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Abstract— An approach for introduction of transverse co-
ordinates in a vicinity of a periodic trajectory is presented.
The approach allows finding by numerical integration periodic
normalized mutually-orthogonal vector-functions that form a
continuously differentiable basis on moving Poincaré sections
for a given periodic solution of a nonlinear dynamical system.

The found moving frame is used to define new local (trans-
verse) coordinates for an associated affine nonlinear control
system in a neighborhood of the trajectory, and to proceed
with orbital stability analysis and/or synthesis of a stabilizing
feedback control law.

As a demonstrating example of the approach, the problem of
orbital stabilization of a trajectory of a multibody car system is
considered. The results of computer simulations of the system
are presented.

I. INTRODUCTION

The transverse linearization approach is widely used in
the problem of orbital stabilization [1], [2], [3], [4], [5]
of periodic (and not only) trajectories of dynamical sys-
tems. In particular, the approach has been well-studied in
application to Euler-Lagrange systems [6], [7], [8], while
a constructive algorithm for defining transverse coordinates,
and synthesis of feedback controllers was suggested in [6].
The algorithm was successfully used, for example, in solving
the problem of orbital stabilization of periodic trajectories
of a Pendubot [3], a “Butterfly” robot [4], etc. However,
it was shown in [9] that the approach in some cases leads
to singularities in transverse dynamics, and, hence, cannot
be used. There, a distinct method for defining transverse
coordinates for periodic trajectories of nonlinear dynamical
systems of dimensions 2, 4, and 8 was suggested.

This paper proposes a new method for defining transverse
coordinates that works for affine nonlinear systems of ar-
bitrary dimension and is based on solving a well-known
differential equation for a rotation matrix. In addition, a
linearization of dynamics of the transverse coordinates is
presented generalizing a result by Urabe [10] and giving
a constructive alternative not only to analysis of orbital
stability, that can be performed using the elegant Leonov’s
formula, see e.g. [11], [12], but also to design orbitally
stabilizing feedback controllers.
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This paper uses the following notation. The value of
a function f at argument z is usually written with the
help of subscript index: f, = f(z). The time derivative
is usually denoted by ~ symbol: & = fl—f. The norm of a
vector v € R™ is written as ||v]| and means the standard

Euclidean norm: ||v]| = />, lu;|?. The distance operator
dist(a,b) : R™ x R — [0,00) is induced by the norm
operator: dist(a,b) = |ja — b||. The operator col; A returns
i-th column of the matrix A.

A. Problem formulation

The paper studies the problem of feedback stabilization
of non-trivial periodic solutions of dynamical systems of the
form

&= f(z)+g(@)u (D)

with state space variable x € R", control input v € R™,
functions f € C!(R™,R"), and g € C!(R",R"™™).
As mentioned above, particular attention is paid to the
orbital stability property. For completeness, let us recall its
definition, see e.g. [13, Definition 8.2 on p.333].

Definition 1. Let v, € C? (R,R") be a T-periodic function
(with T' > 0) satisfying

¥ =f(y) VreR )

dr
The set
vyi={z eR" | HeR:z="}

is called the orbit of the solution x = ;.

The solution x = ~; of the open-loop system (2)) or/and of
a closed-loop system with a time-invariant feedback control
law, vanishing along it, is asymptotically orbitally stable
within e-neighborhood

Ue :={z e R" | dist (z,7) < €}

of 7, if for every 0 < € < ¢ there exists 6 > 0 such that
every solution of the system, initiated inside Us, stays inside
Ug, while, every solution originated inside U, asymptotically
converges to v, ie.

dist(z (t),7) -0 as t— oo.

Above, the distance between the set v and a point x is
defined as
dist (z,7) := min ||z — .|| .
TER

The orbital stabilization problem is to define a (time-
independent) feedback control law, achieving asymptotic
orbital stability.



Remark 1. To simplify various expressions, it is assumed
here that x = v, is a (forward complete) bounded open-loop
solution of , i.e. with w = 0, and, moreover, ¥Vt > 0:
Y¢+ = "Ye+r. It is possible to handle similarly the case
when x© = ~y, is a solution of (I) with some T—periodic
u(t) # 0. In such a case, one may either introduce a time-
invariant feedback control transformation as in [7] or follow
the idea presented in the illustrative multibody car example
below. However, we proceed here without such a rather
straightforward generalization.

