
ENABLING PYTHON DRIVEN
CO-SIMULATION MODELS WITH

PYTHONFMU
Hatledal, Lars Ivar* Collonval, Frédéric

Zhang, Houxiang Modeling & Simulation
Department of Ocean Operations and Civil Engineering Safran Tech

Norwegian University of Science and Technology CS80112 Chateaufort
Postbox 1517, 6025 Aalesund, Norway 78772 Magny Les Hameaux, France

KEYWORDS

Co-simulation; Modelling; FMI; FMU; Python

ABSTRACT

This paper introduces PythonFMU, an easy to
use framework for exporting Python 3.x code as co-
simulation compatible models compliant with version
2.0 of the Functional Mock-up Interface (FMI). The
framework consists of a set of helper classes and
a command line utility for transforming compliant
python source into ready to use cross-platform FMUs.
PythonFMU seamlessly takes care of a number of low-
level FMI functions such as getting and setting variable
values, and state handling, including serialization and
deserialization. Furthermore it provides pre-built bi-
naries for Windows and Linux 64-bits, generates the
required modelDescription.xml containing meta-data
about the model and packages all related files into a
Functional Mock-up Unit (FMU) - ready to be im-
ported into any FMI compatible simulation tool. The
framework can be effortlessly installed using de-facto
standard Python package managers pip and conda.
While PythonFMU is more geared towards ease of use
and enabling Python driven co-simulation models, it
is shown to have adequate performance compared to
much more low-level alternatives targeting other pro-
gramming languages.

INTRODUCTION

The Functional Mock-up Interface (FMI) [Blochwitz
et al., 2012] is a tool independent standard managed
by the Modelica Association that supports both Model
Exchange (ME) and Co-Simulation (CS) of dynamic
models. A key goal of FMI is to improve the exchange
of simulation models between suppliers and original
equipment manufacturers (OEMs). The current ma-
jor version of the standard is 2.0, which was released in
2014. A minor revision, 2.0.1, was released in 2019.

An FMU is a model that implements the FMI stan-
dard and is distributed as a zip-file with the extension
.fmu. This archive contains:
• An XML-file that contains meta-data about the
model, named modelDescription.xml.

*Corresponding author. E-mail: laht@ntnu.no

• C-code implementing a set of functions defined by
the FMI standard.
• Other optional resources required by the model im-
plementation.

The FMI standard consists of two main parts, both
of which a single FMU may support:
• FMI for ME: Models are exported without solvers
and are described by differential, algebraic, and discrete
equations with time-, state-, and step-events.
• FMI for CS: Models are exported with a solver, and
data is exchanged between subsystems at discrete com-
munication points. In the time between two communi-
cation points, the subsystems are solved independently
from each other.

The work presented in this paper, however, is only
concerned about the co-simulation part of the standard.

Many tools support importing co-simulation FMUs,
however, fewer tools supports exporting such FMUs.
Many of whom are commercial and or domain specific.
Furthermore, FMUs generated with these tools may
not support the optional parts of the standard such
as state handling, which are required by some more
advanced co-simulation algorithms in order to achieve
better numerical accuracy and stability during simula-
tions[Broman et al., 2013, Cremona et al., 2016, Tavella
et al., 2016].

Fig. 1: Possible use of PythonFMU in realizing complex
cyber-physical systems using FMI based co-simulation.

Python [Van Rossum et al., 2007] is one of the most
popular programming language today [O’Grady, 2020].
The major reasons for that are the ease of learning the
language, the huge spectra of libraries covering fields

such as video game, machine learning, web server or
scientific computing and the recent explosion of data
science in which Python plays a central role. Of partic-
ular importance for scientific computing is the creation
of the Numpy [Oliphant, 2007] library that bridge the
gap between efficient code in C or Fortran languages
and the ease of a scripting language. That library is
now at the heart of all major scientific Python libraries
from Pandas for data analysis to Scipy for classical alge-
bra operators or Scikit-learn for machine learning anal-
ysis.

