ). The reason
we need three steps (and not two) is that the third embedding relies on the first two.
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B.7.1 The first embedding

Let us begin by describing the zeroth homology group of the skewproductGE×cEZ.
Recall that (GE ×c Z)(0) is identified with ∂E × Z. Observe that we have

H0(GE ×c Z) = span{[1A] | A ⊆ ∂E × Z compact open}

= span{
[
1Z (µ\F )×{i }

]
| µ ∈ E∗, F ⊆finite r (µ)E1, i ∈ Z}

= span{
[
1Z (µ)×{i }

]
| µ ∈ E∗, i ∈ Z},

since 1Z (µ\F )×{i } = 1Z (µ)×{i } −
∑

e∈F 1Z (µe)×{i } (by span we mean linear combina-
tions over Z). These elements satisfy the following relations in H0(GE ×cE Z):

[
1Z (µ)×{i }

]
=

[
1Z (σE (µ))×{i+1}

]
if |µ| ≥ 1, (B.7.1)

[
1Z (µ)×{i }

]
=

[
1Z (eµ)×{i−1}

]
for any e ∈ E1s(µ), (B.7.2)

[
1Z (µ)×{i }

]
=

∑
e∈r (µ)E1

[
1Z (µe)×{i }

]
if r (µ) is a regular vertex, (B.7.3)

[
1Z (µ)×{i }

]
=

[
1Z (ν)×{i }

]
if |µ| = |ν | and r (µ) = r (ν). (B.7.4)

For all of the sets appearing in the indicator functions above it is easy to find a
bisection in GE ×c Zwhose source is the left hand side and whose range is the right
hand side. From repeated use of the relation (B.7.1) we see that we can even write

H0(GE ×cE Z) = span{
[
1Z (v)×{i }

]
| v ∈ E0, i ∈ Z},

since
[
1Z (µ)×{i }

]
=

[
1Z (r (µ))×{i+ |µ | }

]
.

Let us now consider the long exact sequence in homology that we get from the
canonical cocycle cE on a graph groupoid GE . Since GE ×cE Z is an AF-groupoid
(Corollary B.3.3), its H1 group vanishes, and therefore the first part of the long
exact sequence from Proposition B.6.1 becomes

0 H1(GE ) H0(GE ×cE Z) H0(GE ×cE Z) H0(GE ) 0.∂1 id−H0 (ρ•) H0 (π•)

(B.7.5)
The map H0(ρ•) : H0(GE ×cE Z) → H0(GE ×cE Z) is given by

H0(ρ•)
( [

1Z (v)×{i }
] )
=

[
1Z (v)×{i+1}

]
for v ∈ E0 and i ∈ Z. The connecting homomorphism ∂1 will be described
explicitly in the proof of Lemma B.8.6. From the exactness of (B.7.5) we deduce
the following.
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Proposition B.7.1. Let E be a graph and let H0(ρ•) be as above. Then

H0(GE ) � coker(id−H0(ρ•)) and H1(GE ) � ker(id−H0(ρ•)).

Remark B.7.2. In the proof of [Mat12, Theorem 4.14], Matui obtained formulas
similar to those in Proposition B.7.1 using a spectral sequence. This relied on the
fact that H0(HE ) and H0(GE ×cE Z) can be identified when E is finite (or more
generally row-finite) with no sinks. In this setting ∂E × {0} is (GE ×cE Z)-full, so
HE is Kakutani equivalent to GE ×cE Z. This allowedMatui to immediately realize
H1(GE ) as a subgroup of H0(HE ).

At this point we encounter a significant difference from the finite graph case.
When E has singular vertices one can show that ∂E × {0} never is (GE ×cE Z)-full.
So in our setting we cannot necessarily identify H0(HE ) with H0(GE ×cE Z). We
will, however, be able to identify the former with a subgroup of the latter.

B.7.2 The second embedding

Recall thatHE = ker(cE ) ⊆ GE and from Lemma B.2.4 we have that

HE �
(
GE ×cE Z

)
|∂E×{0}

via the identification (x, 0, y) ↔ ((x, 0, y), 0). In H0(HE ) we have the relation
[
1Z (µ)

]
=

[
1Z (ν)

]
whenever µ, ν ∈ E∗ satisfy |µ| = |ν | and r (µ) = r (ν). The element

[
1Z (µ)

]
in

H0(HE ) corresponds to
[
1Z (µ)×{0}

]
∈ H0(

(
GE ×cE Z

)
|∂E×{0}) under the identifi-

cation above. On the other hand, the indicator function 1Z (µ)×{0} gives rise to an
element

[
1Z (µ)×{0}

]
in H0(GE ×cE Z) as well. A priori, these are different, but we

will see that mapping
[
1Z (µ)

]
∈ H0(HE ) to

[
1Z (µ)×{0}

]
∈ H0(GE ×cE Z) actually

gives an embedding of groups. So that in the end, there is no ambiguity. The map
from H0(HE ) to H0(GE ×cE Z) proposed above extends to arbitrary elements by

H0(HE ) 3 [ f ] 7−→ [ f × 0] ∈ H0(GE ×cE Z)

for f ∈ Cc (∂E,Z), where f × 0 ∈ Cc (∂E × Z,Z) is given by

( f × 0)(x,m) =



f (x) if m = 0,
0 otherwise.

By noting that
(
GE ×cE Z

)
|∂E×{0} = HE × {0} ⊆ GE × Z = GE ×cE Z as sets, it

is not hard to see that this is a well-defined homomorphism. Its injectivity will be
deduced using the second long exact sequence from Section B.6.
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Lemma B.7.3. Let E be a graph. The map φ : H0(HE ) → H0(GE ×cE Z) given
by φ([ f ]) = [ f × 0] for f ∈ Cc (∂E,Z) is an injective group homomorphism.

Proof. In the setting of Proposition B.6.3, set G = GE ×cE Z, Y = G (0) = ∂E × Z
and X = ∂E × {0}. The clopen set X is neither G-full nor invariant, so we instead
consider its saturation, namely Z B r (s−1(X )). In words Z is the smallest G-
invariant subset containing X . Since the range map r is open, Z is open in ∂E ×Z.
By its very definition, X is clopen in Z and G |Z -full, henceHE � G |X = (G |Z ) |X is
Kakutani equivalent to G |Z . The induced isomorphism H0(HE ) � H0(G |Z ) maps
[1Z (µ)] to [1Z (µ)×{0}], where we now consider 1Z (µ)×{0} ∈ Cc (Z,Z). Since G is an
AF-groupoid and the set Y \ Z is closed in G (0), the restriction G |(Y\Z) becomes an
AF-groupoid (in the relative topology) as well. Its H1 group then vanishes and the
first part of the long exact sequence in Proposition B.6.3 becomes

0 H0
((
GE ×cE Z

)
|Z

)
H0(GE ×cE Z)

H0
((
GE ×cE Z

)
|(∂E×Z)\Z

)
0

H0 (ι•)

H0 (κ•) (B.7.6)

The map H0(ι•) is given by inclusion (i.e. by extending to 0). So if we com-
pose H0(ι•) with the isomorphism H0(HE ) � H0(G |Z ) = H0

((
GE ×cE Z

)
|Z

)
from above we get φ back. Its injectivity then follows from the injectivity
of H0(ι•). �

Remark B.7.4. We can actually describe the set Z from the proof of Lemma B.7.3
explicitly, assuming that E is strongly connected, as follows:

Z = {(x, k) | x ∈ E∞, k ∈ Z}
⊔
{(µ, l) | µ ∈ ∂E ∩ E∗, l ≥ −|µ|} ⊆ ∂E × Z = Y .

The complement is therefore

Y \ Z = (∂E × Z) \ Z = {(µ, l) | µ ∈ ∂E ∩ E∗, l < −|µ|}.

If E has a singular vertex, then Z is an open and dense proper subset of ∂E × Z,
as well as GE ×cE Z-invariant. The complement is non-empty, closed, has empty
interior and is also invariant.

B.7.3 The third embedding

From now on we will freely identify H0(HE ) with the subgroup generated by the
elements

[
1Z (µ)×{0}

]
for µ ∈ E∗ inside H0(GE ×cE Z). The first thing we shall
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note is that this copy of H0(HE ) inside H0(GE ×cE Z) is invariant under H0(ρ•),
provided that E has no sources. Indeed, for µ ∈ E∗

H0(ρ•)
( [

1Z (µ)×{0}
] )
=

[
1Z (µ)×{1}

]
=

[
1Z (eµ)×{0}

]
,

where e is any edge whose range is s(µ) (and the equivalence class does not depend
on which edge e is chosen). The restriction of H0(ρ•) to H0(HE ) will be important
in the sequel, so we give it a name of its own.

Definition B.7.5. Let E be an essential graph. By viewing H0(HE ) as a subgroup
of H0(GE ×cE Z) we define an endomorphism ϕ : H0(HE ) → H0(HE ) by

ϕ
( [

1Z (µ)×{0}
] )
= H0(ρ•)

( [
1Z (µ)×{0}

] )
=

[
1Z (eµ)×{0}

]
,

where e ∈ E1s(µ) is arbitrary.

In the next section we will see that the image of an element of the topological
full group under the index map can be described in terms of the map ϕ.

Remark B.7.6. On page 56 of [Mat15b] Matui implicitly defines, for any finite
strongly connected graph E, an automorphism of H0(HE ) denoted δ. Explicitly, δ
is given by

δ
( [

1Z (µ)×{0}
] )
=

[
1Z (σE (µ))×{0}

]
=

[
1Z (µ)×{−1}

]

for
[
1Z (µ)×{0}

]
∈ H0(HE ) = span

{ [
1Z (µ)×{0}

]
| µ ∈ E≥1

}
.

Hence the homomorphism ϕ from Definition B.7.5 equals δ−1. However, if the
graph E has singular vertices, then δ is no longer globally defined on H0(HE ).
To see this, note that ϕ is generally not surjective. For example, the elements[
1Z (w)×{0}

]
, where w is an infinite emitter, will generally not be in the image of ϕ.

We are now ready to prove the the third and final embedding of the homology
groups.

Lemma B.7.7. Let E be an essential graph. Then ker(id−H0(ρ•)) = ker(id−ϕ)
as subsets of H0(GE ×cE Z).

Proof. With φ as in Lemma B.7.3 we have the commutative diagram

H0(GE ×cE Z) H0(GE ×cE Z)

H0(HE ) H0(HE )

id−H0 (ρ•)

id−ϕ

φ φ
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under which we identify H0(HE ) with φ(H0(HE )) ⊆ H0(GE ×cE Z). From this it
is clear that ker(id−ϕ) ⊆ ker(id−H0(ρ•)).

To prove the reverse inclusion we first show that any element of H0(GE ×cE Z)
can be put in a certain “standard form”. Each element ω ∈ H0(GE ×cE Z) can be
written as

ω =

n∑
i=−n

ki∑
j=1

λi, j
[
1Z (vi, j )×{i }

]
,

where λi, j are integers and vi, j ∈ E0. When i ≥ 0 we have

[
1Z (v)×{i }

]
=

[
1Z (µ)×{0}

]
, (B.7.7)

where µ is any path of length i in E which ends in v. When v is a regular vertex
we have [

1Z (v)×{i }
]
=

∑
e∈vE1

[
1Z (r (e))×{i+1}

]
. (B.7.8)

So when i < 0 we can, by repeated use of (B.7.8), write

[
1Z (v)×{i }

]
=

−1∑
j=i

K j∑
k=1

[
1Z (wj,k )×{ j }

]
+

K0∑
k=1

[
1Z (vk )×{0}

]
, (B.7.9)

where each w j,k is an infinite emitter. Combining (B.7.7) and (B.7.9) we see that
we can write the arbitrary element ω as

ω =

−1∑
i=−n

Ji∑
j=1

λi, j
[
1Z (wi, j )×{i }

]
+

J0∑
j=1

λ0, j
[
1Z (µ j )×{0}

]
,

where n ∈ N, λi, j ∈ Z, each wi, j is an infinite emitter and µ j ∈ E∗. We may assume
that all the wi, j’s are different for each fixed i.

Suppose now that ω ∈ ker(id−H0(ρ•)). We need to show that ω ∈ H0(HE )
(viewed as a subgroup of H0(GE ×cE Z)). We compute

H0(ρ•)(ω) =
−1∑

i=−n

Ji∑
j=1

λi, j
[
1Z (wi, j )×{i+1}

]
+

J0∑
j=1

λ0, j
[
1Z (µ j )×{1}

]

=

0∑
i=−n+1

Ji−1∑
j=1

λi−1, j
[
1Z (wi−1, j )×{i }

]
+

J0∑
j=1

λ0, j
[
1Z (e jµ j )×{0}

]
,
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where e j is any edge ending in s(µ j ). From this we get

0 = ω − H0(ρ•)(ω) =
J−n∑
j=1

λ−n, j
[
1Z (w−n, j )×{−n}

]

+

−1∑
i=−n+1

*.
,

Ji∑
j=1

λi, j
[
1Z (wi, j )×{i }

]
−

Ji−1∑
j=1

λi−1, j
[
1Z (wi−1, j )×{i }

]+/
-

+

J0∑
j=1

(
λ0, j

[
1Z (µ j )×{0}

]
− λ0, j

[
1Z (e jµ j )×{0}

] )
−

J−1∑
j=1

λ−1, j
[
1Z (w−1, j )×{0}

]
.

(B.7.10)

By Lemma B.3.4, each element
[
1Z (w−n, j )×{−n}

]
generates a free summand of

H0(GE ×cE Z), as w−n, j is singular. Since all the other terms have a strictly smaller
second coordinate, in order for the right hand side of (B.7.10) to be 0 we must
have λ−n, j = 0 for all 1 ≤ j ≤ J−n. Thus we may replace −n with −n + 1 in the
expression for ω. Arguing inductively we get that λi, j = 0 for all −1 ≤ i ≤ −n
and 1 ≤ j ≤ Ji. Hence the expression for ω reduces to

ω =

J0∑
j=1

λ0, j
[
1Z (µ j )×{0}

]
,

from which we see that ω ∈ H0(HE ). �

B.8 The image of the index map

Recall the index map I : ~GE� → H1(GE ) described in Section B.4. Our main
goal is to establish that the kernel of the index map is generated by transpositions
(i.e. property TR) for minimal graph groupoids. To that end, the goal of this
section is to describe the image I (α) ∈ H1(GE ) of an element α ∈ ~GE� under the
identification H1(GE ) � ker(id−ϕ) from Proposition B.7.1 and Lemma B.7.7.

B.8.1 Graded partitions

The identification desribed above will be done in terms of the following “graded
partitions” as defined in [Mat15b, page 60].

Definition B.8.1. Let E be a graph. For α = πU ∈ ~GE� and k ∈ Z we define the
set

Sα(k) B s
(
U ∩ c−1

E (k)
)
= {x ∈ ∂E | (α(x), k, x) ∈ U }.
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Note that each Sα(k) is clopen and that ∂E \ supp(α) ⊆ Sα(0), i.e. Sα(0)
contains the largest (cl)open set fixed by α. As supp(α) is compact, Sα(k) is
also compact when k , 0. This implies that only finitely many Sα(k)’s will be
non-empty. Hence these form a finite partition of the boundary path space ∂E. We
make a few more observations about these graded partitions that we are going to
need in the proof of the main result.

LemmaB.8.2. Let E be a graph and let α ∈ ~GE�. We have α(Sα(k)) = Sα−1 (−k)
for each k ∈ Z.

Proof. Recall that Uα denotes the unique bisection that satisfies α = πUα . Let
x ∈ Sα(k), i.e. (α(x), k, x) ∈ Uα. Then (x,−k, α(x)) ∈ (Uα)−1 = Uα−1 . This
shows that α(x) ∈ Sα−1 (−k), which means that α(Sα(k)) ⊆ Sα−1 (−k) for all
integers k. Since these sets form partitions of the unit space we must necessarily
have equality. �

The next observation is that when two elements of the topological full group
have the same graded partitions, then their difference belongs to the AF-kernel of
the cocycle.