The solution presented below is a variation of the so-called
transverse linearization approach for control systems, see
e.g. [14], [15]. The core idea of the approach is to define, in
a neighborhood of the orbit v, new local coordinates (7, &) ~
x, (1,€) € RxR" 1, called the transverse coordinates such
that

o The scalar coordinate 7 = 7 () defines the “closest” to
the given x point on the orbit and 7(v;) =¢ mod 7.
e The n — 1 coordinates £ = = (x) locate points in “per-
pendicular” (or transverse) to the trajectory direction.
They vanish at any point on the orbit: = (y;) = 0, Vt.

There is an equivalent to (T) system

U8 a(r) + 80w ®

written in new coordinates. The linearization of system (3)
allows defining a linear time-varying system

dg

dr
with coefficients 4, € C! (R,R»=Yx(=1)) and B, €
C! (R,R(=1*m) that are periodic functions of time. The
problem of asymptotic orbital stabilization of 7, can be
solved using a stabilizing feedback control law for the trivial
solution £ = 0 of and exploiting the fact that under
certain conditions, see e.g. [11], £(t) = &(7 )’T a(@@) T

o(d(xz(t),7)). The last problem is well-studied and has
general solutions (see for example [16], [17]).

Our main contribution here is an algorithm for construct-
ing functions 7 = 7 (x) and £ = = (z) for a given periodic
trajectory ~y,, and deriving formulas for linearized transverse
dynamics written in these coordinates.

B. Transverse coordinates

To define transverse coordinates, let us make preliminary
geometrical constructions. For each 7 € [0,T") let us define a
hyperplane S, that transversally intersects the orbit «y at point
7-. Let the vectors e2. € R™ i = 1..n — 1 be an orthonormal
basis of the hyperplane S;. Then, any x belong to S, N U,
can be decomposed as

n—1
o= et e, 5)
1=1

where the decomposition coefficients ¢ € R™™!, and the
curve parameter 7 play the role of transverse coordinates

(the sufficient conditions, the mapping (7,£) — =z is a
diffeomorphism will be given below).
It is convenient in practice to define the hyperplane S; in

implicit form

T d77'

ST—{xEUEK —7r) PdT —0}
with the help of a square matrix P € R™*", such that ddi;
does not belong to nullspace of P%. For example, if the
hyperplane is taken to be orthogonal to the orbit at each
point, then P will be the identity matrix. Such a type of
section was used in the problem of orbital stabilization of
the cart-pole system [9].

In some cases, it makes sense to construct the sections
S, in such a way that the map 7 = 7 (x) (solution of the
eqution (z —~,)" P% = 0) does not depend on some
components of x. This can be helpful, if these componets
are not measured well. In this case, the matrix P will be
diagonal with zeros at the corresponding positions. In the
problem of orbital stabilization of the “Butterfly” robot [4],
the matrix P was taken as P = diag(0, 1,0,0).

Generalizing these, let us assume that P is a constant
matrix, symmetric, and satisfying d* pe d% #0Vr €[0,T).

To be able to represent dynamics (T]) i 1n an equivalent form
in coordinates 7, &, it is necessary for the transformation (5]
to be a diffeomorphism within a neighborhood, so that

« the inverse transformation 7 = 7 (z), £ = Z (z) exists;

« the Jacobian matrix of the transformation must be non-

singular.

These conditions mean that vector functions e must be
periodic with period 7', and the vectors ei, d(]; must be
linearly independent for all 7.

In the most simple case when the phase space of a
dynamical system is R2, and the space S, is the orthogonal

complement of d'YTT, the basis of S; is given by the vector

d%
el = ( 0 -1 )
Hd%
defining a normalized rotation of f(vy,) by 7/2.
A similar approach for defining basis vectors el =
d

Qz”d:T” with some constant matrices QQ; € R™ ™, =

1..n — 1 works also in R* and R® (see [9] for details).

In the differential geometry of curves the basis of moving
frame of a curve is usually given by the Frenet—Serret
equations [18]. The basis vectors depend on derivatives of
~r up to (n — 1)-order. Practically, the numerical estimation
of derivatives of a function is an ill-posed problem [19] and
may lead to computational difficulties. At the same time, a
disadvantage of this approach is that the first n—1 derivatives
of v, must be linearly independent. This means, for example,
that the approach cannot be used for trajectories having zero
curvature at some points.

