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Notation

Throughout the thesis, we will use the following notation without reference.
Here, u, v are functions, a,b are vectors, A,B are matrices with elements
ai j ,bi j and Ω is a domain.

• ΩT =Ω× (0,T ).

• Br (x) is the ball centered at x with radius r .

• ut = ∂u
∂t .

• ui = uxi = ∂u
∂xi

.

• ∇u = (ux1 ,ux2 , ...,uxn ) ∈Rn .

• D2u is the Hessian matrix of u with elements

(D2u)i j = ∂2u

∂xi∂x j

and eigenvalues λ1,λ2, ...,λn . We will often denote λ1 =λmin and λn =
λmax.

• ∆u =∑n
i=1

∂2u
∂x2

i
.

• u ∈C m(Ω) if u and its partial derivatives up to order m are continuous
in Ω.

• u ∈ LP (Ω) if
∫
Ω |u|p d x is finite.

• ||u||p,Ω = (∫
Ω |u|p d x

) 1
p .

• u ∈ LP
loc(Ω) if u ∈ Lp (K ) for each compact K ⊂Ω.

• u = o(v) as x → x0 if limx→x0
u(x)
v(x) = 0.

•
∫
Ωu d x = 1

|Ω|
∫
Ωu d x.

• The divergence of a vector valued function F is denoted by

divF = ∂F1

∂x1
+ ...+ ∂F

∂xn
.

• |a| =
√

a2
1 +a2

2 + ...+a2
n .

1



Contents

• ||a||∞ = maxi |ai |.
•

〈
a,b

〉= a1b1 +a2b2 + ...+anbn .

• dist(a,b) = |a −b|.
• dist(a,Ω) = miny∈Ω |a − y |.
• A ∈ Sn if A is symmetric, ai j = a j i .

• tr(A) =∑n
i=1 ai i .

• A ≤ B if 〈x, Ax〉 ≤ 〈x,B x〉 for any x ∈Rn .

• |A|2 =∑n
i , j=1 a2

i j .

• The expected value of a random variable X is denoted E(X ).

2



Introduction

The Laplace equation,

∆u = ∂2u

∂x2
1

+ ∂2u

∂x2
2

+ ...+ ∂u2

∂x2
n
= 0

is a widely studied linear second order partial differential equation. It is the first
equation one encounters when studying partial differential equations of second
order. Solutions to Laplace’s equation are called harmonic functions and they
occur in many branches of physics, for example in electric and gravitational
potentials. The parabolic version,

∂u

∂t
=∆u

is used in the study of heat conduction. It is called the heat equation and was
studied already in the early 1800’s by Joseph Fourier.

Laplace’s equation in a domain Ω ∈ Rn is the Euler-Lagrange equation of
the Dirichlet integral ∫

Ω
|∇u|2 d x.

If we instead look at the variational integral∫
Ω
|∇u|p d x, 1 ≤ p ≤∞,

the Euler-Lagrange equation is the p-Laplace equation. It can be written

∆p u = div
(
|∇u|p−2∇u

)
= 0, 1 ≤ p ≤∞. (1.1)

In contrast to Laplace’s equation, it is nonlinear. Its solutions are called p-
harmonic functions. The equation is singular when p ∈ [1,2) and degenerate
for p > 2. Due to this, solutions to the above equation are not always smooth.

3



Introduction

However, the equation is in divergence form, which allows us to define a par-
ticular notion of a weak solution. Namely, we say that u is a weak solution of
equation (2.5) in a domain Ω⊂Rn if∫

Ω
|∇u|p−2 〈∇u,∇φ〉

d x = 0

for all smooth test functions φ with compact support in Ω.
The normalized p-Laplace equation

∆N
p u = |∇u|2−p∆p u = |∇u|2−pdiv

(
|∇u|p−2∇u

)
= 0

where p ∈ [1,∞], arises in game theory [MPR],[PS] and is used in image pro-
cessing [KD]. The word "normalized" is perhaps more visible if we write out
the divergence,

∆N
p u =∆u + (p −2)

〈 ∇u

|∇u| ,D2u
∇u

|∇u|
〉
≡∆u + (p −2)∆N

∞u = 0

The equation is singular unless p = 2. When p = 2 it is the Laplace operator.
For p > 1 the equation is uniformly elliptic.

The main difference to the ordinary p-Laplace equation is that the equation
is no longer in divergence form. Again, solutions may not be smooth, which is
why we need a different notion of what it means to be a solution. We use the
viscosity solutions.

After the game interpretation of the equation was made it got more attention.
We refer to [JS] for Hölder gradient estimates and [APR] for C 1,α regularity of
viscosity solutions.

The Dominative p-Laplace equation,

Dp u =∆u + (p −2)λmax(D2u) = 0,

for p ≥ 2, was introduced by Brustad in [B] where he used the equation to
explain a superposition principle for p-superharmonic functions. See [CZ]
and [LM] for more about this property. The equation has a stochastic game
associated to it, which was studied first in [BLM] and later in [HR]. Here, we
also use viscosity solutions.

Throughout the thesis, we discuss properties of viscosity solutions to the
normalized and the Dominative p-Laplace equations. The main focus for the
normalized p-Laplace equation will be the regularity of the time derivative,
[HL]. Finally, we discuss the game associated to the Dominative p-Laplace
equation [HR] and a particular concavity problem for the same equation [H].

4



1.1 The Normalized p-Laplace equation

1.1 The Normalized p-Laplace equation

There has been a growing interest on the properties of the normalized p-Laplacian
over the last ten years. One of the reasons is that it can be used as a model to
describe a stochastic game with two players. For the equation

∆N
p u =∆u + (p −2)

〈 ∇u

|∇u| ,D2u
∇u

|∇u|
〉
= 0,

we see that a problem arises when the gradient ∇u vanishes. As mentioned
earlier, the equation is not in divergence form, which is why we use viscosity
solutions as a notion of a weak solution to the equation. See Appendix A for
an overview of viscosity solutions.

The equation behaves differently when p varies. For p = 2, the operator
is reduced to the linear Laplace operator. For the equation ∆N

p u = 0, we may
divide by p and send p →∞ to obtain the infinity Laplace equation,

∆∞u =
〈
∇u,D2u∇u

〉
= 0.

The equation was derived by Aronsson [A] in 1967. The function

u(x, y) = x
4
3 − y

4
3

is a viscosity solution to the problem in two dimensions, but note that some of
the second derivatives do not exist along the axes. The equation also describes
a two player Tug-of-war game, see [PSSW].

For p = 1, the equation becomes

∆N
1 u = |∇u|div

( ∇u

|∇u|
)
=−H |∇u| = 0

where H is the mean curvature of the level sets of the function u. The mean
curvature flow equation,

ut = |∇u|div
( ∇u

|∇u|
)

is the parabolic normalized 1-Laplace equation. We follow the level set of a
function u,

Γt = {x ∈R : u(x, t ) = 0}

which has an inward pointing normal ν provided ∇u 6= 0. Each point x ∈ Γt is
required to move according to the rule

d x

d t
= Hν=− ∇u

|∇u|div
( ∇u

|∇u|
)

.

5



Introduction

Since ∂
∂t u(x(t ), t ) = 0, the equation for mean curvature flow is obtained. The

equation is geometric, which means that if u is a solution to the equation, then
any reasonable function f (u) is also a solution.

In the paper [Bra], Brakke studied motion of grain boundaries, in which he
introduced motion by mean curvature for surfaces. Other physical phenomena
that can be described by mean curvature flow are surface tension, horizons of
black holes and soap films stretched across a wire frame. Using methods from
differential geometry, Huisken [Hui] showed that convex surfaces in R3 remain
convex under the mean curvature flow. Evans and Spruck [ES] used the level
set formulation to prove uniqueness of viscosity solutions.

The fundamental solution to the equation ∆N
p u = 0 is

u(x) =


− p−1

p−n |x|
p−n
p−1 , if p ≥ n

− log |x|, if p = n

|x|, if p =∞.

For the parabolic case, ut =∆N
p u, the ansatz u(x, t ) = tαu( |x|

2

t ) for some con-
stant α, gives an ordinary differential equation which can be solved. The solu-
tion is, for p > 1,

u(x, t ) = t−
n+p−2
2(p−1) exp

{
− |x|2

4(p −1)t

}
. (1.2)

In this formula, one may plug in p = 2 to discover the Heat kernel. Note that∫
Rn

t−
n+p−2
2(p−1) exp

{
− |x|2

4(p −1)t

}
d x = (4(p −1)π)

n
2 t

(p−2)(n−1)
2(p−1) .

This is independent of time if p = 2 or n = 1. In these cases, the solution can
be written up in Rn given an initial data u0(x). The two cases correspond to
the heat equation. For p = 1, the solutions are many due to the equation being
geometric, and we here list a few of them:

|x|2 +4t , exp
{
|x|2 +4t

}
, ex1 , cosh{x1}, cosh{|x|2 +4t }.

Finally, we mention another type of solution to the equations ∆N
p u = 0 and

ut =∆N
p u, namely the mean value solutions. They are useful for studying the

qualitative properties of the equation, and the underlying stochastic game.
Let ∫

Bε(x)
u(y)d y = 1

|Bε(x)|
∫

Bε(x)
u(y)d y

6



1.2 The Dominative p-Laplace equation

denote the average of u over the ball Bε(x). It turns out that if u is a solution to
∆N

p u = 0 with non vanishing gradient in a domain Ω, then

u(x) = n +2

p +n

∫
Bε(x)

u(y)d y + p −2

2(p +n)

{
max
B ε(x)

u +min
B ε(x)

u

}
+o(ε2).

If p = 2, we rediscover the mean value property for harmonic functions. The
calculation is given in Appendix B. Similarly, for the parabolic case in a scaled
form, 2(n +p)ut =∆N

p u, the solution satisfies

u(x, t ) = n +2

p +n

∫
Bε(x)

u(y, t −ε2)d y

+ p −2

2(p +n)

(
max

y∈B ε(x)
u(y, t −ε2)+ min

y∈B ε(x)
u(y, t −ε2)

)
+o(ε2).

Note that the constants add up to 1. If p ≥ 2, they are in fact probabilities in
the stochastic game. A similar result for viscosity solutions can be found in
[MPR].

1.2 The Dominative p-Laplace equation

The Dominative p-Laplace equation

Dp u =∆u + (p −2)λmax(D2u) = 0,

was introduced to explain a superposition principle for superharmonic functions.
The operator is sublinear and convex. To the naked eye, the equation may seem
easy to handle compared to the normalized p-Laplace equation. However, the
equation is nonlinear in the second derivatives. 1

The Dominative p-Laplace equation is however closely related to the nor-
malized p-Laplacian,

∆N
p u =∆u + (p −2)

〈 ∇u

|∇u| ,D2u
∇u

|∇u|
〉
≤∆u + (p −2)λmax(D2u) =Dp u.

in the sense that it dominates the normalized p-Laplacian provided ∇u 6= 0. For
viscosity solutions, this means that if u is a viscosity subsolution to −∆N

p u = 1,
it is also a viscosity subsolution to −Dp u = 1.

1For n = 2, the equation reads

Dp u = p

2
∆u + p −2

2

√(
uxx −uy y

)2 +4u2
x y = 0.

7
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They are also connected in the sense that radial solutions are the same. For
u(x) = u(|x|),

λmax(D2u) = ur r =
〈 ∇u

|∇u| ,D2u
∇u

|∇u|
〉

.

The radial solutions are therefore the same as those listed in section 1.1.
The underlying stochastic game is a one-player game. Here, a token is

placed at x0 inside a domain. Each turn, the controller tosses a biased coin with
probabilities α and β. With probability β, the token will move according to
uniform probability density. With probability α, the controller chooses a unit
vector σ and moves the token to either x0+εσ or x0−εσ with equal probability.
Here ε> 0 is a given small number. The game stops when the token reaches the
boundary, and the controller is paid an amount described by the boundary data.
The value function u, or the expected income for the controller, can be written

u(x) =β
∫

Bε(x)
u(y)d y +α sup

|σ|=1

[
u(x +εσ)+u(x −εσ)

2

]
+o(ε2).

We refer to [HR] and [BLM] for more investigation of this game. For equations
involving other eigenvalues of the Hessian matrix, see [BER].

1.3 Summary of papers

The scientific contribution of this thesis is presented in the following papers.
No alterations to the scientific content has been made, however the layout has
been changed to fit the thesis format.

Paper 1: Regularity of solutions of the parabolic normalized p-Laplace
equation

Fredrik Arbo Høeg and Peter Lindqvist
Published in Advances in Nonlinear Analysis 9(1), pp. 7-15 (2019).

In this paper, viscosity solutions of

∂u

∂t
= |∇u|2−pdiv

(
|∇u|p−2∇u

)
, 1 < p <∞ (1.3)

are studied. In particular, it is shown that the partial time derivative ∂u
∂t exists in

the sense of Sobolev for some values of p. The same holds true for the spatial
second derivatives. A fundamental identity is derived for viscosity solutions to
a regularized version of equation (1.3),

∂uε

∂t
=

(
|∇uε|2 +ε2

) 2−p
2 div

((
|∇uε|2 +ε2

) p−2
2 ∇uε

)
.

8



1.3 Summary of papers

We are able to obtain a uniform bound for the L2-norm of the second derivatives
for solutions of the regularized equation, which is preserved when we extract a
convergent subsequence. Using this bound we get weak convergence in L2 for
a sequence of functions involving the second derivatives of uε. Uniqueness of
viscosity solutions shows that the time derivative exists in the sense of Sobolev.
With our method, we had to restrict the values of p to a certain range. Some
time after this paper was published, it was shown in [DFZZ] that in the plane,
the time derivative exists for all p.

Paper 2: A control problem related to the parabolic dominative p-Laplace
equation

Fredrik Arbo Høeg and Eero Ruosteenoja
To appear in Nonlinear Analysis.

