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Abstract: Water alternating CO2 gas injection (WAG CO2) is one of the most promising enhanced oil
recovery techniques. The optimization of this process requires performing many time-consuming
simulations. In this paper, an intelligent hybridization based on support vector regression (SVR) and
genetic algorithm (GA) is introduced for the WAG process optimization in the presence of
time-dependent constraints. Multiple SVRs are used as dynamic proxy to mimic numerical simulator
behavior in real time. Latin hypercube design (LHD) is applied to generate the proper runs to train the
proxy and ten supplementary runs are randomly chosen to validate it. The goal of GA in this study is
twofold. First, it is employed during the training of multiple SVRs to find their appropriate
hyper-parameters. Second, once the training and validation of the dynamic proxy are done, the GA is
coupled with it to find the optimum WAG parameters which maximize field oil production total (FOPT)
subject to time-dependent water-cut constraint and some domain constraints. The task is formulated
as a non-linear constrained optimization problem. A semi-synthetic WAG CO2 case is used to examine
the reliability of the approach. The results show that the established dynamic proxy is fast and accurate
in reproducing the simulator outputs. The hybridization proxy-GA is demonstrated to be reliable for the
real-time optimization of the formulated WAG process. C© 2020 The Authors. Greenhouse Gases:
Science and Technology published by Society of Chemical Industry and John Wiley & Sons, Ltd.
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Introduction

Fossil fuels will remain the world’s primary
energy source over the next few decades.1,2 Many
oil reservoirs are beyond or at the end of their

primary stage of recovery, leaving considerable oil
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volumes unrecovered. To ensure effective ways for
production of huge volumes of remaining oil, enhanced
oil recovery (EOR) techniques should be applied, and
their control parameters should be designed properly
in terms of both theoretical and practical aspects.3,4
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Water alternating gas (WAG) is increasingly being
applied as an EOR technique in numerous oil fields in
the world.5 This technique is recognized as the process
of injecting water and gas in many cycles. The main
advantages of this process are the microscopic and
macroscopic sweep efficiencies enhancement.5 The
microscopic sweep is enhanced by gas injection, which
is effective in displacing the oil not reached by water,
while the macroscopic sweep is enhanced by
subsequent water slugs, which control the mobility.
Around 80% of the implemented WAG projects in USA
were fruitful.6 In addition, Skauge et al.7 by reviewing
59 WAG field applications reported that the average oil
recovery increased by up to 10% of the original oil in
place (OOIP). Among different injection gases in WAG
processes, impure/pure CO2 is the most effective
choice, because of the oil recovery factor improvement
and the possibility of mitigating CO2 emissions by
storing CO2 in the reservoir.8,9 Several papers on WAG
and WAG CO2 processes revealed noticeable increase
in the recovery factor using this EOR technique.10,11

Various key parameters have considerable impacts on
the successful design of any WAG process.5 These
parameters include the initialization time, water and
gas injection rates, the half-cycle injection time, the
WAG ratio and slug size. Proper determination of these
parameters is a complex task that needs many
computationally expensive numerical simulations.
Therefore, developing a proxy model seems to be an
alternative to deal with the computational issues, as
demonstrated in our previous works12,13. A proxy
model consists of using a simple mathematical
paradigm that replaces the simulator and generates
outputs quickly without sacrificing the accuracy.14,15

This approach is recognized by different terminologies
in the literature such as surrogate and meta modeling.16

Proxy models are proved to be effective in various
reservoir simulation tasks related to forecasting,
management and optimization purposes. Jalali et al.17

proposed a surrogate model to perform uncertainty
analysis on a coal bed methane reservoir. In their study,
the authors applied artificial neural networks (ANN) to
build the surrogate model after identifying the most
impacting input parameters using key performance
indicators (KPIs). Then, Monte Carlo simulation was
performed on the surrogate model in order to assess
the uncertainties associated with reservoir parameters.
The results of their study showed that the implemented
approach led to a fast and accurate estimation of the
needed outputs. Yao et al.18 established a proxy for

