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Abstract—Enthusiasm for ship autonomy is flourishing in
the maritime industry. In this context, data-driven Prognostics
and Health Management (PHM) systems have emerged as the
optimal way to improve operational reliability and system safety.
However, further research is needed to enhance the essential
actions relating to such a system. Fault detection is the first
and most crucial action of any data-driven PHM system. In this
study, we propose a fault-type independent spectral anomaly
detection algorithm for marine diesel engine degradation in
autonomous ferries. The benefits of the algorithm are verified on
three fault-types where the nature of degradation differs. Both
normal operation data and faulty degradation data have been
collected from a marine diesel engine, using two different engine
load profiles. These profiles aim to replicate real autonomous
ferry crossing operations, environmental conditions the ferry
may encounter. First, the data is subjected to a feature selection
process to remove irrelevant and redundant features. Then, a
multi-regime normalization method is performed on the data to
merge the engine loads into one context. Finally, a variational
autoencoder is trained to estimate velocity and acceleration
calculations of the anomaly score. Generic and dynamic threshold
limits are simultaneously established to detect the fault time step
online. The algorithm achieved an accuracy of 97.66% in the
final test when the acceleration was used as the fault detector.
The results suggest that the algorithm is independent of fault-
types with different nature of degradation related to the marine
diesel engine.

Index Terms—Autonomous ferry, marine diesel engine, multi-
regime normalization, online fault detection, prognostics and
health management

I. INTRODUCTION

TODAY, ship autonomy is the most-sought research ob-
jective at the Norwegian University of Science and Tech-

nology in Aalesund [1], [2]. However, autonomous ships were
considered to be a futuristic fantasy only six years ago [3].
Yet inland autonomous ferries carrying tiny crews primarily
to make passengers feel safe will be in commercial use on the
west coast of Norway in the very near future [4]. The industry,
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as well as academics, anticipate that these ferries will improve
both safety and profitability [5]. Maintaining, operating, and
navigating the vessels without crew involvement will necessi-
tate the use of highly automated systems and belonging sensor
equipment, and degradation of such systems during operation
poses a serious threat to operations [6].

Prognostics and Health Management (PHM) is the area of
research with the greatest promise to manage maintenance
operations for zero-downtime performance of autonomous fer-
ries [6]. A data-driven PHM system goes far beyond traditional
maintenance approaches, such as reactive maintenance and
preventive maintenance, currently in use onboard ships [7].
Such a system use algorithms built on sensor measurements to
perform automatic fault detection, fault isolation, fault classifi-
cation, and associated remaining useful life (RUL) predictions
to devise an ideal maintenance schedule that eliminates fail-
ures [8]. Autonomous ferries will transfer real-time operational
sensor data to a remote control center to conduct the essential
actions of a data-driven PHM system (see Figure 1). Thus, it
will be possible to schedule maintenance operations to the next
appropriate port of call. The ideal maintenance schedule will
considerably enhance operational availability and reliability
and system safety.

Anomaly detection techniques aim to discover deviations
from normal operation data. In a data-driven PHM viewpoint,
such deviations are symptoms of incipient faults [9]. Fault
detection is the first and most crucial action of any data-driven
PHM system. It should be performed automatically to detect
the fault time step in degradation data. Then, this time step
can be used to construct both labels for fault classification and
run-to-failure targets for RUL predictions. Interest in spectral
anomaly detection techniques has increased recently. These
techniques try to produce the lower dimensional embedding
of the input data where anomalies and normal operation data
are generally distinct [10]. The reconstruction error at each
time step between the input data and its low dimensional
reconstruction is then used as an anomaly score to detect
anomalies [10]. The principal components analysis method is
one of the best-known traditional spectral anomaly detection
techniques [11]. However, deep neural networks (DNNs) have
recently shown superior performance for this purpose [9].
DNNs allow dimension reduction through several hidden lay-
ers with non-linear transformations, and hence, obtain more
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Fig. 1. Illustration of an autonomous ferry, crossing a fjord from dock A to
B. Since there are limited amounts of crew members onboard, such ferries
need to transfer real-time operational sensor data to a remote control center to
conduct the essential actions of a data-driven PHM system. Then, maintenance
operations can be scheduled to the next appropriate port of call.

abstract features to produce a better reconstruction of the input
data.

