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Abstract—Dynamical systems are capable of performing com-
putation in a reservoir computing paradigm. This paper presents
a general representation of these systems as an artificial neural
network (ANN). Initially, we implement the simplest dynamical
system, a cellular automaton. The mathematical fundamentals be-
hind an ANN are maintained, but the weights of the connections
and the activation function are adjusted to work as an update
rule in the context of cellular automata. The advantages of such
implementation are its usage on specialized and optimized deep
learning libraries, the capabilities to generalize it to other types of
networks and the possibility to evolve cellular automata and other
dynamical systems in terms of connectivity, update and learning
rules. Our implementation of cellular automata constitutes an
initial step towards a general framework for dynamical systems.
It aims to evolve such systems to optimize their usage in reservoir
computing and to model physical computing substrates.

I. INTRODUCTION

A cellular automaton (CA) is the simplest computing sys-
tem where the emergence of complex dynamics from local
interactions might take place. It consists of a grid of cells
with a finite number of states that change according to simple
rules depending on the neighborhood and own state in discrete
time-steps. Some notable examples are the elementary CA
[1], which is unidimensional with three neighbors and eight
update rules, and Conway’s Game of Life [2], which is two-
dimensional with nine neighbors and three update rules.

Table I presents some computing systems that are capable
of giving rise to the emergence of complex dynamics. Those
systems can be exploited by reservoir computing which is a
paradigm that resorts to dynamical systems to simplify com-
plex data. Hence, simpler and faster machine learning methods
can be applied with such simplified data. Reservoir computing
is more energy efficient than deep learning methods and it can
even yield competitive results, especially for temporal data [3].
In short, reservoir computing exploits a dynamical system that
possesses the echo state property and fading memory, where
the internals of the reservoir are untrained and the only training
happens at the linear readout stage [4]. Reservoir computers
are most useful when the substrate’s dynamics are at the
“edge of chaos”, meaning a range of dynamical behaviors
that is between order and disorder [5]. Cellular automata with
such dynamical behavior are capable of being exploited as

TABLE I
EXAMPLES OF DYNAMICAL SYSTEMS.

Dynamical system State Time Connectivity
Cellular automata Discrete Discrete Regular
Coupled map lattice Continuous Discrete Regular
Random Boolean network Discrete Discrete Random
Echo state network Continuous Discrete Random
Liquid state machine Discrete Continuous Random

reservoirs [6], [7]. Other systems can also exhibit the same
dynamics. The coupled map lattice [8] is very similar to
CA, the only exception is that the coupled map lattice has
continuous states which are updated by a recurrence equation
involving the neighborhood. Random Boolean network [9] is a
generalization of CA where random connectivity exists. Echo
state network [10] is an artificial neural network (ANN) with
random topology while liquid state machine [11] is similar to
echo state network with the difference that it is a spiking neural
network that communicates through discrete-events (spikes)
over continuous time. One important aspect of the computation
performed in a dynamical system is the trajectory of system’s
states traversed during the computation [12]. Such trajectory
may be guided by system parameters [13]. Computation in
dynamical systems may be carried out in physical substrates
[14], such as networks of biological neurons [15] or in other
nanoscale materials [16]. Finding the correct abstraction for
the computation in a dynamical system, e.g. CA, is an open
problem [17]. All the systems described in Table I are sparsely
connected and can be represented by an adjacency matrix, such
as a graph. A fully connected feedforward ANN represents
its connectivity from a layer to another with an adjacency
matrix that contains the weights of each connection. Our CA
implementation is similar to this, but the connectivity is from
the ”layer” of cells to itself.