In this paper, a stochastic game associated with the equation

2(n +p)
∂u

∂t
=Dp u (1.4)

is studied. The elliptic version of the game was studied by Brustad, Lindqvist
and Manfredi [BLM]. We show that the unique viscosity solution of equation
(1.4) is the uniform limit of functions uε that satisfy a dynamic programming
principle,

uε(x, t ) = n +2

p +n

∫
Bε(x)

uε(y, t −ε2)d y

+ p −2

p +n
sup
|σ|=1

[
uε(x +εσ, t −ε2)+uε(x −εσ, t −ε2)

2

]
.

The solution uε is the value function for a time-dependent control problem. To
show that we can pass to the limit ε→ 0 we use an Arzelá-Ascoli-type lemma.
The main difficulty in the proof is to show that the family {uε}ε is equicontinu-
ous. Once this is established one is able to pass to the limit. Then uniqueness
of viscosity solutions guarantees that the limit is the unique viscosity solution
of equation (1.4).

Paper 3: Concave power solutions of the Dominative p-Laplace equation

Fredrik Arbo Høeg
Published in Nonlinear Differential Equations and Applications 27(2), pp.

1-12 (2020).
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Introduction

In this paper, viscosity solutions of−Dp u = 1 inΩ
u = 0 on ∂Ω

are studied. We show that uα is concave for α= 1
2 , given that u is a viscosity

solution to the above problem.
Power concavity problems have been studied since the 70’s for the Laplace,

the p-Laplace and the normalized p-Laplace equations. We mention [K], [Ka],
[S], [M], [Ke], [Ko], [CF] and [ALL] for some of this work. For the two-
dimensional Laplace equation, an interesting calculation gives the power con-
cavity, see appendix C.

To show that the square root is a concave function, we first look at what
problem v =−pu solves in the viscosity sense. It is a viscosity supersolution
to some PDE. It turns out that the convex envelope, which is the largest convex
function lying below v , is a supersolution to the same equation that v solves in
the viscosity sense. The methods used to show this relies on Ishii’s Lemma or
the Theorem on sums which is a useful technical tool in the theory of viscosity
solutions. Finally, the comparison principle is used to show that the function v
is convex, making

p
u a concave function.
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Regularity of solutions of the parabolic
normalized p-Laplace equation

Abstract.The parabolic normalized p-Laplace equation is studied. We prove
that a viscosity solution has a time derivative in the sense of Sobolev belonging
locally to L2.

2.1 Introduction

We consider viscosity solutions of the normalized p-Laplace equation

∂u

∂t
= |∇u|2−pdiv

(
|∇u|p−2∇u

)
, 1 < p <∞, (2.5)

in ΩT =Ω× (0,T ), Ω being a domain in Rn . Formally, the equation reads

∂u

∂t
= ∆u + (p −2)|∇u|−2

n∑
i , j=1

∂u

∂xi

∂u

∂x j

∂2u

∂xi∂x j
.

In the linear case p = 2 we have the Heat Equation ut =∆u and also for n = 1
the equation reduces to the Heat Equation ut = (p −1)uxx . At the limit p = 1
we obtain the equation for motion by mean curvature. We aim at showing that
the time derivative ∂u

∂t exists in the Sobolev sense and belongs to L2
loc(ΩT ). We

also study the second derivatives ∂2u
∂xi∂x j

.
There has been some recent interest in connexion with Stochastic Game

Theory, where the equation appears, cf. [MPR]. From our point of view the
work [D] is of actual interest, because there it is shown that the time derivative
ut of the viscosity solutions exists and is locally bounded, provided that the
lateral boundary values are smooth. Thus the boundary values control the time
regularity. If no such assumptions about the behaviour at the lateral boundary
∂Ω× (0,T ) are made, a conclusion like ut ∈ L∞

loc(ΩT ) is in doubt. Our main
result is the following, where we unfortunately have to restrict p:

Theorem 2.1.1. Suppose that u = u(x, t ) is a viscosity solution of the normal-
ized p-Laplace equation in ΩT . If 6

5 < p < 14
5 , then the Sobolev derivatives ∂u

∂t

and ∂2u
∂xi∂x j

exist and belong to L2
loc(ΩT ).

We emphasize that no assumptions on boundary values are made for this
interior estimate. Our method of proof is based on a verification of the identity∫ T

0

∫
Ω

uφt d xd t = −
∫ T

0

∫
Ω

Uφd xd t , φ ∈C∞
0 (ΩT ),
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Regularity of solutions of the parabolic normalized p-Laplace equation

where we have to prove that the function U , which is the right-hand side of
equation (2.5), belongs to L2

loc(ΩT ). Thus the second spatial derivatives D2u
are crucial (local boundedness of ∇u was proven in [D], [BG] and interior
Hölder estimates for the gradient in [JS]). The elliptic case has been studied in
[APR].

In the range 1 < p < 2 one can bypass the question of second derivatives.

Theorem 2.1.2. Suppose that u = u(x, t ) is a viscosity solution of the normal-
ized p-Laplace equation in ΩT . If 1 < p < 2, then the Sobolev derivative ∂u

∂t
exists and belongs to L2

loc(ΩT ).

To avoid the problem of vanishing gradient, we first study the regularized
equation

∂uε

∂t
= (|∇uε|2 +ε2)

2−p
2 div

(
(|∇uε|2 +ε2)

p−2
2 ∇uε

)
. (2.6)

Here the classical parabolic regularity theory is applicable. The equation was
studied by K. Does in [D], where an estimate of the gradient ∇uε was found
with Bernstein’s method. We shall prove a maximum principle for the gradient.
Further, we differentiate equation (2.6) with respect to the space variables and
derive estimates for uε which are passed over to the solution u of (2.5).

Analogous results seem to be possible to reach through the Cordes condi-
tion. It also restricts the range of valid exponents p. We have refrained from
this approach, mainly since the absence of zero (lateral) boundary values pro-
duces many undesired terms to estimate. Finally, we mention that the limits 6

5
and 14

5 in Theorem 2.1.1 are evidently an artifact of the method. It would be
interesting to know whether the theorem is valid in the whole range 1 < p <∞.
In any case, our method is not capable to reach all exponents.

Acknowledgements. Supported by the Norwegian Research Council (grant
250070). We thank Amal Attouchi for valuable help with a proof.

2.2 Preliminaries

Notation. The gradient of a function f :ΩT →R is

∇ f =
(
∂ f

∂x1
, ...,

∂ f

∂xn

)
and its Hessian matrix is

(
D2 f

)
i j
= ∂2 f

∂xi∂x j
, |D2 f |2 =

n∑
i , j=1

( ∂2 f

∂xi∂x j

)2
.
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2.2 Preliminaries

We shall, occasionally, use the abbreviation

u j = ∂u

∂x j
, u j k = ∂2u

∂x j∂xk

for partial derivatives. Young’s inequality

|ab| ≤ δ
|a|p

p
+

( 1

δ

)q−1 |b|q
q

,
1

p
+ 1

q
= 1

is often referred to. Finally, the summation convention is used when convenient.

Viscosity solutions. The normalized p-Laplace Equation is not in diver-
gence form. Thus the concept of weak solutions with test functions under
the integral sign is problematic. Fortunately, the modern concept of viscos-
ity solutions works well. Existence and uniqueness of viscosity solutions of
the normalized p-Laplace equation was established in [BG]. We recall the
definition.

Definition 2.2.1. We say that an upper semi-continuous function u is a viscos-
ity subsolution of equation (2.5) if for all φ ∈C 2(ΩT ) we have

φt ≤
(
δi j + (p −2)

φxiφx j

|∇φ|2
)
φxi x j

at any interior point (x, t ) where u −φ attains a local maximum, provided
∇φ(x, t ) 6= 0. Further, at any interior point (x, t ) where u −φ attains a local
maximum and ∇φ(x, t ) = 0 we require

φt ≤
(
δi j + (p −2)ηiη j

)
φxi x j

for some η ∈Rn with |η| ≤ 1.

Definition 2.2.2. We say that a lower semi-continuous function u is a viscosity
supersolution of equation (2.5) if for all φ ∈C 2(ΩT ) we have

φt ≥
(
δi j + (p −2)

φxiφx j

|∇φ|2
)
φxi x j

17



Regularity of solutions of the parabolic normalized p-Laplace equation

at any interior point (x, t ) where u −φ attains a local minimum, provided
∇φ(x, t ) 6= 0. Further, at any interior point (x, t ) where u −φ attains a lo-
cal minimum and ∇φ(x, t ) = 0 we require

φt ≥
(
δi j + (p −2)ηiη j

)
φxi x j

for some η ∈Rn with |η| ≤ 1.

Definition 2.2.3. A continuous function u is a viscosity solution if it is both a
viscosity subsolution and a viscosity supersolution.

For a detailed discussion on the definition at critical points we refer to
Evans and Spruck [ES]. The reason behind the choice of η ∈ Rn is given in
[ES] section 2. Viscosity solutions of equation (2.6) are defined in a similar
manner, except that now ∇φ(x, t ) = 0 is not a problem.

Maximum Principle for the Gradient. In order to estimate the time deriva-
tive we need bounds on the second derivatives of uε (and also on its gradient).
If we first assume that uε is C 1 on the parabolic boundary ∂parΩT , we get
bounds on the gradient in all of ΩT . This follows from the following maximum
principle.

Proposition 2.2.4. Let uε be a solution of equation (2.6). If ∇uε ∈ C 1(ΩT ),
then

max
ΩT

{|∇uε|} = max
∂parΩT

{|∇uε|} .

Proof. With some modifications a proof can be extracted from [D]. We give a
direct proof. To this end, consider

V ε(x, t ) = |∇uε|2 +ε2,

To find the partial differential equation satisfied by V ε, we calculate1

V ε
i = 2uε

νuε
iν, V ε

i j = 2uε
ν j uε

iν+2uε
νuε

i jν

uε
i uε

j V ε
i j = 1

2
|∇V ε|2 +2uε

i uε
j uε

νuε
i jν.

Writing equation (2.5) in the form

uε
t =

(
δi j + (p −2)

uε
i uε

j

|∇uε|2 +ε2

)
uε

i j ,

1Sum over repeated indices.
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2.2 Preliminaries

we find

1

2
V ε

t = uε
ν

∂

∂xν
uε

t = uε
ν∆uε

ν−
p −2

2(V ε)2

∣∣∣〈∇uε,∇V ε
〉∣∣∣2

+ p −2

V ε

(1

4
|∇V ε|2 + 1

2
uε
νuε

µV ε
νµ

)
.

Rearranging and using

∆V ε = 2|D2uε|2 +2〈∇uε,∇∆uε〉

we arrive at the following differential equation for V ε:

V ε
t = ∆V ε−2|D2uε|2 − p −2

(V ε)2

∣∣∣〈∇uε,∇V ε
〉∣∣∣2 + p −2

V ε

{1

2
|∇V ε|2 +uε

νuε
µV ε

νµ

}
.

(2.7)

Let

w(x, t ) = |∇uε(x, t )|2 +ε2 −αt =V ε(x, t )−αt for α> 0.

Suppose that wε has an interior maximum point at (x0, t0). At this point
V ε(x0, t0) > 0, otherwise we would have V ε(x, t ) ≡ 0 in ΩT in which case there
is nothing to prove. By the infinitesimal calculus,

∇w(x0, t0) = 0, ≤ 0 and wt (x0, t0) ≥ 0,

where we have included the case t0 = T . Further, the matrix D2w(x0, t0) is
negative semidefinite. Using equation (2.7) and noting that ∇w = ∇V ε and
D2w = D2V ε, we get at (x0, t0)

0 ≤ wt = V ε
t −α

= ∆V ε−2|D2uε|2 − p −2

(V ε)2

∣∣∣〈∇uε,∇V ε
〉∣∣∣2

+ p −2

V ε

{
1

2
|∇V ε|2 +uε

νuε
µV ε

νµ

}
−α

=
(
δi j + (p −2)

uε
i uε

j

V ε

)
wε

i j −2|D2uε|2 −α ≤ −α

since the matrix A with elements Ai j = δi j +(p−2)
uε

i uε
j

V ε is positive semidefinite.
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Regularity of solutions of the parabolic normalized p-Laplace equation

To avoid the contradiction α≤ 0, w must attain its maximum on the parabolic
boundary.

Hence, for any (x, t ) ∈ΩT we have

V ε(x, t )−αt ≤ max
∂parΩT

{
V ε(x, t )−αt

}≤ max
∂parΩT

V ε(x, t ).

We finish the proof by sending α→ 0+.

With no assumptions for uε on the parabolic boundary, we need a stronger
result taken from [D] p.381.

Theorem 2.2.5. Let uε be a solution of equation (2.6), with uε(x,0) = u0(x).
Then

|∇uε(x, t )| ≤Cn,p ||u0||L∞(ΩT )

1+
(

1

dist((x, t ),∂parΩT )

)2
 .

Note that no condition on the lateral boundary ∂Ω× [0,T ] was used. By
continuity,

|∇uε(x, t )| ≤Cn,p ||uε(·, t0)||∞
1+

(
1

dist((x, t ),∂parΩT )

)2


for x ∈ D ⊂⊂Ω and 0 < t0 ≤ t ≤ T − t0. The estimate

||∇uε||L∞(D×[t0,T−t0]) ≤C ||uε||L∞(ΩT )

1+
(

1

dist(D,∂parΩT )

)2
 (2.8)

follows. (Here one can pass to the limit as ε→ 0.)
The proof of the lemma below, a simple special case of the Miranda - Talenti

lemma, can be found for smooth functions in [E] p. 308. If f is not smooth, we
perform a strictly interior approximation, so that no boundary inegrals appear
(which is possible since ξ ∈C∞

0 ).

Lemma 2.2.6 (Miranda - Talenti). Let ξ ∈ C∞
0 (ΩT ) and f ∈ L2(0,T,W 2,2(Ω)).

