
Improving Memory Access Locality for
Vectorized Bit-serial Matrix Multiplication

in Reconfigurable Computing
Lahiru Rasnayake and Magnus Själander

[firstname.lastname]@ntnu.no
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway

Abstract—Low-precision matrix multiplication has gained sig-
nificant interest in the research community due to its applicability
in the quantized neural network domain. As a result, a multitude
of variable precision hardware designs have been proposed
since fixed-precision hardware causes under-utilization of the
hardware resources due to the low and varying precision in such
applications. Bit-serial hardware takes advantage of the frugal
nature of bit-serial computations that can operate on only as
many bits as necessary. A bit-serial matrix multiplication consists
of a summation of weighted binary matrix multiplications. In this
work, we study the inherent locality of bit-serial matrix multipli-
cations and propose a locality-aware scheduling algorithm that
eliminates redundant data fetches from memory. The proposed
schedule improves with up to 76% compared to a schedule that
computes each binary matrix multiplication in sequence.

I. INTRODUCTION

Matrix-matrix multiplication is a key computational kernel
used in many applications [1] of which deep learning inference
is one of the most popular. The large number of matrix
multiplications involved in deep neural networks make them
heavily memory bound in addition to being computationally
intensive. Several techniques pertaining to the optimization of
matrix multiplication are available that still do not account
for the heavy memory requirements in deep learning. Thus,
significant effort has gone into memory oriented optimizations
in deep neural networks [2] such as weight pruning, which
reduce the number of multiplications, and quantization, which
reduce the precision of the multiplications.

Despite the general advantage from quantization [3], the
varying precision of inputs due to differences in quantization
across layers in a neural network [4] means that conventionally
designed fixed-precision hardware are under-utilized. In the
case of FPGAs, even though the possibility of reconfigurability
exists, reconfiguration gives rise to overheads. An alternative
to mitigate this under-utilization is the use of bit-serial
computations [5] where the integer or fixed-point matrix
multiplication is represented as a sum of weighted binary
matrix multiplications (see Algorithm 1). The primary issue of
bit-serial computations has been the significant latency due to
the sequential execution of high-precision data. However, bit-
serial computations can be highly beneficial for low-precision
matrix multiplication as the latency is low due to the low-
precision and is offset by the inherent data-level parallelism in

matrix multiplications. Parallelism can be obtained not only
through instantiation of multiple bit-serial units but also through
vectorization as demonstrated in BISMO [6].

For architectures that are optimized with memory efficiency
as a primary goal, it is important to identify memory efficient
schedules. Naive scheduling commonly result in loss of locality
with redundant memory accesses as a result. We propose a
locality-aware scheduling algorithm that ensure high operational
intensity for low-precision matrices executed on a vectorized
bit-serial accelerator. We use BISMO as a reference platform
for bit-serial matrix multiplications to evaluate the potential
benefits of the proposed scheduling algorithm.

II. BIT-SERIAL MATRIX MULTIPLICATION

Conventional digital arithmetic circuits of today mostly
belong to the bit-parallel paradigm where all the bits of a
word are computed in parallel, whereas the bit-serial paradigm
involves dealing with individual bits of the word in a serialized
fashion. The bit-serial paradigm improves full-circuit utilization
at reduced circuit size with the main disadvantage of incurring
additional latency.

Algorithm 1 represents a straight forward algorithm by which
bit-serial matrix multiplication can be performed [6], with
Equation 1 representing how a single element of the result
matrix is calculated. Priority is given to the calculation of
the inner product of two binary matrices (e.g., L[0] · R[0])
before proceeding to calculate the inner product of another
bit-precision (e.g., L[0] ·R[1]).

Algorithm 1 Bit-serial matrix multiplication on unsigned integers.

1: Input: m× k, w-bit matrix L and k × n, a-bit matrix R
2: Output: P = L ·R
3: # For binary matrices of different precision
4: for i← 0 . . . w − 1 do
5: for j ← 0 . . . a− 1 do
6: weight = 2i+j

7: # Perform binary matrix multiplication
8: for r ← 1 . . .m do
9: for c← 1 . . . n do

10: for d← 1 . . . k do
11: Prc = Prc +weight× (L

[i]
rd ×R

[j]
dc)



∀ r, c | r ∈ {1 . . .m}, c ∈ {1 . . . n}

Prc =

w−1∑
i=0

a−1∑
j=0

2i+j ×
m∑
r=1

n∑
c=1

k∑
d=1

(L
[i]
rd ×R

[j]
dc) (1)

Fig. 1 shows an example of a bit-serial matrix multiplication
between a three-bit left-hand (L) matrix and a two-bit right-
hand (R) matrix (in its transposed form). For simplicity, each
matrix consists of a single row with six columns.

