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Abstract— An approach for introduction of transverse co-
ordinates in a vicinity of a periodic trajectory is presented.
The approach allows finding by numerical integration periodic
normalized mutually-orthogonal vector-functions that form a
continuously differentiable basis on moving Poincaré sections
for a given periodic solution of a nonlinear dynamical system.

The found moving frame is used to define new local (trans-
verse) coordinates for an associated affine nonlinear control
system in a neighborhood of the trajectory, and to proceed
with orbital stability analysis and/or synthesis of a stabilizing
feedback control law.

As a demonstrating example of the approach, the problem of
orbital stabilization of a trajectory of a multibody car system is
considered. The results of computer simulations of the system
are presented.

I. INTRODUCTION

The transverse linearization approach is widely used in
the problem of orbital stabilization [1], [2], [3], [4], [5]
of periodic (and not only) trajectories of dynamical sys-
tems. In particular, the approach has been well-studied in
application to Euler-Lagrange systems [6], [7], [8], while
a constructive algorithm for defining transverse coordinates,
and synthesis of feedback controllers was suggested in [6].
The algorithm was successfully used, for example, in solving
the problem of orbital stabilization of periodic trajectories
of a Pendubot [3], a “Butterfly” robot [4], etc. However,
it was shown in [9] that the approach in some cases leads
to singularities in transverse dynamics, and, hence, cannot
be used. There, a distinct method for defining transverse
coordinates for periodic trajectories of nonlinear dynamical
systems of dimensions 2, 4, and 8 was suggested.

This paper proposes a new method for defining transverse
coordinates that works for affine nonlinear systems of ar-
bitrary dimension and is based on solving a well-known
differential equation for a rotation matrix. In addition, a
linearization of dynamics of the transverse coordinates is
presented generalizing a result by Urabe [10] and giving
a constructive alternative not only to analysis of orbital
stability, that can be performed using the elegant Leonov’s
formula, see e.g. [11], [12], but also to design orbitally
stabilizing feedback controllers.
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This paper uses the following notation. The value of
a function f at argument x is usually written with the
help of subscript index: fx ≡ f(x). The time derivative
is usually denoted by ˙ symbol: ẋ ≡ dx

dt . The norm of a
vector v ∈ Rn is written as ‖v‖ and means the standard

Euclidean norm: ‖v‖ ≡
√∑n

i=1 |vi|
2. The distance operator

dist(a, b) : Rn × Rn → [0,∞) is induced by the norm
operator: dist(a, b) ≡ ‖a− b‖. The operator coliA returns
i-th column of the matrix A.

A. Problem formulation

The paper studies the problem of feedback stabilization
of non-trivial periodic solutions of dynamical systems of the
form

ẋ = f (x) + g (x)u (1)

with state space variable x ∈ Rn, control input u ∈ Rm,
functions f ∈ C1 (Rn,Rn), and g ∈ C1 (Rn,Rn×m).
As mentioned above, particular attention is paid to the
orbital stability property. For completeness, let us recall its
definition, see e.g. [13, Definition 8.2 on p.333].

Definition 1. Let γτ ∈ C2 (R,Rn) be a T -periodic function
(with T > 0) satisfying

d

dτ
γτ = f (γτ ) ∀τ ∈ R. (2)

The set

γ := {x ∈ Rn | ∃t ∈ R : x = γt}
is called the orbit of the solution x = γτ .

The solution x = γt of the open-loop system (2) or/and of
a closed-loop system with a time-invariant feedback control
law, vanishing along it, is asymptotically orbitally stable
within ε-neighborhood

Uε := {x ∈ Rn | dist (x, γ) < ε}
of γ, if for every 0 < ε̄ ≤ ε there exists δ̄ > 0 such that
every solution of the system, initiated inside Uδ̄ , stays inside
Uε̄; while, every solution originated inside Uε asymptotically
converges to γ, i.e.

dist
(
x (t) , γ

)
→ 0 as t→∞.