Lemma B.8.3. Let E be a graph and let Y ⊆ G (0)
E = ∂E be clopen. Suppose

that α, β ∈ ~GE |Y� satisfy Sα(k) = Sβ (k) for all k ∈ Z. Then βα−1 ∈ ~HE |Y�,
that is, Uβα−1 ⊆ c−1

E (0).

Proof. We claim that because the graded partitions of α and β are the same, we
must have

Sβα−1 (k) =



Y k = 0,
∅ k , 0.

Once we have this we immediately see that each element g = (x, k, y) ∈ Uβα−1

must have k = 0, i.e. that Uβα−1 ⊆ c−1
E (0).

To prove the claim, take an arbitrary point y ∈ Y . Then y ∈ Sα−1 (k) for
some k. By Lemma B.8.2 we have α−1(y) ∈ Sα(−k) = Sβ (−k). Then g =

(α−1(y), k, y) ∈ Uα−1 and h = (βα−1(y),−k, α−1(y)) ∈ Uβ . From this we get
h · g = (βα−1(y), 0, y) ∈ Uβα−1 , hence y ∈ Sβα−1 (0), which proves the claim. �

The third lemma describes what happens to the graded partition of an element
of the topological full group when we perturb it with a particular transposition.

Lemma B.8.4. Let E be a graph and let Y ⊆ G (0)
E = ∂E be clopen. Let V ⊆ GE |Y

be a compact bisection with disjoint source and range, and such that V ⊆ c−1
E (K )

for some integer K . Let τ = πV̂ ∈ ~GE |Y� be the associated transposition. If a
homeomorphism α ∈ ~GE |Y� satisfies supp(α) = s(V ), then supp(τατ) = r (V )
and Sτατ (k) = τ(Sα(k)) for each k ∈ Z.
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Proof. We first take care of the support of τατ. If x < r (V ), then τ(x) < s(V ) =
supp(α). From this we see that τατ fixes x because

τατ(x) = τα(τ(x)) = ττ(x) = x.

This shows that supp(τατ) ⊆ r (V ). By definition, the set {x ∈ ∂E | α(x) , x}
is dense in supp(α) = s(V ). Then the set Z B {τ(x) | x ∈ ∂E and α(x) , x} is
dense in r (V ). Let y ∈ Z and set x = τ(y), so that y = τ(x) and α(x) , x. Then
we have

τ(α(τ(y))) = τ(α(τ2(x))) = τ(α(x)) , τ(x) = y.

Hence Z ⊆ supp(τατ) ⊆ r (V ), and by the density of Z we get supp(τατ) = r (V )
as desired.

We now turn to the second statement. Let x ∈ Sα(k). Then (α(x), k, x) ∈ Uα.
Consider first the case x ∈ supp(α) = s(V ). It is clear from the assumptions
on V that we have Sτ (K ) = s(V ), Sτ (−K ) = r (V ) and Sτ (0) = Y \ supp(τ).
Thus both x and α(x) lie in Sτ (K ). This means that (τ(x), K, x) ∈ Uτ and that
(τα(x), K, α(x)) ∈ Uτ . We also have (τ(x), K, x)−1 = (x,−K, τ(x)) ∈ Uτ , since
τ = τ−1. Multiplying these together we obtain

(τα(x), K, α(x)) · (α(x), k, x) · (x,−K, τ(x)) = (τα(x), k, τ(x)) ∈ Uτατ,

which shows precisely that τ(x) ∈ Sτατ (k).
Lastly consider the case when x < supp(α). Then we must have k = 0, and

since α(x) = x, we have (x, 0, x) ∈ Uα. If x is not in the support of τ either
(i.e. x < r (V )), then τ(x) = x ∈ Sτατ (0) as desired. The final possibility is
that x ∈ r (V ) = Sτ (−K ), and then (τ(x),−K, x) ∈ Uτ and (x, K, τ(x)) ∈ Uτ .
Multiplying these gives

(τ(x),−K, x) · (x, 0, x) · (x, K, τ(x)) = (τ(x), 0, τ(x)) ∈ Uτατ,

hence τ(x) ∈ Sτατ (0).
We have shown that τ(Sα(k)) ⊆ Sτατ (k) for all k, but since both the Sα(k)’s

and the Sτατ (k)’s are partitions, we must actually have equality. This finishes the
proof. �

B.8.2 Identifying I (α)

Let us now turn to describing the image of the index map. Recall the homomor-
phism ϕ : H0(HE ) → H0(HE ) from Definition B.7.5, where we view H0(HE ) as
a subgroup of H0(GE ×cE Z). For n ∈ N its iterates are given by

ϕn
( [

1Z (µ)×{0}
] )
=

[
1Z (µ)×{n}

]
=

[
1Z (νµ)×{0}

]
,
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where ν is any path of length n in E terminating in s(µ). For any path µ in E of
length at least n the iterated inverses are also defined, and they are given by

ϕ−n
( [

1Z (µ)×{0}
] )
=

[
1Z (µ)×{−n}

]
=

[
1Z (σn

E (µ))×{0}
]
.

In the setting of Definition B.8.1 we can write Uα ∩ c−1
E (k) =

⊔Jk
j=1 Z (µ j, Fj, νj ),

where for each j, |µ j | − |νj | = k. When k < 0 this entails that |νj | ≥ |k |. Since
we have that Sα(k) = s

(
Uα ∩ c−1

E (k)
)
=

⊔Jk
j=1 Z (νj \ Fj ), the negative powers ϕi

are then defined on the associated characteristic functions for −|k | ≤ i ≤ −1 and
we have

ϕi
( [

1Sα (k)×{0}
] )
=

[
1Sα (k)×{i }

]
. (B.8.1)

For k ≥ 0 and i ≥ 0 Equation (B.8.1) clearly holds as well. For i = k we
furthermore have

ϕk
( [

1Sα (k)×{0}
] )
=

[
1α(Sα (k))×{0}

]
. (B.8.2)

Definition B.8.5. For k ∈ Z we define the following expression

ϕ(k) B




−(id+ϕ + · · · + ϕk−1) k > 0,
0 k = 0,
ϕ−1 + ϕ−2 + · · · + ϕk k < 0.

The definition above is somewhat formal in the sense that for k < 0 it is only
defined on certain elements. However, we will only apply the negative powers as
in Equation (B.8.1) where they are indeed defined. Observe that formally we have

(id−ϕ) ◦ ϕ(k) = ϕk − id . (B.8.3)

Let us now show how an element α ∈ ~GE� gives rise to an element of
ker(id−ϕ) as on page 61 of [Mat15b]. Assume for simplicity that E0 is finite, so
that Sα(0) is compact. Since both the Sα(k)’s and α(Sα(k))’s form partitions of
∂E we obtain the following using (B.8.2)

[1∂E ] =
∑
k∈Z

[
1Sα (k)×{0}

]
=

∑
k∈Z

[
1α(Sα (k))×{0}

]
=

∑
k∈Z

ϕk
( [

1Sα (k)×{0}
] )
.

Subtracting these using (B.8.3) we get

∑
k∈Z

(ϕk − id)
( [

1Sα (k)×{0}
] )
= (id−ϕ) *

,

∑
k∈Z

ϕ(k) ( [
1Sα (k)×{0}

] )+
-
= 0,

which shows that
∑

k∈Z ϕ
(k) ( [

1Sα (k)×{0}
] )
∈ ker(id−ϕ). Analogously to [Mat15b,

Lemma 6.8] wewill see that this is precisely the element towhich I (α) corresponds.
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0 0 H1(GE )

Cc (GE×Z)
im(δ2)

Cc (GE×Z)
im(δ2)

Cc (GE )
im(δ2) 0

0 Cc (∂E × Z) Cc (∂E × Z) Cc (∂E)

H0(GE × Z) H0(GE × Z) H0(GE )

id−ρ1/ im(δ2) π1/ im(δ2)

δ̃1 δ̃1 δ̃1

id−ρ0 π0

∂1

Figure B.2: The connecting homomorphism ∂1 from the exact sequence (B.7.5).

Lemma B.8.6. Let E be an essential graph and let α = πU ∈ ~GE�. Under the
identification H1(GE ) � ker(id−ϕ), the element I (α) ∈ H1(GE ) corresponds to∑

k∈Z

ϕ(k) ( [
1Sα (k)×{0}

] )
∈ ker(id−ϕ) ≤ H0(HE ).

Proof. The identification H1(GE ) � ker(id−H0(ρ•)) from Proposition B.7.1 is
implemented by the (injective) connecting homomorphism

∂1 : H1(GE ) → H0(GE ×cE Z)

from the exact sequence (B.7.5). Since ker(id−ϕ) = ker(id−H0(ρ•)) = im(∂1) as
subsets of H0(GE ×cE Z), it suffices to compute ∂1(I (α)) ∈ H0(GE ×cE Z). We
will do this by stepwise going through the definition of ∂1 in terms of the Snake
Lemma applied to the diagram in Figure B.2. To save space we have shortened
Cc (G,Z) to Cc (G) and GE ×cE Z to GE × Z. The maps δ̃1 in Figure B.2 are given
by δ̃1( f + im(δ2)) = δ1( f ). The top and bottom rows are the kernels and cokernels
of the δ̃1’s, respectively.

We first treat the case when E0 is finite, for thenU and Sα(0) are both compact.
We start with α = πU ∈ ~GE� and look at I (α) = [1U ] ∈ H1(GE ). Now view
1U + im(δ2) as an element of Cc (GE )/ im(δ2) (recall that δ1(1U ) = 0). A lift of
this element by π1/ im(δ2) is given by the element h B 1U×{0} ∈ Cc (GE ×cE Z),
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since π1(h) = 1U . At this point we have h + im(δ2) ∈ Cc (GE ×cE Z)/ im(δ2).
Before applying δ̃1, we partition the full bisection U defining α in terms of its
values under the cocycle cE :

U =
N⊔

k=−N

Uk, where Uk = U ∩ c−1
E (k),

so that s (Uk ) = Sα(k). Note that

1∂E×{0} =
N∑

k=−N

1s(Uk )×{0} =

N∑
k=−N

1r (Uk )×{0} . (B.8.4)

Using this we compute

δ̃1(h + im(δ2)) = δ1(h) = δ1(1U×{0})

=

N∑
k=−N

δ1(1Uk×{0})

=

N∑
k=−N

(
s∗(1Uk×{0}) − r∗(1Uk×{0})

)
=

N∑
k=−N

(
1s(Uk×{0}) − 1r (Uk×{0})

)
=

N∑
k=−N

(
1s(Uk )×{k } − 1r (Uk )×{0}

)
=

N∑
k=−N

(
1s(Uk )×{k } − 1s(Uk )×{0}

)
=

−1∑
k=−N

(
1Sα (k)×{k } − 1Sα (k)×{0}

)
+

N∑
k=1

(
1Sα (k)×{k } − 1Sα (k)×{0}

)
.

The next step is to find the unique lift of δ1(h) by id−ρ0. Applying Lemma B.6.2
to each term in the sum above we see that this lift is

g B
−1∑

k=−N

−1∑
i=k

1Sα (k)×{i } −

N∑
k=1

k−1∑
i=0

1Sα (k)×{i } ∈ Cc (∂E × Z,Z).

The final step is to map the element g “downwards” into the cokernel of δ̃1, which
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is precisely H0(GE ×cE Z). Using Equation (B.8.1) we find

∂1(I (α)) = ∂1([1U ]) = g + im(δ̃1) = [g]

=

−1∑
k=−N

−1∑
i=k

[
1Sα (k)×{i }

]
−

N∑
k=1

k−1∑
i=0

[
1Sα (k)×{i }

]
=

−1∑
k=−N

−1∑
i=k

ϕi
( [

1Sα (k)×{0}
] )
−

N∑
k=1

k−1∑
i=0

ϕi
( [

1Sα (k)×{0}
] )

=
∑
k∈Z

ϕ(k) ( [
1Sα (k)×{0}

] )
In the case that E0 is infinite, the proof above remains valid if we simply

replaceU withU⊥ from Subsection 4.1, (as this makes all indicator functions above
remain compactly supported) and replace ∂E with supp(πU ) in Equation (B.8.4).

�

We emphasize that the sum in the lemma above really is a finite sum. Since we
are aiming to establish Property TR for restrictions of graph groupoids, we need to
verify that the description of the index map as above also works in this case.

Corollary B.8.7. Let E be an essential graph and let Y ⊆ ∂E be clopen and
GE -full. Then the element I (α) ∈ H1 (GE |Y ) for α ∈ ~GE |Y� corresponds to∑

k∈Z

ϕ(k) ( [
1Sα (k)×{0}

] )
∈ ker(id−ϕ) ≤ H0(HE )

under the identification H1 (GE |Y ) � H1(GE ) � ker(id−ϕ), and the Sα(k)’s form
a finite clopen partition of Y .

Proof. The inclusion GE |Y ↪→ GE induces an isomorphism in homology due to
the fullness of Y . We also have a canonical inclusion ~GE |Y� ↪→ ~GE� given by
πU 7→ πŨ , where Ũ = U t ∂E \ Y for U ⊆ GE |Y a full bisection. In words, πŨ
simply extends πU trivially to the identity on ∂E \Y . Together with the respective
index maps, we claim that from this we get a commutative diagram as follows:

~GE |Y� H1 (GE |Y )

~GE� H1(GE )

I

�

I

To see that the diagram commutes, let α = πU ∈ ~GE |Y� be given, whereU ⊆ GE |Y

is a full bisection. The two paths in the diagram result in α 7→ [1(Ũ )⊥] ∈ H1(GE )
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and α 7→ [1U⊥] ∈ H1(GE ), respectively. These elements are indeed the same since
the sets (Ũ)⊥ and U⊥ are actually equal.

Let α̃ = πŨ denote the trivial extension of α. Then Sα(k) = Sα̃(k) for all k , 0.
Recall that ϕ(0) = 0, so k = 0 does not contribute. Appealing to Lemma B.8.6 we
obtain

I (α) ←→ I (α̃) ←→
∑
k∈Z

ϕ(k)
( [

1Sα̃ (k)×{0}
] )
=

∑
k∈Z

ϕ(k) ( [
1Sα (k)×{0}

] )
,

under the correspondence H1 (GE |Y ) � H1(GE ) � ker(id−ϕ) ≤ H0(HE ). �

Remark B.8.8. For finite graphs one might expect all formulas in the present paper
to recover those in [Mat15b, Section 6] after substituting ϕ = δ−1, since one has
that

ker(id−δ) = ker(id−δ−1)

as sets. However, a small difference already appears in Corollary B.8.7 when
compared to [Mat15b, Lemma 6.8], which will propagate in the sequel. After
substituting ϕ = δ−1, the k’th term (for k , 0) in Corollary B.8.7 becomes

ϕ(k) =



−(id+δ−1 + · · · + δ1−k ) k > 0,
δ + δ2 + · · · + δ |k | k < 0,

whereas the k’th term in [Mat15b, Lemma 6.8] is

δ(−k) =



−(δ−1 + δ−2 · · · + δ−k ) k > 0,
id+δ + · · · + δ |k |−1 k < 0.

The reason these are different is because identifying H1(GE ) with ker(id−δ) instead
of ker(id−δ−1) give different lifts of the element δ1(h) in the proof of LemmaB.8.6.

B.9 Establishing Property TR

We are by now almost ready to prove that restrictions of graph groupoids have
Property TR. Given what we have established so far, our proof will in broad strokes
follow the proof of [Mat15b, Lemma 6.10] using the endomorphism ϕ instead of
the automorphism δ mentioned in Remark B.7.6. However, there is another major
difference, which we discuss below.