The marine diesel engine is one of the most critical com-
ponents onboard ferries since it has an important role in both
propulsion and power generation [12]. It is subjected to rapid
variations in operational loads, depending on both the task of
operation and environmental conditions. In such complexity,
the degradation phenomena cannot be presented directly for
cutting-edge spectral anomaly detection algorithms since the
sensor measurements are highly connected to the operational
loads. Hence, a multi-regime normalization method has to be
performed on the raw input data to present the degradation
phenomena [13]. Additionally, the nature of degradation of
typical fault-types associated with the marine diesel engine
might be different from one another and significantly similar
to normal operation data.

This paper proposes a fault-type independent spectral
anomaly detection algorithm for marine diesel engine degra-
dation in autonomous ferries. The variational autoencoder
(VAE) is the selected DNN as it outperforms a feed-forward
neural network (FNN) with one hidden layer, the traditional
autoencoder (AE), and the long-short term memory (LSTM),
in terms of reconstruction-based fault detection for maritime
components in [9]. As similar to [14], a replicated autonomous
ferry crossing operation is used to produce two engine load
profiles. These profiles reflect different environmental condi-
tions affecting the ferry. Both normal operation and faulty
degradation data sets are collected from the two profiles, and a
fault is introduced at an unknown time step in the degradation
data sets. During the experiments, three fault-types with differ-
ent nature of degradation are used for both validation and final
test of the proposed algorithm. The complete algorithm is sum-
marized as follows: First, the VAE is trained on pre-processed
normal operation data. Second, the trained VAE is used to
calculate the velocity and the acceleration of the anomaly score
at each time step in faulty degradation data. Simultaneously,
generic and dynamic threshold limits are established. Both the

calculations and the threshold limits change dynamically with
time. This enables online fault detection as a fault is detected
automatically once the velocity and acceleration calculations
exceed the threshold limits.

The proposed algorithm is based on our already published
fault detection algorithm in [9]. Our previous algorithm makes
only offline fault detection possible. However, as opposed to
our previous algorithm, the proposed algorithm in this study
includes two principal improvements, that is, online and fault-
type independent anomaly detection by utilizing generic and
dynamic threshold limits. This study’s main contributions are
as follows:

• A fault-type independent spectral anomaly detection algo-
rithm for marine diesel engine degradation in autonomous
ferries is proposed.

• Generic and dynamic threshold limits are proposed to
predict the fault time step online.

• The algorithm is independent of fault-types with different
nature of degradation related to the marine diesel engine.

The overall organization of the paper is as follows. Sec-
tion II introduces relevant and related work on spectral
anomaly detection. Section III introduces the essential back-
ground on the VAE and the semi-supervised reconstruction
framework. The experimental approach is explained in detail in
section IV. Results and discussions are elaborated in section V.
Finally, section VI concludes the paper and presents objectives
for future work.

II. RELATED WORK

Three different learning procedures exist for spectral
anomaly detection algorithms: supervised, semi-supervised,
and unsupervised. The availability and quality of the input data
largely determine which learning procedure to choose for fault
detection. Supervised learning involves training a supervised
binary or multi-class classifier to differentiate normal operation
data from faulty degradation data. This procedure is extremely
powerful if predefined labels for both normal and faulty data
points are available during the training stage.

G. Wu proposed a supervised FNN for fault detection of
ship equipment in [15]. In [16], Xu et al. proposed an online
fault diagnostics method based on convolutional neural net-
works (CNNs) and transfer learning. The proposed approach
was trained in a supervised manner where a softmax output
layer was used to classify faults related to both bearings and
pumps. A supervised classifier was also used for fault detection
in [17]. In this study, however, Sun et al. utilized an initial un-
supervised learning procedure, before supervised fine-tuning,
to do automatic feature extractions of rolling element bearings.
Siegel et al. examined methods for detecting and disrupting arc
faults in [18]. Both a binary and multi-class classifier were
used during real-time classification experiments.

Even though the above studies have shown superior accu-
racy in terms of fault detection, there is a lack of labeled
faults in the maritime industry [19]. This necessitates the
use of semi-supervised or unsupervised learning, which does
not require predefined fault labels. In the application of fault
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detection, semi-supervised learning only uses normal operation
data for training, while unsupervised learning has no previous
knowledge of the input data where only intrinsic properties
are used [20].

The sensors installed on autonomous ferries can be utilized
to accumulate and collect normal operation data to use a
semi-supervised learning framework. A VAE was used for
anomaly detection in [9], [14]. In both studies, the maximum
acceleration in faulty degradation data was estimated and
used as the fault detector. However, utilizing the maximum
acceleration makes only offline fault detection possible. This is
because one would need the faulty degradation data in advance
to determine the maximum acceleration.

