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Abstract—Inverse equilibrium modeling fits parameters
of an equilibrium model to observations. This allows
investigation of whether market structures fit observed
outcomes and it has predictive power. We introduce a
methodology that leverages relaxed stationarity conditions
from Karush-Kuhn-Tucker conditions to set up inverse
equilibrium problems. This facilitates reframing of ex-
isting equilibrium approaches on power systems into in-
verse equilibrium programs. We illustrate the methodology
on network-constrained and unconstrained Nash-Cournot
games between price-making power generators. The inverse
equilibrium problems in this paper reformulate into linear
programming problems that are flexible and interpretable.
Still, inverse equilibrium modeling provides generally in-
consistent estimation and econometric approaches are bet-
ter for this purpose.

Index Terms—Inverse equilibrium, inverse optimization,
equilibrium modeling, electricity markets.

I. INTRODUCTION

DESPITE the liberalization of electricity markets,
features such as a limited amount of large produc-

ers, high investment costs, and transmission constraints
may cause price-making behavior, barriers of entry,
and reduce access to markets. As a result, the markets
are vulnerable to abuse of market power. Equilibrium
models, which represent these oligopolistic tendencies,
are therefore widely used to study electricity markets [1].

When we study actual energy markets, it is gener-
ally easy to observe the equilibrium outcomes, such as
prices and flows. The theoretical development in inverse
equilibrium modeling [2], [3] leverages this fact. The
framework expands the theory of inverse optimization
[4], which fit parameters of an optimization problem
given observations of decision variables. As a result, we
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can use actual data to analyze markets and participant
behavior to a greater extent.

Recent literature shows an increased interest from
the power systems community in inverse optimization.
Applications include the investigation of price response
of consumers [5], [6], estimation of offer prices from
rival producers [7], and investigation of the parameters of
transmission constraints in electricity markets based on
locational marginal prices [8]. Relevant work on inverse
equilibrium models include [9] and [10], which use the
variational inequality approach of [3] to estimate bid
curves of competing firms that employ strategic bidding.

Expanding the literature cited above, we show how
to use a Karush-Kuhn-Tucker (KKT) representation [11]
to formulate inverse equilibrium models. This allows
existing equilibrium models from KKT formulations to
be rearranged into inverse problems. Although [2] also
considers inverse nonlinear complementarity problems,
their approach requires initial estimates of parameters.
Our methodology follows the idea of [3] and [11], where
they minimize relaxed optimality conditions. As a result,
we can apply our observations directly and solve the
inverse equilibrium problem as an optimization problem.

Considering the rich history of equilibrium modeling
in the power system community, it is natural to assume
that inverse equilibrium modeling can be a valuable tool.
While this is true to some extent, the approach also has
limitations. The goal of this paper is to highlight both
strengths and weaknesses of inverse equilibrium to mod-
elers who consider using this method. Our contributions
are the following:
• We develop a method to fit objective function coeffi-

cients of participants in a power system by inverting
an equilibrium model from KKT conditions.

• We explain how inverse equilibria relate to similar
concepts in econometrics and machine learning.

• We invert a Nash-Cournot game of transmission-
constrained and unconstrained electricity markets.

• We use examples to illustrate how inverse equilib-
rium fits models and describe its performance in the
presence of noise.

• We discuss performance, implementation, and chal-
lenges of inverse equilibrium models, as illustrated
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by our examples.
The remainder of this paper is as follows: Section

II outlines how inverse equilibrium modeling relates to
econometrics and machine learning. Section III provides
an introduction to equilibrium models from KKT condi-
tions and explain how to utilize stationarity conditions
to invert the problem. We apply the method on relevant
examples in Section IV. Section V addresses implemen-
tation challenges, while Section VI concludes the paper.

II. RELATIONSHIP TO ECONOMETRICS
AND MACHINE LEARNING

At first glance, inverse equilibrium modeling may
seem like another addition to the literature on structural
econometrics [12]. Several econometric studies exist on
electricity markets, especially intending to expose market
power (see e.g. [13], [14] and [15]). However, the major
difference is that inverse equilibrium modeling is a
completely data-driven method. As a result, we make
no assumptions on the distribution of our observations.
Rather, we try to fit an equilibrium model of a market
structure and see whether it fits the data well or not.
Econometric estimation, on the other hand, assumes that
there is an underlying population, which our sample
data should reasonably represent, and tries to estimate
true parameters of the population. This gives greater
explanatory power than inverse equilibrium modeling.
The cost, however, is careful data collection and esti-
mator formulations. For instance, the estimators require
that data comply with certain attributes, a traditionally
prominent example is the Gauss-Markov assumptions, to
enjoy statistical properties like unbiasedness and consis-
tency. Although state-of-the-art econometrics have non-
parametric estimation methods and approaches to handle
challenges such as heteroskedasticity, serial correlation
and endogeneity, the field nevertheless require a set of
assumptions on the data in order to infer from it. Es-
timations from inverse equilibrium modeling, which do
not require these assumptions, do thereby not share these
properties. We illustrate this by example in Section IV.
For an example of structural estimation in power systems
see [16], for an overview on econometric methods, see
e.g. [17] or [18]. In addition, [3, Appendix 2] discusses
the relationship between inverse equilibrium modeling
and structural estimation, while [19] suggest poor ac-
curacy from estimation by first-order conditions within
a conjectural variations framework of an oligopolistic
electricity market.