modeling the production profiles in steam assisted
gravity drainage (SAGD) processes. The proxy models
in their study were based on techniques such as
Box–Jenkins models, linear non-recursive models and
recursive ARX (autoregressive with exogenous input)
models. Their findings demonstrated the reliability of
the proposed proxy models for alleviating the
formulated problem. Amini et al.19 applied a surrogate
reservoir model (SRM) to a real case CO2 sequestration
project to quantify the operational and geological
uncertainties involved within reasonable time. The
proposed workflow allowed the prediction of the
distribution of CO2 and pressure throughout the
reservoir with satisfactory accuracy and a short
runtime. Mohammadi and Ameli20 optimized the
control parameters of a SAGD process, namely
injection rate and pressure, production, injection and
offset well heights, offset well pressure and its injection
and production periods, using response surface model
(RSM). Their RSM-based substitutional scheme
exhibited reliable performance in terms of time and
accuracy. You et al.21 proposed a robust computational
proxy for optimizing carbon dioxide-enhanced oil
recovery (CO2-EOR) project under multi-criteria
goals. The task consisted of finding the scenarios that
maximize the CO2 storage, oil recovery and the
project’s economic outcomes. To this end, the authors
proposed combination of a surrogate model, which was
built using ANN, with multi-objective optimizers.
Their results showed that the provided computational
framework was very robust and can be considered as a
user-friendly decision-making tool for similar
optimization problems. Nait Amar et al.12 and Nait
Amar and Zeraibi13 combined back-propagation
techniques for learning ANN models and the
best-found model was employed as proxy for
optimizing mono- and multi-objective WAG problems,
respectively. The results showed noticeable accuracy
and reasonable runtime. Redouane et al.16,22 developed
efficient adaptive workflow for optimizing well
placement in real fractured and synthetic reservoirs.
They claimed that the proposed steps led to an
optimized number of runs to build a representative
proxy for well placement problems.

Over the last two decades, there has been a surge of
interest in the introduction of soft computing
techniques to resolve practical problems in several
fields of science and technology, including petroleum
engineering.23–28 Support vector regression (SVR) is
one of the most popular and well-formulated soft

614
C© 2020 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.
Greenhouse Gas Sci Technol. 10:613–630 (2020); DOI: 10.1002/ghg.1982



Original Research Article: Applying hybrid support vector regression and genetic algorithm to water alternating CO2 EOR MN Amar et al.

computing methods.29 It is characterized by the high
generalization capability which results from the
well-formulated mathematical learning concept.30 It
has been applied in various fields such as signal
processing,31 finance,32 biology,33 biomedicine,34 and
engineering.35 Many articles shed light on the
successful application of this tool in petroleum and
reservoir engineering. Bian et al.36 applied SVR
coupled with grey wolf optimization to model wax
disappearance temperature (WDT). The established
paradigm can estimate WDT with an average absolute
relative deviation (AARD) of 0.7128%. Esfahani et al.37

established an accurate model for estimating natural
gas density using least square support vector machine
(LSSVM). The performance analyses revealed that
their model outperformed the prior approaches. Ziaee
et al.38 implemented an SVR model for predicting the
solubility of CO2 in different polymers. Their findings
demonstrated the reliability of the proposed model.
Nait Amar and Zeraibi39 modeled minimum
miscibility pressure (MMP) of CO2–oil systems using
SVR optimized by artificial bee colony (ABC). It was
found that the SVR–ABC model can predict the MMP
of the systems with high accuracy. One of the studies
that addressed the application of SVR as proxy of
numerical simulators comes from the work of Ahmadi
et al.,1 where an SVR model was developed as a static
proxy to investigate the efficiency of CO2 injection. No
previous study has employed SVR technique as
time-dependent proxy in the investigation of dynamic
processes.

Genetic algorithm (GA), which is a consolidated
approach in evolutionary computation, has received
growing attention in resolving optimization
problems.40 Well test characterization41, history
matching42,43, and well placement optimization16,44 are
among the well-known reservoir engineering tasks
where GA was successfully applied.

This article focuses on the development, evaluation
and validation of a fast and robust approach to
optimize WAG CO2 process subjected to
time-dependent constraints. This approach consists of
hybridization of multiple SVRs with GA. Multiple
SVRs are constructed to generate the outputs of the
numerical simulator in real-time with high accuracy.
Latin hypercube design (LHD) is the space filling
method applied to specify the runs utilized in the
building phase of the proxy. GA is used initially during
the training of the multiple SVRs to find the optimum

SVR hyper-parameters. After checking the reliability of
the proxy, it is coupled with GA to investigate the
optimum WAG parameters, namely the initialization
time, the injection rates of water and gas, the half-cycle
injection time of water and gas, WAG ratio and slug
size, which maximize field oil production total (FOPT)
with respect to water-cut time-dependent constraint
and domain constraints. This paper differs from
published papers and literature as: (1) it sheds light on
the development of time-dependent SVR as a dynamic
proxy for optimizing WAG CO2 process; (2) the
developed SVR proxy generates the parameters
involved in the optimization in real-time; (3) the
parameters included in the optimization are not
limited to the ones frequently considered in WAG
process (the injection rates of water and gas, half-cycle
injection time, the WAG ratio and the slug size), but
another vital factor is considered, namely the
initialization time of the process.

