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Abstract: Small system properties are known to depend on geometric variables in ways that are
insignificant for macroscopic systems. Small system considerations are therefore usually added to the
conventional description as needed. This paper presents a thermodynamic analysis of adsorbed films
of any size in a systematic and general way within the framework of Hill’s nanothermodynamics.
Hill showed how to deal with size and shape as variables in a systematic manner. By doing this,
the common thermodynamic equations for adsorption are changed. We derived the governing
thermodynamic relations characteristic of adsorption in small systems, and point out the important
distinctions between these and the corresponding conventional relations for macroscopic systems.
We present operational versions of the relations specialized for adsorption of gas on colloid particles,
and we applied them to analyze molecular simulation data. As an illustration of their use, we report
results for CO2 adsorbed on graphite spheres. We focus on the spreading pressure, and the entropy
and enthalpy of adsorption, and show how the intensive properties are affected by the size of the
surface, a feature specific to small systems. The subdivision potential of the film is presented for
the first time, as a measure of the film’s smallness. For the system chosen, it contributes with a
substantial part to the film enthalpy. This work can be considered an extension and application of the
nanothermodynamic theory developed by Hill. It provides a foundation for future thermodynamic
analyses of size- and shape-dependent adsorbed film systems, alternative to that presented by Gibbs.

Keywords: adsorption; thin film; nanothermodynamics; small-system; size-dependent;
thermodynamics; spreading pressure; entropy of adsorption

1. Introduction

Adsorption is a central process in nature and in engineering. An important case in nature is
adsorption on particles in the atmosphere. It has been recognized for many years that the representation
of cloud processes is a significant source of uncertainty in climate models. Many interactions
among particles in the atmosphere, clouds and precipitation are relevant for such processes and
are the focus of a large area of climate change research [1]. The particles may vary in type,
size and shape, and may originate from phenomena such as forest fires and volcanic eruptions,
or from human activity such as industry and transportation. They follow the rising air through
expansion and cooling, and serve, among other things, as condensation and ice nucleation sites.
The initiation of condensation on particles begins with the adsorption or absorption of molecules
from the surrounding air. Therefore, the development of more accurate climate models will benefit
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from a better understanding of these processes for small, curved particles. Although we use herein
condensation on particles in the atmosphere as an important application, the focus of this work is on
the fundamentals of adsorption on small systems in general.

A substantial amount of research from the 1930s onward on size-effects in thermodynamics may
be found, for instance, in the literature on nucleation [2–8]. The majority of the work is based on
Gibbs’ theory of heterogeneous systems [9]. However, there exists an alternative to the method of
Gibbs, developed by Hill in the early 1960s [10]. Hill’s method distinguishes itself by the fact that
it is a unified and systematic approach to the treatment of all small systems, and does not require
the concept of dividing surfaces to be introduced at the outset. The equivalence of Hill’s and Gibbs’
method in its most general form for the description of curved surfaces has recently been verified [11].
The method is a generalization of macroscopic thermodynamics to small systems, and thus contains
conventional thermodynamics as a special case in the macroscopic limit. By generalizing the
fundamental differential equations traditionally used in thermodynamics, the whole internal structure
of thermodynamic relations for small systems follows naturally by the familiar methods such as
Euler integration, which otherwise would not apply for size dependent systems. The analogue of
the Gibbs–Duhem equation for small systems is then readily available, and relations describing the
size- and shape-dependence of all intensive properties follow. This has motivated us to describe
adsorption on small systems using Hill’s theory to provide a solid foundation for the present and
similar investigations. The aim of the study was thus to present a set of equations for adsorption on a
small adsorbent, alternative to existing theories, most prominently Gibbs, and illustrate the set using
molecular simulations of CO2 adsorption on a small sphere of graphite.

In conventional thermodynamics an adsorption system may be described in several ways, one of
which considers the system to be the adsorbed phase only. The adsorbent properties are then
subtracted from the properties of the surroundings, with the exception of the interaction energy
with the adsorbed phase [12]. This view recognizes the asymmetric nature of the system and leads
naturally to thermodynamic properties per film molecule. Another approach is to treat the system as a
solution of adsorbent and adsorbate [13]. This application is referred to as solution thermodynamics.
Though both approaches may be applied, the potential usefulness of one over the other relates to the
possible interchange of adsorbent and adsorbate components. In the asymmetric approach, hereafter
referred to as adsorption thermodynamics, the focus is on obtaining thermodynamic properties and
relations for the adsorbed phase. In the systems typically considered, the properties are categorized
as extensive or intensive depending on whether they are proportional to or independent of the
size of the film. Therefore, even though the size is necessary in order to completely characterize
the film, the nature of the film appears to be independent of it. As a consequence, the differential
thermodynamic relations for the adsorbed phase are Euler homogeneous and of first degree in the
extensive properties [14]. The relations are therefore directly integrable by the theorem of Euler.

For small systems, the statements above must be modified. The properties normally referred
to as intensive are no longer independent of size, so the conventional use of the terms intensive and
extensive must now refer to properties that obtain the implied characteristics in the macroscopic
limit. The differential thermodynamic relations for a single system are no longer linear homogeneous
functions, and can not be directly integrated as before. As the nature of the film now depends on its
size and shape, it becomes of interest to systematically investigate the effects of size and shape in a
framework that allows for this in a general way. This is possible in the thermodynamic theory of small
systems, or nanothermodynamics, as developed by Terrell L. Hill [10], and is the precise reason why
we would like to advocate this method. For a more recent text on the method, see Bedeaux et al. [15].

To be able to recognize these differences is important, because it enables us to compare energies of
systems that vary in size. Consider two nanoparticles at ambient conditions. One is slightly larger than
the other, but they are otherwise identical. The particles do not have bare surfaces; molecules will be
adsorbed from the environment—for instance, adsorption of CO2 on the surfaces of the particles (not
adsorption of nano-sized particles on a macroscopic surface). A central question is then: how do the
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thermodynamic properties of the adsorbed phase differ between the two cases? This is an important
question because the adsorbed phase is an interface through which the particle interacts with its
environment. Some forms of energy transfer and some forms of interactions are strongly influenced by
the presence of adsorbed phases. Not only would size affect the intensive properties, but depending on
the constraints on the system, intensive properties may suffice to determine the system size. At length
scales where properties typically are size- and shape-dependent, the nanothermodynamics of Hill may
help us investigate the interplay between the nature of a system and its size. This is not to say that
other approaches may not be successful (see, e.g., [3]), but the corresponding overarching relations
(e.g., Maxwell relations) may be less obvious in these. Therefore, the existence of an alternative method
may be useful per se.

Our aim was, therefore, to establish operational thermodynamic relations that enable
investigations of thin film properties from a nanothermodynamic perspective. Our work has its
basis in the work of Hill on nanothermodynamics [10] and papers V [16] and IX [13] in the series
on statistical mechanics of adsorption. The relations were applied to molecular simulations of CO2

adsorption on a spherical graphite-like adsorbent, and to CO2 adsorption on a generic adsorbent
with a strong interaction potential. The purpose of the generic adsorbent case was to observe size
effects that were thought to possibly occur when there is significant adsorption on very small particles.
The outcome was meant to give a foundation for future, similar developments. The contribution of this
work is to clarify and extend the work of Hill on nanothermodynamics and provide a new application.