Inverse equilibrium modeling relates more to a ma-
chine learning philosophy, which values prediction over
explanation, than econometrics. However, inverse equi-
librium modeling adds more structure than a pure ma-
chine learning predictor. Most notably, inverse equilib-
rium modeling has a strong prior. We believe that a

certain equilibrium market structure is the basis for the
observations and want to see whether or not this is
correct. If an inverse model is a good fit to the data, we
can insert the fitted parameters in the original problem
to obtain good predictive power [3]. Although this is
a nice feature, we limit this paper to only consider
formulating and solving inverse equilibrium problems,
and refer the interested reader to [10] and [20] that use
inverse optimization for prediction.

From the discussion, we see that inverse equilibrium
complements existing econometrics and machine learn-
ing methods. We emphasize that inverse equilibrium
modeling is generally an inconsistent estimator. Even if
we get interpretable fitted parameters, such as costs or
willingness-to-pay, we cannot conclude with confidence
that they represent those of an underlying market. They
are merely a good fit. If the goal of a study is to estimate
true market parameters, econometric approaches should
be used. That being said, inverse equilibrium modeling
has several advantages:

• We require no assumptions on the input data.
• Inverse equilibrium modeling is flexible, and one

can easily add or remove constraints and alter the
problem.

• The problem often rearranges into a tractable linear
programming problem.

• One can obtain estimates for other values than
objective function coefficients, for instance coeffi-
cients of transmission constraints as shown in [8].

• By using the KKT approach of this paper, it is
simple to invert mixed complementarity models.

• Inverse equilibrium models have more structure
than pure machine learning predictors, which in-
creases interpretability.

III. INVERSE EQUILIBRIUM MODELING

A. Equilibrium models

We consider a set of decision-makers, P =
{1, . . . , |P|}, where each player p ∈ P has an optimiza-
tion problem illustrated by (1). Functions fp, gpi, and hpj
may be different or similar for the different decision-
makers. Moreover, θ, φ and ψ denote the parameters
of the respective functions. Notice that the objective
(1a) is dependent on x−p = (xk)k∈P\p, which denotes
the decisions of the other players, in addition to its
own decision variable vector xp. The problem can be
restricted by inequality constraints i ∈ I and equality
constraints j ∈ J . Because restrictions (1b) and (1c)
do not depend on x−p, they are internal constraints for
player p. Finally, we note that λpi and νpj represent the
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dual variables of constraints (1b) and (1c), respectively.

min
xp

fp(xp, x−p; θp, θ−p) (1a)

s.t. gpi(xp;φp) ≤ 0, (λpi) i ∈ I (1b)
hpj(xp;ψp) = 0, (νpj) j ∈ J (1c)

The decision-makers cannot optimize their own prob-
lem without considering the responses of the other play-
ers. Solving all p ∈ P problems simultaneously leads
to an equilibrium problem. Both variational inequalities
(VIs) and mixed complementarity problems (MCPs) are
paradigms to model the simultaneous solution of these
player-specific problems. VIs are based on considering
the variational principle related to non-negative direc-
tional derivatives for feasible directions (to minimiza-
tion problems). MCPs rely on the KKT conditions and
involve both primal and dual variables, which has a
modeling advantage in some cases [1]. We only consider
MCPs in the remainder of this paper.

We assume that problem (1) for all p ∈ P satisfies a
constraint qualification that makes the KKT conditions
necessary. The KKT conditions are sufficient, for ex-
ample, when fp is convex (concave for a maximization
problem) while gpi and hpj are affine. A solution that
satisfies the KKT conditions (when these conditions are
sufficient) is thus an optimal solution of (1). Likewise, a
solution that simultaneously satisfies the KKT conditions
for all p ∈ P , as shown in (2), is an equilibrium solution.