Fig. 1a highlights the access pattern resulting from Algo-
rithm 1. A complete bit-matrix multiplication is computed
before proceeding to another bit-precision, i.e., L[0] ·R[0] (dark
blue) is computed before L[0] · R[1] (light blue) followed by
L[1] · R[0] (dark red) and so forth.

Given a resource-constrained compute engine this schedule
causes redundant memory fetches. Assume that only a single
bit-matrix of the left-hand (L[i]) and right-hand (R[j]) matrices
could fit in on-chip memory then the right-hand matrices (R[0]

and R[1]) would be fetched once for each of the left-hand
matrices (L[0], L[1], and L[2]). Thus, resulting in R[0] and R[1]

being fetched three times instead of ideally only a single time.

(a) Access pattern given Algorithm 1.

(b) Locality in bit-serial matrix multiplication.

(c) Locality-aware schedule given Algorithm 2.

Fig. 1: Bit-serial matrix multiplication access patterns.

Fig. 1b (left) shows the inherent dependencies between the
bit-precisions in a bit-serial multiplication. If the computation
starts with an element from L[0] it should be multiplied with
its corresponding element in each right-hand matrix (R[0] and
R[1] as highlighted in blue). Each of the right-hand elements in
turn should be multiplied with their corresponding element in
the remaining left-hand matrices (L[1] highlighted in red and
L[2] highlighted in green). Therefore, a locality-aware schedule
should fetch an equal number of elements from all bit-positions
(Fig. 1b (right)).

Algorithm 2 shows our locality-aware scheduling algorithm
where the data dependencies have been taken into consideration.
The two innermost loops compute the multiplication across

Algorithm 2 Locality optimized bit-serial matrix multiplication.

1: Input: m× k, w-bit matrix L and k × n, a-bit matrix R
2: Output: P = L ·R
3: # Bit-serial matrix multiplication
4: for r ← 1 . . .m do
5: for c← 1 . . . n do
6: for d← 1 . . . k do
7: # For all precisions of one element
8: for i← 0 . . . w − 1 do
9: for j ← 0 . . . a− 1 do

10: weight = 2i+j

11: Prdc = Prdc +weight× (L
[i]
rd ×R

[j]
dc)

12: # Summation along the k dimension
13: Prc = Prc + Prdc

all precisions for each resulting element of the final matrix
(P ). One minor drawback of this schedule is that the weight
(line 10) is constantly recomputed, potentially increasing the
computational load.

Fig. 1c shows the access pattern of our locality-aware
scheduling algorithm. Given the same resource constraints
as described earlier (i.e., same on-chip memory size), two
elements of each bit-matrix can be read and two partial results
(P111 and P121) can be completely computed before the next
set of elements are read and computed. As seen in the figure,
each element is only read a single time in contrast to the
original schedule that causes the elements of the right-hand
side matrices (R[j]

dc ) to be read multiple times.

III. THE BISMO ACCELERATOR

An accelerator optimized for performing binary matrix
multiplication is not sufficient to take advantage of the
locality-aware scheduling algorithm described in the previous
section (Algorithm 2). BISMO [6] was designed for efficient
computation of binary matrix multiplications but due to its
software programmability it provides the necessary flexibility
to evaluate a large variety of different scheduling algorithms.

The key execution unit of BISMO is the dot-product unit
(DPU) as shown in Fig. 2. The DPU computes a partial
binary dot-product through bit-wise logic AND operations and
summation of these binary results using a popcount operation.
Dk denotes the width of the vector performing a vectorized
bit-serial execution, while A denotes the bit-width of the
accumulator of the DPU.

Matrix
Buffer

Matrix
Buffer

Popcount Result
Buffer+Shift Acc.Neg.AND

Dk
Dk

Dk

A

A

Fig. 2: The BISMO dot product unit (DPU).