This paper is organized as follows: In Section 2 we derive general thermodynamic relations
for a single-component adsorbent with a single-component adsorbed phase. As the application of
Hill’s nanothermodynamics is rather limited so far, we considered it necessary to recapitulate the
central hypothesis and basis. Readers that are mainly interested in the operational relations and their
application may skip this section. Readers that are interested in a comprehensive description of the
theory and philosophy of nanothermodynamics are referred to the original work [17] or the recent
work [15].

In Section 3 we use the relations to derive operational equations that in turn are applied to the
chosen cases. We make simplifying assumptions for the adsorbent, select a reference state typical of
adsorption thermodynamics and introduce the condition of equilibrium between the film and the gas.
We also derive relations for the dependence of intensive properties on size.

In Section 4 we describe the details of the simulation setup and the methodology for the
simulations and the thermodynamic analysis. In Sections 5 and 6 we present and discuss the
simulation results, demonstrating the size dependence of a few select thermodynamic properties.
We compare the integral free energy per unit area to the differential change in free energy with respect
to the change in area. These are properties that are equal in the macroscopic limit. We compare the
enthalpy per molecule to the entropy per molecule times temperature, which are also properties that
are equal in the macroscopic limit. Finally, in Section 7 we make concluding remarks and propose
directions for future work.

2. Nanothermodynamic Framework

In this section, we explain the basic idea of Hill, after considering a common example that
motivates his approach; see also Bedeaux et al. [15].

2.1. Small vs. Large Systems

Consider a macroscopic, non-volatile adsorbent of one component with adsorbed adsorbate of
one component on the surface, in complete equilibrium with a macroscopic gas adsorbate of the
same component. The gas is at temperature T and chemical potential µ, and the external pressure is
completely determined by these two variables. The adsorbent may then be taken as a thermodynamic
system with a fixed number NA of its component species, in the constant temperature and pressure
environment provided by the gas. A large system has the characteristic Gibbs energy GA(T, p, NA) =
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NA f (T, p). Here f is a function of T and p, but independent of the size NA and the amount of adsorbed
adsorbate N. This implies that contributions of the surface and contributions of the adsorbed adsorbate
to the thermodynamic functions of the adsorbent are negligible and that the energy GA is extensive in
NA. From standard thermodynamics we then have

µ′A =

(
∂GA
∂NA

)
T,p

= f (T, p) =
GA
NA

(1)

where the chemical potential is denoted by a mark to ensure it is not confused with the chemical
potential in the general Section 2.

Now consider instead the same system, not large, but small enough for the intensive properties to
depend on the size, as measured by the value of NA. The energy needs to include additional terms
related to the size.

The first equality in Equation (1) is still true, but the chemical potential µ′A is now a different
function that depends on the size of the system. Furthermore, GA is no longer extensive in NA;
thus, the relation µ′A = GA/NA is no longer true. The relation is re-established in the macroscopic
limit, when the terms related to the system size become insignificant. An exact relation, in place of
Equation (1), that is valid for the small system may be given using either Gibbs’ or Hill’s approach.
In Hill’s approach a new intensive property denoted by the “hat” symbol is introduced to denote
the last member of Equation (1); see [17] (p. 1). Here the property is the new chemical potential
µ̂′A ≡ GA/NA, but for other environments analogous properties are defined. The introduction of this
property helps distinguish between the terms µ′ANA and µ̂′ANA that appear in the integrated forms of
the thermodynamic potentials of the macroscopic and small systems, respectively. That these terms are
different is a consequence of the fact that the fundamental equations for small systems are not Euler
homogeneous. This is the essential difference between macroscopic and small system thermodynamics.
Both µ′A and µ̂′A for small systems are functions of NA in addition to T and p, and are therefore different
from the macroscopic chemical potential. In the macroscopic limit µ′A and µ̂′A both become equal to
the macroscopic chemical potential.

When the environment variables include multiple extensive variables, e.g., T, p, N1, N2, . . . ,
new intensive properties conjugate to the extensive variables are not defined. Instead, the energy
term is referred to as X, and depends on the environment. This notation still distinguishes it from the
respective terms, e.g., X 6= µ1N1 + µ2N2 + . . . , in the integrated form of the thermodynamic potential
for the macroscopic system, but it does not indicate what type of energy it is per se.

2.2. Hill’s Extension

The example above shows how properties of small systems may depend on the system size.
A relevant theory must therefore allow for variations in size. The theory needs, furthermore, to produce
thermodynamic functions and relationships for a single small system. Hill was able to extend large
scale thermodynamics to include small systems. In the macroscopic limit his theory becomes identical
to the standard thermodynamic equations.

Macroscopic thermodynamics can be applied to a large sample of small systems, such as a
macromolecular solution where the small system is the solute macromolecule. In this description we
may change the number of small systems, but we cannot change the size of the small system itself.
To have a solid foundation for the theory and at the same time allow for variations in size, Hill used
the macroscopic thermodynamics of an ensemble of independent small systems as his starting point
and introduced size-determining properties as variable parameters. An ensemble is a large collection
of systems, where each system replicates the thermodynamic state and environment of the actual
thermodynamic system [18]. A member of the ensemble may thus be referred to as a replica.

The system of practical interest in this work is an adsorbent consisting of a single component
of quantity NA with an adsorbed phase consisting of a single component of quantity N. The system
is at temperature T, pressure p and adsorbed component chemical potential µ, and is completely
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characterized by T, p, µ and NA. A real system of this type will always exist in the presence of
adsorbate molecules—for instance, as free molecules in a gas. The distinction between adsorbed and
free molecules is then somewhat arbitrary. There is nothing within the framework of thermodynamics
that provides a unique definition of the distinction, so this information must come from elsewhere,
such as from experiment or from a theoretical model. In order to stay as general as possible, we make
no assumptions in this regard for the time being; cf. Section 4.

In the present case, the method of Hill considers an ensemble of N independent small systems
at temperature T, pressure p and adsorbed component chemical potential µ. All systems have the
same assigned amount of adsorbent component NA. The ensemble, with total properties denoted by
subscript t, can now be characterized by the entropy St, volume Vt, amount of adsorbed component Nt

and amount of adsorbent component NNA. We allow for an independent variation in the number of
small systems N and also in the size of the small systems, as given by NA. The characteristic function
for the ensemble in terms of the set of independent variables St, Vt, Nt, NA, N is the internal energy
Ut given by

dUt = T dSt − p dVt + µ dNt + µAN dNA + X dN (2)

where X, the replica energy, may from Equation (2) be formally defined by

X ≡
(

∂Ut

∂N

)
St ,Vt ,Nt ,NA

(3)

The function X describes how a change dN in the number of small systems will change the
internal energy of the entire ensemble through X dN . From a physical perspective X dN refers to the
process of adding systems to the ensemble, each with the same amount of adsorbent component NA,
while keeping St = N S, Vt = N V̄, and Nt = N N̄ constant. This process explains why X may
be referred to as the replica energy. For the distribution of small systems over the possible states,
this means that the entropy S, the mean volume V̄ and the mean amount of adsorbed component
N̄ must decrease. In the process, the ensemble gains the amount NA dN of adsorbent component,
as opposed to the amount N dNA, while the properties St, Vt and Nt must be redistributed across the
new number of systems N + dN . The term X dN is of the same type as the chemical potential term
µAN dNA. However, µA refers to the addition of a differential amount dNA of adsorbent component
for each replica,N dNA in total, while X refers to the addition of a single system, or an integral amount
of adsorbent component NA. We see this also by looking at the last two terms in Equation (2) which may
be rewritten as µAN dNA + X dN = µA d(NNA) + (X − µANA) dN = µA dNt,A + (X − µANA) dN .
In the macroscopic limit the ensemble energy is completely characterized by St, Vt, Nt and Nt,A and the
term (X− µANA) dN is zero. It follows that in the macroscopic limit X → µANA. This motivates the
definition of the new function µ̂A by µ̂ANA ≡ X such that µ̂A → µA in the macroscopic limit. Both µ̂A
and µA differ from the macroscopic chemical potential at the same T and p.