In this paper the second section introduces the
theoretical aspects of SVR and GA. The third section
describes the reservoir model utilized in this study.
Fourth and fifth sections illustrate the mathematical
formulation of the studied WAG CO2 process and the
procedure of building the SVR-based proxy,
respectively. Results are presented and discussed in the
sixth section. The last section sheds light on the main
findings of the work.

Theory
Support vector regression (SVR)
SVR is an advanced machine learning methodology
which was introduced by Vapnik45. SVR aims to
approximate a function that computes the functional
dependency between targets T = {t1, t2, . . . , tm}
defined on R and inputs X = {x1, x2, . . . , xm}, where
xi ∈ Rn and m is the database size. This function can be
expressed as:

f (x) = wϕ(x) + b (1)

where w and b are the weight vector and bias term,
respectively and ϕ(x) is a high dimensional mapping
feature.

To obtain w and b, the following regularized risk
function should be minimized:

RSVR (C) = C
1
m

m∑
i = 1

L
(

f (xi) − ti
) + 1

2
‖w‖2 (2)
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where C 1
m

∑m
i=1 L( f (xi) − ti) and 1

2‖w‖2 represent the
empirical error and the flatness degree of the function,
respectively. The regularization parameter C > 0 is
recognized as a penalty parameter, which shows the
trade-off between the complexity of the model and the
empirical error.
ε-insensitive loss function L( f (xi) − ti) is applied for

computing the empirical error. This function is
formulated as follows46:

L( f (x) − t ) =
{0 if | f (x) − t| ≤ ε

| f (x) − t| − ε otherwise

(3)
where ε is the error tolerance.

The optimum parameters are then obtained by
formulating the constrained optimization problem as:

minimize
1
2
‖w‖2 + C

m∑
i = 1

(
ξ−

i + ξ+
i

)
(4)

subject to

⎧⎪⎨
⎪⎩

ti − (wϕ(xi) + b) ≤ ε + ξ+
i

(wϕ(xi) + b) − ti ≤ ε + ξ−
i

ξ−
i , ξ+

i ≥ 0, i = 1, 2, . . . , m

where ξ−
i and ξ+

i are non-negative slack terms.
By introducing Lagrange multipliers, the constrained

optimization function of (Eqn. 4) can be transformed
into dual space, and the solution is47:

f (x) =
m∑

i=1

(
αi − α∗

i
)

K
(
xi, x j

) + b (5)

where αi and α∗
i denote Lagrange multipliers and must

satisfy the constraints 0 � αi, α∗
i �C, and the term

K(xi, x j ) is called the Kernel function. The latter aims
to map the input space onto some higher dimensional
space (feature space), allowing SVR more flexibility in
modeling complex cases. Gaussian type, polynomial
function and radial basis function (RBF) are among the
well-known Kernel functions.48 In this study, RBF is
considered as the Kernel function and is expressed as
follows:

K
(
xi, x j

) = exp
(−γ

∥∥xi, x j
∥∥)

(6)

where γ is the Kernel parameter.
The reliability of SVR paradigm depends on the

proper determination of C, ε and the parameter γ of
the Kernel function. Hence, it is necessary to optimize
these parameters using robust algorithms to
automatically achieve the proper combinations.

Genetic algorithm and constraints
handling strategy
Genetic algorithm
GA is recognized as the first nature-inspired algorithm
which applies the so-called genetic operators for
exploring and exploiting the search space.40 As a
population-based optimization technique, GA
randomly generates an initial population of possible
solutions and represents them in the form of
chromosomes. A fitness function is considered as an
assessment criterion to differentiate the quality of the
chromosomes. Across the iterations, the chromosomes
are subjected to the genetic operators including
selection, elitism, crossover and mutation. Selection is
performed to pick the individuals to be parents and
generate new offspring. Elitism allows the survival of
the fittest elements and their passage to the next
generation. Crossover consists of exchanging parts
among chromosomes to give new ones. Mutation
allows the local random research aspect for GA by
varying certain genes of chromosome. These operators
are reiterated until a stopping condition is satisfied.

In the present work, GA is used to optimize the SVR
hyper parameters and the constrained WAG CO2
process (after building the proxy). These two
applications are explained in the following
sections.

Constraint handling
This study utilizes ‘three feasibility rules’ method49 for
dealing with the constraints of the problem. In this
technique, both feasible and infeasible solutions are
included, and prioritization rules are applied for a
proper consideration and distinction:

� Feasible solutions are favored over infeasible
solutions.