In [10, Theorem 5.1] an approach for constructing peri-
odic basis functions for systems without control inputs is
presented. This approach uses the fact that in phase space of



dimension n > 2 there exists a constant vector e; such that
tangent vectors of the trajectory never coincide with it (see
Lemma 5.1 there).

One more approach for constructing basis functions e’ for
periodic trajectories is presented below. The method is based
on the fact, that a smooth matrix function R, : R — O(n),
columns of which are vectors d”* Lz / dJ; sel et can
be found solving (numerlcally) a linear matrix differential
equation. The found solution R is further modified to satisfy
periodicity criteria.

In the next section the approach for constructing functions
el is formulated in detail. Moreover, transverse dynamics
written in the associated new coordinates, and its lineariza-
tion, are presented.

II. TRANSVERSE DYNAMICS

Let us consider the coordinate transformation (3 in e-
neighborhood U, of orbit . The trajectory ~, is considered
as a twice continuously differentiable closed curve: v, €
C? (R,R"?), v,47 = 7. V7 € R. Since the curve 7,
is a periodic solution of an ordinary differential equation,
it does not have self-intersections, and equilibrium points.
Therefore, ddi; = f(v,) #0.

The inverse transformation x — (7, £) within U, is defined

with the help of the projection operator
T=mn(z) €[0,T), satisfying (6)
T
(@ = Yr=r@) P (%)T:m) =0,

and & = Z(z) as the solution of the linear algebraic equation
Z ()& = T = Tr(a).

As it was stated above, the matrix P € R"X” is assumed to
be constant, symmetric, and satisfying — 7* Pd% #0 VT e
R. It is also assumed that e¢ is small enough so that the

equation

dv,
Y7 _o veer.
dr

has a unique solution 7 € [0,7). Then, the projection
operator 7 () within U, is a continuously differentiable
function. Moreover, the following claim holds.

(I - ’YT>T P

Claim 1. Let {e } ' be mutually-orthogonal unit vectors,
and form a basis of the hyperplane S.. Let also the vectors
e’ be continuously differentiable T-periodic functions. Then,
there exists an € > 0, so that for any x € U, the coordinate
transformation ) is a diffeomorphism.

The question of constructing vectors e’
of Claim [ is considered next.

satisfying criteria

A. Constructing a Moving Orthonormal Basis
The problem of constructing vectors e’ can be formulated
as following.

Problem 1. It is necessary to find the functions e €
CY(R,R"), i =1,...,n — 1 satisfying for all T € R:

1
o periodicity criteria: €., = e.

T
o orthonormality criteria: (el) eJT = 0ij;

o orthogonality criteria: (P‘%’) el =0,

T

where §;; is the Kronecker delta.

According to the requirements of Problem [I| the vectors

el e2, ..., en~1 together with
Pd’yf _ Pf(,}/T) (7)
HPd%H 1P f (o)

form an orthonormal basis (note that the vector Pddi; £ 0).
Then, the matrix function

R, = (UT,eLe2 ...,e"_l)

T T

is a map R — O (n). Moreover, without loss of generality[]
let us assume that R, € SO (n). Then, a solution of
Problem [1] can be found using with a solution of the
next problem.

Problem 2. For a given T-periodic vector function v, :
R — {veR"||v| =1} find a matrix function R, €
C! (R, SO (n)), satisfying for all T € R:

L4 RT+T - RT:

e cOlL R, =v,.

By the first step let us find matrix R, satisfying require-
ments of Problem [2] except the periodicity.

Claim 2. A solution R, of the initial value problem

dR, dv, _
i <dT 4 ) ftr
]‘:L’O S {R € SO (n) |COI1R = Uo} (8)

satisfies: R, € C' (R, SO (n)), coly R, = v, for all T € R.
Here a A'b is the exterior product, in matrix form it can be
written as a ANb = ab” — ba”.

Above, construction of Ry can be done following the
standard Gram-Schmidt orthonormalization for an arbitrary
basis containing vg. This also can be done for every fixed
value of 7 but the issue here is to have a reliable algorithm
to generate a continuum for 7 € [0,7") as well as to ensure
periodicity, continuity, and differentiability.