Above, the distance between the set γ and a point x is
defined as

dist (x, γ) := min
τ∈R
‖x− γτ‖ .

The orbital stabilization problem is to define a (time-
independent) feedback control law, achieving asymptotic
orbital stability.



Remark 1. To simplify various expressions, it is assumed
here that x = γt is a (forward complete) bounded open-loop
solution of (1), i.e. with u ≡ 0, and, moreover, ∀t ≥ 0:
γt = γt+T . It is possible to handle similarly the case
when x = γt is a solution of (1) with some T−periodic
u(t) 6≡ 0. In such a case, one may either introduce a time-
invariant feedback control transformation as in [7] or follow
the idea presented in the illustrative multibody car example
below. However, we proceed here without such a rather
straightforward generalization.

The solution presented below is a variation of the so-called
transverse linearization approach for control systems, see
e.g. [14], [15]. The core idea of the approach is to define, in
a neighborhood of the orbit γ, new local coordinates (τ, ξ) '
x, (τ, ξ) ∈ R×Rn−1, called the transverse coordinates such
that
• The scalar coordinate τ = π (x) defines the “closest” to

the given x point on the orbit and π(γt) = t mod T .
• The n− 1 coordinates ξ = Ξ (x) locate points in “per-

pendicular” (or transverse) to the trajectory direction.
They vanish at any point on the orbit: Ξ (γt) = 0, ∀t.

There is an equivalent to (1) system

d (τ, ξ)

dt
= α (τ, ξ) + β (τ, ξ)u, (3)

written in new coordinates. The linearization of system (3)
allows defining a linear time-varying system

dξ̄

dτ
= Aτ ξ̄ +Bτ ū (4)

with coefficients Aτ ∈ C1
(
R,R(n−1)×(n−1)

)
and Bτ ∈

C1
(
R,R(n−1)×m) that are periodic functions of time. The

problem of asymptotic orbital stabilization of γτ can be
solved using a stabilizing feedback control law for the trivial
solution ξ̄ = 0 of (4) and exploiting the fact that under
certain conditions, see e.g. [11], ξ(t) = ξ̄(τ)

∣∣
τ=π(x(t))

+

o
(
d(x(t), γ)

)
. The last problem is well-studied and has

general solutions (see for example [16], [17]).
Our main contribution here is an algorithm for construct-

ing functions τ = π (x) and ξ = Ξ (x) for a given periodic
trajectory γτ , and deriving formulas for linearized transverse
dynamics written in these coordinates.

B. Transverse coordinates

To define transverse coordinates, let us make preliminary
geometrical constructions. For each τ ∈ [0, T ) let us define a
hyperplane Sτ that transversally intersects the orbit γ at point
γτ . Let the vectors eiτ ∈ Rn, i = 1..n− 1 be an orthonormal
basis of the hyperplane Sτ . Then, any x belong to Sτ ∩ Uε
can be decomposed as

x = γτ +

n−1∑
i=1

eiτξi, (5)

where the decomposition coefficients ξ ∈ Rn−1, and the
curve parameter τ play the role of transverse coordinates

(the sufficient conditions, the mapping (τ, ξ) 7→ x is a
diffeomorphism will be given below).

It is convenient in practice to define the hyperplane Sτ in
implicit form

Sτ =

{
x ∈ Uε|(x− γτ )TP

dγτ
dτ

= 0

}
with the help of a square matrix P ∈ Rn×n, such that dγτ

dτ

does not belong to nullspace of P dγτ
dτ . For example, if the

hyperplane is taken to be orthogonal to the orbit at each
point, then P will be the identity matrix. Such a type of
section was used in the problem of orbital stabilization of
the cart-pole system [9].

In some cases, it makes sense to construct the sections
Sτ in such a way that the map τ = π (x) (solution of the
eqution (x− γτ )

T
P dγτ

dτ = 0) does not depend on some
components of x. This can be helpful, if these componets
are not measured well. In this case, the matrix P will be
diagonal with zeros at the corresponding positions. In the
problem of orbital stabilization of the “Butterfly” robot [4],
the matrix P was taken as P = diag(0, 1, 0, 0).