This paper introduces PythonFMU, an easy to use
Python based framework that allows plain Python code
to be exported as FMI compatible co-simulation FMUs.
Figure. 1 shows how PythonFMU could potentially be
used to implement complex cyber-physical systems that
are aggregates of models from different simulation do-
mains.

The paper is organized as follows. Firstly some re-
lated works are given. After which PythonFMU is in-
troduced. Then some benchmark results are presented.
Finally some concluding remarks and notes on future
works are provided.

RELATED WORK

A number of open-source software frameworks for ex-
porting FMUs from source-code have been developed in
the recent years. While many more tools are capable of
exporting FMUs like 20Sim, OpenModelica, MATLAB
and SimulationX, this paper is more focused on frame-
works that allows the generation of FMUs from plain
source-code. Each of these are described in more detail
below.

CPPFMU [SINTEF Ocean, 2017] is a set of inter-
faces and helper functions for writing FMI-compliant
model/slave code in C++ using high-level features
such as exceptions and automatic memory manage-
ment, rather than having to implement the low-level C
functions specified by FMI. However, while CPPFMU
makes implementing and compiling the shared library
required by an FMU, it does not handle generating
the modelDescription.xml nor packaging of the FMU.
CPPFMU was developed as part of the R&D project
Virtual Prototyping of Maritime Systems and Opera-
tions (ViProMa) Hassani et al. [2016], and is currently
maintained by SINTEF Ocean.

FMUSDK [QTronic, 2017] is a free, BSD licensed,
software development kit (SDK) provided by QTronic
to demonstrate basic use of FMUs for ME and for CS
as defined by FMI version 1.0 and 2.0. The software is
written in C++, but models are to be implemented in
C. The first version of FMU SDK was released already
in 2010, with the latest version, 2.0.6, being released in
2018.

Like CPPFMU, FMUSDK does not auto-generate
the modelDescription.xml. The main difference be-
tween these tools is that CPPFMU provides a more
high level and structured API in C++, whereas
FMUSDK requires source-code to be written in quite
low-level C. On the other hand, FMUSDK supports

ME and provides utilities for packaging the model as
an FMU, whereas CPPFMU only provides helper func-
tions to aid in development.

JavaFMI [Galtier et al., 2017] is a set of compo-
nents for working with the FMI standard using Java,
developed by SIANI institute (Las Palmas University)
and funded by the European Institute for Energy Re-
search (EIFER). It support both import and export
of FMUs. For export, it support FMI 2.0 for Co-
simulation. Generated FMUs runs both on Linux and
Windows. JavaFMI has been actively maintained since
its inception in 2013 and is licensed under the LGPLv3.

FMI4j [Hatledal et al., 2018] is a MIT licensed soft-
ware package for dealing with Functional Mock-up
Units (FMUs) on the JVM. It support both import
and export of FMUs. For export, it support FMI 2.0
for Co-simulation. FMI4j is written in Kotlin, which
is 100% interoperable with Java. On the native side,
FMI4j makes use of CPPFMU to implement the FMI
functions. FMUs generated using FMI4j can run on
both Linux and Windows.

While both JavaFMI and FMI4j allows FMUs to be
created using the Java language, they differ quite a
bit in their implementation and usage. JavaFMI uses
message-passing to bridge Java and the underlying C
functions defined by FMI, while FMI4j relies on the
Java Native Interface (JNI) for this. Consequentially,
FMI4j generates much faster executables. Another key
difference is how users define their model. JavaFMI is
imperative, e.g meta-data is defined using API func-
tions. FMI4j on the other hand is declarative, with
meta-data defined using annotations.

Evidently, some open-source software for generating
FMUs from source code already exists. See Table. I
for a summary. However, only the ones targeting the
JVM can be said to be easy to use as these manages
everything related to the creation of an FMU. Still, the
JVM may not be a natural choice for many for imple-
menting models and the barrier for using these tools are
high for non Java developers. CPPFMU and FMUSDK
both eases the process within the realm of C/C++, but
still requires significant know-how in order to produce a
ready to use FMU. Furthermore, these tools only covers
a small subset of available programming languages.

TABLE I: Open-source framework for exporting source-
code as FMUs.