However, solution RT of the initial value problem for
an arbitrary function v, is not necessarily a periodic function.
The following claim shows how to modify the function R, so
that it satisfies the periodicity criteria and provides a solution
for Problem

Claim 3. Let us assume that the matrix R1L.Ry has no

eigenvalues equal to minus on{] Then the matrix function
R, = R.exp {% log R%Ro} , )

11t is always possible to ensure that the determinant of matrix R, is
equal to one by changing the sign of one of the columns of matrix R.

2 Otherwise the function R, can be defined, for example, as R, =
R; exp {T log X } where X is a suitable solution of X? = RTRO



where exp {-} is the matrix exponential, and log{-} is the
matrix logarithm (see definition of these functions, e.g.,
in [21]), satisfies: R, € C'(R,SO (n)), coL R, = v,
R.i1 = R, %‘T—&-T = d£’|7 for all 7 € R. Hence,
the vectors

ei =col;;1 R,
form a solution of Problem I

B. Dynamics in Transverse Coordinates
Claim [T] allows to represent dynamics (I)) in coordinates
&, 1. For brevity let us denote

E, = (e1 e2 ...,e"_l) e Rt

T OT? T

Since the vectors e’ are mutually orthogonal, we have
ETE, = I,,_1xn_1. Then, the coordinate transformation (5)
can be written in the compact form as

© = + E.€, (10)
and its inverse is

T=m(z), defined in (6)

§=2() = [ET (@ — )], _p)-

Differentiating the expression for &, computed along a solu-
tion z(t) with respect to ¢, and substituting , one obtains
dynamics for &:

§ = EN(f(yr+ B8~ f(r)7) (11)
dET .
+ E&7+ Erg (v + Er§) u.
dr
The time derivative 7 can be found as
0
7= ( ) (1 +g(x)u)) (12)
v z=7r+E,¢

The equations (T1)),(T2) form the equivalent dynamics of (T))
within U, in coordinates &, 7. The linear approximation of
this dynamics is given next.

Theorem 1. Linearization of dynamics ([1), (I2) around
trajectory v, is

§ = A+ B (13)
T = 14+C:+D-u (14)
with
T T T 7T
A-r _ E‘[’]_"f'yTPf’YrJT _f’Yﬂ—,Z.{l'yTPJT _f’er'yTJTPET_F
TPy,
dET ffrp
"E., B,=ET(I- il
dr 7 T ( fi’;Pf%>g%’
o I [PJ-+ J'P|E; _ T Pg,,
! fLPf,, T fTPf

where J, := (%)%, for = (f oY) (T), Gy, == (g o) (7).

N

Fig. 1. Car with two trailers: reverse drive.

Remark 2. In the case P = I the expressions for matrices
A, B; can be simplified:

dET

A, = " E,+ErJ.E;
dr

B = Ezgva

and the linearized system is equivalent to the published in

[10].
C. Orbital stabilization

From @) we can conclude that (see [11] for a relevant

discussion)
L3 = A+ Byu+ 0(||§H2) .
dr
It can be shown that asymptotic stabilization of the trivial
solution of (I3) can be used to design an asymptotically
orbitally stabilizing controller for @), see e.g. [14], [15],
(51, [7], [11].

Notice that matrices A, B, are smooth periodic functions.
Thus, the system (T3) is linear with periodic coefficients. The
problem of feedback stabilization of such a system can be
solved as in [16], see also [22].

15)

III. EXAMPLE: MULTIBODY CAR SYSTEM

Let us consider the car-trailers system (see [20]) to illus-
trate applicability of the method of orbital stabilization ex-
ploiting the proposed construction of transverse coordinates.
The system consists of a two-wheeled car with two trailers
(see Figure |I[) The wheels of the car are actuated, while the
trailers are freely moving. Thus, the system has five degrees
of freedom and two control inputs. The equations of motion
are

X = h()+gw (16)
with state variable x = (z,y,6, ¢1,¢2), and control input
w = («, B); where x,y are the Cartesian coordinates of the

car, 0 is the orientation of the car, the angles ¢1, ¢ define



phase coordinates
|
N =)
ot o

Fig. 2.  Target trajectory (dashed), and transient process (solid).

relative orientations of trailers with respect to the car, «, g
are the sum and difference of car wheels angular velocities
(see [20, chapter 3] for more details). The functions h, g are
defined as

cos 0

sin 6 0

9(x) = 0 1
—sin ¢1 -1

sin¢; —cos@ysings 0

h(X) = 05><17

Let us consider a 27-periodic trajectory of system (I6)

Yr = (x‘myﬁ 0-, O1r, ¢2’r> ,

such that the car moves along the curve

r, = —8sinT, Yr = —bsin 27,

and trailers are always in front of the car. The function 6,
is expressed as 6, = arctan(y,, &, ). The functions ¢1,, po,
are also 2m-periodic, they were found numerically. All the
components of the trajectory ~y, are depicted with dashed
curves in Figure 2] The feed-forward control input w, =
(ar, Br) with

a‘r:_\/:jjg""y?—?

is depicted in Figure 3] Then, the control goal is formulated
as follows: Find a feedback w(), such that the trajectory ~,
of the closed-loop system is asymptotically orbitally stable.