∇xpfp(xp, x−p; θp, θ−p)+
∑
i∈I

λpi∇xpgpi(xp;φp)

+
∑
j∈J

νpj∇xphpj(xp;ψp) = 0, p ∈ P
(2a)

gpi(xp;φp) ≤ 0, i ∈ I, p ∈ P (2b)
hpj(xp;ψp) = 0, j ∈ J , p ∈ P (2c)

λpi ≥ 0, i ∈ I, p ∈ P (2d)
λpigpi(xp;φp) = 0, i ∈ I, p ∈ P (2e)

B. Inverse equilibrium models

Problem (2) assumes that parameters, θ, φ and ψ,
are fixed and seeks a solution satisfying all the con-
ditions. By contrast, inverse equilibrium modeling is
the reverse-engineering direction to this. Namely, given
an equilibrium solution, it seeks to find the parameters
θ, φ and ψ that best fit the observed solution. The
equilibrium outcomes, represented by the decision vari-
ables x1, . . . , x|P| become fixed observations, and thus
parameters, x̃1, . . . , x̃|P|, in the inverse problem. Our
method is similar to [11], which applies KKT relaxations
to convex optimization problems.

We allow stationarity conditions (2a) to be relaxed,
while constraints (2b) to (2e) must hold. A deviation

from (2a) results in near-equilibrium solutions, but out-
comes are still feasible when (2b) to (2e) hold. We can
thus relax the stationarity condition by deviation εp, as
shown in (3), to create a near-equilibrium solution. This
allow the inverse model to consider observations that are
not necessarily optimal strategies for its assumed model.
Note that the deviations are not independent because we
relax the stationarity condition, which includes decision
variables of the other problems.

∇xp
fp(xp, x−p; θp, θ−p)−

∑
i∈I

λpi∇xp
gpi(xp;φp)

−
∑
j∈J

νpj∇xp
hpj(xp;ψp) = εp

(3)

We assume that observations come from rational play-
ers, and thus are optimal decisions in the actual market.
The inverse equilibrium problem (4) therefore seeks to
minimize the vector norm of these deviations, ‖ε‖ where
ε = {εp : p ∈ P}. This fits the parameters in a manner
where the observations are as optimal as possible for the
assumed model. Recall that observations x̃1, . . . , x̃|P| are
parameters in the inverse problem. The dual variables,
λki and νkj , become parameters if they are observable.
A notable example is prices, which are dual variables of
market-clearing constraints and observable at the power
exchange. If unobservable, the dual variables continue
to be decision variables, which we assume for the re-
mainder of the paper. The parameters we want to fit, for
instance cost coefficients, slopes or intercepts of inverse
demand functions, also become decision variables.

min
ε,λ,ν,θ,ψ,φ

‖ε‖ (4a)

s.t. ∇xp
fp(x̃p, x̃−p; θp, θ−p)

−
∑
i∈I

λpi∇xpgpi(x̃p;φp)

−
∑
j∈J

νpj∇xphpj(x̃p;ψp) = εp, p ∈ P
(4b)

Constraints (2b) to (2e)

Depending on the number of variables that are ob-
servable and how many parameters we try to fit, there
may be several optimal solutions for (4). With respect
to interpretability, we want the solution space as small
as possible. We can achieve this by adding constraints,
getting observations for variables and fitting fewer pa-
rameters. Several different observations also increase
the probability of having marginal observations, i.e.
observations that reveals some limit of the variables. This
reduces scale invariance, which is the situation where the
fitted parameters has a range of optimal solutions.

We therefore introduce h ∈ H = {1, . . . , |H|} as
index for different observations. For instance, the elec-
tricity market outcomes for multiple hours or days. We
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introduce observations x̃1h, . . . , x̃|P|h into the inverse
equilibrium problem and minimize the deviation at each
observation, εph, constrained to (4b) and (2b) to (2e) for
all observations.

The inverse equilibrium problem has several con-
venient computational properties compared to ordinary
equilibrium problems. Complementarity constraints of
equilibrium problems are non-convex, and thus computa-
tionally challenging for large instances. When decision
variables become fixed observations, they cease being
variables. If an observed variable is part of a bilinear
term, the term becomes linear. If one wants to fit param-
eters in an inequality constraint, i.e. φ, complementarity
conditions can arise because we multiply φ with the dual
variable λ in constraint (2e). However, this is not an
issue if we do not need to estimate φ or if we have
observations of its corresponding dual variable λ̃.

Objective function (4a) minimizes the distance from
the objective and can be represented by any norm. An
L1-norm (the sum of absolute values) or L∞-norm
(the single largest magnitude in a vector) linearizes
the inverse equilibrium objective. For the examples in
Section IV, we use the L1-norm. If the constraints are
affine, then (4) becomes a linear programming problem.
Consequently, we are able to solve much larger instances
of inverse equilibrium problems than equilibrium prob-
lems.