Tool
Target

language
Target

platform
FMI

version
JavaFMI JVM Win, Linux 2.0

FMI4j JVM Win, Linux 2.0
CPPFMU C++ Wina, Linuxa 1.0 & 2.0

FMUSDK C
Wina, Linuxa,

OSXa 1.0 & 2.0

a Binaries are only built for the current platform.

PYTHONFMU

PythonFMU is a MIT licensed framework that en-
ables the packaging of Python 3.x code as co-simulation
FMUs, currently maintained in collaboration between
NTNU and Safran Tech. The library required by users
to implement their own FMI co-simulation slaves as
well as the Command Line Interface (CLI) required
to build the actual FMU is easily retrieved using ei-
ther the pip or conda package managers. Unlike some
FMU exporters, FMUs built with PythonFMU runs
out of the box on both Windows and Linux 64-bit sys-
tems. PythonFMU has been implemented using the
limited Python API, which makes it compatible with
any Python 3.x version. However, PythonFMU does
not bundle a Python distribution, which means that a
compatible Python distribution must be present on the
target system for the FMU to work. The same is true
for any imported 3rd party libraries. Consequentially,
if the slave makes use of e.g. the numpy package for sci-
entific computing, this library must already be present
on the target system. To remedy this, PythonFMU al-
lows users to specify any dependency it should have on
3rd party libraries. This information is bundled with
the FMU as a standard requirements.txt for use with
one of Python’s package managers. Thus allowing end-
users to easily figure out what kind of libraries that
must be installed for it to run on a particular machine.

Listing 1: Writing FMI 2.0 compatible slaves in Python
using PythonFMU.

from pythonfmu import ∗

c l a s s PythonSlave (Fmi2Slave) :

author = ”John Doe”
d e s c r i p t i o n = ”A simple d e s c r i p t i o n ”

de f i n i t (s e l f , ∗∗kwargs) :
super () . i n i t (∗∗ kwargs)

s e l f . realOut = 0 .1
s e l f . r e g i s t e r v a r i a b l e (Real (” realOut ” ,

c a u s a l i t y=Fmi2Causal ity . output))

de f do s tep (current t ime , s t e p s i z e) :
r e turn True

Listing. 1 shows the minimal required code to write
FMI 2.0 compatible co-simulation models in Python
using PythonFMU. Additional FMI functions like e.g.
setupExperiment, enterInitializationMode, exitInitial-
izationMode and terminate have default no-op im-
plementations and may be overridden on demand.
PythonFMU automatically handles getting and set-
ting variables, logging, resetting, state handling, se-
rialization and deserialization as well as generating
the required modelDescription.xml. The fact that
PythonFMU handles state handling makes it possible
to use with advanced co-simulation master algorithms
that depends on rollback capabilities, like variable step
algorithms. This is important in order to achieve nu-
merically stable and accurate simulation results. List-

ing. 2 shows how to build an FMU from Python source
that implements the PythonFMU API using the accom-
panying CLI. Additional options may be specified, such
as documentation and associated project files. The
FMU built by PythonFMU contains pre-built binaries
for Windows and Linux 64-bit. This lowers the thresh-
old for using it tremendously compared to many ex-
porting tools as a C++ compiler does not have to be
installed and the user does not have to figure out how
to cross-compile.

Like FMI4j, PythonFMU makes use of CPPFMU
for implementing the C functions required by the FMI
standard. This shows a clear utility for CPPFMU as
an enabler for higher-level applications to support the
export of FMI compatible co-simulation models.

Listing 2: Building an FMU from Python source using
the PythonFMU CLI.

pythonfmu−bu i l d e r −f PythonSlave . py

RESULTS

In the following some performance metrics for
PythonFMU is given.

Table. II show the performance of PythonFMU com-
pared to other similar tools. The FMUs used all imple-
ments the same model. The model does no computa-
tion during stepping, but defines a single real, integer,
boolean and string variable. These variables are read
by the importing tool after each iteration. 100.000 iter-
ations were run. That makes for a total of 400.000 calls
through the FMI API. The benchmark was performed
on a computer running Windows 10 fitted with an Intel
i7-8700k processor.