Then ∫ T

0

∫
Ω
|∆(ξ f )|2 d xd t =

∫ T

0

∫
Ω
|D2(ξ f )|2 d xd t .
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2.3 Regularization

2.3 Regularization

The next lemma tells us that solutions of (2.6) converge locally uniformly to
the viscosity solution of (2.5).

Lemma 2.3.1. Let u be a viscosity solution of equation (2.5) and let uε be the
classical solution of the regularized equation (2.6) with boundary values

u = uε on ∂parΩT .

Then uε→ u uniformly on compact subsets of ΩT .

Proof. By Theorem 2.2.5 we can use Ascoli’s Theorem to extract a convergent
subsequence uε j converging locally uniformly to some continuous function:
uε j → v . We claim that v is a viscosity solution of equation (2.5). The lemma
then follows by uniqueness.

We demonstrate that v is a viscosity subsolution. (A symmetric proof
shows that v is a viscosity supersolution.) Assume that v −φ attains a strict
local maximum at z0 = (x0, t0). Since uε→ v locally uniformly, there are points

zε→ z0

such that uε−φ attains a local maximum at zε. If ∇φ(z0) 6= 0, then ∇φ(zε) 6= 0
for all ε> 0 small enough, and at zε we have

φt ≤
(
δi j + (p −2)

φxiφx j

|∇φ|2 +ε2

)
φxi x j . (2.9)

Letting ε→ 0, we see that v satisfies Definition 2.2.3 when ∇φ(z0) 6= 0. If
∇φ(z0) = 0, let

ηε = ∇φ(zε)√
|∇φ(zε)|2 +ε2

.

Since |ηε| ≤ 1, there is a subsequence so that ηεk → η when k →∞ for some
η ∈Rn with |η| ≤ 1. Passing to the limit εk → 0 in equation (2.9), we see that v
is a viscosity subsolution.

Our proof of Theorem 2.1.1 consists in showing that the second deriva-
tives D2uε belong locally to L2 with a bound independent of ε. Once this is
established, we see that(

|∇uε|2 +ε2
) 2−p

2 div

((
|∇uε|2 +ε2

) p−2
2 ∇uε

)

=∆uε+ p −2

|∇uε|2 +ε2

〈
∇uε,D2uε∇uε

〉
≤Cp,n |D2uε|.
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Regularity of solutions of the parabolic normalized p-Laplace equation

Hence, for any bounded subdomain D ⊂⊂ΩT∣∣∣∣∣∣∣
∣∣∣∣∣∣
(
|∇uε|2 +ε2

) 2−p
2 div

((
|∇uε|2 +ε2

) p−2
2 ∇uε

)∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(D)

≤ C ,

with C independent of ε. By this uniform bound, there exists a subsequence
such that, as j →∞,

(
|∇uε j |2 +ε2

j

) 2−p
2 div

((
|∇uε j |2 +ε2

j

) p−2
2 ∇uε j

)
→U weakly in L2(D).

In particular, this means that U ∈ L2(D) and for any φ ∈C∞
0 (D) we have

lim
j→∞

∫ T

0

∫
D
φ

(
|∇uε j |2 +ε2

j

) 2−p
2 div

((
|∇uε j |2 +ε2

j

) p−2
2 ∇uε j

)
d xd t =

∫ T

0

∫
D
φU d xd t .

If u is the unique viscosity solution of (2.5), we invoke Lemma 2.3.1 and
the calculations above to find, for any test function φ ∈C∞

0 (D),∫ T

0

∫
D

u
∂φ

∂t
d xd t = lim

j→∞

∫ T

0

∫
D

uε j
∂φ

∂t
d xd t

=− lim
j→∞

∫ T

0

∫
D
φ

(
|∇uε j |2 +ε2

j

) 2−p
2 div

((
|∇uε j |2 +ε2

j

) p−2
2 ∇uε j

)
d xd t

=−
∫ T

0

∫
D
φU d xd t .

This shows that the Sobolev derivative ut exists and, since the previous equation
holds for any subdomain D ⊂⊂ΩT , we conclude that ∂u

∂t =U ∈ L2
loc(ΩT ). — To

finish the proof of Theorem 2.1.1 it remains to establish the missing local bound
of ‖D2uε‖L2 uniformly in ε.

2.4 The differentiated equation

We shall derive a fundamental identity. Let

vε = |∇uε|2, V ε = |∇uε|2 +ε2.
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2.5 Estimate of the second derivatives

Differentiating equation (2.6) with respect to the variable x j we obtain

∂

∂t
uε

j =
2−p

2

(
V ε

)− p
2 vεj div

((
V ε

) p−2
2 ∇uε

)
+(

V ε
) 2−p

2 div
[((

V ε
) p−2

2 ∇uε

)
j

]
.

Take ξ ∈ C∞
0 (ΩT ), with ξ≥ 0. Multiply both sides of the equation by ξ2V εuε

j
and sum j from 1 to n. Integrate over ΩT , using integration by parts and
keeping in mind that ξ is compactly supported in ΩT , to obtain

−1

2

∫ T

0

∫
Ω
ξξt V εd xd t = 2−p

2

∫ T

0

∫
Ω
ξ2(V ε)−

p
2
〈∇uε,∇vε

〉
div

(
(V ε)

p−2
2 ∇uε

)
d xd t

−
∫ T

0

∫
Ω

∂

∂x j

{
(V ε)

p−2
2 uε

k

}
∂

∂xk

{
ξ2(V ε)

2−p
2 uε

j

}
d xd t .

Writing out the derivatives gives the fundamental formula

∫ T

0

∫
Ω
ξ2|D2uε|2 d xd t Main Term (I )

+ p −2

2

∫ T

0

∫
Ω

1

V ε
ξ2 〈∇uε,∇vε

〉
∆uεd xd t (I I )

= 1

2

∫ T

0

∫
Ω
ξξt V εd xd t (I I I )

+ (2−p)
∫ T

0

∫
Ω

1

V ε
ξ
〈∇uε,∇vε

〉〈∇uε,∇ξ〉 d xd t (IV )

−
∫ T

0

∫
Ω
ξ
〈∇vε,∇ξ〉 d xd t (V ).

In the next section we shall bound the Main Term (I) uniformly with respect
to ε.

2.5 Estimate of the second derivatives

We shall provide an estimate of the main term (I). First, we record the elemen-
tary inequality

|∇vε|2 =
∣∣∣2D2uε∇uε

∣∣∣2 ≤ 4|D2uε|2vε. (2.10)
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Regularity of solutions of the parabolic normalized p-Laplace equation

One Dimension. As an exercise, we show that in this case the second deriva-
tives are locally bounded in L2 for any 1 < p <∞. In one dimension, equation
(2.5) reads

ut = |ux |2−p ∂

∂x

{
|ux |p−2ux

}
= (p −1)uxx .

We absorb the terms (IV) and (V), using Young’s inequality and inequality
(2.10). For any δ> 0,

∫ T

0

∫
Ω
ξ2

(∂2uε

∂x2

)2

1+ (p −2)
(∂uε

∂x )2

(∂uε

∂x )2 +ε2
−δ(|p −2|+1

) d xd t

≤ 1

2

∫ T

0

∫
Ω
ξξt V εd xd t + |p −2|+1

δ

∫ T

0

∫
Ω

V ε|∇ξ|2 d xd t .

Applying Theorem 2.2.5 we see that the right-hand side is bounded by a
constant independent of ε> 0. We have

1+ (p −2)
(∂uε

∂x )2

(∂uε

∂x )2 +ε2
≥ min{1, p −1} > 0.

It follows that ∂2uε

∂x2 ∈ L2 locally for any p ∈ (1,∞).

General n. We assume for the moment that 1 < p < 2. We rewrite the term
(II) involving the Laplacian as

2−p
2

1

V ε
ξ2 〈∇uε,∇vε

〉
∆uε = 2−p

2

1

V ε
ξ
〈∇uε,∇vε

〉{
∆(ξuε)−2

〈∇uε,∇ξ〉−uε∆ξ
}

.

Upon this rewriting the term (IV) disappears from the equation. We focus our
attention on the term involving ∆(ξuε). By Lemma 2.2.6∫ T

0

∫
Ω
|D2(ξuε)|2 d xd t =

∫ T

0

∫
Ω
|∆(ξuε)|2 d xd t .

Differentiating, we see that

(ξuε)i = ξi uε+ξuε
i

(ξuε)i j = ξi j uε+uε
i ξ j +ξi uε

j +ξuε
i j .
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2.5 Estimate of the second derivatives

It follows that

|D2(ξuε)|2 = ξ2|D2uε|2 + f (uε,∇uε,D2uε),

where f (uε,∇uε
i ,D2uε)2 depends only linearly on the second derivatives uε

i j .
By Young’s inequality we obtain

2−p

2

∫ T

0

∫
Ω

1

V ε
ξ
〈∇uε,∇vε

〉
∆(ξuε)d xd t ≤ 5

4
(2−p)

∫ T

0

∫
Ω
ξ2|D2uε|2 d xd t

+ 2−p

4

∫ T

0

∫
Ω

f (uε,∇uε,D2uε)d xd t .

Inserting this into the main equation gives

(
1− 5

4
(2−p)

)∫ T

0

∫
Ω
ξ2|D2uε|2 d xd t (I∗)

≤ 1

2

∫ T

0

∫
Ω
ξξt V εd xd t (I I I )

−
∫ T

0

∫
Ω
ξ
〈∇vε,∇ξ〉 d xd t (V )

+ 2−p

2

∫ T

0

∫
Ω

f (uε,uε
i ,uε

i j )d xd t (V I )

+ 2−p

2

∫ T

0

∫
Ω

1

V ε
ξ
〈∇uε,∇vε

〉
uε∆ξd xd t (V I I ).

All terms containing D2uε can be absorbed by the new main term (I∗). To
this end, we use Young’s inequality with a small parameter δ> 0 to balance3

2

f (uε,∇uε,D2uε) = (uε)2|D2ξ|2 +4uε
〈
∇ξ,D2ξ∇uε

〉
+4ξ

〈
∇ξ,D2uε∇uε

〉
+2|∇ξ|2|∇uε|2 +2

∣∣∣〈∇uε,∇ξ〉∣∣∣2 +2uεξ trace
{(

D2ξ
)(

D2uε
)}

.

3The parameter δ is to be made so small that terms like δ
∫ T

0
∫
Ω ξ

2|D2uε|2 d xd t can be
moved over to the left-hand side.
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the terms. For term (V), we have

∫ T

0

∫
Ω
ξ
〈∇vε,∇ξ〉 d xd t ≤ δ

∫ T

0

∫
Ω
ξ2|D2uε|2 d xd t + 1

δ

∫ T

0

∫
Ω

V ε|∇ξ|2 d xd t .

Similarly, for term (VII)

∫ T

0

∫
Ω

1

V ε
ξ
〈∇uε,∇vε

〉
uε∆ξd xd t ≤ 2δ1

∫ T

0

∫
Ω
ξ2|D2uε|2 + 1

δ1

∫ T

0

∫
Ω
|uε|2|∆ξ|2 d xd t .

Using similar inequalities for the term involving f (uε,∇uε,D2uε) and chosing
the parameters small enough in Young’s inequality, we find,∫ T

0

∫
Ω
ξ2|D2uε|2 d xd t ≤ C

∫ ∫
{ξ 6=0}

((uε)2 +|∇uε|2)d xd t (2.11)

where C is independent of ε but depends on ‖ξ‖C 2 , provided that

1− 5

4
(2−p) > 0, i.e. p > 6

5
.

This is now a decisive restriction. Invoking Lemma 2.3.1 and the estimate (2.8),
we deduce that that the majorant in (2.11) is independent of ε.

A symmetric proof when p > 2 shows that equation (2.11) holds when

p < 14

5
.

2.6 The case 1 < p < 2

In this section, we give a proof of Theorem 2.1.2. To this end, let ξ ∈C∞
0 (ΩT ),

with 0 ≤ ξ≤ 1. We claim that

∫ T

0

∫
Ω
ξ2

(∂uε

∂t

)2
d xd t ≤ 4||V ε||2∞

{∫ T

0

∫
Ω

∣∣∇ξ∣∣2 d xd t + 1

p

∫ T

0

∫
Ω
ξ|ξt |d xd t

}
(2.12)

where the supremum norm of V ε = ∣∣∇uε
∣∣2+ε2 is taken locally, over the support

of ξ. Here, uε is the solution of the regularized equation (2.6). This is enough
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to complete the proof of Theorem 2.1.2, in virtue of Theorem 2.2.5.

Multiplying the regularized equation (2.6) by
(
|∇uε|2 +ε2

) p−2
2
ξ2uε

t yields

ξ2
(
|∇uε|2 +ε2

) p−2
2 (

uε
t

)2 = ξ2uε
t div

(
(|∇uε|2 +ε2)

p−2
2 ∇uε

)

= div
(
ξ2uε

t (|∇uε|2 +ε2)
p−2

2 ∇uε

)
− (|∇uε|2 +ε2)

p−2
2

〈
∇uε,∇

(
ξ2uε

t

)〉
.

The integral of the divergence term vanishes by Gauss’s Theorem and, upon
integration, we have

∫ T

0

∫
Ω
ξ2 (

V ε
) p−2

2
(
uε

t

)2 d xd t

=−
∫ T

0

∫
Ω

(
V ε

) p−2
2

〈
∇uε,∇

(
ξ2uε

t

)〉
d xd t

=−2
∫ T

0

∫
Ω
ξ
(
V ε

) p−2
2

〈∇uε,∇ξ〉uε
t d xd t −

∫ T

0

∫
Ω
ξ2 (

V ε
) p−2

2
〈∇uε,∇uε

t

〉
d xd t .

The first integral on the right-hand side can be absorbed by the left-hand side
by choosing σ= 1

2 in

∣∣∣∣2ξ(
V ε

) p−2
2

〈∇uε,∇ξ〉uε
t

∣∣∣∣≤σξ2 (
V ε

) p−2
2

(
uε

t

)2 + 1

σ

(
V ε

) p−2
2 |∇uε|2|∇ξ|2,

and integrating.