What is actually proved in [Mat15b, Lemma 6.10] is that if the adjacency ma-
trix AE of a finite graph E is primitive, then any restriction of GE has Property TR.
Recall that a non-negative integral matrix A is primitive if for some n ∈ N all entries

171



Paper B. Matui’s AH Conjecture for Graph Groupoids

in An are strictly positive. At the beginning of the proof of [Mat15b, Theorem 6.11]
it is noted that the graph groupoid of a strongly connected finite graph is always
Kakutani equivalent to graph groupoid whose adjacency matrix is primitive, from
which it follows that restrictions of the former also have Property TR.

One reason why primitivity of the adjacency matrix is so useful is that this
matrix then has a (strictly dominant) Perron eigenvalue λ > 1. Another reason is
that the AF-groupoidHE becomes minimal. This is if and only if, in fact, and also
equivalent to the shift of finite type determined by AE being topologically mixing.
In this case the infinite path space E∞ admits exactly oneHE -invariant probability
measure. This measure, lets denote it by ω, satisfies ω(s(U)) = λ ω(rU)) for any
compact bisection U ⊆ GE with U ⊆ c−1

E (1). This then allows one to compare
clopen subsets and the image of the class of their characteristic functions under the
automorphism δ and from this obtain bisections connecting them using [Mat12,
Lemma 6.7]. The approach in [Mat15b]was subsequently generalized to an abstract
setting in [Mat16, Proposition 4.5 (2)].

In the setting of the present paper, however, where we allow infinite emitters
in the graphs, we are no longer dealing with a shift of finite type (or any shift
space for that matter), nor do we have a Perron eigenvalue. Neither is the AF-
groupoid HE ever minimal (see Remark B.7.2). So the aforementioned [Mat16,
Proposition 4.5 (2)] does not apply. We replace the notion of primitivity (or
mixing) by the technical Lemma B.9.1 below. It prescribes necessary conditions
on a graph E to guarantee the existence of certain disjoint paths in E from which
we can explicitly define sets with similar properties as the sets Cn,i and Dn, j which
are constructed using the invariant measure ω in [Mat15b, Lemma 6.10]. A key
point is that these necessary conditions can always be arranged, without changing
the isomorphism class of the groupoid, as demonstrated in Lemma B.9.2.

B.9.1 Technical lemmas

The following “combinatorial bookkeeping” lemma will allow us to explicitly
describe the terms in the sum in Corollary B.8.7 and relate them to each other.
As mentioned above, it will play a similar role as primitivity (or mixing) does
in [Mat15b, Lemma 6.10].

Lemma B.9.1. Let E be a strongly connected graph. Assume there is an infinite
emitter in E which supports infinitely many loops and from which there is at least
one edge to any other vertex in E. Let ∅ , Y ⊆ ∂E be clopen. Suppose we are
given a clopen proper subset ∅ , A ( Y , finite subsets P ⊂ N and Q ⊂ −N,
natural numbers mk ∈ N and vertices vk,i ∈ E0 indexed over k ∈ Q ∪ {0} ∪ P and
1 ≤ i ≤ mk . Then there exists a natural number N ≥ maxq∈Q |q | and
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1. mutually disjoint paths γ (0)
k,i
∈ ENvk,i such that Z

(
γ (0)
k,i

)
⊆ Y \ A for all k in

Q ∪ {0} ∪ P and 1 ≤ i ≤ mk ,

2. mutually disjoint paths γ ( j)
p,i ∈ EN+jvp,i such that Z

(
γ

( j)
p,i

)
⊆ A for all p ∈ P,

1 ≤ i ≤ mp and j = 1, 2, . . . , p,

3. mutually disjoint paths γ (l)
q,i ∈ EN−lvq,i such that Z

(
γ (l)
q,i

)
⊆ A for all q ∈ Q,

1 ≤ i ≤ mq and l = 1, 2, . . . , |q |.

Proof. Pick an infinite emitter w ∈ E0
sing which satisfies the assumptions in the

lemma. We enumerate the infinitely many loops based at w as ek,i (these are all
distinct) where k and i both range over N. Choose paths µ, µ′ ∈ E∗ such that
Z (µ) ⊆ Y \ A and Z (µ′) ⊆ A. By extending these paths we may assume that they
both end in w, and by concatenating sufficiently many loops at w to the shortest
one of these, we may furthermore assume that |µ| = |µ′ |. For each k ∈ Q∪ {0} ∪ P
and 1 ≤ i ≤ mk we pick an edge fk,i which goes from w to vk,i.

The paths we will define will all start with either µ or µ′, which will ensure
that their cylinder sets are contained in either A or Y \ A as needed. Then they will
have a certain number of the loops at w and it is these that will ensure the paths
are mutually disjoint. Also, they will all end with an edge fk,i taking care of the
range of the paths. We set K B maxq∈Q |q | and M B |µ| = |µ′ |, and then define
N B M + K + 2. Here M is present because all the paths start with µ or µ′, K is a
“buffer” we can subtract from for the γ (l)

q,i’s (as these should have length N − l) and
the term 2 comes from having at least one loop ek,i and then ending with fk,i. We
now define the desired paths as follows:

(1) γ (0)
k,i

B µ eK+1
k,i fk,i for k ∈ Q ∪ {0} ∪ P and 1 ≤ i ≤ mk,

(2) γ ( j)
p,i B µ′ eK+1+j

p,i fp,i for p ∈ P, 1 ≤ i ≤ mp and j = 1, 2, . . . , p,

(3) γ (l)
q,i B µ′ eK+1−l

q,i fq,i for q ∈ Q, 1 ≤ i ≤ mq and l = 1, 2, . . . , |q |.

It is clear that these satisfy the conditions in the lemma. �

The next lemma shows that for a graph E with finitely many vertices, the
conditions in Lemma B.9.1 can always be arranged, by changing the graph, but
without changing the (isomorphism class of the) groupoid. This is actually the
only place where we need to assume that the graph has finitely many vertices (see
also Remark B.9.6).

In order to prove it, we will appeal to one of Sørensen’s geometric moves on
graphs from [Sør13]. On page 1207 therein, a move on graphs called move (T) is
described. In order to apply this move one needs a graph E with an infinite emitter
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w ∈ E0
sing. If there is a path e1e2 · · · en in E from w to another vertex v such that

w emits infinitely many edges to r (e1), then move (T) is the operation of adding a
countably infinite number of new edges from w to v.

It is proved in [Sør13, Theorem 5.4] that move (T) can be expressed using the
first four “standard moves” in Section 3 of [Sør13]. This means that move (T)
produces move equivalent graphs, which in turn implies that the associated graph
groupoids are Kakutani equivalent [CRS17]. By virtue of [BCW17, Lemma 6.5]
we can deduce something even stronger, namely that move (T) actually produce
orbit equivalent graphs. In our setting this in fact implies isomorphism of the graph
groupoids.

Lemma B.9.2. Let E be a strongly connected graph with finitely many vertices and
suppose that E has an infinite emitter w ∈ E0

sing. Let F denote the graph which is
obtained from E by, for each v ∈ E0, adding a countably infinite number of new
edges from w to v. Then GE � GF as étale groupoids.

Proof. The strong connectedness of E guarantees, that for each vertex v ∈ E0,
there exists a path from w to v that starts with an edge to a vertex to which w emits
infinitely already. Thus we see that the graph F is obtained from E by applying
move (T) finitely many times. As mentioned in the paragraph above, this implies
that the graphs E and F are orbit equivalent. The assumptions on E also ensure
that E satisfies Condition (L), and therefore so does F. It now follows from the
main result of [BCW17] that GE � GF . �

The final lemma describes in some sense a “graded cancellation” for the map ϕ
on H0(HE ). It is a straightforward extension of [Mat15b, Lemma 6.9], after
having established cancellation for general AF-groupoids in Section B.5, but we
have nevertheless included the short argument for completeness.

Lemma B.9.3. Let E be an essential graph and let A, B ⊆ ∂E be compact open
subsets. If ϕn ([1A]) = [1B] in H0(HE ) for some n ∈ N, then there exists a
bisection U ⊆ GE satisfying U ⊆ c−1

E (n), s(U) = A and r (U) = B.

Proof. We first write A as a disjoint union of punctured cylinder sets as follows
A = tJ

j=1Z (µ j \ Fj ). Now pick paths γj ∈ En with r (γj ) = s(µ j ) and set
C B tJ

j=1Z (γj µ j \ Fj ). Then we have

[1B] = ϕn ([1A]) = [1C] in H0(HE )

by definition of ϕ. Invoking cancellation in the AF-groupoidHE (Theorem B.5.5)
produces a bisection W ⊆ HE ⊆ GE with s(W ) = C and r (W ) = B. Next define
the bisection V B tJ

j=1Z (γj µ j, Fj, µ j ), which satisfies s(V ) = A and r (V ) = C.
Finally, setting U B WV gives us the desired bisection since s(U) = s(V ) = A,
r (U) = r (W ) = B and U ⊆ c−1

E (n), because W ⊆ c−1
E (0) and V ⊆ c−1

E (n). �
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B.9.2 The main result

We are now ready to give the proof of our main result.

Theorem B.9.4. Let E be a strongly connected graph with finitely many vertices
and at least one infinite emitter. Let further ∅ , Y ⊆ G (0)

E = ∂E be clopen. Then
the restricted graph groupoid GE |Y has Property TR.

Proof. Let α = πU ∈ ~GE |Y� \ {id} be given and suppose that I (α) = 0
in H1(GE |Y ). We are going to show that α is a product of transpositions. In
the previous section we saw that I (α) corresponds to an element in ker(id−ϕ)
which is described in terms of the finite clopen partition {Sα(k)}k∈Z of Y . Define

P B {k > 0 | Sα(k) , ∅} and Q B {k < 0 | Sα(k) , ∅}.

These are finite subsets ofN. Set A B supp(α). By LemmaB.4.13 wemay assume
that A , Y . The set A is non-empty since α , id. We can write

A = supp(α) = (Sα(0) ∩ A)
⊔ ⊔

k∈Q∪P

Sα(k).

Now decompose these in terms of punctured cylinder sets as

Sα(0) ∩ A =
m0⊔
i=1

Z (µ0,i \ F0,i) and Sα(k) =
mk⊔
i=1

Z (µk,i \ Fk,i),

where µk,i ∈ E∗ and Fk,i ⊆finite r (µk,i). It is possible for one of P, Q or Sα(0) ∩ A
to be empty (but not all of them). For now we assume that all three are non-empty,
and we shall comment on what happens otherwise near the end of the proof.

At this point we want to invoke Lemma B.9.1. By Lemma B.9.2 we may
assume that E satisfies the hypotheses of Lemma B.9.1. Setting vk,i = s(µk,i)
in Lemma B.9.1 gives us a natural number N (larger in absolute value than all
numbers in Q) and

1. mutually disjoint paths γ (0)
k,i
∈ EN s(µk,i) such that Z

(
γ (0)
k,i

)
⊆ Y \ A for all

k ∈ Q ∪ {0} ∪ P and 1 ≤ i ≤ mk ,

2. mutually disjoint paths γ ( j)
p,i ∈ EN+j s(µp,i) such that Z

(
γ

( j)
p,i

)
⊆ A for all

p ∈ P, 1 ≤ i ≤ mp and j = 1, 2, . . . , p,

3. mutually disjoint paths γ (l)
q,i ∈ EN−ls(µq,i) such that Z

(
γ (l)
q,i

)
⊆ A for all

q ∈ Q, 1 ≤ i ≤ mq and l = 1, 2, . . . , |q |.
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From these we define the compact open set

B B
⊔

k∈Q∪{0}∪P

mk⊔
i=1

Z (γ (0)
k,i
µk,i \ Fk,i) ⊆ Y \ A.

Next we define the bisection

V B
⊔

k∈Q∪{0}∪P

mk⊔
i=1

Z (γ (0)
k,i
µk,i, Fk,i, µk,i).

As s(V ) = A is disjoint from r (V ) = B we get a transposition τV B πV̂ ∈ ~GE |Y�.
This transposition satisfies τV (A) = B, τV (B) = A, supp(τV ) = A t B and

SτV (N ) = A, SτV (−N ) = B, SτV (0) = Y \ A t B.

We now define another element in ~GE |Y�, namely β B τVατV . If we can
prove that β is a product of transpositions, then the theorem follows. To do just
that, we are going construct another element τ ∈ ~GE |Y�, which is itself a product
of transpositions, but which also satisfies Sτ (k) = Sβ (k) for all k. The construction
of τ is a bit involved, so before we get to that, let us explain why having τ suffices.
Given an element τ as above, we deduce from Lemma B.8.3 that βτ−1 ∈ ~HE |Y�.
Making use of the fact that I (α) = 0 we find that I (βτ−1) = 0 as well. Indeed,

I (βτ−1) = I (τVατV τ−1) = I (τV ) + I (α) + I (τV ) − I (τ),

which are all 0 as transpositions are in the kernel of the index map. As the
groupoidHE |Y is an AF-groupoid and all AF-groupoids have Property TR [Mat16,
Theorem 3.3.(4)], we deduce that βτ−1 is a product of transpositions (in ~HE |Y�).
It follows that β is a product of transpositions as well.

All that remains now is the construction of τ as above. The element τ will
be of the form τ = τ− ◦ τ+, where τ+ will be constructed from the Sβ (p)’s for
p ∈ P and similarly τ− comes from the Sβ (q)’s for q ∈ Q. We begin by noting that
supp(β) = B and that

Sβ (k) = τV (Sα(k)) =



⊔mk

i=1 Z (γ (0)
k,i
µk,i \ Fk,i) for k , 0⊔m0

i=1 Z (γ (0)
0,i µ0,i \ F0,i)

⊔
Y \ B for k = 0

(B.9.1)

by Lemma B.8.4. Let us define the compact open sets

Dp, j B

mp⊔
i=1

Z (γ ( j)
p,i µp,i \ Fp,i)
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for p ∈ P and 1 ≤ j ≤ p and set

D B
⊔
p∈P

*.
,

p−1⊔
j=1

Dp, j

⊔
Sβ (p)+/

-
.

Henceforth we suppress the “×{0}” from Sβ (p)×{0}, Dp, j×{0}, etc., to increase
readability. Observe that

ϕ j
( [

1Sβ (p)
] )
=

[
1Dp, j

]
∈ H0(HE ) (B.9.2)

for p, j as above. Furthermore, for p ∈ P define the bisections

Wp, j B

mp⊔
i=1

Z (γ ( j)
p,i µp,i, Fp,i, γ

( j−1)
p,i µp,i) ⊆ GE for 1 ≤ j ≤ p.

Using Equation (B.9.1) and the definition of the Dp, j’s we observe that

Wp, j ⊆ c−1
E (−1), r (Wp, j ) = Dp, j for j ≥ 1,

s(Wp,1) = Sβ (p), s(Wp, j ) = Dp, j−1 for j ≥ 2.

As the sources and ranges of these bisections are disjoint (mutually disjoint even)
we obtain transpositions τp, j = πEWp, j

which swap them. Now we are ready to
define the “first half” of τ, namely τ+, as follows

τ+ B
∏
p∈P

τp,p ◦ τp,p−1 ◦ · · · ◦ τp,1.

As a homeomorphism, τ+ is the “disjoint union of the cycles”

Sβ (p) 7→ Dp,p 7→ Dp,p−1 7→ · · · 7→ Dp,1 7→ Sβ (p)

for p ∈ P. Observe that we have

τ+(Sβ (p)) = Dp,p, Sτ+ (p) = Sβ (p), Sτ+ (−1) =
⊔
p∈P

p⊔
j=1

Dp, j,

supp(τ+) =
⊔
p∈P

Sτ+ (p)
⊔

Sτ+ (−1) = D
⊔
p∈P

Dp,p .