TABLE II: Time required to step a simple FMU with
one integer, real, string and boolean variable 100.000
times. All variables are read after each step.

Tool Version Time[s]
FMUSDK 2.0.6 4.6
CPPFMU - 4.6
FMI4j 0.30.0 6.1
JavaFMI 2.6.0 40
PythonFMU 0.6.0 7.9/7.3a

a Using lambdas for getters, as
demonstrated in Listing. 3.

From the results we can see that FMUSDK and
CPPFMU are equally fast, and as expected, faster than
both FMI4j and PythonFMU. This is natural as both of
these uses CPPFMU internally and have an additional
overhead from having to cross the native bridge using
JNI and the Python C API respectively. JavaFMI is
by far the slowest contender, due to it’s choice of us-
ing message passing over direct API calls through JNI.
Note that PythonFMU provides two results. By sup-
plying a lambda function to the optional getter and
setter parameters of PythonFMUs ScalarVariable as

demonstrated in Listing. 3, users may increase per-
formance of variable read/write. When not specifying
lambda functions for the getter and setter, PythonFMU
defaults to using the built in Python functions getattr
and setattr respectively. Furthermore, the use of lamb-
das allows non Python fields to be used as variables.

Listing 3: Supplying a lambda for increased flexibil-
ity and performance at the cost of a slight increase in
verbosity.

s e l f . r e g i s t e r v a r i a b l e (Real (” realOut ” ,
c a u s a l i t y=Fmi2Causal ity . output
g e t t e r=lambda : s e l f . r e a l))

Note that the results presented here does not neces-
sarily translate to more complex models with more code
evaluation, as the presented benchmark it is mainly in-
terested in measuring the performance of raw FMI calls.
As Python is an interpreted language it is naturally
slower to run than e.g. C/C++.

CONCLUSIONS

This paper introduces PythonFMU, an easy to use
framework for exporting Python code as FMI 2.0 for co-
simulation compatible models. The framework is easy
to install and requires very little boilerplate code, allow-
ing users to focus on the problem at hand. This coupled
with the fact that Python is an easy to use scripting
language with a strong standard library and a rich set
of 3rd party libraries makes it ideal for fast prototyping.
Furthermore, the position Python has as a language for
scientific computing should make PythonFMU a nat-
ural choice for data scientists that want to take ad-
vantage of or contribute to co-simulation technology.
In fact, PythonFMU was specifically developed to al-
low data scientist with little or no background from
co-simulation or software engineering at NTNU to con-
tribute with models related to the development of dig-
ital twins, as Python and it’s strong ecosystem of li-
braries allows easy integration with e.g. models that is
connected to web services or utilizes neural networks.
While the focus of PythonFMU is ease of use and being
an enabler for Python driven co-simulation models, the
performance is shown to be quite adequate compared
to more low-level implementations.

Future works includes adding more features,
bug-fixes and improving documentation. The
source is available at https://github.com/NTNU-IHB/
PythonFMU, and users are encourage to contribute.

ACKNOWLEDGMENT

The research presented in this paper is supported by
the Norwegian Research Council, SFI Offshore Mecha-
tronics, project number 237896.

References

T. Blochwitz, M. Otter, J. Akesson, M. Arnold,
C. Clauss, H. Elmqvist, M. Friedrich, A. Junghanns,
J. Mauss, D. Neumerkel, et al. Functional mockup
interface 2.0: The standard for tool independent ex-
change of simulation models. In Proceedings of the 9th