The small system can therefore be said to differ from a large one, by the thermodynamic function E ,
where E ≡ (µ̂A − µA)NA. This function, which can be viewed as a correction from macroscopic
thermodynamics, has been called the subdivision potential, because the process of subdividing
the ensemble into a larger number of smaller systems, while keeping St, Vt, Nt and Nt,A constant,
requires the energy E dN . It has recently been shown to contain interesting size-scaling laws [15,19,20].
The replica energy, the subdivision potential and the scaling laws are particular for the variables that
control the ensemble. The presented results refer to an osmotic ensemble, with environment variables
T, p, µ and NA.

Next come the thermodynamic functions that follow from Equation (2). By integrating Equation (2)
at constant T, p, µ, NA; defining Ut ≡ N Ū, St ≡ N S, Vt ≡ N V̄ and Nt ≡ N N̄; and dividing by N we
obtain the mean internal energy of a single small system given by

Ū = TS− pV̄ + µN̄ + µ̂ANA (4)
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By substituting the definitions for Ū, S, V̄ and N̄ in Equation (2) and eliminating µ̂ANA by
Equation (4), it follows that

dŪ = T dS− p dV̄ + µ dN̄ + µA dNA (5)

The differential change in internal energy for a single small system given by Equation (5) has the
same form as for a macroscopic system, with the important distinction that the intensive properties are
functions of the size of the system. The energy Ū is therefore not a linear homogeneous function of S,
V̄, N̄ and NA. Therefore we can not obtain Equation (4) by Euler integration of Equation (5). This can
be seen clearly if we rewrite Equation (4) as

Ū = TS− pV̄ + µN̄ + µANA + E (6)

where we have used the previous definition E ≡ (µ̂A − µA)NA. The equation is the same as we would
expect for a macroscopic system except for the extra term E . This general feature of small systems
has important implications for the Clausius–Clapeyron type equation (Equation (36)), and for the
analogue for a small system of the Gibbs adsorption isotherm; see the discussion below in relation to
Equation (48). By differentiating Equation (4) and subtracting Equation (5), we obtain

d(µ̂ANA) = −S dT + V̄ dp− N̄ dµ + µA dNA (7)

This is the function characteristic of a single system of the ensemble for the independent
variables T, p, µ, NA. It is of particular interest operationally because the independent variables
are the environment variables. By subtracting d(µANA) from Equation (7) we have

dE = −S dT + V̄ dp− N̄ dµ− NA dµA (8)

This equation shows that a small system has one additional independent variable compared
to a macroscopic system. In the macroscopic limit, E = 0 and Equation (8) becomes the
Gibbs–Duhem equation, a relation between the intensive variables T, p, µ and µA such that only
three of them are independent. From Equations (7) and (8) it follows that

dµ̂A = − S
NA

dT +
V̄

NA
dp− N̄

NA
dµ− E

N2
A

dNA (9)

dµA = −
(

∂S
∂NA

)
T,p,µ

dT +

(
∂V̄

∂NA

)
T,p,µ

dp−
(

∂N̄
∂NA

)
T,p,µ

dµ− 1
NA

(
∂E

∂NA

)
T,p,µ

dNA (10)

The expression for dµA is obtained by considering µA a function of T, p, µ and NA, and writing
the general expression for the differential. The first three differential coefficients, i.e., in T, p and µ

are obtained by Maxwell relations from Equation (7). By substituting the general expression for
dµA in Equation (8) and setting T, p, µ constant, we may solve for the last differential coefficient.
Equations (9) and (10) show the integral-differential relation between µ̂A and µA.

We define the Gibbs energy G and the enthalpy H by

Ḡ ≡ Ū − TS + pV̄ = µN̄ + µANA + E = µN̄ + µ̂ANA (11)

H̄ ≡ Ḡ + TS = TS + µN̄ + µ̂ANA (12)

This concludes the theoretical basis needed to describe adsorption on a small adsorbent.
We proceed to make the relations operational.
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3. Operational Relations

The thermodynamic system was defined above as the adsorbent plus the adsorbed film. We are
interested in the properties of the film, and how they vary with the size of the adsorbent. The aim is to
be able to plot adsorption isotherms, spreading pressure and corresponding film entropy and enthalpy.

3.1. The Reference State

As is the usual procedure in adsorption thermodynamics, we define the reference state as
the quantity, NA, of pure adsorbent, with volume V̄0A at external pressure, p, and temperature T.
By pure adsorbent we mean the adsorbent with a clean surface in the absence of adsorption, N → 0.
The quantities T, p and NA were defined above; see Section 2. The properties of the film can then
be defined as the properties of the total system relative to the reference. In practice, we subtract
properties of the pure adsorbent from the total system, while keeping the interaction energy with the
film molecules. The equivalents of Equations (4), (5) and (7) for the reference are given by

Ū0A = TS0A − pV̄0A + µ̂0ANA (13)

dŪ = T dS0A − p dV̄0A + µ0A dNA (14)

d(µ̂0ANA) = −S0A dT + V̄0A dp + µ0A dNA (15)

By subtracting Equation (13) from Equation (4), Equation (14) from Equation (5) and Equation (15)
from Equation (7), we obtain the equations for the film.

Ūs = TSs − pV̄s + µN̄s − Φ̂NA (16)

dŪs = T dSs − p dV̄s + µ dN̄ −Φ dNA (17)

d(Φ̂NA) = Ss dT − V̄s dp + N̄s dµ + Φ dNA (18)

where Equation (18) is the characteristic equation for the film in the given environment. Superscript F
denotes the film properties defined by Ss ≡ S − S0A, V̄s ≡ V̄ − V̄0A, N̄s ≡ N̄, Φ̂ ≡ µ̂0A − µ̂A and
Φ ≡ µ0A − µA. The property N̄s is defined for consistency in notation because N̄ is already the amount
of adsorbed component only.