Our next objective is to construct the other half of τ, namely τ−. Combining
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Corollary B.8.7 (Y is full because GE is minimal) with Equation (B.9.2) we obtain

0 = I (α) = I (β) =
∑
k∈Z

ϕ(k)
( [

1Sβ (k)
] )
=

∑
k∈Z\{0}

ϕ(k)
( [

1Sβ (k)
] )

=⇒
∑
q∈Q

ϕ(q)
( [

1Sβ (q)
] )
= −

∑
p∈P

ϕ(p)
( [

1Sβ (p)
] )

=⇒
∑
q∈Q

(
ϕ−1

( [
1Sβ (q)

] )
+ ϕ−2

( [
1Sβ (q)

] )
+ · · · + ϕq

( [
1Sβ (q)

] ))
=

∑
p∈P

( [
1Sβ (p)

]
+ ϕ

( [
1Sβ (p)

] )
+ · · · + ϕp−1

( [
1Sβ (p)

] ))
=

∑
p∈P

( [
1Sβ (p)

]
+

[
1Dp,1

]
+ · · · +

[
1Dp,p−1

] )
= [1D] . (B.9.3)

Similarly to the Dp, j’s, we define the compact open sets

Xq,l B

mq⊔
i=1

Z (γ (l)
q,iµq,i \ Fq,i)

for q ∈ Q and 1 ≤ j ≤ |q |, and set

X B
⊔
q∈Q

|q |⊔
l=1

Xq,l .

These sets then satisfy

ϕ−l
( [

1Sβ (q)
] )
=

[
1Xq, l

]
∈ H0(HE ) (B.9.4)

for q, l as above. Equation (B.9.3) now says that [1X] = [1D] in H0(HE ). Invoking
cancellation inHE (TheoremB.5.5) we can find a bisection R ⊆ HE with s(R) = X
and r (R) = D. Now define Rq,l B s−1

(
Xq,l

)
and Cq,l B r

(
Rq,l

)
. Then the Rq,l’s

are mutually disjoint bisections which witness that
[
1Cq, l

]
=

[
1Xq, l

]
. We also

define

C B
⊔
q∈Q

|q |⊔
l=1

Cq,l .

Observe that we actually have C = D, as they both equal r (R). Equation (B.9.4)
implies that

ϕ
( [

1Cq,1

] )
=

[
1Sβ (q)

]
and ϕ

( [
1Cq, l

] )
=

[
1Cq, l−1

]
for l ≥ 2
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in H0(HE ). Hence Lemma B.9.3 yields bisections Tq,l ⊆ GE satisfying

Tq,l ⊆ c−1
E (1), s(Tq,l) = Cq,l for l ≥ 1,

r (Tq,1) = Sβ (q), r (Tq,l) = Cq,l−1 for l ≥ 2.

Let τq,l B πT̂q, l denote the associated transpositions. From these we in turn
define τ− in a similar fashion as τ+ by setting

τ− B
∏
q∈Q

τq, |q | ◦ τq, |q |−1 ◦ · · · ◦ τq,1.

Just like τ+, the homeomorphism τ− is a “disjoint union of cycles”

Sβ (q) 7→ Cq, |q | 7→ Cq, |q |−1 7→ · · · 7→ Cq,1 7→ Sβ (q)

for q ∈ Q. We have that

τ−(Sβ (q)) = Cq, |q |, Sτ− (q) = Sβ (q), Sτ− (1) =
⊔
q∈Q

|q |⊔
l=1

Cq,l = C,

supp(τ−) =
⊔
q∈Q

Sτ− (q)
⊔

Sτ− (1) = C
⊔
q∈Q

Sβ (q).

Finally, we define τ B τ− ◦ τ+. In order to finish the proof, we need to show
that Sτ (k) = Sβ (k) for all k ∈ Z. We start by noting that

supp(τ) ⊆ supp(τ+)
⋃

supp(τ−)

=
*.
,

⊔
q∈Q

Sβ (q)+/
-

⊔ *.
,

⊔
p∈P

Sβ (p)+/
-

⊔ *.
,

⊔
p∈P

p⊔
j=1

Dp, j
+/
-
.

We are going to analyze this support piece by piece. We begin by fixing some
q ∈ Q and consider Sβ (q). Since Sβ (q) ⊆ Y \ supp(τ+) we have

Sβ (q)
τ+
7−−−→
lag 0

Sβ (q)
τ−
7−−−−→
lag q

Cq, |q | .

This means that Sβ (q) ⊆ Sτ (q). We similarly have Sβ (p) ⊆ Sτ (p) for each p ∈ P
since Dp,p ⊆ Y \ supp(τ−). For the last part, we consider the sets Dp, j for p ∈ P
and 1 ≤ j ≤ p. For j = 1 we find that

Dp,1
τ+
7−−−−→
lag −1

Sβ (p)
τ−
7−−−→
lag 1

τ−(Sβ (p))
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because Sβ (p) ⊆ D = C, which maps with lag 1 by τ−. As the total lag is 1−1 = 0,
we get that Dp,1 ⊆ Sτ (0). When j ≥ 2 we similarly have

Dp, j
τ+
7−−−−→
lag −1

Dp, j−1
τ−
7−−−→
lag 1

τ−(Dp, j−1)

since Dp, j−1 ⊆ C. Hence Dp, j ⊆ Sτ (0) as well. If we now set

Z B
*.
,

⊔
q∈Q

Sβ (q)+/
-

⊔ *.
,

⊔
p∈P

Sβ (p)+/
-

⊔ *.
,

⊔
p∈P

p⊔
j=1

Dp, j
+/
-
⊆ Y \ supp(τ)

and decompose Y as

Y = *.
,

⊔
q∈Q

Sβ (q)+/
-

⊔ *.
,

⊔
p∈P

Sβ (p)+/
-

⊔ *.
,

⊔
p∈P

p⊔
j=1

Dp, j
+/
-

⊔
(Y \ Z )

then we have seen that

Sβ (q) ⊆ Sτ (q), Sβ (p) ⊆ Sτ (p), Dp, j ⊆ Sτ (0), Y \ Z ⊆ Sτ (0).

Since both of these form partitions of Y we must actually have equality here. This
means that Sβ (k) = Sτ (k) for all k , 0, and then Sβ (0) = Sτ (0) as well.

Let us now comment on what happens if one of P, Q or Sα(0) ∩ A are empty.
All three cannot be empty since supp(α) , ∅. We claim that P = ∅ if and only
if Q = ∅. Arguing by contradicition, if P , ∅ and Q = ∅, then Equation (B.9.3)
says that [1D] = 0 in H0(HE ), so by Corollary B.5.6 D = ∅. This forces P = ∅.
Having P = ∅ and Q , ∅ is ruled out similarly. In the case of P = ∅ = Q we have
that A = supp(α) ⊆ Sα(0), which means that α ∈ ~HE |Y� (since Uα ⊆ c−1

E (0)).
Now we are done since this groupoid is AF and hence has Property TR. The last
possibility is that Sα(0) ∩ A = ∅ and P,Q are both non-empty. In this case the
proof above goes through by removing everything indexed by k = 0. This finishes
the proof at large. �

Having established Property TR for strongly connected graphs with infinite
emitters, we deduce the AH conjecture for these from [Mat16, Theorem 4.4].
As we saw in Proposition B.4.2 the assumptions in the AH conjecture for graph
groupoids are slightly weaker than strong connectedness. For completeness we
want to show that all graph groupoids covered by the assumptions satisfy the
conjecture. Using another one of Sørensen’s moves on graphs, namely source
removal, we can actually reduce this to the strongly connected situation.

Corollary B.9.5. Let E be a graph satisfying the AH criteria and letY ⊆ G (0)
E = ∂E

be clopen. Then the AH conjecture is true for GE |Y .
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Proof. As discussed in Subsection 4.2, the graph E has a single nontrivial strongly
connected component which contain all infinite emitters. The vertices which lie
outside this component and the edges they emit form an acyclic subgraph with
sources which connect to the nontrivial connected component. By repeatedly
applying Sørensen’s move (S) from [Sør13, Section 3] we can remove all the
vertices lying outside the strongly connected component of E. This results in a
graph F which is strongly connected and which is move equivalent to E. By the
results in [CRS17] GF is Kakutani equivalent to GE . Hence there are full clopen
subsets X ⊆ G (0)

E and Z ⊆ G (0)
F such that GE |X � GF |Z . Appealing to [Mat15b,

Proposition 4.11] we can find a compact bisection U ⊆ GE satisfying s(U) = Y
and r (U) ⊆ X . Then

GE |Y � GE |r (U ) = (GE |X ) |r (U ) � (GF |Z ) |Z′ = GF |Z′

for some clopen set Z ′ ⊆ Z ⊆ G (0)
F .

If E has infinite emitters, then the result follows from applying Theorem B.9.4
to GF |Z′. Similarly, if E is finite it follows from applying the results in [Mat15b,
Subsection 6.4]. �

Remark B.9.6. The finiteness assumption on the set of vertices is actually only
needed to guarantee thatwe can apply LemmaB.9.1, by first applyingLemmaB.9.2.
HenceTheoremB.9.4 also applies to strongly connected graphswith infinitelymany
vertices, provided that the graph satisfies the hypotheses of Lemma B.9.1. Namely
that there exists an infinite emitter which supports infinitely many loops and from
which there is at least one edge to any other vertex.

B.10 Examples and applications

B.10.1 Groupoid models for Cuntz algebras

Let En denote the graph with one vertex and n loops for 2 ≤ n ≤ ∞. The graph
C∗-algebras of these graphs are the Cuntz algebras, that is C∗(En) � On, whose
K-theory is given by Zn and 0 respectively (where Z∞ means Z).

Let us now consider our main motivating example, namely the graph

E∞

(∞)
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and its graph groupoid GE∞ . By Theorem B.4.6 H0(GE∞ ) � Z and H1(GE∞ ) � 0.
So the exact sequence in the AH conjecture for GE∞ collapses to

Z2 ~GE∞�ab 0.j

This leaves two possibilities for the abelianization ~GE∞�ab:

1. Either ~GE∞�ab is trivial (in which case ~GE∞� is simple),

2. or ~GE∞�ab is isomorphic to Z2 (in which case GE∞ has the strong AH prop-
erty).

For 2 ≤ n < ∞ the topological full group ~GEn � is isomorphic to the Higman–
Thompson group Vn,1 [Mat15b], and we have

~GEn �ab � (Vn,1)ab �



Z2 n odd,
0 n even.

Although we have not been able to decide which is the case for ~GE∞�ab, we can
still deduce some structural properties of the topological full group ~GE∞�.

Theorem 4.16 in [Mat15b] shows not only that the commutator subgroup
D(~GE∞�) is simple, it is also contained in any nontrivial normal subgroup of
~GE∞�. This means that ~GE∞� either is simple itself, or contains precisely one
nontrivial normal subgroup, namely D(~GE∞�) (of index 2). The group ~GE∞� is
nonamenable [Mat15b], but does have the Haagerup property (Corollary A.11.11).
One can also deduce that ~GE∞� is C∗-simple by the results in [BS19]. Finally, it
is shown below that ~GE∞� is not finitely generated.

B.10.2 Simplicity and non-finite generation of topological full groups

Wewould have liked to decide whether all graph groupoids of graphs satisfying the
AH criteria have the strong AH property, as we know SFT-groupoids do. Matui’s
proof of this for SFT-groupoids in [Mat15b] relies on the construction of a finite
presentation for their topological full groups. However, if a graph has infinite
emitters, then the topological full group of its graph groupoid will not even be
finitely generated.

Proposition B.10.1. Let E be a graph with at least one infinite emitter and suppose
E satisfies Condition (L). Then ~GE� is not finitely generated.

Proof. Let w ∈ E0
sing be an infinite emitter and enumerate the edges emitted

by w as wE1 = {e1, e2, e3, . . .}. Suppose we are given finitely many elements
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α1, α2, . . . , αN from ~GE�. According to Proposition A.9.4 we can decompose
each full bisection defining these elements as

Uαj =
*.
,

k j⊔
i=1

Z (µi, j, Fi, j, νi, j )
+/
-
t (∂E \ supp(α j )).

Among the paths µi, j and νi, j and in the sets of forbidden edges Fi, j , only finitely
many of the edges in wE1 can occur. Pick an M ∈ N such that eM, eM+1, . . . do not
occur in any of these. Any product of the α j’s and their inverses will again result in
an element of ~GE� whose defining bisection decomposes similarly as above. The
crucial point is that none of the edges eM, eM+1, . . . will occur in its decomposition
either. This means that elements such as πV̂ for V = Z (eM, eM+1) does not belong
to the subgroup generated by the elements α1, α2, . . . , αN , and consequently ~GE�

cannot be finitely generated. �

A consequence of SFT-groupoids having the strong AH property is that their
topological full groups are simple if and only if the zeroth homology group is 2-
divisible [Mat15b, Corollary 6.24.(3)]. This is the case for e.g. the graphs En above
when n is even. For graphs with infinite emitters, however, the sitatuation is quite
different. What we observed for GE∞ above, namely that the strong AH property
rules out the simplicity of the topological full group and vice versa, is actually a
general phenomenon. This is due to H0(GE ) never being 2-divisible when E has
singular vertices.

Proposition B.10.2. Let E be a graph satisfying the AH criteria and having at least
one infinite emitter. If GE has the strong AH property, then ~GE� is not simple.

Proof. By Theorem B.4.6 H0(GE ) is a finitely generated abelian group whose rank
is greater than or equal to the number of singular vertices in E. So if E has an infinite
emitter, then H0(GE ) ⊗ Z2 is nonzero. If GE has the strong AH property, then this
forces ~GE�ab , 0 too. Thus ~GE� cannot be simple (being non-abelian). �

Whether or not graph groupoids of graphs with infinite emitters all have the
strong AH property can therefore be decided in the negative by finding such a
groupoid whose topological full group is simple.

B.10.3 Describing the abelianization of the topological full group

Wefirst note that byRemarkB.4.4, the abelianization ~GE∞�ab is a finitely generated
abelian group for any graph E satisfying the AH criteria. Let us next consider an
example where both H0(GE ) and H1(GE ) are nontrivial.
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E

(3)

(3)

(∞)

(4)

(3)

Figure B.3: An infinite graph for which H0(GE ) and H1(GE ) are both nontrivial.
The numbers in paranthesis indicate the number of edges.

Example B.10.3. Consider the graph E in Figure B.3. From Theorem B.4.6 we
find that H0(GE ) � Z2 ⊕ Z3 and H1(GE ) � Z. Hence the AH exact sequence
becomes

Z2 ⊕ Z2 ~GE�ab Z 0.j Iab

This implies that ~GE�ab � Z ⊕ im( j). Thus ~GE�ab is isomorphic to either Z,
Z ⊕ Z2 or Z ⊕ Z2 ⊕ Z2.

The previous example generalizes to the following partial description of the
abelianization ~GE�ab.

PropositionB.10.4. Let E be a graph satisfying the AH criteria and let ∅ , Y ⊆ ∂E
be clopen. Then

~GE |Y�ab � H1(GE ) ⊕ im( j),

where H1(GE ) � ZM and im( j) � (Z2)N for nonnegative integers M, N .

RemarkB.10.5. The integer N in the preceding proposition is necessarily bounded
above by the number of “even summands” in H0(GE ), which in turn is at least
M + |E0

sing | and at most |E0 |. In general, we may only say that 0 ≤ N ≤ |E0 |.

B.10.4 The cycle graphs

The statement in Theorem B.1.1 would look cleaner if we did not have to specify
that E cannot be a cycle graph. However, this is necessary, as we will see shortly.
Let Cn denote the graph consisting of a single cycle with n vertices. Observe
that GCn � Rn × Z (where Z is viewed as a group), which is a discrete transitive
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groupoid with unit space consisting of n points (a groupoid with only one orbit is
called transitive). This is consistent with the C∗-algebraic side of things, as we
have that

C∗r (GCn ) � C∗(Cn) � Mn(C(T)),

C∗r (Rn × Z) � Mn(C) ⊗ C(T) � Mn(C(T)).