The utilization of dynamic threshold limits can enable on-
line fault detection. Park et al. [21] proposed an LSTM-based
VAE anomaly detector for robot-assisted feeding. A varying
state-based threshold value was used to detect anomalies.
Thus, online anomaly detection is possible where the threshold
value changes over the estimated state of task execution. Ad-
ditionally, Hundman et al. [22] used non-parametric dynamic
thresholds for spacecraft anomaly detection. Nevertheless,
these studies apply the dynamic thresholds based on the raw
anomaly score or a smooth version of it. For the marine diesel
engine, such dynamic thresholds will reflect the nature of
degradation of the specific fault-type used for fault detection.
Therefore, different dynamic thresholds have to be created for
different faults. This contradicts the fact that the goal of the
improved fault detection algorithm in this study is to be fault-
type independent.

III. BACKGROUND

This section introduces the background theory on the VAE
and the semi-supervised reconstruction framework.

A. Variational autoencoder

The VAE is a variant of the traditional autoencoder (AE)
rooted in Bayesian inference [23]. It is composed of an
encoder function z = qθe(z|x) and a decoder function r =
pθd(x|z). The encoder approximates the underlying proba-
bility distribution pθd(z). Then, new data can be generated
utilizing the decoder by sampling a set of latent variables
z obtained from pθd(z). By modeling the distribution of the
latent variables instead of deterministic values, as conducted
in the traditional AE, the VAE improves generalization since
z are stochastic in nature [24]. Note that θe and θd are the
biases and weights of the encoder and decoder, respectively.
The VAE optimizes θe and θd by maximizing the variational
lower bound JV AE [23]:

JV AE(θe, θd) = −DKL

(
qθe(z|x) || pθd(z)

)
+Eqθe (z|x)[log pθd(x|z)]

(1)

where DKL is the Kullback-Leibeler (KL) divergence. The
KL divergence measures the similarity between the prior
distribution of z, pθd(z), and the variational approximation
qθe(z|x). Maximizing JV AE minimizes the KL divergence,
hence pushing the approximated posterior qθe(z|x) towards the
prior pθd(z). The common choice of the prior distribution is

a Gaussian distribution, N (µz,Σz), where a standard normal
distribution N (0, 1) is utilized. The second expression is the
reconstruction log-likelihood of x with sampling from qθe(z|x)
and referred to as the generative loss. The distribution of the
second expression depends on the data type [10]. For real-
valued input data, a Multivariate Gaussian is normally used.

The reconstruction log-likelihood needs to be calculated
through Monte Carlo methods [23]. However, since these
methods suffer from high variance and high computation
resources, a reparameterization trick of z is used to obtain the
gradients of the decoder in order to use the back-propagation
algorithm. The random variable z ∼ qθe(z|x) is replaced by
a deterministic transformation, such that, z = µ + σε, ε ∼
N (0, 1) [10]. Thus, given a fixed input x and a variable ε,
the total function is deterministic and continuous, meaning
back-propagation can compute a gradient that will work for
stochastic gradient descent [23]. Then, the encoder only needs
to produce vectors of means µ and standard deviations σ
instead of vectors of real values.

B. Semi-supervised reconstruction framework

As in [9], the fault detection is conducted through a semi-
supervised reconstruction framework, meaning only normal
operation data is used for training the VAE. Consider xt =
[x1, ..., xn]t as the input vector at time step t. To enable the
VAE to reconstruct the normal operation data, xt is also used
as the target yt for reconstruction at each t. In this way, the
trained VAE is expected to produce relatively large recon-
struction errors on unseen degradation data. Since the data
gathered from the marine diesel engine is continuous sensor
data, a fully connected output layer is attached to the VAE,
where the mean squared error (MSE) is utilized to measure
the reconstruction capability. Thus, the VAE minimizes the
following loss function:

LV AE =
1

n

n∑
i=1

||ŷi − yi||2 (2)

where n is the number of input features, and ŷi and yi is the
ith reconstructed and target measurement, respectively.

As in [9] and [14], the VAE is structured with two hidden
layers (h1, h2) in the encoder, z units in the latent layer
and two hidden layers (h2, h1) in the decoder. However, the
number of hidden units in each layer differs from the previous
studies as they are determined related to the number of input
features n:

h1 = b1.2nc, h2 = bh1/2c, z = bh2/2c (3)

where b c is round down symbol.