3.2. Size-Dependent Thermodynamic Properties

The analysis continues from here under the approximations that the adsorbent is unaffected
by the adsorption, and that its volume, shape and structure are independent of temperature and
pressure. The adsorbent then functions only as an external field acting on the adsorbed phase. A more
general approach is required for adsorbents that evaporate/dissolve; adsorbents whose structure is
affected by the adsorption; and cases where there is no unambiguous definition of the adsorbent’s
surface area [13]. However, for the calculations done here, we do not require that level of generality.
In general the adsorbent volume may be considered to be a function of T, p and NA. However,
under the current approximations the adsorbent thermal expansion and compressibility are negligible.
It follows that the adsorbent volume and surface area are functions of NA only. For a constant spherical
shape, there is now only one independent variable among the adsorbent volume, surface area and NA.
The adsorbent surface area Ω is a natural choice when we want to describe the properties of the film
only. Eliminating NA in Equations (17) and (18) by substituting dNA = (dNA/dΩ) dΩ, we have

dŪs = T dSs − p dV̄s + µ dN̄ − ϕ dΩ (19)

d(ϕ̂Ω) = Ss dT − V̄s dp + N̄s dµ + ϕ dΩ (20)
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where we have defined ϕ ≡ Φ(dNA/dΩ) and ϕ̂ ≡ Φ̂(NA/Ω). The property ϕ is the usual spreading
pressure in adsorption thermodynamics [12]. The property ϕ̂ is related to the subdivision potential
Es by Es = (ϕ − ϕ̂)Ω. The relation can be taken as a definition of the subdivision potential.
The equivalents of Equations (9) and (10) are

dϕ̂ =
Ss

Ω
dT − V̄s

Ω
dp +

N̄s

Ω
dµ +

Es

Ω2 dΩ (21)

dϕ =

(
∂Ss

∂Ω

)
T,p,µ

dT −
(

∂V̄s

∂Ω

)
T,p,µ

dp +

(
∂N̄s

∂Ω

)
T,p,µ

dµ +
1
Ω

(
∂Es

∂Ω

)
T,p,µ

dΩ (22)

Due to the integral forms of the coefficients in Equation (21) and the differential forms of the
corresponding coefficients in Equation (22), we refer to ϕ̂ as the integral spreading pressure and to ϕ

as the differential spreading pressure. For Equations (11) and (12) relative to the reference, we see that

Ḡ− Ḡ0A = µN̄s − ϕ̂Ω = µN̄s − ϕΩ + Es (23)

H̄ − H̄0A = TSs + µN̄s − ϕ̂Ω = TSs + µN̄s − ϕΩ + Es (24)

Following the usual procedure in adsorption thermodynamics, the term ϕΩ is recognized as
the analogue of pV for ordinary three-dimensional thermodynamics. We therefore define the film
functions Ḡs and H̄s by

Ḡs ≡ Ḡ− Ḡ0A + ϕΩ = µN̄s + Es (25)

H̄s ≡ Ḡs + TSs = TSs + µN̄s + Es (26)

This ensures the relation between H̄s and Ss given in Equation (39) when the system is in
equilibrium with the gas. The relation in Equation (39) becomes the one usually encountered in
adsorption thermodynamics when the system is macroscopic and Es = 0. By Equations (21) and (22)
and the relation Es = (ϕ− ϕ̂)Ω we may write dEs in terms of the environment variables T, p, µ, Ω as

dEs = Ω2
(

∂Ss/Ω
∂Ω

)
T,p,µ

dT −Ω2
(

∂V̄s/Ω
∂Ω

)
T,p,µ

dp + Ω2
(

∂N̄s/Ω
∂Ω

)
T,p,µ

dµ + Ω
(

∂ϕ

∂Ω

)
T,p,µ

dΩ

(27)
The differential coefficients of the type ∂(Y/Ω)/∂Ω in Equation (27), where Y = Ss, V̄s, N̄s, may be

expanded as (
∂Y/Ω

∂Ω

)
T,p,µ

=
1
Ω

[(
∂Y
∂Ω

)
T,p,µ
− Y

Ω

]
(28)

This emphasizes the distinction between differential and integral quantities for small systems,
one of the key points of nanothermodynamics. In the macroscopic limit, linear homogeneous relations
of the type ∂Y/∂Ω = Y/Ω are again true and the bracket term vanishes. It follows directly from
Equation (27) that the effects of size on the intensive variables Ss/Ω, V̄s/Ω, N̄s/Ω and ϕ may be related
to Es and changes in Es by (

∂Ss/Ω
∂Ω

)
T,p,µ

=
1

Ω2

(
∂Es

∂T

)
p,µ,Ω

(29)

(
∂V̄s/Ω

∂Ω

)
T,p,µ

= − 1
Ω2

(
∂Es

∂p

)
T,µ,Ω

(30)

(
∂N̄s/Ω

∂Ω

)
T,p,µ

=
1

Ω2

(
∂Es

∂µ

)
T,p,Ω

(31)

(
∂ϕ

∂Ω

)
T,p,µ

=
1
Ω

(
∂Es

∂Ω

)
T,p,µ

(32)



Nanomaterials 2020, 10, 1691 9 of 20

From Equation (21) we have (
∂ϕ̂

∂Ω

)
T,p,µ

=
Es

Ω2 (33)

These are the overarching relations inherent in Hill’s formalism that we next may take advantage
of in descriptions of further properties of the film. They show the central role of the subdivision
potential, which can serve as a direct measure of the system smallness, as we shall see below,
e.g., in Equation (37). The relations are not directly obtainable in Gibbs’ treatment of adsorption.
From Equation (26) using Equations (29) and (31) it follows that(

∂Hs/Ω
∂Ω

)
T,p,µ

=
T

Ω2

(
∂Es

∂T

)
p,µ,Ω

+
µ

Ω2

(
∂Es

∂µ

)
T,p,Ω

+

(
∂Es/Ω

∂Ω

)
T,p,µ

(34)

We now consider the special case where the system is in equilibrium with a macroscopic gas
at T, p. The chemical potential µ is then equal to the gas chemical potential µG. It follows that µ is
completely determined by T and p and that a change dµ is given by dµ = −sG dT + vG dp, where sG
and vG are the entropy and volume per gas molecule. Equation (21) becomes

dϕ̂ = (ss − sG)Γ̄s dT − (v̄s − vG)Γ̄s dp + Es/Ω2 dΩ (35)

where ss ≡ Ss/N̄s, v̄s ≡ V̄s/N̄s, and Γ̄s ≡ N̄s/Ω. It follows that the entropy per film molecule relative
to the entropy per gas molecule at the same conditions is given by

ss − sG = (v̄s − vG)

(
∂p
∂T

)
ϕ̂,Ω

(36)

This equation together with Equation (46) is applied below to calculate the entropy per film
molecule relative to the gas. The relation between the chemical potential of the film and the enthalpy
follows from Equation (26), and is given by

µ = h̄s − Tss − Es/N̄s (37)

where h̄s = H̄s/N̄s. From the equilibrium condition µ = µG it follows that

h̄s − Tss − Es/N̄s = hG − TsG (38)

h̄s − hG = T(ss − sG) + Es/N̄s (39)

This equation was used to calculate the enthalpy per film molecule relative to the gas
in simulations.

We can write the equations that relate the effects of size on intensive variables to Es in simpler
form. Equation (27) becomes

dEs = Ω2
[

∂(ss − sG)Γ̄s

∂Ω

]
T,p

dT −Ω2
[

∂(v̄s − vG)Γ̄s

∂Ω

]
T,p

dp + Ω
(

∂ϕ

∂Ω

)
T,p

dΩ (40)

The operational equivalents of Equations (29)–(32), now follow directly from Equation (40):[
∂(ss − sG)Γ̄s

∂Ω

]
T,p

=
1

Ω2

(
∂Es

∂T

)
p,Ω

(41)

[
∂(v̄s − vG)Γ̄s

∂Ω

]
T,p

= − 1
Ω2

(
∂Es

∂p

)
T,Ω

(42)
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(
∂ϕ

∂Ω

)
T,p

=
1
Ω

(
∂Es

∂Ω

)
T,p

(43)

From Equation (35) we have the operational equivalent of Equation (33):(
∂ϕ̂

∂Ω

)
T,p

=
Es

Ω2 (44)

From Equation (39) using Equation (41), we have the operational equivalent of Equation (34):[
∂(hs − hG)Γ̄s

∂Ω

]
T,p

=
T

Ω2

(
∂Es

∂T

)
p,Ω

+

(
∂Es/Ω

∂Ω

)
T,p

(45)

3.3. Analogue of the Gibbs Adsorption Isotherm

We can integrate Equation (35) at constant T and Ω to obtain ϕ̂ if we have the adsorption isotherm
for a given adsorbent size. We then have

ϕ̂ =
∫ p

0
Γ̄s(vG − v̄s) dp, (T, Ω const.) (46)

The choice of reference system used to define the film properties can be motivated by this
operational equation. As the gas pressure decreases towards zero, the system approaches the
reference system. Therefore, ϕ̂ vanishes at the lower integration limit. The role of the subdivision
potential is no longer visible in the end formula, Equation (46), but as has been seen above, the property
can be regarded as an expression of a certain internal structure that must be obeyed.