� In the set of feasible solutions, the ones with better
values of objective function are favored, for example,
in maximization problems, the solutions with high
objective function values are ranked higher than the
ones with low objective function values.

� In the set of infeasible solutions, the ones with
smaller violation of the constraints are favored.

To implement these rules in GA, a linear ranking
fitness function is considered in this work. It should be
noted that the selection operator of GA is related to
this fitness function.
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Latin hypercube design (LHD)
LHD is one of the most widely used sampling designs
in the field of design of experiment, mainly intended
for numerical and computational purposes48,50. It was
introduced by McKay et al.51 in 1979. LHD is
characterized by simplicity of construction, good
coverage of the design space and uniform distribution
of the points generated on the factorial axes. These
advantages are due to the principle of LHD, which is
basically the distribution made by dividing the
intervals of the design variables into a number of bins
with the same selection probability, and for each
variable projection in a bin, there will only be one
sample to select.

For m samples to be generated and n variables, the
number of LHD combinations that can be obtained is
given by the following expression:

number of LHD = (m!)n−1 (7)

Based on this formula, it can be deduced that the
number of potential LHDs is very high. However, to
select the LHD that can cover the design space with the
best repartition, several criteria and methodologies
were proposed in the literature. More details can be
found in published papers48,52. In the present work, a
combination of Morris and Mitchell criterion53 and GA
were implemented for generating the best LHD.

Characterization of the reservoir
model
In the present work, real dynamic and
Pressure-Volume-Temperature (PVT) data from one of
the Algerian fields are implemented with a synthetic
static model to build the numerical model.
Compositions of the injected gas and the reservoir fluid
are reported in Table 1. The PVT properties and fluid
viscosity were modeled by applying the
three-parameter Peng Robinson (PR) equation of state
(EOS) and the Lorenz–Bray–Clark (LBC) correlation,
respectively. A tuning procedure was applied to match
the experimental PVT data. Comparison of the
experimental data and the predicted values using the
PR-EOS after the tuning are illustrated in Table 2
(bubble point pressure) and Fig. 1 (the volumetric
parameters). According to Table 2 and Fig. 1, very
satisfactory agreements were achieved between the
measurements and the predictions of the tuned
PR-EOS. It is necessary to mention that during the
tuning steps, a detailed composition (up to C36+) was

Table 1. Initial reservoir fluid composition (T =
118°C) of a crude oil from an Algerian oil field and
composition of the injected gas.

Component

Molar fraction
(%) reservoir

fluid

Molar fraction
(%) injected

gas

N2 1.319 0

CO2 0.26 85.00

C1 37.311 11.50

C2 12.274 3.50

C3 8.236 0

NC4 1.109 0

IC4 4.168 0

NC5 1.229 0

IC5 2.279 0

C6 4.138 0

C7+ 27.67 0

C7+ properties

Specific gravity 0.829

Molecular weight 190.04 g mol−1

Table 2. Measured and predicted bubble point
pressure.

Measured PR-EOS

Bubble point pressure (bar) 201.3 201.3

ARPE (%) - 0.0

used, then a lumping strategy was applied to reduce the
number of components (up to C7+). The resulting
parameters of the tuned PR-EOS needed for the
compositional simulations are reported in Tables 3
and 4.

The static model is based on a corner-point grid with
25 × 28 × 10 cells, with 54 × 54 × (3–27) m
spacing.12,13 The grid depth ranges from 1823.8 to
2848.2 m. The reservoir properties including
permeability and porosity are presented in Fig. 2.
Figure 2(a) and (b) illustrate the distribution of
porosity and permeability of the reservoir, respectively.
The model encompasses 12 wells, among which four
are injectors and eight are producers. Figure 3
illustrates the positions of these wells. Eclipse 300 is the
numerical simulator used in the development. It is
worth highlighting that the studied reservoir contains
16.5 × 106 sm3 of oil in place. The start time is the
beginning of 2020, and the end of the simulations is
fixed to the time needed to inject 1.2 PV of gas.
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Figure 1. Comparison of the experimental PVT data and the predictions of the PR-EOS after the tuning.

Table 3. Parameters of the tuned PR-EOS.