C. Pre-process data to reduce problem size
Although we can solve the inverse equilibrium prob-

lem in its original form (4), pre-processing data reduces
problem size and decreases the risk of numerical com-
plications. Take for instance restriction (2e):

λpigpi(xp;φp) = 0.

Given an observation x̃p and we know φ, then we
know the value of gpi(x̃p;φ), which now becomes a
parameter in the problem. If gpi(x̃p;φ) = 0, we can
omit restriction (2e), because we know it is satisfied.
Similarly, if gpi(x̃p;φ) 6= 0, we can set λpi = 0 instead
of the numerically more complicated (2e). In addition,
non-negativity constraint (2d) becomes redundant.

IV. ILLUSTRATIVE EXAMPLES OF INVERSE
EQUILIBRIUM MODELS

To illustrate the computational aspects of solving
inverse equilibrium problems, we introduce two Nash-
Cournot games where strategic generators use market
power to maximize profits. Throughout the section, we
use the PATH solver [21] in GAMS to solve the equilib-
rium problems, while we implement the inverse equi-
librium problems, which become linear programming
problems, in the Pyomo package for Python and solve
with the Gurobi solver.

A. Generic Nash-Cournot game

1) Model formulation: First we consider a generic
Nash-Cournot game between p ∈ P price-making gener-
ators with finite capacity. They supply a price-sensitive
load without any transmission constraints. Generation is
denoted xp, and has a marginal cost cp, as described
by optimization problem (5). Each generator tries to
maximize its profits, given by objective function (5a).
A linear inverse demand function with slope a ≥ 0 and
intercept b ≥ 0 determines the price. We include ξ as
a demand shock that increases or decreases the demand
intercept. In actual application, there is significant un-
certainty regarding ξ. We include it merely to generate
different observations for the case study. A generator
cannot exceed its maximum generation capacity Qmax

p ,
as enforced by (5b), and generation is non-negative.
Finally, µp denotes the dual variable of the maximum
generation restriction.

max
xp

− cpxp +

(
b+ ξ − a

∑
k∈P

xk

)
xp (5a)

s.t. xp ≤ Qmax
p (µp) (5b)

xp ≥ 0 (5c)

We formulate the KKT conditions of (5) as described
in Section III-A. The objective (5a) is concave and
constraints (5b) and (5c) are affine, so the KKT con-
ditions (6) are necessary and sufficient to represent a
global optimum of (5). The market equilibrium is the
set of x1, . . . , x|P| that satisfy (6) for all players, where
the perp operator ⊥ signifies that the product of the
constraints on both sides of the operator must equal zero.

0 ≤ cp − b− ξ + a

(
xp +

∑
k∈P

xk

)
+ µp

⊥ xp ≥ 0

(6a)

0 ≤ −xp +Qmax
p ⊥ µp ≥ 0 (6b)

We apply the option to deviate by εh from the stationarity
condition (6a), as explained in Section III-B, and use
several observations h ∈ H. Each observation differs
by realizations of the demand shock ξh. Equation set
(7) becomes the inverse equilibrium problem, where the
objective function (7a) is to minimize the distance to an
equilibrium point considering all observations.
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min
c,a,b,µ,ε

‖ε‖ (7a)

s.t.
(
cp − b− ξh + a

(
xph +

∑
k∈P

xkh

)
+ µph + εph

)
xph = 0, p ∈ P, h ∈ H

(7b)

0 ≤ cp − b− ξh + a
(
xph +

∑
k∈P

xkh

)
+ µph + εph, p ∈ P, h ∈ H

(7c)

(−xph +Qmax
p )µph = 0, p ∈ P, h ∈ H (7d)

µph ≥ 0, p ∈ P, h ∈ H (7e)

2) Illustrative case study: To illustrate the inverse
Nash-Cournot game, we create a case study where we
consider three price-making electricity generators. All
have a maximum production of Qmax

p = 5000MWh and
their marginal costs are c1 = 50.0AC/MWh and c2 =
c3 = 60.0AC/MWh. Their collective consumers are rep-
resented by a linear inverse demand function with slope
a = 0.01AC/MWh2 and intercept b = 200.0AC/MWh.
We insert these values into the equilibrium problem
(6) and solve. The Nash-Cournot equilibrium is x1 =
4250MWh and x2 = x3 = 3250MWh when the
demand shock ξ = 0.

We solve equilibrium problem (6) a hundred times to
produce observations x̃1h, x̃2h, and x̃3h. Each observa-
tion has a different demand shock ξh selected at random
from a normal distribution with mean of 0 and standard
deviation 20AC/MWh. We thus have |H| = 100 different
observations.