In standard thermodynamics the well known Gibbs adsorption isotherm may be obtained
from the analogue for a surface phase of the Gibbs–Duhem relation at constant temperature [12].
The Gibbs–Duhem relation may be obtained by a standard procedure involving Euler integration
of the expression for the differential change in internal energy. When the pure adsorbent is used
as the reference state, and the criterion for the distinction between free and adsorbed adsorbate
is such that Vs = 0, the analogue of the Gibbs adsorption isotherm is given by Equation (1002,8)
in [12], or Equation (15) in [21]. At equilibrium, assuming the gas is an ideal gas, we have
dµ = dµG = vG dp ≈ kT d ln p. It follows that the integrated form of the Gibbs adsorption isotherm is
given by Equation (29) in [13], or Equation (19) in [21].

The important point here is that direct Euler integration of Equation (19) is not possible. Therefore,
the ensemble procedure is used to obtain the analogue of the Gibbs–Duhem relation for a small system,
given by

dEs = d[(ϕ− ϕ̂)Ω] = −Ss dT + V̄s dp− N̄s dµ + Ω dϕ (47)

which in integrated form at constant T and Ω gives Equation (46). Equation (47) further shows the
central role of the subdivision potential. Assuming that the gas is an ideal gas, and that the criterion
adopted for the distinction between free and adsorbed adsorbate is such that V̄s = 0, the analogue of
the Gibbs adsorption isotherm for a small system follows from Equation (46), and is given by

ϕ̂ = kT
∫ p

0
Γ̄s d ln p, (T, Ω const.) (48)

In the macroscopic limit the dependence of the intensive properties on the size of the system
becomes negligible, and we have ϕ̂ = ϕ in Equation (48).

It is interesting to compare the relation between ϕ and ϕ̂ to the relation between µ′A and µ̂′A;
cf. Section 2. Let the adsorbent on which the film is formed be macroscopic such that the film may be
considered flat on a scale that is small compared to the size of the adsorbent, but still large compared to
the film thickness. The film is then a thermodynamic system characterized by T, p and Ω. Suppose the
film has the energy ϕ̂Ω = f (T, p)Ω. The area Ω is then necessary in order to completely characterize
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the film, but the nature of the film is independent of it. It follows from this expression and Equation (20),
with µ = µ(T, p), that

ϕ =

(
∂ϕ̂Ω
∂Ω

)
T,p

= f (T, p) = ϕ̂ (49)

Now consider instead that the system is not macroscopic. The energy may then be alternatively
described by including additional terms related to the size of the system. For instance, suppose that
the energy is given by

ϕ̂Ω = f (T, p)Ω + g(T, p, Ω) (50)

We would then have

ϕ =

(
∂ϕ̂Ω
∂Ω

)
T,p

= f +
(

∂g
∂Ω

)
T,p

(51)

Es

Ω
= ϕ− ϕ̂ =

(
∂g
∂Ω

)
T,p
− g

Ω
(52)

We see that while the first equality in Equation (49) still holds, the second one does not.
Therefore, in order to obtain generalized thermodynamic equations that are valid for the small system
represented by Equation (50) and that become the conventional thermodynamic equations in the
macroscopic limit, we must, in addition to the regular spreading pressure ϕ, define the integral
spreading pressure ϕ̂. The two functions become equal in the macroscopic limit. Then the energy
Es dN required to subdivide the ensemble into a larger number of smaller systems is negligible. It then
follows from Equation (52) that the difference between the differential property (∂g/∂Ω)T,p and
integral property g/Ω is negligible.

4. Methodology

4.1. Simulation Techniques

Molecular simulations were done using the open source software LAMMPS
(version 20 August 2019) [22] with the grand canonical Monte Carlo simulation technique.
A simulation was run for each thermodynamic state of the film characterized by T, p and Ω.
All simulations were bounded by a cubic simulation box with periodic boundary conditions. The size
of the box varied depending on the state, but was fixed for any given state. As an example, for all
states of the graphite adsorbent system consistent with T = 1.08 and Ω ≈ 82, the side length of the
box was approximately 15 in reduced units. The gas pressure and density were sampled sufficiently
far away from the adsorbent surface for the gas to obtain bulk properties.

The interaction between the gas molecules was described by the Mie potential [23].

uG (r) = BεG

[(σG

r

)γr
−
(σG

r

)γa
]

, B =

(
γr

γr − γa

)(
γr

γa

)( γa
γr−γa

)
(53)

where εG is the energy parameter of the interaction, σG is the length parameter of the interaction, γr is
the repulsive exponent and γa is the attractive exponent. The parameters were taken from [24] to
represent single site coarse-grained CO2 molecules. For the unit of energy we used the strength of
the Mie interaction 361.69 kJ, where k is the Boltzmann constant. For the unit of length we used the
diameter of the CO2 Mie segment 3.741 Å. For the unit of mass, we used the molecular mass of CO2.
We set the parameters as follows: (1) The number of Mie segments ms = 1, (2) σG = 1 by the definition
of units, (3) εG = 1 by the definition of units, (4) γr = 23.0, (5) γa = 6.66 and (6) the potential cut-off
distance rc,mie = 4.0.

The interaction between the adsorbent functioning as an external field and a gas molecule,
was represented by a spherical colloid potential located at the box center. The expression for this
potential follows by integration of the pairwise interactions between a gas molecule and the adsorbent
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constituent atoms over the adsorbent volume. The interaction between a gas molecule and the
adsorbent constituent atom was given by the standard Lennard–Jones 12-6 potential

u(r′) = 4ε

[( σ

r′
)12
−
( σ

r′
)6
]

(54)

where u(r′) is the interaction energy between an adsorbent atom and a gas molecule, r′ is the center
to center distance between them, ε is the energy parameter of the interaction and σ is the length
parameter of the interaction. By integrating Equation (54) over the spherical adsorbent, we have

U (r) = 16περAσ3

3

[
(15R3r6 + 63R5r4 + 45R7r2 + 5R9)σ9

15(r2 − R2)9 − R3σ3

(r2 − R2)3

]
, r > R (55)

where U (r) is the interaction energy between the adsorbent and a gas molecule, r is the center to
center distance between them, ρA is the adsorbent number density and R is the adsorbent radius.
The cut-off distance rc for the potential was defined by the relation U (rc)/min(U ) = 5.5 × 10−3,
where min(U ) is the potential minimum. The value of rc, satisfying the relation, was approximated
by rc = 1.23R + 3.0 for each adsorbent radius. We used the conventional definition of the Hamaker
constant A12 ≡ π2Cρ1ρ2, where C is the coefficient of the dispersion energy udisp(r′) = −C/(r′)6.
For a potential of the type in Equation (54) it follows that C = 4ε12σ6