Multiple DPUs are instantiated in an array-like structure
referred to as a dot-product array (DPA). Each row and column
of the DPA is fed by a matrix buffer, as shown in Fig. 3. The
DPA is scaled by configuring the number of rows (Dm) and
columns (Dn), which respectively alter the number of matrix
buffers and DPUs. The DPUs are connected to the matrix



Fig. 3: The BISMO datapath.

buffers in a broadcast fashion. Note that the accumulator cannot
load any results from main-memory and, therefore, the DPA
must complete an inner product of a sub-matrix (a tile matching
the DPA dimensions Dm, Dn) along the matrix dimension
k before calculating the inner product of another sub-matrix.
BISMO consists of a software controlled three stage pipeline
design for (1) fetching binary matrices into the matrix buffers,
(2) executing binary matrix multiplications on the DPA, and
(3) writing the result back to memory.

For detailed information on BISMO and its soft-
ware programmability please refer to the article by
Y. Umuroglu et al. [6].

IV. LOCALITY-AWARE BIT-SERIAL MATRIX
MULTIPLICATION ON BISMO

Algorithm 3 shows a detailed implementation for BISMO of
the generic locality-aware algorithm described in Algorithm 2.
Fig. 4 highlights the relationship between the complete compu-
tational space, the sub-block fetched to on-chip memory, and
the sub-block that is consumed by the DPA. The algorithm has
to consider the relationship between the size of the matrices
(m, n, and k), the DPA dimensions (Dm, Dn, and Dk), the
precision of the input matrices (w and a), and the size of the
on-chip buffers (Bm and Bn). For ease of explanation it is
assumed that the dimensions m, n, and k are evenly divisible
by Dm, Dn, and Dk, respectively.

The algorithm assumes that the input matrices are larger than
what can fit in the on-chip matrix buffers (Di in Fig. 3) and that
blocking (tiling) is necessary (line 9 and 10 in Algorithm 3).
Each buffer is assumed to hold m/Bm/Dm ·k ·w bits for the L
buffer and n/Bn/Dn · k · a bits for the R buffer, as illustrated
by the on-chip memory block in Fig. 4. Since an inner product
has to be completed due to the constraints given by BISMO,
the on-chip memory block is formed giving priority to the
k dimension (line 16), before traversing across the m and

Algorithm 3 Vectorized bit-serial matrix multiplication on BISMO

1: Input: m× k, w-bit matrix L and k × n, a-bit matrix R
2: Variable: Bm number of blocks in the m dimension
3: Variable: Bn number of blocks in the n dimension
4: Constant: Dm number of DPU rows in the DPA
5: Constant: Dn number of DPU columns in the DPA
6: Constant: Dk vectorization width of DPU
7: Output: P = L ·R
8: # Blocking of the computational space
9: for bm ← 0 . . . Bm − 1 do

10: for bn ← 0 . . . Bn − 1 do
11: # Fetch data to on-chip matrix buffers
12: # Iterate over the m and n dimension of a block
13: for ri ← 0 . . . (m/Bm)/Dm − 1 do
14: for ci ← 0 . . . (n/Bn)/Dn − 1 do
15: # Compute along the k dimension
16: for di ← 0 . . . k/Dk − 1 do
17: # For all precisions
18: for i← 0 . . . w − 1 do
19: for j ← 0 . . . a− 1 do
20: weight = 2i+j

21: # Vectorized DPA computation
22: # Computed in a single cycle
23: for x← 1 . . . Dm do
24: for y ← 1 . . . Dn do
25: for z ← 1 . . . Dk do
26: r = bm ·Bm + ri ·Dm + x
27: c = bn ·Bn + ci ·Dn + y
28: d = di ·Dk + z
29: Prc = Prc +weight× (L

[i]
rd ×R

[j]
dc)

Fig. 4: The full matrix in relation to fetch and execute blocks

n dimension (line 13 and 14). The bits from all precisions
are read to assure locality (line 18 and 19). The vectorized
execution on a DPA occurs in a single cycle across an execution
block (line 23-29) as illustrated in Fig. 4.

The presented algorithm assumes that the matrix buffers can
fit all the bits of one (or more, Dm > 1 or Dn > 1) row(s)
or column(s). For input matrices with a k dimension larger
than what would fit in the matrix buffers blocking of the k
dimension is needed. For k-blocking Dm and Dn is set to one
(line 9 and 10 becomes void) and the for-loop iterating over
k is split into two loops (line 16).