For the last term, the decisive observation is that

1

p

∂

∂t

(
|∇uε|2 +ε2

) p
2 =

(
|∇uε|2 +ε2

) p−2
2 〈∇uε,∇uε

t

〉= (
V ε

) p−2
2

〈∇uε,∇uε
t

〉
.

We use this in the last integral on the right-hand side to obtain

27



Regularity of solutions of the parabolic normalized p-Laplace equation

−
∫ T

0

∫
Ω
ξ2 (

V ε
) p−2

2
〈∇uε,∇uε

t

〉
d xd t

=−
∫ T

0

∫
Ω

∂

∂t

{
ξ2

p

(
V ε

) p
2

}
d xd t + 2

p

∫ T

0

∫
Ω
ξξt

(
V ε

) p
2 d xd t

=−
∫
Ω

[
ξ2

p

(
V ε

) p
2

]t=T

t=0

d x + 2

p

∫ T

0

∫
Ω
ξξt

(
V ε

) p
2 d xd t

= 2

p

∫ T

0

∫
Ω
ξξt

(
V ε

) p
2 d xd t .

To sum up, we have now the final estimate

1

2

∫ T

0

∫
Ω
ξ2 (

V ε
) p−2

2
(
uε

t

)2 d xd t

≤ 2
∫ T

0

∫
Ω

(
V ε

) p−2
2 |∇uε|2|∇ξ|2 d xd t + 2

p

∫ T

0

∫
Ω
ξξt

(
V ε

) p
2 d xd t

≤ 2
∫ T

0

∫
Ω

(
V ε

) p
2 |∇ξ|2 d xd t + 2

p

∫ T

0

∫
Ω
ξξt

(
V ε

) p
2 d xd t .

So far, our calculations are valid in the full range 1 < p <∞. For 1 < p < 2, we
have (

V ε
) p−2

2 ≥ ||V ε||
p−2

2∞ ,

where the supremum norm is taken over the support of ξ. Hence, equation
(2.12) holds for 1 < p < 2 and the proof of Theorem 2.1.2 is complete.
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A control problem related to the parabolic
dominative p-Laplace equation

Abstract.We show that value functions of a certain time-dependent control
problem in Ω× (0,T ), with a continuous payoff F on the parabolic boundary,
converge uniformly to the viscosity solution of the parabolic dominative p-
Laplace equation

2(n +p)ut =∆u + (p −2)λn(D2u),

with the boundary data F . Here 2 < p <∞, and λn(D2u) is the largest eigen-
value of the Hessian D2u.

3.1 Introduction

In this paper we give a control problem interpretation for the parabolic domina-
tive p-Laplace equation

2(n +p)ut =Dp u in ΩT . (3.13)

Here ΩT :=Ω× (0,T ), where Ω⊂Rn is a bounded domain satisfying a uniform
exterior sphere condition, and

Dp u := (λ1 + ...+λn−1)+ (p −1)λn =∆u + (p −2)λn ,

where 2 < p <∞, and λ1 ≤λ2 ≤ ... ≤λn are the eigenvalues of the Hessian D2u.
The operator Dp is called the dominative p-Laplacian, introduced by Brustad
[Bru17,Bru18] and later studied by Brustad, Lindqvist and Manfredi [BLM18]
and Høeg [Hoe19] in the elliptic case. The dominative p-Laplacian explains
the superposition principle of the p-Laplace equation, see [CZ03, LM08] for
more about this property. The operator Dp is sublinear, so it is convex, and
equation (3.13) is uniformly parabolic. By Theorem 3.2 in [Wan92], viscosity
solutions of (3.13) are in C 2+α, 2+α

2 (ΩT ) for some α> 0.
Let u be a viscosity solution of (3.13) with a given continuous boundary

data F on ∂pΩT := (Ω× {0})∪ (∂Ω× [0,T ]). By [CIL92], the solution is unique.
In Section 3.3 we see that for ε> 0 and the boundary data F , there is a unique
Borel-measurable function uε satisfying a dynamic programming principle
(hereafter DPP)

uε(x, t ) = n +2

p +n

∫
Bε(x)

uε(y, t −ε2)d y

+ p −2

p +n
sup
|σ|=1

[
uε(x +εσ, t −ε2)+uε(x −εσ, t −ε2)

2

]
inΩT . (3.14)
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A control problem related to the parabolic dominative p-Laplace equation

Here Bε(x) ⊂ Rn is a ball centered at x with the radius ε, in the first term we
have an average integral, and in the second term the supremum is taken over
all unit vectors in Rn . In Theorem 3.4.3 we show that uε→ u uniformly when
ε→ 0. The idea of the proof is to first show that the family {uε}ε>0 is uniformly
bounded and asymptotically equicontinuous, and use a variant of the Arzelá-
Ascoli theorem to see that solutions of the DPP converge uniformly to some
continuous function. To show that the uniform limit is the viscosity solution of
(3.13), we make use of an asymptotic mean value formula

n +2

p +n

∫
Bε(x)

v(y, t −ε2)d y

+ p −2

p +n
sup
|σ|=1

[
v(x +εσ, t −ε2)+ v(x −εσ, t −ε2)

2

]

= v(x, t )+ ε2

2(n +p)
(Dp v(x, t )−2(n +p)vt (x, t ))+o(ε2), (3.15)

which is valid for all functions v ∈C 2,1(ΩT ), see Theorem 3.2.1.
It turns out that the solution uε of DPP (3.14) is the value of the following

time-dependent control problem. Let us denote α= p−2
p+n ,β= n+2

p+n , and place a
token at (x0, t0) ∈ΩT . The controller tosses a biased coin with probabilities α
and β. If she gets tails (with probability β), the game state moves according
to the uniform probability density to a point x1 ∈ Bε(x0). If the coin toss is
heads (with probability α), the controller chooses a unitary vector σ ∈Rn . The
position of the token is then moved to x1 = x0 +εσ or x1 = x0 −εσ with equal
probabilities. After this step, the position of the token is now at (x1, t1), where
t1 = t0 − ε2. The game continues from (x1, t1) according to the same rules
yielding a sequence of game states

(x0, t0), (x1, t1), (x2, t2), ...

The game is stopped when the token is moved outside of ΩT for the first time
and we denote this point by (xτ, tτ). The controller is then paid the amount
F (xτ, tτ). Naturally, the controller aims to maximize her payoff, and heuristi-
cally, the rules of the game can be read from the DPP (3.14).

We remark that the scaling of the time derivative in equation (3.13) is just
a matter of convenience. For the equation ut =Dp u we would define a game
with the same rules as before, except that we would have t j+1 = t j − ε2

2(n+p) for
every step in the game, see also Remark 3.2.4.

This control problem has some similarities with two-player zero-sum tug-
of-war games, which were introduced by Peres, Schramm, Sheffield and Wil-
son [PSSW09, PS08] and later studied from different perspectives, see e.g.
[AS12, MPR12, Lew18]. Time-dependent tug-of-war games, having connec-
tions to parabolic equations with the normalized p-Laplacian, were studied in
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3.2 Asymptotic mean value formula

[MPR10,PR16,Han18], whereas two-player games for equations ut =λ j (D2u),
j ∈ {1, ...,n}, were recently formulated in [BER19]. For a deterministic game-
theoretic approach to parabolic equations, we refer to [KS10].

This paper is organized as follows. In Section 3.2 we prove the asymptotic
mean value formula (3.15). In Section 3.3 we show that the value of the control
problem satisfies the DPP (3.14). Finally, in Section 3.4 we show that value
functions converge uniformly to the viscosity solution of (3.13) when ε→ 0.

Acknowledgements.

E.R. is supported by the Magnus Ehrnrooth Foundation. The authors would
like to thank Peter Lindqvist and Tommi Brander for useful discussions.

3.2 Asymptotic mean value formula

Theorem 3.2.1. Let v :ΩT →R be in C 2,1(ΩT ). Then it satisfies the asymptotic
mean value formula (3.15).

Proof. Averaging the Taylor expansion

v(y, t −ε2) = v(x, t )+〈Dv(x, t ), (y −x)〉+ 1

2
〈D2v(x, t )(y −x), (y −x)〉

−ε2vt (x, t )+o(|y −x|2 +ε2)

over the ball Bε(x) and calculating∫
Bε(x)

〈Dv(x, t ), (y −x)〉d y = 0

and ∫
Bε(x)

〈D2v(x, t )(y −x), (y −x)〉d y = ε2

n +2
∆v(x, t ),

we obtain ∫
Bε(x)

v(y, t −ε2)dy

= v(x, t )+ ε2

2(n +2)
∆v(x, t )−ε2vt (x, t )+o(ε2). (3.16)

Next we take an arbitrary unit vector σ and write the Taylor expansions for
v(x +h, t −ε2) with h = εσ and h =−εσ to obtain

v(x +εσ, t −ε2) = v(x, t )+〈Dv(x, t ),εσ〉+ 1

2
〈D2v(x, t )εσ,εσ〉

−ε2vt (x, t )+o(ε2),
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A control problem related to the parabolic dominative p-Laplace equation

v(x −εσ, t −ε2) = v(x, t )−〈Dv(x, t ),εσ〉+ 1

2
〈D2v(x, t )(−εσ), (−εσ)〉

−ε2vt (x, t )+o(ε2),

which yield

v(x +εσ, t −ε2)+ v(x −εσ, t −ε2)

2

= v(x, t )+ ε2

2
〈D2v(x, t )σ,σ〉−ε2vt (x, t )+o(ε2).

Taking the supremum over all |σ| = 1 gives

sup
|σ|=1

[
v(x +εσ, t −ε2)+ v(x −εσ, t −ε2)

2

]

= v(x, t )+ ε2

2
λn −ε2vt (x, t )+o(ε2). (3.17)

By multiplying equations (3.16) and (3.17) by n+2
p+n and p−2

p+n respectively,
we get

n +2

p +n

∫
Bε(x)

v(y, t −ε2)d y

+ p −2

p +n
sup
|σ|=1

[
v(x +εσ, t −ε2)+ v(x −εσ, t −ε2)

2

]

= v(x, t )+ ε2

2(n +p)
(Dp v(x, t )−2(n +p)vt (x, t ))+o(ε2).

Next we define viscosity solutions for equation (3.13).

Definition 3.2.2. An upper semicontinuous function u :ΩT →R is a viscosity
subsolution to equation 2(n + p)ut = Dp u in ΩT if for all (x0, t0) ∈ ΩT and
φ ∈C 2(ΩT ) such that

i) u(x0, t0) =φ(x0, t0),

ii) φ(x, t ) > u(x, t ) for (x, t ) ∈ΩT , (x, t ) 6= (x0, t0),

it holds 2(n +p)φt (x0, t0) ≤Dpφ(x0, t0).
A lower semicontinuous function u :ΩT →R is a viscosity supersolution to

equation 2(n +p)ut =Dp u in ΩT if for all (x0, t0) ∈ΩT and φ ∈C 2(ΩT ) such
that

i) u(x0, t0) =φ(x0, t0),

ii) φ(x, t ) < u(x, t ) for (x, t ) ∈ΩT , (x, t ) 6= (x0, t0),
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3.3 Control problem formulation

it holds 2(n +p)φt (x0, t0) ≥Dpφ(x0, t0).
A continuous function u :ΩT →R is a viscosity solution to equation 2(n +

p)ut =Dp u in ΩT if it is both a subsolution and a supersolution.

Because viscosity solutions of (3.13) are in C 2+α, 2+α
2 (ΩT ) for some α > 0

(see Section 3.1), we get the following corollary.

Corollary 3.2.3. Let u be a viscosity solutions of (3.13). Then it satisfies an
asymptotic mean value formula

u(x, t ) = n +2

p +n

∫
Bε(x)

u(y, t −ε2)d y

+ p −2

p +n
sup
|σ|=1

[
u(x +εσ, t −ε2)+u(x −εσ, t −ε2)

2

]
+o(ε2). (3.18)

Remark 3.2.4. Our scaling of the time variable is for convenience. The same
idea would give for viscosity solutions of

ut =Dp u

an asymptotic mean value formula

u(x, t ) = n +2

p +n

∫
Bε(x)

u(y, t − ε2

2(n +p)
)d y

+ p −2

p +n
sup
|σ|=1

u(x +εσ, t − ε2

2(n+p) )+u(x −εσ, t − ε2

2(n+p) )

2

+o(ε2).

3.3 Control problem formulation

In this section we show that the value of the control problem described in
Section 3.1 satisfies the DPP (3.14). Since the game token may be placed
outside of ΩT , we denote the compact parabolic boundary strip of width ε> 0
by

Γε =
(
Sε×

[−ε2,0
])∪ (

Ω× [−ε2,0
])

,

where

Sε =
{

x ∈Rn \Ω : dist(x,∂Ω) ≤ ε} .

Throughout this section, we are given a continuous function

F : Γε→R.
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A control problem related to the parabolic dominative p-Laplace equation

Our control problem with the payoff F was formulated in Section 3.1. The
process is stopped when the token hits the boundary strip Γε for the first time
at, say (xτ, tτ) ∈ Γε, and then the controller earns the amount F (xτ, tτ).

Next we define the stochastic vocabulary for the control problem. A strategy
is a rule which gives, at each step of the game, a direction σ,

S(t0, x0, x1, ..., xk ) =σ ∈Rn , |σ| = 1.

Here, S is a Borel measurable function. Let A ⊂ ΩT ∪Γε be a measurable
set. Given a sequence of token positions (x0, t0), (x1, t1), ..., (xk , tk ) and a strat-
egy S, the next position of the token is distributed according to the transition
probability

πS
(
(x0, t0), (x1, t1), ..., (xk , tk ), A

)=β
∣∣∣∣A∩

(
Bε(xk )× {tk −ε2}

)∣∣∣∣∣∣Bε(xk )× {tk −ε2}
∣∣

+ α

2
δ(xk+εσ,tk−ε2)(A)+ α

2
δ(xk−εσ,tk−ε2)(A)

where in the first term we use the n-dimensional Lebesgue measure, and in the
last terms δ(y,s)(B) = 1 if (y, s) ∈ B and 0 otherwise.