The inverse generic Nash-Cournot game (7) takes
observations x̃1h, x̃2h, and x̃3h as parameters and solves
for c1, c2, c3, a, b, µ, and ε. We assume that the demand
shocks ξ̃h are known and thus parameters as well. Note
that this is not a realistic assumption, but prevents noise
in the example, which is a topic we consider in Section
IV-A4.

The objective value of (7a) becomes 8 · 10−5, so
sufficiently small to indicate that the model fits the data.
Slope a is correctly fitted to 0.01AC/MWh2, but some
deviation occurs for b = 150.0AC/MWh, c1 = 0.0,
and c2 = c3 = 10.0AC/MWh. All deviations are fitted
exactly 50.0AC/MWh less than the original value, so
we have a case of scale invariance. Whenever we are
dealing with a market, we can use price observations λ̃h.
We introduce the relationship that the inverse demand
function determines price, as shown in (8), as a scaling
constraint.

λ̃h = b+ ξ̃h − a
∑
k∈P

x̃kh, h ∈ H (8)

When we include (8) to the inverse problem (7), we ob-
tain the same objective value, but parameters fit exactly

to the true value. Hence, we show that if data coincide
with the inverse equilibrium model, it fits perfectly.

3) Fit inverse equilibrium models to other market
structures: The inverse equilibrium approach fits data
to models. To illustrate, we fit data from a competitive
equilibria to the inverse Cournot model (7). We use 100
observations from when a social planner coordinates all
decisions. Table I outlines the results.

TABLE I
RESULTS OF FITTING PERFECT COMPETITION DATA TO INVERSE

COURNOT MODEL.

True Without (8) With (8)
Deviation, ε [AC/MWh] 0 208.1 1113.2
Intercept [AC/MWh], b 200.0 143.6 200.0
Slope, a [AC/MWh2] 0.01 0.0067 0.01
Cost gen. 1, c1 [AC/MWh] 50.0 0.0 0.0
Cost gen. 2, c2 [AC/MWh] 60.0 20.3 17.6
Cost gen. 3, c3 [AC/MWh] 60.0 20.3 14.2

In contrast to the previous example, we observe a
non-zero deviation. The inverse model does not manage
to fit parameters such that the observations become an
equilibrium of (7). In other words, the players deviate
from their optimal Cournot strategy and a Cournot model
is not a good representation of the data.

Table I also shows that the price relationship (8)
increases the deviation ε and thus changes the solution
space. It is therefore no longer a scaling constraint. We
also note that the fitted parameters do not resemble the
true parameters. This example illustrates the strength
of inverse equilibrium modeling to test different market
structures. It also emphasizes caution towards consider-
ing the fitted parameters as true estimations.

4) Performance under noise: In general, we cannot
prove that inverse equilibrium modeling, as inverse op-
timization in its canonical form, yield consistent esti-
mators. That is, as the number of observations increase,
the fitted parameters will not converge to a true value.
If the goal is to estimate parameters, consistency is an
important feature. For this reason, we cannot recommend
inverse equilibrium as an estimator.

To display the caveat of using inverse equilibrium as
an estimator, we solve the generic Nash-Cournot game
for |H| = 10, 100, 500, and 1000 observations with a
known random demand shock. We then add a normally
distributed noise with mean 0 and standard deviation
200MWh to the output of Generator 3. If production
with noise exceeds its production limit, we simply set it
to Qmax

3 .
A consistent estimator would be able to reduce the

noise as the number of observations increase and con-
verge to the true value. Table II shows that this is not
the case for the inverse equilibrium model. In fact, the
fitted parameters show no significant trend and adhere
to the randomness of the noise. The total deviation ε in
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Table II shows a steady increase because it gets more
terms that deviate. Theoretically, we can observe this
from objective (7a) of the inverse equilibrium model.
We only minimize the deviation from optimum and have
no noise correcting term. With a noise correcting term,
the problem becomes non-convex (see [22]) and thus
computationally hard to solve.