Generalizing these, let us assume that P is a constant
matrix, symmetric, and satisfying dγTτ

dτ P
dγτ
dτ 6= 0∀τ ∈ [0, T ).

To be able to represent dynamics (1) in an equivalent form
in coordinates τ, ξ, it is necessary for the transformation (5)
to be a diffeomorphism within a neighborhood, so that
• the inverse transformation τ = π (x), ξ = Ξ (x) exists;
• the Jacobian matrix of the transformation must be non-

singular.
These conditions mean that vector functions eiτ must be
periodic with period T , and the vectors eiτ ,

dγτ
dτ must be

linearly independent for all τ .
In the most simple case when the phase space of a

dynamical system is R2, and the space Sτ is the orthogonal
complement of dγτ

dτ , the basis of Sτ is given by the vector

e1
τ =

(
0 −1
1 0

) dγτ
dτ∥∥∥dγτdτ ∥∥∥ .

defining a normalized rotation of f(γτ ) by π/2.
A similar approach for defining basis vectors eiτ =

Qi
dγτ
dτ

‖ dγτdτ ‖ with some constant matrices Qi ∈ Rn×n, i =

1..n− 1 works also in R4 and R8 (see [9] for details).
In the differential geometry of curves the basis of moving

frame of a curve is usually given by the Frenet–Serret
equations [18]. The basis vectors depend on derivatives of
γτ up to (n− 1)-order. Practically, the numerical estimation
of derivatives of a function is an ill-posed problem [19] and
may lead to computational difficulties. At the same time, a
disadvantage of this approach is that the first n−1 derivatives
of γτ must be linearly independent. This means, for example,
that the approach cannot be used for trajectories having zero
curvature at some points.

In [10, Theorem 5.1] an approach for constructing peri-
odic basis functions for systems without control inputs is
presented. This approach uses the fact that in phase space of



dimension n > 2 there exists a constant vector e1 such that
tangent vectors of the trajectory never coincide with it (see
Lemma 5.1 there).

One more approach for constructing basis functions eiτ for
periodic trajectories is presented below. The method is based
on the fact, that a smooth matrix function Rτ : R → O(n),
columns of which are vectors dγτ

dτ /
∥∥∥dγτdτ ∥∥∥ , e1

τ , ..., e
n−1
τ , can

be found solving (numerically) a linear matrix differential
equation. The found solution Rτ is further modified to satisfy
periodicity criteria.

In the next section the approach for constructing functions
eiτ is formulated in detail. Moreover, transverse dynamics
written in the associated new coordinates, and its lineariza-
tion, are presented.

II. TRANSVERSE DYNAMICS

Let us consider the coordinate transformation (5) in ε-
neighborhood Uε of orbit γ. The trajectory γτ is considered
as a twice continuously differentiable closed curve: γτ ∈
C2 (R,Rn), γτ+T = γτ ∀τ ∈ R. Since the curve γτ
is a periodic solution of an ordinary differential equation,
it does not have self-intersections, and equilibrium points.
Therefore, dγτdτ = f(γτ ) 6= 0.

The inverse transformation x 7→ (τ, ξ) within Uε is defined
with the help of the projection operator

τ = π (x) ∈ [0, T ) , satisfying (6)(
x− γτ=π(x)

)T
P
(
dγτ
dτ

)
τ=π(x)

= 0,

and ξ = Ξ(x) as the solution of the linear algebraic equation∑
i

eiπ(x)ξi = x− γπ(x).

As it was stated above, the matrix P ∈ Rn×n is assumed to
be constant, symmetric, and satisfying dγTτ

dτ P
dγτ
dτ 6= 0 ∀τ ∈

R. It is also assumed that ε is small enough so that the
equation

(x− γτ )
T
P
dγτ
dτ

= 0 ∀x ∈ Uε

has a unique solution τ ∈ [0, T ). Then, the projection
operator π (x) within Uε is a continuously differentiable
function. Moreover, the following claim holds.