For a starting point (x0, t0), a strategy S and the corresponding transition
probabilities, we can use Kolmogorov’s extension theorem to determine a
unique probability measure P(x0,t0)

S in the space of all game sequences denoted
H∞. The expected payoff is then

E
(x0,t0)
S [F (xτ, tτ)] =

∫
H∞

F (xτ, tτ)dP(x0,t0)
S ,

and the value of the game for the controller is

uε(x0, t0) = sup
S
E

(x0,t0)
S [F (xτ, tτ)].

Since F is bounded and

τ≤ T

ε2 +1,

the value of the game is well defined. From the definition we immediately get
the following comparison principle.

Proposition 3.3.1. Fix ε> 0. Let uε be the value of the game with the payoff
F1, and vε the value of the game with the payoff F2. Assume that F1 ≥ F2 on Γε.
Then uε ≥ vε in ΩT .

Our aim is to show that the value function uε satisfies the DPP with the
boundary data F .
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3.3 Control problem formulation

Definition 3.3.2. A Borel measurable function uε satisfies the dynamic pro-
gramming principle, abbreviated DPP, in ΩT , with the boundary data F , if

uε(x, t ) = n +2

p +n

∫
Bε(x)

uε(y, t −ε2)d y

+ p −2

p +n
sup
|σ|=1

[
uε(x +εσ, t −ε2)+uε(x −εσ, t −ε2)

2

]
inΩT

uε(x, t ) = F (x, t ) on Γε.

Lemma 3.3.3. There is a unique Borel measurable function uε satisfying the
DPP. Moreover, uε is lower semi-continuous.

Proof. The existence and uniqueness of such a function uε can be seen from
the following argument. Given F on Γε, we can determine uε(x, t ) for all x ∈Ω
and 0 < t < ε2. We want to continue this process, but we need to make sure
that the function is lower semi-continuous or at least Borel measurable. The
following argument is from personal communication with Brustad, Lindqvist,
and Manfredi. In general, when u is any bounded and lower semi-continuous
function, then by using Fatou’s lemma,

n +2

p +n

∫
Bε(x)

u(y, t −ε2)d y

+ p −2

p +n
sup
|σ|=1

[
u(x +εσ, t −ε2)+u(x −εσ, t −ε2)

2

]

is again bounded and lower semi-continuous. This gives a lower semi-continuous
function uε defined for all x ∈Ω and 0 < t < ε2. Continuing this process until
t = T gives the desired function.

Lemma 3.3.4. Let uε be the unique function satisfying the DPP of definition
3.3.2 with the boundary data F on Γε, and let uε be the value of the game with
the payoff F . Then

uε = uε.

Proof. Let (x0, t0) ∈ΩT . We aim to show that uε(x0, t0) = uε(x0, t0). Assume
that the game starts at (x0, t0) ∈ΩT .
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First we assume that the controller uses an arbitrary strategy S. Then we
have for the function uε satisfying the DPP,

E
(x0,t0)
S [uε(xk+1, tk+1)|(t0, x0, x1, ..., xk )] =β

∫
Bε(xk )

uε(y, tk −ε2)d y

+αuε(xk +εσ, tk −ε2)+uε(xk −εσ, tk −ε2)

2

≤β
∫

Bε(xk )
uε(y, tk −ε2)d y

+α sup
|σ|=1

[
uε(xk +εσ, tk −ε2)+uε(xk −εσ, tk −ε2)

2

]
= uε(xk , tk ).

This shows that Mk := uε(xk , tk ) is a supermartingale, so

E
(x0,t0)
S [F (xτ, tτ)|(t0, x0, x1, ..., xτ−1)] ≤ uε(x0, t0)

by the optimal stopping theorem. Hence

uε(x0, t0) = sup
S
E

(x0,t0)
S [F (xτ, tτ)] ≤ uε(x0, t0).

To prove the reverse inequality, we choose a strategy S0 giving a corre-
sponding σ(x, t ) for the controller that almost maximizes uε(x, t ). To be more
precise, for arbitrary η> 0, the controller chooses

uε(xk +εσ(xk , tk ), tk −ε2)+uε(xk −εσ(xk , tk ), tk −ε2)

2

≥ sup
|σ|=1

[
uε(xk +εσ, tk −ε2)+uε(xk −εσ, tk −ε2)

2

]
−η2−(k+1).

The function S0 can be taken to be a Borel function, see Lemma 3.4 in [LM17].
We obtain

E
(x0,t0)
S0

[uε(xk+1, tk+1)−η2−(k+1)|(t0, x0, x1, ..., xk )]

≥β
∫

Bε(xk )
uε(y, tk −ε2)d y

+α sup
|σ|=1

[
uε(xk +εσ, tk −ε2)+uε(xk −εσ, tk −ε2)

2

]
−αη2−(k+1) −η2−(k+1)

≥ uε(xk , tk )−η2−k .

40



3.4 Convergence to the viscosity solution

Hence

Mk = uε(xk , tk )−η2−k

is a submartingale. Using the optimal stopping theorem for this submartingale
we find

uε(x0, t0) = sup
S
E

(x0,t0)
S [F (xτ, tτ)] ≥ E(x0,t0)

S0
[F (xτ, tτ)]

≥ E(x0,t0)
S0

[uε(xτ, tτ)−η2−k ]

≥ E(x0,t0)
S0

[uε(x0, t0)−η2−0] = uε(x0, t0)−η.

Since η> 0 was arbitrary, this proves the lemma.

3.4 Convergence to the viscosity solution

In this section, we are given a continuous payoff function F : Γ1 →R. Our goal
is to show that with this payoff, value functions of our game converge uniformly
to the unique viscosity solution of2(n +p)ut =Dp u in ΩT ,

u = F on ∂pΩT .
(3.19)

We will make use of the following Arzelá-Ascoli-type lemma, which has
been previously used e.g. in [MPR10,PR16,BER19]. We omit the proof, which
is a modification of [MPR12, Lemma 4.2].

Lemma 3.4.1. Let
{

fε :ΩT →R
}
ε∈(0,1)

be a uniformly bounded family of func-
tions such that for a given η > 0, there are constants r0 and ε0 such that for
every ε< ε0 and any (x, t ), (y, s) ∈ΩT with

|(x, t )− (y, s)| < r0,

it holds ∣∣ fε(x, t )− fε(y, s)
∣∣< η.

Then there exists a uniformly continuous function f : ΩT → R and a subse-
quence, still denoted by ( fε), such that fε→ f uniformly in ΩT as ε→ 0.

For the next lemma, we assume that the domain Ω satisfies a uniform exte-
rior sphere condition. That is, we assume that there is δ> 0 such that for any
y ∈ ∂Ω, there is an open ball Bδ ⊂Rn \Ω with the radius δ so that Bδ∩Ω= {y}.
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Lemma 3.4.2. The family {uε}ε∈(0,1) of value functions of the game satisfies the
assumptions of Lemma 3.4.1.

Proof. Since |uε(x, t )| ≤ maxΓ1 |F | for all (x, t ) ∈ΩT and ε ∈ (0,1), the family
{uε}ε∈(0,1) is uniformly bounded.

Fix η > 0. Since the payoff function F is uniformly continuous on Γ1,
there is γ > 0 so that when (x, t ), (y, s) ∈ Γ1 with |(x, t )− (y, s)| < γ, it holds
|F (x, t )−F (y, s)| < η

2 . We prove the asymptotic equicontinuity of the family
{uε}ε∈(0,1) in four steps. In all steps we have ε < ε0 and |(x, t )− (y, s)| < r0.
The precise choices of ε0 and r0 clarify during the proof. We will denote
by C1,C2, ... constants larger than 1 which may depend only on n,δ, and the
diameter of Ω.

Step 1

If (x, t ), (y, s) ∈ ∂pΩT , then

|uε(x, t )−uε(y, s)| = |F (x, t )−F (y, s)| < η

when r0 < γ.

Step 2

Suppose that (x, t ) ∈ΩT and (y,0) ∈ Γε. Let us start the game from (x0, t0) =
(x, t ) with an arbitrary strategy S. We obtain

E
(x0,t0)
S [|xk −x0|2 | (t0, x0, ..., xk−1)]

= α

2
(|(xk−1 +σε)−x0|2 +|(xk−1 −σε)−x0|2)+β

∫
Bε(xk−1)

|y −x0|2 d y

≤α(|xk−1 −x0|2 +ε2)+β(|xk−1 −x0|2 +C1ε
2)

≤ |xk−1 −x0|2 +C1ε
2.

Hence,
Mk := |xk −x0|2 −C1kε2

is a supermartingale, and the optimal stopping theorem gives

E
(x0,t0)
S [|xτ−x0|2] ≤ |x0 −x0|2 +C1ε

2E
(x0,t0)
S [τ] ≤C1(r0 +ε2

0).

Here, we used the fact that the stopping time τ≤ t0

ε2 +1 for a game starting at
t0 and in this case t0 ≤ r0. Since this is true for all strategies, it holds

sup
S
E

(x0,t0)
S [|xτ−x0|2] ≤C1(r0 +ε2

0),
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3.4 Convergence to the viscosity solution

which yields

|uε(x0, t0)−uε(x0,0)| = |sup
S
E

(x0,t0)
S [F (xτ, tτ)]−F (x0,0)| < η

2
,

when r0,ε0 are chosen so that C1(r0 +ε2
0) < γ2.

The triangle inequality finishes the argument. Recalling that (x0, t0) = (x, t ),
we have

|uε(x, t )−uε(y,0)| ≤ |uε(x, t )−F (x,0)|+ |F (x,0)−F (y,0)| < η.

Step 3

Suppose that (x, t ) ∈ΩT and (y, s) ∈ ∂pΩT with y ∈ ∂Ω. Since the domain Ω
satisfies the uniform exterior sphere condition with δ, there is a ball Bδ(z) ⊂
Rn \Ω with ∂Bδ(z)∩Ω= {y}.

We use a barrier argument. In an annulus of Rn , define a function w as
w(x) =−a|x − z|2 −b|x − z|−ξ+ c in BR (z) \ Bδ(z),
w = 0 on ∂Bδ(z),
∂w
∂ν = 0 on ∂BR (z),

where ∂w
∂ν is the normal derivative, and R is chosen so that Ω ⊂ BR (z). The

exponent ξ = n + p − 4 > 0, since p > 2 and we may assume that n ≥ 2 (1-
dimensional case is essentially a random walk in an open interval). The positive
constants a,b,c are specified below. The function w satisfies

∆w(x) =−2an +bξn|x − z|−ξ−2 −bξ(ξ+2)|x − z|−ξ−2,

λn(D2w(x)) =−2a +bξ|x − z|−ξ−2,

hence
Dp w =−2a(n +p −2) in BR (z) \ Bδ(z), (3.20)

and it can be extended as a solution to the same equations in BR+ε(z) \ Bδ−ε(z)
so that equation (3.20) holds also near the boundaries. It satisfies an estimate

w(x) ≤C2(R/δ)dist(∂Bδ(z), x)+o(1)

for any x ∈ BR (z) \ Bδ(z). Here o(1) → 0 when ε→ 0.
Let us consider for a moment an elliptic game starting at x0 = x and played

by the rules of our game without a time-dependence in the annulus BR (z)\Bδ(z),
with a special rule that if we are at, say xk , a possible random move is chosen
from Bε(xk )∩BR (z) according to the uniform probability density, and also the
controller cannot exit BR (z). The game ends when the token enters the ball
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A control problem related to the parabolic dominative p-Laplace equation

Bδ(z). Because of the random moves, the game ends almost surely in a finite
time. Define a stopping time for this game as τ∗,

τ∗ = inf{k : xk ∈ Bδ(z)}.

Let S be an arbitrary strategy for the controller. The Taylor expansion for w
gives

1

2
(w(xk−1 +εσ)+w(xk−1 −εσ))

= w(xk−1)+ 1

2
ε2〈D2w(xk−1)σ,σ〉+o(ε2)

≤ w(xk−1)+ 1

2
ε2λn(D2w(xk−1))+o(ε2),

since the first order terms vanish,

〈Dw(xk−1),εσ〉+〈Dw(xk−1),−εσ〉 = 0.

Moreover, since w is radially increasing, it holds∫
Bε(xk−1)∩BR (z)

w(y)dy ≤ w(xk−1)+ ε2

2(n +2)
∆w(xk−1)+o(ε2).

By choosing the constant a properly,

Mk := w(xk )+kε2

is a supermartingale. Indeed, we have

E
x0
S [Mk |x0, ..., xk−1] = α

2
(w(xk−1 +εσ)+w(xk−1 −εσ))

+β
∫

Bε(xk−1)∩BR (z)
w(y)d y +kε2

≤ w(xk−1)+ ε2

2(p +n)
Dp w(xk−1)+kε2 +o(ε2)

= w(xk−1)− n +p −2

n +p
aε2 +kε2 +o(ε2)

≤ w(xk−1)+ (k −1)ε2,

by choosing for example a = 2 n+p
n+p−2 and assuming that o(ε2) < ε2. The

choice of a determines the other constants b and c: The Neumann and Dirich-
let boundary conditions of the barrier function w are satisfied by choosing
b = (2a/ξ)Rξ+2 and c = aδ2 +bδ−ξ.

By the optimal stopping theorem, we have

E
x0
S [w(xτ∗)+τ∗ε2] ≤ w(x0),
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3.4 Convergence to the viscosity solution

that is,

E
x0
S [τ∗] ≤ w(x0)

ε2 ≤ C2(R/δ)dist(∂Bδ(z), x0)+o(1)

ε2 ,

where we used |Ex0
S [w(xτ∗)]| ≤ o(1).