12 and

A12 = 4π2ε12ρ1ρ2σ6
12 (56)

Using Equation (56), and the mixing rules σ = (σG + σA)/2 and ε =
√

εG εA , we may calculate
ερA σ3 in terms of σG , σA , εG , and AA for use in Equation (55). This assumed the adsorbent had the
same density as the bodies for which AA was measured. Here σA and εA are the length and energy
parameters of the dispersion energy of two interacting adsorbent atoms, analogous to σ and ε, and AA

is the Hamaker constant for the interaction between two graphite bodies. We take σA = 3.4 Å for the
carbon atom–atom interaction, and AA = 4.7× 10−19 J for the Hamaker constant [25]. It follows that
ερA σ3 = [

√
εGAA /(16π)][(σG + σA)/σA ]

3 ≈ 1.79 in reduced units for the graphite adsorbent system.
For the generic adsorbent system we used ερA σ3 = 11.0, and the cut-off was set to the fixed value
rc = 7.

In order to use the thermodynamic relations with the simulation data, we need to be able to
distinguish between adsorbed and free molecules. We therefore define the location of a spherical
mathematical dividing surface at a radial distance a from the box center by the criterion U (a) = 0.
We then define the adsorbent volume by VA ≡ (4/3)πa3, and the number of adsorbed molecules by
N ≡ NB − ρG (VB − VA), where NB is the number of adsorbate molecules in the box, ρG is the gas
density and VB is the box volume. This is a definition based on the concept of surface excess properties
introduced by Gibbs [9]. It was easy to apply to the simulations because we had access to the total
quantity of the adsorbing component, the gas density and the volume.

4.2. Data Reduction

Plots of the integral spreading pressure ϕ̂(Ω; T, p) were first obtained from the adsorption
isotherm simulation data of the type Γ̄s(p; T, Ω), one for each area. The following prescription was
used to find the desired properties:

• The isotherms were interpolated as described below and integrated using Equation (46),
approximating the gas as ideal such that vG = kT/p.

• Each of the resulting functions ϕ̂(p; T, Ω), one for each area, were then evaluated at the desired
pressure to give the final curve.

• The curve for the differential spreading pressure, ϕ, was obtained from the functions ϕ̂(p; T, Ω) for
all areas, from the relation ϕ = ϕ̂ + Ω(∂ϕ̂/∂Ω)T,p, which follows from Equation (35) at constant
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T, p and the definition Es ≡ (ϕ − ϕ̂)/Ω. The derivative Ω(∂ϕ̂/∂Ω)T,p was approximated by
Ω(∆ϕ̂/∆Ω)T,p which was calculated from two functions ϕ̂(p; T, Ω1) and ϕ̂(p; T, Ω2) for values
of Ω1 and Ω2 not too far apart.

• The curve for Es/Ω was obtained as the difference ϕ− ϕ̂.
• The curves for the entropy and enthalpy were obtained by Equations (36) and (39), respectively.

This required the use of Equation (46) first, so that we knew ϕ̂(p; T, Ω). The derivative term
was approximated by -(kT/p1)(∂p/∂T)ϕ̂,Ω ≈ −(kT/p1)(∆p/∆T) which was calculated from
two functions p(ϕ̂; T1, Ω) and p(ϕ̂; T2, Ω) for values of T1 and T2 not too far apart. The two
temperatures used were T1 = 1.080 and T2 = 1.165. The functions were obtained by inversion of
ϕ̂(p; T1, Ω) and ϕ̂(p; T2, Ω).

For all state properties of which the approximate value was calculated from two states,
i.e., from expressions containing finite difference terms such as Ω(∆ϕ̂/∆Ω)T,p, the association of
the value with a single state is somewhat arbitrary. If we label the states in the difference above as
Ω(∆ϕ̂/∆Ω) = Ω(ϕ̂2− ϕ̂1)/(Ω2−Ω1) we chose to assign the values to the state of ϕ̂1, Ω1. This means
that Ω = Ω1 in the expression. Another choice may be to assign the value to some mean of the states.
In the limit of infinitesimal differences, both choices give the same curves. The choice we made has
the advantage of being simpler to implement in software. However, if quantitative accuracy is the
main concern, the second choice may be more satisfactory.

In summary we acquired simulation data for a range of pressures and areas at two
different temperatures. We set the control parameters T, µ and Ω for each simulation and sampled
the gas pressure and density from the region of macroscopic gas properties. The total amount of the
adsorbate component was also sampled. The rest of the properties then followed by thermodynamic
relations. In each simulation the system was first equilibrated for a number of cycles that depended on
the state we were simulating. The properties of interest were monitored to make sure they fluctuated
around a steady value. This was followed by a number of cycles where samples for calculating
ensemble averages and errors were collected. The number of cycles varied with the state simulated,
and were chosen in each case such that the estimated error was less than 1.5% of the mean with 95%
confidence for all sampled properties and the calculated property Γ̄s. The strongest correlation between
samples was found in Γ̄s. This property therefore determined the number of cycles. In estimating the
standard error we accounted for correlation in the data by block analysis.

We analyzed the data using the scientific computing library SciPy [26], and created figures
using Matplotlib [27]. We interpolated the simulation data for the adsorption isotherms Γ̄s(p; T, Ω)

using univariate splines, constraining the splines to be linear for the lowest pressures according to
Henry’s law. We then extrapolated the linear region to zero pressure to allow the integration in
Equation (46). We evaluated the integral analytically for the lowest pressures, and numerically for the
remaining pressures.

5. Results

The calculated results are shown in Figures 1–4. The figures show ϕ, ϕ̂ and Es/Ω and other
thermodynamic properties as functions of the adsorbent area Ω at constant temperature and pressure.
All quantities are given in reduced units. Figures 1 and 2 are the results for the graphite adsorbent case.
Figures 3 and 4 are the results for the generic adsorbent case representing very small adsorbents with
strong interaction potentials. It is clear from the figures that all properties shown depend on the system
size (area). To place our experiment in context with macroscopic thermodynamics, consider an infinite
flat film adsorbed on a flat adsorbent. The intensive thermodynamic properties of this film do not
depend on the surface area. There is then no difference between the integral spreading pressure ϕ̂ and
the differential spreading pressure ϕ, and Es = 0. The results documented show that we are far away
from this limit, since there is an observable difference between integral and differential properties.
The systems can thus be considered as small in Hill’s sense.
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Figure 1 shows how the spreading pressures, ϕ and ϕ̂, and the subdivision potential depend
on system size for the graphite adsorbent case. The area range corresponds approximately to an
adsorbent radius between 6 and 25 ×10−10 m. We can see that the trend for ϕ and ϕ̂ has an initially
steep increase, after which the rate of increase goes down. At the upper limit of the area range there
is still a significant difference between ϕ and ϕ̂. The subdivision potential per unit area Es/Ω, or the
deviation from the corresponding macroscopic system, appears fairly constant; however, these results
are still consistent with the theoretical prediction that ϕ = ϕ̂ and Es approaches zero in the macroscopic
limit; see discussion below.
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Figure 1. Film properties ϕ, ϕ̂ and Es/Ω for the graphite adsorbent case as functions of the adsorbent
area Ω at constant temperature T = 1.080 and pressure p = 0.011. All quantities are given in reduced
units. For reference, the approximate values in SI units are T ≈ 250 K, p ≈ 1.05 MPa and adsorbent
radii are between 6 and 25 ×10−10 m. The markers indicate which adsorbent sizes were simulated and
the lines are there as visual aid.