Since GCn is Kakutani equivalent to Z and K∗(Mn(C(T))) � K∗(C(T)) � (Z,Z),
Theorem B.4.6 gives

H0(Z) � H0(GCn ) � Z and H1(Z) � H1(GCn ) � Z.

(We could also have deduced the homology of GCn from the group homology Z, as
these coincide due to their Kakutani equivalence.) However, the unit space of GCn

is finite, hence so is ~GCn � (it is isomorphic to the symmetric group Sn), and then
clearly the index map I : ~GCn � → H1(GCn ) cannot be surjective.
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Paper C

Katsura–Exel–Pardo Groupoids
and the AH Conjecture

Abstract
It is proven that Matui’s AH conjecture is true for Katsura–Exel–Pardo
groupoids GA,B associated to integral matrices A and B. This conjecture
relates the topological full group of an ample groupoid with the homology
groups of the groupoid. We also give a criterion under which the topological
full group

�
GA,B
�
is finitely generated.

C.1 Introduction

The AH conjecture is one of two conjectures formulated by Matui in [Mat16]
concerning certain ample groupoids over Cantor spaces. This conjecture predicts
that the abelianization of the topological full group of such a groupoid together
with its first two homology groups fit together in an exact sequence as follows:

H0(G) ⊗ Z2 ~G�ab H1(G) 0.j Iab

So far, theAHconjecture has been confirmed in a number of cases. For instance,
it holds for groupoids which are both almost finite and principal [Mat12]. This
includes AF-groupoids, transformation groupoids of higher-dimensional Cantor
minimal systems and groupoids associated to aperiodic quasicrystals (as described
in [Nek19, Subsection 6.3]). At the opposite end of the spectrum, theAHconjecture
is also true for (products of) SFT-groupoids [Mat16]. The same goes for transfor-
mation groupoids associated to odometers [Sca18], which incidentally, provided
counterexamples to the other conjecture from [Mat16], namely the HK conjec-
ture. In the recent paper [NO20], we showed that the AH conjecture holds for

189



Paper C. Katsura–Exel–Pardo Groupoids and the AH Conjecture

graph groupoids of infinite graphs, complementing Matui’s result in the finite
case [Mat15b].

The present paper may be viewed as a follow-up to [NO20]. Here we investigate
the validity of the AH conjecture for a class of groupoids known as Katsura–
Exel–Pardo groupoids. These groupoids are built from two equal-sized row-finite
integer matrices A and B, where A has no negative entries, and are denoted GA,B.
Their origins stem from Katsura’s paper [Kat08b], in which he constructed C∗-
algebras OA,B—which we call Katsura algebras—from such matrices. Katsura
showed that every Kirchberg algebra (in the UCT class) is stably isomorphic to
some OA,B and used this concrete realization to prove results pertaining to lifts of
actions on the K-groups of Kirchberg algebras. The Katsura algebras OA,B first
appear as examples of topological graph C∗-algebras in [Kat08a].

Some years later later, Exel and Pardo introduced the notion of a self-similar
graph, and showed how to construct a C∗-algebra from this data, in [EP17]. This
generalized Nekrashevych’s construction from self-similar groups in [Nek09], as a
self-similar group may be viewed as a self-similar graph where the graph has only
one vertex [EP17, Example 3.3]. On the other hand, the construction of Exel and
Pardo also encompassed the Katsura algebras. They realized that the matrices A
and B could be used to describe a self-similar action by the integer group Z on the
graph whose adjacency matrix is A in such a way that the associated C∗-algebra
becomes OA,B. Exel and Pardo also gave a groupoid model for their C∗-algebras,
and it is the groupoid associated with the aforementioned Z-action that we call the
Katsura–Exel–Pardo groupoid. See Section C.3 for details.

The second author computed the homology groups of the Katsura–Exel–
Pardo groupoids in [Ort18] (under the assumption of pseudo-freeness, see Sub-
section C.3.3), and found that the homology groups of GA,B sum up to the K-
theory of C∗r

(
GA,B

)
� OA,B in accordance with Matui’s HK conjecture [Mat16,

Conjecture 2.6].
In the present paper we make use of the description of the homology groups

of GA,B from [Ort18] to show that the AH conjecture holds whenever GA,B is
Hausdorff and effective and the matrix A is finite and irreducible (Corollary C.5.8).

There are two subgroupoids of GA,B that play important roles in the proof.
One is the SFT-groupoid GA � GA,0 associated to the matrix A. The other is
the kernel of the canonical cocycle on GA,B, denoted HA,B. Unlike the case of
SFT-groupoids (or graph groupoids), the kernel of the cocycle is no longer an
AF-groupoid. This means that we also need to take H1

(
HA,B

)
into account when

describing H1
(
GA,B

)
. A key observation that drives our proof is that the topological

full group
�
GA,B
�
can be decomposed as

�
GA,B
�
= ~HA,B�~GA�, when viewing�

HA,B
�
and ~GA� as subgroups of

�
GA,B
�
.

We also investigate whether the topological full group
�
GA,B
�
is finitely gener-
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ated. Matui has shown that topological full groups of (irreducible) SFT-groupoids
are finitely presented [Mat15b]. In the same vein, topological full groups associated
to self-similar groups were shown to be finitely presented by Nekrashevych when-
ever the self-similar group is contracting [Nek18a]. We extend Nekrashevych’s
notion of a contracting self-similar group to self-similar graphs and show that the
self-similar graph associated to the pair of matrices A and B is contracting, assum-
ing that B is entrywise smaller than A. Combining this with the finite generation
of ~GA�, we show in Theorem C.6.6 that

�
GA,B
�
is then indeed finitely generated.

In contrast, if E is a graph with an infinite emitter, then the topological full group
~GE� is not finitely generated (Proposition B.10.1).

We emphasize that the Katsura–Exel–Pardo groupoids are merely promi-
nent special cases of the tight groupoids constructed from self-similar graphs
in [EP17]. Moreover, this construction was further generalized to non-row-finite
graphs in [EPS18]. It is therefore a natural question whether the results of this
paper can be generalized to other groupoids arising from self-similar graphs. A
few things that make the Katsura–Exel–Pardo groupoids particularly nice to work
with is that the self-similar action is explicitly given in terms of the matrices A
and B, the action does not move vertices, and the acting group is abelian (the
“most elementary” abelian group even). We believe that the methods employed in
this paper could work well for other self-similar graphs where the acting group is
abelian and the action fixes the vertices.

This paper is organized as follows. In Section C.2, we briefly recall Matui’s
AH conjecture and give references to the necessary preliminaries. The construction
of the Katsura–Exel–Pardo groupoid is recalled in detail in Section C.3. Then
Hausdorffness, effectiveness and minimality of GA,B is characterized in terms of
the matrices A and B. We also observe that if GA,B satisfies the assumptions in
the AH conjecture, then GA,B must be purely infinite. In Section C.4, we describe
the first two homology groups of GA,B. This is done using a long exact sequence
that relates the homology groups of GA,B to those of the kernel groupoid HA,B.
Our main result, namely that the AH conjecture is true for Katsura–Exel–Pardo
groupoids, is proved in Section C.5. Finally, in Section C.6, we prove that

�
GA,B
�

is finitely generated, provided that B is entrywise smaller than A.

C.2 The AH conjecture

As mentioned in the introduction, this paper is a follow-up to Paper B. We treat
the same problem—namely the AH conjecture—for a related, but different, class
of groupoids. Since the setting is so similar we have chosen to not give an
extensive section covering preliminaries, but rather refer the reader to Section B.2
and adapt all notation and conventions from there. Topics covered there include
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ample groupoids, topological full groups, homology of ample groupoids, cocycles
and skew products. The reader is hereby warned that notation from Section B.2
henceforth will be used directly without reference.

Let us move on to describing the AH conjecture, which predicts a precise
relationship between the topological full group and the first two homology groups.
For further details, consult Section B.4.

Matui’s AH Conjecture ([Mat16, Conjecture 2.9]). Let G be an effective minimal
second countable Hausdorff ample groupoid whose unit space G (0) is a Cantor
space. Then the following sequence is exact:

H0(G) ⊗ Z2 ~G�ab H1(G) 0.j Iab (C.2.1)

The index map I : ~G� → H1(G) is the homomorphism given by πU 7→ [1U ],
where U is a full bisection in G, and the induced map on the abelianization ~G�ab
is denoted Iab. The map j will not be used directly (see e.g. Subsection B.4.1 for
its definition).

Recall the notion of transpositions in the topological full group from Sub-
section B.2.2. We will let T (G) denote the subgroup of ~G� generated by all
transpositions. Beware that in Paper B, the subgroup generated by all transposi-
tions is denoted S (G), but for G = GA,B we find this to be too similar to the set
SA,B that is defined in Subsection C.3.2 below. One always has T (G) ⊆ ker(I),
and having equality is closely related to the AH conjecture.

Definition C.2.1 ([Mat16, Definition 2.11]). Let G be an effective ample Hausdorff
groupoid. We say that G has Property TR if T (G) = ker(I).

In the next section, we will see that the Katsura–Exel–Pardo groupoids are
purely infinite (in the sense of [Mat15b, Definition 4.9]). It then follows that the
AH conjecture is equivalent to having Property TR for these (see Remark B.4.12).
The main goal therefore becomes to establish Property TR for GA,B.

C.3 The Katsura–Exel–Pardo groupoid

In this section we recall the construction of the The Katsura–Exel–Pardo groupoid
GA,B from [EP17], and we recall some of its properties.

C.3.1 The self similar action by Z on the graph EA

Let us begin explaining the construction. Let N ∈ N∪ {∞} and let A and B be two
row-finite N ×N integral matrices. We require that all entries in A are non-negative
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and that A has no zero-rows. For the construction we may also assume without loss
of generality that Bi, j = 0 whenever Ai, j = 0. Let EA denote the (directed) graph
whose adjacency matrix is A. For graphs we freely adopt notation and conventions
from Section B.3. In addition to that, given a finite path µ = e1e2 · · · ek ∈ E∗A and
an index 1 ≤ j ≤ k, the subpath e1e2 . . . e j is denoted µ|j . We will call a matrix
essential if it has no zero-rows and no zero-columns.

We will now describe how the matrices A and B give rise to a self-similar
action by the integer group Z on the graph EA as in the framework of [EP17]. In
the next subsection, we will describe the associated (tight) groupoid.

Remark C.3.1. We remark that Exel and Pardo use the opposite convention for
paths in [EP17], which means that their paths go “backwards” in the graph.

To describe the action κ : Z y EA we need to fix an (arbitrary) enumeration of
the edges in EA as follows

E1
A = {ei, j,n | 1 ≤ i, j ≤ N, 0 ≤ n < Ai, j }.

Then we have s(ei, j,n) = i and r (ei, j,n) = j, when enumerating the vertices as
E0
A
= {1, 2, . . . , N }. Let m ∈ Z and ei, j,n ∈ E1

A be given. By the division algorithm
there are unique integers q and r satisfying

mBi, j + n = qAi, j + r and 0 ≤ r < Ai, j .

The action κ is defined to be trivial on the vertices (i.e. κm(i) = i), and on edges it
is given by

κm(ei, j,n) B ei, j,r .

In words κm maps the n’th edge between the vertices i and j to the r’th edge,
where r is the remainder of mBi, j + n modulo Ai, j . The associated one-cocycle
ϕ : Z × E1

A → Z is given by
ϕ(m, ei, j,n) B q.

The cocycle condition

ϕ(m1 + m2, e) = ϕ(m1, κm2 (e)) + ϕ(m2, e)

is easily seen to be satisfied. That same computation shows that κm1+m2 = κm1◦κm2 .
Furthermore, the standing assumption (2.3.1) on page 1051 of [EP17] is trivially
satisfied since κ fixes the vertices. Note that ϕ(0, e) = 0 and κ0(e) = e for
all e ∈ E1

A.
As in [EP17, Proposition 2.4] κ and ϕ extends inductively to finite paths by

setting

κm(µe) B κm(µ)κϕ(m,µ) (e) and ϕ(m, µe) B ϕ(ϕ(m, µ), e)
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for µ ∈ E∗A and e ∈ r (µ)E1
A. Explicitly, for a finite path µ = e1e2 · · · ek ∈ E∗A we

have

κm(µ) = κm(e1)κϕ(m,e1) (e2)κϕ(m,e1e2) (e3) · · · κϕ(m,µ |k−1) (ek ) (C.3.1)

and
ϕ(m, µ) = ϕ (ϕ(. . . (ϕ(ϕ(m, e1), e2), . . .), ek−1), ek ) . (C.3.2)

By allowing Equation (C.3.1) to go on ad infinitum, κ extends to an action on the
infinite path space E∞A . Note that we still have

ϕ(m1 + m2, µ) = ϕ(m1, κm2 (µ)) + ϕ(m2, µ)

and
κm(µν) = κm(µ)κϕ(m,µ) (ν)

for µ, ν ∈ E∗A with r (µ) = s(ν). The latter formula also holds if ν is replaced by an
infinite path.

C.3.2 Describing the tight groupoid

Define the set

SA,B B {(µ,m, ν) ∈ E∗A × Z × E∗A | r (µ) = r (ν)}.

In [EP17], the set SA,B is given the structure of an inverse ∗-semigroup which acts
(partially) on the infinite path space E∞A . In brief terms this partial action is given
by

(µ,m, ν) · νy = µκm(y) for y ∈ r (ν)E∞A .

Following [Ort18] we skip directly to the concrete description of the tight groupoid
Gtight(SA,B) given in [EP17, Section 8].

Consider the set of all quadruples (µ,m, ν; x) where (µ,m, ν) ∈ SA,B and
x ∈ Z (ν). Then we can write x = νez for some e ∈ E1

A and z ∈ E∞A . Let ∼ be the
equivalence relation on this set of quadruples generated by the basic relation

(µ,m, ν; x) ∼ (µκm(e), ϕ(m, e), νe; x). (C.3.3)

Denote the equivalence class of (µ,m, ν; x) under ∼ by
[
µ,m, ν; x

]
. In particular,

we have [
µ,m, ν; x

]
=

[
µκm(y |j ), ϕ(m, y |j ), νy |j ; x

]

for each j ∈ N, where y is the infinite path satisfying x = νy. It is somewhat
cumbersome to explicitly write this equivalence relation out, but it can be done as
follows. Let (µ,m, ν), (λ, n, τ) ∈ SA,B, x ∈ Z (ν) and z ∈ Z (τ). Then[

µ,m, ν; x
]
= [λ, n, τ; z]

if and only if
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• x = z, so then x = νy = τw for some infinite paths y and w. In particular, ν
is a subpath of τ or vice versa.

• |µ| − |ν | = |λ | − |τ |.

• µκm(y) = λκn(w).

• ϕ(m, y |j ) = ϕ(n,w |l) for some j, l ∈ N with l − j = |µ| − |ν |.

We define the Katsura–Exel–Pardo groupoid to be

GA,B B
{ [
µ,m, ν; x

]
| (µ,m, ν) ∈ SA,B, x ∈ Z (ν)

}
.

Writing x = νy, the inverse operation is given by[
µ,m, ν; x

]−1 B
[
ν,−m, µ; µκm(y)

]
.

The composable pairs are

G (2)
A,B

B
{(

[λ, n, τ; z] ,
[
µ,m, ν; νy

] )
∈ GA,B × GA,B | µκm(y) = z

}
and the product is given by

[λ, n, τ; z] ·
[
µ,m, ν; x

]
B

[
λκm(τ′), ϕ(n, τ′) + m, ν; x

]
,

in the case that µ = ττ′. In the case that τ = µµ′ the formula is slightly more
complicated, so let us instead use the equivalence relation ∼ to state a simpler
“standard form” for the product. Using the basic relation (C.3.3) we can choose
representatives with |τ | = |µ|, which forces τ = µ. Hence every composable pair
and their product can be represented as[

λ, n, µ; µκm(y)
]
·
[
µ,m, ν; νy

]
=

[
λ, n + m, ν; νy

]
.