Now we come back to our game, starting at (x0, t0) = (x, t ), again with an
arbitrary strategy S. Since it holds |x0 − y | ≥ dist(∂Bδ(z), x0), for the stopping
time of our game we now have an estimate

E
(x0,t0)
S [τ] ≤ E(x0,t0)

S [τ∗]

≤ C2(R/δ)dist(∂Bδ(z), x0)+o(1)

ε2

≤ C2(R/δ)|x0 − y |+o(1)

ε2 .

By using the same martingale argument as in Step 2 but replacing x0 by y , we
have

E
(x0,t0)
S [|xτ− y |2] ≤ |x0 − y |2 +C1ε

2E
(x0,t0)
S [τ]

≤ |x0 − y |2 +C1ε
2 C2(R/δ)|x0 − y |+o(1)

ε2

≤ |x0 − y |2 +C3(|x0 − y |+o(1))

< r 2
0 +C3(r0 +o(1)) <

(
γ

2

)2

,

when ε0,r0 are chosen so that C3(r0 +o(1)) <
(
γ
4

)2
and r 2

0 <
(
γ
4

)2
. This also

gives

|E(x0,t0)
S [tτ]− t0| <

(
γ

4

)2

.

Hence, we have

|uε(x0, t0)−uε(y, t0)| = |sup
S
E

(x0,t0)
S [F (xτ, tτ)]−F (y, t0)| < η

2
,

and recalling that (x0, t0) = (x, t ) the triangle inequality gives

|uε(x, t )−uε(y, s)| ≤ |uε(x, t )−F (y, t )|+ |F (y, t )−F (y, s)| < η.

Step 4

Finally, suppose that (x, t ), (y, s) ∈ΩT . This is an argument based on translation
invariance and comparison principle. Let r0,ε0 satisfy the conditions of the
previous steps. Define an inner ε-strip Iε by

Iε := {(z,r ) ∈ΩT : dist((z,r ),∂pΩT ) ≤ r0}.
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If (x, t ) ∈ Iε, there is a point (x ′, t ′) ∈ ∂pΩT such that |(x, t )− (x ′, t ′)| ≤ r0. Then
from the conclusions of the previous steps we obtain

|uε(x, t )−uε(y, s)| ≤ |uε(x, t )−F (x ′, t ′)|+ |F (x ′, t ′)−uε(y, s)| < η.

The argument is identical if (y, s) ∈ Iε, so it remains to study the case (x, t ), (y, s) ∈
ΩT \ Iε. We may assume that t ≤ s. Define functions F1,F2 on the strip Iε as
follows,

F1(z,r ) = uε(z −x + y,r − t + s)−η, F2(z,r ) = uε(z −x + y,r − t + s)+η.

Then
F1(z,r ) ≤ uε(z,r ) ≤ F2(z,r )

for all (z,r ) ∈ Iε. Let u1
ε be the value function of the game in ΩT \ Iε with the

payoff F1 on Iε, and u2
ε the value function of the game inΩT \Iε with the payoff

F2 on Iε. By the uniquess of the value function, we have for all (z,r ) ∈ΩT \ Iε

u1
ε(z,r ) = uε(z −x + y,r − t + s)−η,

u2
ε(z,r ) = uε(z −x + y,r − t + s)+η.

By the comparison principle, see Proposition 3.3.1, we have

uε(x, t ) ≥ u1
ε(x, t ) = uε(y, s)−η,

uε(x, t ) ≤ u2
ε(x, t ) = uε(y, s)+η.

From the previous lemmas it follows that if (uε j ) is a sequence of value
functions with ε j → 0 and (uε jk

) is an arbitrary subsequence, then this subse-
quence has a subsequence converging uniformly to v . Hence, the sequence
(uε j ) converges to v uniformly, and we write uε → v to simplify the notation.
It remains to show that the function v is the solution of (3.19).

Theorem 3.4.3. The uniform limit v = limε→0 uε is the unique viscosity solu-
tion of (3.19).

Proof. By uniqueness of viscosity solutions (see [CIL92]), it is sufficient to
show that v is a viscosity solution of (3.19). To this end, let φ ∈ C 2 touch v
from above at (x0, t0) ∈ΩT ,

0 = (v −φ)(x0, t0) > (v −φ)(x, t )

for all (x, t ) close to (x0, t0). From the definition of supremum, given δε > 0,
there are points (xε, tε) close to (x0, t0) such that

uε(xε, tε)−φ(xε, tε) ≥ uε(y, s)−φ(y, s)−δε
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for all (y, s) in a neighborhood of (xε, tε). Using the fact that uε→ v uniformly
and v−φ is a continuous function with a maximum point at (x0, t0), we see that
(xε, tε) → (x0, t0) as ε→ 0.

Since φ ∈C 2(ΩT ), Theorem 3.2.1 gives

β

∫
Bε(xε)

φ(y, tε−ε2)d y

+α sup
|σ|=1

[
φ(xε+εσ, tε−ε2)+φ(xε−εσ, tε−ε2)

2

]

=φ(xε, tε)+ ε2

2(n +p)
(Dpφ(xε, tε)−2(n +p)φt (xε, tε))+o(ε2).

We can now estimate

β

∫
Bε(xε)

uε(y, tε−ε2)d y

+α sup
|σ|=1

[
uε(xε+εσ, tε−ε2)+uε(xε−εσ, tε−ε2)

2

]

≤ uε(xε, tε)−φ(xε, tε)+δε+β
∫

Bε(x)
φ(y, tε−ε2)d y

+α sup
|σ|=1

[
φ(xε+εσ, tε−ε2)+φ(xε−εσ, tε−ε2)

2

]

= uε(xε, tε)+δε+ ε2

2(n +p)
(Dpφ(xε, tε)−2(n +p)φt (xε, tε))+o(ε2).

As the function uε satisfies the DPP, we are left with

0 < δε+ ε2

2(n +p)
(Dpφ(xε, tε)−2(n +p)φt (xε, tε))+o(ε2).

Choose now δε = o(ε2). Dividing by ε2 and letting ε→ 0 gives

2(n +p)φt (x0, t0) ≤Dpφ(x0, t0),

which shows that v is a viscosity subsolution. To show that v is a viscosity
supersolution is analogous.
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Concave power solutions of the Dominative
p-Laplace equation

Abstract.In this paper, we study properties of solutions of the Dominative
p-Laplace equation with homogeneous Dirichlet boundary conditions in a
bounded convex domain Ω. For the equation −Dp u = 1, we show that

p
u is

concave, and for the eigenvalue problem Dp u +λu = 0, we show that logu is
concave.

4.1 Introduction

The Dominative p-Laplace operator was defined as

Dp u :=∆u + (p −2)λmax(D2u), p ≥ 2,

by Brustad in [B1] and later studied in [B2]. See also [BLM] for a stochastic in-
terpretation and a game-theoretic approach of the equation. Here, λmax denotes
the largest eigenvalue of the Hessian matrix

D2u =
(

∂2u

∂xi∂x j

)
i j

.

We shall study the two equations

−Dp u = 1 and Dp u +λu = 0

in a bounded convex domainΩ⊂Rn . The positive solutions with zero boundary
values have the property for −Dp u = 1 that

p
u is concave, see Theorem 4.1.1

below. In Theorem 4.1.2 we show that for Dp u +λu = 0, logu is concave.
Problems related to concave solutions have been studied for p-Laplace type
equations, and we give a quick review of the results. The operator is closely
related to the normalized p-Laplace operator,

∆N
p u = |∇u|2−pdiv

(
|∇u|p−2∇u

)
,

which describes a Tug-of-war game with noise, see [MPR]. Due to this, the
operator has been studied extensively over the last 15 years, and we refer to
[D],[HL], [APR] for an introduction and some regularity results. The solutions
are weak and appear in the form of viscosity solutions and we refer to [CIL] for
an introduction of viscosity solutions. If u is a solution of the problem−∆u = 1 inΩ

u = 0 on ∂Ω
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Concave power solutions of the Dominative p-Laplace equation

in a bounded convex domain Ω⊂ Rn , one can show that
p

u is concave. This
problem, including more complex right-hand sides, was studied in the 1970’s
and 1980’s by [Ka],[Ke],[Ko] and [M]. For n = 1 and n = 2, a brute force cal-
culation shows that

p
u is concave. For n ≥ 3 the proofs are more complicated.

For the ordinary p-Laplacian, [S] showed that u
p−1

p is concave. One should note
that simply setting p = 2 does not simplify the proof. Thus, the papers [Ke] and
[Ko] are still of great value. For the infinity Laplacian, ∆∞u =

〈
D2u∇u,∇u

〉
,

[CF] showed that u
3
4 is concave. Our result for the Dominative p-Laplace equa-

tion can be formulated in the following theorem. We say that Ω satisfies the
interior sphere condition if for all y ∈ ∂Ω there is an x ∈ Ω and an open ball
Br (x) such that Br (x) ⊂Ω and y ∈ ∂Br (x).

Theorem 4.1.1. Let u ∈C (Ω̄) be a viscosity solution of−Dp u = 1 inΩ
u = 0 on ∂Ω

in a bounded convex domain Ω⊂Rn which satisfies the interior sphere condi-
tion. Then

p
u is concave.

Further, we study the eigenvalue problem and give the following result.

Theorem 4.1.2. Let u ∈C (Ω̄) be a positive viscosity solution of−Dp u =λu inΩ
u = 0 on ∂Ω

with λ> 0 in a bounded convex domain Ω⊂ Rn . Then logu is concave.

Remark: We give a remark on what happens when p →∞ in Theorem 4.1.1.
After dividing the equation by p and letting p approach infinity, the following
equation is obtained −λmax(D2u) = 0 inΩ

u = 0 on ∂Ω.

This equation has the solution u = 0, which is obviously already concave. This
is better than the square root being concave, so for p =∞ a stronger result is
obtained. (For a less trivial result, another normalization with p is needed.)

For the Helmholtz equation ∆u +λu = 0, the problem related to concave
logarithmic solutions has been studied in [BL], [Ko] and [CS]. The nonlinear
eigenvalue problem associated with the p-Laplace equation has been studied
for example in [L] and [S]. In [S], Sakaguchi showed that logu is a concave
function.
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4.2 Preliminaries and notation

The gradient of a function f :ΩT →R is

∇ f =
(
∂ f

∂x1
, ...,

∂ f

∂xn

)
and its Hessian matrix is

(
D2 f

)
i j
= ∂2 f

∂xi∂x j
.

We will use the operator

Dp u =∆u + (p −2)λmax(D2u)

and if applied to a matrix X ∈ Sn , we use

Dp X = tr(X )+ (p −2)λmax(X ).

Also, the normalized p-Laplace operator is referred to,

∆N
p u =∆u + (p −2) · 1

|∇u|2
N∑

i , j=1
uxi ux j uxi x j .

Viscosity solutions. The Dominative p-Laplace operator is uniformly el-
liptic. Therefore, it is convenient to use viscosity solutions as a notion of weak
solutions. Throughout the text, we always keep p ≥ 2. In the definition below,
g is assumed to be continuous in all variables.

Definition 4.2.1. A function u ∈U SC (Ω̄) is a viscosity subsolution to −Dp u = g (x,u,∇u)
if, for all φ ∈C 2(Ω),

−Dpφ(x) ≤ g (x,u,∇φ).

at any point x ∈Ω where u−φ attains a local maximum. A function u ∈ LSC (Ω̄)
is a viscosity supersolution to −Dp u = g (x,u,∇u) if, for all φ ∈C 2(Ω),

−Dpφ(x) ≥ g (x,u,∇φ).
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Concave power solutions of the Dominative p-Laplace equation

at any point x ∈Ω where u −φ attains a local minimum.

A function u ∈C (Ω̄) is a viscosity solution of−Dp u = g (x,u,∇u) inΩ
u = 0 on ∂Ω

if it is a viscosity sub- and supersolution of −Dp u = g (x,u,∇u) and u = 0 on
∂Ω.

When defining viscosity solutions to ∆N
p u = g (x,u,∇u), one has to be

careful at points where the gradient vanishes.

Definition 4.2.2. A function u ∈U SC (Ω̄) is a viscosity subsolution of −∆N
p u =

1 if, for all φ ∈C 2(Ω), −∆N
p φ(x) ≤ 1, if ∇φ(x) 6= 0

−Dpφ(x) ≤ 1, if ∇φ(x) = 0.

at any point x ∈Ω where u−φ attains a local minimum. A function u ∈ LSC (Ω̄)
is a viscosity supersolution of −∆N

p u = 1 if, for all φ ∈C 2(Ω),−∆N
p φ(x) ≥ 1, if ∇φ(x) 6= 0

Dp (−φ(x)) ≥ 1, if ∇φ(x) = 0.

at any point x ∈Ω where u −φ attains a local minimum. A function u ∈C (Ω̄)
is a viscosity solution of −∆N

p u = 1 inΩ
u = 0 on ∂Ω

if it is a viscosity sub- and supersolution of −∆N
p u = 1 and u = 0 on ∂Ω.

We also need an equivalent definition of viscosity solutions using the sub-
and superjets. For functions u :Ω→Rn they are given by

J 2,+u(x) =
{

(q, X ) ∈Rn ×Sn : u(y) ≤ u(x)+〈
q, y −x

〉
+ 1

2

〈
X (y −x), y −x

〉+o(|y −x|2|)as y → x
}

and

J 2,−u(x) =
{

(q, X ) ∈Rn ×Sn : u(y) ≥ u(x)+〈
q, y −x

〉
+ 1

2

〈
X (y −x), y −x

〉+o(|y −x|2|)as y → x
}

.
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4.2 Preliminaries and notation

Definition 4.2.3. A function u ∈U SC (Ω̄) is a viscosity subsolution to −Dp u = g (x,u,∇u)
if (q, X ) ∈ J 2,+u(x) implies

−Dp X ≤ g (x,u, q).

A function u ∈ U SC (Ω̄) is a viscosity subsolution of −Dp u = g (x,u,∇u) if
(q, X ) ∈ J 2,−u(x) implies

−Dp X ≥ g (x,u, q).