Claim 1. Let
{
eiτ
}n−1

i=1
be mutually-orthogonal unit vectors,

and form a basis of the hyperplane Sτ . Let also the vectors
eiτ be continuously differentiable T -periodic functions. Then,
there exists an ε > 0, so that for any x ∈ Uε the coordinate
transformation (5) is a diffeomorphism.

The question of constructing vectors eiτ satisfying criteria
of Claim 1 is considered next.

A. Constructing a Moving Orthonormal Basis

The problem of constructing vectors eiτ can be formulated
as following.

Problem 1. It is necessary to find the functions eiτ ∈
C1 (R,Rn), i = 1, . . . , n− 1 satisfying for all τ ∈ R:

• orthonormality criteria:
(
eiτ
)T
ejτ = δij;

• periodicity criteria: eiτ+T = eiτ ;

• orthogonality criteria:
(
P dγτ

dτ

)T
eiτ = 0,

where δij is the Kronecker delta.

According to the requirements of Problem 1, the vectors
e1
τ , e

2
τ , ..., e

n−1
τ together with

vτ :=
P dγτ

dτ∥∥∥P dγτ
dτ

∥∥∥ =
P f(γτ )

‖P f(γτ )‖ (7)

form an orthonormal basis (note that the vector P dγτ
dτ 6= 0).

Then, the matrix function

Rτ =
(
vτ , e

1
τ , e

2
τ , ..., e

n−1
τ

)
is a map R→ O (n). Moreover, without loss of generality1

let us assume that Rτ ∈ SO (n). Then, a solution of
Problem 1 can be found using (7) with a solution of the
next problem.

Problem 2. For a given T -periodic vector function vτ :
R → {v ∈ Rn | ‖v‖ = 1} find a matrix function Rτ ∈
C1 (R, SO (n)), satisfying for all τ ∈ R:
• Rτ+T = Rτ ,
• col1Rτ = vτ .

By the first step let us find matrix R̄τ satisfying require-
ments of Problem 2 except the periodicity.

Claim 2. A solution R̄τ of the initial value problem

dR̄τ
dτ

=

(
dvτ
dτ
∧ vτ

)
R̄τ

R̄0 ∈ {R ∈ SO (n) |col1R = v0} (8)

satisfies: R̄τ ∈ C1 (R, SO (n)), col1R̄τ = vτ for all τ ∈ R.
Here a ∧ b is the exterior product, in matrix form it can be
written as a ∧ b ≡ abT − baT .

Above, construction of R̄0 can be done following the
standard Gram-Schmidt orthonormalization for an arbitrary
basis containing v0. This also can be done for every fixed
value of τ but the issue here is to have a reliable algorithm
to generate a continuum for τ ∈ [0, T ) as well as to ensure
periodicity, continuity, and differentiability.

However, solution R̄τ of the initial value problem (8) for
an arbitrary function vτ is not necessarily a periodic function.
The following claim shows how to modify the function R̄τ so
that it satisfies the periodicity criteria and provides a solution
for Problem 2.

Claim 3. Let us assume that the matrix R̄TT R̄0 has no
eigenvalues equal to minus one2. Then the matrix function

Rτ = R̄τ exp
{ τ
T

log R̄TT R̄0

}
, (9)

1 It is always possible to ensure that the determinant of matrix Rτ is
equal to one by changing the sign of one of the columns of matrix Rτ .

2 Otherwise the function Rτ can be defined, for example, as Rτ =
R̄τ exp

{
2τ
T

logX
}
, where X is a suitable solution of X2 = R̄TT R̄0.



where exp {·} is the matrix exponential, and log {·} is the
matrix logarithm (see definition of these functions, e.g.,
in [21]), satisfies: Rτ ∈ C1 (R, SO (n)), col1Rτ = vτ ,
Rτ+T = Rτ , dRτ

dτ |τ+T = dRτ
dτ |τ for all τ ∈ R. Hence,

the vectors
eiτ = coli+1Rτ

form a solution of Problem 1.