Figure 2 shows the size dependence of the entropy and the enthalpy per film molecule relative
to the gas, and the difference Es/N̄s between the two as given by Equation (39) for the graphite
adsorbent case. We see that, in general, there is less entropy and enthalpy per film molecule as the
adsorbent becomes larger. The rate at which the properties decrease with increasing size goes down.
The difference Es/N̄s, or the deviation from the corresponding macroscopic system, decreases as the
adsorbent area becomes larger. This is expected.

Figure 3 shows how the spreading pressures, ϕ and ϕ̂, and the subdivision potential depend on
system size for the generic adsorbent case. We see that the general trend for all three curves is an initial
increase to an inflection point, after which the rate of increase goes down. At the upper limit of the
area range there is still a significant difference between ϕ and ϕ̂, and the subdivision potential per
unit area Es/Ω has not started to decrease towards zero at that point. However, the results are still
consistent with the theoretical prediction that ϕ = ϕ̂ and Es approaches zero in the macroscopic limit;
see discussion below. Special is a local deviation from the overall trend of the curves for adsorbent
areas 50 < Ω < 60. This is more clearly seen in the enthalpy and entropy curves of Figure 4 for the
same range of areas.

Figure 4 shows the size dependence of the entropy and the enthalpy per film molecule relative to
the gas, and the difference Es/N̄s between the two as given by Equation (39). We see that, in general,
there is less entropy and enthalpy per film molecule as the adsorbent becomes larger. The rate at which
the properties decrease with increasing size goes down. The difference Es/N̄s, or the deviation from the
corresponding macroscopic system, decreases as the adsorbent area becomes larger. This is expected.
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Figure 2. Film properties enthalpy, entropy and the subdivision potential per film molecule as functions
of the adsorbent area Ω at constant temperature T = 1.080 and pressure p = 0.011. Enthalpy and
entropy for a film molecule are given relative to the gas. All quantities are given in reduced units.
For reference, the approximate values in SI units are T ≈ 250 K, p ≈ 1.05 MPa and adsorbent radii are
between 6 and 25 ×10−10 m for the area range.
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Figure 3. Film properties ϕ, ϕ̂ and Es/Ω as functions of the adsorbent area Ω at constant temperature
T = 1.080 and pressure p = 1.8 × 10−4 for the generic adsorbent case. All quantities are given in
reduced units. For reference, the approximate values in SI units are T ≈ 250 K, p ≈ 50 kPa and
adsorbent radii are between 6 and 9 × 10−10 m. The markers indicate which adsorbent sizes were
simulated and the lines are there as a visual aid.

A local maximum in the entropy of the gas relative to the entropy of the film for adsorbent areas
50 < Ω < 60 is special, as is a corresponding maximum in the gas enthalpy relative to the film enthalpy.
The quantities are plotted as T(sG − ss) and hG − h̄s for convenience so that all quantities are positive.
Thus we observed a minimum in the film entropy relative to the gas ss − sG and a minimum in the film
enthalpy relative to the gas h̄s − hG. From the results, the areas around reduced units 55 appear special.
Compared to Figure 2 it appears that there is local deviation from the general trend in the curves
for the graphite adsorbent in this range of areas, but to a much smaller extent than for the generic
adsorbent. A thermodynamic analysis alone will not reveal any particular reason for such a behavior.
Several explanations can be thought of, as discussed below.



Nanomaterials 2020, 10, 1691 16 of 20

40 50 60 70 80 90 100

Ω (σ2
G

)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

E
n

er
gy

(ε
G

)

ES/NS
hG − hS
T (sG − sS)

Figure 4. Film properties enthalpy, entropy and the correction function per film molecule as functions
of the adsorbent area Ω at constant temperature T = 1.080 and pressure p = 1.8 × 10−4 for the generic
adsorbent case. Enthalpy and entropy for a film molecule are given relative to the gas. All quantities
are given in reduced units. For reference, the approximate values in SI units are T ≈ 250 K, p ≈ 50 kPa
and adsorbent radii are between 6 and 9 × 10−10 m for the area range.

6. Discussion

In the simulations we changed the size of the adsorbent while keeping the temperature and
chemical potential of the gas constant. As the gas is macroscopic, this is equivalent to controlling the
temperature and pressure. In effect, as long as the gas is macroscopic it is unaffected by the size of
the adsorbent. In cases where the gas is no longer macroscopic, such as in confinement, the gas phase
must also be treated as a small system where all three of the variables T, p and µ are independent.

When we increase the size of the adsorbent, there are two direct changes to the composite system:
(1) the strength of the external field increases, and (2) the surface becomes less curved. For the
present systems, the two changes were coupled to the size of the adsorbent, so we cannot isolate the
individual effects. However, if one would like to do so, one could study different adsorbent materials
at the same size.

The strength of the external field felt by an adsorbed molecule comes from integrating the
pairwise sum over all atoms that would constitute the adsorbent, resulting in Equation (55). Therefore,
an increase in the field strength is analogous to the introduction of more adsorbent atoms. This leads
to a larger total interaction energy for the film, but is to some extent counteracted by the fact that
with increasing size, a larger fraction of the adsorbent atoms would be at a greater distance from a
given adsorbed molecule. As the pair potential is inversely proportional to the separation distance by
u(r) ∝ r−6, the greater distance leads to a plateau in the total interaction energy in the large size limit.

To further discuss the effect of the presence of the adsorbent and its size on the film, we give an
illustration of four related systems divided into two groups. The first group consists of two systems
that have flat surfaces, while the second group consists of two systems with curved surfaces. In each
group one of the systems has the condensed phase in the presence of an adsorbent while the other
has a free condensed phase. The comparison of free and adsorbed systems within a group focuses on
the effects of the adsorbent, while the comparison of spherical and flat systems between the groups
focuses on the effects of size. We found the analogy of the systems in the second group to the more
simple systems in the first group helpful.

In the first case, consider a single-component bulk liquid with a flat surface, in equilibrium with
its own vapor. The nature of this system is completely characterized by the temperature. This means
that there is only one pressure p0(T) for a given temperature T at which the equilibrium state can exist.
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If we now extend the definition of the system and let the liquid be adsorbed onto a flat adsorbent
surface, the situation becomes different. If the pressure is below p0 for the given temperature, the phase
will start to evaporate. However, the evaporation will not necessarily continue until there is only gas
left. This is because the evaporation will reach a point at which the field of force from the adsorbent is
felt in such a way that no part of the phase maintains the properties of bulk. Beyond this point there is
a non-zero free energy change associated with adsorption/desorption, and the amount of adsorbed
material Γ̄s(T, p) may adjust to satisfy the equilibrium condition while T and p remain independent.
The condensed phase may therefore be in equilibrium with the vapor at pressures below p0.