A function u ∈C (Ω̄) is a viscosity solution of−Dp u = g (x,u,∇u) inΩ
u = 0 on ∂Ω

if it is a viscosity sub- and supersolution of −Dp u = g (x,u,∇u) and u = 0 on
∂Ω.

We mention some results in [K] obtained for the normalized p-Laplace
equation, which we will use together with the relationship between the normal-
ized p-Laplace equation and the Dominative p-Laplace equation.

Lemma 4.2.4. A function u ∈ U SC (Ω̄) is a positive viscosity subsolution of
−∆N

p u = 1 with u = 0 on ∂Ω if and only if v = −pu ∈ LSC (Ω̄) is a negative
viscosity supersolution of

−∆N
p v = 1

v

(
(p −1)|∇v |2 + 1

2

)
.

Lemma 4.2.5. Let λ> 0. A function u ∈U SC (Ω̄) is a positive viscosity subso-
lution of −∆N

p u =λu if and only if v =− lnu ∈ LSC (Ω̄) is a negative viscosity
supersolution of

−∆N
p v =−(p −1)|∇v |2 −λ.

Properties of the operator. We give some properties of viscosity solutions
of the Dominative p-Laplace equation.

• Comparison principle: Let u ∈U SC (Ω̄) be a viscosity subsolution of
−Dp u = 1 and let v ∈ LSC (Ω̄) be a viscosity supersolution of −Dp v = 1.
Then u ≤ v on ∂Ω implies u ≤ v in Ω. For a proof, see [Theorem 3.3,
CIL].

57



Concave power solutions of the Dominative p-Laplace equation

• Positive supersolutions: If u ∈ LSC (Ω̄) is a viscosity supersolution of
−Dp u = 1 with u = 0 on ∂Ω, then u > 0 in Ω. To see this, note that w = 0
is a viscosity subsolution, and u ≥ w by the comparison principle. This
inequality must be strict. If u(x0) = 0, then x0 is a minimum for u. Let
φ(x) = u(x0) be a test function. Then u −φ has a local minimum at x0.
But −Dpφ= 0 < 1, which contradicts u being a supersolution.

The Dominative p-Laplace operator has many of the same properties that
the normalized p-Laplace operator possess. Here, we give some connections
for viscosity solutions.

Lemma 4.2.6. If u ∈ LSC (Ω̄) is a viscosity supersolution of

−Dp u = g (x,u,∇u),

then u is a viscosity supersolution of

−∆N
p u = g (x,u,∇u).

Here, g is assumed to be continuous in all variables. Similarly, if u ∈U SC (Ω̄)
is a viscosity subsolution of −∆N

p u = g (x,u,∇u), then u is a viscosity superso-
lution of −Dp u = g (x,u,∇u).

Proof. Assume u is a viscosity supersolution of −Dp u = g (x,u,∇u). If u −φ
obtains a minimum at x ∈Ω, we have, provided ∇φ(x) 6= 0,

−∆N
p φ≥−Dpφ≥ g (x,u,∇φ).

If ∇φ(x) = 0,

−∆φ− (p −2)λmin(D2φ) ≥−Dpφ≥ g (x,u,∇φ).

Hence, u is a viscosity supersolution of −∆N
p u = g (x,u,∇u). If u is a viscosity

subsolution of −∆N
p u = g (x,u,∇u) and u −φ obtains a maximum at x ∈Ω,

−Dpφ≤−∆N
p φ≤ g (x,u,∇φ), provided ∇φ(x) 6= 0.

On the other hand, if ∇φ(x) = 0, −Dpφ≤ g (x,u,0) by definition. Hence, u is a
viscosity supersolution of −Dp u = g (x,u,∇u).

The following Lemma will be applied in the proof of the concavity, and it
relies on the fact that the mapping (q, A) →

〈
q, A−1q

〉
is convex in S+ for each

q ∈Rn . Here, S+ consists of the symmetric positive definite matrices.
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4.2 Preliminaries and notation

Lemma 4.2.7. Let Xi ∈ S+,νi ∈ [0,1], i = 1, ...,k, with
∑k

i=1νi = 1. Then

1

Dp

(∑k
i=1νi Xi

)−1 ≥
k∑

i=1

νi

Dp X −1
i

.

Proof. In the appendix of [ALL] it was shown that (q, A) →
〈

q, A−1q
〉

is con-
vex, 〈

q, (µA1 + (1−µ)A2)−1q
〉
≤µ

〈
q, A−1q

〉
+ (1−µ)

〈
q, A−1

2 q
〉

,

for q ∈Rn , A1, A2 ∈ S+ and µ ∈ [0,1]. Consequently,

Dp
(
µA1 + (1−µ)A2

)−1 ≤µDp A−1
1 + (1−µ)Dp A−1

2 . (4.21)

We label c1 = Dp (X −1
1 ),c2 = Dp (X −1

2 ) and choose

A1 = X1

c2
, A2 = X2

c1
, µ= νc2

νc2 + (1−ν)c1
.

With these choices,

Dp
(
νX1 + (1−ν)X2

)−1 = Dp
(
µA1 + (1−µ)A2

)−1

νc2 + (1−ν)c1
.

Using inequality (4.21) we find

1

Dp
(
νX1 + (1−ν)X2

)−1 = νc2 + (1−ν)c1

Dp
(
µA1 + (1−µ)A2

)−1

≥ νc2 + (1−ν)c1

µDp (A−1
1 )+ (1−µ)Dp (A−1

2 )

= νc2 + (1−ν)c1

µc1c2 + (1−µ)c1c2

= ν

c1
+ 1−ν

c2

= ν

Dp (X −1
1 )

+ 1−ν
Dp (X −1

2 )
.

By induction, the inequality in Lemma 4.2.7 holds.

Convex envelope
The convex envelope of a function u :Ω→Rn is defined as

u∗∗(x) = inf

{
k∑

i=1
µi u(xi ) : xi ∈Ω,

∑
µi xi = x,

∑
µi = 1, k ≤ n +1,µi ≥ 0

}
.

We are interested in the convex envelope of the square root, v =−pu, and
we have the following result on what happens near the boundary of Ω.
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Concave power solutions of the Dominative p-Laplace equation

Lemma 4.2.8. Let u be a viscosity solution to −Dp u = 1 in a convex domain
Ω that satisfies the interior sphere condition. Further let x ∈Ω, x1, ..., xk ∈ Ω̄,∑k

i=1µi = 1 with

x =
k∑

i=1
µi xi , u∗∗(x) =

k∑
i=1

µi u(xi ).

Then x1, ..., xk ∈Ω.

Proof. Since u is, in particular a viscosity supersolution to −∆N
p u = 1, Lemma

3.2 in [K] gives the result.

4.3 Concave square-root solutions.

First, we examine which equation v =−pu solves in the viscosity sense.

Lemma 4.3.1. A function u ∈ U SC (Ω̄) is a positive viscosity subsolution of
−Dp u = 1 with u = 0 on ∂Ω if and only if v = −pu ∈ LSC (Ω̄), with v = 0 on
∂Ω, is a negative viscosity supersolution of

−Dp v = 1

v

(
(p −1)|∇v |2 + 1

2

)
.

Proof. Let u be a viscosity subsolution of −Dp u = 1. Take φ ∈C 2(Ω) such that
for some r > 0,

0 = (v −φ)(x0) < (v −φ)(x), for all x ∈ Br (x0),

so that v−φ has a strict local minimum point at x0 ∈Ω. Letψ(x) =φ(x)2. Then,
since v(x),φ(x) < 0,

(u −ψ)(x0) = (
v(x0)−φ(x0)

)(
v(x0)+φ(x0)

)= 0

(u −ψ)(x) = (
v(x)−φ(x)

)(
v(x)+φ(x)

)< 0.

Hence, u −ψ has a strict local maximum at x0. We see that ψxi = 2φφxi ,
ψxi x j = 2φxiφx j +2φφxi x j . Since u is a viscosity subsolution we have at x0,

1 ≥−Dpψ

=−2tr
(
∇φ⊗∇φ+φD2φ

)
−2(p −2)λmax

(
∇φ⊗∇φ+φD2φ

)
≥−2|∇φ|2 −2φ∆φ−2(p −2)λmax

(∇φ⊗∇φ)−2φ(p −2)λmax(D2φ)

=−2(p −1)|∇φ|2 −2φDpφ.

60



4.3 Concave square-root solutions.

Dividing by 1
2φ(x0) gives −Dpφ(x0) ≥ 1

2φ(x0)

(
(p −1)|∇φ(x0)|2 + 1

2

)
, which shows

that v is a viscosity supersolution of

−Dp v = 1

v

(
(p −1)|∇v |2 + 1

2

)
.

On the other hand, suppose v ∈ LSC (Ω) is a negative viscosity supersolution of
−Dp v = 1

v

(
(p −1)|∇v |2 + 1

2

)
. By Lemma 4.2.6, v is a viscosity supersolution

of

−∆N
p v ≥ 1

v

(
(p −1)|∇v |2 + 1

2

)
.

Applying Lemma 4.2.4 we see that u = v2 is a positive viscosity subsolution of

−∆N
p u = 1.

A second application of Lemma 4.2.6 shows that u is a viscosity subsolution of

−Dp u = 1.

We now focus our attention on the convex envelope, v∗∗. It turns out that
v∗∗ is a viscosity supersolution to the same equation as v .

Lemma 4.3.2. Let u ∈U SC (Ω̄) be a positive viscosity subsolution to −Dp u =
1 with u = 0 on ∂Ω in a convex domain Ω that satisfies the interior sphere
condition. If v =−pu, then v∗∗ is a negative viscosity supersolution to

−Dp v∗∗ = 1

v∗∗

(
(p −1)|∇v∗∗|2 + 1

2

)
with v∗∗ = 0 on ∂Ω.

Proof. According to [ALL, Lemma 4] we have v∗∗ = v = 0 on ∂Ω so we only
have to show that v∗∗ is a viscosity supersolution. To this end, let (q, A) ∈
J 2,−v∗∗(x). By Lemma 4.2.8 we can decompose x in a convex combination of
interior points,

x =
k∑

i=1
µi xi , v∗∗(x) =

k∑
i=1

µi v(xi ),
k∑

i=1
µi = 1,

with x1, ..., xk ∈Ω. By Proposition 1 in [ALL] there are A1, ..., Ak ∈ S+ such that
(q, Ai ) ∈ J̄ 2,−v(xi ) and

A−εA2 ≤
(
µ1 A−1

1 + ...+µk A−1
k

)−1
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for all ε> 0 small enough. Since v is a viscosity supersolution,

−Dp (Ai ) ≥ 1

v(xi )

(
(p −1)|q |2 + 1

2

)
Multiplying both sides with µi v(xi ) and a summation i = 1, ...,k yields

−v∗∗(x) ≤
(
(p −1)|q|2 + 1

2

) k∑
i=1

µi

Dp (Ai )
.

Using this inequality we find

−Dp (A−εA2)− 1

v∗∗(x)

(
(p −1)|q|2 + 1

2

)

≥−Dp (A−εA2)+
(

k∑
i=1

µi

Dp (Ai )

)−1

.

Lemma 4.2.7 then gives

−Dp (A−εA2)− 1

v∗∗(x)

(
(p −1)|q|2 + 1

2

)

≥−Dp (A−εA2)+Dp

(
k∑

i=1
µi X −1

i

)−1

≥ 0

since A−εA2 ≤
(∑k

i=1µi X −1
i

)−1
. Letting ε→ 0 we see that

−Dp (A) ≥ 1

v∗∗(x)

(
(p −1)|q|2 + 1

2

)
which shows that v∗∗ is a viscosity supersolution to

−Dp v∗∗ = 1

v∗∗

(
(p −1)|∇v∗∗|2 + 1

2

)
.

Proof of Theorem 4.1.1.

Proof. We have to show that v =−pu is convex, making
p

u concave, if u is
a viscosity solution of

−Dp u = 1 inΩ,

u = 0 on ∂Ω.
(4.22)
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4.4 Log-concavity for the eigenvalue problem

Since u is, in particular, a supersolution, it is positive. By Lemma 4.3.2,
v∗∗ is a negative supersolution of

−Dp v∗∗ = 1

v∗∗

(
(p −1)|∇v∗∗|2 + 1

2

)
.

By Lemma 4.3.1

−Dp
(
v∗∗

)2 ≤ 1.

We have found a subsolution of equation (4.22). The comparison principle
allows us to conclude that

v2
∗∗ ≤ u = v2, inΩ.

But v∗∗ ≤ v < 0. Thus we must have v∗∗ = v , showing that v is convex.

4.4 Log-concavity for the eigenvalue problem

We proceed in the same manner as in section 4.3. The proofs of the following
two Lemmas are similar to the proofs of Lemma 4.3.1 and 4.3.2. We note
that the interior sphere condition is not needed here, since v =− lnu converges
to infinity on the boundary. This makes a similar version of Lemma 4.2.8
redundant.

Lemma 4.4.1. Assume that Ω is a convex domain in Rn and let λ > 0. A
function u ∈U SC (Ω̄) is a positive viscosity subsolution to −Dp u =λu with u =
0 on ∂Ω if and only if v =− lnu ∈ LSC (Ω̄) is a negative viscosity supersolution
to

−Dp v =−(p −1)|∇v |2 −λ.

Lemma 4.4.2. Assume that Ω is a convex domain in Rn and let λ > 0. Let
u ∈U SC (Ω̄) be a positive viscosity subsolution to −Dp u = λu with u = 0 on
∂Ω. If v =− lnu, then v∗∗ is a viscosity supersolution to

−Dp v∗∗ =−(p −1)|∇v∗∗|2 −λ.

Proof of Theorem 4.1.2.
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Proof. Let u be a positive viscosity solution of −Dp u = λu. Denoting v =
− lnu, Lemma 4.4.2 gives that v∗∗ is a viscosity supersolution to

−Dp v∗∗ =−(p −1)|∇v∗∗|2 −λ.