In Definition [I] it was assumed that the trajectory -y, is
a solution of time-invariant unforced autonomous equation
‘%* = f(~,). To satisfy this assumption, let us introduce a
new control law wu(x) with the help of projection operator

7(x), defined as in (6):

_ y'ri‘r — yr-if‘r
&2 + 7

BT:

u(x) = w (X) = Wr=r(x);
then the system (I6) can be written as

x=rx+g9x)u, (17)

control inputs

Fig. 3. Nominal control inputs (dashed), and actual (solid).

where f(x) := h(x) 4+ g (X) Wr=r(y)- It is easy to prove,
that x = 7, is a solution of system (I7) with v = 0, thus
the results of Claim 3] and Theorem [I] can be used.

By the first step, let us construct the basis functions
{ei}jzl for the trajectory ~.. To this end, let us take

the matrix Ry composed of Pf(yo)/||Pf(70)|l, and its
orthocomplement as it was stated in Claim 2}
—0.625 —-0.781 0.0 —0.00112  0.00179
_ ~0.781 0.625 0.0 —0.000536 0.000862
Ry = 0.0 0.0 1.0 0.0 0.0
—0.00112  —0.000536 0.0 0.999 0.000001
—0.00179  —0.000862 0.0 0.0 —0.999
The matrix P here is taken diagonal: P =
diag(1,1,1,0.1,0.1). After that we solve the initial

value problem (8) numerically, and obtain R,. Finally, we
construct the matrix R, as stated in Claim[3] its columns 2—5

form the basis vectors E, = (el ,e2,e3 el) = coly 5R,,

and transverse coordinates ¢ = ET(x — ;).

By the second step we find matrices A, B, according to
formula (T3). To stabilize the trivial solution of the obtained
linear time-varying system the linear quadratic regulator of
the form wu(7,&) = k(7)£ is constructed using the method
described in [17]. The resulting feedback for stabilizing the

trajectory of system (T6) is then

w(X) = Wr—r(y) + k(7 (X)) E(X) -

As seen, the feedback needs to compute value of the
function 7(x) in real-time. To this end in practice, the
trajectory <y, is convenient to represent as a B-Spline of
degree n with control points c¢; and knots u;, j = 1.N
as

N
Ve =D ¢Bin(7).
j=1

In this case, the projection operator can be evaluated using
the two-steps algorithm. In the first step, the algorithm finds
the closest to the given x knot as

jo = arg_min (2 = 7,) P |
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transverse coordinates

Fig. 4. Transverse coordinates.

In the second step, the algorithm iteratively finds a root T,
of the equation

(=97 )P¥r. =0

on the interval 7, € [u;__1,u;, +1] using the Brent’s method
[23].

In Figure [4] dynamics of transverse coordinates is shown.
As can be seen, all the components of £ converge to zero.
Dynamics of phase coordinates is presented in Figure 2] (solid
curves).

The computer simulation of the feedback controlled
system can be found at |https://youtu.be/
rTHUgWE LplE,

IV. CONCLUSION

We have proposed a new approach for generating a basis
for a moving Poincaré section along a periodic solution of
a rather general nonlinear dynamical system. Our approach
is based on solving a matrix differential equation for a
rotation matrix, columns of which are used to define the
basis vectors. It should be stressed that it is possible to
proceed in the suggested way only if not only the “nominal”
dynamics has no uncertainty but also if a periodic solution
is known. As soon as the basis functions are computed, they
can be used to define nominal transverse coordinates and
a linearization of the corresponding transverse dynamics.
The transverse coordinates and the linearized transverse
dynamics are instrumental in synthesizing a state feedback
controller making this coordinates vanishing and leading to
orbital asymptotic stability of the corresponding nonlinear
closed-loop system. We have illustrated applicability of our
approach on a challenging simulation example stabilizing a
periodic motion for a kinematic model of a multibody car
system. While robustness of the approach can be verified
via numerical simulations, and although exponential orbital
stability can be verified, the formal theoretical investigation
with quantification of this property is left for a future
investigation.