Pc Tc MW Z Vc

Component (atm) (K) ACF
∗

(g mol−1) S
∗∗

SG Omega A Omega B (Rackett) (L mol−1) Parachor

C1-N2 45.0128 188.2962 0.0091 16.4488 -0.04387 0.31134 0.45723553 0.07779607 0.2877 0.0986 75.7705

C2-CO2 48.5544 305.3799 0.1006 30.3590 -0.0024 0.36214 0.45723553 0.07779607 0.2788 0.1468 107.378

C3 41.9 369.8 0.152 44.1 -0.0775 0.507 0.45723553 0.07779607 0.2763 0.203 150.3

C4-C6 34.6069 462.7907 0.2312 70.0010 -0.03179 0.6397 0.45723553 0.07779607 0.2684 0.2969 219.1313

PSC1
†

26.8965 602.35 0.4125 117.5183 0.0399 0.7656 0.45723553 0.07779607 0.2576 0.4588 337.0191

PSC2 18.7068 710.7114 0.6505 191.8902 0.08 0.8229 0.45723553 0.07779607 0.2485 0.7290 525.9673

PSC3 10.8555 822.4200 1.0313 359.2787 0.1352 0.8923 0.45723553 0.07779607 0.2340 1.2405 830.3720

∗Acentric Factor.
∗∗Volume shift.
†Pseudo-component groups.

WAG CO2 optimization problem
formulation
As achieving a high FOPT value is a paramount goal in
any WAG injection process, this parameter is specified
as the objective function to maximize, as a function of

the design parameters of WAG CO2 process. The
design parameters and the possible ranges are
summarized as follows:

� Initialization time (IT): early (after 3 years from the
start), middle (after 6 years), late (after 9 years).
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Figure 2. (a) Porosity and (b) permeability distribution in the studied reservoir.

Table 4. Binary interaction coefficient of the
tuned PR-EOS.

Component C1-N2 C2-CO2 C3

C1-N2 0.0 0.0 0.0

C2-CO2 0.0 0.0 0.0

C3 0.0 0.0 0.0

C4-C6 0.01315 0.005826 0.001704

PSC1 0.025311 0.015124 0.007795

PSC2 0.042179 0.029522 0.018969

PSC3 0.066043 0.051315 0.037391

� Field water injection rate (FWIR): from 3700 to
12500 sm3 day−1.

� Field gas injection rate (FGIR): from 0.5 × 106 to 1.8
× 106 sm3 day−1.

� Half-cycle time (HCT) of water and gas injection
∈ {3, 6, 9, 12} months.

Figure 3. Well locations in the studied reservoir.

In practice, field water-cut (FWCT) is often restricted
by an upper limit. Therefore, a maximum water-cut
value of 92% is considered as the problem constraint.

The optimization problem is then formulated as
follows:

max FOPT (IT, FWIR, FGIR, HCT) (8)
subject to

IT ∈ {3, 6, 9} years (9)
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3700 ≤ FWIR ≤ 12500 sm3 day−1 (10)

0.5×106 ≤ FGIR ≤ 1.8×106sm3day−1 (11)

HCT ∈ {3, 6, 9, 12} months (12)

FWCT (time, IT, FWIR, FGIR, HCT) ≤ 92% (13)
where FWCT is defined as follows:
FWCT (time, IT, FWIR, FGIR, HCT)

= FWPR(time, IT, FWIR, FGIR, HCT)
FOPR(time, IT, FWIR, FGIR, HCT) + FWPR(time, IT, FWIR, FGIR, HCT)

(14)

where FWPR and FOPR are the field water production
rate and field oil production rate (expressed in sm3

day−1), respectively.
Based on real cases that are implemented in many

fields10,11, we have considered the same half cycle time
and initialization time for the injection wells, while for
the injection rates, we split the FWIR and FGIR equally
among the four injection wells.

Proxy development
To build a powerful dynamic proxy (multiple SVRs)
that can emulate the parameters involved as functions
of time, and capture the complexity of the WAG CO2
process, a proper handling of the outputs and inputs of
insignificant number of runs is done. According to the
WAG CO2 optimization problem formulated in the
fourth section, two main outputs are basically required
(FWPR and FOPR) to obtain the others. It is clear that
FOPT is deduced from FOPR and time, while FWCT
depends on FWPR and FOPR (Eqn 14). Therefore,
multiple SVRs based proxy aims to estimate FWPR and
FOPR as functions of time, and the other parameters
(FOPT and FWCT) are deduced accordingly.

Before proceeding to the development step, a
database is needed. For this purpose, appropriate
number of numerical simulator runs are selected. From
the IT and HCT constraints (Eqns 9 and 12), 3 and 4
levels are attributed to these parameters, respectively.
Concerning FWIR and FGIR factors, 12 levels are
considered for each. It should be noted that parameter
levels definition consists of dividing the interval of a
design variable into equal size sub-intervals and
inserting points in the middle. Twenty-four runs are
attributed to each IT level, and this results in a total
number of 72 runs (24 × 3). It is worth noting that the
runs associated with each IT level cover the whole

Figure 4. Summary of the design of the runs.