B. Dynamics in Transverse Coordinates

Claim 1 allows to represent dynamics (1) in coordinates
ξ, τ . For brevity let us denote

Eτ :=
(
e1
τ , e

2
τ , ..., e

n−1
τ

)
∈ Rn×n−1.

Since the vectors eiτ are mutually orthogonal, we have
ETτ Eτ = In−1×n−1. Then, the coordinate transformation (5)
can be written in the compact form as

x = γτ + Eτξ, (10)

and its inverse is

τ = π (x) , defined in (6)

ξ = Ξ(x) =
[
ETτ (x− γτ )

]
τ=π(x)

.

Differentiating the expression for ξ, computed along a solu-
tion x(t) with respect to t, and substituting (1), one obtains
dynamics for ξ:

ξ̇ = ETτ (f (γτ + Eτξ)− f (γτ ) τ̇) (11)

+
dETτ
dτ

Eτξτ̇ + ETτ g (γτ + Eτξ)u.

The time derivative τ̇ can be found as

τ̇ =

(
∂π(x)

∂x

(
f(x) + g(x)u

))
x=γτ+Eτξ

(12)

The equations (11),(12) form the equivalent dynamics of (1)
within Uε in coordinates ξ, τ . The linear approximation of
this dynamics is given next.

Theorem 1. Linearization of dynamics (11), (12) around
trajectory γτ is

˙̄ξ = Aτ̄ ξ̄ +Bτ̄ ū (13)
˙̄τ = 1 + Cτ̄ ξ̄ +Dτ̄ ū (14)

with

Aτ = ETτ
fTγτPfγτJτ − fγτ fTγτPJτ − fγτ fTγτJTτ P

fTγτPfγτ
Eτ+

dETτ
dτ

Eτ , Bτ = ETτ

(
I − fγτ f

T
γτP

fTγτPfγτ

)
gγτ ,

Cτ =
fTγτ
[
PJτ + JTτ P

]
Eτ

fTγτPfγτ
, Dτ =

fTγτPgγτ
fTγτPfγτ

,

where Jτ :=
(
∂f
∂x

)
γτ

, fγτ := (f ◦ γ) (τ), gγτ := (g ◦ γ) (τ).
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Fig. 1. Car with two trailers: reverse drive.

Remark 2. In the case P = I the expressions for matrices
Aτ , Bτ can be simplified:

Aτ =
dETτ
dτ

Eτ + ETτ JτEτ

Bτ = ETτ gγτ ,

and the linearized system is equivalent to the published in
[10].

C. Orbital stabilization

From (13) we can conclude that (see [11] for a relevant
discussion)

dξ

dτ
= Aτξ +Bτu+ o

(
‖ξ‖2

)
. (15)

It can be shown that asymptotic stabilization of the trivial
solution of (13) can be used to design an asymptotically
orbitally stabilizing controller for (15), see e.g. [14], [15],
[5], [7], [11].

Notice that matrices Aτ , Bτ are smooth periodic functions.
Thus, the system (13) is linear with periodic coefficients. The
problem of feedback stabilization of such a system can be
solved as in [16], see also [22].

III. EXAMPLE: MULTIBODY CAR SYSTEM

Let us consider the car-trailers system (see [20]) to illus-
trate applicability of the method of orbital stabilization ex-
ploiting the proposed construction of transverse coordinates.
The system consists of a two-wheeled car with two trailers
(see Figure 1). The wheels of the car are actuated, while the
trailers are freely moving. Thus, the system has five degrees
of freedom and two control inputs. The equations of motion
are

χ̇ = h (χ) + g (χ)w (16)

with state variable χ = (x, y, θ, φ1, φ2), and control input
w = (α, β); where x, y are the Cartesian coordinates of the
car, θ is the orientation of the car, the angles φ1, φ2 define
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Fig. 2. Target trajectory (dashed), and transient process (solid).

relative orientations of trailers with respect to the car, α, β
are the sum and difference of car wheels angular velocities
(see [20, chapter 3] for more details). The functions h, g are
defined as

h(χ) = 05×1, g(χ) =


cos θ 0
sin θ 0

0 1
− sinφ1 −1

sinφ1 − cosφ1 sinφ2 0

 .