V. EVALUATION

To highlight the improvements achieved by the locality-
aware scheduling algorithm we present the required number
of fetches based on the input-matrix dimensions relative to the



TABLE I: Required Fetches with respect to Kr

Regular Bit-Serial Locality Optimized Improvement

Matrix precision (w × a)
Kr 1×1 2×2 3×3 4×4 1×1 2×2 3×3 4×4 1×1 2×2 3×3 4×4

1 2 6 12 20 2 4 6 8 0% 33% 50% 60%
2 4 16 36 64 4 8 12 16 0% 50% 67% 75%
3 6 24 54 96 6 12 18 24 0% 50% 67% 75%
4 8 32 72 128 8 16 24 31 0% 50% 67% 76%

TABLE II: Required fetches with respect to Bm ×Bn

Regular Bit-Serial Locality Optimized Improvement

Matrix precision (w × a)
Bm ×Bn 1×1 2×2 3×3 4×4 1×1 2×2 3×3 4×4 1×1 2×2 3×3 4×4

1x1 2 6 12 20 2 4 6 8 0% 33% 50% 60%
2x2 6 20 42 72 6 16 24 32 0% 20% 43% 56%
3x3 12 42 90 156 12 36 54 72 0% 14% 40% 54%
4x4 20 72 156 272 20 64 96 128 0% 11% 38% 53%

available on-chip memory. The data has been obtained using
the BISMO hardware-software co-simulator [7].

Table I shows the required fetches for a w · a-bit matrix
multiplication with respect to Kr. Here, Kr represents the
size of k relative to the available size of a matrix buffer,
i.e., Kr == 1 means that the bits of all the elements in the
common dimension k for a single precision fit in on-chip
memory (on-chip memory size = k bits) and Kr == 2 that
only half the bits fit. It can be seen that for binary matrix
multiplications (1× 1) the locality-aware algorithm does not
provide any additional benefit. This is expected as all data fit
in the on-chip buffers. The locality-aware algorithm starts to
shine for larger bit-precision for which it reduces the number
of fetches significantly. As expected, the benefit increases with
the increased precision of the input matrices.

Table II shows the required number of fetches for a w ·a-bit
matrix multiplication for a matrix of dimensions Bm × Bn

relative to the DPA where Bm = m/Dm and Bn = n/Dn,
while Kr = 1. As expected, a similar behavior as for Table I
can be seen when the matrix dimensions increases highlighting
the importance of optimizing for multi-bit matrices that are
significantly larger than the available on-chip memory.

VI. CONCLUSION

In this paper we propose a scheduling algorithm that
improves the locality of vectorized bit-serial matrix multiplica-
tions. The algorithm eliminates redundant fetches for bit-serial
matrix multiplication and has been implemented on the BISMO
accelerator. The evaluation performed on BISMO shows that
the locality-aware algorithm significantly reduces the number
of fetches for multi-bit precision matrix multiplications.

REFERENCES

[1] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The landscape of parallel computing research: A view
from Berkeley,” Tech. Rep. UCB/EECS-2006-183, Dec 2006.

[2] M. H. S. Han and W. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” in
Proceedings of the International Conference on Learning Representations,
2015.

[3] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv and Y. Bengio.,
“Quantized neural networks: Training neural networks with low precision
weights and activations,” arXiv preprint arXiv:1609.07061, 2016.

[4] P. Judd, J. Albericio, T. H. Hetherington, T. M. Aamodt, N. D. E. Jerger,
R. Urtasun, and A. Moshovos, “Reduced-precision strategies for bounded
memory in deep neural nets,” CoRR, vol. abs/1511.05236, 2015.

[5] M. Zargham, Computer architecture: single and parallel systems. Prentice-
Hall, Inc., 1996.

[6] Y. Umuroglu, L. Rasnayake, and M. Själander, “BISMO: A scalable
bit-serial matrix multiplication overlay for reconfigurable computing,”
in Proceedings of the Conference on Field Programmable Logic and
Applications, Aug. 2018.

[7] Y. Umuroglu, L. Rasnayake, and M. Själander, “Open-source implemen-
tation of BISMO.” https://github.com/EECS-NTNU/bismo, 2018.

https://github.com/EECS-NTNU/bismo