Lemma 4.4.1 gives

−Dp ev∗∗ ≤λe−v∗∗

in the viscosity sense. By the comparison principle,

e−v∗∗ ≤ u = e−v , in Ω.

This together with the fact that v∗∗ ≤ v shows that v∗∗ = v , making v a convex
function and logu a concave function.

4.5 Conclusion and further problems

In this paper, we showed certain concavity properties of power functions for
solutions of the homogeneous Dirichlet problem for the Dominative p-Laplace
equation. This was due to the structure of the equation and its relation to
the normalized p-Laplace operator. An interesting question is whether the
parabolic version, ut =Dp u has similar concavity properties and in what way
it depends on the initial data. Further, for n = 2, the equation can be explicitly
written out, and it would be interesting to see a simple proof of the same result.
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Viscosity solutions

A.1 Viscosity solutions

Viscosity solutions are weak solutions. They were introduced in [CIL] in the
early 90’s. The name has its origin in an old method, namely the method
of vanishing viscosity. For an introduction, we also refer to [K]. Here, we
specifically look at viscosity solutions for the parabolic normalized p-Laplace
equation, but the definitions and remarks are similar for many other second
order PDEs.

A.2 Definition of viscosity solutions

Suppose first u is a classical subsolution to

ut =∆N
p u inΩT , (A.23)

and ∇u 6= 0 in ΩT . That is, at each point in ΩT , ut ≤∆N
p u. Now, we take a test

function φ ∈C 2(ΩT ) such that u −φ has a local maximum at the point (x0, t0)
inside ΩT . By the infinitesimal calculus, we have at (x0, t0)

ut =φt , ∇u =∇φ,

D2(u −φ) ≤ 0.

The last inequality can be used to see that ∆N
p (u −φ) ≤ 0 at (x0, t0). Then

φt = ut ≤∆N
p u ≤∆N

p φ

at (x0, t0). We see that φ is a classical subsolution at the point (x0, t0). This
motivates the definition of viscosity solutions. At points where ∇u = 0, we
have to adjust the definition.

Definition A.2.1. Assume 1 ≤ p <∞ and let u be an upper semi-continuous
function in ΩT . We say that u is a viscosity subsolution of equation (A.23) in
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ΩT , if
φt (x0, t0) ≤∆N

p φ(x0, t0), if ∇φ(x0, t0) 6= 0

φt (x0, t0) ≤∆φ(x0, t0)+ (p −2)λmax(D2φ(x0, t0)), if ∇φ(x0, t0) = 0,and p ≥ 2

φt (x0, t0) ≤∆φ(x0, t0)+ (p −2)λmin(D2φ(x0, t0)), if ∇φ(x0, t0) = 0,and 1 ≤ p < 2,

whenever (x0, t0) ∈ΩT and φ ∈ C 2(ΩT ) are such that φ(x0, t0) = u(x0, t0) and
φ(x, t ) < u(x, t ) for (x, t ) ∈ ΩT \ {(x0, t0)}, that is, φ touches u from below at
(x0, t0).
For a lower semi-continuous function u, we say that u is a viscosity supersolu-
tion of equation (A.23) in ΩT , if
φt (x0, t0) ≥∆N

p φ(x0, t0), if ∇φ(x0, t0) 6= 0

φt (x0, t0) ≥∆φ(x0, t0)+ (p −2)λmin(D2φ(x0, t0)), if ∇φ(x0, t0) = 0,and p ≥ 2

φt (x0, t0) ≥∆φ(x0, t0)+ (p −2)λmax(D2φ(x0, t0)), if ∇φ(x0, t0) = 0,and 1 ≤ p < 2,

whenever (x0, t0) ∈ΩT and φ ∈ C 2(ΩT ) are such that φ(x0, t0) = u(x0, t0) and
φ(x, t ) > u(x, t ) for (x, t ) ∈ ΩT \ {(x0, t0)}, that is, φ touches u from above at
(x0, t0).
Finally, u ∈ C (ΩT ) is a viscosity solution if it is both a viscosity subsolution
and a viscosity supersolution.

There are several equivalent ways to define viscosity solutions of equation
(A.23). We mention one here involving the parabolic semijets P 2,±. The semijet
P 2,+u(x, t ) consists of all scalars r , vectors q and symmetric matrices X such
that

u(y,τ) ≤ u(x, t )+ r (τ− t )+〈
q, y −x

〉+ 1

2

〈
y −x, X (y −x)

〉+o(|y −x|2 +|τ− t |)

as y → x and τ→ t . Similarly, P 2,−u(x, t ) contains scalars r , vectors q and
symmetric matrices X such that

u(y,τ) ≥ u(x, t )+ r (τ− t )+〈
q, y −x

〉+ 1

2

〈
y −x, X (y −x)

〉+o(|y −x|2 +|τ− t |)

as y → x and τ→ t . Note that r =φt (x, t ), q =∇φ(x, t ) and X = D2φ(x, t ) if u
is a C 2 function. We now state an equivalent definition of viscosity solutions.

Definition A.2.2. Assume 1 ≤ p <∞ and let u be an upper semi-continuous
function in ΩT . We say that u is a viscosity subsolution of equation (A.23) in
ΩT , if (x, t ) ∈ΩT and (r, q, X ) ∈ P 2,+u(x, t ) implies

r ≤ tr(X )+ p−2
|q|2

〈
q, X q

〉
, if q 6= 0

r ≤ tr(X )+ (p −2)λmax(X ), if q = 0,and p ≥ 2

r ≤ tr(X )+ (p −2)λmin(X ), if q = 0,and 1 ≤ p < 2,
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A.2 Definition of viscosity solutions

For a lower semi-continuous function u, we say that u is a viscosity supersolu-
tion of equation (A.23) in ΩT , if (x, t ) ∈ΩT and (r, q, X ) ∈ P 2,−u(x, t ) implies

r ≥ tr(X )+ p−2
|q|2

〈
q, X q

〉
, if q 6= 0

r ≥ tr(X )+ (p −2)λmin(X ), if q = 0,and p ≥ 2

r ≥ tr(X )+ (p −2)λmax(X ), if q = 0,and 1 ≤ p < 2,

Finally, u ∈C (ΩT ) is a viscosity solution if it is both a viscosity subsolution and
a viscosity supersolution.

For proof of the equivalence of definition A.2.1 and definition A.2.2, we
refer to [K]. The equivalence leads to the following strange example.

Example: "Harry Potter"

Consider the function

f (x) = x sin
(
ln |x|)

in one variable. See figure A.1 for a plot for small values of x. There are no
test-functions touching f from below or above at x = 0. Hence, f is a viscosity
solution of any ordinary differential equation in one variable at x = 0. The point
passes for free. This could potentially be a problem in the theory of viscosity
solutions. If one could create functions to fit any differential equation, there
would be no value in finding viscosity solutions. However, for any continuous
function f , the points at which there exists a test-function φ touching u from
below or above, are dense in R, see [K] for a proof.

Figure A.1: f (x) = x sin
(
ln |x|)
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Viscosity solutions

A.3 The method of vanishing viscosity

The name viscosity solution originally stems from the method of vanishing
viscosity. For a general second order PDE,

F (x,u,∇u,D2u) = 0, (A.24)

we add the term ε∆u to the right hand side. Usually the solution of

F (x,uε,∇uε,D2uε) = ε∆uε

will be more smooth. One can then send ε to zero in hope to find a solu-
tion. Under natural assumptions on F , the process yields the correct viscosity
solution to equation (A.24), see [E] chapter 10.

The method can be seen in the following example:

∂uε
∂t

+ 1

2

(
∂uε
∂x

)2

= ε∂
2uε
∂x2 , x ∈Rn , 0 ≤ t <∞

uε(x,0) = x2.

The solution may be found by a transformation of the equation to the heat
equation. The solution is

uε(x, t ) = ε ln(1+2t )+ x2

1+2t
.

Sending ε to zero, gives us u(x, t ) = x2

1+2t , which is the viscosity solution to

∂u

∂t
+ 1

2

(
∂u

∂x

)2

= 0, x ∈Rn , 0 ≤ t <∞

u(x,0) = x2.
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Mean value property

We show that the value function u satisfies

u(x) = n +2

p +n

∫
Bε(x)

u(y)d y + p −2

2(p +n)

{
max
B ε(x)

u +min
B ε(x)

u

}
+o(ε2)

if and only if ∆N
p u = 0. Here, u is assumed to be a C 2 function with non-

vanishing gradient. First, by the classical Taylor expansion, we claim that

u(x)−
∫

Bε(x)
u(y)d y =− ε2

2(n +2)
∆u(x)+o(ε2). (B.25)

To see this, let ε> 0 be given. We use a Taylor expansion for u and integrate
over Bε(x):

∫
Bε(x)

u(y)d y =
∫

Bε(x)
u(x)d y +

∫
Bε(x)

〈∇u(x), y −x
〉

d y

+ 1

2

∫
Bε(x)

〈
y −x,D2u(x)(y −x)

〉
d y +o(ε2)

The third integral is zero, because
∫

Bε(x)

(
yi −xi

)
d y = 0 for i = 1, ...,n by

symmetry. For the last integral we have

n∑
i , j=1

ui j

∫
Bε(x)

(yi −xi )(y j −x j )d y =
n∑

i , j=1
ui jδi j

∫
Bε(x)

(yi −xi )2 d y.

Let Vn(R) denote the volume of the n-ball with radius R. Then∫
Bε(x)

(yi −xi )2 d y = εn+2
∫

B1(0)
z2

i d z = εn+2

n

∫
B1(0)

|z|2 d z = εn+2

n +2
Vn(1).

Returning to the Taylor expansion we find

u(x)−
∫

Bε(x)
u(y)d y =− εn+2

2(n +2)
· Vn(1)

Vn(ε)
∆u(x)+o(ε2) =− ε2

2(n +2)
∆u(x)+o(ε2).

Hence, equation (B.25) holds.

71



Mean value property

Next, we want to relate the minimum and maximum of a function to the
∞−Laplacian. The gradient direction is close to the maximizing direction,

max
B ε(x)

u ≈ u

(
x +ε ∇u(x)

|∇u(x)|
)

.

Writing out the Taylor expansion for both the maximum and minimum gives

u(x)− 1

2

(
max
B ε(x)

u +min
B ε(x)

u

)
≈−ε

2

2
∆N
∞u(x)+o(ε2).

The approximation in the above equation can be estimated with an error of
o(ε2), see Lemma 13 in [L]. Multiplying equation (B.25) by (n +2) and the
above equation by (p −2) gives

u(x)− p −2

2(n +p)

{
max
B ε(x)

u +min
B ε(x)

u

}
− n +2

n +p

∫
Bε(x)

u(y)d y =− ε2

2(n +p)
∆N

p u +o(ε2).

We see that

u(x) = n +2

n +p

∫
Bε(x)

u(y)d y + p −2

2(n +p)

{
max
B ε(x)

u +min
B ε(x)

u

}
+o(ε2)

if and only if ∆N
p u = 0.
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Concave square root for the two-dimensional
Laplacian

The problem ∆u =−1 inΩ⊂R2

u = 0 on ∂Ω.

where Ω is a convex domain, has the property that
p

u is concave. The problem
was studied in [M] and here we discuss the calculations hidden in this paper.
Using complex notation for a function f (x, y) of two variables we list some
identities.

1. ∂ f
∂z = fz = 1

2

(
fx − i fy

)
, ∂ f

∂z̄ = f z̄ = 1
2

(
fx + i fy

)
2. fz f z̄ = 1

4 |∇ f |2

3. fzz = 1
4

(
fxx − fy y

)
− i

2 fx y , f z̄ z̄ = 1
4

(
fxx − fy y

)
+ i

2 fx y

4. fzz̄ = 1
4∆ f

5. fzz f z̄ z̄ − f 2
zz̄ = 1

4

(
f 2

x y − fxx fy y

)
Solutions to the problem above are always positive due to the comparison
principle. Hence, we may study the function v =p

u in Ω. It has the following
second derivatives.

vzz =− 1

4u
3
2

u2
z +

1

2
p

u
uzz

v z̄ z̄ =− 1

4u
3
2

u2
z̄ +

1

2
p

u
uz̄ z̄

vzz̄ =− 1

4u
3
2

uz uz̄ − 1

8
p

u
.
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Concave square root for the two-dimensional Laplacian

We wish to study the quantity det(D2v) = vxx vy y−v2
x y . The sign of this quantity

can tell us whether v is concave or not. We have, using the identities (1)-(5),

4u2det(D2v) = 16u2 (
vzz̄ − vzz v z̄ z̄

)
= u

4
+uz uz̄ −4uuzz uz̄ z̄ +2

(
u2

z̄ uzz +u2
z uz̄ z̄

)
.

Note that on the boundary, ∂Ω we have(
4u2det(D2v)

)
∂Ω

=−1

2

(
u2

y uxx −2ux uy ux y +u2
x uy y

)
.

Makar-Limanov showed that this quantity, which is close to the mean curvature
for the level set of u, is strictly positive on the boundary, provided Ω is a
convex domain. We now have a function that is positive on the boundary.
If we can show that it solves some elliptic PDE, there might be hope to use
a comparison principle to show that it must be positive everywhere. In the
following calculations, we will use the fact that uzz̄ =−1

4 and higher derivatives
are zero.

1

4
∆

(
4u2det(D2v)

)
=

(
4u2det(D2v)

)
zz̄

=
(
2u2

z̄ uzzz −4uuz̄ z̄ uzzz

)
z̄

=−4u|uzzz |2 ≤ 0.

Thus, 4u2det(D2v) is a superharmonic function and cannot obtain a strict min-
imum inside Ω. Since u > 0, we must have det(D2v) > 0 everywhere in Ω,
which means that both eigenvalues of the Hessian matrix D2v are of the same
sign. Note that

∆v = 4vzz̄ =− 1

4u
3
2

|∇u|2 − 1

8
p

u
< 0.

This means that both eigenvalues must be negative making v =p
u a concave

function.
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