V. APPENDIX
A. Proof of Claim

The Jacobian matrix of the coordinate transformation map
2(1,€) =y + Y etd
i
is

_ Oz 12 no1 drr de,
=g = (e G D)

%

Since, ||| < e, the term ), ’fief &; can be made arbitrarily

small. Then, rank of

d
- 1 2 n—1 97
J =~ <eT,eT,...,eT " ar

is equal to n since e’ are mutually orthogonal, and ddi; does
n—1

not belong to span {eZ} " ".

B. Proof of Claim

Since, by definition, the matrix

T
_dvz - dvr g

A T — ~;_ Ut
dr v dr v dr Ur
is skew-symmetric, anfi the initial value R, belongs to
SO (n), the solution R, also belongs to SO (n). This is
obvious since

_ dor

S(r) =

dR _ dRT - d -7
T =8(1)R, & —~ =-RIS(r) = —(RIR,)=0
= S()Re & ST = —RTS(r) = (RTR)
Moreover, since
dv
- 2 — T = 1 = T>7T — 0
Jor | = oTo e
the equation has the first integral I = v R, = const:
d dv?T _ dR
7] — T RT T T
dr dr T dr
dvT _ dv dvT\ -
— T RT T T, 7 T - T RT
dr + <UT dr T Ty
dv?T _ dvT
= Yrp TR o
dr dr
Since col; Ry = vy one concludes that I = UOT Ry =

(1,0,_1) = vI R,. The last equality gives col; R, = v,.
C. Proof of Claim
Substituting 7 = 0 and 7 = 7', one can see that Ry = Ryp:
Ry = RO
RT = RT exp {log R%RO} = RTRgRO = Ro.
Using v/ R, = (1,0,_1) we also see that vIR, =

(1, 0,1712 exp {% log R%Ro } Moreover, obviously, the ma-
trix RERy has the structure
O1xn—1
Xn—l xn—1

%%:( 1

On—1><1


https://youtu.be/rTHUgWFLplE
https://youtu.be/rTHUgWFLplE

dyr

TR

_ " Ur = ]

The matrix exp { % log RL Ry} has the same structure. Then,
T g np

because the first columns v, = of R, is periodic.

vI'R, = (1,0,,_1). The continuity of the first derivative
dR dv _ T _
T = = T T =1 x }
= (dT /\v)R exp{T og R Ro ¢ +

1 - o o
?RT exp {% log R;Ro} log { RT.Ro }
at 7 = T' is proved by the direct computations:
dR, dR;,
— =0.
dr 7=0 dr =T
D. Proof of Theorem ]|

First of all let us find the expression for 7 by differentiating
with respect to time the identity

(#(t) 1) " PEE = (a(t)

that defines 7(t) as 7(x(t))
Using the chain rule and solving the result for 7 we obtain

FLP (£, + gou)
4 |
FEPR - IL(3E) P
X

where x := (yom) (x), fy = (foyom)(x).
Substituting v, + E,¢ instead of x we obtain

f'zlp (f% + (%)'y ET£+9%+ET£U>
f%_fT(f)AY PE.€ .

Linearizing the fraction we have

T
—Yrw) Pf(vr@w) =0

T = fz 8 gz
Io) o T
,3;{13(85) + (%) P]ET
~ 1 YT Yr
* fTPf,. o
T
’YTP‘g’YTU/
fLPf,,

To find the linearization of dynamics for £ we substitute
(1) into (TT):

i dET dET

BT ft TEfagzw

ETT <frc - f»y,axfz> - ETTf% %gzu + Engu

Linearizing all the terms:

hd alfa:%dE i;fI:1+O(§)

o« a—ggxu;:zOdue tou=0 ()

° fz - f'yTifa: ~
f%waT(M)m**fwaWTTP(%)%*f%fVTT(%)f P

T PT, — B

i ETqu ~ EIQ’YTU

T T £, Pga -
e Gage B <f$ Pr i () pE5> o
T Jyr P
ET f')’r f’I’"y Pf"{r

Collecting all the terms together leads to (T3).
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