HCT levels with an equal number of 6 runs (6 × 4).
Figure 4 summarizes the splitting procedure. LHD is
applied to design these runs. Three supplementary
runs which design the interactions between the limits
of the variables are added. Accordingly, the total
number of runs is 75. Based on the variables of the
entire runs, the WAG ratio (defined as the ratio of the
injected volume of water to gas) ranges from 0.47 to
3.9, while the slug size (the injected gas volume during
HCTgas) is between 0.028 and 0.29 pore volume
injected.

For the generated runs, a broad database is created by
extracting the corresponding inputs and outputs for
each time-step. The gained datapoints are divided into
two sets: one contains the points conforming to the
time-steps with gas as the injected fluid; and the other
set involves the points where water was the injected
fluid. Then, for each implied outcome, two SVRs are
built using the proper part: one englobes the periods
with gas injection and the other covers the periods with
water injection. The global SVR of a given parameter
comprises the two SVRs. The parameters required in
the formulated optimization task and the considered
inputs to develop the multiple SVRs are illustrated in
Table 5. In order to include the effect of HCT on the
outputs, its value at the prior timestep (t − 1), is
employed as an input.

To validate the multiple SVRs proxy and test its
robustness with blind data (data not used for the
training), ten additional scenarios of WAG CO2 are
chosen randomly.
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Figure 5. Flowchart of the implementation of GA in the optimization of SVR hyper-parameters.

Table 5. Inputs and outputs of the multiple SVRs.

Multiple SVRs Inputs Time

FWIR

FGIR

The value of the needed parameter at
the previous time-step, i.e. (t – 1)

Outputs FOPR and FWPR (FOPT and FWCT
are deduced from the flow rates,
i.e., FOPR and FWPR and the time)

As mentioned earlier, the accuracy of SVR is related
to the proper combination of C, ε and the Kernel
function parameter γ . Therefore, GA is implemented
to optimize these parameters for each SVR (each SVR
aiming at emulating the outputs needed in the WAG
CO2 problem optimization, i.e., SVR-FOPR and
SVR-FWPR during gas and water injections). Figure 5
briefly describes the SVR-GA model. The employed
GA parameters in the optimization of SVR
hyper-parameters are shown in Table 6.

Results and discussion
Evaluation of the SVR based proxy model
As mentioned in the fifth section, GA is coupled with
SVR during the training phase. This first hybridization
aims at finding the proper SVR hyper-parameters. To
this end, the steps stated in the workflow of Fig. 5 were

Table 6. GA parameters used in the optimization
of SVR hyper-parameters.

Algorithm Parameters Value/setting

GA Population size 50

Crossover’s
probability

90%

Mutation’s probability 10%

Type of mutation Multiple point

Type of crossover Single point

Type of replacement Elitism (10% of the
population)

Type of selection Linear ranking

Max. number of
generations

30

followed. Mean square error (MSE) was considered as
the fitness function during the training phase of the
proxy. MSE is expressed as follows:

MSE =
∑N

1
(
Oie − Oi p

)2

N
(15)

where O refers to the needed parameter, N represents
the number of points and subscripts e and p refer to
eclipse and proxy, respectively.

The values of the multiple SVRs optimum
hyper-parameters are shown in Table 7. These values
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Table 7. The obtained SVR hyper-parameters for
the developed models.

C ɛ γ

SVR-FOPR during water injection 5550 0.0012 15

SVR-FOPR during gas injection 9750 0.001 25

SVR-FWPR during water injection 5750 0.0001 20

SVR-FWPR during gas injection 9560 0.001 60

Table 8. Performance analysis of the multiple
SVRs proxy (in terms of runs) in the training
process.

ARPE (%) (runs)

Min. Avg. Max.

FOPR 0.59 1.13 2.41

FOPT(t)final after injecting 1.2 PV of gas 0.0019 0.07 0.38

FWPR 0.85 1.46 3.22

FWPT(t)final after injecting 1.2 PV of gas 0.01 0.14 0.73

FWCT 0.14 0.27 0.80

exhibit the final values of the hyper-parameters gained
by GA. In all the cases developed, regularization factor
(C) tends to give the best performance towards its
largest values, while Epsilon and Kernel parameters
give better models with small and medium values,
respectively.

Furthermore, statistical and graphical error analyses
were applied to assess the reliability of the established
proxy and evaluate its accuracy in emulating the
needed parameters as functions of time. Absolute
relative prediction error (ARPE) of each SVR is
calculated by applying the following equation:

ARPE = 100 ×
∣∣Oe − Op

∣∣
Oe (16)

where Oe is the eclipse output and Op is the predicted
response from the proxy model.