Let us consider a 2π-periodic trajectory of system (16)

γτ = (xτ , yτ , θτ , φ1τ , φ2τ ) ,

such that the car moves along the curve

xτ = −8 sin τ, yτ = −5 sin 2τ ,

and trailers are always in front of the car. The function θτ
is expressed as θτ = arctan(ẏτ , ẋτ ). The functions φ1τ , φ2τ

are also 2π-periodic, they were found numerically. All the
components of the trajectory γτ are depicted with dashed
curves in Figure 2. The feed-forward control input wτ =
(ατ , βτ ) with

ατ = −
√
ẋ2
τ + ẏ2

τ , βτ = − ÿτ ẋτ − ẏτ ẍτ
ẋ2
τ + ẏ2

τ

is depicted in Figure 3. Then, the control goal is formulated
as follows: Find a feedback w(χ), such that the trajectory γτ
of the closed-loop system is asymptotically orbitally stable.

In Definition 1 it was assumed that the trajectory γτ is
a solution of time-invariant unforced autonomous equation
dγτ
dτ = f(γτ ). To satisfy this assumption, let us introduce a

new control law u(χ) with the help of projection operator
π(χ), defined as in (6):

u (χ) := w (χ)− wτ=π(χ),

then the system (16) can be written as

χ̇ = f (χ) + g (χ)u, (17)

0 2 4 6 8 10
τ

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

co
nt

ro
l

in
pu

ts

α

β

Fig. 3. Nominal control inputs (dashed), and actual (solid).

where f(χ) := h(χ) + g (χ)wτ=π(χ). It is easy to prove,
that χ = γt is a solution of system (17) with u = 0, thus
the results of Claim 3 and Theorem 1 can be used.

By the first step, let us construct the basis functions{
eiτ
}4

i=1
for the trajectory γτ . To this end, let us take

the matrix R̄0 composed of Pf(γ0)/ ‖Pf(γ0)‖, and its
orthocomplement as it was stated in Claim 2:

R̄0 =

 −0.625 −0.781 0.0 −0.00112 0.00179
−0.781 0.625 0.0 −0.000536 0.000862

0.0 0.0 1.0 0.0 0.0
−0.00112 −0.000536 0.0 0.999 0.000001
−0.00179 −0.000862 0.0 0.0 −0.999

 .

The matrix P here is taken diagonal: P =
diag(1, 1, 1, 0.1, 0.1). After that we solve the initial
value problem (8) numerically, and obtain R̄τ . Finally, we
construct the matrix Rτ as stated in Claim 3, its columns 2−5
form the basis vectors Eτ = (e1

τ , e
2
τ , e

3
τ , e

4
τ ) = col2..5Rτ ,

and transverse coordinates ξ = ETτ (χ− γτ ).
By the second step we find matrices Aτ , Bτ according to

formula (13). To stabilize the trivial solution of the obtained
linear time-varying system the linear quadratic regulator of
the form u(τ, ξ) = k(τ)ξ is constructed using the method
described in [17]. The resulting feedback for stabilizing the
trajectory of system (16) is then

w (χ) = wτ=π(χ) + k (π (χ)) Ξ (χ) .

As seen, the feedback needs to compute value of the
function π(x) in real-time. To this end in practice, the
trajectory γτ is convenient to represent as a B-Spline of
degree n with control points cj and knots uj , j = 1..N
as

γτ =

N∑
j=1

cjBj,n(τ).