The source and range maps are given by

s
( [
µ,m, ν; νy

] )
=

[
ν, 0, ν; νy

]
=

[
s(ν), 0, s(ν); νy

]
,

r
( [
µ,m, ν; νy

] )
=

[
µ, 0, µ; µκm(y)

]
=

[
s(µ), 0, s(µ); µκm(y)

]
.

Thus we may identify the unit space G (0)
A,B

with the infinite path space E∞A under
the correspondence [s(x), 0, s(x); x]↔ x. This correspondence is also compatible
with the topology on GA,B that will be specified shortly. The source and range
maps become

s
( [
µ,m, ν; x

] )
= x and r

( [
µ,m, ν; νy

] )
= µκm(y).
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For a triple (µ,m, ν) ∈ SA,B we define

Z (µ,m, ν) B
{ [
µ,m, ν; x

]
| x ∈ Z (ν)

}
.

These sets form a basis for the topology on GA,B, in which each basic set Z (µ,m, ν)
is a compact open bisection [EP17, Proposition 9.4]. Note that

s (Z (µ,m, ν)) = Z (ν) and r (Z (µ,m, ν)) = Z (µ).

The Katsura–Exel–Pardo groupoid GA,B � Gtight(SA,B) is ample, second countable
and amenable [EP17]. However, it is not always Hausdorff. This, and other
properties, will be characterized in the next subsection.

An important observation that will be exploited in several of the coming
proofs is that the graph groupoid GEA is isomorphic to GA,0, and moreover em-
beds canonically into GA,B for any matrix B. Observe that in GA,0 we have[
µ,m, ν; νy

]
=

[
µ, 0, ν; νy

]
for each m ∈ Z. Hence mapping

[
µ, 0, ν; νy

]
to

(µy, |µ| − |ν | , νy) yields an isomorphism between GA,0 and GEA . Furthermore, it is
clear that

[
µ, 0, ν; x

]
7→

[
µ, 0, ν; x

]
gives an étale embedding GA,0 ↪→ GA,B which

preserves the unit space.
Another special case is when A = B. Then we have GA,A � GA × Z (where Z

is viewed as a group(oid)). These groupoids fall outside of the scope of the
AH conjecture, however, for they are far from being effective.

C.3.3 When is GA,B Hausdorff, effective and minimal?

We begin by noting that GA,B has compact unit space if and only if N < ∞ (i.e. A
and B are finite matrices). In this case it is a Cantor space precisely when EA

satisfies Condition (L).
Before characterizing Hausdorfness precisely, we discuss a sufficient condition

known as pseudo-freeness. This is an underlying assumption in [Ort18]. The
action κ : Z y EA is called pseudo-free if κm(e) = e and ϕ(m, e) = 0 implies
m = 0, for m ∈ Z and e ∈ E1

A (see [EP17, Definition 5.4] for the general definition).
Combining Lemma 18.5 and Proposition 12.1 from [EP17] yields the following.

Proposition C.3.2 ([EP17]). The action κ : Z y EA is pseudo-free if and only if
Ai, j = 0 whenever Bi, j = 0. When this is the case, GA,B is Hausdorff.

A precise characterization of when GA,B is Hausdorff is the following.

Proposition C.3.3 ([EP17, Theorem 18.6]). The following are equivalent:

1. The Katsura–Exel–Pardo groupoid GA,B is Hausdorff.
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2. Whenever Bi, j = 0 while Ai, j ≥ 1, then for any m ∈ Z \ {0} the set{
µ ∈ E∗A | r (µ) = i and m

Bµ |t
Aµ |t

∈ Z \ {0} for 1 ≤ t ≤ |µ|
}

is finite.

RemarkC.3.4. There is a small misprint in the statement of [EP17, Theorem 18.6],
which is why the statement above differs slightly (even after reversing the direction
of the edges).

The minimality of GA,B turns out to be independent of the matrix B, and is only
governed by the minimality of the graph groupoid GEA .

Proposition C.3.5 ([EP17, Theorem 18.7]). The Katsura–Exel–Pardo groupoid
GA,B is minimal if and only if the graph EA is cofinal.

In particular, if the matrix A is irreducible (which is equivalent to EA being
strongly connected), then GA,B is minimal. The converse holds if EA has no sources
(nor sinks).

RemarkC.3.6. Proposition C.3.5 actually holds for any self-similar graph inwhich
the vertices are fixed. A general characterization is given in [EP17, Theorem 13.6].

Let us move on to characterizing when GA,B is effective (the term “essentially
principal” is used in [EP17]).

Proposition C.3.7 ([EP17, Theorem 18.8]). The following are equivalent:

1. The Katsura–Exel–Pardo groupoid GA,B is effective.

2. (a) The graph EA satisfies Condition (L).

(b) If 1 ≤ i ≤ N , m ∈ Z \ {0}, and for all x ∈ Z (i) we have m
Bx |t

Ax |t

∈ Z for

all t ∈ N, then there exists T ∈ N such that Bx |T = 0 for all x ∈ Z (i).

The premise in (2b) above is fairly strong, as it stipulates that κm(x) = x for
all x ∈ Z (i). In many cases this will not happen for any vertex i, which means (2b)
is trivially satisfied. One such case is the following.

Corollary C.3.8 ([EP17, Corollary 18.9]). If EA satisfies Condition (L) and for
each 1 ≤ i ≤ N there exists x ∈ Z (i) such that Bx |t , 0 for all t ∈ N and

lim
t→∞

Bx |t

Ax |t

= 0, then GA,B is effective.

The following is a class of examples to which Corollary C.3.8 applies.
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Example C.3.9. If the matrices A, B satisfy Ai,i ≥ 2 and 0 < ��Bi,i
�� < Ai,i for all

1 ≤ i ≤ N , then GA,B is effective. If A is irreducible it suffices that this condition
holds for a single vertex i.

The following remark illustrates that the class of examples above is already
fairly rich.

Remark C.3.10. It suffices to consider matrices A, B satisfying Ai,i ≥ 2 and
Bi,i = 1 for each 1 ≤ i ≤ N with A irreducible for OA,B to exhaust all Kirchberg
algebras up to stable isomorphism [Kat08a, Proposition 4.5].

Next we observe that the Katsura–Exel–Pardo groupoids that satisfy the as-
sumptions of the AH conjecture are purely infinite (in the sense of [Mat15b, Def-
inition 4.9]). This means that the index map is surjective [Mat15b, Theorem 5.2],
so we only need to establish Property TR in order to prove that the AH conjecture
hold for these groupoids.

Proposition C.3.11. Let N < ∞ and assume that GA,B is Hausdorff, effective and
minimal. Then GA,B is purely infinite.

Proof. Since the SFT-groupoid GA � GA,0 is an open ample subgroupoid of GA,B,
the pure infiniteness ofGA,B follow from that ofGA, which is established in [Mat15b,
Lemma 6.1]. �

As in Paper B we make the following ad hoc definition for brevity.

Definition C.3.12. We say that the matrices A, B satisfy the AH criteria if N < ∞

and GA,B is Hausdorff, effective and minimal.

A large class of pairs of matrices satisfying the AH criteria are given in the
following example.

Example C.3.13. Let N ∈ N and let A ∈ MN (Z+), B ∈ MN (Z). Assume that A
is irreducible and that Bi, j = 0 if and only if Ai, j = 0. Assume further that there
exists some i between 1 and N such that ��Bi,i

�� < Ai,i ≥ 2. Then the matrices A, B
satisfy the AH criteria.

C.4 The homology of GA,B

In this section we will describe the homology groups of the Katsura–Exel–Pardo
groupoids, following [Ort18]. Although the action is assumed to be pseudo-
free throughout in [Ort18], most of what we need here also work without this
assumption, with one notable exception which is adressed in Equation (C.4.6)
below.

AssumptionC.4.1. We assume throughout that N < ∞ and that GA,B is Hausdorff.
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C.4.1 The kernel subgroupoidHA,B

Similarly to the canonical cocycle on an SFT-groupoid (see page 37 of [Mat12]) we
can define a cocycle (that is, a continuous groupoid homomorphism into a group)
c : GA,B → Z on a Katsura–Exel–Pardo groupoid by setting

c ([µ,m, ν; x]) = |µ| − |ν | .

This is well defined since the difference |µ| − |ν | is preserved under ∼. Now define

HA,B B ker(c) =
{
[µ,m, ν; x] ∈ GA,B | |µ| = |ν |

}
,

which is a clopen ample subgroupoid of GA,B. In contrast to the case of graph
groupoids, this kernel is generally not an AF-groupoid (it need not be principal),
but it is still key to computing the homology of GA,B.

Next, for each n ∈ N we define the open subgroupoid

HA,B,n B
{
[µ,m, ν; x] ∈ GA,B | |µ| = |ν | = n

}
⊆ HA,B .

Observe that HA,B,n ⊆ HA,B,n+1 by (C.3.3) and that ∪∞n=1HA,B,n = HA,B. Hence

Hi
(
HA,B

)
� lim
−−→

(
Hi

(
HA,B,n

)
, Hi (ιn)

)
(C.4.1)

by [FKPS18, Proposition 4.7], where ιn is the inclusion map.
It follows from the proof of [Ort18, Proposition 2.3] that if µ, ν ∈ En

A
and

r (µ) = r (ν), then [
1Z (µ)

]
=

[
1Z (ν)

]
∈ H0

(
HA,B,n

)
and that we have

H0
(
HA,B,n

)
= span

{ [
1Z (µ)

]
| µ ∈ En

A

}
� ZN, (C.4.2)

even without the assumption of pseudo-freeness. The isomorphism in (C.4.2) is
given by mapping

[
1Z (µ)

]
to 1r (µ), where by 1w ∈ ZN � ⊕v∈E0

A
Z for w ∈ E0

A
, we

mean the tuple with 1 in the w’th coordinate and 0 elsewhere.
As for H1

(
HA,B,n

)
, for paths µ and ν as above it similarly follows from the

proof of [Ort18, Proposition 2.4] that
[
1Z (µ,m,µ)

]
=

[
1Z (µ,m,ν)

]
=

[
1Z (ν,m,ν)

]
∈ H1

(
HA,B,n

)
,

[
1Z (µ,m,µ)

]
= m

[
1Z (µ,1,µ)

]
∈ H1

(
HA,B,n

)
, (C.4.3)

and hence
H1

(
HA,B,n

)
= span

{ [
1Z (µ,1,µ)

]
| µ ∈ En

A

}
. (C.4.4)

199



Paper C. Katsura–Exel–Pardo Groupoids and the AH Conjecture

If the action is pseudo-free, then

H1
(
HA,B,n

)
� ZN

by identifying
[
1Z (µ,1,µ)

]
with 1r (µ).

However, when the action is not pseudo-free, we need to take care. The group
H1

(
HA,B,n

)
will still be a free abelian group, but its rank may be smaller than N .

To explain this phenomenon, let us call a vertex i ∈ {1, 2, . . . , N } a B-sink if Bi, j = 0
for all j with Ai, j > 0. Any path passing through a B-sink will be strongly fixed by
the action, meaning that κm(µ) = µ and ϕ(m, µ) = 0 ([EP17, Definition 5.2]). To
see the impact this has on H1

(
HA,B,n

)
, suppose that i is a B-sink and that µ ∈ En

A

has r (µ) = i. Then we have the counter-intuitive equality

Z (µ, 1, µ) = Z (µ, 0, µ) ⊆ G (0)
A,B
, (C.4.5)

since for any x = µez ∈ Z (µ) with e ∈ r (µ)E1
A we have

(µ, 1, µ; x) ∼ (µκ1(e), ϕ(1, e), µe; x) = (µe, 0, µe; x) ∼ (µ, 0, µ; x).

This in turn means that
[
1Z (µ,1,µ)

]
= 0 ∈ H1

(
HA,B,n

)
, so this part of H1

(
HA,B,n

)
collapses. More generally, the samewill happen to any path µ ∈ En

A
for which every

infinite path x ∈ Z (r (µ)) passes through a B-sink. To have a name for vertices for
which this does not happen, let us define a vertex 1 ≤ i ≤ N to be a B-regular if
there exists a path µ, containing no B-sinks, starting at i which connects to a cycle
that contain no B-sinks. This is the same as saying that there is some infinite path
starting at i which does not pass through any B-sink. Bisections Z (µ, 1, µ) with
r (µ) B-regular behave just like in the pseudo-free case, while those with r (µ) not
B-regular vanish in H1

(
HA,B,n

)
as explained above. Let RB denote the number of

B-regular vertices. Then we have that

H1
(
HA,B,n

)
= span

{ [
1Z (µ,1,µ)

]
| µ ∈ En

A with r (µ) B-regular
}
� ZRB . (C.4.6)

This particular description (as opposed to (C.4.4)) is only used in the proof of
Lemma C.5.3.

Remark C.4.2. By viewing the matrices A and B as endomorphisms of ZN (via
left multiplication) we may consider the inductive limits

ZA B lim
−−→

(
ZN, A

)
and ZB B lim

−−→

(
ZN, B

)
. (C.4.7)

Let φA
n,∞ : ZN → ZA and φBn,∞ : ZN → ZB denote the canonical maps into the

inductive limits. Propositions 2.3 and 2.4 in [Ort18] remain valid without pseudo-
freeness and they show that the inductive limits in (C.4.1) for i = 0 and i = 1 turn
into the limits in (C.4.7), respectively. This means that

H0
(
HA,B

)
� ZA and H1

(
HA,B

)
� ZB,
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where the isomorphisms are given by
[
1Z (µ)

]
7→ φA

n,∞

(
1r (µ)

)
and

[
1Z (µ,1,µ)

]
7→ φBn,∞

(
1r (µ)

)
,

respectively, for µ ∈ En
A
. This is still compatible with Equation (C.4.6), because

if v is a non-B-regular vertex, then 1v is eventually annihilated in the inductive
limit ZB. What does not necessarily hold without pseudo-freeness is [Ort18,
Proposition 2.2], which says that Hn

(
HA,B

)
= 0 when n ≥ 2. This part, however,

is not needed for the results in the present paper.

Let GA,B ×c Z denote the skew product associated to the cocycle c (see Sub-
section B.2.5).

Lemma C.4.3. The clopen set E∞A × {0} ⊆
(
GA,B ×c Z

) (0) is
(
GA,B ×c Z

)
-full.

Proof. The sameproof as for SFT-groupoidsworks here (see [FKPS18, Lemma6.1]
for a more general result). Let (x, k) ∈ E∞A ×Z =

(
GA,B ×c Z

) (0) be given. If k < 0,
then the groupoid element

[
x |−k, 0, r (x |−k ) ; x[−k+1,∞]

]
∈ GA,B×cZ has range (x, k)

and source (x[−k+1,∞], 0), which shows that E∞A × {0} meets the
(
GA,B ×c Z

)
-orbit

of (x, k). In the case that k > 0we can, since EA is a finite graph without sinks, find
an index n ∈ N for which r (xn) supports a cycle. By concatenating along this cycle
we can find a path ν ∈ E∗A with r (ν) = r (xn) and |ν | = n + k. Then the element[
x |n, 0, ν; νx[n+1,∞]

]
has range (x, k) and source (νx[n+1,∞], 0) ∈ E∞A × {0}. �

Recall that
HA,B �

(
GA,B ×c Z

)
|E∞

A
×{0}

via the map
[µ,m, ν; x] 7→ ([µ,m, ν; x], 0) .

Composing this with the inclusion of the restriction we obtain an embedding ι

of HA,B into the skew product GA,B ×c Z. Lemma C.4.3 says that HA,B is
Kakutani equivalent to GA,B ×c Z from which we have the following consequence
(by [FKPS18, Lemma 4.3]).

Proposition C.4.4. The embedding ι : HA,B → GA,B ×c Z induces isomorphisms

Hi
(
HA,B

)
� Hi

(
GA,B ×c Z

)
for each i ≥ 0.