In addition, for an in-depth visualization of the results
and the robustness of the proxy, different graphical
analyses are used: (1) cross plots that compare the
alignment of the proxy results versus ideal paradigm,
shown by a unit-slope line, (2) a comparative data
index plot which consists of representing the simulator
outputs against those of the proxy as a function of data
index and (3) the plots showing the variations of

Table 9. Performance analysis of the multiple
SVRs proxy (in terms of runs) in the validation
process (blind runs).

ARPE (%) (runs)

Min. Avg. Max.

FOPR 1.05 2.86 6.19

FOPT(t)final after injecting 1.2 PV of gas 0.0052 0.19 1.83

FWPR 1.68 3.49 5.60

FWPT(t)final after injecting 1.2 PV of gas 0.60 1.21 1.97

FWCT 0.29 0.70 1.46

different needed parameters as functions of time.
The average, minimum and maximum absolute

relative errors of the multiple SVRs during the training
phase are shown in Table 8. It is worth noting that the
values reported in this table are assessed in terms of
runs (not single points). Figure 6 displays cross plots
for rates (oil and water) and water-cut, while the
reported cross plots of Fig. 7 are for the cumulative
parameters (FWPT and FOPT). It can obviously be
seen from these figures that very satisfactory
distributions of the predicted results by the established
proxy are achieved (nearby the unit-slope line) for all
the parameters. In addition, for an in-depth assessment
of proxy approximations and the deviation from the
numerical simulator, the detailed statistical results
through the ARPE (Table 8) reveal that very small
APRE are obtained for all the outcomes. The ARPE
values are 1.13 and 0.07% for FOPR and FOPTt_final (at
the final time-step), respectively; 1.46 and 0.14% for
FWPR and FWPTt_final (at the final time-step),
respectively; and 0.27% for FWCT.

As mentioned previously, in order to demonstrate the
robustness of the multiple SVRs proxy and to check its
accuracy with blind data, ten realizations (not used in
the training process) are designed. Table 9 illustrates
the performance results of the test step (in terms of
runs). Furthermore, Figs 8 and 9 depict cross plots for
the needed parameters. According to these cross plots,
the accuracy of the developed proxy is justified using
this visual survey on blind data. In the same context,
and as listed in Table 7 and the visual comparison
reported in the cross plots of Figs 8 and 9, it can be
stated that the multiple SVRs proxy model
implemented in this study provides promising results
with the data not used for training the proxy, where
very low APRE are reported. This shows the
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Figure 6. Cross plots of (a) FOPR, (b) FWPR and (c) FWCT during the training phase.

Figure 7. Cross plots of (a) FOPT and (b) FWPT during the training phase
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Figure 8. Cross plots of (a) FOPR, (b) FWPR and (c) FWCT during the test phase.

Figure 9. Cross plots of (a) FOPT and (b) FWPT during the test phase.
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Figure 10. Results of the training and blind tests: comparison of
FOPT_eclipse versus FOPT_proxy at the end-time (after injecting 1.2 PV of
gas).

Figure 11. Demonstrating the accuracy of the developed dynamic proxy: among
random runs used in the training of the time-dependent multiple SVRs. (a) FOPR
and FOPT as functions of time. (b) FWPR and FWPT as functions of time. (c)
FWCT as a function of time.
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Figure 12. Results of a random blind test after injecting 1.2 PV of gas: (a): FOPR and
FOPT as functions of time. (b): FWPR and FWPT as functions of time. (c): FWCT as a
function of time.

Table 10. GA parameters used in the
optimization of WAG CO2 process.

Algorithm Parameter Value/setting
GA Population size 50

Max. number of generations 40
Type of selection Rank based

selection
Crossover’s probability 95%
Mutation’s probability 30%
Type of mutation and crossover Single point
Type of replacement Elitism
% of individuals chosen with elitism 10%
% of individuals chosen with mutation 40%
% of individuals chosen with crossover 50 %

Figure 13. Optimization results using hybridization SVR-GA.
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Table 11. WAG CO2 optimum design parameters.

Parameter IT (years)

FWIR
(sm3 day−1)
(of the best

FOPT)

FGIR
(sm3 day−1)
(of the best

FOPT)

HCTw−g

(month)
(of the best

FOPT) WAG ratio
Slug size

(PV)

Problem
constraint (Max.