The goal of representing CA with an adjacency matrix is to
implement a framework which facilitates the development of
all types of CAs, from unidimensional to multidimensional,
with all kinds of lattices and without any boundary checks
during execution; and also the inclusion of the major dynam-
ical systems, independent of the type of the state, time and



connectivity. Such initial implementation is the first part of a
Python framework under development, based on TensorFlow
deep neural network library [18]. Therefore, it benefits from
powerful and parallel computing systems with multi-CPU and
multi-GPU. This framework, called EvoDynamic1, aims at
evolving the connectivity, update and learning rules of sparsely
connected networks to improve their usage for reservoir com-
puting guided by the echo state property, fading memory, state
trajectory and other quality measurements, and to model the
dynamics and behavior of physical reservoirs, such as in-
vitro biological neural networks interfaced with microelectrode
arrays and nanomagnetic ensembles. Those two substrates
have real applicability as reservoirs. For example, the former
substrate is applied to control a robot, in fact making it into a
cyborg, a closed-loop biological-artificial neuro-system [15],
and the latter possesses computation capability as shown by
a square lattice of nanomagnets [19]. Those substrates are the
main interest of the SOCRATES project [20] which aims to
explore a dynamic, robust and energy efficient hardware for
data analysis.

There are some implementations of CA similar to the one of
EvoDynamic framework. They normally implement Conway’s
Game of Life by applying 2D convolution with a kernel that is
used to count the neighbors, then the resulting matrix consists
of the number of neighboring cells and is used to update the
CA. One such implementation, also based on TensorFlow, is
available open-source in [21].

This paper is organized as follows. Section II describes
our method according to which we use adjacency matrix to
compute CA. Section III presents the results obtained from the
method. Section IV discusses the future plan of EvoDynamic
framework and Section V concludes this paper.

II. METHOD

In our proposed method, the equation to calculate the next
states of the cells in a cellular automaton is

cat+1 = f(A · cat). (1)

It is similar to the equation of the forward pass of an
artificial neural network, but without the bias. The layer is
connected to itself, and the activation function f defines the
update rules of the CA. The next states of the CA cat+1 is
calculated from the result of the activation function f which
receives as argument the dot product between the adjacency
matrix A and the current states of the CA cat. ca is always
a column vector of size len(ca)× 1, that does not depend on
how many dimensions the CA has, and A is a matrix of size
len(ca)× len(ca). Hence the result of A ·ca is also a column
vector of size len(ca)× 1 as ca.

The implementation of cellular automata as an artificial neu-
ral network requires the procedural generation of the adjacency
matrix of the grid. In this way, any lattice type or multidi-
mensional CAs can be implemented using the same approach.

1EvoDynamic v0.1 available at https://github.com/SocratesNFR/
EvoDynamic.

The adjacency matrix of a sparsely connected network contains
many zeros because of the small number of connections. Since
we implement it on TensorFlow, the data type of the adjacency
matrix is preferably a SparseTensor. A dot product with
this data type can be up to 9 times faster depending on the
configuration of the tensors [22]. The update rule of the CA
alters the weights of the connections in the adjacency matrix.
In a CA whose cells have two states meaning “dead” (zero) or
“alive” (one), the weights in the adjacency matrix are one for
connection and zero for no connection, such as an ordinary
adjacency matrix. Such matrix facilitates the description of
the update rule for counting the number of “alive” neighbors
because the result of the dot product between the adjacency
matrix and the cell state vector is the vector that contains the
number of “alive” neighbors for each cell. If the pattern of
the neighborhood matters in the update rule, each cell has
its neighbors encoded as a n-ary string where n means the
number of states that a cell can have. In this case the weights
of the connections with the neighbors are n-base identifiers
and are calculated by

neighbori = ni,∀i ∈ {0..len(neighbors)− 1}. (2)

Where neighbors is a vector of the cell’s neighbors. In the
adjacency matrix, each neighbor receives a weight according
to (2). The result of the dot product with such adjacency matrix
is a vector that consists of unique integers per neighborhood
pattern. Thus, the activation function is a lookup table from
integer (i.e., pattern) to next state.