IV. EXPERIMENTAL STUDY

The following experimental study, uses Microsoft Windows
10, Java 8, “deeplearning4j” version 1.0.0-beta4 [25] as the
deep learning library, and NVIDIA GeForce GTX 1060 6 GB
as the graphics processing unit.
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Fig. 2. The battery system, the marine diesel engine, and the automation
system used for collecting the data sets.

Fig. 3. Engine load profile 1 and 2.

A. Data sets

A hybrid power lab, established by the Department of Ocean
Operations and Civil Engineering at the Norwegian University
of Science and Technology in Aalesund, is used to collect the
data sets. The lab intends to research ship autonomy. As seen
in Figure 2, the lab includes a small marine diesel engine,
a marine battery system, and a marine automation system to
control the facilities. The power produced is supplied back to
the power grid to simulate load variations in the system.

During the data collection process, the engine is driven by
two different engine load profiles. As similar to [14], the two
engine load profiles aim to replicate real-life autonomous ferry
crossings on the west coast of Norway. First, the ferry is off-
loading and on-loading vehicles before it leaves shore at a safe
and constant velocity. Then, the ferry speeds to a suitable ve-
locity. This velocity remains constant until it decreases safely.
Finally, the ferry breaks just before it docks. In common, the
two profiles are exposed to the same magnitudes of engine
loads, but the length of each engine load differs to reflect
different environmental conditions. Figure 3 shows the two
engine load profiles, profile 1 and profile 2.

In this study, two fault-types are used for validation of
the proposed algorithm. These are the air filter fault, the

Fig. 4. The restriction and bleed device used to provoke the air filter and
turbo fault, respectively.

TABLE I
THE SEVEN DATA SETS COLLECTED FROM THE HYBRID POWER LAB

Data set Profile Usage Seconds Hz Time steps
Normal operation 1 Training 1173 2 2346
Normal operation 2 Training 1173 2 2346
Turbo degradation 1 Validation 1173 2 2346
Turbo degradation 2 Validation 1173 2 2346

Air filter degradation 1 Validation 1173 2 2346
Air filter degradation 2 Validation 1173 2 2346
Cooling degradation 1 Final test 1173 2 2346

clogging of the air filter, and the turbo fault, malfunction of
the turbocharger. The air filter fault demonstrates the effect of
a clogged air filter with the use of a restriction device, as seen
in Figure 4. During the data collection process, this device is
gradually adjusted from fully open to 90% closed to reduce the
inlet flow of air to the turbocharger. The purpose of the turbo
fault is to replicate efficiency reduction in the turbocharger.
This is done by installing a bleed device on the charge air
pipe between the turbocharger and the engine inlet manifold,
as seen in Figure 4. Gradually bleeding of air during the data
collection process results in reduced air pressure to the engine
combustion process. A third fault-type is used for the final test
of the proposed algorithm: a malfunction of the frequency-
operated fan controlling the secondary cooling system in the
engine. This fault, which appears in our previous work [14],
is hereinafter referred to as the cooling fault. One normal
operation data set, one turbo degradation data set, and one
air filter degradation data set is collected from each profile.
Additionally, one cooling degradation data set is collected
from profile 1. Table I summarizes the seven data sets collected
from the hybrid power lab.

B. Feature selection

All collected data sets include 47 input features from the
hybrid power lab. As discovered in [14], features belonging
to the battery system and the automation system are irrelevant
for detecting faults in the marine diesel engine. When such
features are removed, the VAE will provide a reconstruction
process with higher degradation relevance. Additionally, fea-
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TABLE II
FEATURE SELECTION FOR THE MARINE DIESEL ENGINE

Index Description Unit
1 Boost pressure bar
2 Engine load kW
3 Engine cooling water temperature ◦C
4 Engine exhaust gas temperature ◦C
5 Cooling water temperature out of the engine ◦C
6 Engine speed rpm
7 Diesel generator cooling water flow liter/min
8 Simulated propulsion load kW
9 Cooling fan speed controller rpm

tures with constant measurements are removed since these
features provide no degradation information. The Pearson
correlation analysis is also used to detect the linear relationship
between the input features. If two input features have a high
linear relationship, they likely contain redundant information.
Then, expert human domain knowledge (HDK) is used to
determine which of the redundant input features has less
degradation relevance. Actually, in this study, the HDK is
acquired from an engine chief engineer with 13 years of sailing
experience and three years of experience with the development
of a health monitoring system for rotating machinery. The
redundant features are removed accordingly.