FWCT, %)
(of the best

FOPT)

Value 6 12261 106 6 2.5 0.09 91.45

Table 12. Comparison of the dynamic proxy optimum parameters and numerical simulation results.

Parameter
Multiple SVRs proxy (for

the best parameters)
Run eclipse 300 (for
the best parameters) ARPE (%)

FOPTt-final (sm3) 11791290.316 11735840.160 0.47

FOPR (sm3 day−1) – – 2.20

FWPR (sm3 day−1) – – 3.25

FWCT (%) – – 0.50

generalization capability of the developed multiple
SVRs proxy model.

Figure 10 shows the comparison of FOPT in sample
series plots for the training and test runs at the final
time-step (equivalent to the injection of 1.2 PV of gas).
As seen in Fig. 10, good agreement between the
multiple SVRs proxy predicted values and the
numerical simulator results is noticed.

To evaluate the robustness of the implemented proxy
in generating the parameters in real-time, Fig. 11
compares the multiple SVRs proxy with the reservoir
simulator (Eclipse 300), in terms of results of randomly
selected simulation runs that are included in the
training phase. In Fig. 11(a) and (b), the comparisons
are made as functions of time for FOPR and FOPT, and
for FWPR and FWPT, respectively. Figure 11(c)
illustrates the comparison of WCT as a function of
time. It can be seen in these figures that the multiple
SVRs proxy can reproduce the results of the numerical
simulator with high accuracy. Figure 12 reports the
comparison of the multiple SVRs proxy results with
blind runs of the numerical simulator. The
comparisons of FOPR and FOPT as functions of time
are depicted in Fig. 12(a), while the comparison of
FWPR and FWPT as functions of time are shown in
Fig. 12(b). Figure 12(c) illustrates the comparison of
WCT as a function of time. According to these figures,
satisfactory matches are obtained for all the parameters
even with the blind data. The results confirm the
efficiency of the developed multiple SVRs proxy model
in forecasting the numerical simulator performance.

WAG CO2 process optimization using the
hybridization proxy GA
After the validation of the multiple SVRs proxy
through the blind runs and checking its performance,
it is coupled with GA to find the optimum parameters
of the formulated problem shown in the fourth section.
The first step in the optimization with SVR-GA is to
codify the problem variables (their combinations
represent WAG CO2) in the form of chromosomes. The
representation (IT, FWIR, FGIR, HCT) is followed.
Then, an initial population of the chromosomes is
generated randomly. The evaluation step is performed
based on FOPT and the state of the constraint.
Accordingly, a linear ranking based fitness function is
implemented. After evaluation, the GA operators, i.e.,
selection, elitism, crossover and mutation are applied to
bring out offspring. Finally, by checking the maximum
number of iterations as a stopping criterion, the best fit
individual is chosen as the optimal WAG CO2 scenario.

Table 10 presents the GA control parameters
considered in the formulated WAG CO2 optimization
problem. Figure 13 shows the optimization results of
GA in its best run. The optimum FOPT is
11.79129 × 106 sm3, and the corresponding design
parameters are listed in Table 11. Table 12
demonstrates the simulator values and the errors of the
parameters needed in the optimization, gained from
the multiple SVRs proxy model results shown in
Table 11. The outputs of the multiple SVRs proxy
model corresponding to the optimum WAG CO2
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design parameters are in good agreement with the
results of numerical simulations.

According to Table 11, optimum conditions occur
when the WAG is initiated after six years, the gas is
injected at low rate and water is injected at high rate.
Additionally, the half-cycle time should be set to six
months. These results show that a high WAG ratio and
small slug sizes are favourable in this process.

Finally, the main advantage of establishing a proxy is
the noticeable reduction in the simulation time. One
reservoir simulation run in a machine including an
Intel R© CoreTM i5-5200 2.20 GHz and 6 GB of RAM,
takes 15 to 23 minutes (depending on convergence
time), while the developed multiple SVRs proxy run
takes only 1.086 seconds.

Conclusions
In this work, multiple SVRs were designed and applied
as time-dependent proxy for optimizing a constrained
WAG CO2 process in real time. The proxy was trained
utilizing a database, which was exploited from each
time-step input/output system of insignificant number
of runs. Blind runs were then considered to check the
reliability with unseen datapoints. The established
proxy provided the desired outputs by conserving the
required accuracy within reasonable time.

The hybridization of GA with the multiple SVRs
proxy allowed the investigation of optimum WAG
design parameters with high accuracy and reasonable
CPU time. A middle-time IT, gas and water injection
HCT of 6 months, high water rate and low gas rate with
high WAG ratio and small slug size are the proper
operational conditions for the WAG CO2 process
formulated in this study.
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