In this case, the projection operator can be evaluated using
the two-steps algorithm. In the first step, the algorithm finds
the closest to the given x knot as

j∗ = arg min
j=0..N

‖(x− γuj )P γ̇uj‖.
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Fig. 4. Transverse coordinates.

In the second step, the algorithm iteratively finds a root τ∗
of the equation

(x− γτ∗)P γ̇τ∗ = 0

on the interval τ∗ ∈ [uj∗−1, uj∗+1] using the Brent’s method
[23].

In Figure 4 dynamics of transverse coordinates is shown.
As can be seen, all the components of ξ converge to zero.
Dynamics of phase coordinates is presented in Figure 2 (solid
curves).

The computer simulation of the feedback controlled
system can be found at https://youtu.be/
rTHUgWFLplE.

IV. CONCLUSION

We have proposed a new approach for generating a basis
for a moving Poincaré section along a periodic solution of
a rather general nonlinear dynamical system. Our approach
is based on solving a matrix differential equation for a
rotation matrix, columns of which are used to define the
basis vectors. It should be stressed that it is possible to
proceed in the suggested way only if not only the “nominal”
dynamics has no uncertainty but also if a periodic solution
is known. As soon as the basis functions are computed, they
can be used to define nominal transverse coordinates and
a linearization of the corresponding transverse dynamics.
The transverse coordinates and the linearized transverse
dynamics are instrumental in synthesizing a state feedback
controller making this coordinates vanishing and leading to
orbital asymptotic stability of the corresponding nonlinear
closed-loop system. We have illustrated applicability of our
approach on a challenging simulation example stabilizing a
periodic motion for a kinematic model of a multibody car
system. While robustness of the approach can be verified
via numerical simulations, and although exponential orbital
stability can be verified, the formal theoretical investigation
with quantification of this property is left for a future
investigation.

V. APPENDIX

A. Proof of Claim 1

The Jacobian matrix of the coordinate transformation map

x(τ, ξ) = γτ +
∑
i

eiτξi

is

J :=
∂x

∂ (ξ, τ)
= v

(
e1
τ , e

2
τ , ..., e

n−1
τ ,

dγτ
dτ

+
∑
i

deiτ
dτ

ξi

)
.

Since, ‖ξ‖ < ε, the term
∑
i
deiτ
dτ ξi can be made arbitrarily

small. Then, rank of

J ≈
(
e1
τ , e

2
τ , ..., e

n−1
τ ,

dγτ
dτ

)
is equal to n since eiτ are mutually orthogonal, and dγτ

dτ does
not belong to span

{
eiτ
}n−1

i=1
.

B. Proof of Claim 2

Since, by definition, the matrix

S(τ) =
dvτ
dτ
∧ vτ =

dvTτ
dτ

vτ −
dvτ
dτ

vTτ

is skew-symmetric, and the initial value R̄0 belongs to
SO (n), the solution R̄τ also belongs to SO (n). This is
obvious since

dR̄τ
dτ

= S(τ)R̄τ ⇔
dR̄Tτ
dτ

= −R̄Tτ S(τ) ⇒ d

dτ
(R̄Tτ R̄τ ) = 0

Moreover, since

‖vτ‖2 = vTτ vτ = 1 ⇒ vTτ
dvτ
dτ

= 0

the equation has the first integral I = vTτ R̄τ = const:

d

dτ
I =

dvTτ
dτ

R̄τ + vTτ
dR̄τ
dτ

=
dvTτ
dτ

R̄τ +

(
vTτ
dvτ
dτ

vTτ − vTτ vτ
dvTτ
dτ

)
R̄τ

=
dvTτ
dτ

R̄τ −
dvTτ
dτ

R̄τ = 0.

Since col1R̄0 = v0 one concludes that I = vT0 R̄0 =
(1, 0n−1) = vTτ R̄τ . The last equality gives col1R̄τ = vτ .

C. Proof of Claim 3

Substituting τ = 0 and τ = T , one can see that R0 = RT :

R0 = R̄0

RT = R̄T exp
{

log R̄TT R̄0

}
= R̄T R̄

T
T R̄0 = R̄0.