TABLE II
PERFORMANCE OF INVERSE COURNOT MODEL WHEN GENERATOR

3 HAS NOISE THAT FOLLOW DISTRIBUTION N (0, 200MWh).

Observations, |H| 10 100 500 1000
ε [AC/MWh] 4.85 61.88 294.55 611.33
b [AC/MWh] 198.88 200.78 199.21 198.78
a [AC/MWh] 0.0099 0.010 0.0099 0.0098
c1 [AC/MWh] 50.64 50.33 50.89 51.57
c2 [AC/MWh] 60.43 60.38 60.81 61.47
c3 [AC/MWh] 60.44 60.87 60.68 61.64

B. Nash-Cournot equilibrium in power systems

1) Model formulation: To illustrate the inverse equi-
librium method for power systems, we use the model
formulation of [23] that neglects the presence of arbi-
trageurs. See [23] for the assumptions that provide a
unique equilibrium solution. We want to fit demand and
supply function parameters to observations. The inverse
demand function (9) sets the price λi at a particular bus
i ∈ N , where N is the set of nodes, with respect to
total quantity qi, slope ai and intercept bi. Equation (10)
denotes the linear marginal cost for a producer p, where
xp is its generation.

f−1i (qi) = λi(qi) = bi − aiqi (9)

MCp(xp) = dp + cpxp (10)

A profit-maximizing producer p decides its sales to
a particular node spi and its generation xp according to
problem (11). The objective (11a) is to maximize profits,
given by the difference between revenue and cost. The
cost of using the transmission network, wi, is a parameter
in problem (11), but we define it later as the dual variable
of the market-clearing condition (15). Constraint (11b)
enforces a maximum limit on xp, while restriction (11c)
ensures that sales are equal to generation.

max
spi,xp

∑
i∈N

(bi − ai
∑
k∈P

ski − wi)spi

− (dp + cixp − wp(i))xp

(11a)

s.t. xp −Qmax
p ≤ 0, (αp) (11b)∑

i∈N
spi − xp = 0, (βp) (11c)

spi ≥ 0, xp ≥ 0 (11d)

The KKT conditions of the producer problem (11)
become (12). Notation p(i) denotes the mapping from
producer p to node i, i.e. the location of the generator.

0 ≤ −bi + ai(spi +
∑
k∈P

ski) + wi + βp

⊥ spi ≥ 0, i ∈ N
(12a)

0 ≤ dp + 2cpxp − wp(i) + αp − βp ⊥ xp ≥ 0 (12b)
0 ≤ −xp +Qmax

p ⊥ αp ≥ 0 (12c)∑
i∈N

spi − xp = 0, βp ∈ R (12d)

A system operator oversees energy flow while maxi-
mizing revenue from grid use, as shown in problem (13),
where yi is net energy injection at node i. Constraints
(13b) and (13c) guarantee flows within the minimum
and maximum limits of line l ∈ L, where L is the set
of lines. A PTDF matrix determines the flows in the
system, where element PTDFli gives the ratio of flow
on line l caused by power injections at node i. Although
the system operator has an optimization problem, the net
injection yi is in fact determined by sales and production
by the producers, as we show later in the market-clearing
condition (15). Consequently, the system operator does
not act strategically.

max
yi

∑
i∈N

wiyi (13a)

s.t. −F cap
l −

∑
i∈N

PTDFliyi ≤ 0, (γ−l ) l ∈ L

(13b)∑
i∈N

PTDFliyi − F cap
l ≤ 0, (γ+l ) l ∈ L

(13c)

The KKT conditions of the system operator problem
(13) are (14):

wi +
∑
l∈L

PTDFli(γ
−
l − γ

+
l ) = 0, yi ∈ R i ∈ N

(14a)

0 ≤ F cap
l +

∑
i∈N

PTDFliyi ⊥ γ−l ≥ 0, l ∈ L (14b)

0 ≤ F cap
l −

∑
i∈N

PTDFliyi ⊥ γ+l ≥ 0, l ∈ L (14c)

Finally, the market-clearing condition (15) states that
the net injection for each node must be equal to the
difference between sales to the node and its internal
production.∑

p∈P
spi − xp(i) = yi, wi ∈ R i ∈ N (15)

Both the producer and system operator problems are
concave with affine constraints, so the KKT conditions
are necessary and sufficient to represent the global
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optimum. The equilibrium problem is to find the set of
variables that satisfy (12) for all the players, (14), and
(15).

We invert the equilibrium problem to (16) for multiple
observations h ∈ H according to the method of Section
III-B. Because the producer problem has two decision
variables, sales, spi, and production, xp, it has two
stationarity conditions. Consequently, we introduce two
sets of deviation variables, εspih and εxph, for spih and xph,
respectively. In the example, we weigh the deviations
equally.

min
a,b,c,d,α,β,γ−,γ+,w,ε

‖ε‖ (16a)

s.t. (16b)(
− bi + ai(spih +

∑
k∈P

skih) + wi

+ βph + εspih

)
spih = 0, p ∈ P, i ∈ N , h ∈ H

(16c)

0 ≤ −bi + ai(spih +
∑
k∈P

skih) + wi

+ βph + εspih, ∀p ∈ P, i ∈ N , h ∈ H
(16d)