Algorithm 1 generates the adjacency matrix for one-
dimensional CA, such as the elementary CA. Where widthCA
is the width or number of cells of a unidimensional CA
and neighborhood is a vector which describes the region
around the center cell. The connection weights depend on
the type of update rule as previously explained. For ex-
ample, in case of an elementary CA neighborhood =
[4 2 1]. indexNeighborCenter is the index of the center
cell in the neighborhood whose starting index is zero.
isWrappedGrid is a Boolean value that works as a flag
for adding wrapped grid or not. A wrapped grid for one-
dimensional CA means that the initial and final cells are
neighbors. With all these parameters, Algorithm 1 creates an
adjacency matrix by looping over the indices of the cells (from
zero to numberOfCells − 1) with an inner loop for the
indices of the neighbors. If the selected currentNeighbor is
a non-zero value and its indices do not affect the boundary
condition, then the value of currentNeighbor is assigned
to the adjacency matrix A in the indices that correspond to
the connection between the current cell in the outer loop and
the actual index of currentNeighbor. Finally, this procedure
returns the adjacency matrix A.

To procedurally generate an adjacency matrix for 2D CA
instead of 1D CA, the algorithm needs to have small adjust-
ments. Algorithm 2 shows that for two-dimensional CA, such
as Conway’s Game of Life. In this case, the height of the
CA is an argument passed as heightCA. Neighborhood

https://github.com/SocratesNFR/EvoDynamic
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Algorithm 1 Generation of adjacency matrix for 1D cellular automaton
1: procedure GENERATECA1D(widthCA,neighborhood, indexNeighborCenter, isWrappedGrid)
2: numberOfCells← widthCA
3: A← 0numberOfCells×numberOfCells . Adjacency matrix initialization
4: for i← {0..numberOfCells− 1} do
5: for j ← {−indexNeighborCenter..len(neighborhood)− indexNeighborCenter − 1} do
6: currentNeighbor ← neighborhoodj+indexNeighborCenter

7: if currentNeighbor 6= 0 ∧ (isWrappedGrid ∨ (¬isWrappedGrid ∧ (0 ≤ (i+ j) < widthCA)) then
8: Ai,((i+j) mod widthCA) ← currentNeighbor

9: return A

is a 2D matrix and indexNeighborCenter is a vector
of two components meaning the indices of the center of
Neighborhood. This procedure is similar to the one in
Algorithm 1, but it contains one more loop for the additional
dimension.

The activation function for CA is different from the ones
used for ANN. For CA, it contains the update rules that verify
the vector returned by the dot product between the adjacency
matrix and the vector of states. Normally, the update rules of
the CA are implemented as a lookup table from neighborhood
to next state. In our implementation, the lookup table maps
the resulting vector of the dot product to the next state of the
central cell.

III. RESULTS

This section presents the results of the proposed method and
it also stands for the preliminary results of the EvoDynamic
framework.

Fig. 1 illustrates a wrapped elementary CA described in the
procedure of Algorithm 1 and its generated adjacency matrix.
Fig. 1a shows the appearance of the desired elementary CA
with 16 cells (i.e., widthCA = 16). Fig. 1b describes its
pattern 3-neighborhood and the indices of the cells. Fig 1c
shows the result of the Algorithm 1 with the neighborhood
calculated by (2) for pattern matching in the activation func-
tion. In Fig. 1c, we can verify that the left neighbor has weight
equals to 4 (or 22 for the most significant bit), central cell
weight is 2 (or 21) and right neighbor weight is 1 (or 20

for the least significant bit) as defined by (2). Since the CA
is wrapped, we can notice in row index 0 of the adjacency
matrix in Fig. 1c that the left neighbor of cell 0 is the cell 15,
and in row index 15 that the right neighbor of cell 15 is the
cell 0.