Now consider the analogous case of a single-component spherical liquid droplet of area Ω∗

in equilibrium with its own vapor. The (unstable) equilibrium state is characterized by T and Ω∗.
This means that for a given temperature and area there is only one pressure p0′ > p0 at which
the equilibrium state can exist. The equilibrium pressure p0′(T, Ω∗) for this system is larger than
p0 due to the curvature and the Laplace pressure. If we let the liquid be an adsorbed phase on
a spherical adsorbent, as in our simulations, the situation changes again. The system has three
independent variables. The equilibrium state may be characterized by T, Ω and p as in Equation (21).
Compared to the droplet at the same temperature, we set the adsorption such that the two physical
systems are equal in size as characterized by Ω∗. There is one more independent variable to fix.
Therefore, unlike for the droplet we have many possible equilibrium pressures for a given adsorption
(as determined by Ω∗) if we let Ω be different in each case. In Figures 1–4 we have many adsorptions
for a given pressure because the area is different in each case. For given values of T and Ω there is
a limit pressure p0′ at which bulk condensation starts. This limit becomes lower for larger Ω until it
reaches p0 for a large flat adsorbent. In other words, a given adsorbent size imposes a limit on the
vapor pressure required for bulk condensation. This has previously been observed with a statistical
model [28]. As the limit changes with size, this implies that a change in size of the adsorbent for
p0 < p < p0′ may induce bulk condensation if p0′ drops below p. For p < p0 there is naturally no
adsorbent size that will induce bulk condensation. After bulk condensation starts, the saturation
pressure decreases gradually towards p0 because the curvature of the growing condensed phase
decreases and approaches zero.

To summarize, for the first system we only have to fix the temperature in order to fix the
equilibrium state. In the second system we have, in addition, to fix the pressure. In the third
system we have to fix the temperature and the area of the adsorbent. In the last system we have to fix
the temperature, the area and the pressure.

For our simulations the illustration above implies that for pressures p < p0, we may have a flat
and a spherical adsorbed film in equilibrium at the same temperature and pressure. They will in
general have different thermodynamic properties. For instance, the adsorption differs as discussed
above. By increasing the adsorbent size, the bulk condensation pressure limit approaches p0 from
above and the thermodynamic properties approach the values for a flat film. For pressures p > p0,
the spherical film may be in equilibrium but there is no possible corresponding flat system because
p0 < p0′ . An increase of adsorbent size may cause the bulk condensation pressure limit p0′ to pass
through p, at which point the adsorption diverges.

In Figures 1 and 3 the pressures are below p0 for the given temperature. We would therefore
expect the curves for ϕ and ϕ̂ to eventually coincide at the plateau value for a flat adsorbed film at the
given temperature and pressure. This occurs when the slope of the ϕ̂ curve is zero, which is consistent
with the relation ϕ = ϕ̂ + Ω(∂ϕ̂/∂Ω)T,p and Equation (44) as Es = 0. The curve for ϕ̂ in Figure 3 is
s-shaped and consistent with the approach to a plateau value. According to Equation (44), the s-shaped
curve of ϕ̂ gives a bell-shaped curve for Es/Ω, with a peak value at the inflection point of ϕ̂, and ending
at E/Ω = 0. The expected curve for ϕ would according to the relation ϕ = ϕ̂ + Ω(∂ϕ̂/∂Ω)T,p also
have a peak before decreasing towards the plateau value of ϕ̂. The same reasoning applies to Figure 1,
however the shapes of the curves are stretched out and harder to identify. Thus, although the eventual
decrease in Es towards zero is not observed for the limited area ranges in Figures 1 and 3, the results
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are consistent with the macroscopic limit relations ϕ = ϕ̂ and Es = 0. More experiments are needed
for further confirmations.

The trends in the entropy and enthalpy curves in Figures 2 and 4 are reasonable, when we
consider the discussion above on the change in total interaction energy with size. With a larger
interaction energy, the molecules are more tightly bound to the surface, and there are less possible
configurations of the system available. The adsorbed phase is then more ordered, and the entropy
becomes lower. In the macroscopic limit where the film is flat Es/N̄s = 0 and h̄s − hG = T(ss − sG)

by Equation (39). The trends of the curves for Es/N̄s are consistent with this. More experiments are
needed for further confirmations.

For the very small adsorbent with a strong interaction potential(cf. Figure 4), we can observe a
peak in the entropy and enthalpy, and there is a corresponding effect in Figure 3. A minimum in the
entropy of an adsorbed molecule, when plotted against the adsorption or pressure, is well known
in systems where the interaction of the adsorbate with the adsorbent is strong. This is related to the
decrease in the number of configurations available to the system as the first adsorption layer is filled
and a subsequent increase following the initiation of adsorption in a second layer. No film density
variation consistent with this was observed. The peak we see in Figure 4 was also observed for the same
areas for a range of different adsorptions, indicating that it does not have the same origin as discussed
above. These were observations from curves showing the same qualitative behavior but at different
pressures than the ones shown here. The start of the second layer was estimated by the location of the
minimum in the entropy when plotted against the adsorption (not shown here). The local minimum
we observe may thus best be related to available configurations of the system in other ways, such as
the change in structure and arrangement of the molecules on the surface. The type of entropy we
are showing in Figure 4 is the entropy per molecule Ss/N̄s (relative to the gas). As emphasized by
Hill [16], this type of entropy, as opposed to the differential entropy (∂Ss/∂N̄s)T,Ω is the correct one to
discuss in relation to the degree of order of the adsorbed molecules. More information on the spatial
arrangement of the adsorbed molecules may allow this question to be investigated further.

7. Conclusions and Perspectives

We have seen in this work how we can deal with size as a variable in a systematic manner.
The common thermodynamic equations for adsorption were changed in three ways.

Using the procedure of Hill, we have calculated the integral spreading pressure from adsorption
isotherm data for a fixed adsorbent size, using Equation (46). The equation has the same form as the
one usually encountered in adsorption thermodynamics, the integral form of Equation (26) in [13],
with the important distinction that ϕ̂ and ϕ in Hill’s description are not the same functions for small
systems. Equation (46) is valid for systems of any size.

Similarly, we have shown how to obtain the entropy and the enthalpy per film molecule by
Equations (36) and (39). Equation (36) is the same as the one usually encountered in adsorption
thermodynamics, Equation (21) in [13], except for the important fact that the function that is kept
constant when we take the derivative is now ϕ̂ instead of ϕ.

This entropy is the entropy typically discussed in relation to the degree of order of the
adsorbed molecules. Equation (39) differs from the usual equation by the term Es/N̄s. We observe that
for a small system h̄s − hG 6= T(ss − sG) because Es 6= 0. The expressions referred to above, become the
usual expressions in the macroscopic limit where Es = 0 and ϕ̂ = ϕ.

The effects of size on intensive variables is a feature of Hill’s nanothermodynamics [17], and may
be expressed in terms of Es and derivatives of Es by Equations (41)–(45). By the subdivision potential,
we have a direct measure of the system smallness, and we can see from the numerical data that the
value is significant in all relevant properties.

On this basis, we can suggest some possible directions for future work. The adsorbent may be
modeled explicitly as a collection of atoms instead of as an integrated potential. This may allow the
investigation of adsorption on a non-smooth surface with adsorption sites. By allowing the adsorbent
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to be compressible, it may be possible to observe how the film is affected by a phase transition
in the adsorbent for different sizes. By modeling the adsorbate as all-atom molecules instead of
coarse-grained particles, it may be possible to study changes in the molecular orientation and structure
of adsorbing layers induced by the adsorbent size.
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