HDK is also used to remove inaccurate and unknown
feature measurements concerning the marine diesel engine.
For instance, the cooling water temperature to the engine is
removed since it is considered an unknown parameter. This
feature is affected by the outdoor temperature, and hence,
it varies when data sets are collected at different dates and
seasons. Fuel consumption is also removed from the data sets.
While it is an important feature for detecting faults in the
combustion process in the engine, the measurements obtained
from the automation system were too inaccurate to be used in
this study. Ultimately, nine input features, which are intended
to reflect all degradation patterns in the marine diesel engine,
remain in all data sets. Table II lists the final input features.

C. Multi-regime operating conditions and normalization

As seen in Figure 3, the engine load changes drastically
during the ferry crossing operation in both profiles. As a
result, feature measurements are highly connected to the
engine loads. This causes the feature measurements in the
normal operation data to differ strongly between different
engine loads. Thus, proper data pre-processing, in terms of
multi-regime normalization, is necessary to present the actual
normal operation phenomena for the VAE during the training
phase [13].

Obviously, both profiles fall into five distinct operating con-
ditions based on the engine load. First, the normal operation
data sets in Table I are split into five data sets each based
on the five operating conditions. Each feature in these data
sets is then scaled with zero mean and unit variance (z-score)
normalization:

xon =
xon − µo

σo
(4)

where xn is the input feature, n = 1, 2, ..., 9, in operating
condition o, and µ and σ is the population mean and population

TABLE III
HYPER-PARAMETERS

Hyper-parameter Method/Value
Activation function Rectified Linear Unit

Learning rate 1 · 10−3

l2 regularization 1 · 10−4

Optimization algorithm Stochastic Gradient Descent
Optimizer Adam

Weight initialization Xavier

standard deviation of that feature. This yields five different
normalization statistics, one for each operating condition.
Finally, these normalization statistics are applied both to the
raw normal operation data in the training phase and to the
raw faulty degradation data in the anomaly detection. To apply
different normalization statistics, the engine load is monitored
at each time step.

D. Training phase and anomaly detection

In the training phase, a VAE is established and trained
on both normal operation data sets subjected to multi-regime
normalization. An early stopping policy is utilized to re-
construct the normal operation data as precisely as possible
by monitoring the average reconstruction error of all mini-
batches. If the number of epochs with no decrease in the
average reconstruction error is greater than four, the training
phase is ended. Then, the VAE, in the epoch with the lowest
average reconstruction error, is stored and used for anomaly
detection. The mini-batch size is set to 128. The VAE is
configured with hyper-parameters that provided great success
for maritime components in [9]. These are shown in Table III.

In terms of time series data, it is practical to consider three
categories of anomalies: point, collective, and contextual [11].
Point anomalies are single values that differ from previous
values, collective anomalies are entire sequences of values
that are anomalous, and contextual anomalies are single values

Fig. 5. A complete flowchart of the training phase and anomaly detection.
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that are not different from previous values yet are anomalous
concerning local values [22]. The nature of degradation in
both the turbo and air filter fault is highly connected to the
operating conditions and therefore they should be regarded
as contextual anomalies. However, the VAE is only able to
detect point anomalies. To detect contextual anomalies, the
VAE has to be applied within a context [11]. We consider the
five operating conditions as different contexts. Thus, the multi-
regime normalization statistics also need to be applied to the
faulty degradation data to merge the five different contexts into
one context. In this way, the VAE can be used for anomaly
detection and to estimate an anomaly score at each time step.
Figure 5 shows a complete flowchart of the training phase and
anomaly detection.

E. Fault detection algorithm

1) Online fault detection: The anomaly score in faulty
degradation data ASd is estimated by using the trained VAE
to calculate the MSE, Eq. 2, at each time step t. Then, the
algorithm generates three sliding windows of length w to
smooth ASd:

w =
Td
p

(5)

where Td is the total number of time steps in the faulty
degradation data and p is an adjustable parameter. p determines
the magnitude of smoothing conducted on ASd. Hence, careful
tuning of p is necessary since excessive smoothing might
obscure important degradation trends. The three windows slide
across ASd for each t. A distance equivalent to w is used
between each window. Simultaneously, the average anomaly
score ASd,avg is computed in each window. Additionally, the
velocity vd between windows 1 and 2 and between windows
2 and 3, and the acceleration ad between the two velocities
are calculated. Finally, the velocity fault time step f̂t,v and
the acceleration fault time step f̂t,a are detected when vd and
ad exceeds their dynamic threshold limits, respectively. The
proposed algorithm is shown in Algorithm 1.