201



Paper C. Katsura–Exel–Pardo Groupoids and the AH Conjecture

C.4.2 A long exact sequence in homology

FromProposition B.6.1 applied to the cocycle c : GA,B → Zwe obtain the following
long exact sequence in homology:

· · · H2(GA,B) H1(GA,B ×c Z) H1(GA,B ×c Z)

H1(GA,B) H0(GA,B ×c Z) H0(GA,B ×c Z) · · ·

∂2 id−H1 (ρ•)

H1 (π•)

∂1 id−H0 (ρ•)

(C.4.8)
Consult Section B.6 for a description of the maps. Appealing to Proposition C.4.4
we can replace Hi

(
GA,B ×c Z

)
with Hi

(
HA,B

)
and extract the following exact

sequence from the one above:

H1(HA,B) H1(HA,B) H1(GA,B) H0(HA,B) H0(HA,B).
ρ1

Φ Ψ ρ0

(C.4.9)
The maps Φ and Ψ are the unique maps satisfying

H1(π•) ◦ H1(ι) = Φ and ∂1 = H0(ι) ◦ Ψ,

respectively. Similarly, the maps ρi are defined by

Hi (ι) ◦ ρi = (id−Hi (ρ•)) ◦ Hi (ι) for i = 0, 1.

In the next section we are going to need explicit descriptions of the maps
in (C.4.9). This is provided in the lemmas below. Some of them are given in terms
of “prefixing an edge” to a path, and therefore we need to assume that the graph EA

has no sources.

Assumption C.4.5. For the remainder of this section we assume that the matrix A
is essential.

Lemma C.4.6. The map Φ : H1(HA,B) → H1(GA,B) is given by

Φ
( [

1Z (µ,1,µ)
] )
=

[
1Z (µ,1,µ)

]
=

[
1Z (r (µ),1,r (µ))

]
∈ H1(GA,B)

for
[
1Z (µ,1,µ)

]
∈ H1(HA,B). In particular, I (α) = Φ (IH(α)) ∈ H1(GA,B) for

each α ∈
�
HA,B

�
.

Proof. Straightforward. �
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Lemma C.4.7. The map ρ0 : H0(HA,B) → H0(HA,B) is given by

ρ0
( [

1Z (µ)
] )
=

[
1Z (µ)

]
−

[
1Z (eµ)

]
,

where e ∈ E1
A is any edge with r (e) = s(µ).

Proof. We have the following commutative diagram:

H0(GA,B ×c Z) H0(GA,B ×c Z)

H0(HA,B) H0(HA,B)

id−H0 (ρ•)

ρ0

H0 (ι) � H0 (ι) �

The maps are given by

H0(ι)
( [

1Z (µ)
] )
=

[
1Z (µ)×{0}

]
∈ H0

(
GA,B ×c Z

)
and

H0 (ρ•)
( [

1Z (µ)×{0}
] )
=

[
1Z (µ)×{1}

]
=

[
1Z (eµ)×{0}

]
∈ H0

(
GA,B ×c Z

)
,

where e ∈ E1
A is any edge with r (e) = s(µ). Combining these we obtain the desired

description of ρ0. �

When B = 0, the map ρ0 : H0(HA,0) → H0(HA,0) coincides with the map

(id−ϕ) : H0
(
HEA

)
→ H0

(
HEA

)
,

where ϕ is from Definition B.7.5. We apologize for the conflicting notation of ϕ
with the 1-cocycle from Section C.3, but since the 1-cocycle makes no appearence
for the rest of this section we believed it better to stick with the notation from
Paper B to make it easier to compare with results therein. Below, we (trivially)
extend the definition of ϕ, as well as ϕ(k) from Definition B.8.5, to Katsura–
Exel–Pardo groupoids. The automorphism ϕ is the one induced by H0 (ρ•) when
identifying H0

(
GA,B ×c Z

)
with H0

(
HA,B

)
.

Definition C.4.8. Define ϕ : H0
(
HA,B

)
→ H0

(
HA,B

)
by for each µ ∈ E∗A setting

ϕ
( [

1Z (µ)
] )
=

[
1Z (eµ)

]
,

where e ∈ E1
A is any edge with r (e) = s(µ). For k ∈ Z we further define

ϕ(k) B




−(id+ϕ + · · · + ϕk−1) k > 0,
0 k = 0,
ϕ−1 + ϕ−2 + · · · + ϕk k < 0.
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Remark C.4.9. In the case that B = 0 the map ϕ : H0
(
HA,0

)
→ H0

(
HA,0

)
coin-

cides the inverse δ−1 ofMatui’s map δ from [Mat15b, page 56]. See Remarks B.7.6
and B.8.8 for more on this.

The next lemma is essentially the same as Lemma B.8.6.

Lemma C.4.10. Let [ f ] ∈ H1
(
GA,B

)
and write f =

∑k
i=1 ni1Z (µi,1,νi ). Then the

map Ψ : H1
(
GA,B

)
→ H0

(
HA,B

)
is given by

Ψ([ f ]) =
k∑
i=1

niϕ( |νi |− |µi |) ( [
1Z (νi )

] )
.

Proof. Recall that ∂1 = H0(ι) ◦Ψ, where ∂1 : H1
(
GA,B

)
→ H0

(
GA,B ×c Z

)
is the

connecting homomorphism in (C.4.8). We are going to describe ∂1 in a similar
way as in the proof of Lemma B.8.6. It may be helpful to consult Figure B.2, as
we will adopt the notation from there.

Let [ f ] ∈ H1
(
GA,B

)
be given, where f ∈ Cc

(
GA,B,Z

)
satisfies δ1( f ) = 0.

Then we can write f =
∑k

i=1 ni1Z (µi,1,νi ), where
∑k

i=1 ni1Z (µi ) =
∑k

i=1 ni1Z (νi ).
Now view f + im(δ2) as an element in Cc

(
GA,B,Z

)
/ im(δ2).

The element π1(h) + im(δ2), where

h B f × 0 =
k∑
i=1

ni1Z (µi,1,νi )×{0} ∈ Cc
(
GA,B ×c Z,Z

)
,

provides a lift of f + im(δ2) by π1 + im(δ2). Next, we need to compute

δ̃1(h + im(δ2)) = δ1(h) ∈ Cc

(
(GA,B ×c Z)(0),Z

)
� Cc

(
E∞A × Z,Z

)
.

Setting li B |µi | − |νi | to save space we have

δ1(h) =
k∑
i=1

ni (s∗ − r∗)
(
1Z (µi,mi,νi )×{0}

)
=

k∑
i=1

ni
(
1s(Z (µi,mi,νi )×{0}) − 1r (Z (µi,mi,νi )×{0})

)
=

k∑
i=1

ni
(
1Z (νi )×{ |µi |− |νi | } − 1Z (µi )×{0})

)
=

k∑
i=1

ni
(
1Z (νi )×{li } − 1Z (νi )×{0})

)
,
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where we have used that
∑k

i=1 ni1Z (µi ) =
∑k

i=1 ni1Z (νi ). By Lemma B.6.2 the
(unique) lift of δ1(h) by id−ρ0 is the function

g B
k∑
i=1

niLi,

where

Li =




−
∑li−1

j=0 1Z (νi )×{ j } li > 0,
0 li = 0,∑−1

j=li
1Z (νi )×{ j } li < 0.

Observe that
[Li] = ϕ(li ) ( [

1Z (νi )×{0}
] )
∈ H0(GA,B ×c Z).

This means that

∂1([ f ]) = [g] =
k∑
i=1

niϕ( |µi |− |νi |) ( [
1Z (νi )×{0}

] )
∈ H0(GA,B ×c Z),

and hence

Ψ([ f ]) =
k∑
i=1

niϕ( |νi |− |µi |) ( [
1Z (νi )

] )
∈ H0

(
HA,B

)
.

�

Lemma C.4.11. Assume thatU ⊆ GA,0 ⊆ GA,B is a full bisection. Let I and IA de-
note the index maps of GA,B and GA,0, respectively. IfΨ (I (πU )) = 0 ∈ H0

(
HA,B

)
,

then IA (πU ) = 0 ∈ H1
(
GA,0

)
.

Proof. We can write U = tk
i=1Z (µi, 0, νi), where E∞A = t

k
i=1Z (µi) = tki=1Z (νi).

By Lemma C.4.10 we have

0 = Ψ (I (πU )) = Ψ ([1U ]) =
k∑
i=1

ϕ( |νi |− |µi |) ( [
1Z (νi )

] )
∈ ker

(
ρ0

)
⊆ H0

(
HA,B

)
.

On the other hand we have that H1
(
GA,0

)
� ker

(
ρ0

)
� ker (id−H0 (ρ•))

since H1
(
GA,0 ×c Z

)
= 0 (see Section B.7). This isomorphism is implemented

by the connecting homomorphism ∂1 from (C.4.8) for B = 0. Lemma B.8.6
(or the proof of Lemma C.4.10 with B = 0) says that under this isomorphism
the element IA (πU ) ∈ H1

(
GA,0

)
corresponds to Ψ (I (πU )) ∈ ker

(
ρ0

)
. Hence

IA (πU ) = 0. �

The following lemma is part of the proof of [Ort18, Proposition 2.5], but we
nevertheless sketch the proof for completness.
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Lemma C.4.12. The map ρ1 : H1(HA,B) → H1(HA,B) is given by

ρ1
( [

1Z (µ,m,µ)
] )
=

[
1Z (µ,m,µ)

]
−

[
1Z (eµ,m,eµ)

]
,

where e ∈ E1
A is any edge with r (e) = s(µ).

Proof. Arguing similarly as in the proof of Lemma C.4.7 it suffices to show that
[
1Z (µ,1,µ)×{1}

]
=

[
1Z (eµ,1,eµ)×{0}

]

in H1
(
GA,B ×c Z

)
.

Suppose U, V are compact bisections with s(U) = r (V ) in some ample
groupoid G. Denote

U ◦ V B (U × V ) ∩ G (2) =
{
(g, h) ∈ G (2) | g ∈ U, h ∈ V

}
.

By [Mat12, Lemma 7.3], we have

δ2 (1U◦V ) = 1U − 1U ·V + 1V . (C.4.10)

Let e ∈ E1
A be any edge with r (e) = s(µ) and define the following bisections

in GA,B ×c Z:

U1 B Z (µ, 1, µ) × {1}, V1 B Z (µ, 0, eµ) × {1},
U2 B Z (eµ, 0, µ) × {0}, V2 B Z (µ, 1, eµ) × {1},
U3 B U2, V3 B V1,

U4 B Z (eµ, 0, eµ) × {0}, V4 B U4.

From these we define the indicator functions f i B 1Ui◦Vi ∈ Cc

(
G (2)
A,B
,Z

)
for

i = 1, 2, 3, 4. Using (C.4.10) it is easy to check that

δ2 ( f1 + f2 − f3 − f4) = 1Z (µ,1,µ)×{1} − 1Z (eµ,1,eµ)×{0},

which shows that
[
1Z (µ,1,µ)×{1}

]
=

[
1Z (eµ,1,eµ)×{0}

]
in H1

(
GA,B ×c Z

)
. �

Remark C.4.13. The main result of [Ort18] is the following description of the
homology groups of GA,B, assuming that the self-similar graph is pseudo-free:

H0
(
GA,B

)
� coker (IN − A) ,

H1
(
GA,B

)
� ker (IN − A) ⊕ coker (IN − B) ,

H2
(
GA,B

)
� ker (IN − B) ,

Hi
(
GA,B

)
= 0, i ≥ 3.
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Here IN is the N×N identitymatrix and IN−A, IN−B are viewed as endomorphisms
of ZN . When the self-similar graph is pseudo-free, [Ort18, Lemma 2.2] shows
that Hi

(
HA,B

)
= 0 for i ≥ 2. This truncates the long exact sequence (C.4.8) into

(identifying as in (C.4.9)):

0 H2(GA,B) H1(HA,B) H1(HA,B)

H1(GA,B) H0(HA,B) H0(HA,B) H0(GA,B) 0.

ρ1

Φ

Ψ ρ0

It follows that H2
(
GA,B

)
� ker

(
ρ1

)
, H0

(
GA,B

)
� coker

(
ρ0

)
and that

0 coker
(
ρ1

)
H1(GA,B) ker

(
ρ0

)
0Φ̃ Ψ (C.4.11)

is exact. It is also shown in [Ort18] that

ker
(
ρ0

)
� ker (IN − A) , coker

(
ρ0

)
� coker (IN − A) ,

ker
(
ρ1

)
� ker (IN − B) , coker

(
ρ1

)
� coker (IN − B) .

Since ker
(
ρ0

)
is free, the exact sequence (C.4.11) splits, and we therefore obtain

H1(GA,B) � ker
(
ρ0

)
⊕ coker

(
ρ1

)
.

We remark that these results are valid for N = ∞ as well. Moreover, the
descriptions of H0

(
GA,B

)
and H1

(
GA,B

)
are valid even when the self-similar

graph is not pseudo-free.

C.5 Property TR for GA,B

The aim of this section is to show that the Katsura–Exel–Pardo groupoid GA,B has
Property TR. This means that given α ∈

�
GA,B
�
with I (α) = 0, we need to show

that α ∈ T (GA,B). In a nutshell, the strategy is to decompose the topological full
group as

�
GA,B
�
=
�
HA,B

� �
GA,0
�
and show that Property TR is inherited from

the kernel groupoid HA,B and the SFT-groupoid GA,0. In what follows we will
view GA,0 � GA as a subgroupoid of GA,B.

Assumption C.5.1. In this whole section we fix N × N matrices A, B which satisfy
the AH criteria and where A is essential. In particular N < ∞ and A is an
irreducible non-permutation matrix.

Proposition C.5.2. The index map IH :
�
HA,B

�
→ H1

(
HA,B

)
is surjective.
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Proof. Let µ ∈ E∗A and consider the bisection V B Z (µ, 1, µ) ⊆ HA,B. Since
s (V ) = r (V ) = Z (µ) we can define a full bisectionU B Vt

(
E∞A \ Z (µ)

)
⊆ HA,B.

By [Mat12, Lemma 7.3] we have IH (πU ) = [1V ]. The result now follows since
these elements span H1

(
HA,B

)
(by (C.4.1) and (C.4.4)). �

Lemma C.5.3. For each n ∈ N the groupoidHA,B,n has Property TR.

Proof. Let U ⊆ HA,B,n be a full bisection. Then U = tk
i=1Z (µi,mi, νi), where

µi, νi ∈ E≤n
A

satisfy |µi | = |νi |, r (µi) = r (νi) and E∞A = t
k
i=1Z (µi) = tki=1Z (νi).

Using the fact that each basic bisection decomposes as

Z (µ,m, ν) =
⊔

e∈s−1 (r (ν))

Z (µκm(e), ϕ(m, e), νe) (C.5.1)

we can assume without loss of generality that |µi | = |νi | = n for all 1 ≤ i ≤ k.
We may also set mi = 0 whenever r (µi) is not B-regular, for then Z (µi,mi, νi) =
Z (µi, 0, νi), by the same reasoning as in Equation (C.4.5).

Let us now consider the index map IH,n :
�
HA,B,n

�
→ H1(HA,B,n). Us-

ing (C.4.3) we compute

IH,n (πU ) = [1U ] =
k∑
i=1

[
1Z (µi,mi,νi )

]
=

k∑
i=1

mi

[
1Z (µi,1,µi )

]
∈ H1(HA,B,n).

For each vertex v ∈ E0
A
let Iv B {1 ≤ i ≤ k | r (µi) = v}. Using the identification

in (C.4.6) (where only the B-regular vertices matter) we see that IH,n (πU ) = 0 if
and only if

∑
i∈Iv

mi = 0 for each vertex v ∈ E0
A
.

We define two more full bisections inHA,B,n, namely

UH B tki=1Z (µi,mi, µi) and UA B t
k
i=1Z (µi, 0, νi).