Using vTτ Rτ = (1, 0n−1) we also see that vTτ Rτ =
(1, 0n−1) exp

{
τ
T log R̄TT R̄0

}
. Moreover, obviously, the ma-

trix R̄TT R̄0 has the structure

R̄TT R̄0 =

(
1 01×n−1

0n−1×1 Xn−1×n−1

)

https://youtu.be/rTHUgWFLplE
https://youtu.be/rTHUgWFLplE


because the first columns vτ =
P dγτ

dτ

‖P dγτ
dτ ‖ of R̄τ is periodic.

The matrix exp
{
τ
T log R̄TT R̄0

}
has the same structure. Then,

vTτ Rτ = (1, 0n−1). The continuity of the first derivative

dRτ
dτ

=

(
dvτ
dτ
∧ vτ

)
R̄τ exp

{ τ
T

log R̄TT R̄0

}
+

1

T
R̄τ exp

{ τ
T

log R̄TT R̄0

}
log
{
R̄TT R̄0

}
at τ = T is proved by the direct computations:(

dRτ
dτ

)
τ=0

−
(
dRτ
dτ

)
τ=T

= 0.

D. Proof of Theorem 1
First of all let us find the expression for τ̇ by differentiating

with respect to time the identity(
x(t)− γτ(t)

)T
P
dγτ
dτ
≡
(
x(t)− γτ(t)

)T
Pf(γτ(t)) = 0

that defines τ(t) as π(x(t))
Using the chain rule and solving the result for τ̇ we obtain

τ̇ =
fTχ P (fx + gxu)

fTχ Pfχ − fTχ
(
∂f
∂x

)T
χ
P (x− χ)

.

where χ := (γ ◦ π) (x), fχ := (f ◦ γ ◦ π) (x).
Substituting γτ + Eτξ instead of x we obtain

τ̇ ≈
fTγτP

(
fγτ +

(
∂f
∂x

)
γτ
Eτξ + gγτ+Eτξu

)
fTγτPfγτ − fTγτ

(
∂f
∂x

)T
γτ
PEτξ

.

Linearizing the fraction, we have

τ̇ =
∂π

∂x
fx +

∂π

∂x
gxu

≈ 1 +

fTγτ

[
P
(
∂f
∂x

)
γτ

+
(
∂f
∂x

)T
γτ
P

]
Eτ

fTγτPfγτ
ξ +

fTγτPgγτ
fTγτPfγτ

u.

To find the linearization of dynamics for ξ we substitute
(12) into (11):

ξ̇ =
dETτ
dτ

Eτξ
∂π

∂x
fx +

dETτ
dτ

Eτξ
∂π

∂x
gxu+

ETτ

(
fx − fγτ

∂π

∂x
fx

)
− ETτ fγτ

∂π

∂x
gxu+ ETτ gxu.

Linearizing all the terms:
•

dETτ
dτ Eτξ

∂π
∂xfx ≈

dETτ
dτ Eτξ due to ∂π

∂xfx = 1 +O (ξ)

•
dETτ
dτ Eτξ

∂π
∂xgxu ≈ 0 due to u = O (ξ)

• fx − fγτ ∂π∂xfx ≈
fTγτ Pfγτ ( ∂h∂x )

x?
−fγτ f

T
γτ
P( ∂f∂x )

γτ
−fγτ f

T
γτ ( ∂h∂x )

T

γτ
P

fTγτ Pfγτ
Eτξ

• ETτ gxu ≈ ETτ gγτu
• ETτ fγτ

∂π
∂xgxu ≈ ETτ fγτ

(
fTγτ Pgx

fTγτ Pfγτ−f
T
γτ ( ∂f∂x )

T

γτ
PEξ

)
u ≈

ETτ fγτ
fTγτ Pgx
fTγτ Pfγτ

u

Collecting all the terms together leads to (13).
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