Large sensor measurement deviations compared to sensor
measurements in normal operation data is a strong indication
of an incipient fault [9]. These deviations can, of course, be
detected by utilizing ASd or ASd,avg as the fault detectors.
However, both ASd and ASd,avg will vary between different
fault-types since they reflect the nature of degradation. Conse-
quently, the corresponding threshold limits will be highly fault-
dependent. The main goal of the proposed algorithm is to be
fault-type independent. vd will measure the rapidity in ASd,avg
and indicate if one or several sensor measurements have begun
to diverge swiftly from normal operation data. However, ad
will measure increases and decreases in vd. Due to latency
in the marine diesel engine, ad might be a better indication
than vd since there is an expected time delay before the faults
will result in large sensor measurement deviations. Therefore,
vd and ad are considered as more suitable fault detectors for
the algorithm since the calculations are assumed to be similar
between different fault-types. Consequently, generic and fault-
independent threshold limits can be acquired. These limits are
further elaborated in the following paragraph.

Algorithm 1 Algorithm for detecting the fault time step in
faulty degradation data.
Input: Td, ASd, p, vn, vlower, vupper, an, alower, aupper
Output: f̂t,v , f̂t,a

Initialization :
w ← Td / p
vd,first = true
ad,first = true
Generate three sliding windows of length w to slide across
ASd for each t. ASd,avg is computed in each window.
A distance equivalent to w is used between each window.
for t := 1 to Td do
vd1 ← ASd,avg1 - ASd,avg2
vd2 ← ASd,avg2 - ASd,avg3
ad ← vd1 - vd2
if (vd,first = true) then

if (vd1 > vn[t] + vupper or vd1 < vn[t] + vlower)
then
f̂t,v ← t - (w · 1.5)
vd,first = false

end if
end if
if (ad,first = true) then

if (ad > an[t] + aupper or ad < an[t] + alower)
then
f̂t,a ← t - (w · 2.5)
ad,first = false

end if
end if

end for
return f̂t,v , f̂t,a

2) Generic and dynamic threshold limits: In this study, the
threshold limits are based on the velocity vn and the accel-
eration an in the average anomaly score of normal operation
data for both profiles. The procedure to measure both vn and
an is exactly the same as in Algorithm 1. Seven different p
values, in the 30 to 90 range, are used during the experiments.
In order to obtain the associated dynamic threshold limits, the
minimum and maximum velocities of vn, vmin, and vmax, and
the minimum and maximum accelerations of an, amin and
amax, are calculated for each p value in each profile. Then,
a common set of upper and lower thresholds for both vn and
an are calculated based on the following formulas:

vupper =
|(vmax,1 + vmax,2)− (vmin,1 + vmin,2)|

2
(6)

vlower = −vupper (7)

aupper =
|(amax,1 + amax,2)− (amin,1 + amin,2)|

2
(8)

alower = −aupper (9)

The common set of upper and lower thresholds for each
p value are shown in Table IV. The limits will change
dynamically through time when the upper and lower thresholds
are added to vn and an, as performed in Algorithm 1.
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TABLE IV
A COMMON SET OF UPPER AND LOWER THRESHOLDS FOR BOTH THE

VELOCITY AND THE ACCELERATION

p vlower vupper alower aupper
30 -2.63 2.63 -4.10 4.10
40 -3.40 3.40 -4.97 4.97
50 -3.81 3.81 -6.35 6.35
60 -4.40 4.40 -7.26 7.26
70 -5.10 5.10 -8.58 8.58
80 -5.74 5.74 -9.67 9.67
90 -6.32 6.32 -10.54 10.54

The generic and dynamic threshold limits are computed be-
fore they are applied in the fault detection algorithm. However,
new engine load profiles are likely to be encountered in real-
life data-driven PHM systems in autonomous ferries. Then,
the computation complexity will increase since vmin, vmax,
amin, and amax of the new profile have to be calculated and
incorporated in Eqs. 6, 7, 8, and 9 before new fault detections
can start.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this study, both velocity and acceleration calculations
will be used as the fault detectors. The air filter and turbo
degradation in both profiles will be used as the validation
data sets for the proposed algorithm. The validation aims
to discover the best performing fault detector and the most
suitable p value. Seven different p values, in the 30-90 range,
will be compared. A low p value might smooth the anomaly
score too much and ignore significant degradation patterns. In
contrast, a high p value might provide irrelevant spikes that
would also affect the velocity and acceleration calculations. In
the end, the final experiment will use the cooling degradation
as the final test data set of the algorithm. This experiment aims
to further test the fault-type independence of the algorithm.