(dp + 2cpxph − wp(i) + αph

− βph + εxph)xph = 0, p ∈ P, h ∈ H
(16e)

0 ≤ dp + 2cpxph − wp(i) + αph − βph + εxph,

p ∈ P, h ∈ H
(16f)

(−xph +Qmax
p )αph = 0, p ∈ P, h ∈ H (16g)

wih +
∑
l∈L

PTDFl,i(γ
−
lh − γ

+
lh) = 0, i ∈ N , h ∈ H

(16h)

(F cap
l +

∑
i∈N

PTDFl,iyih)γ
−
lh = 0, l ∈ L, h ∈ H

(16i)

(F cap
l −

∑
i∈N

PTDFl,iyih)γ
+
lh = 0, l ∈ L, h ∈ H

(16j)
αph ≥ 0, p ∈ P, h ∈ H (16k)

γ−lh, γ
+
lh ≥ 0, l ∈ L, h ∈ H (16l)

yi, wi ∈ R, i ∈ N , βp ∈ R, p ∈ P (16m)

2) Illustrative case study: As a case study, we con-
sider the the 6-bus system from [24], as shown in Figure
1. Network flows behave according to the PTDF matrix
represented in Table III where we define bus 1 as the
hub. The line from bus 1 to 6 has a capacity of 200MW ,
bus 2 to 5 has 250MW , while the rest are sufficiently
high not to limit any flows. Buses 1, 2, and 4 contain
price-making producers, while buses 3, 5, and 6 are
price-taking consumers. Table IV outlines the intercept
and slope of both producer marginal cost and inverse
demand.

1 2

3

4

56

Fig. 1. Illustration of the 6 bus network from [24] used for equilibrium
in power systems example.

TABLE III
PTDF MATRIX OF 6-BUS EXAMPLE.

Line/bus 1 2 3 4 5 6
(1,2) 0 -0.583 -0.292 -0.292 -0.333 -0.25
(1,3) 0 -0.292 -0.646 -0.146 -0.167 -0.125
(1,6) 0 -0.125 -0.063 -0.563 -0.5 -0.625
(2,3) 0 0.292 -0.354 0.146 0.167 0.125
(2,5) 0 0.125 0.063 -0.438 -0.5 -0.375
(4,5) 0 -0.042 -0.021 0.479 -0.167 0.125
(4,6) 0 0.042 0.021 0.521 0.167 -0.125
(5,6) 0 0.083 0.042 0.042 0.333 -0.25

TABLE IV
FITTED PARAMETERS FROM 6-BUS EXAMPLE. INTERCEPTS IN

AC/MWh AND SLOPES IN AC/MWh2 .

Fitted Fitted True True
Bus intercept slope intercept slope

1 10.0 0.05 10.0 0.05
2 15.0 0.05 15.0 0.05
3 37.5 0.05 37.5 0.05
4 42.5 0.25 42.5 0.025
5 75.0 0.1 75.0 0.1
6 80.0 0.1 80.0 0.1

We obtain observations by solving the KKT conditions
(12) for all the players, (14), and (15) as an equilibrium
problem using the input data of the 6-bus example. To
get different observations we apply both supply and
demand shocks. We assume that all producers have fossil
fuel generators with equal emission per unit energy and
must pay a carbon price, λCO2 , for their emissions. We
select carbon prices at random from a normal distribu-
tion with mean of 10AC/MWh and standard deviation
2AC/MWh. The carbon price becomes an additional
term in the marginal cost, MCp(xp) from (10), of
the producers. The demand shock ξh comes from a
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normal distribution with mean 0 and standard deviation
2AC/MWh. We assume a sufficiently high generation
limit, Qmax

p = 1000MWh, as to not be binding for
any of the observations.

We select 100 random carbon prices and demand
shocks before solving the equilibrium model to generate
observations. The objective value of (16a) becomes
slightly above zero at 0.021. Thus we can conclude
that the Nash-Cournot model fits the data. Moreover, we
see from Table IV that the fitted parameters coincide
with the actual variable. In contrast to the example in
Section IV-A we have no scale invariance. The data
provides sufficient marginal observations to scale the
fitted parameters correctly.

V. COMMENTS ON IMPLEMENTATION

As demonstrated in the examples of Section IV,
existing equilibrium models can easily be recast as in-
verse equilibrium models. Although the fitted parameters
in our examples provide good estimates of objective
function parameters, we emphasize that the data was
generated in a controlled environment. In real appli-
cations, the data will be noisy and the results more
challenging to interpret. Inverse equilibrium modeling
tries to fit a hypothesis, i.e. equilibrium structure, to data.
A benefit of this approach is that the inverse equilibrium
models are interpretable. While this limits generalization,
it enables the modeler to use domain knowledge.