Observe that UH · UA = U . We claim that πUA is a product of transpositions,
i.e. πUA ∈ T (HA,B,n). Indeed, since E∞A = t

k
i=1Z (µi) = tki=1Z (νi) and |µi | =

|νi | = n, we must have that En
A
= {µ1, µ2, . . . , µk } = {ν1, ν2, . . . , νk }. Hence the

homeomorphism πUA on E∞A can be identified with a permutation on a finite set of
k symbols which maps νi to µi. The claim then follows.

Next we will show that πUH is a product of transpositions when IH,n (πU ) = 0.
Let I0 denote the set of vertices v for which Iv , ∅ and pick a distinguished index
iv ∈ Iv for each vertex v ∈ I0. Suppose that r (µi1 ) = v = r (µiv ) for some index
i1 , iv. Set V1 B Z (µiv,mi1, µi1 ) and W1 B Z (µiv, 0, µi1 ). Then

UH · V̂1 · Ŵ1 =
*.
,

⊔
i,iv,i1

Z (µi,mi, µi)
+/
-

⊔
Z (µiv,miv + mi1, µiv )

⊔
Z (µi1, 0, µi1 ).
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By iterating this process enough times for each vertex we can write

UH · V̂1 · Ŵ1 · · · V̂K · ŴK =
⊔
v∈I0

*.
,

Z
(
µiv,

∑
i∈Iv

mi, µiv
)
t

⊔
i∈Iv\{iv }

Z (µi, 0, µi)+/
-
,

(C.5.2)
where the Vi,Wi’s are compact bisections with disjoint source and range, so that
πV̂i

, πŴi
are transpositions. Now if IH,n (πU ) = 0, then each

∑
i∈Iv

mi = 0, in
which case (C.5.2) says that

πUH

(
πV̂1

πŴ1
· · · πV̂K

πŴK

)
= idE∞

A
.

This shows that πUH ∈ T (HA,B,n) and hence πU = πUHπUA ∈ T (HA,B,n) too. �

Proposition C.5.4. The groupoidHA,B has Property TR.

Proof. Since HA,B = ∪
∞
n=1HA,B,n and HA,B,n

(0) = H(0)
A,B

is compact we have�
HA,B

�
= ∪∞

n=1
�
HA,B,n

�
as well. Suppose that IH(πU ) = 0 ∈ H1(HA,B) for some

πU ∈
�
HA,B

�
. We have πU ∈

�
HA,B,n

�
for some n. By (C.4.1) we must have

IH,n′ (πU ) = 0 for some n′ ≥ n. The result now follows from Lemma C.5.3. �

RemarkC.5.5. Even thoughHA,B isminimal and has Property TR, Proposition 4.5
in [Mat16] does not apply, because HA,B is not purely infinite and generally not
principal.

Recall the exact sequence (C.4.9) from the previous section, as it is going to
be used in the proofs of the next two results. The following lemma is inspired
by [Mat16, Lemma 4.7].

Lemma C.5.6. Let U ⊆ HA,B be a full bisection and view πU as an element of�
GA,B
�
. If I (πU ) = 0 ∈ H1

(
GA,B

)
, then πU ∈ T

(
GA,B

)
.

Proof. Set α B πU . By Lemma C.4.6 we have Φ (IH(α)) = I (α) = 0, so
IH(α) ∈ ker(Φ) = im(ρ1). Let [ f ] ∈ H1

(
HA,B

)
be such that IH(α) = ρ1([ f ]).

By Proposition C.5.2 there is some β ∈
�
HA,B

�
such that IH(β) = [ f ].

Now β = πV for some full bisection V = tk
i=1Z (µi,mi, νi) ⊆ HA,B, where

E∞A = t
k
i=1Z (µi) = tki=1Z (νi) and |µi | = |νi | = n for all i, for some n ∈ N.

Employing the same argument and notation as in the proof of Lemma C.5.3 we
can find a product of transpositions β0 ∈ T

(
HA,B

)
such that β β0 = πW , where

W =
(
tv∈I0 Z

(
µiv, liv, µiv

))
t A with A ⊆ H(0)

A,B
and liv ∈ Z. In particular, the

paths µiv all have different ranges.
For each v ∈ I0 pick an edge ev ∈ E1

A with r (ev) = s
(
µiv

)
, s(ev), so that ev

is not a loop. Then for each v, the path evµiv is disjoint from µiv . Since all the µiv ’s
are mutually disjoint, so are all the evµiv ’s too. A priori, it is not guaranteed that
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µiv is disjoint from ewµiw when v , w ∈ I0. However, this (i.e. that µiv � ewµiw )
can be arranged if we at the start ensure that n is chosen large enough (which in
turn can be done by (C.5.1)) so that ���E

n−1
A

v
��� ≥ 2N for each v ∈ E0

A
. This gives

enough options when choosing the distinguished indices iv to ensure that the total
collection of paths ∪v∈I0

{
µiv, evµiv

}
are mutually disjoint (independent of the

choice of the ev’s).
By the above paragraph we may define the compact bisection

T B tv∈I0 Z
(
evµiv, 0, µiv

)
⊆ GA,B,

which has disjoint source and range. Define τT B πT̂ ∈ T (GA,B). Observe that
T̂ · W · T̂ =

(
tv∈I0 Z

(
evµiv, liv, evµiv

))
t A′ with A′ ⊆ H(0)

A,B
. Combining this

with the description of ρ1 from Lemma C.4.12 we see that

ρ1 (IH (πW )) = ρ1 ([1W ]) = [1W ] −
[
1T̂ ·W ·T̂

]

= IH (πW ) − IH (τT πW τT ) = IH
(
πW τT π

−1
W τT

)
. (C.5.3)

At the same time we have

IH (πW ) = IH (β) = [ f ], (C.5.4)

since πW = β β0 and β0 ∈ T
(
HA,B

)
. Next we observe that

W · T̂ ·W−1 =
⊔
v∈I0

(
Z

(
evµiv,−liv, µiv

)
t Z

(
µiv, liv, evµiv

))
t A′′,

where A′′ ⊆ G (0)
A,B

. This actually shows that πW τT π−1
W ∈ T

(
GA,B

)
since we

have W · T̂ · W−1 = R̂, where R = tv∈I0 Z
(
µiv, liv, evµiv

)
. Define the element

γ B πW τT π
−1
W τT ∈ T

(
GA,B

)
. Equations (C.5.3) and (C.5.4) now says that

IH (γ) = ρ1 (IH (πW )) = ρ1 ( [
f
] )
= IH (α) .

This means that IH
(
αγ−1

)
= 0 ∈ H1

(
HA,B

)
, and hence αγ−1 ∈ T

(
HA,B

)
by

Proposition C.5.4. Then α ∈ T
(
GA,B

)
and we are done. �

Theorem C.5.7. The Katsura–Exel–Pardo groupoid GA,B has Property TR.

Proof. Let U ⊆ GA,B be a full bisection. Then U = tk
i=1Z (µi,mi, νi), where

E∞A = t
k
i=1Z (µi) = tki=1Z (νi) (but the paths µi and νi may now have different

lengths). As in the proof of Lemma C.5.3 we define the full bisections

UH B tki=1Z (µi,mi, µi) ⊆ HA,B and UA B t
k
i=1Z (µi, 0, νi) ⊆ GA,0,
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�

where we view both HA,B and GA,0 as subgroupoids of GA,B. Recall that we have
UH ·UA = U and πU = πUHπUA ∈

�
GA,B
�
. We will be considering all three index

maps:

I :
�
GA,B
�
→ H1(GA,B),

IH :
�
HA,B

�
→ H1(HA,B),

IA :
�
GA,0
�
→ H1(GA,0).

We have I (πU ) = I
(
πUH

)
+ I

(
πUA

)
∈ H1

(
GA,B

)
, but by viewing πUH ∈

�
HA,B

�
and πUA ∈

�
GA,0
�
we may also consider IH

(
πUH

)
and IA

(
πUA

)
as elements

of H1
(
HA,B

)
and H1

(
GA,0

)
, respectively. The idea is to show that if I (πU ) = 0,

then both I
(
πUH

)
and IA

(
πUA

)
vanish as well. At this point we may appeal to

Lemma C.5.6 and Property TR for GA,0 � GA, respectively, to conclude that πU
itself must be a product of transpositions.

Assume now that I (πU ) = 0 ∈ H1
(
GA,B

)
. By Lemma C.4.6 and the exactness

of (C.4.9) have
Ψ

(
I
(
πUH

))
= Ψ

(
Φ

(
IH

(
πUH

)))
= 0.

This means that Ψ
(
I
(
πUA

))
= Ψ (I (πU )) = 0. From Lemma C.4.11 we conclude

that IA
(
πUA

)
= 0 ∈ H1

(
GA,0

)
. Hence πUA ∈ T

(
GA,0

)
⊆ T

(
GA,B

)
by appealing

to Property TR for SFT-groupoids [Mat15b]. It follows that I
(
πUA

)
= 0 ∈

H1
(
GA,B

)
too, and then I

(
πUH

)
= I (πU ) = 0 ∈ H1

(
GA,B

)
. By Lemma C.5.6 we

then get πUH ∈ T
(
GA,B

)
as well. This finishes the proof, since πU = πUHπUA . �

Corollary C.5.8. The AH conjecture holds for the Katsura–Exel–Pardo groupoid
GA,B whenever the matrices A, B satisfy the AH criteria and A is irreducible.

Proof. Since GA,B has Property TR (Theorem C.5.7) and is purely infinite (Propo-
sition C.3.11) and minimal, the result follows from [Mat16, Theorem 4.4]. �

Remark C.5.9. To get rid of the assumption of A being essential, i.e. allowing for
sources in EA, we need to prove Property TR for restrictions, as is done for graph
groupoids in Paper B. This should be doable.

C.6 Finite generation of
�
GA,B
�

In this section we will show that the topological full group
�
GA,B
�
is finitely

generated, under the following hypotheses on A and B.

Assumption C.6.1. In this whole section we fix N × N matrices A, B which satisfy
the AH criteria and where A is essential. In particular N < ∞ and A is an
irreducible non-permutation matrix. Furthermore, we assume that ���Bi, j

��� < Ai, j

whenever Ai, j , 0.
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In [Nek18a, Definition 5.1], Nekrashevych defined the notion of a self-similar
group being contracting. He showed that for a contracting self-similar group, the
topological full group of the associated groupoid of germs is finitely presented.
We will extend Nekrashevych’s definition to cover the self-similar graphs of Exel
and Pardo, and show that the self similar graph associated to matrices A and B as
above is contracting. However, we will settle for showing that

�
GA,B
�
is finitely

generated. A crucial ingredient in our argument is the fact that the topological full
group

�
GA,0
�
is finitely generated [Mat15b].

Definition C.6.2. Let (G, E, ϕ) be a self-similar graph as in [EP17, Section 2].
We say that (G, E, ϕ) is contracting if there exists a finite subset N ⊂ G with the
property that for every g ∈ G there is some n ∈ N such that ϕ(g, µ) ∈ N for
all µ ∈ E≥n.

The following rudimentary lemma will be used when showing that the self-
similar graph from Section C.3 is contracting.

Lemma C.6.3. Assume that a, b,m, t ∈ Z are integers satisfying a ≥ 1 and

(b − a)m − a < at < (b − a)m + a,

1 − 2a ≤ b − a ≤ −1.

Then

|m + t | < |m | when |m | ≥ 2a,

|m + t | ≤ |m | when |m | < 2a.

Proof. Assume first that m ≥ 0. Then

(b − a)m − a ≥ (1 − 2a)m − a = m − a − 2ma

and
(b − a)m + a ≤ (−1)m + a = a − m,

so
m − a − 2ma < at < a − m.

Now if m ≥ 2a, then

a − m ≤ −a and m − a − 2ma ≥ a − 2ma = (1 − 2m)a.

We infer from this that

1 − 2m < t < −1 =⇒ −2m < t < 0 =⇒ |m + t | < |m | .
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Next, if 0 ≤ m < a, then

a − m ≤ a and m − a − 2ma ≥ −a − 2ma = (−1 − 2m)a.

From this we get

−1 − 2m < t < 1 =⇒ −2m ≤ t ≤ 0 =⇒ |m + t | ≤ |m | .

The case m < 0 proceeds in essentially the same way. �

Lemma C.6.4. Let e = ei, j,n ∈ E1
A and m ∈ Z be given. Then we have

|ϕ(m, e) | < |m | when |m | ≥ 2Ai, j,

|ϕ(m, e) | ≤ |m | when |m | < 2Ai, j .

Proof. We have that Ai, j ≥ 1 and that 0 ≤ n < Ai, j . Let t and r be the unique
integers satisfying

mBi, j + n = (m + t)Ai, j + r and 0 ≤ r < Ai, j .

Recall that then ϕ(m, e) = m + t. We now have(
Bi, j − Ai, j

)
m + n − r = Ai, jt

where −Ai, j < n − r < Ai, j . From this we see that(
Bi, j − Ai, j

)
m − Ai, j < Ai, jt <

(
Bi, j − Ai, j

)
m + Ai, j .

We also have
1 − 2Ai, j ≤ Bi, j − Ai, j ≤ −1,

since ���Bi, j
��� < Ai, j . We are now in the setting of Lemma C.6.3 and so the result

follows. �

Proposition C.6.5. The self-similar graph (Z, EA, ϕ) associated to the matrices A
and B is contracting.

Proof. Define R B 2 · max{Ai, j | 1 ≤ i, j ≤ N }. Let m ∈ Z be given. Combining
LemmaC.6.4with Equation (C.3.2)we see that |ϕ(m, µ) | ≤ Rwhenever µ ∈ E≥ |m |

A
.

So by settingN = [−R, R]∩Z and n = |m | inDefinitionC.6.2we find that (Z, EA, ϕ)
is contracting. �

Before establishing the finite generation of
�
GA,B
�
we introduce some notation.

Given γ ∈ E∗A and m ∈ Z we denote the full bisection Z (γ,m, γ) t
(
G (0)
A,B
\ Z (γ)

)
by Uγ,m. Given two disjoint paths µ, γ ∈ E∗A with r (µ) = r (γ) we define the
transposition τµ,γ B πV̂ ∈

�
GA,0
�
, where V = Z (µ, 0, γ). Observe that we have

τµ,γ ◦ πUγ,m ◦ τµ,γ = πUµ,m .
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TheoremC.6.6. Let A, B be matrices satisfying the AH criteria with A irreducible.
Assume that ���Bi, j

��� < Ai, j whenever Ai, j , 0. Then the topological full group
�
GA,B
�

is finitely generated.

Proof. First pick n ∈ N large enough so that En
A
v ≥ 2 for each v ∈ E0

A
. As above,

set R B 2 · max{Ai, j | 1 ≤ i, j ≤ N }. Let S be a finite generating set for
�
GA,0
�

([Mat15b, Theorem 6.21]) and define the finite set

T B
{
πUγ,m | γ ∈ En

A & − R ≤ m ≤ R
}
.

We claim that S ∪ T generates
�
GA,B
�
.

To prove the claim let πU ∈ GA,B be given. Write U = tk
i=1Z (µi,mi, νi). By

applying the splitting in Equation (C.5.1) enough times to each basic bisection inU
we may assume without loss of generality that |µi | ≥ n for each i. Similarly, by
Proposition C.6.5 we may assume that |mi | ≤ R. As we have done a few times
already we split the full bisection U into the two full bisections

UH B tki=1Z (µi,mi, µi) and UA B t
k
i=1Z (µi, 0, νi),

making πU = πUHπUA . Since πUA ∈
�
GA,0
�
and πUH = Π

k
i=1πUµi ,mi

it suffices
to consider each πUµi ,mi

. By the assumption on n we can for each i find a path
γi ∈ En

A
r (µi) which is disjoint from µi. The equation

πUµi ,mi
= τµi,γi ◦ πUγi ,mi

◦ τµi,γi

then proves the claim, since τµi,γi ∈
�
GA,0
�
and πUγi ,mi

∈ T . �
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