A. Validation

To validate both f̂t,v and f̂t,a, the true fault time step ft has
to be determined. Since both the air filter fault and the turbo
fault in both profiles are provoked gradually during the data
collection process, ft can not be decided based a recorded time
step. Thus, ft is determined based on expert HDK. The boost
pressure is the key feature to monitor for fault detection for
both fault-types. As already mentioned, both faults-types are
highly connected to the engine loads and subjected to different
nature of degradation. Therefore, ft is determined where the
deviation in boost pressure between normal operation data
and faulty degradation data in percentage is largest. The
determined ft for both fault-types in both profiles is shown
in Table V.

Table VI shows f̂t,v and f̂t,a for each p value in both profiles
for both fault-types. The accuracy evaluations, Accv and Acca,
are based on the following formula:

Acc (%) =

(
1− ||f̂t − ft||

Td

)
· 100 (10)

where Acc (%) can be considered as the distance between the
detection and ft. In the following discussions, a satisfactory

TABLE V
THE TRUE FAULT TIME STEP ft

Fault-type Profile Largest deviation in boost pressure (%) ft

Air filter 1 15.79 1670
2 10.53 1433

Turbo 1 21.05 1431
2 21.05 1427

TABLE VI
VALIDATION: THE TRUE FAULT TIME STEP ft COMPARED TO THE

DETECTED FAULT TIME STEP f̂t

Fault-type Profile ft p w f̂t,v Accv(%) f̂t,a Acca(%)

Air filter

1 1670

30 78 1255 82.31 1502 92.84
40 58 1278 83.29 1609 97.40
50 46 1289 83.76 1648 99.06
60 39 1549 94.84 1660 99.57
70 33 1566 95.57 1674 99.83
80 29 1706 98.47 1680 99.57
90 26 1709 98.34 1682 99.49

2 1433

30 78 1362 96.97 1428 99.79
40 58 1392 98.25 1445 99.49
50 46 1404 98.76 1458 98.93
60 39 1532 95.78 1483 97.87
70 33 1540 95.44 0 38.92
80 29 0 38.92 0 38.92
90 26 0 38.92 0 38.92

Turbo

1 1431

30 78 731 70.16 693 68.54
40 58 771 71.87 745 70.76
50 46 786 72.51 752 71.06
60 39 794 72.85 1347 96.42
70 33 368 54.69 1362 97.06
80 29 1395 98.47 1374 97.57
90 26 1399 98.64 1381 97.87

2 1427

30 78 951 79.71 892 77.20
40 58 979 80.90 929 78.77
50 46 991 81.42 1329 95.82
60 39 1005 82.01 1347 96.59
70 33 1387 98.29 1361 97.19
80 29 1393 98.55 1371 97.61
90 26 1397 98.72 1378 97.91

TABLE VII
VALIDATION: THE AVERAGE ACCURACY FOR EACH p VALUE

p w Avg. Accv(%) Avg. Acca(%)
30 78 82.29 84.59
40 58 83.58 86.60
50 46 84.11 91.22
60 39 86.37 97.61
70 33 86.00 83.25
80 29 83.60 83.42
90 26 83.65 83.55

accuracy is considered to be above 95%. For the air filter
fault in profile 1, f̂t,v provides satisfactory accuracy by p
values between 70 and 90, while f̂t,a provides satisfactory
accuracy by p values between 40 and 90. On the other hand,
for the air filter fault in profile 2, f̂t,v provides satisfactory
accuracy by p values between 30 and 70, while f̂t,a provides
satisfactory accuracy by p values between 30 and 60. As
Table V reflects, the air filter fault in profile 2 is subjected
to a lower deviation in boost pressure than the air filter
fault in profile 1. As a consequence, the air filter fault in
profile 2 is subjected to lower magnitudes of both velocity and
acceleration calculations, and hence, requires smaller upper
and lower thresholds. As Table IV shows, low p values result
in smaller upper and lower thresholds. This issue reflects the
difficulty of creating generic and dynamic threshold limits
even for the same fault-type that is subjected to different
environmental conditions in the form of different engine load
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(a) (b)

(c) (d)

Fig. 6. Automatic fault detection where p = 60 and the acceleration is used as the fault detector. (a) Air filter fault in engine load profile 1. (b) Turbo fault
in engine load profile 1. (c) Air filter fault in engine load profile 2. (d) Turbo fault in engine load profile 2.

profiles.