Data from real-world applications are subject to noise.
Inverse equilibrium models are unlikely to enjoy as small
deviations as our examples. This is expected, as it only
shows that an equilibrium structure does not perfectly
fit the data. An interesting feature is that we can try
different equilibrium set-ups and observe what structure
has the least deviation, and thus is the best fit for the data.
Note that there may be several reasons for deviations; the
model structure may not adhere to the observations, the
observations can be noisy or there may be underlying
dynamics or costs unobserved by the modeler.

The KKT approach in this paper benefits from the
close relationship to existing MCP models applied to
power systems. Consequently, the deviations are mea-
sured in costs per variable unit, which is less intuitive
to interpret than just costs. The VI approach [3], on the
other hand, measures deviations in the unit of the objec-
tive function. However, this requires a VI representation
of the equilibrium problem.

As discussed in Section II, it is important to be
cautious when investigating the fitted parameters. They
are not representative of characteristics of an underlying
population as in econometrics, they are merely the best
fit to the data. Estimation of underlying market param-
eters is an important task for market monitors. For this
purpose we recommend consistent estimators established

in the econometric literature. If the reader is interested
to try inverse equilibrium approaches in an estimation
direction, we refer to [25], [26] and [22], which consider
inverse optimization with noisy observations.

Inverse equilibrium modeling is a general approach
that can be applied to any equilibrium problem. In this
paper we use Cournot models because they are familiar
to the power system modeling community. An alternative
approach are conjectural variations models (see e.g. [27],
[28] and [29]), which are more general. A challenge
with inverting for instance the model in [27], is that
even if the KKT conditions of the problem are necessary
and sufficient, the inverse problem becomes non-convex
in parameters. Hence, to make the inverse equilibrium
problem convex, we need observations on a parameter
in the bilinear term. For more information on estimation
of conjectural variations models in power systems we
refer to [30].

VI. CONCLUSION

Inverse equilibrium modeling is a data-driven method
that fit parameters of an equilibrium model in order
to minimize the deviation from an observation. This
paper shows how to use Karush-Kuhn-Tucker (KKT)
conditions to invert equilibrium problems. As shown
in two applications, a constrained and an unconstrained
Nash-Cournot game between power producers, this only
requires a small deviation from the original equilibrium
problem. Our methodology is thus easy to apply on exist-
ing equilibrium models applied to power systems, where
working with KKT conditions is prominent. Inverse
equilibrium models as shown in this paper can transform
into linear programming problems. The method can in-
vestigate if data fit a model structure and it has predictive
power. However, its estimation is generally inconsistent
and econometric approaches are better for this purpose.

ACKNOWLEDGMENT

The authors would like to thank Paolo Pisciella
for support with equilibrium model formulation and
GAMS implementation. Gratitude is also extended to
four anonymous reviewers for their feedback.

REFERENCES

[1] S. A. Gabriel, A. J. Conejo, J. D. Fuller, B. F. Hobbs, and C. Ruiz,
Complementarity Modeling in Energy Markets. Springer New
York, 2013.

[2] J.-Z. Zhang, J.-B. Jian, and C.-M. Tang, “Inverse problems and
solution methods for a class of nonlinear complementarity prob-
lems,” Computational Optimization and Applications, vol. 49,
no. 2, pp. 271–297, Jun 2011.

[3] D. Bertsimas, V. Gupta, and I. C. Paschalidis, “Data-driven esti-
mation in equilibrium using inverse optimization,” Mathematical
Programming, vol. 153, no. 2, pp. 595–633, 11 2015.

[4] R. K. Ahuja and J. B. Orlin, “Inverse optimization,” Operations
Research, vol. 49, no. 5, pp. 771–783, 10 2001.



IEEE TRANSACTIONS ON POWER SYSTEMS 9

[5] J. Saez-Gallego, J. M. Morales, M. Zugno, and H. Madsen,
“A data-driven bidding model for a cluster of price-responsive
consumers of electricity,” IEEE Transactions on Power Systems,
vol. 31, no. 6, pp. 5001–5011, 11 2016.

[6] J. Saez-Gallego and J. M. Morales, “Short-term forecasting of
price-responsive loads using inverse optimization,” IEEE Trans-
actions on Smart Grid, vol. 9, no. 5, pp. 4805–4814, Sep. 2018.

[7] C. Ruiz, A. J. Conejo, and D. J. Bertsimas, “Revealing rival
marginal offer prices via inverse optimization,” IEEE Transac-
tions on Power Systems, vol. 28, no. 3, pp. 3056–3064, 8 2013.
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