Fig. 2 describes a wrapped 2D CA for Algorithm 2 and
shows the resulting adjacency matrix. Fig. 2a illustrates the
desired two-dimensional CA with 16 cells (i.e., widthCA = 4
and heightCA = 4). Fig. 2b presents the von Neumann
neighborhood [23] which is used for counting the number of
”alive” neighbors (the connection weights are only zero and
one, and Neighborhood argument of Algorithm 2 defines
it). It also shows the index distribution of the CA whose
order is preserved after flatting it to a column vector. Fig 2c
contains the generated adjacency matrix of Algorithm 2 for
the described 2D CA. Fig. 2b shows an example of a central

(a)

(b)

(c)

Fig. 1. Elementary cellular automaton with 16 cells and wrapped grid. (a)
Example of the grid of cells with states. (b) Indices of the cells and standard
pattern neighborhood of elementary CA where thick border means the central
cell and thin border means the neighbors. (c) Generated adjacency matrix for
this elementary CA.

cell with its neighbors, the index of this central cell is 5 and
the row index 5 in the adjacency matrix of Fig. 2c presents
the same neighbor indices, i.e., 1, 4, 6 and 9. Since this is
a symmetric matrix, the columns have the same connectivity
of the rows. Therefore, this adjacency matrix represents an
undirected graph. The wrapping effect is also observable. For
example, the neighbors of the cell index 0 are 1, 3, 4 and 12.
So the neighbors 3 and 12 are the ones that the wrapped grid
allowed to exist for cell index 0.

IV. EVODYNAMIC FUTURE

The method of implementing a CA as an artificial neural
network will be beneficial for the future of EvoDynamic
framework. Since the implementation of all sparsely connected
networks in Table I are already planned in future releases



Algorithm 2 Generation of adjacency matrix of 2D cellular automaton
1: procedure GENERATECA2D(widthCA, heightCA,Neighborhood, indexNeighborCenter, isWrappedGrid)
2: numberOfCells← widthCA ∗ heightCA
3: A← 0numberOfCells×numberOfCells . Adjacency matrix initialization
4: widthNB, heightNB ← shape(Neighborhood)
5: for i← {0..numberOfCells− 1} do
6: for j ← {−indexNeighborCenter0..widthNB − indexNeighborCenter0 − 1} do
7: for k ← {−indexNeighborCenter1..heightNB − indexNeighborCenter1 − 1} do
8: currentNeighbor ← Neighborhoodj+indexNeighborCenter

9: if currentNeighbor 6= 0 ∧ (isWrappedGrid ∨ (¬isWrappedGrid ∧ (0 ≤ ((i mod heightCA) + j) <
widthCA) ∧ (0 ≤ (bi/widthCAc+ k) < heightCA)) then

10: Ai,(((i+k) mod widthCA)+((bi/widthCAc+j) mod heightCA)∗widthCA) ← currentNeighbor

11: return A

(a) (b)

(c)

Fig. 2. 2D cellular automaton with 16 cells (4 × 4) and wrapped grid. (a)
Example of the grid of cells with states. (b) Indices of the cells and von
Neumann counting neighborhood of 2D CA where thick border means the
current cell and thin border means the neighbors. (c) Generated adjacency
matrix for this 2D CA.

of the Python framework, EvoDynamic must have a general
representation to all of them. Therefore we are treating CA
as an ANN. Moreover, EvoDynamic framework will evolve
the connectivity, update and learning rules of the dynamical
systems for reservoir computing improvement and physical
substrate modeling. This common representation facilitates the
evolution of such systems and models which will be guided by
several methods that measure the quality of a reservoir or the
similarity to a dataset. One example of these methods is the
state trajectory. For visualization, we use principal component
analysis (PCA) to reduce the dimensionality of the states and

present them as a state transition diagram as shown in Fig. 3.

V. CONCLUSION

In this paper, we present an alternative method to implement
a cellular automaton. This allows any CA to be computed as an
artificial neural network. Therefore, this will help to extend the
CA implementation to more complex dynamical systems, such
as echo state networks and liquid state machines. Furthermore,
the EvoDynamic framework is built on a deep learning library,
TensorFlow, which permits the acceleration of the execution
when applied on parallel computational platforms with fast
CPUs and GPUs. The future work for this CA implementation
is to develop algorithms to procedurally generate adjacency
matrices for 3D and multidimensional cellular automata with
different types of cells, such as the cells with hexagonal shape.
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