For the turbo fault in profile 1, f̂t,v provides satisfactory
accuracy by the p values 80 and 90, while f̂t,a provides
satisfactory accuracy by p values between 60 and 90. Similarly,
for the turbo fault in profile 2, f̂t,v provides satisfactory
accuracy by p values between 70 and 90, while f̂t,a provides
satisfactory accuracy by p values between 50 and 90. Also as
seen in Table V, the turbo fault in both profiles are subjected to
a deviation of 21.05%, almost twice the deviation compared to
the air filter fault in profile 2. This results in larger magnitudes
of both velocity and acceleration calculations. Thus, the turbo
fault in both profiles provides the highest accuracies by high
p values and corresponding large upper and lower dynamic
threshold limits.

To determine the best performing fault detector and the
most suitable p value for both fault-types, the average velocity
and acceleration accuracy for each p value is calculated,
as shown in Table VII. When p = 60, the acceleration
provides the highest average accuracy of 97.61%. Therefore,
the acceleration is considered the most fault-independent fault
detector. Figure 6 shows the acceleration calculations and the
corresponding dynamic threshold limits when p = 60 for both
fault-types in both profiles. It is worth mentioning that the
acceleration calculations and the dynamic threshold limits are

not plotted before the entire sliding window operation is active.
In other words, the initial 195 time steps are plotted as zeros
(w(60) · 5 = 195).

B. Final test

The main intention of the final test of the proposed al-
gorithm is to further test its independence towards different
fault-types. The cooling degradation data in profile 1 is used
for this purpose as this fault exhibits a totally different nature
of degradation compared to both the air filter fault and the
turbo fault. Thus, it can be considered to be new field data
that the algorithm has never seen before. To evaluate the fault
detection, the true fault time step ft for the cooling fault is
also determined based on expert HDK. When the cooling water
temperature increases 85 ◦C, ft is determined to be 1713.

As discovered in the validation, the acceleration is the
best performing fault detector when p = 60. These settings
are therefore used in the final test. As Table VIII shows,
the algorithm detects the cooling fault with an accuracy of
97.66%. Also noted, both in the validation and the final test
the trend is that the acceleration provides early detections,
i.e. f̂t,acc < ft, when p = 60. However, early detections
with a corresponding high accuracy are considered as valid
detections since there is an expected time delay in the marine
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TABLE VIII
FINAL TEST: THE TRUE FAULT TIME STEP ft COMPARED TO THE

DETECTED FAULT TIME STEP f̂t FOR COOLING DEGRADATION DATA

Fault-type Profile ft p w f̂t,a Acca(%)
Cooling 1 1713 60 39 1658 97.66

Fig. 7. Automatic fault detection where p = 60 and the acceleration is used
as the fault detector for cooling degradation data.

diesel engine before the faults will result in large sensor
measurements deviations. Figure 7 shows the acceleration
calculations and the corresponding dynamic threshold limits
for the fault detection of the cooling degradation data. The
final test proves that the algorithm is fault-type independent.

VI. CONCLUSION AND FUTURE WORK

This paper has analyzed and proposed a fault-type indepen-
dent spectral anomaly detection algorithm for marine diesel
engine degradation in autonomous ferries where a VAE is used
as the DNN. To do so, three fault-types with different nature
of degradation have been used during the experiments. Both
normal operation data and faulty degradation data have been
collected from two different engine load profiles. These pro-
files aim to replicate real autonomous ferry crossing operations
that might affect the ferry.

In the validation of the proposed algorithm, the acceleration
has proven to be the most fault-independent fault detector,
providing an average accuracy of 97.61%. Additionally, the
acceleration achieved an accuracy of 97.66% in the final test of
the algorithm. Thus, the algorithm has proved its independence
of fault-types with different nature of degradation related to
the marine diesel engine.

In this study, the engine loads were divided into five distinct
operating conditions manually to do multi-regime normaliza-
tion. However, if new operating conditions are encountered
in real-life systems, this process has to be automated. For
instance, through unsupervised clustering algorithms, such
as the K-Means algorithm. One has to remember that fault
detection is only the first action to be performed in a real-
life data-driven PHM system. However, the detected fault
time steps obtained from the faulty degradation data can
be used to automatically label the data to account for both
fault classification and RUL predictions. Also, due to the

VAE’s generative characteristics, it is possible to derive the
reconstruction of the data to analyze the underlying cause of
the fault to do fault isolation. Our future work will include
these crucial actions.
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