International MODELICA Conference; September 3-5;
2012; Munich; Germany, number 076, pages 173–184.
Linköping University Electronic Press, 2012.
D. Broman, C. Brooks, L. Greenberg, E. A. Lee,
M. Masin, S. Tripakis, and M. Wetter. Determinate
composition of fmus for co-simulation. In 2013 Pro-
ceedings of the International Conference on Embedded
Software (EMSOFT), pages 1–12. IEEE, 2013.
F. Cremona, M. Lohstroh, D. Broman, M. Di Natale,
E. A. Lee, and S. Tripakis. Step revision in hybrid co-
simulation with fmi. In 2016 ACM/IEEE International
Conference on Formal Methods and Models for System
Design (MEMOCODE), pages 173–183. IEEE, 2016.
V. Galtier, M. Ianotto, M. Caujolle, R. Corniglion, J.-
P. Tavella, J. É. Gómez, J. J. H. Cabrera, V. Rein-
bold, and E. Kremers. Building parallel fmus (or ma-
tryoshka co-simulations). In Proceedings of the 12th
International Modelica Conference, Prague, Czech Re-
public, May 15-17, 2017, number 132, pages 663–671.
Linköping University Electronic Press, 2017.
V. Hassani, M. Rindarøy, L. T. Kyllingstad, J. B.
Nielsen, S. S. Sadjina, S. Skjong, D. Fathi, T. Johnsen,
V. Æsøy, and E. Pedersen. Virtual prototyping of mar-
itime systems and operations. In ASME 2016 35th In-
ternational Conference on Ocean, Offshore and Arc-
tic Engineering. American Society of Mechanical Engi-
neers Digital Collection, 2016.
L. I. Hatledal, H. Zhang, A. Styve, and G. Hovland.
Fmi4j: A software package for working with functional
mock-up units on the java virtual machine. In The
59th Conference on Simulation and Modelling (SIMS
59). Linköping University Electronic Press, Linköpings
universitet, 2018.
S. O’Grady. The redmonk programming lan-
guage rankings: January 2020, 2020. URL
https://redmonk.com/sogrady/2020/02/28/

language-rankings-1-20/. (Date accessed 08-
March-2020).
T. E. Oliphant. Python for scientific computing. Com-
puting in Science & Engineering, 9(3):10–20, 2007.
QTronic. Fmusdk, 2017. URL http://www.qtronic.

de/de/fmusdk.html. (Date accessed 06-March-2020).
SINTEF Ocean. Cppfmu, 2017. URL https://

github.com/viproma/cppfmu. (Date accessed 06-
March-2020).
J.-P. Tavella, M. Caujolle, S. Vialle, C. Dad, C. Tan,
G. Plessis, M. Schumann, A. Cuccuru, and S. Revol.
Toward an accurate and fast hybrid multi-simulation
with the fmi-cs standard. In 2016 IEEE 21st Interna-
tional Conference on Emerging Technologies and Fac-
tory Automation (ETFA), pages 1–5. IEEE, 2016.
G. Van Rossum et al. Python programming language.
In USENIX annual technical conference, volume 41,
page 36, 2007.

AUTHOR BIOGRAPHIES

LARS IVAR HATLEDAL received the B.Sc. degree
in automation and the M.Sc. degree in simulation and
visualization from the Norwegian University of Science

and Technology (NTNU), Ålesund, Norway, in 2013
and 2017, respectively, where he is currently pursuing
the Ph.D. degree with the Department of Ocean Oper-
ations and Civil Engineering. Email: laht@ntnu.no

DR. FRÉDÉRIC COLLONVAL is the lead devel-
oper of a collaborative multi-systems and multi-physics
simulation tool, of the Collaborative System Design
team at Safran R&D center. He obtained his PhD
in numerical simulation and modeling in gas turbine
combustion chamber at TU Munich. He then joined
Safran Group to work on airplane engine performance
modeling and associated simulation tools. In 2018, he
co-founded a new kind of collaborative simulation tool
to target multi-physics simulation in pre-design phase
for rapid design evaluation at Safran. He is interested
in enhancing physical simulation tools by leveraging the
features of innovative open-source projects.

PROF. HOUXIANG ZHANG received the Ph.D.
degree in mechanical and electronic engineering, in
2003, and the Habilitation degree in informatics from
the University of Hamburg, in February 2011. Since
2004, he has been with the Department of Informat-
ics, Faculty of Mathematics, Informatics and Natural
Sciences, Institute of Technical Aspects of Multimodal
Systems (TAMS), University of Hamburg, Germany.
He joined the NTNU, Norway, in April 2011, where
he is currently a Professor of robotics and cybernetics.
His research interests lies on two areas: one is on bio-
logical robots and modular robotics and the other is on
virtual prototyping and maritime mechatronics.

